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a b s t r a c t 

Background and Objective: Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) affecting the 

colon and the rectum characterized by a remitting-relapsing course. To detect mucosal inflammation as- 

sociated with UC, histology is considered the most stringent criteria. In turn, histologic remission (HR) 

correlates with improved clinical outcomes and has been recently recognized as a desirable treatment 

target. The leading biomarker for assessing histologic remission is the presence or absence of neutrophils. 

Therefore, the finding of this cell in specific colon structures indicates that the patient has UC activity. 

However, no previous studies based on deep learning have been developed to identify UC based on neu- 

trophils detection using whole-slide images (WSI). 

Methods: The methodological core of this work is a novel multiple instance learning (MIL) framework 

with location constraints able to determine the presence of UC activity using WSI. In particular, we put 

forward an effective way to introduce constraints about positive instances to effectively explore additional 

weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. 

In addition, we propose a new weighted embedding to enlarge the relevance of the positive instances. 

Results: Extensive experiments on a multi-center dataset of colon and rectum WSIs, PICASSO-MIL, demon- 

strate that using the location information we can improve considerably the results at WSI-level. In com- 

parison with prior MIL settings, our method allows for 10% improvements in bag-level accuracy. 

Conclusion : Our model, which introduces a new form of constraints, surpass the results achieved from 

current state-of-the-art methods that focus on the MIL paradigm. Our method can be applied to other 

histological concerns where the morphological features determining a positive WSI are tiny and similar 

to others in the image. 

© 2022 Elsevier B.V. All rights reserved. 
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Table 1 

PICaSSO Histologic Remission Index (PHRI) to predict histological remission. 

Histologic finding Score 

Neutrophil infiltration in lamina propria 

Absent (No) 0 

Present (Yes) 1 

Neutrophil infiltration in epithelium 

Absent (No) 0 

Present (Yes) 

- Surface epithelium 1 

- Cryptal epithelium 1 

- Crypt abscess 1 

Total Score = sum of all above (maximum 4) 
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. Introduction 

Ulcerative colitis (UC) is a chronic inflammatory bowel disease 

IBD) affecting the colon and the rectum with a propensity to arise 

n adolescents and young adults. The incidence of UC has been in- 

reasing globally [1] and currently ranges from 4 to 20 per 10 0,0 0 0

n North America and Europe [2] . 

The treatment of UC aims to extinguish bowel inflammation 

nd prevent complications. Histological assessment plays a criti- 

al role in determining inflammatory activity. In this vein, histo- 

ogic remission (HR) (also referred to as histologic healing, HH) 

s emerging as the most rigorous target of treatment and is as- 

ociated with favorable clinical outcomes [3–6] . However, incorpo- 

ating histology into clinical practice remains challenging. This is 

ue to: (1) the lack of a universal definition of HR that varies de- 

ending on the histological score/index applied, (2) the complexity 

f most scores and (3) the high inter-observer variability between 

athologists [4,7–9] . 

Over the past decades, more than 30 histological scores have 

een developed, although their adoption in clinical practice re- 

ains modest [10,11] . Similarly, different definitions and criteria 

f HR have been proposed, ranging from ‘elimination of mucosal 

lceration/erosion’ to ‘complete histological normalization’. Almost 

ll investigators now agree that the absence of neutrophilic infil- 

ration (‘neutrophil-free’ mucosa) is the key to define HR [11–14] . 

ndeed, this has been endorsed by two independent expert pan- 

ls [14,15] . Recently, our medical team developed a simplified his- 

ological score, PICASSO Histological Remission Index or PHRI, see 

able 1 [16] . 

The primary aim of PHRI was to create a simple ‘neutrophil 

nly’ histologic evaluation that predicted specified clinical out- 

omes. The structures of the biopsy where to evaluate the pres- 

nce or absence of neutrophils and predict histological remission 

re: (a) lamina propia, (b) surface epithelium, (c) cryptal epithe- 

ium and (d) cryptal lumen, see Fig. 1 . 

The computer-aided diagnosis systems (CADs) based on artifi- 

ial intelligence (AI) aim to support pathologists in the daily anal- 

sis of histological biopsies, reducing both the workload and the 

nconsistency generated. Their final goal is to produce a reliable 

nd reproducible real-time assessment of disease activity. With the 

mergence of digital pathology, the digitization of histological tis- 

ue sections into whole-slide images (WSIs) has been standardized, 

eading to the application of computer vision methods. Addition- 

lly, previous research showed the applicability of computer vision 

ethods based on deep-learning approaches using WSIs for cancer 

etection, inflammatory prediction, etc. Regarding the detection of 

C activity based on deep learning techniques, available research 

as focused on the analysis of endoscopic images [17–21] , but so 
∗ Corresponding author. 

E-mail address: madeam2@upvnet.upv.es (R. del Amor) . 
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2 
ar, only one study has approached the analysis of WSIs [22] . In 

22] , the authors used a deep learning algorithm to quantify the 

ensity of eosinophils in sigmoid colon biopsies from consecutive 

C patients with histologically active disease. The algorithm was 

pplied to sigmoid and colon biopsies from a cross-sectional co- 

ort of 88 UC patients with histologically active disease as mea- 

ured by the Geboes score and Robarts histopathology index (RHI). 

owever, this study does not differentiate between remission and 

ctive WSI. 

To the best of our knowledge, no previous study based on deep 

earning has been carried out to identify UC activity based on neu- 

rophils detection using WSI, which has proven to be an accurate 

ndicator of disease activity. In this work, we present a novel deep 

earning strategy to distinguish histological remission from activity 

ased on the detection of neutrophils following the PHRI index. In 

ummary, the main contributions of this work are: 

• A deep learning framework used for the first time to accurately 

predict ulcerative colitis activity based on neutrophil detection. 
• A novel constrained formulation that leverages prior knowledge 

in terms of relative tissue location (i.e. neutrophil location in 

the WSI) by imposing constraints on the feature extractor at 

bag (WSI)-level. 
• A new attention weight for embedding-level MIL, which en- 

larges the relevance of the positive instances. 
• We benchmark the proposed model against relevant body of 

literature on PICASSO-MIL, a large cohort of biopsies collected 

and digitalized in 7 centers in the UK, Germany, Belgium, Italy, 

Canada and USA. 
• Comprehensive experiments demonstrate the superior perfor- 

mance of our model. By simply incorporating information about 

neutrophil location during the training, we found improve- 

ments of nearly 10% for bag-level classification compared to 

prior MIL methods. 

. Related work 

.1. Multiple instance learning 

Multiple instance learning (MIL), a particular form of weakly- 

upervised learning, aims at training a model using a set of weakly 

abeled data [23] . In MIL tasks, the training dataset is composed of 

ags, where each one contains a set of instances and its goal is to 

each a model to predict the bag label. A positive label is assigned 

o a bag if it contains at least one positive instance. MIL approaches 

ave been successfully applied to computational histopathology 

or tasks such as tumor detection based on WSIs, reducing the 

ime required to perform accurate annotations [24–29] . Some of 

hese works use convolutional neural networks (CNNs) for the fea- 

ure extraction process in each instance independently and then 

ombine the instance-level information into one bag-level out- 

ut. Methods that combine instance-level features are known as 

mbedding-based, which require a later classification layer. In the 

ase of [25] , the bag level representation is achieved by the aggre- 

ation of the features through a simple batch global max-pooling 

BGMP). Recent methods have proposed weighted-average em- 

eddings, using instance-specific attention weights learned via a 

ulti-layered perceptron projection or recurrent neural networks. 

n contrast, instance-based architectures combine instance-level 

redictions directly into the bag classification. In this vein, [24] ob- 

ained a tile-level feature representation through a CNN. These rep- 

esentations were then used in a recurrent neural network to in- 

egrate the information across the whole slide and report the final 

lassification result to obtain a final slide-level diagnosis. 

In most MIL-based papers, the WSIs employed have broad fea- 

ures that determine that a bag is positive. However, in this case, 

mailto:madeam2@upvnet.upv.es
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Fig. 1. The larger image corresponds to a Whole-Slide Image (WSI) of a patient suffering from ulcerative colitis. The patches marked with colours denote different interest 

structures. Specifically: (a) lamina propia, (b) surface epithelium, (c) cryptal epithelium and (d) cryptal lumen. The black mark indicates the presence of a neutrophil. 
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mall cells (neutrophils) with features very similar to others in the 

issue differentiate whether a bag is positive. Therefore, the typical 

IL approach is not useful as the extracted activations are degrade 

nd do not allow satisfactory classification. 

.2. Constrained CNNs 

Constrained classification aims to guide the training of a CNN 

owards a solution that satisfies a given condition, which takes ad- 

antage of additional knowledge to the global labels. This learn- 

ng paradigm has gained popularity on weakly-supervised scenar- 

os (e.g. weakly supervised segmentation or MIL) since it allows 

o incorporate local information for improving the final task. Sev- 

ral works have tackled the problem of weakly-supervised seg- 

entation by imposing constraints on deep CNNs [30–33] . In [30] , 

he authors proposed a latent distribution and KL-divergence to 

onstrain the output of a segmentation network. It is used in a 

emi-supervised setting to impose size constraints and image-level 

ags (i.e., force the presence or absence of given labels) on the re- 

ions of unlabeled images. Moreover, an L2 penalty term was pro- 

osed in [31] to impose equality constraints on the size of the 

arget regions in the context of histopathology image segmenta- 

ion which considerably improved the results. More recently, the 

uthors showed in [32] that imposing inequality constraints on 

ize directly in gradient-based optimization, also via an L2 penalty 

erm, provided better accuracy and stability when few pixels of an 

mage are labeled. Similarly, Zhou et al. embedded prior knowledge 

n the target size in the loss function by matching the probabili- 

ies of the empirical and predicted output distributions via the KL 

ivergence. As directly minimizing this term by standard SGD is 

ifficult, they proposed to optimize it by using stochastic primal- 

ual gradient [33] . While these works have helped to improve seg- 

entation in a weakly-supervised setting, few studies focused on 

lassification frameworks. In this work, by means of location con- 

traints, we force the activations of the feature extractor to focus 

n those regions where neutrophils are localized. In this way, a 

educed number of annotations can significantly improve the clas- 

ification results. 
3 
. Methodology 

Here, we build an end-to-end MIL method as our baseline to 

erform image-to-image learning and prediction. The MIL formu- 

ation, based on CNNs, enables to detect neutrophils in WSIs and 

lassify them into either histological remission or adverse outcome 

UC activity). In Fig. 2 , the proposed framework is shown. In the 

ollowing, we describe the problem formulation and each of the 

roposed components. 

.1. Problem formulation 

In MIL tasks, the training dataset is composed of bags, where 

ach bag contains a set of instances (patches). A positive label is 

ssigned to a bag if it has at least one positive instance. The goal 

f MIL is to teach a model to predict the bag label. 

We denote our training dataset by S = (X k , Y k ) with k =
 

1 , 2 , 3 , . . . , N } , where X k denotes the k th input bag (WSI) and 

 k ∈ 0 , 1 refers to the global label (ground truth label) assigned 

o the k th input WSI. Here, Y k = 0 refers to a WSI with remission

nd Y k = 1 refers to ulcerative colitis activity. Note that we denote 

ach individual bag or WSI as: X k = 

{
x k, 1 , . . . , x k,t , x k,I n 

}
, where x k,t 

s the t-th instance of the bag and I n denotes the total number 

f patches or instances in a slide. The number of instances varies 

onsiderably between slides. 

The loss function used to optimize the end-to-end MIL ap- 

roach is the cross-entropy cost function: 

 mil = 

∑ 

k 

(I(Y k = 1) log ̂  Y k + I(Y k = 0) log(1 − ˆ Y k ) (1) 

here I(�) is an indicator function. 

.2. MIL backbone with location constraints 

As will be shown in the experiment section, our baseline MIL 

ormulation produces a decent result for the proposed task but 

till with room for improvement. One problem is that the posi- 

ive instances predicted by the algorithm tend to outgrow the true 
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Fig. 2. Pipeline showing the embedded-level approach for ulcerative colitis detection. By incorporating the proposed location constraints, we force the backbone to extract 

more significant features from each patch belonging to a given bag. After that, we classify the entire biopsy using an aggregated bag-level feature vector weighted by the 

proposed attention-embedding weights. 
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egions with inflammation (UC activity) progressively. We propose 

sing a neutrophil area constraint term to restrict the expansion 

f positive instances during training. We refer to our algorithm as 

ocation constrained MIL, abbreviated as LCMIL. 

We denote our training set as S = (X k , Y k , A k ) with k =
 

1 , 2 , 3 , . . . , N } , where X k denotes the k th bag, Y k ∈ { 0 , 1 } refers to 

he global label (ground truth label) assigned to the k th input WSI 

nd A k specifies a rough estimation of the relative area in which 

he neutrophils are located within the image X k . Being a (i, j) k,t the

ixel (i, j) in the t-th patch from the bag k -th, a (i, j) k,t = 1 if it

orresponds to a pixel that is located around a neutrophil, whereas 

 (i, j) k,t = 0 , otherwise. Note that the rough annotations of neu- 

rophil areas only are used for optimizing the parameters of the 

etwork ( θ ) and not for the prediction phase. 

A Global-aggregation layer is implemented to obtain an ac- 

ivation map representing the distribution of the features ex- 

racted from each of the instances belonging to a given bag. This 

ayer summarizes the information from all spatial locations in the 

eature-embedded map F k,t ∈ R 

H×W ×C (corresponding to the last 

olume of features extracted by the backbone) to one represen- 

ative map ρ ∈ R 

H×W . Note that H × W are the dimensions of the

nstances and C is the number of filters. Therefore, ρ ∈ R 

H×W is 

efined as follows: 

(i, j) k,t = 

1 

C 

∑ 

c∈ C 
F k,t (i, j, c) (2) 

In this way, we have a representation of how the backbone at- 

ention is distributed over the instance surface. In order to have 

he same dimension as the input instances ( 224 2 ), a bilinear in- 

erpolation is performed to the activation map ρ . In the following 

tep, ρ is transformed into ρs = φ(ρ) , where φ is the sigmoid ac- 

ivation function. The aim of the sigmoid activation function is to 

ange the map activation function into [0–1]. Then, we define an 

rea constraint as the L 2 penalty: 

 lc = 

∑ 

k,t 

I(Y k = 1 and a (i j) k,t > 0) ((a k,t − φ(ρk,t )) 
2 ) (3)

Naturally, the global loss function can be updated from 

q. (1) to: 

 = L + λ L (4) 
mil lc lc 

4 
here λlc ∈ R 

+ weights the importance of the constraint during 

raining. 

.3. MIL attention-embedding weights 

After the feature extraction of each instance, we obtain a C- 

imensional feature vector. The bag label predictor is in charge 

f aggregating the C-dimensional feature vectors { h t } t∈ I n into an 

mbedding vector Z k ∈ R 

1 ×C representative of each bag. In the lit- 

rature, there exist different sim ple aggregation functions such as 

atch global max-pooling (BGMP) or batch global average pooling 

BGAP). However, these operators have a clear disadvantage. They 

re pre-defined and non-trainable. Other works use trainable ag- 

regation functions [34] . However, in some situations, these at- 

ention weights have the same value for all instances in the bag, 

hich is not suitable to determine a positive bag. This could be 

ue to the complexity of the instance in some bags and the over- 

tting tendency of neural networks. To solve this problem, we pro- 

ose to use a weighted average of instances where weights are ob- 

ained from the representative maps ρk,t . Note that the weights of 

hese maps are updated each epoch using the L lc term. Addition- 

lly, the weights must sum to 1 to be invariant to the size of a

ag. 

Therefore, the embedded feature vector per bag is obtained as 

 k = 

∑ 

t∈ I n a t · h t , where a t is defined as: 

 t = 

exp{ ∑ 

ρ(i, j) /S} ∑ 

I n 
exp{ ∑ 

ρ(i, j) /S} (5) 

here S = H · W . 

This attention vector promotes variability between instances 

f a positive bag. If there is no activation corresponding to neu- 

rophils in the map ( ρk,t ), the value of a t will be low and

herefore, the embedding features h t will have smaller weight 

n the final prediction. In the case of a negative bag, the at- 

ention values will be very similar and all instances will con- 

ribute equally. The superiority of this aggregation function for 

eutrophil identification and HR prediction will be shown in 

ection 4 . 
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Table 2 

Database description. Amount of whole-slide images (first row), number of 

patches (second row) and percentage of slides with PHRI > 0, ulcerative colitis 

(third row). 

Training Validation Test 

Number of WSI 84 (64,6 % ) 46 (35,4 % ) 100 

patches 61.1 ± 54.2 58.2 ± 36.4 481.2 ± 292.1 

PHRI score > 0 51,1 % 39,15 % 48 % 
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Fig. 3. Ablation studies on MIL formulation. Hyperparameters study for λac are per- 

formed for bag-level accuracy on validation set. Confidence intervals are shown at 

95%. 
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. Experiments and results 

.1. Implementation 

All the tested approaches were implemented using Tensorflow 

.3.1 with Python. Experiments were conducted on the NVIDIA 

GXA100 system. 

1) Dataset (PICASSO-MIL) : We analyzed 230 colorectal biop- 

ies from UC patients enrolled in a prospective international mul- 

icenter study to evaluate the proposed deep-learning methodol- 

gy. Note that the slides belong to 7 different hospitals [35] . To 

rocess the large WSIs, these were downsampled to 20x resolu- 

ion, divided into patches of size 512x512x3 with a 50% overlap 

mong them. Aiming at pre-processing the biopsies and reducing 

he noisy patches, a mask indicating the presence of tissue in the 

atches was obtained by applying the Otsu threshold method over 

he magenta channel. Subsequently, the patches with less than 20% 

f tissue were excluded from the database. Using this database, 

e carried out a patient-level data partitioning procedure to sep- 

rate training and validation sets, aiming to avoid overestimating 

he system’s performance and ensuring its ability to generalize. 

dditionally, 100 non-annotated images at pixel-level were used 

o test the framework, see Table 2 . During training, the human 

athologists (with more than 35-year clinical experience) make 

wo image-level annotations for each WSI, indicating each image 

s HR or UC activity depending on PHRI, and roughly estimating 

hich areas of the image show neutrophils and inflammation. Only 

he bag label is necessary to evaluate the proposed method. 

2) Model parameters : The MIL loss is known to be hard to train

nd special care is required for choosing training hyperparameters. 

o reduce fluctuations in optimizing the MIL loss, all training data 

re used in each iteration (the minibatch size is equal to the size 

f the training set). The network is trained with stochastic gradi- 

nt descent (SGD) optimizer and a fixed learning rate of 0.01. The 

umber of epochs was adapted in function of the experiment per- 

ormed. 

3) Backbone network : We choose the SeaNet (with VGG16) 

roposed in [36] as the CNN architecture of our framework since 

t demonstrated the improvement over standard methods in histo- 

ogical imaging. This framework is composed of VGG16 as a feature 

xtractor and a squeeze and excitation attention network. In addi- 

ion, we performed fine-tuning of this model, as it had previously 

een trained with histological images, in a different task, the de- 

ection of skin tumors. 

4) Evaluation : The quantitative comparison of the different 

ethodologies was handled by means of different figures of merit, 

uch as sensitivity (SN), specificity (SPC), positive predictive value 

PPV), false-positive rate (FPR) negative predictive value (NPV), F1- 

core (F1S), accuracy (ACC) and area under the ROC Curve (AUC). 

.2. Ablation experiments 

In the following, we provide comprehensive ablation experi- 

ents to validate several elements of our model (LCMIL), and mo- 

ivate the choice of the values employed in our formulation, as 

ell as our experimental setting. 
5 
1) Weight of location constraint loss : The weight of the 

onstraint loss is crucial for LCMIL since it directly decides the 

trength of constraints. Strong constraints may make the network 

nable to converge, while weak constraints have little help with 

earning. Therefore, we optimized the proposed formulation with 

he location constraint term in Eq. (4) . Using the training setting 

reviously described, we cross-validated different values of λac = 

 

0 . 1 , 0 . 1 , 1 , 1 , 5 } . Additionally, we tried two loss functions, L 1 and 

 2 , to check for differences. We obtained bag-level ACC from the 

alidation subset using the ACC on validation subset as early stop- 

ing criteria. Results are presented in Fig. 3 . 

These results show that the inclusion of the L lc term improves 

he performance at bag level. Nevertheless, using a too large slope 

nce the performance is satisfied can lead to a worsening of the 

esults. Thus, we selected λlc = 1 , which led to the best results at 

ag level in the validation cohort. 

Additionally, we want to get a more intuitive view of how the 

roposed methodology location constraint term influences the ex- 

raction of discriminative features. For that purpose, we depict the 

eature representation of the embedding space produced by the 

ncoder networks of MIL without L lc and the proposed encoder on 

he instance-level labeled validation. Concretely, we obtained the 

lass activation maps for regions of a bag where neutrophils are 

ound (cryptal lumen, cryptal epithelium, lamina propia and sur- 

ace epithelium). In Fig. 4 , the annotations made by the patholo- 

ists, the activation maps obtained by a MIL module without L lc 

nd the proposed method are compared. 

The MIL without location constraint module does not focus 

ts attention on the areas where neutrophils are located by the 

athologist but on other cells found in the tissue. Note that neu- 

rophils are very similar to other cells found in the tissue, such as 

osinophils, macrophages, etc., but in this case, they do not deter- 

ine that a patient has active ulcerative colitis. This is why the 

pecificity of this model is very low. In contrast, the inclusion of 

he location constraints module forces the network to focus its at- 

ention on the real determining cells, the neutrophils. In this way, 

e can therefore obtain precise instance-level maps for unanno- 

ated images that allow us to detect the neutrophils. 

2) Attention weights for bag classification : Using the best 

onfiguration reached for the λlc term, we optimized the embed- 

ed feature vector per bag, see Table 3 . This Table compares the 

est-known methodologies for constructing the embedded vec- 

or (BGAP, BGMP and MIL-Attention) versus the proposed method. 
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Fig. 4. Class activation maps (CAMs) of some regions where neuthophils are found. First column: original images with pathologist annotation (green and red annotations); 

Second column: CAMs obtained using the normal MIL model. Third column: CAMs using the proposed location constraints. 

Table 3 

Comparison of the different attention embedding weights on the validation set. 

BGAP: batch global average pooling, BGMP: batch global max-pooling, LCMIL: 

neutrophil constrained weak supervision (proposed). Note that in all cases the 

location constraint proposed is integrated into the backbone. 

BGAP BGMP Attention [34] LCMIL 

SN 0.9643 0.9643 0.8889 0.9643 

SPC 0.6667 0.7778 0.7778 0.8333 

PPV 0.8182 0.8710 0.8571 0.9000 

NPV 0.9231 0.9333 0.8235 0.9375 

F1S 0.8852 0.9153 0.8727 0.9310 

ACC 0.8478 0.8913 0.8444 0.9130 

AUC 0.8155 0.8710 0.8333 0.8988 

Fig. 5. Distribution of embedding weights across the instances that comprise a WSI. 

(a) Proposed attention embeddings. (b) Attention weights proposed in [34] . 

S
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v  
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Table 4 

Comparison of the different baseline frameworks in the test cohort. 

Note that for the test cohort only the global bag label are available. 

ABMIL DSMIL CLAM-SB MIL-RNN LCMIL 

SN 0.9583 0.8293 0.9302 0.8667 0.9583 

SPC 0.6923 0.7288 0.8033 0.7797 0.9615 

PPV 0.7419 0.6800 0.7692 0.7500 0.9583 

NPV 0.9473 0.8600 0.9423 0.8846 0.9615 

F1S 0.8393 0.7473 0.8421 0.8041 0.9583 

ACC 0.8200 0.7700 0.8558 0.8173 0.9600 

AUC 0.8253 0.7546 0.8321 0.8009 0.9599 

n

d

d

p
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c

t

o
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[

n

o

fi

ince the features that discriminate a positive bag are relatively 

mall compared to the dimension of the different instances, in this 

ase, the BGMP layer improves the results of the BGAP and MIL- 

ttention layers. However, the proposed aggregation method out- 

erforms all previous methods. 

To compare the distribution of the attention weights of 

34] with those proposed here, we show the histogram of these 

alues in a positive bag, see Fig. 5 . In this case, the bag com-

rises 80 instances, of which only 15% are positive, i.e., contain 
6 
eutrophil structures. In Fig. 5 (b), attention proposed in [34] , the 

ifferent values of weights have similar probabilities. Therefore, no 

iscriminatory weighting is performed to separate negative and 

ositive instances. However, with the proposed method, most in- 

tances (around 60) have a low weight, which would belong to the 

nstances without neutrophils. The remaining weights are spread 

cross instances with neutrophils, with higher weights assigned 

o those with more significant features. Therefore, the proposed 

ttention-based MIL allows to assign more discriminate weights to 

nstances within a bag and hence the final representation of the 

ag is highly informative for the bag-level classifier. 

.3. Comparison to the literature 

To compare the proposed method with the MIL baselines, a 

omparative analysis of the test cohort is performed in this sec- 

ion, see Table 4 . For this purpose, we included the current state- 

f-the-art deep MIL models, the attention based pooling operator 

ABMIL) [34] , non-local attention based pooling operator (DSMIL) 

28] , single-attention-branch (CLAM-SB) [29] and recurrent neural 

etwork (RNN) based aggregation (MIL-RNN) [24] . 

The figures of merit are obtained at the biopsy label because 

nly these labels are available in the test set. In general, the speci- 

city of the MIL baseline models drops considerably. The best 
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tate-of-the-art model (CLAM-SB) achieves a specificity of 0.8033 

ompared to 0.9615 obtained by the proposed model (LCMIL). 

tate-of-the-art models are not able to discriminate between neu- 

rophils and other tissue cells and therefore are not optimal for 

redicting diseases such as ulcerative colitis, which are caused by 

ery precise histological patterns. Under our proposed formulation 

LCMIL), the model can detect neutrophils at the instance level 

nd, therefore, predicts ulcerative colitis with a good performance. 

bviously, there is a high consistency between the fine annotation 

rea and CAMs obtained in Fig. 4 , illustrating great interpretability 

nd attention visualization of the proposed framework. Therefore, 

ith a small volume of training annotations, the model can im- 

rove the accuracy of the best baseline MIL approach by almost 

0%. 

. Conclusion 

Whole-slide images (WSI) have shown applicability to develop- 

ng computer vision models, but few studies have approached the 

se of deep learning models to detect ulcerative colitis (UC). In this 

ork, we propose an location constraint framework able to per- 

orm histological remission prediction using WSIs of patients with 

C. Our framework comprises a feature extraction backbone with 

n attention module to refine the patch-level features and a MIL 

pproach to predict the UC activity in each bag. We introduce a 

ocation constraint module that forces the feature extractor to fo- 

us on the most significant patterns in the patches that form a 

ag. The biopsy classification comes from the bag-level feature vec- 

or that the attention embedding has ponderated. This approach 

eaches a test accuracy of 0.9600 in a more significant subset than 

he training set, which shows that the extra pixel-level annotation 

ives crucial information to the algorithm. 

Future research lines need to focus on detecting neutrophils in 

he different biopsy regions and grading PHRI accordingly, not be- 

ng limited to the histological activity or remission prediction. The 

ocation constraint approach also promises applicability to other 

athologists in which histological analysis is based on identifying 

ingle cells. 
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