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1. Introduction

Iterative methods for solving nonlinear systems of equations are a fundamental tool
for solving problems in applied mathematics since in most of the problems it is sometimes
complicated or impossible to solve these systems. For this reason, iterative methods are
used since, by giving an initial estimate close enough to the solution, they obtain an
approximation of the solution.

As mentioned above, it is necessary for the initial estimate to be close to the solution
to ensure convergence, but this does not always happen, which is why the dynamical study
is becoming increasingly important, since this is how we can see the behaviour of the initial
estimations.

The study of the stability of iterative fixed-point methods can be carried out by means
of real or complex dynamics tools applied to a rational operator that result from applying
the iterative scheme to low-degree polynomials. These dynamical techniques can be used
to compare or to deepen known iterative methods, as can be seen in [1–3], to analyze the
qualitative properties of new iterative methods without memory (see, for example, [4–7]) or
with memory (see, for instant, [8,9]). They also change if the method is multidimensional,
as we can see in [8,10–15].

In this paper, we are going to lay the foundations for our future work in the study
of the dynamics of iterative methods with memory for approximating the solutions of
nonlinear systems.

In the first section, we present the theoretical concepts and the obtained results. Then,
in the second section, we apply these results to some multidimensional iterative schemes
with memory. We choose two different systems to see the behaviour of these iterative
schemes.

2. Theoretical Concepts

Let F(x) = 0 be a system of nonlinear equations where F : Rn → Rn.
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The standard form of an iterative method with memory that uses only two previous
iterations to calculate the next one is:

x(k+1) = φ
(

x(k−1), x(k)
)

, k ≥ 1,

where x(0) and x(1) are the initial estimations.
From here on, we assumed that when introducing memory to the iterative method,

the operator φ depends not only on x(k) but also depends on the variable of the previous
step, x(k−1), since otherwise a study of the dynamics of a iterative method without memory
for systems would be carried out.

A function defined from Rn to Rn cannot have fixed points since to be a fixed point of
a function, the point and its image by the function must coincide. Therefore, an auxiliary
function O is defined as follows:

O
(

x(k−1), x(k)
)
=
(

x(k), x(k+1)
)
=
(

x(k), φ
(

x(k−1), x(k)
))

, k = 1, 2, . . .

If
(

x(k−1), x(k)
)

is a fixed point of O, then

O
(

x(k−1), x(k)
)
=
(

x(k−1), x(k)
)

,

and by the definition of O, one has(
x(k−1), x(k)

)
=
(

x(k), x(k+1)
)

.

Thus, the discrete dynamical system O : Rn ×Rn → Rn ×Rn is defined as

O(z, x) = (x, φ(z, x)),

where φ is the operator associated with the vectorial iterative method with memory.
Then, a point (z, x) is a fixed point of O if z = x and x = φ(z, x). If (z, x) is a fixed

point of operator O that does not satisfy F(x) = 0, it is called a strange fixed point.
The basin of attraction of a fixed point (z∗, x∗) is defined as the set of pre-images of

any order such that

A(z∗, x∗) = {(w, y) ∈ Rn×n : Om(w, y)→ (z∗, x∗), m→ ∞}.

To study the caracter of the fixed points, we use the following result from [16].

Theorem 1. Let G : Rm → Rm be of class C2 and x a fixed point. Let λ1, λ2, . . ., λm be the
eigenvalues of G′(x), where G′ is the Jacobian matrix of G.

• If |λj| < 1, for j = 1, 2, . . . , m, then x is attracing.
• If |λj| = 0, for j = 1, 2, . . . , m, then x is super attracing.
• If one eigenvalue λj0 has |λj0 | > 1, then x is repelling or saddle.
• If |λj| > 1, for j = 1, 2, . . . , m, then x is repelling.

If one eigenvalue λ of G′(x) satisfies |λ| = 1, then x is not hyperbolic and we cannot
conclude anything about the character of this fixed point.
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We want to obtain a more specific result for determining the character of the fixed
points (z, x) of operator O. To do this, we calculate the Jacobian matrix of O, denoted by O′

which has size 2n× 2n. The result is matrix

O′(z, x) =



0n×n In×n
∂φ1

∂z1
. . .

∂φ1

∂zn

∂φ1

∂x1
. . .

∂φ1

∂xn
...

...
...

...
∂φn

∂z1
. . .

∂φn

∂zn

∂φn

∂x1
. . .

∂φn

∂xn


.

We denote the matrices

∂φ

∂z
=


∂φ1

∂z1
. . .

∂φ1

∂zn
...

...
∂φn

∂z1
. . .

∂φn

∂zn


and

∂φ

∂x
=


∂φ1

∂x1
. . .

∂φ1

∂xn
...

...
∂φn

∂x1
. . .

∂φn

∂xn

.

So, matrix O′(z, x) is defined as a block matrix

O′(z, x) =

0n×n In×n
∂φ

∂z
∂φ

∂x

.

We need to obtain the eigenvalues of the Jacobian matrix O′(z, x) evaluated at the
fixed points, for determining the character of them (Theorem 1). It is easy to see that

λI2n×2n −O′(z, x) =

λIn×n −In×n

−∂φ

∂z
λIn×n −

∂φ

∂x

.

By applying a result of [17] for calculating the determinant of a block matrix, we obtain

det
(
λI2n×2n −O′(z, x)

)
= det

(
λ

(
λIn×n −

∂φ

∂x

)
− ∂φ

∂z

)
.

Then, λ is an eigenvalue of O′(z, x) if

det
(

λ

(
λIn×n −

∂φ

∂x

)
− ∂φ

∂z

)
= 0,

which is the same as

det
(

λ2 In×n − λ
∂φ

∂x
− ∂φ

∂z

)
= 0.

These calculations are summarized in the following result.

Theorem 2. The eigenvalues of O′(z, x) are those satisfying:

det
(

λ2 In×n − λ
∂φ

∂x
− ∂φ

∂z

)
= 0.
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In particular, λ = 0 is an eigenvalue of O′(z, x) if 0 is an eigenvalue of
∂φ

∂z
since

0 = det
(
−O′(z, x)

)
= det

(
−∂φ

∂z

)
.

Another concept relevant in a dynamical study is the critical points. In this case, we
use the following definition of these type of points.

Definition 1. Vector (z, x) is a critical point of O(z, x) if all the eigenvalues of O′(z, x) are 0.

This is a restrictive definition of a critical point since it is usually sufficient that the
determinant of the Jacobian matrix cancels out, but in this case, if we do not use the above
definition, we obtain critical point surfaces because of the form of the operator.

To study the eigenvalues of O′(z, x), we use Theorem 2. In particular, for at least one
of the eigenvalues to be 0, it must be satisfied that det(O′(z, x)) = 0; this is equivalent to

det(O′(z, x)) = det

0n×n In×n
∂φ

∂z
∂φ

∂x

 = det
(
−∂φ

∂z

)
= (−1)n det

(
∂φ

∂z

)
.

From this, we obtain that:

Theorem 3. The determinant of O′(z, x) is zero if and only if it satisfies

det
(

∂φ

∂z
(z, x)

)
= 0.

3. Experimental Results

In this section, we present the dynamical study of two simple vectorial methods with
memory: Kurchatov’s scheme, ref. [18], whose expression is as follows

x(k+1) = x(k) − [2x(k) − x(k−1), x(k−1); F]−1F
(

x(k)
)

, k = 1, 2, . . . (1)

and Steffensen’s method with memory, ref. [19], whose expression is

x(k+1) = x(k) − [x(k) + γ(k)F
(

x(k)
)

, x(k); F]−1F
(

x(k)
)

,

where γ(k) = −[x(k), x(k−1); F]−1, k = 1, 2, . . .
(2)

This study is performed on two polynomial systems of different degrees.

3.1. Uncoupled Third Order System

We perform this dynamical study on a system of cubical polynomials in order to use
graphical tools. However, these results can be easily extended to higher-dimension systems.
The system, denoted by p(x) = 0, is as follows:{

x3
1 − 1 = 0,

x3
2 − 1 = 0,

(3)

(4)

where (x1, x2) ∈ R2. The only root with real components of this systems is (1, 1).
We choose a polynomial of degree 3 instead of one of degree 2 as it is usually done in

dynamical studies because the polynomial system of second degree gives us an operator
that does not depend on the previous iteration x(k−1), so the study is the same as that of a
iterative method without memory for solving nonlinear systems.
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To make the study simpler, we denote x(k−1) by z and x(k) by x as was done in the
theoretical study.

3.1.1. Kurchatov’s Method

Operator φK of Kurchatov’s method on the cubical system is

φK(z, x) =

x1 +
1−x3

1
4x2

1−2x1z1+z2
1

x2 +
1−x3

2
4x2

2−2x2z2+z2
2

. (5)

Theorem 4. The only fixed point of operator OK(z, x) = (x, φK(z, x)) has equal components
z = x = (1, 1) and has superattractor character.

Proof. We calculate matrices
∂φK
∂z

and
∂φK
∂x

appearing in the dynamical study,

∂φK
∂z

(z, x) =

−
2(x3

1−1)(x1−z1)

(4x2
1−2x1z1+z2

1)
2 0

0 − 2(x3
2−1)(x2−z2)

(4x2
2−2x2z2+z2

2)
2


and

∂φK
∂x

(z, x) =


9x2

1z2
1−12x3

1z1+12x4
1−4x1(z3

1+2)+z1(z3
1+2)

(4x2
1−2x1z1+z2

1)
2 0

0
9x2

2z2
2−12x3

2z2+12x4
2−4x2(z3

2+2)+z2(z3
2+2)

(4x2
2−2x2z2+z2

2)
2

.

If we evaluate these matrices at the fixed point, we get

∂φK
∂z

((1, 1), (1, 1)) =
(

0 0
0 0

)
and

∂φK
∂x

((1, 1), (1, 1)) =
(

0 0
0 0

)
.

By Theorem 2, it follows that det(λI −O′K((1, 1), (1, 1))) = det(λ2 I). From the above
relationship it follows that the only eigenvalue associated with the fixed point is λ = 0. So,
fixed point x = z = (1, 1) is a superattracting point.

Regarding the critical points of operator OK(z, x), we have

Theorem 5. Operator OK(z, x) has four types of critical points, denoted by Ci(z, x), which have
the following form.

The notation of Table 1 is understood in such a way that, for example, the points C2(z, x) are
those that verify that x1 = 1 and z2 = x2, and the other components are arbitrary.

Table 1. Types of points of Kurchatovs’s scheme that are critical points for p(x) = 0.

x1 = 1 z1 = x1

x2 = 1 C1(z, x) C3(z, x)

z2 = x2 C2(z, x) C4(z, x)

Proof. To do this, we calculate the eigenvalues of O′K(z, x) for any point (z, x) and obtain
those satisfying the condition that all their eigenvalues are 0.
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It is obtained that the critical points are those z = (z1, z2) and x = (x1, x2) that satisfy
these two expressions(

x3
1 − 1

)
(x1 − z1) = 0 and

(
x3

2 − 1
)
(x2 − z2) = 0. (6)

It follows that the 4 types of points defined in Table 1 are critical points of operator
OK(z, x).

We have that the points of type C1(z, x) are a preimage of the only fixed point since
φK(z, (1, 1)) = (1, 1). We are only going to study the orbit of the points of type C2(z, x)
and C4(z, x) since the points C1(z, x) converge to the fixed point for any value of z, and the
fixed points of type C3(z, x) have a symmetrical study to that of the fixed points of type
C2(z, x).

• Operator φK evaluated at the critical points of type C2(z, x) has the following form

φK(C2(z, x)) =

(
1

x2 +
1−x3

2
3x2

2

)
.

The convergence of these points only depends on x2 and z1, as we can see in the
expression of φK. For this reason, we draw planes of convergence of these points with
these two variables.
Now, we are going to describe how we generate the planes of convergence [4]. To
draw these planes of the points of the type C2(z, x), what we are going to do is to see
which of these points belong to the basins of attraction of the attractor fixed points,
that is, which of these points converge to the attractor.
We make a mesh of 400× 400 points of the set [−2, 2]× [−2.2]. On one of the axes,
we have x2, and on the other, z1, and with them we construct our points of type
C2(z, x). We take each of these points C2(z, x) and apply the operator φK on it. If it
converges to the only attractor fixed point, which is (1, 1), then we paint it in orange.
As convergence criterion, we have used that the distance from the iteration to the fixed
point is less than 10−3 in less than 40 iterations. If this is not verified, the mesh point
is painted black.
As can be seen in Figure 1 that we have a slower convergence when x2 approaches the
value 0 because of the shape of the operator, but we still have convergence. In the rest
of the cases, the convergence to the point (1, 1) is clear.

Figure 1. Behaviour of critical points C2(z, x).
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• Next, we evaluate the operator φK at the critical points of type C4(z, x). In this case,
the operator is

φK(C4(z, x)) =

 x1 +
1−x3

1
3x2

1

x2 +
1−x3

2
3x2

2

.

In this case, the critical points of type C4(z, x) depend on variables x1 and x2. For
this reason, we draw the convergence plane of the critical points depending on these
variables.
As in the previous case, it is shown in Figure 2 that if any of the variables approach the
value 0 we have slow convergence but that in the rest of the points the convergence to
the point (1, 1) is clear.

Figure 2. Behaviour of critical points C4(z, x).

To conclude the dynamical study of Kurchatov’s method for this system, let us draw
some dynamical planes in order to see the behaviour of the points in general.

To draw these planes, given that we have an operator with 4 variables, what we have
done is to select a parameter a, so that z = x− (a, a). We try different values of a to see
which one gives the best results. Usually, testing with small values of a gives good results.
Thus, our variables would be x1 and x2, and the variables z are a variation of these.

To make the dynamical planes, we have chosen a mesh of 400× 400 points, where the
chosen point of the mesh is the starting point. We study the orbit of the initial point. If the
seed converges to (1, 1), it is painted orange, and if it does not converge, it is painted black.
We define convergence to the point (1, 1) because the distance of the iteration is less than
10−3, and this convergence is realised in, at most, 40 iterations.

We have tested with different values of a over a wide range and obtained that there
are the same dynamical plane for different values of a, (Figure 3). As we can see in Figure 3,
all initial points converge to the root (1, 1) showing the good stability properties of this
iterative scheme with memory, even in this multidimensional case.

3.1.2. Steffensen’s Scheme

In this part, we perform the dynamical study of Steffensen’s scheme with memory for
system p(x) = 0. Operator φS obtained by Steffensen’s method is
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φS(z, x) =


x1 +

(x3
1−1)

2

(x2
1+x1z1+z2

1)

((
1−x3

1
x2

1+x1z1+z2
1
+x1

)3

−x3
1

)

x2 +
(x3

2−1)
2

(x2
2+x2z2+z2

2)

((
1−x3

2
x2

2+x2z2+z2
2
+x2

)3

−x3
2

)

. (7)

Figure 3. Dynamical plane of Kurchatov’s scheme for a = −0.1.

Theorem 6. Operator OS(z, x) = (x, φS(z, x)) has four fixed points, which are

• fixed point (z, x) = (S1, S1), with S1 = (1, 1),
• strange fixed point (z, x) = (S2, S2), being S2 = (0, 0),
• strange fixed point (z, x) = (S3, S3), being S3 = (1, 0),
• strange fixed point (z, x) = (S4, S4), with S4 = (0, 1).

The strange fixed points are not hyperbolic, and the fixed point (S1, S1) is a superattractor
point.

Proof. In order to study the character of these fixed points, we need to obtain matrices
∂φS
∂z

and
∂φS
∂x

.

We denote by GZi(z, x) for i = 1, 2 the following expression:

GZi(z, x) =

(
x3

i − 1
)2
(xi + 2zi)

(
x2

i + xizi + z2
i
)(

3x2
i zi + x3

i + 3xiz2
i + 2

)(
6x4

i z2
i + x3

i
(
6z3

i + 1
)
+ 3x2

i
(
z4

i + zi
)
+ 3x5

i zi + x6
i + 3xiz2

i + 1
)2 . (8)

Thus,

∂φS
∂z

(z, x) =

GZ1(z, x) 0
0 GZ2(z, x)

.

We denote by GXi(z, x) for i = 1, 2 expression:

GXi(z, x) =
36x4

i z2
i + x3

i
(
39z3

i + 7
)
+ 12x2

i
(
2z4

i + zi
)
+ 18x5

i zi(
6x4

i z2
i + x3

i
(
6z3

i + 1
)
+ 3x2

i
(
z4

i + zi
)
+ 3x5

i zi + x6
i + 3xiz2

i + 1
)2

+
4x6

i + 6xiz2
i
(
z3

i + 2
)
+ 3z3

i + 1(
6x4

i z2
i + x3

i
(
6z3

i + 1
)
+ 3x2

i
(
z4

i + zi
)
+ 3x5

i zi + x6
i + 3xiz2

i + 1
)2

(9)
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Thus,

∂φS
∂x

(z, x) =
((

x3
1 − 1

)(
z3

1 − 1
)
GX1(z, x) 0

0
(
x3

2 − 1
)(

z3
2 − 1

)
GX2(z, x)

)
.

Let us now obtain the character of the fixed points (Si, Si), for i = 1, . . . , 4.

• For the point associated to S1, the related matrices are

∂φS
∂z

(S1, S1) =

(
0 0
0 0

)
and

∂φS
∂x

(S1, S1) =

(
0 0
0 0

)
.

From Theorem 2, we conclude that the fixed point is super attracting point.
• For the point associated to S2, we obtain

∂φS
∂z

(S2, S2) =

(
0 0
0 0

)
and

∂φS
∂x

(S2, S2) =

(
1 0
0 1

)
.

By applying Theorem 2, the eigenvalues of this point are the values λ satisfying

0 = det(λI −O′S(x, z)) = det
(

λ2 I − λ
∂ρ

∂x
− ∂ρ

∂z

)
= λ2(λ− 1)2.

(10)

It follows that the eigenvalues are 0 and 1, so we cannot conclude anything about the
character of this strange fixed point as it is not hyperbolic.

• For the fixed point associated to S3, the matrices are

∂φS
∂z

(S3, S3) =

(
0 0
0 0

)
and

∂φS
∂x

(S3, S3) =

(
0 0
0 1

)
.

The eigenvalues associated with this fixed point are those λ values that satisfy

0 = det(λI −O′S(x, z)) = det
(

λ2 I − λ
∂ρ

∂x
− ∂ρ

∂z

)
= λ3(λ− 1).

(11)

It follows that the eigenvalues are 0 and 1, so again the point is not hyperbolic.
• Finally, let us study the character of the fixed point associated with S4. The matrices

for this fixed point are
∂φS
∂z

(S4, S4) =

(
0 0
0 0

)
and

∂φS
∂x

(S4, S4) =

(
1 0
0 0

)
.



Symmetry 2022, 14, 442 10 of 18

So the eigenvalues of the fixed point associated with S4 are the values that satisfy

0 = det(λI −O′S(x, z)) = det
(

λ2 I − λ
∂ρ

∂x
− ∂ρ

∂z

)
= λ3(λ− 1).

(12)

It follows that the eigenvalues are 0 and 1, so again the point is not hyperbolic.

Now, let us calculate the critical points.

Theorem 7. The critical points of operator OS(z, x) are vectors z = (z1, z2) and x = (x1, x2),
which satisfy that they are of one of the following 16 types, which we denote by CSi(z, x) for
i = 1, . . . , 16. Table 2 is a summary of the different types of critical points we obtain.

Table 2. Types of points of Steffensen’s scheme that are critical points for p(x) = 0.

x1 = 1 z1 = − 1
2 x1

z1 =
−3x2

1+
√
−3x4

1−24x1
6x1

z1 =
−3x2

1−
√
−3x4

1−24x1
6x1

x2 = 1 CS1(z, x) CS5(z, x) CS9(z, x) CS13(z, x)

z2 = − 1
2 x2 CS2(z, x) CS6(z, x) CS10(z, x) CS14(z, x)

z2 =
−3x2

2+
√
−3x4

2−24x2
6x2

CS3(z, x) CS7(z, x) CS11(z, x) CS15(z, x)

z2 =
−3x2

2−
√
−3x4

2−24x2
6x2

CS4(z, x) CS8(z, x) CS12(z, x) CS16(z, x)

We are working with systems of equations with real variables, so it is assumed that the critical
points have real numbers as their components.

Proof. If we define DGXi(z, x), i = 1, 2, as

DGXi(z, x) = λ2 − λ(x3
1 − 1)(z3

1 − 1)GXi(z, x)− GXi(z, x),

then, we can check that

det(λI −O′S(x, z)) = det
(

λ2 I − λ
∂φS
∂x
− ∂φS

∂z

)
= det

(
DGX1(z, x) 0

0 DGX2(z, x)

)
.

(13)

Additionally, it follows that all eigenvalues are zero if the point (z, x) has one of the
forms given in Table 3.

As we can see on Table 3, there is a certain symmetry relation between the following
CSi(z, x).

Table 3. Symmetry relation between CSi(z, x).

CS2(z, x) CS5(z, x)

CS3(z, x) CS9(z, x)

CS4(z, x) CS13(z, x)

CS7(z, x) CS10(z, x)

CS8(z, x) CS14(z, x)

CS12(z, x) CS15(z, x)
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For that reason, and because the operator also satisfies certain symmetry with the
components, we only study the behaviour of certain types of points that are critical points.

• The asymptotic behaviour of the critical points CS2(z, x) is analysed with the following
plane where the convergence to the fixed points is shown in different colours. In this
case, if the distance from the iteration to the fixed point is less than 10−3, we say that
the iteration is in the basin of attraction of the fixed point. In this case, it is painted
orange if the critical point converges to (S1, S1), blue if it converges to the strange
fixed point (S3, S3), red if it converges to the strange fixed point (S4, S4) and green
if it converges to the point (S2, S2). If the points are painted black, they have not
converged to any of the fixed points in less than 40 iterations. In this case, we have a
fixed value x1, and the value z2 depends on x2, so the variables of the axes are x2 and
z1 as shown in Figure 4.

Figure 4. Convergence of the critical points of type CS2(z, x).

• In a similar way to the previous case, we study the convergence of the critical points
of type CS3(z, x) and of type CS4(z, x). In these cases, the value x1 is also fixed and
the value z2 depends on x2; for this reason, the variables of the axes are x2 and z1 as
in the previous cases and as can be seen in Figure 5. In this case, we have that the
behaviour of both types of critical points is the same; for that reason, we only show
one dynamical plane.

Figure 5. Convergence of the critical points of type CS3(z, x) and CS4(z, x).



Symmetry 2022, 14, 442 12 of 18

• For the critical points of type CS6(z, x), the convergence study is similar to the previous
ones, but in this case none of the variables are fixed, and it is z1 and z2 that depend on
x1 and x2, respectively; for this reason, the dynamical plane has as axis variables the
values of x1 and x2, as shown in Figure 6.

Figure 6. Convergence of the critical points of type CS6(z, x).

• For the critical points of type CS7(z, x) and CS8(z, x), we also have as variables on the
axes the values of x1 and x2, as shown in Figure 7. In this case, we have decided to
show only one dynamical plane because the behaviour of both types of critical points
is the same.

Figure 7. Convergence of the critical points of type CS7(z, x) and CS8(z, x).

• For the critical points of type CS11(z, x), CS12(z, x) and CS16(z, x), we also have as
variables on the axes the values of x1 and x2. In this case, we have that the behaviour of
these 3 types of critical points is the same; for that reason, we only show one dynamical
plane (Figure 8).
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Figure 8. Convergence of the critical points of type CS11(z, x), CS12(z, x) and CS16(z, x).

3.2. A Coupled Second-Order System

Now, we are going to solve other system that has a more complicated aspect since the
variables cannot be separated, that is to say, we do not have that the first component of the
operator only depends on the first components of the variables of x and z and the same
with the second component; instead, in this case, we have that both components of the
operator depend on both components of the vectors. The next system we solve, denoted by
q(x) = 0, is {

x1x2 + x1 − x2 − 1 = 0,

x1x2 − x1 + x2 − 1 = 0,

(14)

(15)

where (x1, x2) ∈ R2. The real roots of this system are (−1,−1) and (1, 1).

3.2.1. Kurchatov’s Scheme

If we apply the Kurchatov’s scheme to the proposed system, we obtain the following
operator:

ϕK(z, x) =

( 1−x2z1+x1(x2+z2)
2x1−z1+z2

1−x2z1+x1(x2+z2
2x1−z1+z2

)
. (16)

Theorem 8. The only fixed points of the operator OK(z, x) = (z, ϕK(z, x)) are z = x = (−1,−1)
and z = x = (1, 1), and both have superattractor character.

Proof. Now, we calculate the matrices
∂ϕK
∂z

and
∂ϕK
∂x

to obtain the character of these fixed
points.

∂ϕK
∂z

(z, x) =

 x1(z2−x2)−x2z2+1
(2x1−z1+z2)2

2x2
1−x1(x2+z1)+x2z1−1

(2x1−z1+z2)2

x1(z2−x2)−x2z2+1
(2x1−z1+z2)2

2x2
1−x1(x2+z1)+x2z1−1

(2x1−z1+z2)2


and

∂ϕK
∂x

(z, x) =

 x2(z1+z2)−z1z2+z2
2−2

(2x1−z1+z2)2
x1−z1

2x1−z1+z2
x2(z1+z2)−z1z2+z2

2−2
(2x1−z1+z2)2

x1−z1
2x1−z1+z2

.

If we evaluate the previous matrices in the fixed points, we obtain in both cases that
both are the matrix that all the components are 0. So, by Theorem 2, both eigenvalues are 0
for all the fixed points. For that reason, both fixed points are super attracting points.
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Theorem 9. Operator OK(z, x) = (z, ϕK(z, x)) has two types of points that are critical points.
These points have one of the following two structures:

• C+(z, x) = (z1, z2, x1, x2) where z2 = −x1 +
√

2− x2
1 + z1.

• C−(z, x) = (z1, z2, x1, x2) where z2 = −x1 −
√

2− x2
1 + z1.

Proof. As we can see,

det(λI −O′K(z, x)) = det
(

λ2 I − λ
∂ϕK
∂x
− ∂ϕK

∂x

)
. (17)

By the form of ∂ϕK
∂x and ∂ϕK

∂x , we can see that all the eigenvalues are zero if

x1 − x2 = 0 and (z2 − z1 + x1)
2 = 2− x2

1.

Let us draw the orbit of these critical points. In this case, we draw on the abscissa axis
the values of x1, which is the same value as x2, and we draw on the other axis the value of
z1 since z2 is obtained from x1 and z2.

To generate these convergence planes of the points of type C+(z, x), we are going to
see which of these points belong to the basins of attraction of the attractor fixed points, that
is, which of these points converge to the attractor fixed points.

To do this, we make a mesh of 400× 400 points of the set [−2, 2]× [−2, 2]. We made
sure that increasing the set did not alter the behaviour. On one of the axes, we have the
variable x1, and on the other, the variable z1, and with these variables we construct our
points of type C+(z, x). We take each of these points of type C+(z, x), and we apply our
operator ϕ on them.

If this initial point converges to (1, 1), we paint it in orange, and if converges to
(−1,−1), we paint it in blue. As convergence criteria, we have that the distance from the
iteration to the fixed point is less than 10−3 in less than 40 iterations. If this is not verified,
we paint it in black.

Figure 9 shows the plane of convergence for the points of type C+(z, x).

Figure 9. Convergence of the critical points of type C+(z, x).

In the same way that the plane of convergence of the points of type C+(z, x) is gener-
ated, we generate the plane of convergence of the points of type C−(z, x), which is shown
in Figure 10.
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Figure 10. Convergence of the critical points of type C−(z, x).

We observe in this planes of convergence, Figures 9 and 10, that global convergence to
the roots of the system exists.

To conclude the dynamical study of the Kurchatov method for this system, we draw
some dynamical planes in order to see the behaviour of the points in general. To draw
these planes, given that we have an operator with 4 variables, what we have done is to
select a parameter a, so that z = x− (a, a). Thus, our variables would be x1 and x2, and the
variables z are a variation of these.

To make the dynamical planes, we have chosen a mesh of 400× 400 points. If the initial
point converges to the point (1, 1), it is painted orange; if it converges to point (−1,−1), it
is painted blue; and if it does not converge to any point, is painted black.

We have tested with different values of a over a wide range and obtained that there are
similar dynamical planes for different values of a; for that reason, we only show Figure 11.
As we can see on this figure, we have that all initial estimation converge to the roots of the
polynomial.

Figure 11. Dynamical plane of Kurchatov’s scheme with a = 0.1.
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3.2.2. Steffensen’s Scheme

If we apply Steffensen’s scheme with memory to system q(x) = 0, we obtain the
following operator

θS(z, x) =

 2x2
1x2+x1x2z2+x1−x2+z2

2x2
1+x1(x2+z2)+x2z2−1

2x2
1x2+x1x2z2+x1−x2+z2

2x2
1+x1(x2+z2)+x2z2−1

. (18)

Theorem 10. The operator O(z, x) = (x, θS(z, x)) has three fixed points, that is,

• z = x = (−1,−1), which is a superattractor point.
• z = x = (1, 1), which is a superattractor point.
• z = x = (0, 0), which is a strange fixed point and not hyperbolic.

Proof. Let us calculate the matrices
∂θS
∂z

and
∂θS
∂x

to obtain the character of the fixed points.

∂θS
∂z

(z, x) =

0 − (x2
1−1)(x2

2−1)

(2x2
1+x1(x2+z2)+x2z2−1)

2

0 − (x2
1−1)(x2

2−1)

(2x2
1+x1(x2+z2)+x2z2−1)

2

, (19)

∂θS
∂x

(z, x) =


(x2

2−1)(2x2
1+4x1z2+z2

2+1)

(2x2
1+x1(x2+z2)+x2z2−1)

2
(x2

1−1)(4x2
1+4x1z2+z2

2−1)

(2x2
1+x1(x2+z2)+x2z2−1)

2

(x2
2−1)(2x2

1+4x1z2+z2
2+1)

(2x2
1+x1(x2+z2)+x2z2−1)

2
(x2

1−1)(4x2
1+4x1z2+z2

2−1)

(2x2
1+x1(x2+z2)+x2z2−1)

2

. (20)

For the fixed points associated with the roots, both matrices are the zero matrix. So,
by Theorem 2, both eigenvalues are 0. Then, the fixed points associated with the roots are
super attracting points. Let see what happens to the strange fixed point. The matrices are

∂θS
∂z

((0, 0), (0, 0)) =
(

0 −1
0 −1

)
, (21)

∂θS
∂x

((0, 0), (0, 0)) =
(
−1 1
−1 1

)
. (22)

By Theorem 2, the eigenvalues for that strange fixed point are the values λ that satisfy
the following equation:

det(λI −O′S(z, x)) = det
(

λ2 I − λ
∂θS
∂x
− ∂θS

∂z

)
= λ2(λ2 + 1) = 0. (23)

So, the eigenvalues are ±i and 0. We cannot determine the character of that strange
fixed-point non-hyperbolic.

Theorem 11. Operator OS(z, x) = (x, θS(z, x)) has six types of critical points. These types of
points are:

All these points are preimages of one of the fixed points.

Proof. Since

det(λI −O′S(z, x)) = λ4 + λ2 (−1 + x2
1)(−1 + x2

2)− λx2
2

(−1 + 2x2
1 + x2z2 + x1(x2 + z2))2

+λ3 x2
1(7− 4x2

1 − 2x2
2)− 4x1(−2 + x2

1 + x2
2)z2 − (−2 + x2

1 + x2
2)z

2
2

(−1 + 2x2
1 + x2z2 + x1(x2 + z2))2

(24)

Then, all the eigenvalues are zero, if (z, x) has one of the types shown in Table 4.
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1. Since θ evaluated at the CP2(z, x), CP4(z, x) and CP6(z, x) points is (−1,−1), then
those types of critical points belongs to the basin of attraction of (−1,−1).

2. Since θ evaluated at the CP1(z, x), CP3(z, x) and CP5(z, x) points is (1, 1), then those
types of critical points belongs to the basin of attraction of (1, 1).

Table 4. Types of points of Steffensen’s scheme that are critical points for q(x) = 0.

x1 = 1 x1 = −1 z2 = −x2− 2x1

x2 = 1 CP1(z, x) if z2 6= −3 CP5(z, x) if |x1| 6= 1
x2 = −1 CP2(z, x) if z2 6= 3 CP6(z, x) if |x1| 6= 1

z2 = −1− 2x1 CP3(z, x) if x2 6= −1
z2 = 1− 2x1 CP4(z, x) if x2 6= 1

Below, we draw a dynamical plane for the Steffensen’s scheme with memory in the
same way as was done for the Kurchatov’s scheme. In Figure 12, we can see a black region;
that is because we have slow convergence to the roots in that region since there are no
critical points outside the basins of attraction of the roots, so there cannot be convergence
to any point other than the roots. Here, we also tried different values for the parameter a,
and similar results were obtained, although the larger the parameter was, the more slowly
convergence zone increased.

Figure 12. Dynamical plane of Steffensen’s method with a = −0.1.

4. Conclusions

The design of new vectorial iterative schemes with memory for solving nonlinear
problems is a developing area of numerical analysis that has expanded in recent years.
These methods can be numerically checked, but, until now, there were no possibility
of analyzing their qualitative performance as all the existing techniques, including both
complex and real discrete dynamics, were not defined to overcome the high dimensionality
of the rational functions involved. This proposed procedure has been tested with the
analysis of the performance of Kurchatov’ and Steffensen’s multidimensional methods on
coupled and non-coupled nonlinear polynomial systems. The results obtained show the
applicability of this technique and present many possibilites for future research.
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