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A B S T R A C T

In current radiology practice, multi-parametric magnetic resonance imaging (mpMRI) has recently become a key tool in diagnostic and therapeutic decisions. Although
it is based on the subjective assessment of T2-weighted images, as well as perfusion-weighted and diffusion-weighted sequences, further quantitative parameters can
also be derived from them for improving lesion phenotyping. Despite these parameters are usually exploited in a univariate way, ignoring the benefits of a real
multivariate approach, still it is the gold standard imaging technique to assess prostate cancer location and probability of malignancy. In this paper, pharmacokinetic
(perfusion) and exponential (diffusion) clinical models, as well as latent variable-based multivariate statistical models like multivariate curve resolution-alternating
least squares (MCR-ALS), have been calculated and analyzed with sequential multi block-partial least squares discriminant analysis (SMB-PLS-DA) including
technique-block differentiation, in order to better assess for cancer aggressiveness based on Gleason scales. The best prediction result was achieved by the ordered
combination of diffusion blocks (MCR-ALS and exponential models) and normalized T2 values. The perfusion blocks did not improve the results obtained by diffusion
and T2-weighted based parameters alone, so they can be removed from the SMB-PLS-DA model.
1. Introduction

Currently, medical imaging is a key information source for tumor
detection, grading and staging. Classical MR sequences, such as T1-
weighted (T1w) or T2-weighted (T2w), provide excellent spatial and
temporal resolutions using non-ionizing radiations, in a minimally
invasive way. They have been used to evaluate normal structures and
tumor morphological features [1]. The development of functional se-
quences has allowed estimating and understanding the complex physi-
ological characteristics of tumors in a non-invasive way, providing
knowledge on tumor vascularization and cellularization; thus improving
detection, tracking and tracing of these malignant tumor processes.
Vascularization is divided into two phenomena: a) the creation of new
vessels (angiogenesis) or b) the development of existing ones (neo-
vascularization); when a group of growing cells presents abnormally high
demands of oxygen and nutrients. Cellularization, on the other hand, is
related to cell proliferation and agglomeration in some local tissue
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region. Since the combination of these phenomena is related to early
tumor aggressive oncogenesis, functional MR imaging provides comple-
mentary information to that obtained from conventional imaging.

There are two main functional MR imaging sequences: dynamic
contrast-enhanced MR (DCE-MR) imaging for perfusion assessment [2]
and diffusion-weighted MR (DW-MR) imaging for water diffusibility
assessment [3,4]. The combination of T2w with these imaging sequences
is commonly known as multiparametric MR (mpMR).

In perfusion (DCE-MR) studies, an exogenous gadolinium (Gd) based
contrast media is administered intravenously, going from the capillary
network into the extravascular extracellular space (EES), afterwards
returning to the vascular system and being progressively filtered by the
kidneys. This process establishes a dynamic relationship between the
image signal intensity changes and the amount of contrast media that
passes into the tissues. Fitting these intensity-versus-time curves to specific
parametric models allows obtaining quantitative dynamic measurements.

In diffusion (DW-MR) studies, the signal intensity is related to the
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movement of protons and T2w by measuring the loss of coherence or
synchrony between the water protons; being progressively reduced ac-
cording to a factor (b-value [5]). This attenuation depends on the char-
acteristics of the tissue, being stronger if the tissue is highly vascularized,
and reduced if highly cellularized. The range of different signal attenu-
ations between tissues at the same b-value is the basics to extract bio-
logical information from different behaviors in the diffusion processes.

Despite these quantitative measurements from complex MR equip-
ments, the assessment of prostate mpMR images is usually performed
qualitatively, following the so-called Prostate Imaging Reporting and
Data System (PI-RADS) guide [6]. PI-RADS allows detecting and char-
acterizing prostate lesions, by assigning some probability of malignancy
based on specific image findings. However, this methodology is subjec-
tive and suffers of certain discrepancies, as it is not based on quantitative
data. Moreover, lesion aggressiveness cannot be properly assessed. One
alternative to overcome this problem is to compute quantitative param-
eters from functional MR imaging. These parameters will be considered
imaging biomarkers if they are objectively measured (give quantitative
information) and behave as an indicator of a normal biological process, a
disease, or a response to therapy [7].

Imaging biomarkers can be used for determining biological properties
related to the tumor growth or aggressiveness. To do so, it is mandatory
to fit and characterize the intensity versus time (in the case of DCE-MR)
or versus b-value (in the case of DW-MR) curves associated to each pixel
of the images. Although pharmacokinetic models [8] (in the case of
DCE-MR) and exponential models [9,10] (in the case of DW-MR) have
the ability to provide clinically-oriented biomarkers in tumor analysis,
their interpretation is not easy nor direct in many cases; so new bio-
markers obtained from latent variables-based multivariate statistical
models, like multivariate curve resolution (MCR [11–13]), have recently
been also proposed [14–17] to improve prostate cancer assessment.

This paper deals with a high relevant problem in MR imaging:
selecting the best type of MR sequence (diffusion, DW-MRI; or perfusion,
DCE-MRI), afterwards selecting the best biomarkers (MCR-based or
clinical models-based). Within each type of sequence. All this with the
final goal of classifying the aggressiveness of a tumor (prostate cancer in
this case). These sequences are complex data structures, with 2D images
gathered at different time points (DCE) or b-values (magnitude of the
applied magnetic field; DW), at different slices of the organ under study
(prostate in this case). Therefore, it is convenient to summarize these
sequences in a reduced number of new images with physiological
meaning, i.e. imaging biomarkers. Since these physiological behaviors
are not orthogonal, we propose to apply MCR to unravel these “hidden
dynamics”.

However, not only MCR-based imaging biomarkers, but also those
calculated from clinical models (the commented pharmacokinetic and
exponential models), are available, making the selection of the best set
not only a difficult task, but actually unaffordable in many practical
cases, due to the lack of complete knowledge, or simply because of
clinical routine. So, it is relevant to compare them and see their benefits is
terms of classification.

In order to deal with different and multiple sources of information,
multiblock methods are applied. These techniques were preferred against
Partial Least Squares (PLS) [18,19] due to their ability to separate the
information block-by-block instead of selecting individual variables
(biomarkers), no matter which type of image sequence (DCE or DW) or
biomarker calculation technique (clinical or latent variable models) they
come from. This is important from a practical point of view because it
allows to entirely eliminate blocks of unnecessary information associated
to the type of image sequence or the biomarker calculation model, and
select only the most useful blocks to characterize the aggressiveness of
the prostate tumor. This may make it possible that only one type of MR
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imaging sequence (DCE or DW) needs to be performed (with a conse-
quent reduction in the time that the patient is undergoing radiological
tests) and that only one method (clinical or latent variable-based) needs
to be used for the calculation of biomarkers (reducing computation times
and, therefore, speeding the delivery of radiological reports).

In this paper, sequential multiblock PLS model [20–22] in its
discriminant version (SMB-PLS-DA), was proposed to compare different
groups of imaging biomarkers. This sequential multiblock model was
preferred to other multiblock approximations because of its ability to
extract orthogonal information for each block in a consecutive way
(block-after-block), grouping the correlated information or discarding
the unnecessary latent variables. Thus, it was possible to detect those
truly relevant blocks in the tumor aggressiveness differentiation and,
after that, the ones that do not supply additional discriminating power
with respect to the previous blocks were removed.

The paper is organized as follows. In Section two the database of
patients and the different clinical and latent variables-based multivariate
statistical models are presented. Then, the proposed iterative method for
classification performed with SMB-PLS-DA is detailed. Section three
presents the results of the statistical comparison and discusses the pros
and cons of combining different types of MR sequences. Finally, Section
four shows the conclusions.

2. Materials and methods

2.1. Patient database

DCE-MR and DW-MR sequences from 36 histologically-confirmed
cases of peripheral prostate tumors were acquired, ensuring full pros-
tate coverage (16 slices, in-plane resolution of 192 � 192 voxels, each
one measuring 1.56 � 1.56 � 4 mm3). DCE-MR and DW-MR sequences
were acquired at 47 time points (overall acquisition time 5 min) or 6
different b-values (0, 50, 200, 400, 1000, 2000 s/mm2), respectively. The
high resolution T2w images were acquired covering the full prostate with
25 slices, an in-plane resolution 512� 512 voxels, and a 0.49� 0.49 � 3
mm3 voxel size. An example of a DCE-MR sequence is shown in Fig. 1:

Reference tumor regions of interest (ROIs) were manually segmented
for the peripheral zone of the prostate, considering image findings (PI-
RADS criteria) and spatial correlation with biopsy location. To study
aggressiveness, only the ROIs associated to dominant lesion (DL) were
considered. The pathologic Gleason score was selected as a regularized
indicator of the level of malignancy [23], being used to separate the le-
sions into two categories for classification: low aggressiveness (LA) when
Gleason �6 and high aggressiveness (HA) when Gleason �7. The final
database was composed of 36 biopsied areas in a balanced way (18 LA
and 18 HA) from different patients.

All patients gave consent for using their medical images, which were
anonymized before post-processing. The local Ethics Committee
approved the study protocol.
2.2. Clinical models

2.2.1. Perfusion pharmacokinetic modeling
In radiology, pharmacokinetic (PHK) models try to characterize the

absorption, distribution and excretion dynamics of an injected contrast
agent within a tissue. Compartmental models have been proposed to
describe these tissue dynamics, considering the intravascular and the
extracellular extravascular (EES) spaces as main compartments. Three
different models were considered, clustered into two groups according to
complexity. On one hand, the so-called “classical” or “first-generation”
models: the Tofts model (or its extended version, i.e., Tofts extended
model) and on the other hand the models belonging to the so-called



Fig. 1. (A): 3D data structure for a specific slice of one case of DCE-MRI; x and y are the spatial resolution of the image, t is the number of time points for perfusion.
(B): Unfolded 2D matrix. (C): Dynamic spectra evolution along time, showing signal intensity for a specific slice of the prostate.
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“second-generation”models: the 2-compartment exchange model (2CXM)
and the adiabatic approximation to tissue homogeneity (AATH)model [8].
A detailed formulation explanation can be found in Refs. [17,24]. In these
models, the vascular and EES volumes can be represented as a system of
partial differential equations where the contrast is exchanged between
different subspaces. They can be solved analytically by expressing the
contrast concentration C(t) as a convolution product of the concentration
of the arterial input function (CAIF(t)) and the R(t) function, which is the
analytical solution of these systems. The contrast concentration C(t) is
directly relatedwith the DCE-MR signal intensity of each pixel at each time
point I(t). In this paper, C(t) was obtained from I(t) using a direct con-
version based on contrast media relaxivity and field strength.

CðtÞ¼ ðCAIF*RÞðtÞ (1)

In this expression, R(t) only depends on the first (Ktrans, kep, ve) or
second (Fp, PS, ve, vp) generation perfusion biomarkers [8,24] at each
time instant t. In order to obtain these biomarkers, the models need as
input the reference arterial input function (CAIF(t)), which was calculated
in this paper using a principal component analysis (PCA) model [25], by
automatically selecting the pixels related to a pure arterial dynamic
pattern [26]. Once the CAIF(t) was individually calculated for each pa-
tient, the perfusion sequence was analyzed pixel-by-pixel and the bio-
markers were calculated using non-linear optimization algorithms. It
must be strengthened, however, that these pharmacokinetic models as-
sume some a priori knowledge about the dynamics followed by tissues.
As tumoral lesions produce new vessels and stroma in a chaotic way, the
dynamics might not behave as expected. It seems then necessary to
establish some parameters in order to evaluate the goodness of fit of the
dynamic behaviors, to evaluate the reliability of the obtained bio-
markers. However, in clinical practice, the values of the biomarkers are
usually obtained without any information about such a fit and applied
directly for tumor diagnosis and/or prognosis. In order to tackle this
issue, this paper introduces the use, not only of these biomarkers, but also
of the Residual Sum of Squares (RSS) as a complementary biomarker
(parameter) providing information about howwell the pixel was fitted by
the assumed model, measuring the disagreement between each pixel
behavior, and its prediction from the assumed model. By computing and
storing the RSS, the model not only provides the value of the biomarker
but also its reliability.
3

2.2.2. Diffusion exponential modeling
The signal decay of the DW-MR sequences is a function of the diffu-

sion b-value and can be fitted with different approaches. The most widely
used is the monoexponential model [9], whose apparent diffusion coef-
ficient (ADC) associated parameter integrates the global effect of the slow
displacements (intracellular and interstitial) as well as fast movements
due to intravascular diffusion. The main problem is that the mono-
exponential model does not consider the different mechanisms of the
diffusion process. Currently, one way of dealing with this problem is by
using a two-exponential model known as intra-voxel incoherent motion
(IVIM) [10]. This more complex model considers two behaviors, slow
and fast diffusion, weighted by a parameter called vascular fraction (f),
which relates to the proportion of vascular tissue in a pixel. This model is
able to separate these two effects from the pixel signal decay with
increasing b-values [27,28]. This way, it is possible to quantify and
segregate the slow diffusion (real diffusion) due to extravascular spread
(cellularization), from fast diffusion (pseudo-perfusion) due to vascu-
larization [29].

Despite the fact that the IVIMmodel is theoretically more appropriate
according to physiological criteria, the monoexponential model is the
most widely used due to its simplicity. A detailed explanation of the
model definition and calculation can be found in Ref. [15]. Additionally,
the RSS was also calculated as an additional biomarker for the same
reasons (i.e. assessing biomarkers reliability) explained in the perfusion
section.

2.3. MCR-ALS models

One characteristic of clinical models is the lack of a priori knowl-
edge about the tissue patterns, which leads to a series of assumptions
conditioning the use of different approaches [28]. Accordingly, and
depending on tissue patterns, the clinical models may provide biased
measurements, which may not properly reflect the true physiology of
the tissue [10,30]. Therefore, a priori knowledge about the tissue be-
haviors might help interpreting the information provided by the im-
aging biomarkers.

One possible way to look for physiological meaningful dynamics is by
applying latent variable-basedmultivariate statistical models to the DCE/
DW-MR data. Multivariate Image Analysis deals with the application of



Table 1
Data block structure. The number of variables is obtained after multiplying the
descriptive statistics (mean, median, variance, P25, P75, skewness, kurtosis), by
the number of biomarkers provided by each perfusion or diffusion model and
T2w.

Blocks Models Imaging biomarkers #
variables

(1) Exp. Model-
based DWI

Monoexponential,
IVIM

ADC, D, D*, f, RSS (x2) 42 (6 � 7)

(2) MCR-DWI MCR-ALS (Diffusion) d1, d2, RSS 21 (3 � 7)
(3) PHK model-
based DCE

Extended Tofts,
AATH, 2CXM

Ktrans, kep, ve (x3), vp
(x3), Fp (x2), PS (x2),
RSS (x3)

105 (15
� 7)

(4) MCR-DCE MCR-ALS (Perfusion) NT, VT, RSS 21 (3 � 7)
(5) Normalized
T2w

– Muscle-normalized T2w
(a)

7

a muscle-normalized T2wwas calculated dividing the intensity of the image by
the intensity of the muscle.
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multivariate statistical projection models, commonly on gray-scale,
color, multi and hyper spectral images, but also on MRI or quite
recently ultrasound images [31,32], usually based on PCA [25]. Its
application to oncology [33] allows extracting the sources of variation
from a relevant number of time-sequenced images from different in-
dividuals, providing new latent variable-based statistical models that
help explaining the differences between healthy and tumor tissues.

Nevertheless, a relevant drawback of the application of PCA in DCE-
MR image analysis is that the estimated dynamics patterns are forced to
be orthogonal. The orthogonality of the principal components is a limi-
tation to model different perfusion behaviors that are not necessarily
orthogonal. In order to overcome these drawbacks, it is possible to use
more flexible models, which do not impose this restriction, like Multi-
variate Curve Resolution-Alternating Least Squares (MCR-ALS) [11–13].
MCR is preferred to PCA because of its ability to provide physiologically
more interpretable behaviors by imposing a priori knowledge on the
model. MCR-ALS is an iterative method that performs a bilinear
decomposition of an S matrix containing the signal intensity registered
for each pixel in rows by means of an alternating least squares optimi-
zation algorithm.

S¼CðDÞT þ E (2)

DT is a matrix containing in its rows each of the pure behaviors (pure
spectrum associated to each physiological phenomena); C gathers in its
rows the relative contribution of each behavior for each pixel of the
image; and E is a residual matrix [14–16,24].

By refolding the C matrix into the original spatial dimensions, new
parametric images can be obtained, which allows locating those pixels
more related to each one of the corresponding modeled behaviors. In this
case, equal length normalization was applied to DT matrix during the
MCR-ALS iterative process in order to obtain concentrations (C) that can
be directly compared between them.

The process of obtaining the number of components and the initial
estimation of DT matrix was described in previous works [14–17].
Briefly, two components (referred to true behaviors) were considered for
the MCR models, using the concentrations as their corresponding bio-
markers: in perfusion, normal tissue (NT) and highly vascular tissue (VT)
types); and in diffusion, fast (d1) and slow (d2) exponential decays. An
illustrative example is shown in Fig. 2.

Additionally, the residual sum of squares (RSS) of the MCR models
was included as a potential biomarker measuring the disagreement be-
tween each pixel behavior and its prediction from the assumed model.

MCR-ALS is based on an iterative process that can provide infinite
solutions for the same data matrix, causing a problem known as ambi-
guity in the solution. This problem can be relieved by imposing
Fig. 2. Illustrative example: (Left) Behaviors obtained from MCR-ALS perfusion mo
(Right) Behaviors obtained from MCR-ALS diffusion model, representing d1 (slow di
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constraints based on prior knowledge [34], so that it is possible to obtain
easier-to-interpret solutions. In this paper, two additional constraints
were imposed:

� Non-negativity on the pixel concentration C values, because the in-
tensity in a pixel has to be nonnegative. Also, non-negativity on the
behavior profiles DT.

� Exponential shape of the pure behaviors DT (only in diffusion).

The ambiguity in the solution problem has been checked in previous
works through MCR-bands [35], where the tuned bands were very close
to the proposed solution and the pure behaviors found can be considered
unambiguous.

One problem arises when combining imaging biomarkers obtained
from different MR sequences, taken at different time or positioning,
known as the “alignment problem”. When using different types of se-
quences, it is not possible to ensure that the location of each pixel of e.g.,
the diffusion sequence corresponds exactly to the same pixel in the
perfusion sequence (it might happen due to small movements and change
of image resolution). In order to solve this alignment problem, it is
mandatory to apply image registration methods. In medical image
(among other areas), registration methods are those that modify the
spatial resolution and correct the position of one sequence with the aim
of aligning it to another sequence (reference sequence), i.e. making every
pixel from the secondary sequences to exactly correspond to the same
pixel of the reference sequence. In this paper a simple registration
del, representing VT (vascularized tissue, solid) and NT (normal tissue, dotted).
ffusion, solid) and d2 (fast diffusion, dotted).
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method based on a linear transformation taking into consideration some
reference points was used with satisfactory results. In this method, the
specialists manually select two reference points for each spatial direction
(x, y and z) corresponding to the limits of the organ. These points are
needed for both sequences (reference and secondary) and should be
taken individually for each patient. It consists on determining the posi-
tion where each pixel of the secondary sequences from the original
sequence (the one taken during the acquisition) needs to be moved,
considering their position in the reference sequence. For more insight,
the reader is referred to Ref. [17].
2.4. SMB-PLS-DA and iterative procedure method

2.4.1. SMB-PLS-DA
Imaging biomarkers were obtained for all the pixels of the ROIs

described in section 2.1. In order to characterize a dominant lesion
composed by several pixels, different statistical descriptors from each
imaging biomarker were calculated for each ROI: mean, median, stan-
dard deviation, 25% percentile (P25), 75% percentile (P75), skewness
and kurtosis. The data block structure is summarized in Table 1.

The input matrix X is arranged in 5 blocks of variables (B ¼ 5 [X1 …

X5]) according to Table 1, where the rows are assigned to the ROIs.
Matrix Y is defined with two columns of dummy variables for the same
ROIs. The first column defined the “LA” variable: value 1 if the ROI is a
lesion with low aggressiveness (i.e. Gleason�6), and 0 if it shows high
aggressiveness (i.e. Gleason�7). The second column is the “HA” variable
and is built complementary to the first one. Then, SMB-PLS-DA is applied.

The steps of the procedure follow:

1. Obtain the MCR and clinical biomarkers from the magnetic resonance
sequences

2. Compute the different statistical descriptors from each imaging
biomarker for each ROI.

3. Build the X matrix blocks joining the corresponding biomarkers sta-
tistics in one data array (blocks 1 to 5, see Table 1 for further details).

4. Build the Ymatrix with two columns of dummy variables for the same
ROIs. “LA” and “HA”.

5. Apply SMB-PLS-DA.
Fig. 3. SMB-PLS iterative process scheme for each blocks configuration, repeated 500
the iteration and i corresponds to the block in the i-th position (1–5) in the configu
defined in Table 1.

5

SMB-PLS-DA uses the MB-PLS hierarchical structure where the vari-
ables are organized in different groups or “blocks” associated with
different sources of information known as “regressor blocks” (Xb). But, in
this case, SMB-PLS-DA imposes a sequential pathway in order to
sequentially extract information from each of them. A brief explanation
of the SMB algorithm is described as follow:

The first step of the algorithm is to compute the block weights (wT
1)

by the regression of an initial Y score u onto X1, followed by the calcu-
lation of the scores (t1) from the first block. Then, in order to differentiate
the correlated information from the orthogonal information, the subse-
quent blocks (Xb) (b > 1) were split using the following equation:

For b ¼ 1,2 … B-1 and k ¼ 1,2 … B-b

Xcorr
bþk ¼ tb ⋅

�
tTb ⋅ tb

��1 ⋅ tTb ⋅ Xbþk (3)

These blocks contain the correlated information with X1. After this,
the block score for the subsequent block are computed by regressing u
onto Xcorr

b to obtain the block weights wT;corr
b . Next, the block score [t1 …

tb] are combined in the super level score T. The last step is the compu-
tation of a PLS cycle between u and T to compute the super level weights
(wT) and the super scores tT. This computation cycle is repeated until
convergence on tT. Deflation of all Xb using the super scores is then
performed. The procedure is repeated for computing the next component
using the residuals of all data blocks. It continues to extract components
from the first X-deflated block in the sequence until it has modeled all
relevant information from Y. Any criteria available for selecting the
number of components in latent variable methods can be used.

Once all the information from X1 has been explained, the same
methodology is applied to the subsequent blocks. Since only the corre-
lated information with the previous block was removed by the deflation
step, the components for the subsequent block will only model new in-
formation not explained by the previous components. For the last block
in the sequence, a regular PLS model is fitted to the XB and Y residuals.
The pseudo-code of the SMB-PLS algorithm [22] can be found in Annex 1.

2.4.2. Iterative procedure method
The proposed iterative method takes the basic idea of the SMB-PLS

[20–22] model of extracting only the relevant latent variables from
each block. In this paper, it was extended to the discriminant analysis
times to obtain the results for each proposed model. P represents the number of
ration. LV is referred to the number of latent variables. The block identifier is



Fig. 4. 95% ANOVA LSD intervals for the average f-score (A), specificity (B), and sensitivity (C), of the different block configurations. The code for the configurations
is defined in Table 1.
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version of PLS with the objective of classifying the ROIs in two different
categories (LA and HA).

The method consists in selecting two different balanced sets in a
proportion 2/3 (24 ROIs) for training and 1/3 (12 ROIs) for validation for
each iteration. First, it was necessary to establish the block ordering prior
to applying SMB-PLS (this sequential order remained constant during the
iterative loop represented in Fig. 3). Although from a clinical point of
view, it is generally assumed that diffusion is preferred over perfusion as
the best technique for assessing tumor aggressiveness, in this paper we
evaluated different ordering between perfusion and diffusion blocks in
order to check this assumption. The only special consideration is that
T2w was always sequenced in the latter position as it is usually used as a
complementary morphological image for improving clinical interpreta-
tion and diagnosis.

To start the algorithm, the block input sequence order has to be
manually determined. Then, the SMB-PLS-DA model was calculated for
the training set using simple cross-validation (CV) and a fixed number of
latent variables (this paper has considered 15 as the maximum possible
number of latent variables for each block because after many simulations,
the optimal number of components never surpassed this value). Then, the
projection of the validation set on this model was calculated, obtaining
the goodness of prediction parameter Q2 for the Ymatrix at each number
of latent variables. The number of optimal latent variables was that
maximizing the Q2 (validation) of the projection of the validation set on
the model. Hereafter, the model was recalculated with the selected
number of latent variables for that specific block using the training set
and the validation set together, and then, the same procedure was
applied for the next block until all the blocks were included (or not) in the
model with their respective number of optimal latent variables. It should
be noted here that a double cross-validation procedure, with a training,
validation and (external) test set, would have been preferred, but it was
not convenient to apply because of the small sample size. However, this is
not so relevant when the final goal is not to assess some figure-of-merit
performance (e.g. f-score), but to compare between approaches, since
all of them are affected by the procedure in the same way.

Once the optimal model was obtained, the values of the final f-score,
selectivity, specificity, the percentage of true negatives (TN), true posi-
tives (TP), false positives (FN), false negatives (FP) and the selected LV
for each block of the optimal model obtained for each distribution of the
groups (iteration) were stored. Therefore, the different values for the
figures-of-merit (f-score, sensitivity and specificity) were calculated as
follow:

fscore¼ 2 ⋅ precision ⋅ recall
precisionþ recall

(4)

precision¼ TP
TPþFP

recall or sensitivity¼ TP
TPþFN

specificity¼ TN
TNþFP

(5)
Table 2
Results summary for each proposed configuration. The number of optimal LV were calc

Conf. Average # LV in block 1 Average # LV in block 2 Averag

12345 3.78 4.16 3.02
21435 3.69 5.00 2.24
24135 3.84 4.87 2.11
34125 3.49 3.05 3.01
43215 2.99 3.89 2.21

Average results

– 3.56 4.19 2.52
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Finally, the process was repeated again with the next configurations,
obtaining, at the end, another improved model for each iteration (500
iterations per each proposed configuration). A scheme of the algorithm is
shown in Fig. 3.

3. Results and discussion

The results are presented in two steps according to two different
studies:

1. Analyzing the importance of the block order.
2. Analyzing the importance of block inclusion.

In the first step, five different configurations were considered:

� Prioritizing diffusion over perfusion, and clinical models (Pharma-
cokinetics and exponential) over MCR-ALS (12345).

� Prioritizing diffusion over perfusion, and MCR-ALS over clinical
models (21435).

� Prioritizing MCR-ALS over clinical models, and diffusion over
perfusion (24135)

� Prioritizing perfusion over diffusion, and clinical models over MCR-
ALS (34125).

� Prioritizing perfusion over diffusion, and MCR-ALS over clinical
models (43215).

Note that the T2w block (5) is always sequenced last because, as
already commented, it always acts in clinical practice as a complemen-
tary morphological image. Anyway, we already ran new simulations
placing the T2w block in the first position but it did not affect the results
in the f-score classification index (results not shown).

In a second step, the iterative process was repeated but, in this case,
some of the blocks were removed in order to study if the inclusion of the
block matters. The aim was two-fold: to replicate the same results with a
more parsimonious model; and to study the relevance of each MRI
technique in terms of performance to assess tumor aggressiveness. This
time, six different configurations were proposed:

� Removing the perfusion blocks (125).
� Removing the diffusion blocks (345).
� Removing perfusion þ T2w (12).
� Removing diffusion þ T2w (34).
� Removing perfusion þ MCR DWI models (15)
� Removing perfusion þ clinical (Exp. model-based) DWI (25)

The configurations 125 and 345 were proposed in order to study the
absence of the imaging techniques: perfusion and diffusion, respectively.
Then, configurations 12 and 34 were proposed in order to check the
importance of T2w.
ulated as the average values. The code for the configurations is defined in Table 1.

e # LV in block 3 Average # LV in block 4 Average # LV in block 5

2.93 1.48
4.27 1.56
3.28 1.66
4.05 1.63
5.05 1.48

3.92 1.562



Fig. 5. 95% ANOVA LSD intervals for the average f-score (A), specificity (B), and sensitivity (C), of the different block configurations after removing some of them.
The code for the configurations is defined in Table 1.
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Fig. 6. Summary plot of 95% ANOVA LSD intervals for the average f-score (A), specificity (B), and sensitivity (C). The code for the configurations is defined in Table 1.
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Finally, based on the results obtained, configurations 15 and 25
were studied in order to determine if the diffusion blocks (MCR and
Exp. Model-based DWI) supply the same information, in that case only
one of them is necessary, or contrarily to that, they perform better
together.

The statistical significance of the differences between configura-
tions was studied by applying ANOVA with 2 factors: the actual block
input configuration and the validation set selection for each iteration
(500 runs); the latter used as a blocking factor for decreasing the re-
sidual variability and increasing the statistical power. 95% confidence
ANOVA least significative differences (LSD) intervals of f-score, sensi-
tivity and specificity (Fig. 4) were obtained for studying the statistical
significance of the differences among the different configurations
defined in step 1.

As can be observed in Fig. 4, when trying to prioritize pharmacoki-
netic perfusion models over the other blocks (the configuration 34125),
the values obtained were statistically worse (p-value < 0.05) than in the
other configurations for all the performance indexes (f-score, sensitivity
and specificity), loosing prediction performance. There are no statisti-
cally significant differences between the performance indexes for the
other configurations. This result can be interpreted as the pharmacoki-
netic models (block 3) are not a good reference (starting point) in the
algorithm for discriminating tumor aggressiveness.

In the next Table, the block importance is studied by showing the
number of optimal LV selected for each block in terms of averages:

Table 2 illustrates that the number of LV tend to decrease when the
block is sequenced later, because there is less orthogonal information left.
It should be highlighted that both MCR blocks (2 and 4) were constantly
represented with high number of LV, independently of the position they
were sequenced as they obtained the best global average results
(Table 2). However, if block 3 is introduced first, the algorithm, gener-
ally, will extract a higher number of orthogonal LV than it would nor-
mally do from a block that does not provide discriminant power. This
causes the elimination of part of the correlated information (because
there will be always correlation between blocks) from the others blocks
with block 3 that could really provide relevant information, resulting in
loss of prediction performance (as seen in Fig. 4).

Once the importance of the block order has been analyzed, the
second step for analyzing the block importance was performed as
described before. The results provided by a new 2-factor ANOVA that
was calculated for checking statistically significant differences between
the first four proposed configurations (125, 345, 12 and 34) are shown
in Fig. 5.

As shown in Fig. 5, there are statistically significant differences (p-
value <0.05) between the proposed sequences. First of all, diffusion
blocks (1 and 2) should not be taken out of the model because all the
performance indexes (f-score, sensitivity and specificity) of sequences
345 and 34 were statistically worse than those of sequences 125 and 12.
Besides, the T2w block appeared to be relevant and it statistically
improved the model when it was included (125 was statistically better
than 12; and 345 was statistically better than 34).

Finally, one last analysis was proposed in order to compare the per-
formance of the model containing all the blocks in one of the best con-
figurations (21435) with the best model when removing perfusion (125)
or diffusion (345). Additionally, the configurations 15 and 25 were also
compared with 125 in order to check the importance of the diffusion
models individually (MCR-ALS versus Exp. Model-based DWI). The re-
sults obtained are shown in Fig. 6.
10
These results highlight different relevant ideas:

� First, they indicate that perfusion blocks (3 and 4) can be removed
from the study, since they provided the worst results, and there were
no statistically significant differences between the best models
considering all the blocks (e.g. 21435) and the models where only
diffusion sequences and T2w images were used (125). This conclusion
is relevant because perfusion is an invasive (more harmful for the
patients than diffusion) and costly method that needs better equip-
ment and higher functional resolution. Moreover, the computation
time is higher for perfusion pharmacokinetic models than for clinical
diffusion exponential and MCR-based models (5 and 1 min/pixel,
respectively). Besides, when comparing the best configuration (125)
with the worst one (34), the differences in performance indices were
statistically significant (p-values<0.05) resulting in an estimated
average difference of 0.23 points for the f-score, 0.26 for the sensi-
tivity and 0.23 for the specificity. These values represent a relevant
increment of more than 25% in prediction performance when using
diffusion and T2w instead of only perfusion blocks.

� Second, when trying to use only one of the diffusion blocks (15 and
25), all the performance indexes (f-score, sensitivity and specificity)
experienced a statistically significant decrease with respect to the
combination of both diffusion blocks (125), losing 0.05 points on
average in the performance indices. This result determines that blocks
1 and 2 are complementary and perform better together.

With regards to the limitations of the method, our database was rela-
tively small (36 patients). For further validation, it should be increasedwith
new characterized cases. Future studies including larger cohorts are
necessary inorder toassess the clinical significanceand impactof the results
obtained in this paper. Besides, this analysis was performed at the tumor
region level, which means that the level of detail and characterization is
lower than the pixel level approximation, but the classification and the
predictive power increases (is easier to classify regions than pixels). The
detection of smaller areas (i.e. a few pixels inside a larger ROI) showing
pathological behavior becomes difficult. This limitation is intrinsic to our
method, as our gold referencewas biopsy, obtained froma certain area, so it
is not possible to establish an exact spatial correspondence between biopsy
and pixels. One way to partially overcome this is by using radical prosta-
tectomy specimens as gold standard, where the anatomy of the prostate is
more preserved and it is more feasible to establish an accurate spatial cor-
respondence. Unfortunately, these sampleswere not available in this study.

4. Conclusions

SMB-PLS has shown its potential for selecting the best blocks of in-
formation related to the different magnetic resonance techniques.
Diffusion blocks (1 and 2) have arisen as the best sources of information
joint to T2w block (5), providing f-score, sensitivity and specificity values
of 0.76, 0.79 and of 0.75, respectively. On the other hand, perfusion
blocks (3 and 4) did not provide any additional relevant information.
Their capability for grading prostate tumor aggressiveness is statistically
lower than using diffusion and T2w images, and thus can be neglected
reducing the time the patient is undergoing radiological tests and
speeding the delivery of radiologic reports. In addition, T2w does not
imply any additional cost as it is mandatory for PI-RADS in the clinical
routine. These results are statistically better than using only clinical
models separately as done in other studies [36].
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