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Abstract

The elastic nonlinear behavior of fibre-reinforced materials and soft biological tis-
sues is analysed using anisotropic hyperelastic models. Frequently, these models are
not compatible with the corresponding infinitesimal theory, but some of them may
be modified to accommodate that theory in the limit. WYPiWYG hyperelasticity is
compatible with the infinitesimal theory at all deformation levels and capable of cap-
turing exactly a complete set of experimental data, which reproduces all deformation
modes at every strain level, under homogeneous deformations. In this work we study
the relevance of recovering the infinitesimal theory at every deformed configuration
and also the performance of the WYPiWYG method in predicting the behavior of
anisotropic materials at large strains under nonhomogeneous deformations.

Keywords: Hyperelasticity, anisotropy, soft materials, transverse isotropy, large
strains, biological tissues.

1. Introduction

The elastic behavior of fibre-reinforced materials and preconditioned soft tissues
at large strains is modelled by anisotropic hyperelasticity [1], [2]. Anisotropic models
usually consist of a stored energy of the matrix and a stored energy of the fibres.
Following an affine deformations approach, these energies are assumed additive in
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the continuum. Even though physically motivated invariant sets are available [3], [4],
[5], [6], the stored energies are usually formulated in terms of the Rivlin-Spencer in-
variants of the Cauchy-Green metric tensor [7], which have an elusive interpretation
[8]. As explained by Murphy and co-workers [9], [10], [11], many of these models, as
initially proposed, do not recover the infinitesimal theory from which they are moti-
vated. Moreover, some models neglect the influence of some Rivlin-Spencer invariants
resulting in an incomplete set to represent the different deformation modes at all de-
formation levels. Despite the common approach of neglecting some invariants, the
necessity of using a complete set of invariants for the corresponding anisotropic case
has been repeatedly reported [12], [13], [14], [15]. In summary, a model that recovers
the infinitesimal theory should be able to represent all the independent deformation
modes present in the infinitesimal limit without implicitly imposed couplings between
them [10], unless those couplings have been experimentally verified. This is obviously
a desirable feature to avoid nonphysical behavior [16], [17]; but it is also important
in preserving the engineering intuition inherited from the infinitesimal theory, for
example to be able to complete missing experimental data and to take advantage
of known analytical solutions in the literature for some specific problems. To this
end, we find important the use of physically motivated independent invariants as,
for example, those presented in [3], [4], [5], [6] or the logarithmic ones we use below.
An intuitive interpretation of the invariants employed in the formulations allows for
understanding issues as their redundancy or independency, see Shariff et al [18], [19].
Furthermore, the physiological range, in which soft biological tissues work, is not
unloaded. Hence, it is not only important to preserve the infinitesimal theory in the
infinitesimal limit, but also at all deformation levels, because in fact, every incre-
mental deformation may be considered an infinitesimal deformation over an updated
reference configuration [20]. This means that all the independent deformation modes
of the infinitesimal theory should remain independent (not implicitly coupled) at all
deformation levels, unless experimental evidence supports a particular coupling as-
sumption. This way, for example, the material parameters may be fitted using either
the loaded or the unloaded configuration, which is a problem found in soft tissues
when obtaining the material parameters of classical models [21]. In practice, for the
transversely isotropic incompressible materials that we will consider in this paper,
just as demonstrative examples, the recovery of the infinitesimal theory in the in-
finitesimal limit (i.e. reference configuration), means that three independent modes,
and hence at least three material parameters (and their corresponding invariants),
are needed [11]. However, when imposing infinitesimal incremental deformations at
any strain level (any arbitrary configuration), the recovery of the independent defor-
mation modes requires deformation-dependent material parameters which should be
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determined from at least five independent experimental curves.
What-You-Prescribe-is-What-You-Get (WYPiWYG) hyperelasticity is a novel,

purely numerical approach to obtain the stored energy of a hyperelastic material
without imposing the form of the energy terms. The approach is based on the
Sussman-Bathe idea [22] of employing local interpolations instead of global func-
tions and the use of logarithmic invariants. We note that similar local interpolations
to determine the stored energy function had been previously used also by Shariff
[23], and that the use of logarithmic strains for hyperelasticity is traditional in com-
putational plasticity [24], [25], [26], [27]. These types of invariants have also been
extensively used in modelling soft materials by Criscione et al [5], [6].

The WYPiWYG method resembles the (local) finite element method in deter-
mining the stored energy through local interpolations, whereas the usual approach
resembles the Rayleigh method in using global, assumed, analytical functions. The
WYPiWYG method does not use material parameters nor optimization algorithms
because it solves numerically the differential equations of the tests to obtain the
stored energy, instead of fitting a proposed energy function. Hence, the method is
specially suitable for addressing patient-specific modelling of soft biological tissues.
There are WYPiWYG “models” for incompressible, transverse isotropic materials
[28], for orthotropic materials [29] and for compressible materials [30]. A general
procedure for determining the most general stored energies without inversion formula
is given in Ref. [31]. As shown below, the theory is compatible with the infinitesimal
theory at all deformation levels by construction, and captures to machine precision
as many experimental curves as independent deformation modes. In this work we use
the uncoupled WYPiWYG formulation to capture both homogeneous and nonhomo-
geneous deformations by two well-known models originally analyzed by Murphy in
Ref. [9]: the standard reinforcing model and the Humphrey-Yin model. Uncoupled
formulations have been also used by Shariff [32]. We discuss in detail the aspects of
recovering the infinitesimal theory in the limit and at any deformed configuration,
and we show that the WYPiWYG formulation is capable also of predicting the over-
all behavior of those models under large strain nonhomogeneous deformations, even
relevant aspects of the models as for example the strain localization prediction of the
standard reinforcing model; see [33] and references therein.

2. Motivation of WYPiWYG hyperelasticity: from infinitesimal strains

to large strains

In this section we motivate the usual decompositions employed in WYPiWYG
hyperelasticity from a parallel “bi-modular” infinitesimal framework which allows for
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the possibility of different behavior in tension and compression. In the Appendix,
an analysis of the Poynting effect in shear tests is given.

2.1. Infinitesimal theory for isotropic materials with different behavior in tension

and compression

Assume the following infinitesimal strain energy decomposition in Valanis-Landel
form

Ψ (ε) = U (εv) + ω
(

εd1
)

+ ω
(

εd2
)

+ ω
(

εd3
)

(1)

where ε are the infinitesimal strains, εv = tr (ε) is the volumetric strain and εdi are
the principal deviatoric strains. The functions U (εv) and ω

(

εd
)

are, respectively,
the volumetric and the Valanis-Landel terms. These functions need not be quadratic

in the infinitesimal framework, resulting in such cases in “material nonlinear only”
(MNO) models, which are well known in the finite elements context; see [43]. For
example, exponential hyperelastic functions are used within the infinitesimal strain
context in soils [44]. We note that the decomposition Eq. (1) is exact in the infinites-

imal framework, and can be specialized to the “bilinear” model (or “bi-quadratic”
stored energy function)

Ψ (ε) = 1
2
κ#ε2v + µ∗

1

(

εd1
)2

+ µ∗
2

(

εd2
)2

+ µ∗
3

(

εd3
)2

(2)

where κ# and µ∗
i are material constants. The form in Eq. (2) may accommodate

“bi-modular” materials, in which the constants take different values in tension and
in compression, e.g.

κ# =

{

κt if εv ≥ 0
κc if εv < 0

}

and µ#
i =

{

µt if εdi ≥ 0
µc if εdi < 0

}

, i = 1, 2, 3 (3)

and, obviously, the fully linear theory is recovered if κ ≡ κt = κc and µ ≡ µt = µc.
It is straightforward to relate the Young moduli Y t, Y c and the Poisson ratios νt, νc

during tension/compression uniaxial tests to the previous moduli through

Y t =
(2µt + µc) 9κt

2µt + µc + 9κt
, νt =

−4µt − 2µc + 9κt

4µt + 2µc + 18κt
(4)

Y c =
(2µc + µt) 9κc

2µc + µt + 9κc
, νc =

−4µc − 2µt + 9κc

4µc + 2µt + 18κc
(5)

4



The stress tensor is also immediately obtained as

σ =
dΨ (ε)

dε
=
dΨ
(

εv, ε
d
i

)

dε
= κ#εv

dεv
dε

+
3
∑

i=1

2µ∗
i ε
d
i

dεdi
dεd

:
dεd

dε
(6)

= κ#εvI +

3
∑

i=1

(

2µ∗
i ε
d
i

)

(N i ⊗N i) : P = σ
v + σ

|d : P (7)

where N i are the principal stress/strain directions, P = I − (1/3) I ⊗ I is the de-
viatoric projector tensor, σv is the volumetric part of stresses and σd = σ|d : P is
the deviatoric counterpart. The operators “⊗” and “:” are, respectively, the dyadic
(outer) product and the double-index contraction product (i.e. the scalar product
between second order tensors). The tensors I and I are, respectively, the second-
and fourth-order (symmetric) identity tensors. The tangent is

C =
d2Ψ (ε)

dεdε
= κ#I ⊗ I + P :

3
∑

i=1

2µ∗
iNiiii : P (8)

+ P :

3
∑

i=1

∑

j 6=i

2µ∗
jε
d
j − 2µ∗

i ε
d
i

εdj − εdi

1

2
(Nijij + Nijji) : P

where we defined the fourth-order tensor Nijkl = N i ⊗N j ⊗N k ⊗N l. In principal
directions, the non-trivial 3 × 3 part of the matrix relating stresses to strains in
principal directions is

{C} =





κ# κ# κ#

κ# κ# κ#

κ# κ# κ#



+





2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3









2µ∗
1 0 0

0 2µ∗
2 0

0 0 2µ∗
3









2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3





(9)

=





κ# κ# κ#

κ# κ# κ#

κ# κ# κ#



+
2

9





4µ∗
1 + µ∗

2 + µ∗
3 µ∗

3 − 2µ∗
2 − 2µ∗

1 µ∗
2 − 2µ∗

1 − 2µ∗
3

µ∗
3 − 2µ∗

2 − 2µ∗
1 µ∗

1 + 4µ∗
2 + µ∗

3 µ∗
1 − 2µ∗

2 − 2µ∗
3

µ∗
2 − 2µ∗

1 − 2µ∗
3 µ∗

1 − 2µ∗
2 − 2µ∗

3 µ∗
1 + µ∗

2 + 4µ∗
3





(10)

The relevance of this framework can be understood when it is compared to recent
formulations for bi-modular materials [34], [35]: our formulation is motivated from
hyperelasticity, has a very simple finite element implementation and has no restriction
in the material constants —cf. Eq. (1) in [34]. Furthermore, the extension to
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anisotropy and nonlinear behaviour is straightforward as seen below.

2.2. WYPiWYG isotropic formulation

In order to make explicit the reference configuration and the instant at which
measures refer, we use a frequent notation in computational mechanics (see e.g.
Ref. [43]). In this notation, left super- and sub-indices are employed to respectively
emphasize the current and the reference configurations when applicable. For example
t
0U denotes the stretch tensor U from the reference configuration at time τ = 0 to
the current configuration at time τ = t. In a similar manner, tσ are the Cauchy
stresses at time t, and dtε are the infinitesimal strains measured at configuration t.
In a uniaxial problem dtε = dl/l, where l = tl is the current length. Note that
(dε =) d0ε = dl/0l 6= dl/tl = dtε = dt0E, where

t
0E = ln (tl/0l). An infinitesimal

strain over the current configuration is given by dtε ≡ dt0E.
Logarithmic strains have some interesting properties. Assume that the principal

directions of deformation are kept fixed. Then let t+∆t
0U = t+∆t

t U
t
0U be the stretch

tensor at t + ∆t obtained from that at t, t
0U , and let t+∆t

0E = ln t+∆t
0U be the

logarithmic strain tensor. We can write [37]

t+∆t
0E = ln t+∆t

0U = ln t+∆t
tU + ln t

0U = t+∆t
t E+ t

0E (11)

In fact, the dilatational component is always additive, even if principal directions
change, and is computed in the same form as the infinitesimal strains. If principal
directions are not preserved during the real deformation path, because strains are a
state function of the deformation (i.e. they depend on the final displacements, but
not on how we arrived at those values), we can always think of a deformation path
in which principal directions are kept fixed. Then, it can be shown that logarithmic
strains are the addition of all infinitesimal strains, and that the rate of infinitesimal
strains may be interpreted as a fictitious velocity gradient ε̇ = Υ̇Υ−1, see [37]

t
0E =

∫ t

0

dτε =

∫ t

0

ε̇ (τ) dτ =

∫ t

0

τΥ̇ τ
0Υ

−1dτ (12)

with

τΥ̇ =

3
∑

i=1

τ λ̇iN i ⊗N i (13)
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Then, using εv = tr (ε), we can write

t
0E =

1

3
t
0EvI +

3
∑

i=1

t
0E

d
i M i =

(

1

3

∫ t

0

dτεv

)

I +

3
∑

i=1

(
∫ t

0

dτε
d
i

)

M i (14)

and we have in the most general case

t
0Ev = ln t

0J =

∫ t

0

dτεv (15)

and in the fictitious path with principal directions fixed

t
0E

d
i =

∫ t

0

dτε
d
i (16)

Remarkably, in contrast to the shear terms of other strain measures, it can be shown
that the shear terms of the logarithmic strains give a physically accurate repre-
sentation of shear deformations when interpreted as area distortions [37] (which is
an interpretation valid for both infinitesimal shear strains and logarithmic shear
strains). Furthermore, as it is well-known, spatial logarithmic strains are obtained
just from a rotation of the material ones. With all these properties, it should not be
a surprise that the volumetric and deviatoric projections are performed exactly as
in the infinitesimal case, regardless of considering referential, incremental or spatial
configurations.

The interpretation of Equation (12) is that at any given instant τ , the successive
incremental deformations have the structure of infinitesimal deformations. Further-
more, we can quantify the deformation process from the reference configuration to a
state τ + dτ following a succession of infinitesimal, rotationless additive strains i.e.
τ+dτ

τE = τ+dτ
τ ε ≡ dτε. In this rotationless case with principal directions fixed, we

can linearize the stress-strain relation as—T are the generalized Kirchhoff stresses,
work-conjugate to the referential logarithmic strains [38], as we see below

τ+dτ
T = τ

T + τκ
# dτεvI +

3
∑

i=1

2 τµ
∗
i dτε

d
i M i : P (17)

and we can integrate this relation to give

t
T =

(
∫ t

0
τκ

# dτεv

)

I+

3
∑

i=1

(
∫ t

0

2 τµ
∗
i dτε

d
i

)

M
d
i (18)
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where we denoted M
d
i = M i : P. Define

U ′ (Ev (t)) =
dU (Ev (t))

dEv
:=

∫ t

0
τκ

# dτεv ≡
∫ t

0
τκ

# dτEv (19)

ω′
(

Ed
i (t)

)

=
dω
(

Ed
i (t)

)

dEd
i

:=

∫ t

0

2 τµ
∗
i dτε

d
i =

∫ t

0

2 τµ
∗
i dτE

d
i (20)

Then, allowing non-constant τκ
# and τµ

∗
i

U ′′ (Ev) =
d2U
dE2

v

∣

∣

∣

∣

τ

≡ d2U
dE2

v

∣

∣

∣

∣

τEv

= τκ
# ≡ κ (Ev) (21)

ω′′
(

Ed
i

)

=
d2ω

dEd
i dE

d
i

∣

∣

∣

∣

τEd
i

= 2 τµ
∗
i ≡ 2µ

(

Ed
i

)

(22)

It is immediate to verify that the following (Valanis-Landel type) stored energy
results in the stresses Eq. (18)—cf. Eq. (1)

Ψ (E) = U (Ev) + ω
(

Ed
1

)

+ ω
(

Ed
2

)

+ ω
(

Ed
3

)

(23)

Obviously, this stored energy is valid in a general, nonproportional, loading case, re-
gardless of how it has been obtained (usually by means of experiments using propor-
tional loading). The generalized Kirchhoff stresses (or the rotated Kirchhoff stresses
in this isotropic case), work-conjugate to the referential logarithmic strains [38], are
—cf. Eq. (7)

T :=
dΨ (E)

dE
= U ′ (Ev) I +

3
∑

i=1

ω′
(

Ed
i

)

M
d
i (24)

and the tangent is —cf. Eq. (8)

C =
d2Ψ (E)

dEdE
= U ′′ (Ev) I ⊗ I + P :

3
∑

i=1

ω′′
(

Ed
i

)

Niiii : P

+P :
3
∑

i=1

∑

j 6=i

T dj − T di
Ed
j − Ed

i

1

2
(Nijij + Nijji) : P (25)

This tangent may be systematically converted to any other work-conjugate stress-
strain measures through proper mapping tensors [38].
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2.3. An example of a computational procedure for WYPiWYG hyperelasticity

For simplicity consider an incompressible isotropic material following the previous
Valanis-Landel form. The equilibrium equation of a tensile test is [22], [45]

σ (E) = ω′ (E)− ω′
(

−1
2
E
)

(26)

where σ is the tensile stress and E is the longitudinal true strain. Assume that the
experimental data consists of K pairs {Ek, σk}, k = 1, ..., K. The equilibrium Equa-
tion (26) cannot be solved in analytical form, but it can be easily solved numerically
in many different ways. We show here a simple one using the inversion formula from
Kearsley and Zapas. It can be shown that the solution of this equation at the ex-
perimental points is given by the Kaersley-Zapas formula which can be written [45]
as

ω′ (Ek) =

∞
∑

n=0

σ

((

−1

2

)n

Ek

)

(27)

where we have taken ω′ (0) = 0. Since it is usually assumed that σ (0) = 0, and
(−1/2)n → 0 for n → ∞, the series converge in a finite number of terms. This
observation is important, because otherwise Eq. (27) would not be computationally
useful. From a test we do not have a continuous curve σ (E), but discrete pairs
{Ek, σk}. However, it is straightforward to create a continuous function (for example
a piecewise spline) σ (E) from the available data. The function does not need to be
analytical because we just need to evaluate it at points (−1/2)nEk in the inversion
formula Eq. (27). Once this function is created, it is used in the addends of the
inversion formula Eq. (27) to obtain the values ̟k ≡ ω′ (Ek). For each Ek value, the
series terms σ ((−1/2)nEk), computed from evaluations of the previously computed
continuous σ (E) function, are successively added in a loop to the iteratively com-
puted value of ω′ (Ek), until the terms become smaller than a prescribed tolerance.
Speed of convergence depends on the actual curve. In our experience, machine pre-
cision is reached typically in about 50 addends, but about 10 addends give usually
indistinguishable solutions. Finally, with the discrete values ̟k, k = 1, ..., K, a con-
tinuous ω′ (E) function is built. In this case we usually want ω′′ (E) to be smooth,
so piecewise cubic splines (polynomials) are an excellent choice. Again, for compu-
tational procedures we do not need an analytical function, but just the possibility of
evaluating ω′ (E) (for stresses) and ω′′ (E) (for constitutive tangents) at any given
value E. Needless to say that since the function ω′ (E) contains the exact solution of
the equilibrium equation at the experimental points {Ek, σk}, that experiment will
be exactly reproduced in any numerical procedure. Furthermore, since the energy
terms ω (E) are unique for materials following the Valanis-Landel decomposition,
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any loading situation, proportional or nonproportional, will be captured to a high
accuracy if enough experimental pairs are used in its determination [30].

2.4. Discussion about coupling terms

The uncoupled Equation (23) converges to the exact infinitesimal form Eq. (1),
but many other large strain models do so as long as coupling terms between principal
strains vanish in the infinitesimal regime. For moderately large strains typically found
in soft tissues, say λ1 = 1.2 (20%), we have E1 = 0.18 and, if transverse strains are
of the same order, E1E2 = 0.03, which is a much smaller number. Then it is to
be expected that coupling terms are small in usual loading situations, unless strains
are very large in two directions simultaneously and coupling terms become relevant
in the specific material at hand. It has been verified that these coupling terms are
negligible in many materials for quite large strains, see for example [41].

3. Motivation of anisotropic WYPiWYG hyperelasticity in uncoupled

form

In this section we extend the previous ideas for orthotropic and transversely
isotropic materials.

3.1. Orthotropic infinitesimal “bi-modular” materials

Orthotropy is characterized by the existence of some symmetry planes given by
preferred directions in the reference configuration ai, i = 1, 2, 3, with ai · aj = δij ,
the Kronecker delta. In a system of representation given by A = {ai}, the relation
between strains and stresses is, using Voigt notation—see for example [42]

















σ11
σ22
σ33
σ12
σ23
σ13

















A

=

















C11 C12 C13

C12 C22 C23

C13 C23 C33

C44

C55

C66

















A

















ε11
ε22
ε33
2ε12
2ε23
2ε13

















A

(28)

where the following strain components are also invariants

εij = ai · ε · aj = ai ·
(

3
∑

k=1

εkN k ⊗N k

)

· aj =
3
∑

k=1

εk (ai ·Nk) (aj ·N k) (29)

10



Alternatively, because the constants Cij are not easily measurable

















ε11
ε22
ε33
2ε12
2ε23
2ε13

















A

=





































1

Y1
−ν21
Y2

−ν31
Y3

−ν21
Y2

1

Y2
−ν32
Y3

−ν31
Y3

−ν32
Y3

1

Y3
1

µ12
1

µ23
1

µ13





































A

















σ11
σ22
σ33
σ12
σ23
σ13

















A

(30)

where Y1, Y2, Y3, ν12, ν31, ν32, µ12, µ23, µ13 —or alternatively the Cij in Eq.(28)— are
nine independent material constants (Young moduli, Poisson ratios and shear mod-
uli) for which only some inequality restrictions must hold [42]. The independency of
these material constants must hold regardless of our preference for the reference con-
figuration. These nine independent constants define nine independent deformation

modes when an incremental deformation is considered. Therefore, if a hyperelastic
model is to represent a general case of orthotropy compatible with the infinitesimal
case, nine independent functions, or nine independent function dependencies of the
nine independent invariants are needed. In Eq. (30) above we could assume, for
example ν12 = ν23 = ν13. In such a case, we would be eliminating two constants, and
also two independent deformation modes, leaving only seven independent modes, and
resulting in a restricted theory. There is nothing wrong in doing so if that assump-

tion is based on experimental evidence, not in the modeler’s convenience. Precisely,
a usual restricted theory, based on some experimental evidence, but that only holds
in average, is that soft tissues are incompressible. Then, we are eliminating the
three volumetric deformation modes, imposing that the Jacobian J = 1, or in the
infinitesimal context, the following incremental constraint:

ε11 + ε22 + ε33 = 0 (31)

Because stress increments may be arbitrary, this constraint in turn means that the
first three columns in Eq. (30) must vanish in all cases, leaving in the fully linear
theory six independent constants. The three equations may be written in terms of
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the complementary Poisson ratios νij = νjiYi/Yj as

1− ν12 − ν13 = 0
−ν21 + 1− ν23 = 0
−ν31 − ν32 + 1 = 0







(32)

The observable Young moduli are convenient for tests. For constitutive modelling
we can alternatively use shear-like moduli µ∗

11, µ
∗
22, µ

∗
33 such that, in Voigt notation
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
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p
p
p
0
0
0

















(33)

where p is the pressure increment to be obtained from equilibrium and [P] is the
matrix representation of the deviatoric projector tensor. In finite element implemen-
tations, it is customary to assume quasi-incompressibility incorporating a penalty
function U (ln J), so Jp = U ′ (ln J) in the large strain context and p = κεv in the
small strain one. As in the isotropic case, the axial terms may take different values
depending on the sign of εii, i.e.

µ∗
ii =

{

µtii if εii > 0
µcii if εii < 0

The first nontrivial (nondiagonal) 3× 3 box is





2
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
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
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3
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2
3


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=
2

9





4µ∗
11 + µ∗

22 + µ∗
33 µ∗

33 − 2µ∗
22 − 2µ∗

11 µ∗
22 − 2µ∗

11 − 2µ∗
33

µ∗
33 − 2µ∗

22 − 2µ∗
11 µ∗

11 + 4µ∗
22 + µ∗

33 µ∗
11 − 2µ∗

22 − 2µ∗
33

µ∗
22 − 2µ∗

11 − 2µ∗
33 µ∗

11 − 2µ∗
22 − 2µ∗

33 µ∗
11 + µ∗

22 + 4µ∗
33





A

(34)

which allows the immediate identification of the constants Cij by direct comparison
with Eq. (28). Note that we have, for example, different C∗

11 depending on the
combination of the signs of the strains ε11, ε22 and ε33. Of course the constants µ∗

ii

can also be related to the Young moduli Y ∗
i , just considering a tensile test in any axis.
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Therefore, we have nine independent constants, namely µt11, µ
c
11, µ

t
22, µ

c
22, µ

t
33, µ

c
33,

µ12, µ13, µ23, because µ12, µ13, µ23 cannot take different “tension” or “compression”
values since shear strains have no physical sign.

Equation (33) implies the following approximation of the stored energy around
the equilibrium reference configuration

W (ε,a1,a2) = µ∗
11

(

εd11
)2

+ µ∗
22

(

εd22
)2

+ µ∗
33

(

εd33
)2

+ 2µ12

(

εd12
)2

+ 2µ23

(

εd23
)2

+ 2µ13

(

εd13
)2

+ 1
2
κε2v (35)

so

σ =
dW
dε

=
∂W
∂εv

∂εv
∂ε

+
∑

i,j

(

∂W
∂εdij

∂εdij
∂εd

)

:
∂εd

∂ε
(36)

= κεvI +
3
∑

i,j=1

2µ∗
ijε

d
ij

∂εdij
∂εd

: P (37)

with the structural tensor (accounting for symmetries)

∂εdij
∂εd

=
1

2
(ai ⊗ aj + aj ⊗ ai) = Lij (38)

so

σ = κεvI +
3
∑

i,j=1

2µijε
d
ijLij : P (39)

3.2. WYPiWYG orthotropic uncoupled model

Extending the previous discussion on large strains to orthotropy, we note that
incremental infinitesimal strains can be written as

dτε =
3
∑

i=1

dτεiN i ⊗N i (40)

and they bring the following projections in the orthotropic preferred material direc-
tions

dτεij = Lij : dτε = ai · dτε · aj =
3
∑

k=1

dτεk (ai ·N k) (aj ·Nk) (41)
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These projections are invariants—also note that eigenvalues are invariants, the di-
rector cosines (ai ·N j) are also invariants, and operations among invariants are
invariants. Director cosine invariants are also used by Shariff [3], [4]. Consider again
that the deformation is computed with the principal directions fixed, see Eq. (14).
Then, using the volumetric-distortion deformation decomposition and defining for
convenience N

d
i := N i : P, we obtain the following logarithmic strain invariants

t
0Eij = ai · t

0E · aj = t
0Evδij+

3
∑

k=1

t
0E

d
k

(

ai ·N d
k

) (

aj ·Nd
k

)

=

(
∫ t

0

dτεv

)

δij +
3
∑

k=1

(
∫ t

0

dτε
d
k

)

(

ai ·N d
k

) (

aj ·N d
k

)

(42)

Again, we obtain

t
0Eij =

∫ t

0

dτεij,
t
0Ev =

∫ t

0

dτεv and t
0E

d
ij =

∫ t

0

dτε
d
ij (43)

so, for example, dτε
d
ij = dEd

ij . Then, defining L
d
ij := Lij : P, at time τ + dτ , we can

write

τ+dτ
T = τ

T + τκ
# dτεvI +

3
∑

i,j=1

2 τµij dτε
d
ij L

d
ij (44)

and integrate the stresses following the mentioned path with constant principal di-
rections —recall that in hyperelasticity the stresses for given strains are path inde-
pendent

t
T =

(
∫ t

0
τκ

# dτEv

)

I +

3
∑

i,j=1

(
∫ t

0

2 τµij dτE
d
ij

)

L
d
ij (45)

As in the isotropic case, we can define the functions

U ′′ (Ev (τ)) :=
d2U
dE2

v

∣

∣

∣

∣

Ev=Ev(τ)

= τκ
# ≡ κ (Ev) (46)

ω′′
ij

(

Ed
ij (τ)

)

:=
d2ωij

dEd
ijdE

d
ij

∣

∣

∣

∣

∣

Ed
ij=E

d
ij(τ)

= 2 τµ
∗
ij ≡ 2µij

(

Ed
ij

)

(47)
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Then, accounting for symmetry, the following stored energy results in the stresses
Eq. (45)

Ψ (E) = U (Ev) +W
(

E
d,a1,a2

)

= U (Ev) + ω11

(

Ed
11

)

+ ω22

(

Ed
22

)

+ ω33

(

Ed
33

)

+

+ 2ω12

(

Ed
12

)

+ 2ω13

(

Ed
13

)

+ 2ω23

(

Ed
23

)

(48)

Of course this stored energy does not contain possible coupling terms that must
vanish for infinitesimal strains around the chosen reference configuration, but this
stored energy is fully compatible with the infinitesimal framework at every configura-
tion. However, it may not fulfill the material symmetries congruency [39] because if
anisotropy vanishes, the directions ai are not defined, ωii should converge to a single
ω−function that, furthermore, should depend only on the three remaining invariants,
namely the principal strains Ed

i . Then, to guarantee that congruency we write

W
(

E
d,a1,a2

)

= W is
(

E
d
)

+Wor
(

E
d,a1,a2

)

(49)

where W is
(

E
d
)

follows the Valanis-Landel decomposition. When considering both
contributions, the stresses are

T =
dΨ

dE
= U ′ (Ev) I +

3
∑

i=1

ω′
(

Ed
i

)

M
d
i +

3
∑

i,j=1

ω′
ij(E

d
ij)L

d
ij (50)

3.3. Discussion about coupling terms

The uncoupled Equation (48) converges to the exact infinitesimal form Eq. (35)
which considers the possibility of different behavior in tension and compression, but,
again, many other large strain models do so. If the form Eq. (49) is employed in the
present uncoupled setting, the isotropic part contains a Valanis-Landel decomposi-
tion, whereas the anisotropic deviation from isotropy has the uncoupled form Eq.
(48). In considering such decomposition, the use of logarithmic strains instead of
quadratic strains is important. For instance, consider a pure shear test. Then the
logarithmic strain tensor in the Cartesian system X is

E = lnU =

∫

dτε =

[

0 lnλ
lnλ 0

]

X

(51)
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which has vanishing normal strains. In contrast, Green-Lagrange strains A have
nonvanishing normal strains

A =
1

2

(

X
T
X − I

)

=
λ2 − 1

(2λ)2

[

λ2 − 1 λ2 + 1
λ2 + 1 λ2 − 1

]

X

(52)

where X is the deformation gradient. Furthermore, during a simple shear test, A12

grows linearly with the “amount of shear” γ, whereas E12 reaches a maximum at
γ = 3.018, which reflects the fact that simple shear deformations for large γ can be
increasingly considered as a tensile test [37].

Obviously, coupling terms may still be present in the anisotropic contribution,
and WYPiWYG formulations may include those terms [31]. However, the char-
acterization of a material in which those terms are important requires, in general,
substantial testing.

3.4. Transverse isotropic case

The transverse isotropic case, with direction 3 being the preferred direction,
is obtained from the orthotropic model by setting C22 = C11, C23 = C13, C44 =
(C11 − C12) /2 and C55 = C66, or alternatively Y2 = Y1, ν32 = ν31, µ

−1
12 = 2 (1 + ν21) /Y1

and µ23 = µ13, so we are left with 9 − 4 = 5 constants. In this transverse isotropic
case, Eqs. (34) and (28) give, as expected, µ11 = µ22, G12 = (C11 − C12) /2 = µ11

and G13 = C66 = C55 = µ13 for any bulk modulus κ. In the incompressible case,
the first three columns of the last equation must sum-up to zero, which result in two
independent constraints which can be written in terms of Poisson ratios as

{

1− ν12 − ν13 = 0
−2ν31 + 1 = 0

so we are left with 5 − 2 = 3 constants. The form of the infinitesimal “bi-modular”
stored energy around a reference configuration may be written in terms of three µ∗

ij

constants as
W (ε,a1,a2) = µ∗

11ε
2
11 + µ∗

11ε
2
22 + µ∗

33ε
2
33 + 2µ13ε

#2
13 (53)

where ε11 and ε22 are in-isotropic-plane principal strains (i.e. in special axes such
that ε12 = 0), ε33 = a3 ·ε ·a3, and ε

#2
13 := ε223+ε

2
13 is the shear invariant for all planes

including the preferred direction 3 [52]. Since the moduli µ∗
11 (ε) and µ

∗
33 (ε) may take

different values for positive and negative strain arguments ε (tension-compression)
we need in general 5 independent test curves. Again, in the large strain case

W tr (E,a1,a2) = ω11 (E11) + ω11 (E22) + ω33 (E33) + 2ω13(E
#2
13 ) (54)

16



with E#2
13 = E2

13 +E2
23 and we recover a parallel discussion. Obviously the functions

need not to be symmetric, having different values in tension and compression

ωjj (E) 6= ωjj (−E) , E > 0 , j = 1, 3 (55)

except for the function ω13 because the argument is always positive (meaning that
shear deformations have no physical sign). Note that the consideration of the com-
pression branches of the axial functions ω11 and ω33 is as important as the consider-
ation of their tension branches, which is a fact that may easily explain some issues
regarding the characterization of hyperelastic materials [45], [46].

The representation Eq. (53) requires a special system of representation such that
ε12 = 0, which is convenient for its nonlinear extension of Eq. (54). Other systems of
representation may be more convenient for the linear case. Given any other Cartesian
system of representation {ã1, ã2, ã3} such that a3 ≡ ã3, the quantities ε̃

2
11+ε̃

2
22+2ε̃212,

ε̃233 and ε̃
#2
13 = ε̃213+ ε̃

2
23 are invariants under rotations of the preferred reference frame

about the direction a3 ≡ ã3, where ε̃ij are the corresponding cartesian components
of ε. Then, we can rephrase Eq. (53) in generic preferred transversely isotropic axes
(i.e. with ε̃12 = ã1 · (ε · ã2) not necessarily zero) through

W = µ2
11ε̃

2
11 + µ11ε̃

2
22 + µ33ε̃

2
33 + 2µ11ε̃

2
12 + 2µ13ε̃

2
13 + 2µ13ε̃

2
23 (56)

In Ref. [9], Section 3, the relationship between stresses and infinitesimal strains
for incompressible, transversely isotropic solids is directly written in a generic pre-
ferred plane in terms of three material constants, namely

µT , µL , C33 (57)

where µT represents the infinitesimal shear moduli for shearing in a plane normal to
the fibres, µL stands for the infinitesimal shear moduli for shearing in a plane along
the fibres and C33 is a material constant defined in terms of µT and the Young’s
modulus in the fibre direction YL through

C33 = YL − µT (58)

In our case, after a component-by-component differentiation of Eq. (56), as given
in Eq. (36), we obtain

σ̃ij = 2µij ε̃ij + p , i, j = {1, 2, 3} (59)
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and by direct comparison with Eqs. (12) in Ref. [9] we arrive at

2µ11 ≡ 2µT , 2µ33 ≡ C33 , 2µ13 ≡ 2µL (60)

Hence, we can determine the strain energy constants present in Eq. (56) from a
uniaxial test in the fibre direction (with modulus YL), a shear test with shearing in
a plane normal to the fibres (with modulus 2µT ) and a shear test with shearing in a
plane along the fibres (with modulus 2µL), i.e.

µ11 = µT , µ33 =
YL − µT

2
, µ13 = µL (61)

Then the linear material is fully characterized, and obviously the stress state asso-
ciated with any other deformation state can be determined immediately from Eq.
(36) and the corresponding boundary conditions.

The foregoing linear and nonlinear analyses show that, even though three ma-
terial parameters fully define an incompressible transversely isotropic linear elastic
material, we would need at least five independent material response curves in order
to characterize a simple (uncoupled) nonlinear generalization of the linear model,
where different behaviors in tension and compression along preferred axes are gener-
ally expected [45].

4. Some hyperelastic models consistent with the linear theory in the ref-

erence configuration

In Ref. [9], Murphy presented proper modifications over very popular models in
the biomechanics literature so that they become compatible with the linear theory,
i.e. so that they recover the infinitesimal moduli of Eq. (57) in the reference state.
Evidently, compatibility with the linear theory is a desirable feature that any non-
linear model should fulfill [10, 17]. In this Section we analyze the mechanical behavior
of two types of compatible models proposed by Murphy and show that, however, some
of them may provide rather unexpected responses in modeling living tissues within
the design range of physiological finite strains. The models that we analyze herein
are the standard reinforcing model and the Humphrey-Yin model, both including
the modifications proposed by Murphy in Ref. [9].

4.1. Compatible standard reinforcing model

The standard reinforcing model is widely used in the biomechanics field, see for
example [47–49] among many others. The compatible standard reinforcing model, as
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proposed by Murphy, reads

W
(

Ī1, Ī4, Ī5
)

=
µT
2

(

Ī1 − 4
)

+
YL + µT − 4µL

8

(

Ī4 − 1
)2
+
µT − µL

2
(2Ī4− Ī5−1) (62)

where Ī1 = tr(C̄) = C̄ : I is the first principal invariant of the isochoric right
Cauchy–Green deformation tensor C̄ = J−2/3C (with J the Jacobian and C the
Cauchy–Green deformation tensor) and Ī4 = a3 ·C̄a3 and Ī5 = a3 ·C̄2

a3 are pseudo-
invariants of C̄ including information about the deformation of the fibre direction in
the referential configuration a3. This model is compatible, by construction, with the
three linear responses mentioned above, i.e. those with moduli YL, 2µT and 2µL, as
shown in Ref. [9].

However, the physiological finite strain range of living tissues involves nonlinear
responses. Hence, five independent loading cases should be correctly reproduced
by the nonlinear model, or at least, it should predict realistic responses. We show
in Figure 2 the respective Cauchy stresses that the material model of Eq. (62)
predicts for both tension-compression uniaxial tests in directions a1 and a3, which
we represent as σ1 (E1) and σ3 (E3), and an additional branch from a biaxial test in
the plane {em, en} including the preferred axes {a1,a3} orientated at 45o clockwise,
as defined in Figure 1, and that we represent as σmm (Emm), with Emm = lnλ, cf.
Ref. [28]. This set of tests includes the minimum number of response curves that
any nonlinear model should be able to reproduce well, as we have discussed above.
We consider the constants µT = 5 × 10−3MPa and µL = 29 × 10−3MPa (taken
from Ref. [9]), while YL = 447× 10−3MPa taken from Ref. [49], which are realistic
values within the small strain theory. When larger strains are considered, however,
we can observe a minimum of σ3 (E3) at E3 = lnλ3 ≈ −0.377 (i.e. λ3 = 0.686),
which means that the material model predicts an unphysical response during the
corresponding compression uniaxial test. Note that the Young modulus YL is positive
at the reference configuration, but the Young’s local modulus (dσ3/dE3) vanishes at
E3 ≈ −0.377 and becomes negative for greater compressions.

Importantly, it should be noticed that this behavior is inherently associated with
the strain energy function of Eq. (62), so other softening responses may also appear
in other loading situations different from the five considered herein. For example, we
represent in Figure 3 the stresses σnn (Emm) and σmn(Emm) that this model predicts
during the pure shear test shown in Figure 1. A softening behavior can be observed
again, with the stress component σnn being first negative (meaning compression),
then reaching a minimum and finally becoming even positive (meaning tension).
We remark, however, that this response is fully compatible with the small strain
theory because σnn → −σmm and dσmn/dEmm → 0 in the small strain limit given by
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a3

em

a1

en

Figure 1: Specific biaxial test in axes {em, en} providing a pure shear state in the logarithmic
strain space in axes {a1,a3}, cf. Ref. [28]. The Lagrangian logarithmic strain tensor components
in axes {em, en} are Enn = −Emm and Emn = 0, with Emm = lnλ and λ representing the stretch
in direction em.
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Figure 2: Modified standard reinforcing model predictions for two tension-compression uniaxial
tests (left) and one axial response of the biaxial test of Figure 1 (right). We denote Cauchy stresses
as σ and logarithmic strains as E.
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Figure 3: Additional predictions for the biaxial test of Figure 1 given by the compatible standard
reinforcing model.

Emm → εmm = 0+.

4.2. Compatible Humphrey-Yin model

The Humphrey-Yin model for passive cardiac tissue [50] is another very popular
model in the biomechanics literature. The compatible Humphrey-Yin model, as
proposed by Murphy, reads

W =
µT
2c2

[

ec2(Ī1−3) − 1
]

+
YL + µT − 4µL

2c4

[

ec4(
√
Ī4−1)2 − 1

]

+
µT − µL

2
(2Ī4 − Ī5 − 1)

(63)
where c2 and c4 are additional material constants, which inclusion in the model will
prove very convenient. This model is compatible, by construction, with the three
linear responses in the reference configuration mentioned above [9].

We show in Figure 4 the respective Cauchy stresses that the material model of
Eq. (63) predicts for both tension-compression uniaxial tests and for the biaxial test
(only one axial curve). The remaining material parameters are taken from Ref. [50]:
c2 = 9.448 and c4 = 65.86. The predictions of the five required branches may be
considered realistic in this case, which is a consequence of the fact that the additional
parameters in Eq. (63) can be computed as to fit the material finite strain response
within the physiological range of the living tissue being characterized.

In addition, we represent in Figure 5 the stresses σnn (Emm) and σmn(Emm) that
this model predicts during the pure shear test. We observe also that all the stress
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Figure 4: Modified Humphrey–Yin model predictions for two tension-compression uniaxial tests
(left) and one axial response of the biaxial test of Figure 1 (right). We denote Cauchy stresses as
σ and logarithmic strains as E.

responses for this boundary value problem follow the exponential tendency of the
previous curves and that they may perfectly be considered realistic. We note again
that σnn → −σmm and dσmn/dEmm → 0 for Emm → 0+.

However, it should be taken into consideration that the role of the material con-
stants YL, µT and µL in Eq. (63) is to ensure compatibility with the linear theory at
the reference configuration, but not at all possible deformed configurations (as dis-
cussed above for the standard reinforcing model), so only the remaining two constants
in Eq. (63), i.e c2 and c4, can be used to provide a good fit with experimental data
over the physiological range of strain. Therefore, the model of Eq. (63) proposed
in [9], with only two free constants remaining to be modulated, cannot generally
reproduce the shapes of five independent deformation modes simultaneously, unless
the specific soft tissue material behaves as the analytical model of Eq. (63) predicts,
as it happens specifically for myocardium, as shown in Ref. [50].

5. Compatibility with the infinitesimal theory at any arbitrary configu-

ration

We have seen in the previous sections that full compatibility with the small strain
theory at the reference configuration (i.e. three independent constants are recovered)
and additional compatibility with the infinitesimal incremental theory at finite strains
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Figure 5: Additional predictions for the biaxial test of Figure 1 given by the compatible Humphrey–
Yin model.

(i.e. five independent branches can be reproduced independently in the most simple
case addressed herein) are very different issues. In this respect, we have shown that
the former does not imply the latter. We show next that the latter includes the
former as a particular case, as one could expect.

We consider in this section the uncoupled incompressible transversely isotropic
WYPiWYG model [28, 51, 52]. As a first main difference with the previous models,
the model of Eq. (54) requires five independent material response curves to be
determined, which include the compression branches of both uniaxial tests (or other
equivalent experimental curves), see discussions in Refs. [45] and [30]. If some of
these experimental data are not available for the material at hand, then they must be
assumed as realistically as possible before determining the strain energy function (e.g.
some kind of symmetry [54] or stability criteria [28] may be considered beforehand
for uniaxial compression data). This way we prevent unexpected results given a
posteriori by the model, see Ref. [17] for other plausible hypothesis over (unknown)
transverse strains based on additional experimental evidence [55].

A second important difference with the previous models is that the model of Eq.
(54) can be exactly and uniquely determined from the five experimental curves being
prescribed [52] (cf. also Ref. [17] in the context of orthotropic materials). In other
words, once the model is calculated using the WYPiWYG determination procedure,
the given experimental data set is exactly reproduced. As a direct consequence,
the model of Eq. (54) determined by the WYPiWYG procedure is compatible, by
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construction and determination, with the most simple (uncoupled) finite strain case
addressed herein, because at least five independent deformation modes are captured
within the finite strain regime. Furthermore, compatibility with the small strain
theory is directly obtained as a particularization of the finite strain model to the
small strain limit, with three independent moduli being captured at the reference
state as a result.

In what follows, we will consider as if the small-strain-compatible standard rein-
forcing and the Humphrey–Yin models addressed by Murphy were actual materials.
From the predictions of these models for some “experimental” tests, we will deter-
mine the corresponding models of the type Eq. (54) that exactly capture those tests
by applying the WYPiWYG determination procedure. The corresponding infinites-
imal compatibility at all finite strain levels is obtained in each case. Small strain
compatibility at the reference state is directly guaranteed as a result. Of course,
the same situation would be obtained if the prescribed data would correspond to an
actual material. Finally, we will analyze the differences between models in general
loading situations.

5.1. Capturing the modified standard reinforcing model

Consider the analytical predictions under both uniaxial tests and a pure shear
test given by the standard reinforcing model shown in Figure 2. We prescribe these
curves as input experimental data in order to determine the strain energy function of
Eq. (54) using the WYPiWYG determination procedure. We show in Figure 6 the
exact predictions given by the computed strain energy for the five different branches
used to determine our model —cf. Fig. 2.

We show in Figure 7 additional predictions that our computed WYPiWYG model
gives for other different tests performed with the standard reinforced model, which
were not previously employed in the determination of our WYPiWYG stored en-
ergies. In particular, we can observe in Figure 7 that our computed model gives
exactly the same predictions as the reinforcing model of Section 4.1 during other
biaxial tests. Note that all the shown curves relate to each other through a vertical
translation, because in preferred axes, the stresses obtained from both models are
uncoupled in terms of the preferred components of the logarithmic strain tensor. In
fact, this is the same effect obtained when using the Valanis-Landel decomposition
in isotropic materials, and we note that it is a desirable feature if there are not suf-
ficient experimental data to be able to adequately determine the possible coupling
terms because, at least, the obtained response for these deformation modes can be
qualitatively predicted by the modeler.

However, the predictions given by our computed model and those given by the
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Figure 6: WYPiWYG model predictions of the standard reinforcing model “experimental data” of
Figure 2.

-0.15 -0.1 -0.05 0 0.05 0.1

E
3

-0.04

-0.02

0

0.02

0.04

0.06

σ
3 -

 σ
1 [M

P
a]

Biaxial tests with λ
1
 fixed (Reinforcing)

λ
1
=1

λ
1
=1.2

λ
1
=1.4

-0.15 -0.1 -0.05 0 0.05 0.1

E
3

-0.04

-0.02

0

0.02

0.04

0.06

σ
3 -

 σ
1 [M

P
a]

Biaxial tests with λ
1
 fixed (WYPIWYG)

λ
1
=1

λ
1
=1.2

λ
1
=1.4

Figure 7: Additional predictions of the compatible standard reinforcing model and its associated
WYPiWYG model for tension-compression tests in direction a3 with different fixed transverse
strains in direction a1. A plane stress condition is considered in the remaining direction.
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Figure 8: WYPiWYGmodel predictions of the Humphrey–Yin model “experimental data” of Figure
2.

associated standard reinforcing model are very different for the remaining curves
σnn (Emm) and σmn(Emm) of the pure shear test shown in Figure 1. As explained in
Ref. [28], the model of Eq. (54) predicts a pure shear state of Cauchy stresses in the
preferred axes {a1,a3} and as a result we obtain the stress components σnn = −σmm
and σmn = 0 in the test axes {em, en}. These predictions, with σmm(Emm) shown
in Figure 6, are to be compared with those shown in Figure 2. Of course, if a
nonsymmetric contribution is added for the isotropic part, see Eq. (49), a Poynting
effect is obtained, see Appendix.

5.2. Capturing the modified Humphrey-Yin model

Consider the analytical predictions under both uniaxial tests and a pure shear test
given by the modified Humphrey–Yin model shown in Figure 4. We prescribe these
curves as input experimental data in order to determine the strain energy function of
Eq. (54) using the WYPiWYG determination procedure. We show in Figure 8 the
exact predictions given by the computed strain energy for the five different branches
used to determine our model, cf. Fig.4.

We show in Figure 9 additional predictions that our computed model gives for
other additional tests not employed in the determination of the WYPiWYG stored
energy. In this case, we can observe in Figure 9 that, during biaxial tests, our
computed model gives very different predictions than those of the Humphrey–Yin
model of Section 4.2 if large transverse strains are present. These differences are due
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Figure 9: Additional predictions of the compatible Humphrey–Yin model and its associated WYPi-
WYG model for tension-compression tests in direction a3 with different fixed transverse strains in
direction a1. A plane stress condition is considered in the remaining direction.

to the fact that the stresses, in preferred axes, that derive from the strain energy
of Eq. (54) are uncoupled in terms of the preferred components of the logarithmic
strain tensor, while the same stress components that derive from the strain energy
of Eq. (63) present specific strain couplings through the exponential term ec2(Ī1−3)

giving a deviatoric decay in σ3 − σ1 for some values of λ1. Whether the material
under study does or does not present this possible coupling response could only be
verified against additional biaxial experimental data.

Finally, the predictions given by our computed model for the remaining curves
σnn (Emm) and σmn(Emm) of the pure shear test shown in Figure 1 (i.e. σnn = −σmm
and σmn = 0 with σmm(Emm) shown in Figure 8) and those given by the associated
Humphrey–Yin model (Figure 5) are also different in this case, but all of them are
arguably more realistic than those given by the reinforcing model (Figure 3).

6. Non-homogeneous finite element analysis

In this section we compare the stress field predictions given by the analytical
models addressed above in specific non-homogeneous cases with the respective stress
field predictions obtained with the uncoupled WYPiWYG models that have been
determined above from the analytical models. We analyze the axial elongation of a
rectangular plate with a hole under a plane strain condition for different orientations
of the anisotropic direction.

The plate has initial dimensions of l0 × h0 = 32 × 16mm2 and an inner hole of
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radius r0 = 4mm. The finite element 2D mesh consists of mixed u/p finite elements
9/3 (Q2/P1) with full integration [43]. The material parameters are the same used
in the previous sections. We perform the finite element simulations with the finite
element analysis software ADINA [53], where the different hyperelastic models have
been programmed through user-defined material subroutines. In these general non-
homogeneous cases, a large variety of loading conditions and deformation levels at
different integration points are present, so the comparison between model predictions
is much richer than using only homogeneous tests.

6.1. Standard Reinforcing Model

In this example we perform three finite element simulations using the modified
standard reinforcing model of Section 4.1, one per each orientation α = {0o, 60o, 90o}
of the preferred direction a3 with respect to the horizontal axis of the plate. A
horizontal displacement of 3.2mm is applied in each case in four proportional steps.
This displacement corresponds to a 10% average deformation, although the plate
will undergo much larger strains in the central hole passing area, as we see below.
Subsequently, analogous simulations are performed using the respective WYPiWYG
material model of Section 5.1 which, recall, has been determined from the five inde-
pendent responses given by the reinforcing model addressed above.

The results obtained with both models (deformed configurations and von Mises
stresses) are shown in Figure 10. At small strains the predictions of both models are
almost identical by consistency with the infinitesimal theory at the reference con-
figuration, so we only show the comparisons at the maximum attained deformation
of the plate (far away from the reference configuration). We can observe that the
outcomes for the orientation of 0o are almost identical to each other. The deformed
meshes and von Mises stress distributions for the simulations at 60o, which undergo
the corresponding angular distortion, are very similar as well. However, the effective
stresses predicted by the WYPiWYG model are almost twice as much as the ones
predicted by the associated standard reinforcing model. This can be explained by
the very different (partial) responses that both models predict for the pure shear
test of Figure 1. Indeed, even though the fibres are oriented at 45o in Figure 1, a
similar ratio of von Mises stresses between both models is obtained in that case. For
example, for the standard reinforcing model curves in Figures 2 (right) and 3, with
σmm = 0.25MPa, σnn = 0.008MPa and σmn = 0.06MPa at Emm = 0.5

(σeff )SR|45o =

√

(σmm − σnn)2 + σ2
mm + σ2

nn + 6σ2
mn

2
= 0.267MPa (64)

The same calculation for the associated WYPiWYG model in Figure 6, with σmm =

28



0.25MPa, σnn = −σmmMPa and σmn = 0 (i.e. a pure shear stress state) at Emm =
0.5, gives

(σeff)WYPiWYG|45o =
√
3σmm = 0.433MPa (65)

The ratio between both predictions is

(σeff)WYPiWYG|45o

(σeff )SR|45o
= 1.621 (66)

Finally, some differences can also be noted in the simulations for the orientation
α = 90o. However, an interesting feature of the WYPiWYG models can be empha-
sized in this last case. We can see in Figure 11 that in this last case (α = 90o),
the analytical standard-reinforced model runs into a strain localization phenomenon
in the central passing area of the plate, which is in accordance with the station-
ary point (i.e. degradation of the elastic stiffness, see Ref. [56]) shown in Figure
2. Remarkably, the associated WYPiWYG model is able to qualitatively reproduce
that characteristic behavior of the standard reinforcing model addressed herein, see
Figure 11.

6.2. Humphrey-Yin model

In this example we perform the same analyses than in the previous example, but in
this case with the Humphrey–Yin model of Section 4.2 and its associated WYPiWYG
model addressed in Section 5.2. The results for the maximum deformation level are
shown in Figure 12. Again, we can observe that similar predictions are obtained with
both models for the orientations α = 0o and α = 90o. For the orientation α = 60o,
where the shear behavior is predominant, the deformed configurations and stress
maps predicted by both models are also in very good agreement, but the effective
stresses predicted by the WYPiWYG model are again higher (approx. 50%) than
the ones predicted by the Humphrey–Yin model. The reason for that difference is
the same one explained above for the reinforcing model, see Figures 4 (right) and
5. Finally, we can see in Figure 13 that in this case the transverse strains do not
localize, compare with Figure 11. The reason is apparent when comparing Figures 2
(standard reinforcing model) and 4 (Humphrey–Yin model).

7. Conclusions

Many models for anisotropic hyperelasticity employed in soft tissues do not re-
cover the infinitesimal theory in the limit. Some modifications have been recently
proposed to accommodate those models to the infinitesimal theory in the reference
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Figure 10: Finite element analyses of the horizontal elongation of a plate with a central hole and
perfectly lubricated grips. Left: simulations with the standard reinforcing model of Section 4.1.
Right: simulations with the corresponding WYPiWYG model of Section 5.1. Top: α = 0o. Middle:
α = 60o. Bottom: α = 90o. The angle α indicates the orientation of the anisotropic direction a3

with the horizontal.
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Figure 11: Left: transverse strain localization undergone by the compatible standard reinforcing
model in the case α = 90o. Right: transverse strain localization predicted by the associated
WYPiWYG model in the case α = 90o. Lowest principal logarithmic strains are shown in both
meshes.
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Figure 12: Finite element analyses of the horizontal elongation of a plate with a central hole and
perfectly lubricated grips. Left: simulations with the Humphrey–Yin model of Section 4.2. Right:
simulations with the corresponding WYPiWYG model of Section 5.2. Top: α = 0o. Middle:
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configuration. Here, we discussed the recovery of the infinitesimal theory for every
incremental deformation at any deformed configuration. We show that WYPiWYG
formulations are compatible with the infinitesimal theory at any deformation level
and that they are capable of capturing the main aspects of both homogeneous and
nonhomogeneous deformations in anisotropic solids at large strains.
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A. Appendix: Analysis of the Poynting effect

The Poynting effect in nonlinear materials has been addressed recently in a rel-
evant number of publications, see for example [58], [59], [61], [62], [63] and therein
references. In this appendix we do not perform a detailed analysis of the Poynting
effect in general models, which can be found in the previous references, but a brief
analysis of the Poynting effect in shear tests in materials following our bi-linear in-
finitesimal formulation and materials using the uncoupled decompositions which we
usually employ in WYPiWYG hyperelasticity. Some relevant conclusions may still be
obtained using these simple formulations, as for example, that isotropic, infinitesimal
materials may also present both a positive and a negative Poynting effect.

A.1. Bi-modular isotropic materials

In a shear test εv = 0 and

[ε]X =





0 γ/2
γ/2 0

0



 =⇒ [ε]N =





γ/2
−γ/2

0



 (67)
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where [ε]X is the matrix representation in the usual Cartesian system and [ε]N is
the matrix representation in the principal strain directions. Then the fictitious stress
tensor in Eq. (7) is

[

σ
|d
]

N
=





µtγ 0 0
0 −µcγ 0
0 0 0



 (68)

so the stress tensor is

{σ}N =





2
3

−1
3

−1
3

−1
3

2
3

−1
3

−1
3

−1
3

2
3











µtγ
−µcγ
0







=







1
3
γµc + 2

3
γµt

−2
3
γµc − 1

3
γµt

1
3
γµc − 1

3
γµt







where {σ}N indicates the nonvanishing axial terms of the Voigt notation in principal
directions, and

[σ]X =





1
3
µaγ µsγ
µsγ 1

3
µaγ

−2
3
µaγ



 (69)

is the matrix representation in the working system of representation. We have defined
the “symmetric” and “antisymmetric” moduli as

µs =
1

2

(

µt + µc
)

and µa =
1

2

(

µt − µc
)

(70)

so
µt = µs + µa and µc = µs − µa (71)

Then, we obtain the effective shear modulus G ≡ µs, and we have the following
normal and shear stresses in the shearing plane

σn = 1
3
µa (72)

τn = µsγ (73)

The first one, σn, represents the Poynting effect. In soft tissues, it is to be expected
that µt > µc, so the stress of the Poynting effect is positive in such cases (a negative
Poynting effect, see [59]). If µc > µt the stress of the Poynting effect is negative
(a positive Poynting effect [59]). Note that if µc = −µt (a V-like ω′−function) the
material does not show apparent pure shear stiffness because G = 0, but it shows a
Poynting effect because σn = 1

3
µtγ. Furthermore, negative µc values are required for

cases with low shear stiffness, when G < µt/2.
The previous expressions are imposing a zero pressure and zero dilatation, and
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Figure 14: Quantities involved in the shear tests. a) Pure shear test. b) Simple shear test

as a result σz = −2
3
µaγ 6= 0. Another option is to enforce σz = 0, which results in

p = 2
3
µaγ, and

[σ]X =





µaγ µsγ
µsγ µaγ

0



 (74)

The dilatation is εv = p/κ# = 2
3

(

µa/κ#
)

γ, where κ# depends on the sign of the
Poynting effect µaγ. Remarkably, the shear test may be employed to determine both
µs and µa (and hence µt and µc) if both shear and normal stresses are measured in
the shearing plates.

A.2. Large strain isotropic Valanis-Landel models

At large strains, the pure shear test and the simple shear tests are different,
see Figure 14, because the latter implies a rotation of the principal directions of
deformation.

A.2.1. Pure shear test

Using the definitions

ws (E) := 1
2
[ω′ (E)− ω′ (−E)] and wa (E) := 1

2
[ω′ (E) + ω′ (−E)]
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The pure shear test at large strains is similar in the logarithmic strains context as
that in small strains. In this isochoric test, the principal directions remain fixed. It
is straightforward to verify that —cf. Eq. (69)

[σ]X = [T ]X =





1
3
wa (E) ws (E)
ws (E) 1

3
wa (E)

−2
3
wa (E)



 (75)

with E = lnλ = A, where A is the sum of all dimensionless area distortions, see
Fig. 14a (the incremental area distortion is a proper definition of the incremental

infinitesimal shear strain, see [37]). If the stored energy term ω (E) is symmetric
(even) in E, then ω′ (E) is odd, and ω′ (E) = −ω′ (−E), so there is no Poynting
effect, and σ12 = ω′ (E). Then, a similar discussion is found as in the infinitesimal
case.

A.2.2. Simple shear test

At any given instant, the simple shear test is given by the following deformation
gradient expressed in the cartesian system X = {ei} of shearing plane/direction
[57]—note that for simplicity in the derivation we uncouple the volumetric component

X = J1/3





1 0
2/ tan (2ψ) 1

1





X

(76)

with the polar decomposition

X =





sin 2ψ − cos 2ψ 0

2 sin 2ψ
tan 2ψ

− cos 2ψ 1+cos2 2ψ
sin 2ψ

− 2 cos 2ψ
tan 2ψ

0

0 0 1









1+cos2(2ψ)
sin 2ψ

cos 2ψ 0

cos 2ψ sin 2ψ 0
0 0 1





X

J1/3

(77)
where J is the Jacobian determinant of the deformation, γ = 2/ tan (2ψ) ∈ [0 → ∞)
is the so-called “amount of shear”, and ψ = (1/2) arctan (2/γ) ∈ [π/4 → 0) is the
angle between the principal material direction associated with the tensile stretch
λd = 1/ tan (ψ) ∈ [1,∞) and the shearing plane direction, see Figure 14. Then, in

the shearing plane N 1 =
[

cosψ sinψ
]T

X
, N2 =

[

− sinψ cosψ
]T

X
and

N 1 ⊗N1 =

[

cos2 ψ cosψ sinψ
cosψ sinψ sin2 ψ

]

X

(78)
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N 2 ⊗N2 =

[

sin2 ψ − cosψ sinψ
− cosψ sinψ cos2 ψ

]

X

(79)

The logarithmic strain tensor in the shearing plane is

E = (ln J) I − ln (tanψ)





cos (2ψ) sin (2ψ)
sin (2ψ) − cos (2ψ)

0





X

(80)

Defining Ed = lnλd = ln (1/ tanψ) = − ln (tanψ) > 0, the stresses are

T = U ′ (ln J) I + P :
[

ω′
(

Ed
)

N 1 ⊗N1 + ω′
(

−Ed
)

N 2 ⊗N2

]

=





p̄+ 1
3
wa + ws cos 2ψ ws sin 2ψ 0
ws sin 2ψ p̄ + 1

3
wa − ws cos 2ψ 0

0 0 p̄− 2
3
wa





X

(81)

with p̄ = Jp = U ′ (ln J), where p is the pressure, wa := 1
2

(

ω′
(

Ed
)

+ ω′
(

−Ed
))

and ws := 1
2

(

ω′
(

Ed
)

− ω′
(

−Ed
))

corresponds to the anti-symmetric and symmetric
contributions from the stored energy. Note that if the anti-symmetric contribution
vanishes, ω′

(

Ed
)

= −ω′
(

−Ed
)

, the plane stress condition also holds for isochoric
deformations as in the infinitesimal linear case. In the spatial configuration, for this
isotropic case we can write σ = J−1RTRT , which after some algebra yields

σ =
1

J





p̄+ 1
3
wa − ws cos 2ψ ws sin 2ψ 0
ws sin 2ψ p̄+ 1

3
wa + ws cos 2ψ 0

0 0 p̄− 2
3
wa





X

(82)

The sign of the Poynting effect depends on those of wa and ws. Note that for γ ≥ 0
we have cos 2ψ ∈ [0, 1), so the term −ws cos 2ψ vanishes for small γ, but approaches
−ws for large strains. Furthermore, note that for p̄ = 0, J = 1, 2ψ = π/2, the
Poynting effect of the linear case is recovered. The simple-shear test under plane
strain conditions is obtained setting p̄ = 0 and J = 1. The simple-shear test under
plane stress conditions is obtained setting p̄ = 2

3
wa, so

σ =
1

J





wa − ws cos 2ψ ws sin 2ψ 0
ws sin 2ψ wa + ws cos 2ψ 0

0 0 0





X

(83)
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A.3. Anisotropic materials

A.3.1. Infinitesimal and pure shear cases

Assuming incompressibility and plane strain deformation (ε3 = 0), we have in
principal strain directions

ε =





√

ε211 + ε212 0 0

0 −
√

ε211 + ε212 0
0 0 0





N

=





γ/2 0 0
0 −γ/2 0
0 0 0





N

(84)

The pure shear strain (by Mohr’s circle) is at 45o, e.g. γ45 = 2ε45 = γ. If the
principal material direction a3 is perpendicular to the shearing plane, we can obtain
the deviatoric stresses in a quite straightforward manner —just consider the relevant
3 × 3 box and note that µ∗

11 (ε1) and µ
∗
22 (ε2) are the same function, but the actual

value is different because they are evaluated at different strains





8
9
µ∗
11 +

2
9
µ∗
22 +

2
9
µ∗
33

2
9
µ∗
33 − 4

9
µ∗
22 − 4

9
µ∗
11

2
9
µ∗
22 − 4

9
µ∗
11 − 4

9
µ∗
33

2
9
µ∗
33 − 4

9
µ∗
22 − 4

9
µ∗
11

2
9
µ∗
11 +

8
9
µ∗
22 +

2
9
µ∗
33

2
9
µ∗
11 − 4

9
µ∗
22 − 4

9
µ∗
33

2
9
µ∗
22 − 4

9
µ∗
11 − 4

9
µ∗
33

2
9
µ∗
11 − 4

9
µ∗
22 − 4

9
µ∗
33

2
9
µ∗
11 +

2
9
µ∗
22 +

8
9
µ∗
33











γ/2
−γ/2
0







=







1
3
γ (2µ∗

11 + µ∗
22)

−1
3
γ (µ∗

11 + 2µ∗
22)

−1
3
γ (µ∗

11 − µ∗
22)







≡







1
3
γ (2µt11 + µc11)

−1
3
γ (µt11 + 2µc11)

−1
3
γ (µt11 − µc11)







(85)

which have no shear stress in that system of representation. However, there is a
shear stress in other systems. At 45o

σ =





1
3
µa11γ µs11γ 0
µs11γ

1
3
µa11γ 0

0 0 −2
3
µa11γ





X

(86)

where
µs11 =

1
2

(

µt11 + µc11
)

and µa11 =
1
2

(

µt11 − µc11
)

i.e. τ45 = µs11γ, the shear modulus is G45 = µs11 and the Poynting effect is given by
1
3
µa11γ. Obviously if µt11 = µc11 ≡ µ11 we recover G45 = µ11.
It is straightforward to verify that in the large strain case we have —we make

here use of the co-linearity of stresses and strains and of the isochoric condition

σ = T =





1
3
wa11 (E) ws11 (E)
ws11 (E)

1
3
wa11 (E)

−2
3
wa11 (E)





X

(87)
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again with equivalent definitions for E, wa, ws as in the isotropic case.
If the pure-shear plane contains the preferred direction in an aligned manner, say

the third direction working in tension, then we have for example for the infinitesimal
case




8
9
µ∗
11 +

2
9
µ∗
22 +

2
9
µ∗
33

2
9
µ∗
33 − 4

9
µ∗
22 − 4

9
µ∗
11

2
9
µ∗
22 − 4

9
µ∗
11 − 4

9
µ∗
33

2
9
µ∗
33 − 4

9
µ∗
22 − 4

9
µ∗
11

2
9
µ∗
11 +

8
9
µ∗
22 +

2
9
µ∗
33

2
9
µ∗
11 − 4

9
µ∗
22 − 4

9
µ∗
33

2
9
µ∗
22 − 4

9
µ∗
11 − 4

9
µ∗
33

2
9
µ∗
11 − 4

9
µ∗
22 − 4

9
µ∗
33

2
9
µ∗
11 +

2
9
µ∗
22 +

8
9
µ∗
33











−γ/2
0
γ/2







=







−1
3
γ (2µc11 + µt33)

1
3
γ (µc11 − µt33)

1
3
γ (µc11 + 2µt33)







=







−µc11γ − 2
3
µ̄t33γ

−2
3
µ̄t33γ

µc11γ +
4
3
µ̄t33γ







(88)

with the definition µ̄t33 := 1
2
(µt33 − µc11) (which can be thought as half the net con-

tribution of the fiber over that of the matrix if the latter has the same behavior in
tension and compression). Then,

[σ]N =





−µc11γ − 2
3
µ̄t33γ

−2
3
µ̄t33γ

µc11γ +
4
3
µ̄t33γ



 (89)

and

[σ]X =





1
3
µ̄t33γ 0 µc11γ + µ̄t33γ
0 −2

3
µ̄t33γ 0

µc11γ + µ̄t33γ 0 1
3
µ̄t33γ



 (90)

which can be compared to Eq. (69). In this case the equivalent shear stiffness is
G13 = 1

2
(µc11 + µt33), and the Poynting effect is given by µ̄t33 = 1

2
(µt33 − µc11). Note

that a tension-compression switch for fibers may be immediately implemented just
taking µc33 = µc11. In such a case, if fibers work in compression a similar equation to
Eq. (86) is recovered.

For large strains, Eij = 0 for i 6= j in this test with the fibers aligned, so the
generalized Kirchhoff stress tensor is coincident with the rotated Kirchhoff stress
tensor and

T = p̄I + ω11

(

−Ed
)

M
d
1 + ω33

(

Ed
)

L
d
33 (91)

with Ed = lnλ. In the system of representation X , it is easy to show that a similar
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equation to Eq. (90) is obtained























T11 = Jσ11 = Jp + 1
6
[ω′

33 (E) + ω′
11 (−E)]

T22 = Jσ22 = Jp− 1
3
[ω′

33 (E) + ω′
11 (−E)]

T33 = Jσ33 = Jp + 1
6
[ω′

33 (E) + ω′
11 (−E)]

T13 = Jσ13 =
1
2
[ω′

33 (E)− ω′
11 (−E)]

T12 = T23 = 0

(92)

Noteworthy, the Poynting effect may be modified by the consideration of an isotropic
contribution with different behavior in tension and compression, see Eqs. (50) and
(75).

A.3.2. Simple shear case

Recalling the eigenvalue Ed = lnλd = ln (1/ tanψ) = − ln (tanψ), the invariants
are

Ed
ij (ψ (γ)) = E : Ld

ij =
(

Ed
M1 − Ed

M 2

)

: Ld
ij

= Ed (ψ (γ))
(

M 1 (ψ (γ)) : Ld
ij

)

−Ed (ψ (γ))
(

M2 (ψ (γ)) : Ld
ij

)

(93)

where ψ (γ) = (1/2) arctan (2/γ) ∈ [π/4, 0) and M i (ψ) is given above. Then

T = U ′ (ln J) I +
∑

i,j

ω′
ij

(

Ed
ij (ψ (γ))

)

L
d
ij (94)

in which symmetries must be taken into account. Since this case is mathematically
elaborate, a numerical solution is advisable in general. However, we can particular-
ize the problem to a transverse isotropic material with fibers perpendicular to the
shearing direction, i.e. a3 = [1, 0, 0]TX . Then we have

L33 = a3 ⊗ a3 =





1 0 0
0 0 0
0 0 0





X

and L
d
33 =





2
3

0 0
0 −1

3
0

0 0 −1
3





X

(95)

Working in logarithmic strains, since there is no out-of-plane shear strain, E12 = 0,
and choosing a1 = [0, 0, 1]TX and a2 = [0, 1, 0]TX ,

L
d
11 =





−1
3

0 0
0 −1

3
0

0 0 2
3





X

and L
d
22 =





−1
3

0 0
0 2

3
0

0 0 −1
3





X

(96)
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L
d
13 ≡ L13 =





0 0 1
2

0 0 0
1
2

0 0





X

; L23 ≡ L
d
23 =





0 1
2

0
1
2

0 0
0 0 0





X

Then, in the plane with E12 = 0

Ed
33 = E : Ld

33 = Ed cos (2ψ) (97)

Ed
1 = E : Ld

11 = 0 and Ed
2 = −Ed cos (2ψ) (98)

(

E#
13

)2

=
(

Ed sin (2ψ)
)2

(99)

In order to make the exposition simple and concrete, consider a bi-linear model in
terms of logarithmic deviatoric strains. Then

T = p̄I +
∑

i,j

2µ∗
ijE

d
ijL

d
ij (100)

= p̄I − 2µc11E
d cos (2ψ)Ld

22 + 2µt33E
d cos (2ψ)Ld

33 + 2µ13E
d sin (2ψ)L23 (101)

i.e., in the system of representation X















T11 = p̄+ 2
3
(µc11 + 2µt33)E

d cos (2ψ)
T22 = p̄+ 2

3
(−2µc11 − µt33)E

d cos (2ψ)
T12 = µ13E

d sin (2ψ)
T33 = p̄+ 2

3
(µc11 − µt33)E

d cos (2ψ)

(102)

Since in this case the principal strain directions change during the deformation, the
transformation to Cauchy stresses in analytical form is involved. To obtain the
Cauchy stresses, we first compute the rotated Kirchhoff stress τ̄ which has the same
diagonal terms as T , but with the shear terms [38]

τ̄ij =
2λjλi (lnλj − lnλi)

λ2j − λ2i
Tij, i 6= j (103)

The Cauchy stress is then obtained as σ = J−1Rτ̄RT , where R is given in Eq. (77).
It can be seen that the effective shear stiffness depends not only on µ13, but also on
µc11, µ

t
33 as in previous cases. However µ13 does not affect the Poynting effect, which

as in the previous cases depends on the axial terms µ∗
11 and µ∗

33.
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A.4. Twisting of a cuboid

We now address the twisting of a unit-length cuboid using the four transversely
isotropic material models discussed in this paper. A fully integrated single Brick finite
element with mixed formulation u/p 8/1 Q1/P0 is employed [43]. In Figure 15, the
undeformed and deformed elements along with the displacement loads being applied
at nodes (vertices) are shown. The anisotropic (fiber) direction is oriented along the
twisting axis, i.e. axis Y in Figure 15. The axial displacements at the loading faces
are constrained by means of uy = 0 at nodes. The “radial” displacement of every node
is left free and a “circumferential” displacement of u =

√
2/4mm is prescribed at

each node as indicated in the figure. The final deformed mesh is then determined by
the nearly-incompressible response, which is imposed through a volumetric penalty
approach (we use a volumetric strain energy U (J) = 1

2
κ(J − 1)2 with κ = 103MPa),

becoming the same deformed mesh for the four simulations performed. The reaction
forces predicted at nodes by each model are different though, as we see next.

This finite element model simulates, qualitatively, the twisting of a ligament.
Since the fiber direction is oriented along the twisting axis, the shear mode undergone
by the material corresponds to the so-called perpendicular shear, see Figure 1c in
Ref. [59]. As a result of the different material stiffness in the isotropic plane and the
anisotropic direction, the material tends to contract along the twisting axis. Since
we are constraining the displacements along that axis, traction (positive) reaction
forces should be exerted at the loading faces of the cuboid such that uy = 0 at nodes
as a result. By convention, this traction force, that prevents the contraction of the
cuboid in the axial direction, represents a negative Poynting effect [59].

The nodal forces predicted by each model are given in Table 1. The results given
by the analytical models of Sections 4.1 and 4.2 are to be compared to the results
given by their homologous WYPiWYG models of Sections 5.1 and 5.2, respectively.
We can observe that the predictions given by the analytical models and their respec-
tive WYPiWYG models for the twisting (shear-like) force exerted at nodes in the
direction of the displacements are in very good agreement to each other. On other
side, both Reinforcing and Humphrey–Yin models predict a positive traction force
along the Y -axis, i.e. a negative Poynting effect, as expected. We can also observe
that their respective WYPiWYG models also predict negative Poynting effects, even
though the traction reaction forces are lower in both cases. Similarly to what is
explained in Section 6 for the case α = 60 ◦, these differences can be attributed to
the different couplings between strain components that the models present in generic
out-of-axes deformations. However, as also discussed in that Section regarding, for
example, the strain localization of the Standard Reinforcing model, we can see that
our WYPiWYG models are again capable of reproducing the main characteristics
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Figure 15: Twist of a 1mm-length cuboid with constrained axial displacements at the loading
faces, i.e. uy = 0 at nodes (vertices). The “radial” displacement of every node is free and a
“circumferential” displacement of u =

√
2/4mm is prescribed at each node as indicated in the

figure.

of both analytical models in this specific loading case, i.e. the same sign and order
of magnitude of the Poynting effect. The reader should not forget that our models
have been characterized with two tension-compression uniaxial tests and an addi-
tional response curve from a pure shear test (which are exactly reproduced), while
this twisting cuboid example resembles, to some extent, a simple shear test.

Finally, we want also to remark that the finite element model used in this example,
consisting of a single Q1/P0 element, has been chosen in order to perform a simple

Table 1: Nodal force reactions (in MPa) at maximum load predicted by the four different models
addressed in this example. Twist Force refers to the (shear-like) reaction force at each node along
the corresponding applied displacement direction. Axial Force refers to the (normal-like) traction
force at each node in the Y-axis direction, i.e. a negative Pointing effect .

Model Twist Force Axial Force

Reinforcing 3.830E– 03 8.499E– 03
WYPiWYG (Reinforcing) 4.543E– 03 1.971E– 03

Humphrey–Yin 5.549E– 03 1.101E– 02
WYPiWYG (Humphrey–Yin) 5.931E– 03 2.511E– 03
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comparison of the predictions given by the models during the (ideal) twisting of
a cuboid. However, if a realistic simulation of the twisting of a ligament is to be
performed, for either material characterization from experimental data or further
prediction of results, a more appropriate finite element model should be employed.
As we show in Ref. [51], even a single Q2/P1 element would be able to reproduce
very accurately the actual response of a cuboid under simple shear.
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