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ABSTRACT 

The objective of this work is the development of an integrated monitoring service for the identification and 
evaluation of ground surface and slope movements in the context of coal mining, the prevention of natural 
hazards and protection of infrastructure. The focus is set on the integration of a long-range terrestrial laser 
scanner into a continuous monitoring system from an engineering geodetic point of view. In the Vals valley in 
Tyrol, a permanently installed laser scanner was successfully operated via a web portal to monitor surface 
processes in the area of rockfall debris on a high-mountain slope in the summers of 2020 and 2021. This paper 
describes the practical benefits of this permanent laser scanning installation. In addition to the potentials of 
automatic data acquisition, possibilities for multitemporal analysis with respect to spatio-temporally variable 
changes are presented, using advanced 3D change detection with Kalman filtering. The level of detection for 
deformation analyses therein depends on the quality of the georeferencing of the sensor and the noise within 
the measured point cloud. We identify and discuss temporally variable artifacts within the data based on 
different methods of georeferencing. Finally, we apply our change detection method on these multitemporal 
data to extract specific information regarding the observed geomorphologic processes. 

 
I. INTRODUCTION 

Analysis of mass movements and of geomorphic 
processes in general are a key subject in the prevention 
of natural hazards and protection of infrastructure 
(Bremer et al., 2019). Such events are induced by 
various environmental processes as drivers while their 
occurrence is causally linked to climate change, 
therefore posing an increasing risk in terms of 
magnitude and frequency (Huggel et al., 2012). In the 
context of climate change and the expansion of areas of 
urban settlement, e.g. in Alpine regions, the demand 
for high-quality, i.e. spatially and temporally detailed, 
datasets as well as the integration in risk management 
as an early warning system is increasing. 

Monitoring high-mountain areas is often difficult and 
dangerous. Remote sensing techniques are hence 
preferable for observation and to achieve high spatial 
and temporal coverage (Hermle et al., 2022). The 
technical advancement of terrestrial laser scanning 
(TLS) instruments towards communication-capable, 
programmable multi-sensor systems, compact and 
robust design as well as economically attractive systems 
allow the installation of permanent laser scanning (PLS) 
systems in areas of interest, and their integration into 
near real time early warning systems. A major 

advantage of PLS compared to measurements at 
selected points in time is that time series contain 
morphometric measures at high temporal resolution, 
which allow gaining a deeper insight into Earth surface 
processes (Eitel et al., 2016). With regard to the 
application of PLS within an early warning system, false 
alarms and misinterpretations of the results due to low 
levels of detection (LOD) or systematic deviations must 
be avoided. The risk of a poorly designed system 
provokes a lack of acceptance by stakeholders or 
derivation of incorrect conclusions on observed surface 
changes due to the influence of systematic errors. 

Past research on point cloud registration and 
atmospheric influences often only used data limited to 
a few points in time over limited periods, from few 
hours to several days. The results, conclusions and 
recommendations derived from them are only 
generalizable to a limited extent. In this contribution, 
we present data integration of a permanent TLS 
installation which took place in 2020 and 2021 in Vals 
(Tyrol, Austria), emphasizing on quality-checked point 
cloud data and extraction of change information. We 
expect to provide a better understanding of the 
parameters influencing the observations and 
subsequent change analysis, which are variable on 
different temporal scales over long periods. From an 

51



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
 

2022, Editorial Universitat Politècnica de València    

engineering geodetic point of view, initial results 
demonstrate the need for improving the compensation 
of daily variations, which commonly occur in 
permanent TLS installations. We further present results 
of a change analysis using a new approach considering 
the full temporal domain of the 3D time series. Our 
results contribute to improved geoscientific monitoring 
using PLS by reducing uncertainty in the interpretation 
of processes that shape the Earth's surface. 

 

II. RELATED WORK 

Deformation measurement in a geodetic sense (Lang, 
1929) is conducted by surveying an area of interest at 
different epochs and identifying geometric changes 
based on the captured data. Despite its long existence 
and the development of novel sensors and algorithms, 
the processing chain of deformation measurement is 
still valid. Hence, it is recommended to carry out all 
steps of the following processing chain: 

 Viewpoint planning (e.g., Bechtold and Höfle, 
2016; not elaborated in this paper), 

 Data acquisition at different points in time 
(cf. Section A), 

 Transformation of individual epochs into a stable 
reference frame (cf. Section B), and 

 Quantification of deformation (cf. Section C). 
 

A. Permanent Laser Scanning (PLS) 

PLS is being used in numerous applications for the 
observation of natural surface dynamics (e.g., Kromer 
et al., 2017; Vos et al., 2017; Williams et al., 2018; 
Voordendag et al., 2021). The automatic acquisition 
from a fixed position at regular intervals, e.g. hourly to 
daily, enables capturing surface changes at a large 
range of spatial and temporal scales (Eitel et al., 2016). 

As one of the first applications of PLS, Kromer et al. 
(2017) implemented a landslide monitoring system with 
half-hourly data acquisition over six weeks. The 
resulting 3D time series contained information on slope 
deformation preceding the occurrence of a rockfall 
event. Hourly PLS of a coastal cliff was conducted by 
Williams et al., (2019) to investigate the magnitude-
frequency distribution of rockfalls, which provides 
information about their hazard potential. 

In PLS, monitoring systems are assumed to be stable 
in terms of position and orientation to acquire 4D point 
clouds from the exact same instrument origin 
throughout the entire observation period. 
Theoretically, no further alignment of data would be 
required. In practice, applications of PLS have shown 
various effects that arise specifically in setups with high 
temporal acquisition frequency. In a coastal monitoring 
setting, Kuschnerus et al. (2021a) identified movement 
of the survey instrument, which needs to be corrected 
between epochs before applying point cloud 
comparisons for change analysis to reduce systematic 
errors. 

Another important challenge that arises from high-
frequency TLS acquisition is that variable atmospheric 
conditions influence the measurements at a scale which 
affects the detectability of changes. Variation in surface 
measurements linked to changing atmospheric 
conditions were found to strongly exceed the expected 
measurement accuracy in use cases of hourly coastal 
(Anders et al., 2020; Kuschnerus et al., 2021a) and 
glacier monitoring (Voordendag et al., 2021). The 
influence of (changing) atmospheric refraction on long-
range TLS was determined to reach decimeter scales at 
kilometer acquisition ranges by Friedli et al. (2019). 
How these temporally variable uncertainties and 
measurement error can be fully accounted for in PLS-
based monitoring is subject to current research. 

 
B. Registration 

Methods to analyze geometric changes in 
multitemporal point clouds are based on the 
assumption that individual scans are available in a 
common reference frame. Thus, bi- or multitemporal 
scans require transformation into such a frame 
(cf. Friedli and Wieser, 2016). Erroneous effects that 
occur in this step have an immediate and systematic 
impact on the quantification of deformation. Thus, all 
conclusions that are drawn based on the generated 
results are affected. Typically, parameters of a 6- or 7-
parameter Helmert transformation are estimated using 
stable parts of the scene, and the derived 
transformation is subsequently applied to the whole 
scene (Vosselman and Maas, 2010). By using redundant 
computation of the parameters residuals can be 
quantified, and variances and covariances are available 
as a result for further processing. 

In general, two strategies can be deployed to 
transform point clouds into common coordinate 
systems, either by georeferencing or co-registration 
approaches. Since deformed areas that occurred in 
between epochs would influence the outcome of 
registration, it is vital to exclude these from this 
process. Solutions to automatically reject deformed 
areas from the registration process are presented by 
Friedli and Wieser (2016), as well Wujanz et al. (2016). 

 
C. Quantification of surface changes 

A crucial factor for the practicability of PLS-based 
monitoring is the ability to fully automatically derive 
information from the large amount of 4D topographic 
data and to present interpretable layers to 
stakeholders. For use cases of topographic monitoring, 
the result of these analyses can be, e.g. maps of change 
magnitude and direction, the points in time when 
change occurs, a time series of change for each spatial 
location, or other information derived from the time 
series (e.g., Winiwarter et al., 2022). In applications of 
natural hazards, near real time analysis may provide a 
warning when surface change surpass a defined 
threshold (e.g., Kromer et al., 2017). 
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Currently, one of the main challenges for analyzing 
data acquired with PLS is that, while the information 
content is very high, the types of changes to be 
extracted from the data are not known a priori. 
Recently, new methods have therefore been presented, 
focusing on such change analysis tasks and information 
extraction from 4D topographic point cloud data. Due 
to the fixed setup and repeated scanning from the same 
position some error sources can be disregarded, 
whereas others appear more pronounced (Kuschnerus 
et al., 2021a). The requirement for an appropriate 
consideration of measurement uncertainties to 
separate small-scale displacements from noise is 
pointed out by Lague et al. (2013), and demonstrated 
by Fey and Wichmann (2017) for a rockfall area. The 
LOD, representing this separation threshold, is typically 
derived using a statistical test at a certain level of 
confidence. 

Different methods to minimize the influence of noise 
in the quantification of change and to identify 
important change events have been developed. Among 
them is the multiscale model-to-model cloud 
comparison (M3C2, Lague et al., 2013). Though the 
M3C2 is a strictly bitemporal point cloud distance 
measure, differencing of successive epochs can be 
employed, for example, with respect to a fixed 
reference epoch. The M3C2 includes a statistical 
significance test, where the uncertainty of the 
measurements is derived from the data, combined with 
a globally constant value representing the alignment 
quality (Lague et al., 2013). To improve the 
quantification of measurement uncertainty, Winiwarter 
et al. (2021) have developed a method to integrate 
error propagation, which uses knowledge on the 
sensor’s accuracy to predict the uncertainty in 
bitemporal point cloud distances. 

To leverage the temporal domain of PLS data, the 
results of bitemporal surface change quantification can 
subsequently be processed as a time series for each 
location. Kromer et al. (2017) have used temporal 
averaging using a moving window to decrease 
uncertainty for a dense 3D time series. A similar 
approach has been employed by Anders et al. (2021), 
who further use the time series for the detection and 
spatial delineation of temporary surface changes on a 
sandy beach. Another approach which uses the full 
temporal information of hourly PLS is time series 
clustering, presented by Kuschnerus et al. (2021b) to 
identify characteristic change patterns on a beach. 

In Winiwarter et al. (2022), the use of a Kalman filter 
is presented to reduce uncertainty through informed 
temporal smoothing. The smoothed time series enable 
to additionally output a set of physically descriptive 
features, such as the maximum change velocity or the 
acceleration. Different feature groups can then be used 
to create clusters, which can give additional insights 
when interpreting results. 4D point cloud data can 
hence be visualized as 2D clusters and magnitude maps, 

with additional time series at selected locations, to 
provide the temporal information. 

 

III. DATA DESCRIPTION 

Our test site is the Vals valley in Tyrol (Austria). A 
rockfall occurred in this area on 24 December 2017, 
leaving a large debris cone at the lower part of the 
Alpine slope. Though causing neither human casualties 
nor significant damage to buildings, a road located 
directly below the rockfall slope was covered with 8 m 
of debris and a total volume of 116,000 m3 of rock was 
relocated (Hartl, 2019). The local authorities set up a 
geodetic monitoring system, consisting of a total station 
with 21 corresponding prisms (Model: LEICA GPR1) and 
geotechnical sensors (e.g. extensometers) distributed 
over the source area of the rockfall on the upper 
mountain slope. As no significant rock movements were 
detected in the acquired data, the infrastructure of the 
existing monitoring system was made available for 
research. Point cloud data of the rockfall and debris 
area below was recorded during three campaigns using 
two different RIEGL VZ-2000i laser scanners (referred to 
as Model A and B), which were permanently installed 
on a survey pillar in a shelter on the opposite slope 
about 800 m from the rockfall area: 

 Measuring setup 1 (M1): 13 August 2020 to 08 
September 2020 – bi-hourly. 

 Measuring setup 2 (M2): 10 May 2021 to 17 June 
2021 – tri-hourly. 

 Measuring setup 3 (M3): 28 July 2021 to 17 
December 2021 – tri-hourly. 

The acquisition was designed for various research and 
development activities regarding the deployment of 
long-range terrestrial laser scanners within a remotely 
controlled, web-based monitoring system from an 
engineering geodetic perspective. In addition to the 
laser scanner, a total station (LEICA TM30), inclination 
sensors on the survey pillar where the scanner was 
mounted on (aligned to the scanner-own coordinate 
system; PC-IN 1-1° by POSITION CONTROL). Various 
meteorological sensors were installed in the shelter and 
around the monitored slope area. 

The additional measurements can be used to verify 
diurnal and seasonal systematic effects on the results of 
surface change quantification. Furthermore, the prisms 
of the total station monitoring installed in the stable 
rock part and support different methodical approaches 
to verify such effects, as the RIEGL TLS instruments are 
able to detect these prisms as corresponding measuring 
points in the multitemporal scan data. During PLS 
acquisition, a high-resolution scan of the area was 
carried out with a resolution of 15  mdeg in azimuth and 
elevation at a pulse repetition rate of 50 kHz every 
2 hours (M1) and every 3 hours (M2 and M3), 
respectively. As outlined in Table 1, fine-resolution 
scans of the prisms were acquired in-between regular 
scanning intervals. 
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Table 1. Applied sensors and their measuring frequency 

Data 
 

Sensor Acquisition interval Campaign 

3D point cloud of rockfall area 
3D point cloud of each prism 

RIEGL VZ-2000i (Model A) Meas. prog. interval of 
120 min: 
 1 areal scan (15 min) 
 5 prism scans (Every 

21 min) 

M1 

3D point cloud of rockfall area 
3D point cloud of each prism 

RIEGL VZ-2000i (Model B) Meas. prog. interval of 
180 min: 
 1 areal scan (15 min) 
 2 prism scans (Every 

hour) 

M2, M3 

3D meas. to each prism LEICA TM30 Every hour M1, M2 
Inclination of the pillar POSITION CONTROL, PC-IN1-1° Every 15 sec M1, M2, M3 
Air temperature 
Air pressure 
Relative Humidity 

WIESEMANN & THEIS (WUT), 
WEB  THERMO-HYGROBAROMETER 57713

Every 15 sec M1, M2, M3 

Air temperature 
Relative Humidity 

ELITECH TEMPERATURE-LOGGER, RC-51H Every 15 min M1, M2 

Global radiation ZAMG. AC. AT METEOSTATION: 
SCHMIRN, BRENNER, STEINACH 

Every 10 min M1, M2 

Air temperature 
Air pressure 
Rel. Humidity 
Wind speed 
Wind direction 
Global radiation 
Dew point 

LAMBRECHT U[SONIC]WS7 Every 15 sec M2, M3 

 
Due to logistical constraints, the more accurate web 

thermo-hygrobarometers by WuT were only installed in 
the shelter, at the valley basin and in the lower part of 
the observed slope area. Elitech temperature loggers 
that require no additional power supply, were installed 
at the top of the rockslide so that no additional power 
supply is needed in these areas. A different scanning 
instrument, but of the same type and model, was 
deployed for the M2 and M3 acquisition periods. The 
remainder of this paper, i.e. all analyses, focus on the 
data acquired from 28-07-2021 to 15-11-2021 (M3). 

 

IV. METHODS AND INITIAL RESULTS 

A. Registration of 4D point clouds 

The investigation of systematic long-term effects in 
the measurement data, a study of local effects in terms 
of spatial and temporal scale is initially omitted. Data 
from 19 prisms within the study area are analyzed for a 
period from 28-07-2021 to 31-10-2021. The time series 
of each prism is (1) reduced to a daily mean, then (2) 
relative changes to a global reference scan on 29-07-
2021 at 13:00 are evaluated, and finally (3), in order to 
investigate global effects on the point cloud data, an 
average value for each coordinate axis in the scanner's 
own coordinate system (SOCS) is calculated. Figure 1 
shows these time series in black color. 

The assumption that the surveying pillar is stable and 
exempt from any movement does not apply. It is 
evident that the raw data varies over time and leads to 
non-negligible deviations. A linear drift is evident on the 
Y-axis and significant time-varying deviations on the Z-

axis. This supports the requirement of data referencing 
before multitemporal change analysis. 

 

 
Figure 1. The comparison of different registration 

approaches as impact mapping: [1] No registration, [2] 
Onboard registration and [3] Helmert transformation. 

 

As an initial registration procedure, onboard 
algorithms of the scanning device are applied. They use 
a simple ICP approach with the entire point cloud as 
input for the determination of the transformation 
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parameters. The distances between two corresponding 
point clouds are minimized for this purpose. No 
classification and segmentation of the point cloud is 
performed within this process, so that non-stable areas 
are included in the analysis. It is noticeable that there is 
almost no correction on the Y-axis since this axis runs 
parallel to the valley, which lacks measurement data. 
On the X- and Z-axes, we see a change in their signs. A 
visual comparison of the parameters with records of the 
inclination sensors (cf. Figure 2) allows a first conclusion 
that the values cannot be explained exclusively by 
movements of the survey pillar. Rather, when assessing 
the measurement data, it can be seen that the 
predominant part of the scene is characterized by 
vegetation, which increases or decreases linearly in the 
course of a measurement series depending on the 
season. The non-consideration leads to 
misinterpretations. An alternative approach 
demonstrates that the classification of stable areas in 
the geodetic sense remains important. The current lack 
of an automatable algorithm for the application of the 
whole point cloud can be compensated by the 
possibility of detection the prisms in the respective 
scans. Thus, a 7-parameter Helmert transformation can 
be applied. The procedure also offers the possibility to 
estimate a scale parameter as another quality criterion. 
A visual inspection of the transformation parameters 
does not indicate any systematic effects, so that this 
mathematical model demonstrates an adequate 
consideration of stable areas. 

A set of impact maps (Figure 3), showcasing the 
effects of different transformation parameter sets on 
resulting point cloud distances, is derived by applying 
the M3C2-EP (Winiwarter et al., 2021) on two point 
clouds, which were acquired on 28-07-2021 and 
03- 10- 2021. For the parameterization of this numerical 
example, we introduce transformation parameters 
exclusively. The influence of registration is considered 
and realistic accuracy measures are disregarded. The 
map is generated by comparing the two scans with 

respect to their differences in the transformation 
parameters. Without using transformation parameters, 
a tendency to higher values is visible, corresponding to 
a shift of the normally distributed deviations by 0.015 m 
in the mean (cf. Figure 3 – [1]). The application of the 
simplified registration algorithm of the scanner shows a 
normal distribution with the mean tending towards 
zero, but with a slight bias of -0.008 m 
(cf. Figure 3 – [2]). The transformation using 7 
parameters shows a Gaussian distribution at almost 
zero (-0.002 m), which is the expected magnitude of 
differences (cf. Figure 3 – [3]). 

 
B. Change detection using Kalman filtering for full 4D 

point cloud analysis 

The dense time series of the 4D point clouds contains 
spatially and temporally detailed information on 
surface processes. We use data acquired every three 
hours over 110 days (from 28-07-2021 to 15-11-2021), 
yielding a total of 766 epochs. To extract and visualize 
information on surface changes, which occur at variable 
a-priori unknown locations and timespans, we apply a 
recent method using a Kalman filter to combine the 
spatial and temporal properties of 4D point clouds for 
change analysis, following Winiwarter et al. (2022). We 
explain this method in the following. 

First, M3C2-EP (Winiwarter et al., 2021) is used to 
calculate bitemporal surface change for each epoch, 
using the first epoch as reference. No filtering of 
changes by statistical significance is applied at this 
point, but uncertainty information is recorded (as 
suggested by Anderson, 2019). We use the following 
parameter settings for M3C2-EP: normal radius 5 m, 
projection radius 0.5 m, maximum cylinder length 3 m, 
core point density 0.45 pts/m², ranging uncertainty: 
0.005 m, angular uncertainty 0.0675 mrad. 

 
 

 

 
Figure 2. Figure Three-dimensional overview of the test site in the Vals Valley including applied sensor technology and 

overview of the geographical situation of the Vals Valley. (Data Source: Land Tirol - data.tirol.gv.at [1] and 
http://ows.mundialis.de/services/service?;layers=SRTM30-Colored-Hillshade [2]). 
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Figure 3. The comparison of different registration 

approaches as impact map: [1] No registration, [2] Onboard 
registration and [3] Helmert transformation. 

 

We use a Kalman filter on each spatial location 
(i.e., core point) individually to model the displacement 
at this location over time. A Kalman filter represents a 
dynamical system by a state vector, a measurement 
function, and a state transfer function, and requires 
errors in the obtained bitemporal surface change to be 
normally distributed. As we modelled these changes 
with M3C2-EP, we assume that this condition is met. In 
the Kalman filter, the state vector contains the 
parameters (in our case, the estimated displacement 
value, the change rate, and the acceleration at a single 
location) for a single point in time. From this state, a 
future state can then be predicted using the state 
transfer function, linearized to be representable by a 
matrix. This is referred to as the prediction step. If 
observations, i.e., measurements are available, they 
can be introduced to the state in the update step. Again, 
a linearized model is used to represent the relation of 
observations and parameters. In both the predict and 
update steps, uncertainty is employed. The state vector 
itself is accompanied by a covariance matrix. In the 
prediction step, the uncertainty generally increases, as 
the last observations become less recent. 

The increase of uncertainty over time due to a lack of 
measurements is modelled by the Kalman filter. As the 
behavior of the observed surface is not known prior to 
analysis, a piecewise (discrete) white noise model is 
employed, following Labbe (2021). We assume that for 
each time step, an uncorrelated (to the previous 

change) and random change in the acceleration value 
may happen, where the expected value of this change 
is normally distributed with mean zero and a standard 
deviation of σ = 0.05 m/day². Hence, the more time has 
passed since the last measurement, the more uncertain 
the model will be about its state. Our choice of σ was 
made to allow the filter to closely follow the 
observations, yet smoothing daily or diurnal patterns 
(Figure 4; cf. Winiwarter et al., 2022). 

The Kalman filter is combined with a Rauch-Tung-
Striebel smoother to create a smoothed time series 
considering both future and previous measurements 
for any point in time. This also allows interpolation over 
data gaps. Figure 4 shows a time series for a single 
spatial location with the measurements, the smoother 
value and the respective uncertainties, together with 
the derived velocity and the acceleration. At the end of 
the measurement period (starting on 01-11-2021), 
snowfall occurred in Vals. The deposition and melt of 
this large-scale surface change show in all time series of 
this dataset, and induce uncertainty that is not well 
represented by the Kalman filter. 

In Figure 5, the resulting change magnitudes (a) at the 
end of the 110-day period and (b) at their maximum 
value for each spatial location are shown. The red areas 
in (a) correspond to deposited material, the blue ones 
to eroded material. The overall orange color in (b) 
corresponds to snowfall in the beginning of November. 

Similar values, such as the time when significant 
change was first recorded at each location (Figure 6) 
can be extracted from the time series at each location. 

The erosion channels following a thunderstorm can 
be seen in pink, as well as anthropogenic works in the 
lower area of the slope. Snowfall in the first days of 
November is the cause for the major peak that can be 
seen in cyan, covering large areas. We subsequently use 
20 such attributes derived for each location as feature 
vectors for unsupervised classification, i.e., clustering, 
using a Gaussian Mixed Model (following Winiwarter et 
al., 2022). The result of the clustering is shown in 
Figure 7, where individual change processes can be 
identified through visual interpretation. 

 

 
Figure 4. Exemplary time series at a location with subtle, but continuous erosion. Note how data gaps are interpolated, but if 

they are too long, a ringing effect occurs (as seen in the days before 17-08-2021). A daily pattern can be observed, especially in 
the velocity and acceleration estimations. Snowfall at the end of the observation period causes large displacement values. 
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Figure 5. Resulting change magnitudes: a) Change 

magnitude between the first epoch and the last epoch; b) 
Maximum change magnitude. 

 

 
Figure 6. Date when change is larger than LOD. 

 

 
Figure 7. Result of clustering on features derived from the 

Kalman-filtered time series. 

V. CONCLUSION AND OUTLOOK 

The use of bitemporal data from a TLS to verify 
surface changes is widely used and discussed. We 
discuss the transition to permanent installations and 
the acquisition of multitemporal data sets. The quality 
of the extracted information is directly dependent on 
the underlying data quality. With regard to data 
qualification, the focus in this paper is on different 
registration procedures. It becomes obvious that 
registration is absolutely necessary when integrating 
the system into an automated monitoring system with 
a corresponding alarm function. The level of detection 
(LOD) varies with the application of the different 
registration procedures. The simplified ICP algorithm, 
as used by the employed scanner instrument, is valid if 
the area undergoing change is small in extent compared 
to the whole scene. Under certain conditions (large 
areas covered by vegetation or other moving objects in 
the scene) it comes to its limits. 

For example, an alarm value set at the beginning is 
triggered by the drift effects in the co-registration alone 
after a specific point in time and leads to false alarms. 
The use of a rigorous approach shows the necessity of 
segmenting and classifying the point cloud into stable 
and non-stable areas as described by Friedli and Wieser 
(2016) and Wujanz (2016). We show that data 
alignment is of vital importance for subsequent change 
quantification and analysis, even in the widely stable 
survey setup of permanent TLS. 

We reduce the uncertainty of change analysis by 
employing a Kalman filter operating on M3C2 distances 
in the point cloud, which makes use of the full 
spatiotemporal information in the dataset. The 
consideration of uncertainty in this analysis is not 
purely data-based, but also uses information from the 
previous alignment step by means of the derived 
covariance in the transformation parameters. 
Periodically appearing deviations are evident both in 
the time series of measurements and of the 
transformation parameters. 

Whereas no methods are currently available to 
remove periodic measurement effects, reducing 
uncertainty in change analysis from high-frequency TLS 
time series is subject to ongoing research efforts. In the 
course of these research activities, causal descriptions 
of the above-mentioned error influences will be verified 
and modelled. The first objective is to more efficiently 
design the permanent installation of terrestrial laser 
scanners within an integrative monitoring system in 
order to avoid misinterpretations and false alarms. The 
second objective is to achieve a higher degree of 
automation of the entire system. Automatic processing 
chains are only available in parts of the full workflow 
and there is no holistic software solution yet. In 
addition, a high level human expertise is typically 
necessary. Now that point cloud acquisition is highly 
automated, there is strong need for research and 
development in the individual fields of 4D point cloud 
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analysis within a monitoring system, with a focus on 
extracting change information and final quality 
assessment from an engineering geodetic point of view. 
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