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ABSTRACT 
 
 
The complexity of current software systems and the fact that their non-functional requirements 

have become very relevant for the end-user are challenges to be faced in software development. 

In the last few years, these properties have increased the time and the staff required for the 

development and maintenance processes of software. As a result, there is greater interest in 

reducing the costs of these processes in complex software systems. In order to deal with these 

challenges, to achieve the milestones of software products, and to overcome the 

competitiveness of the market, this thesis presents a novel approach for developing complex 

software systems. This approach is called PRISMA.  

PRISMA is supported by a framework that consists of a model, a language, a methodology 

and a Computer-Aided Software Engineering (CASE) tool prototype. The PRISMA model 

combines two approaches to define software architectures: the Component-Based Software 

Development (CBSD) and the Aspect-Oriented Software Development (AOSD). The main 

contributions of the model are the way that it combains both approaches to take their 

advantages, and its formal language. PRISMA takes into account non-functional requirements 

from the early stages of the software life cycle and improves the reusability and maintenance of 

software by decomposing software systems using two different concepts: aspects and 

architectural elements (components and connectors).  

PRISMA provides a formal Aspect-Oriented Architecture Description Language 

(AOADL) for specifying aspect-oriented software architectures. Its AOADL is independent of 

technology and is based on formal languages and formalisms to preserve non-ambiguity in 

order to apply code generation techniques.  

The methodology that PRISMA proposes for developing software systems follows the 

Paradigm of Automatic Programming by applying the Model-Driven Development (MDD) 

approach. As a result, PRISMA provides traceability from the analysis and design stages of the 

software life cycle to the implementation stage, and provides mechanisms to improve the time 

and cost invested in the development and maintenance processes. 
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 The PRISMA model and its methodology are supported by a CASE tool prototype called 

PRISMA CASE. This tool allows the specification of PRISMA architectures using its 

AOADL in a textual and a graphical way, the verification of PRISMA software architectures, 

and the automatic C# code generation thanks to the middleware and the code generation 

patterns that the CASE tool prototype integrates. Finally, PRISMA CASE provides a generic 

Graphical User Interface to execute PRISMA applications over .NET platform and to validate 

them. 
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RESUMEN 
 
 

Hoy en día, la complejidad de los sistemas software y la gran relevancia que han adquirido los 

requisitos no funcionales son retos que han de abordarse durante el proceso de desarrollo 

software. En los últimos años, estas propiedades han provocado un gran incremento en el 

tiempo y el personal necesario para llevar a cabo los procesos de desarrollo y mantenimiento 

del software. Por ello, existe un gran interés en mejorar dichos procesos. Esta tesis presenta un 

nuevo enfoque de desarrollo para sistemas software complejos. Dicho enfoque, llamado 

PRISMA, da soporte a estos nuevos retos y permite satisfacer la elevada  competitividad del 

mercado.  

El enfoque PRISMA se ha materializado en un marco de trabajo formado por un modelo, 

un lenguaje, una metodología y un prototipo de herramienta CASE (Computer-Aided Software 

Engineering). El modelo de PRISMA combina dos aproximaciones para definir arquitecturas 

software: el Desarrollo de Software Basado en Componentes (DSBC) y el Desarrollo de 

Software Orientado a Aspectos (DSOA). Las principales aportaciones del modelo es la manera 

en la que integra ambas aproximaciones para obtener sus ventajas y su lenguaje formal. 

PRISMA tiene en cuenta los requisitos no funcionales desde las primeras etapas del ciclo de 

vida software y mejora su reutilización y el mantenimiento. Todo ello gracias a la 

descomposición que realiza de los sistemas software utilizando dos conceptos diferentes: 

aspectos y elementos arquitectónicos (componentes y conectores). 

PRISMA proporciona un Lenguaje de Descripción de Arquitecturas Orientado a Aspectos 

(LDAOA) formal  para la especificación de arquitecturas software orientadas a aspectos. El 

LDAOA de PRISMA es independiente de cualquier tecnología y está basado en lenguajes 

formales para evitar la ambigüedad y poder aplicar técnicas de generación automática de 

código. 

La metodología de PRISMA apuesta por el desarrollo de software siguiendo el Paradigma 

de la Prototipación Automática mediante la aplicación del enfoque de Desarrollo Dirigido por 

Modelos (DDM). De esta manera, PRISMA proporciona trazabilidad desde las etapas de 
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análisis y diseño, a la etapa de implementación del ciclo de vida software, y proporciona 

mecanismos para mejorar el tiempo y el coste invertido en los procesos de desarrollo y 

mantenimiento del software. 

El modelo de PRISMA y su metodología son soportados mediante una herramienta CASE 

llamada PRISMA CASE. PRISMA CASE permite la especificación de arquitecturas 

PRISMA utilizando su LDAOA tanto de forma textual como gráfica, la verificación de 

arquitecturas PRISMA, y la generación automática de código C# gracias al middleware y a los 

patrones de generación de código que la herramienta CASE integra. Finalmente, PRISMA 

CASE proporciona una Interfaz Gráfica de Usuario (IGU) genérica que permite la ejecución de 

aplicaciones PRISMA sobre la plataforma .NET y la validación de su comportamiento.  
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RESUM 
 
 

Avui en dia, la complexitat dels sistemes de programari i la gran rellevància que han adquirit 

els requisits no funcionals, són reptes que s’han d’ abordar durant el procés de 

desenvolupament del programari. En els últims anys, aquestes propietats han provocat un 

increment en el temps i del personal necessari per a dur en davant els processos de 

desenvolupament i manteniment de programari. Per això, hi ha un gran interés de millorar 

aquestos processos.  Aquesta tesi presenta una nova aproximació de desenrotllament per a 

sistemes programari complexes. La dita aproximació, denominada PRISMA, dóna suport a 

aquests nou desafiaments i permet satisfer la gran competitivitat del mercat. 

L’ enfocament PRISMA  s’ha materialitzat en un marc de treball format per un model, un 

llenguatge, una metodologia,  i un prototip de ferramenta CASE (Computer-Aided Software 

Engineering). El model de PRISMA combina dues aproximacions per definir arquitectures de 

programari: el Desenvolupament de Programari Basat en Components (DPBC) i el 

Desenvolupament de Programari Orientat a Aspectes (DPOA). Les principals aportacions del 

model són la manera en la que integra dues aproximacions per obtindre els seus avantatges i el 

seu llenguatge formal. PRISMA assoleix els requisits no funcionals des de les primeres etapes 

del cicle de vida de programari i millora la reutilització i manteniment d’aquest. Tot açò, 

gràcies a la descomposició que fa dels sistemes de programari, tot i utilitzant dos conceptes 

diferents: aspectes i elements arquitectònics (components i connectors). 

PRISMA proporciona un Llenguatge de Descripció d’Arquitectures Orientat a Aspectes 

(LDAOA) formal  per a l’especificació d’arquitectures de programari orientades a aspectes. El 

LDAOA de PRISMA és independent de tecnologia i està fonamentat en llenguatges formals 

per tal de evitar l’ambigüitat i poder aplicar tècniques de generació automàtica de codi. 

La metodologia de PRISMA aposta pel desenvolupament de programari tot i seguint el 

Paradigma de la Prototipació Automàtica mitjançant l’aplicació de l’aproximació del 

Desenvolupament Dirigit per Models (DDM). D’aquesta manera, PRISMA proveïx traçabilitat 
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des de les etapes d’anàlisi i disseny del cicle de vida de programari a l’ etapa d’ implementació. 

A més a més,  proporciona mecanismes per tal de millorar el temps i la despesa invertida en els 

processos de desenvolupament i manteniment del programari. 

El model de PRISMA i la seua metodologia, són suportats mitjançant una eina CASE 

denominada PRISMA CASE. L’esmentada PRISMA CASE permet l’especificació 

d’arquitectures PRISMA utilitzant el seu LDAOA, tant de forma textual com gràfica, la 

verificació d’arquitectures PRISMA, i la generació automàtica de codi C# gràcies al 

middleware i als patrons de generació de codi que l’estri CASE integra. Per últim, PRISMA 

CASE proporciona una Interfície Gràfica d’Usuari (IGU) genèrica que permet l’execució 

d’aplicacions PRISMA sobre la plataforma .NET i la validació del seu comportament. 
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CHAPTER 1 
1. INTRODUCTION 

 

<< There are only two rules for writing: 

have something to say and say it >> 

Oscar Wilde 

 

 

The work presented in this thesis is an approach for developing complex software systems that 

improves the software quality and reduces the time and cost invested in its development and 

maintenance processes. The approach is supported by a framework that consists of a model, a 

language, a methodology, and a Computer-Aided Software Engineering (CASE) tool 

prototype. The model defined in this work is called PRISMA. It combines two approaches to 

define software architectures: the Component-Based Software Development (CBSD) and the 

Aspect-Oriented Software Development (AOSD). The main contributions of the model are the 

way that it integrates both approaches to take their advantages as well as the definition of a 

formal Aspect-Oriented Architecture Description Language (AOADL). The AOADL is 

independent of technology and is based on a formal language and formalisms that preserve 

non-ambiguity for applying code generation techniques.  

The methodology proposed in this thesis follows the Paradigm of Automatic Programming 

[Bal85] by applying the Model-Driven Development (MDD) approach. The PRISMA model 

and its methodology are supported by the CASE tool prototype called PRISMA CASE. This 

tool allows the specification of PRISMA architectures using its AOADL in a textual and a 



PRISMA: Aspect-Oriented Software Architectures 

30 

graphical way and also allows the automatic code generation thanks to the middleware and the 

code generation patterns that the CASE tool prototype integrates. 

The structure of this chapter is as follows: Section 1 introduces the motivation of this work. 

Section 2 explains the main goals of the thesis, section 3 presents the research methodology 

that has been followed during the development of the thesis, and section 4 summarizes the 

structure of the thesis. 

1.1.  MOTIVATION 
Complex structures, non-functional requirements, heterogeneity, scalability, traceability, 

reusability and maintainability are leading properties that current software systems need to deal 

with. In the last few years, these properties have increased the time and the staff invested in the 

development and maintenance processes of software. As a result, there is greater interest in 

research areas to reduce the time and the cost invested in these software system processes. In 

order to achieve the milestones of software products and to overcome the competitiveness of 

the market, models for the software development, techniques to improve reusability, and 

processes to support automation, traceability and maintainability of software have been 

proposed. 

The complexity, heterogeneity, scalability and reusability properties of current software 

systems have led to considering the analysis of the software structure as an important phase of 

the software life cycle. As a result, in the last two decades, a new research area called Software 

Architectures has emerged. Software architectures are presented as a solution for the design and 

development of complex software systems. However, there is no a consensus about the 

different concepts and approaches that should be used in the area. 

The Component-Based Software Development (CBSD) approach is used in the field of 

software architectures. This approach decomposes the software system into reusable entities 

called components. Components provide services to the rest of the system by encapsulating 

their functionality (black boxes). As a result, software architectures can be described preserving 

the reusability of their components. 
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 The reusability of software allows the same software artefact to be used in different places 

of the same application or in different applications. The artefact is only programmed one time 

and can be used more than once. This reusability reduces the development time of software 

systems. Also, reused software artefacts guarantee their quality and suitable functionality 

because they have been tested and used before. As a consequence, the COTS (Commercial 

Off-The-Shelf) importation has acquired relevance, because tools that allow the reuse of their 

components and the COTS importation achieve the highest reuse and quality code. 

Another approach that has emerged to improve reusability is the Aspect-Oriented Software 

Development (AOSD) approach. This approach allows for the separation of concerns by 

modularizing crosscutting concerns into a separate entity called aspect. As a result, the same 

aspect can be reused by different software artefacts, which are usually, objects. 

The automatic code generation from models reduces the cost and time of the development 

process as well. Nowadays, there are many CASE tools that are able to generate applications 

following the Automatic Programming Paradigm proposed by Balzer [Bal85]. These tools are 

widely-known as model compilers. They automatically generate the application code and the 

database schema from the conceptual schema of a software system. The automatic generation 

can be complete as in Oblog Case [Ser94], OlivaNova® (OO-Method/CASE [Pas97]), or it 

can be partial, as in Rational Rose [RAT06], System Architect [SYS06], Together [TOG06] 

and others. However, since these model compilers follow the Object-Oriented Paradigm, the 

need for developing model compilers that follow the CBSD and/or AOSD approaches has 

emerged. The combination of the CBSD and AOSD reusability and the automatic code 

generation achieves higher reduction in the time and cost of the development process than 

using only one of these approaches. 

In the software life cycle, the maintenance process is as important as the development 

process due to the fact that the requirements of software systems are continuously evolving. 

The sources of these changes can be caused by several factors. First of all, the requirements 

specifications are inaccurate and ambiguous and these deficiencies promote misunderstandings 

from the very beginning of the software life cycle. An incorrect requirements specification can 

be produced by an inexperienced analyst, by a lack of accuracy in the presentation of the 
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customer’s needs or by a misunderstanding between the analyst and the customer because of 

the semantic gap in their vocabularies. This means that the software product will require 

continuous changes until the software that the customer really wanted is finally produced. The 

traceability among the different stages of the software life cycle must be preserved in order to 

ensure quality maintenance of software products. 

An important challenge in the software engineering area is the integration of software 

architectures, CBSD and AOSD approaches, and automatic code generation and traceability 

techniques in an unique approach in order to support the development and maintenance of 

complex software systems in an efficient way. 

1.2. OBJECTIVES OF THE THESIS  
The main goal of this thesis is to provide a framework to develop complex software systems. 

The framework must integrate the definition of software systems and improve their 

development and maintenance processes. The development of this framework must be based 

on approaches and techniques that allow us to obtain the expected results. This is achieved by 

combining the CBSD, the AOSD, and the MDD approaches together with the Paradigm of 

Automatic Programming. 

The main goal of the thesis can be divided into several specific objectives: 

 To study the related works of Architecture Description Languages (ADLs), Aspect-

Oriented Languages and the proposals that integrate the aspect-orientation approach and 

ADLs. 

 To define and formalize a model that integrates AOSD and CBSD in the definition of 

software architectures. This integration must provide mechanisms to reuse aspects and 

components. 

 To define an Aspect-Oriented ADL (AOADL) to specify software architectures based on 

the defined model. This language must provide the needed expressiveness to completely 

specify complex software systems and must be based on formalisms that ensure the non-

ambiguity of specifications. 
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 To provide graphical support for the defined AOADL in order to make the analysis and 

design of aspect-oriented software architectures easier and friendlier. 

 To validate the expressiveness of the language by completely specifying an industrial case 

study using the language. 

 To define a metamodel to specify the properties of the model. 

 To propose a methodology to guide the analyst throughout the development process of 

aspect-oriented software architectures. 

 To develop a framework that supports the graphical and textual specifications of software 

architectures, automatic code generation, execution of software architectures, traceability 

throughout the different stages of the software development, and mechanisms to easily 

maintain the software product. This framework must integrate a middleware and a 

catalogue of code generation patterns. The middleware must permit the execution of the 

software architectures based on the proposed model, and the code generation patterns must 

provide the rules to automatically generate the source code of a specific programming 

language from a specification of the proposed ADL. 

1.3.  RESEARCH METHODOLOGY OF THE THESIS  
The research methodology that has been applied in order to fulfill the objectives proposed in 

this thesis follows a classical methodological strategy often called the “feasibility research 

strategy”. This methodology departs from a generic and conceptual hypothesis that is presented 

as a contribution in the area in which the thesis is developed. This hypothesis is based on a 

previous analysis of the state of art where the contribution of the thesis is justified. This thesis 

departs from the following hypothesis: Is it possible to describe and implement software 

architectures in terms of a symmetric aspect-oriented model?. In addition, the thesis departs 

from the set of objectives that have been established in order to answer this question as well as 

the mechanisms and formalisms that are going to be used to reach them. From this starting 

point, the main goal of this thesis is to reach to a software engineering solution that copes with 

the set of specific objectives that have been established in section 1.2 . 
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The contributions of the thesis have been developed taken into account the initial hypothesis 

and the main goal. These contributions are the definition of a model and its corresponding 

language to describe aspect-oriented software architectures in a formal and pragmatic way. A 

software engineering solution has been developed from these contributions. This solution must 

satisfy the feasibility of the hypothesis that makes reference to the implementation of aspect-

oriented software architectures. As a result, the solution is embodied in a development 

framework that consists of a model, a language, a middleware and a modelling tool. This 

framework has permitted the validation of the hypothesis of this thesis by demonstrating the 

complete description and implementation of a real case study. 

1.4. STRUCTURE OF THE THESIS  
The remainder of this thesis is organized in the following chapters:  

 Chapter 2: Software Architectures  

This chapter provides an introduction to the role of software architectures in the software 

life cycle and their main properties. It also establishes a conceptual base for the notion of 

software architecture and the different concepts of this field. 

 

 Chapter 3. Aspect-Oriented Software Development 

This chapter provides a conceptual base for the different concepts of the aspect-oriented 

paradigm and presents a review of the different kinds of aspect-oriented models that have 

been proposed in the field. It also provides an introduction about how the aspect-oriented 

approach is currently being introduced in the software life cycle. 

 

 Chapter 4. Aspect-Oriented Software Architectures 

This chapter analyzes in detail the most relevant approaches that integrate aspects in 

software architectures. The set of desirable properties that aspect-oriented software 

architecture approaches should fulfil is also presented. Finally, a comparison of these 

approaches using this set of properties is presented and discussed. 
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 Chapter 5: Preliminaries 

This chapter introduces the case study that has been chosen to demonstrate the PRISMA 

approach. It introduces the formalisms that have been used to describe software 

architectures in PRISMA and to formalize the PRISMA model. 

 

 Chapter 6: The PRISMA Model 

This chapter defines, formalizes, and exemplifies the main concepts of the PRISMA 

model. 

 

 Chapter 7: The PRISMA Metamodel 

This chapter presents the PRISMA metamodel in detail. Specifically, it presents the 

packages, metaclasses, relationships, and constraints that the metamodel consists of. 

 

 Chapter 8: The PRISMA Aspect-Oriented Architecture Description Language 

This chapter presents the structure and syntax of the PRISMA Aspect-Oriented 

Architecture Description Language in detail. 

 

 Chapter 9: The PRISMA CASE 

This chapter presents the PRISMA CASE in detail. The chapter explains how the 

PRISMA CASE supports the metamodel and how the modelling tool supports the 

graphical PRISMA AOADL. The chapter introduces the PRISMA model compiler and its 

code generation patterns. Then, the chapter explains how the configuration of software 

architectures is integrated in PRISMA CASE, and how PRISMA configurations can be 

executed. Finally, the PRISMANET middleware is presented to show how the execution 

of PRISMA software architectures is supported by the .NET platform. 
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 Chapter 10: The PRISMA Methodology 

This chapter presents the PRISMA methodology using the TeachMover robot case study 

as an example. The different stages of the methodology are described and the integration 

of COTS in PRISMA software architecture is explained. 

 

 Chapter 11: Conclusions and Further Research 

This chapter presents the main contributions of the thesis and future research work. 

 

 Appendix A: The PRISMA AOADL Syntax 

This appendix presents the BNF of the PRISMA AOADL  

 

 Appendix B: The PRISMA UML Profile 

This appendix presents the PRISMA UML profile. 

 

 Appendix C: The PRISMA Description of the TeachMover Software Architecture 

This appendix presents the complete specification of a joint of the TeachMover Software 

Architecture. This specification has been automatically generated using the PRISMA 

CASE. 
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CHAPTER 2 
2. SOFTWARE ARCHITECTURES 

 

<< Great souls are not those who have fewer 

 passions and more virtues than others, 

 but only those who have greater designs.>> 

François de la Rochefoucauld 

 

 

The complexity of current software systems has led computer community to recognize the 

analysis of software structure as an important phase of the software life cycle. As a result in the 

last decades, a new research area called Software Architecture has emerged to deal specifically 

with this phase. The software architecture discipline has emerged due to the natural increase in 

size and complexity of current software systems. An inaccurate architectural design leads to the 

failure of large software systems. For this reason, the design, specification, and analysis of the 

structure of these software systems have become critical issues in software development 

[Gar01].  

Software architectures are presented as a solution for the design and development of large, 

complex software systems. They allow us to describe the structure of a software system by 

hiding the low-level details and abstracting the high level important features [Per92]. This 

structure is usually represented in terms of computational elements and their interactions. As a 

result, software architectures make software systems simpler and more understandable 

[Gar95a]. 
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The software architecture discipline is capable of performing the following functions: 

analyze and describe the properties of systems at a high level of abstraction; validate software 

requirements; estimate the cost of the development and maintenance processes; reuse software, 

and establish the bases and guides for the design of large complex software systems [Per92]. At 

the same time, software architectures should be adaptable and should provide support for the 

reuse of architectural elements and of partial or complete software architecture descriptions in 

the new software architecture specifications. Thus, new designs are not started from scratch and 

only the specific features of the new systems are created from the beginning [Per92]. In this 

sense, product lines engineering [Cle01], [Dee05] can take advantage of the reuse of the 

common features of product families, and only customize the specific properties [Gar01].  

However, despite the attempt of the IEEE to standardize the software architecture discipline 

[IEE00], there is no consensus about the definition of software architecture and the different 

concepts and approaches to be used in this field. Therefore, the main purpose of this chapter is 

to provide an introduction to the role of software architectures in the software life cycle and 

their main properties as well as to establish a conceptual base for the notion of architecture and 

the different concepts of the field. 

2.1. SOFTWARE ARCHITECTURES IN THE SOFTWARE 
LIFE CYCLE 

The works of Garlan and Perry clearly define the role of software architectures in the software 

life cycle. The Software Architecture discipline bridges the gap between the requirements 

phase and implementation phase of the software life cycle (see Figure 1). From the point of 

view of requirements, software architectures should be the mechanism to ensure that the 

requirements of the software system are satisfied. In addition, software architecture descriptions 

not only can help us to study the feasibility of the development of software systems, but also 

can help to determine which requirements are reasonable and viable [And03].   

The software architecture phase should provide a way to describe the outlines of different 

architectural designs in order to choose one of them based on the advantages and disadvantages 

of each one [Gar95a]. A good choice and its traceability are the keys to prevent the failure of 
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the software development process. For this reason, once a software architecture description has 

been chosen, it is presented as the guide to follow during the implementation of a software 

system. 

 
Figure 1. Software architecture as a bridge between requirements and 

implementation  
 

With regard to implementation, the code should satisfy the architecture and the 

requirements of the system by defining algorithms and data types that preserve the traceability 

with the previous stages [Per92]. 

Finally, it is important to emphasize the role of software architecture in the maintenance 

phase of the software life cycle. Software architectures clarify the design of software systems 

and help to determine the impact of changes that occur during the maintenance process of 

software systems [And03]. As a result, software architectures offer more modifiable designs. 

In summary, the software architecture phase has great influence on the other of phases of 

the software life cycle. For this reason, software architecture has become an important area in 

the software engineering field. 

2.2. PROPERTIES OF SOFTWARE ARCHITECTURES  
Software architecture descriptions guide the implementation of software systems. The success 

or failure of the final product depends to a greater extent on the quality of the software 

architecture specification. Therefore, the specification of software architectures must be done in 

a formal way. A wide variety of Architecture Description Languages (ADLs) [Med97], 
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[Med00], evaluation methods, and analysis tools have been proposed [And03] to provide a 

formal support to software architecture descriptions.  

 ADLs describe the elements that form a software architecture, their interactions, and the 

needed constraints on these elements and their interactions in order to accurately specify 

software systems. ADLs should support the hierarchical specification of elements while 

preserving their encapsulation and showing them as simple elements. They should provide 

mechanisms that define standard elements or architecture descriptions that can be reused. 

ADLs should also provide a specific element to describe the coordination process to 

communicate a set of computational elements [And03]. 

In his work, Perry [Per92] sets out the need for software architectures to describe design 

properties in terms of restriction or permission, generality or particularity, necessity or 

extension, relativity or absolutism. He also addresses the fact that software architectures must 

clearly separate engineering from aesthetics, and must provide a mechanism of views to show 

the different aspects of the architecture. Finally, he also describes the traceability between the 

different levels of the software life cycle and the dependency among the different parts of an 

architecture description as one of the most important properties of software architectures. Thus, 

an architectural approach must preserve the forward and backward links of traceability and the 

dependency of software architecture descriptions in order to keep the consistency of software 

systems. 

Another fundamental property of software architectures is the property of reuse. It is 

desirable for part of the specification of software architectures to be reused by other 

descriptions or catalogues [Per92]. This property is especially interesting because reuse at the 

implementation level is more difficult than at the architectural level. This is due to the fact that 

the code is so specific and has a lot details that are hidden in a software architecture description. 

As a result, software architectures have emerged as powerful mechanisms to reduce the time 

and cost invested in the development process by means of reuse.  

From this survey of works, we can determine which properties ADLs should provide: 

formal specifications, compositional mechanisms, encapsulation, specification of constraints, 

traceability, reuse, mechanisms of views, analysis of properties, and separation of engineering 
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and aesthetics. However, there is no consensus about which properties and quality attributes a 

specific architecture description should have in order to determine its quality and to establish a 

criterion for selection among several specifications. No much work of the analysis of software 

architectures has been done, but there are some works [Dob02] that are trying to develop this 

common analysis criterion. These works propose a set of properties to analyze an architecture 

description that can be used for any software system.  

It is important to emphasize the works of Rick Kazman on the analysis of software 

architecture properties, the SAAM [Kaz94] and ATAM [Kaz98] methods. The SAAM 

method introduces three perspectives to analyze software architecture specifications: 

functionality, structure, and allocation. Functionality is the activity that the system performs; 

structure refers to the components and connections; and allocation describes how the 

functionality is reflected on the structure. This method is divided into five steps: the canonical 

functional partition, the mapping of the functional partition on structure, the selection of quality 

attributes, the selection of testing tasks, and the evaluation of results. The ATAM method is 

based on the analysis of scenarios [Kaz96], which are obtained as a refinement of software 

architecture descriptions. The result of this analysis is a set of risks, non-risks, sensitivity points, 

and trade-off points in the architecture. In addition, the ARID method [Cle00] emerges to 

complete the proposal of ATAM with a technique for insuring quality detailed designs in 

software. 

Another work that offers an interesting perspective on the properties that should be 

analyzed in a software architecture specification is the TOPSA method [Bra99]. TOPSA 

suggests three properties or dimensions to analyze software architecture descriptions: 

abstraction level, dynamism, and the aggregation level. The abstraction level dimension 

determines if the software architecture description is more conceptual (analysis) or realizational 

(design). The dynamism dimension determines whether the architecture is static or dynamic. 

Finally, the aggregation dimension establishes to what extent a structure is made from other 

structures. These three dimensions are represented as a matrix, and the result of the evaluation 

method is the position of a specific architecture inside the matrix. 
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These methods provide a set of common properties that are interesting to analyze in 

software architecture descriptions. However, there are specific properties of each software 

system that are relevant to the analysis and which are not supported by these methods. These 

specific properties vary depending on the software system. As David Garlan exemplifies in 

[And03], there are several kinds of structural decomposition that generate different kinds of 

architectures. Some examples are: code decomposition, run-time structure decomposition, and 

physical-context decomposition. In the code decomposition architectures, where the primary 

elements are code modules, the interesting properties to analyze are code dependencies, 

portability and reuse. However, in the run-time structure decomposition architectures, where 

the primary elements are the principal components that exist when the software is running, the 

properties to analyze are deadlocks, race conditions, reliability, performance, and security. 

Finally, in the physical decomposition architectures, the properties to evaluate are related to 

processors, networks, etc. 

More work should be done in the future to provide mechanisms to analyze and compare 

software architecture descriptions. These mechanisms should give support, not only to 

common relevant properties in software architecture descriptions, but also to specific properties 

of a software system by customizing its analysis criterion. 

2.3. DEFINITION OF SOFTWARE ARCHITECTURE 
There is no single universal or accepted definition of software architecture, and thus, there are a 

large number of software architecture definitions. The main drawback of this deficiency is the 

fact that the concept of software architecture is used in different ways and sometimes, it is 

really difficult to know what the exact meaning is. As a result, it is common to refer to several 

definitions in order to provide a complete notion of the concept of software architecture.  

There are some definitions of software architecture that are general and non-exclusive; 

however at the same time, they are incomplete, non-explicit, and imprecise definitions. An 

early definition that was defined by Perry and Wolf is: 
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<< A software architecture is a set of architectural (or, if you will, design) 

elements that have a particular form.>>  

Dewayne Perry and Alex Wolf [Per92] 

 

Another modern definition that it is typically used to define software architecture is the 

definition presented by Bass, Clements and Kazman.  

 

<<The software architecture of a program or computing system is the structure or 

structures of the system, which comprise software elements, the externally visible 

properties of those elements, and the relationships among them.>>  

           Len Bass, Paul Clements and Rick Kazman [Bass03] 

 

However, this definition is also imprecise and incomplete because of a lot of questions 

emerge from this definition: For example, What is a structure?, What is an external visible 

property?, and so forth. 

The definition of Garlan and Perry is also used to define software architecture; in fact, this is 

the definition proposed by the Software Engineering Institute (SEI).  

 

<<The structure of the components of a program/system, their interrelationships, 

and principles and guidelines governing their design and evolution over time.>>  

            David Garlan and Dewayne Perry [Gar95a] 

 

The definition that is recommended by the ANSI/IEEE Std 1471-2000 is in essence a small 

variation of Garlan and Perry’s definition.  

 

<<Architecture is defined by the recommended practice as the fundamental 

organization of a system, embodied in its components, their relationships to each 

other and the environment, and the principles governing its design and evolution.>>  

                                                                                 ANSI/IEEE Std 1471-2000 [IEE00] 
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Both definitions are simple and brief, but they lack completeness and accuracy properties. 

Finally, another general definition is the one proposed by D’Souza: 

 

<< An architecture is an abstraction of a system that describes the design 

structures and relationships, governing rules, or principles that are (or could be) used 

across many designs>>  

      Desmond D’Souza [DSo99]  

 

There are other proposals that are not exactly definitions of software architecture but which 

are more specific and address the issues of the software architecture discipline. Some of them 

are the following: 

 

<< Beyond algorithms and data structures of the computation; designing and 

specifying the overall system structure emerge as a new kind of problem. Structural 

issues include gross organization and global control structure; protocols for 

communication, synchronization, and data access; assignment of functionality to 

design elements; physical distribution; composition of design elements; scaling and 

performance; and selection among design alternatives.>>  

               David Garlan and Mary Shaw [Gar93] 

 

<< An architecture is the set of significant decisions about the organization of a 

software system, the selection of the structural elements and their interfaces by which 

the system is composed, together with their behavior as specified in the collaborations 

among those elements, the composition of these structural and behavioral elements 

into progressively larger subsystems, and the architectural style that guides this 

organization---these elements and their interfaces, their collaborations, and their 

composition>>  

                                                              Jan Booch, Rumbaugh and Jacobson [Boo99] 
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From all these different definitions, it is possible to conclude that there are two principle 

kinds of definitions: those that define the concept of software architecture and those that define 

the specification of software architectures. The former are characterized by being general and 

non-specific and the latter are characterized by being an enumeration of issues related to the 

description of software architectures. However, there is a common concept in both kinds of 

definitions; they are both concerned with the notion of structure and how to organize software. 

2.4. MAIN CONCEPTS OF SOFTWARE ARCHITECTURES  
Software architecture descriptions are specified in a formal way using ADLs. Despite the 

diversity of the different ADLs that have been proposed to date, all of them share a common 

conceptual basis. They have a common set of elements to design the structure of software 

systems. The elements that provide a common foundation for software architecture 

descriptions are introduced in this section.  

2.4.1. Component 
The concept of component is the basis of software architecture and the concept that ADLs 

share par excellence. A component is a computational element that permits users to structure 

the functionality of software systems. It has a high level of encapsulation and it is only possible 

to interact with it by means of its interfaces. Most ADLs permit the definition of more than one 

interface for each component. The interface or multiple interfaces of a component define the 

functionality that the component requires and provides. In this sense, components are 

considered as black boxes. 

The concept of component is not only used in the field of software architecture. For this 

reason, it is sometimes difficult to know the exact meaning of the concept, and there is no 

consensus about the definition of component and how to identify the components that make up 

a software system. There are two tendencies: one is implementation-oriented and the other is 

more generic. The first one covers definitions that are related to the fact that a component is a 

package of code [DSo99]; whereas the second one defines a component as an artefact that has 

been developed to be reused. This second definition is abstract and generic, and a component 

could be a use case, a class or another element that emerges during the development process. 
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Different criteria to detect components during the software life-cycle have emerge from this 

abstract notion of component [Ira00]: the use case criterion ([Jac97], [Ber99], [DSo99]), the 

design pattern criterion ([Fow96],  [Gar03], [Hay95], [Lar99]), the business domain criterion 

[All98], the predicted evolution criterion [Hoo99], the existent component criterion [Voa98], 

the entity (class or abstract data type) criterion [Jac97], and the functional scene criterion 

applied to agents [Nor98] and to software architectures [Bac00]. The definition of component 

in the software architecture field is also in this category. There are a lot of definitions for 

component; the most widely used definition in the software architecture field is the one 

proposed by Szyperski. 

 

<< A software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only. A software component can be 

deployed independently and is subject to composition by third parties>>  

                             Clemens Szyperski [Szy98] 

 

Another well-known definition is the one of Meyer based on the “seven criteria”: 

 

<<A component is a software element that: 

1. May be used by other software elements  

2.  May be used by clients without the intervention of the component’s developer  

3. Include a specification of all dependencies  

4. Include a specification of the functionality it offers  

5. Is usable on the sole basis of its specifications  

6. Is composable with other components  

7. Can be integrated into a system quickly and smoothly>>  

                       Bertran Meyer[MEY] [Szy00] 

This “seven criteria” definition of component has been refined over time by the following 

one: 
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<<A component is a software element (modular unit) satisfying the following 

three conditions: 

1. It can be used by other software elements, its“clients”. 

2.  It possesses an official usage description, which is sufficient for a client author 

to use it. 

3.  It is not tied to any fixed set of clients. >>  

                             Bertran Meyer [Mey03] 

 

Despite the fact that D’Souza advocates the module of code notion for the definition of 

component, he also provides a generic definition for component: 

 

<<A component is a coherent package of software artifacts that can be 

independently developed and delivered as a unit and that can be composed, 

unchanged, with other components to build something larger>> 

           Desmond D’Souza[DSo99] 

2.4.2. Connector 
The concept of connector emerges from the need to separate the interaction from the 

computation in order to obtain more reusable and modularized components and to improve the 

level of abstraction of software architecture descriptions.  

Connectors represent the interactions of software systems. They define the coordination 

process among components, that is, the rules that govern the interaction of components. 

Interfaces are the way to interact with them and these interfaces represent the roles that each 

one of the components plays in the coordination process. 

In her work, Mary Shaw [Sha94] presents the need for connectors due to the fact that the 

specification of software systems with complex coordination protocols is very difficult without 

the notion of connector. From her experience in the software architecture field, she 

demonstrates that the connector provides not only a high level of abstraction and modularity to 

software architectures, but also an architectural view of the system instead of the object-
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oriented view of compositional approaches. She also defends the idea of considering 

connectors as first-order citizens of ADLs, and she defines the notion of connector as follows: 

 

<<Connectors are the locus of relations among components. They mediate 

interactions but are not “things” to be hooked up (they are, rather, the hookers-up). 

Each connector has a protocol specification that defines its properties. These 

properties include rules about the types of interfaces it is able to mediate for, 

assurances about properties of the interaction, rules about the order in which things 

happen, and commitments about the interaction such as ordering, performance, 

etc.>> 

              Mary Shaw [Sha94] 

 

In their work on the formalization of architectural connections, Allen and Garlan preserve 

the idea that connectors should be first-order citizens [All94]. As a result, software architectures 

can be defined as a collection of computational components together with a collection of 

connectors, which describe the interactions among components.  

This work also emphasizes the expressive power and analysis properties that connectors 

should have. It establishes that the expressive power of connectors should allow us to specify 

generic processes of coordination (procedure calls, pipes, broadcasts, etc.), to define complex 

interactions between components, and provide mechanisms to make fine-grained distinctions 

between variations of a connector.  

With regard to the analysis of connectors, they should allow us to do the following: 

understand their generic behaviour, independently of the context in which they will be used; 

check and reason about compositions of components and connectors; provide flexible 

mechanisms to solve the mismatches detected in this composition analysis. 

However, other approaches and their respective ADLs prefer the absence of connectors 

because they distort the compositional nature of software architectures. Some ADLs, such as 

Darwin [Mag95], Leda ([Can01], [Can99], [Can00]) and Rapide ([Ken95], [Luc95a], 

[Luc95b]) do not consider connectors as first-class citizens. Thus, the notion of connector is 
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sometimes used with a meaning that is different from that of an architectural element; it is used 

as the connection between two components. 

This thesis uses the notion of connector proposed by Shaw and also considers it essential to 

have connectors as first-class citizens for the reasons that Shaw presents in her work [Sha94]: 

 Connectors may be sophisticated: software architecture specifications can require complex 

and elaborate definitions of coordination among the different components that they 

connect. In most cases, components are not the appropriate place to define the interaction 

behaviour. For this reason, software architecture specifications need their own element to 

specify these complex interactions.  

 The definition of a connector should be localized: A good methodology implies that 

definitions of interactions are localized in elements to improve the design and maintenance 

of the software system. 

 Connectors are potentially abstract: Connectors may be parameterizable and may define 

generic coordination models that will be specific at the time of instantiation. A connector 

can be instantiated as many times as necessary. Connectors should also provide 

mechanisms to specialize and compose themselves from existing connectors.  

 Connectors may require distributed system support. 

 Components should be independent: Interfaces of components should provide a complete 

specification of the functionality of components by keeping their internal processes hidden.  

 Connectors should be independent:  Connectors should be able to mediate interactions for 

a set of components that are dynamically changing. 

 Relations among components are not fixed: Components should be able to participate in 

more than one coordination process. These processes are specified in different connectors. 

Nowadays, the notion of connector has become more accepted and several works on 

higher-order connectors are emerging [Gar98]. They follow the Mary Shaw’s idea about 

abstract connectors, and they promote the idea that an architectural language must support not 

only individual connectors, but also high-level compositions that involve a number of 

connectors in specific relations with each other. Bridget Spitznagel ‘s compositional approach 

for constructing connectors ([Spi01], [Spi03]) is presented as a solution to the need for 
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specialized forms of interaction, bridges to solve component mismatches, or extra-functional 

properties (e.g., security, performance, reliability). 

2.4.3. Port 
The concept of port is related to architectural elements, components, and connectors. Ports are 

the points through which architectural elements can interact with the rest of a software 

architecture. They are the parts into which the interface of an architectural element is divided.  

Their main function is to preserve the black box view of architectural elements and to 

publish the behaviour offered and required by architectural elements. They have been used in 

different ways; some approaches consider a port as a service and other approaches as a process 

with several services. This last way of defining ports, not only defines the services of ports, but 

also the conditions of how and when they can be required and provided. 

Different names have been used to refer to this concept. Some of them use the name of port 

to refer to ports of architectural elements, while other approaches use the name of port to refer 

to the ports of components and the name of role for ports of connectors. Other less frequently 

used names are players or name of interfaces.  

In this thesis, we will use the generic name of port to refer to both component and 

connectors ports. 

2.4.4. Connection 
Connections are used to constrain the “placement" of architectural elements; that is, they 

constrain how the different elements may interact and how they are organized with respect to 

each other in the architecture [Per92]. 

They establish the communication channels among architectural elements. They connect a 

component port with a connector port or with a port of another component [Luc95a], 

depending on whether the connectors are considered first-order citizens or not, respectively. In 

this thesis, since connectors are considered first-order citizens, a connection is established 

between a component port and a connector port. These connections are usually called 

attachments. 
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2.4.5. System 
Most architectural approaches need to provide abstraction mechanisms. These mechanisms 

permit definition of elements of higher granularity and increase the modularity, composition, 

and reuse of software systems. Software composition provides flexible support and a reduction 

in complexity for the development process of software systems [Nie95].  

These needs and advantages have led to a wide variety of architectural models and their 

ADLs to provide the concept of complex component. A complex component is a component 

that is composed by other architectural elements. An example is the model proposed by Ivar 

Jacobson [Jac97] that introduces the concept of subsystem as a set of organized components. 

Other ADLs introduce the concept of composed component such as Durra [Bar01], Darwin 

[Mag95], ArchWare ADL ([Oqu04a], [Oqu04b]), Wright [All94] and ACME [Gar00]. They 

are usually called systems. 

Systems represent architectural configurations that are made up of connectors and 

components that can be built in a hierarchical way. For this reason, a system can be composed 

of other subsystems [And03].  

2.4.6. Composition Relationship 
Compositional relationships emerge with systems due to the fact that it is necessary for systems 

to communicate with their architectural elements. These connections are different from 

attachments because they are used to connect architectural elements of different levels of 

granularity. As a result, the semantics of these connections is compositional, whereas 

attachments have a communication semantics that is not compositional (the same level of 

granularity). These relationships are usually called Bindings. 

Bindings establish the mappings between the internal and external interfaces of a system 

[Gar01]. As a result, bindings establish a connection between a system port and a port of one of 

its architectural elements. 

2.4.7. Architectural Style 
Architectural Style is an important concept in the Software Architecture discipline. 

Architectural styles are very useful to describe software architectures. They are able to 
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encapsulate design decisions about the architectural elements and to emphasize important 

constraints on the elements and their relationships [Per92]. 

<<An architectural style defines a family of systems in terms of a pattern of 

structural organization. More specifically, an architectural style determines the 

vocabulary of components and connectors that can be used in instances of that style, 

together with a set of constraints on how they can be combined. These can include 

topological constraints on architectural descriptions (e.g., no cycles). Other 

constraints, having to do with execution semantics, might also be part of the style 

definition>>.  

                                 David Garlan and Mary Shaw [Gar93] 

 

There is not a clear difference between the concepts of architectural style and a description 

of a software architecture. The set of elements that is used to define them is the same. However, 

there is a difference in the use of these elements. Descriptions of software architectures specify 

the configuration of a specific software system. However, an architectural style defines 

constraints about the structure of a family of software architecture descriptions [Gar95a]. As a 

result, architectural styles are less constrained and less complete than descriptions of software 

architectures, and they can be used descriptively and prescriptively [Per92] . 

Architectural styles represent families of software architecture descriptions that belong to 

software systems that have something in common [Gar01]. They are patterns that must be 

followed to be able to specify software architectures. In this sense, the constraints of an 

architectural style limit the specification and evolution capabilities of the software architecture 

descriptions that follow this architectural style. 

Garlan and Shaw present a partial taxonomy of architectural styles in their work [Gar93]. 

The taxonomy is the following: 

 Pipes and filters 

 Data abstraction and object-oriented organization 

 Event-based, implicit invocation 

 Layered systems 
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 Repositories 

 Table driven interpreters 

 Distributed processes 

 Main program/subroutine organizations 

 Domain-specific software architectures 

 State transition systems 

 Process control systems 

 Heterogeneous architectures 

2.4.8. View 
Perry and Wolf were the first authors to recognize the need for multiple views of a software 

architecture description in order to understand its different aspects. They base their idea on the 

fact that a software architect needs a number of different views of a software architecture in the 

same way that a building architect works with different views in which some particular aspect 

of the building is emphasized [Per92].  

The notion of view offers the possibility to analyze a software architecture description from 

different points of view. As a result, the view concept is presented as a mechanism to analyze 

software architectures by emphasizing certain properties and to present different architectures 

depending on which user will use the view. In this last case, the view allows us to hide or 

present in more detail certain parts of the software architecture. 

When a software architecture description is divided into multiple views, the complete 

software architecture description is obtained by combining these views. 

ADLs do not usually provide explicit view mechanisms. The notion of view provides an 

informal way of analyzing a software architecture. For this reason, a lot of work must be done 

in this direction. 

Other works have proposed defined views of software. One of them is the work by Perry 

and Wolf, where they present three important views of software architectures: processing, data, 

and connections [Per92]. Another work is the one of Kruchten, whose 4+1 model has been 

widely used because of its incorporation in UML [Kru95].  
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In his work, Garlan [Gar01] emphasizes two of the more important classes of views: 

 Code-oriented views: these describe how the software is organized into modules, and 

what kinds of implementation dependencies exist between those modules.  

 Execution views: these describe how the system appears at run time, typically providing 

one or more snapshots of a system in action. These views are useful for documenting and 

analyzing execution properties such as performance, reliability, and security. 

2.4.9. Property and Constraint 
Properties define semantics information about software architectures and their architectural 

elements [And03]. This semantics information is additional to the structural properties of the 

description of a software architecture. The properties can be associated to any of the 

architectural elements of a software architecture description (components, connectors, systems, 

interfaces, ports, bindings or attachments) [Gar01]. 

Constraints restrict the design of software architecture descriptions or architectural styles 

throughout their entire execution lives [And03].  

2.5. CONCLUSIONS 
Once the general characteristics of the software architecture area and its main concepts are 

described, its main advantages and relevance to the development of software systems can be 

understood. These advantages [Per92], [Gar95a], [Gar93], [Gar01] are the following: 

 Understanding: The high level of abstraction of software architectures facilitates the 

understanding of software systems. 

 Reuse: Software architectures allow us to reuse software at different levels of granularity. 

They permit the reuse of simple components as well as architectural styles. In addition, 

reuse in software architectures can have different purposes for developing software 

architectures in general or for product lines. The reuse in software architectures for product 

lines defines software architectures of the same family by reusing common features and 

only creating from scratch the specific properties of the new software system. In this sense, 

software architectures exploit the domain specific field and also provide frameworks 

specializing in product families. 
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 Evolution: Software architecture can help to predict the feasible and possible changes that 

can occur in a software system as well as the cost associated to these changes. 

 Analysis: Architectural descriptions provide new opportunities to analyze whether: 

o The constraints of an architectural style are consistent 

o A software architecture description satisfies an architectural style 

o A design satisfies a software architecture description. 

o A software architecture description satisfies the requirements of the system 

     These descriptions can also analyze: 

o The consequences of changes on a software architecture description or an 

architectural style over requirements and design and vice versa 

o The conformance of a software architecture description or an architectural 

style to quality attributes 

o Domain-specific architectures 

 Maintenance: Architecture reuse and modularization facilitates the maintenance of 

software. 

 Communication: Software architecture descriptions can be used to facilitate 

communication with the stakeholders of the system. 



PRISMA: Aspect-Oriented Software Architectures 
 

58 



Aspect-Oriented Software Development 

59 

 
 
 

CHAPTER 3 
3. ASPECT-ORIENTED SOFTWARE 

DEVELOPMENT 
 

 

<< Human beings, by changing the inner attitudes of their minds,  

can change the outer aspects of their lives. >> 

William James 

 

 

The nature of current software systems has led to software being more complex, its modularity 

is an essential feature in being more understandable, reusable and maintainable. In addition, 

non-functional requirements of software systems are acquiring as much relevance as functional 

requirements. As a result, the support of software modularity and non-functional requirements 

are essential challenges to be faced in software development. The application of Software 

Engineering principles is necessary in order to cope with these challenges. A consolidated 

principle of Software Engineering is Separation of Concerns (SoC), which was introduced in 

[Par72].  

The SoC principle promotes dealing with the different concerns of a software system 

individually. [Dij76] demonstrated that this division provides better results and offers many 

advantages. A suitable application of SoC provides a reduction in software complexity and an 

improvement in the modularity, reuse and maintenance of software artefacts.  

In the last decade, Aspect-Oriented Programming (AOP) has emerged as an innovative 

way of applying SoC in software development [Kiz97], [Elr01]. Its proposal is different from 
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previous ones (packages, modules, classes, interfaces, patterns, etc). The concerns that are dealt 

with individually in AOP are those that crosscut a software system, instead of those that can be 

perfectly located as software units of a system. As a result, AOP introduces a new notion of 

concern. The IEEE defines concerns as: 

<<…those interests which pertain to the system’s development, its operation or 

any other aspects that are critical or otherwise important to one or more 

stakeholders>>  

                      ANSI/IEEE Std 1471-2000 [IEE00] 

 

Tarr et al. define concern as a predicate over software units [Tar99]. The crosscutting-

concerns concept comes from this notion of concern. Software systems are usually crosscut by 

common concerns of a domain system. These crosscutting-concerns are spread throughout the 

software units of the system. As a result, the crosscutting-concerns are repeated in all the 

software units that they affect, and these concerns are tangled with the other concerns that also 

modify the same software unit. The repetition of crosscutting-concerns throughout software 

systems increases the volume of code and complicates the maintenance that preserves the 

consistency of changes. Furthermore, tangled concerns make the maintenance of a specific 

concern more costly because it is so difficult to locate the correct place to introduce the 

changes. As a result, AOP proposes the separation of the crosscutting-concerns of software 

systems into separate entities, which are called aspects. This separation avoids the tangled code 

of software and allows the reuse of the same aspect in different software units (objects, 

components, modules, etc.).  

AOP applies the notion of aspect to cleanly structure software systems in order to easily 

develop, understand, customize, evolve, and maintain software systems. It was introduced to 

the research community by the works of Gregor Kizcales [Kiz97], [Kiz01].  

The origin of AOP is the programming language AspectJ [ASP06a]. AspectJ was 

developed by the Palo Alto Research Center (PARC) and was also supported by the National 

Institute of Standards and Technology (NIST) and the Defence Advanced Research Projects 

Agency (DARPA). PARC transferred AspectJ to an openly-developed eclipse.org project in 
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December of 2002 in order to increase the technology and community of AspectJ. As a result, 

AspectJ is currently the most widely used language for aspect-oriented programming. 

Crosscutting-concerns arise throughout the software life cycle. For this reason, despite the 

fact that AOP emerged from the implementation level, its use is being extended to all the stages 

of the software life cycle. As a result, Aspect-Oriented Software Development (AOSD) has 

emerged to gain the advantages that aspects provide in every stage of software development.  

The main purpose of this chapter is to provide a conceptual base for the different concepts 

of the aspect-oriented paradigm and to present other aspect-oriented models. In addition, an 

introduction about how the aspect-oriented approach is being introduced in the software life 

cycle is provided. 

3.1. AOP: ASPECT-ORIENTED PROGRAMMING  
Object-Oriented Programming (OOP) has proved to be an important advance in software 

development. OOP is a programming paradigm that responds to software engineering needs 

due to the fact that its concepts easily fit real life. In addition, its composition and inheritance 

mechanisms are very useful for software development. As a result, OOP is “par excellence” 

the programming paradigm that supports the development of software systems following 

software engineering principles.  

However, OOP has important limitations and it is not able to capture all the important 

requirements of software systems. OOP has serious difficulties in locating concerns that are 

related to global constraints or locating behaviours that affect a large number of software 

artefacts of software systems. Moreover, despite the fact that domain-specific applications need 

to take into account specialized algorithms for distribution, encryption, safety, and so forth, this 

specialization is not supported by OOP. These concerns are tangled throughout software 

artefacts of software systems. As a result, in any object-oriented structure of a software system, 

there may be concerns that are neatly located in a structural piece and others that cross several 

structural pieces. 

These limitations of OOP are due to the fact that OOP performs a functional decomposition 

[Par78], [Par74], [Par72]. Each functional unit that is identified during the functional 
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decomposition process is encapsulated in an object, but non-functional requirements are not 

considered in this procedure. As a result, AOP emerges to deal with the limitations of OOP. 

AOP separates the crosscutting concerns into aspects. It introduces the existence of two 

kinds of software units: components and aspects. These are clearly defined in [Kiz97] from the 

point of view of a non-aspect-oriented programming language: 

<< A component, if it can be cleanly encapsulated in a generalized procedure 

(i.e. object, method, procedure, API). By cleanly, we mean well localized, and easily 

accessed and composed as necessary. Components tend to be units of the system’s 

functional decomposition, such as image filters, bank accounts and GUI widgets. 

An aspect, if it can not be cleanly encapsulated in a generalized procedure. 

Aspects tend not to be units of the system’s functional decomposition, but rather to be 

properties that affect the performance or semantics of the components in systemic 

ways. Examples of aspects include memory access patterns and synchronization of 

concurrent objects and so forth. >> 

                                    Kizcales et al. [Kiz97] 

 

AOP promotes the idea that software systems are better programmed using the notion of 

aspect and considering aspects as first-order citizens of programming languages. Not only AOP 

offers aspects to encapsulate crosscutting concerns, but it also provides mechanisms to weave 

aspects with the rest of the software system. In addition, these mechanisms introduce two 

properties called quantification and obliviousness [Fil00].  

 Quantification is the fact that some software units affect many of the other software units 

of a software system by extending or replacing their code. 

 Obliviousness is an implicit invocation, that is, the programmer is unaware of the code 

extensions or replacements that are going to be produced by implicit invocations at run-

time. Implicit invocations are the places where quantifications are going to be applied.  

AOP introduces a higher level of modularity of software and simplifies applications. These 

two properties generate advantages such as: simpler code; easier development, maintenance 

and evolution; and a higher level of reusability. A demonstration of these advantages is 
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presented in [Kiz97] by comparing the source code of a non-aspect-oriented application and an 

aspect-oriented application that were developed for the same software system. In this example, 

the reduction of code is a clear advantage offered by the aspect-oriented application. The results 

were the following: 

 Size of the non-aspect-oriented application: 35.213 lines of code 

 Size of the aspect-oriented application: 4.628 lines of code 

 Component program: 756 lines of code 

 Three aspects programs: 352 lines of code 

 Aspect weaver: 3.520 lines of code 

This example shows the reduction of code of aspect-oriented applications taking into 

account the aspect weaver code. In addition, the aspect weaver code can be reused in other 

applications. However, different kinds of projects, with different requirements, sizes and 

programmers should be measured to make a real study about the time and space efficiency of 

aspect-oriented applications.  

The demonstration of [Kiz97] is a starting point for studying the improvement of aspect-

oriented programming. In fact, it is the basis for formulating an initial measure to analyze how 

aspect-oriented programming can reduce the code of an application. This measure compares 

the implementation of the same application using aspect-oriented programming and non-

aspect-oriented programming. The result that this measure provides is the percentage of code 

that has been reduced using aspect-oriented programming. The formula is as follows: 

 

sizeprogramaspectofsum
sizeprogramcomponentsizecodespreadreductioncode −

=  

 

In the example that has been presented, there is a reduction of 98 % in the number of lines 

of code: 

98
352

75635213
=

−
=reductioncode  
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AOP introduces a set of new concepts that are essential for correctly understanding this new 

paradigm. These concepts are introduced in this section to establish a conceptual basis for 

aspect-oriented programming.  

3.1.1. Base Code 
AOP introduces a clear differentiation between the base and aspect codes. The base code is 

composed of the software units (modules, objects, components) of an application, which have 

been obtained as a result of a functional decomposition. However, the aspect code is composed 

of the aspects that have been implemented to encapsulate the crosscutting-concerns of the same 

application. 

3.1.2. Join Point 
Join points are situated in the base code of an application. A join point is a semantic concept 

that defines a well-defined point of the execution of a base code. This point can extend the base 

code with the aspect code, thereby altering the execution flow of the original application. As a 

result, join points allow us to suitably coordinate the base code with the aspect code. 

In the AOP taxonomy defined by [Dou05], two approaches for specifying join points are 

detected: one approach marks the join points using labels [Wal03], [Dan04], and the other one 

uses the language constructors [Col00], [Dou01], [Dou2a], [Dou02b], [Dou04a], [Dou04b]. 

The former introduces a pre-processing procedure that slows the code injection process down 

at run-time. The latter is the most widely used way of defining join points. Consequently, this is 

the approach that has been adopted for defining join point in this thesis. This approach usually 

matches join points with method calls. The different kinds of join points that this approach uses 

are presented and classified in [Kiz01]. 

As [Kiz97] defines, a join point is not an explicit language constructor, it is the semantics of 

the language constructor. In other words, the join point is associated to a language constructor; 

however, the different instantiations of this constructor will be different join points at run-time. 

A clear example is a joint point that is associated to a method call. The different invocations of 

this method are different join points with different semantics. The semantics is different 
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because it depends on the object that has invoked the method, on the instantiation of its 

arguments, and so forth. 

3.1.3. Pointcut 
From the previous section, it can be deduced that an application has a large quantity of join 

points in its base code. However, not all join points of the application are interesting or relevant 

for injecting aspect code. As a result, the relevant join points for this injection of aspect code 

must be selected. The mechanism that permits this selection is the pointcut. 

A pointcut is a set of join points, which are candidates for injecting aspect code into base 

code at run-time, and their multiple instantiations. Pointcuts perform the weaving between the 

base code and the aspect code by capturing joinpoints.  

The most widely used pointcut model is the AspectJ model [Dan04], [Jag06a], [Jag06b], 

[Läm02], [Wal03], [Wan04]. There are also other pointcut models that use more general 

execution patterns, such as stack of events, tree of events, sequence of events, etc [Col00], 

[Dou2a], [Dou04a], [Mas03]. 

3.1.4. Advice 
An advice defines the code that should be executed at the join points of a specific pointcut. 

Advices define additional code for the join points that have been selected by pointcuts. As 

[Bru04] cites, the advice code is the profiling code of an aspect-oriented program and the 

compiler profiles the join points by executing the advice code at run-time. This process by the 

compiler consists of inserting or replacing the base program code is called weaving. The 

execution of code depends on the kind of advice. There are three main kinds of advice: 

 Before: The before advice adds code to the base program before the join point. As a result, 

the code of the advice is executed before the code of the join point. 

 Around: The around advice substitutes the code of the join point. As a result, the code of 

the advice is executed instead of the code of the join point. 

 After: The after advice adds code to the base program after the join point. As a result, the 

code of the advice is executed after the code of the join point. 



PRISMA: Aspect-Oriented Software Architectures 
 

66 

o After returning: This kind of after advice is executed when the execution of 

the join point finishes correctly.  

o After throwing: This kind of after advice is executed when the join point 

throws an exception. As a result, the code of the advice is executed after the 

throwing of the join point.  

As [Wan04] concludes, an aspect-oriented program is composed of a base program and 

some advices. 

3.1.5. Aspect 
An aspect is a language constructor that encapsulates a crosscutting-concern. An aspect is 

linked to one or more methods of the base code by means of pointcuts. For this reason, an 

aspect is composed of pointcuts and an advice. As a result, aspects specify whether their 

execution will be before, after or around a method of the base code by means of the advice that 

is associated to pointcuts. Despite the fact that aspects are usually pairs of pointcuts and 

advices, they can have their own state [Dou05]. The definition of aspect proposed by Kizcales 

is the following: 

<< Aspects are units of modular crosscutting implementation, composed of 

pointcuts, advice, and ordinary Java member declarations. >> 

            Gregor Kizcales et al. [Kiz01] 

3.1.6. Properties 
There are some properties of aspect-oriented programming that are as important as the basic 

concepts. The most important properties are going to be analyzed in this section. 

3.1.6.1. Weaving Time 
Weaving is the process that consists of coordinating the base code and the aspect code. It can be 

static or dynamic. Static weaving is performed at compilation time, whereas dynamic weaving 

is performed at run-time. Despite the fact that these two kinds of weaving are different, both 

obtain the same result, that is, the lines of code that are executed and the order in which are 

executed are the same.  
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Most approaches provide a static weaving. Its semantics is to define the final woven 

program. However, dynamic weaving consists of defining the semantics of the weaver. Since 

dynamic weaving is only strictly necessary in those approaches in which the dynamic evolution 

of aspects is permitted, there are not very many approaches that provide dynamic weaving.  

The inputs of a static weaving process are the base program and the aspect programs. Thus, 

the process of a static weaving consists of inserting or replacing the code of aspect advices in 

the base program [Bru04], depending on whether they are before or after, or around advices, 

respectively. The result of this process is an output program which contains the integration of 

the aspects and the base program in a proper way. For example, AspectJ combines its aspects 

and base code using a static weaving process. It weaves the code at compilation time. The 

AspectJ compiler transforms advices into standard AspectJ methods, whose calls are inserted 

into the points of the base code that the pointcuts define.  

3.1.6.2. Instantiation of aspects 
Aspects can contain a state by means of the definition of attributes. As a result, an aspect can be 

instantiated, that is, the aspect type is transformed into an aspect instance giving a specific value 

to its attributes. However, this instantiation has not been formalized and is still pending 

resolution. As a result, several open questions emerge. One of them is the number of instances 

that an aspect can have; it is not clear if it should be one, more than one or if it is necessary to 

establish a specific boundary. In the case of AspectJ, the default behavior for an aspect type is 

to have a single instance [Kiz01]. Another open question is whether this instantiation should be 

static, dynamic, or both. In the case of AspectJ, the instantiation is a static process. 

This lack of formalization leads aspect-oriented models to define different instantiation 

strategies depending on their needs. It also generates the need to find a consensus for this 

question. 

3.1.6.3. Data Type Systems 
Another important feature to take into account in aspect-oriented models is their data type 

system. Only a few works take into account this property in their proposals. 
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The data type system is very important for the weavings that are established between the 

aspects and the base code. This is due to the fact that the data types of an aspect advice must be 

compliant with the data types of the base code that the weaving links. To do this, aspect-

oriented models normally define the data type system of advices based on the data type system 

of the base programs. However, this only ensures that both programs are using the same data 

type system, or that one is a subset of the other. It does not ensure that the signatures of the 

advice and the join point match. If they do not match, an error is generated, and it is impossible 

to execute the weaving. This problem is solved by the weaving process, which pre-processes 

the arguments. An example of an aspect-oriented proposal that ensures the correctness of the 

weaving is the typed calculus [Jag06b][Jag06b][Jag06b][Jag06b]. The typed calculus ensures 

the correctness of the weaving by restricting the correspondence between the types of the 

pointcut parameters and the pointcut results and the base code methods that are associated to 

them. As a result, the advice is well-typed if it is consistent with the pointcut definition. 

3.1.6.4. Aspect Management 
A few aspect-oriented proposals have considered the management of aspects to be an 

important property to take into account. Some works have started to address this question by 

providing a mechanism to temporally discard or order aspects for each point of interaction 

[Dou2a], [Dou04a]. The order of aspects opens up the question of whether all the aspects 

should be treated as equals or whether should be dominant aspects.  

The composition of aspects is also another mechanism to be able to manage aspects in a 

flexible way. However, the composition property generates a wide variety of open questions 

about the semantics of aspects, whether they are monotonic or not; or whether they can be an 

extension of another one or must be completely defined without depending on another aspect, 

etc. 

3.1.6.5. Semantics 
Although the aspect-oriented approach is a novel approach for programming, its semantics is 

not yet formally defined. As a result, a great number of questions must be answered and a lot of 

research work must be done in order to consolidate the proposal and to find a consensus in the 
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area. One of the first works that formalizes the semantics of the join points, pointcuts, and 

dynamic advices of aspect-oriented programming languages is [Wan04]. 

3.2. ASPECT-ORIENTED MODELS 
The most widely used aspect-oriented model is the AspectJ model. However, there are two 

other aspect-oriented models that are also widely used throughout the aspect-oriented 

community. They are the multidimensional model that was promoted by the HyperJ 

programming language and the composition filters model. All three of these generic-models 

are refined and specialized in specific models. However, since it is important to understand the 

differences among them, the differences between symmetric and asymmetric models, and the 

multidimensional and composition filters models are introduced in this section. 

3.2.1. Symmetric vs. Asymmetric Models 
The notion of aspect arises to deal with crosscutting-concerns of software systems. This idea of 

crosscutting can vary depending on the nature of the model. A model can be symmetric or 

asymmetric  [Har02]. Most widely used aspect-oriented models are asymmetric because of the 

strong influence of the asymmetric AspectJ model.  

An asymmetric model is based on a dominant decomposition, which is usually an object-

oriented-like functional decomposition. Models of this kind assume that aspects are non-

functional concerns that crosscut the functional units of software. However, in symmetric 

models everything is considered as a concern, and there is not a dominant decomposition. As a 

result, functionality is considered to be another concern and concerns crosscut each other. 

Symmetric models rarely use the notion of aspect because they do not need to differentiate 

between aspect and non-aspect entities, instead, they use modules, and these modules are 

considered as concerns of the software system. For this reason, symmetric models are 

considered to be more flexible and abstract. However, asymmetric models are more widely 

used because they are easier to integrate in current software development approaches and to put 

into practice. 
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3.2.2. Multi-Dimensional Separation of Concerns (MDSOC) 
The origin of the Multi-Dimensional Separation of Concerns model (MDSOC) is the subject-

oriented programming [Har93] proposed by William Harrison and Harold Ossher. The 

continuation of this research work by Harol Ossher and Peri Tarr generated the MDSOC 

model. MDSOC is a symmetric model where aspects are first-order citizens and are considered 

to be like objects [Oss01]. This model emerges from the need to modularize the code of 

concerns that are scattered throughout the source code, usually classes. This model opts for 

flexibility to develop software, and it is based on the idea that the decomposition of software is 

not always a functional decomposition that is materialized in classes or components. This 

model presents the modularization of code as a flexible process where the user can choose the 

criteria for decomposing the software: aspects, classes, components, features, roles, viewpoints, 

etc. As a result, MDSOC provides support for the clean modularization of multiple kinds of 

concerns with an “on-demand remodularization”. This property is presented by this model as 

an advantage in comparison with earlier models such as aspect-oriented programming [Kiz97] 

or subject-oriented programming [Har93]. In addition, another important feature of this model 

is the dynamic introduction of concerns in the software application as they arise during the 

software development process. This feature is based on the idea that new concerns can 

continuously arise during the software life cycle. The approach that puts the MDSOC into 

practice is called hyperspaces [HYP06]. 

The hyperspace approach is a language-independent approach that can be applied to any 

programming language. Specifically, this approach has been applied to the Java programming 

language, and a tool to support it has been developed. This tool is called Hyper/JTM [Oss00]. As 

a result, Hyper/J supports MDSOC for Java following the hyperspace approach. This approach 

introduces a set of concepts that are basic for understanding it [Oss01]. 

 Concern space: A concern space includes all the units of software in a software body. A 

unit of software is any language constructor such as a package, interface, state chart, 

requirement specification, class, method, attribute, etc. A concern space allows the 

identification, encapsulation, relationship definition and integration of concerns, 

respectively.  
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 Hyperspace: A hyperspace is a concern space that is defined for the purpose of 

supporting the MDSOC model. A hyperspace is the result of the identification task of a 

concern space. The remarkable feature of a hyperspace is that its units of software are 

organized in a multi-dimensional matrix, where each axis corresponds to a concern 

dimension (see Figure 2). A specific concern of a dimension is represented in the matrix 

by a specific point in an axis that represents this dimension.  

 Hyperslice: A hyperslice is a declaratively complete structure that is formed by software 

units. A declaratively complete structure is a functional element that declares everything 

that it refers to. Hyperslices permit the encapsulation of code that is related to a specific 

functionality in an independent structure (encapsulation), that is, they are modules that 

encapsulate concerns. As a result, the reusability and maintainability are improved because 

hyperslices are not coupled with each other, and the impact of changes is limited. Each 

hyperslice can be an aspect or an object of the business logic. For example, the Logging 

hyperslice in Figure 2 is an aspect, and the Employee hyperslice is an object of the 

business logic. In addition, Figure 2 illustrates how the different elements of a hyperspace 

are assembled in a hyperslice. 

 Hypermodule: A hypermodule contains a set of hyperslices and uses a set of relationships 

that specify how the hyperslices are composed (relationship definition). These 

relationships define how hyperslices are related and how they should be integrated 

(integration).  Hypermodules can be used to encapsulate different kinds of software 

artefacts (components, classes, fragments, etc) and to nest themselves creating complex 

hypermodules.  

The Hyper/JTM tool supports the hyperspaces approach by providing all the concepts and 

relationships presented above. It permits the identification, encapsulation, and manipulation of 

concerns in Java. It encapsulates these concerns into hyperslices and, in turn, encapsulates these 

into hypermodules. The tool offers mechanisms to define the concepts of the hyperspace 

approach in a graphical way.  
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Figure 2. HyperJ/Matrix [Kim02] 

 

In summary, the MDSOC model is a symmetric composition model that is suitable for 

structural composition. The main difference between Hyper/J and AspectJ is that AspectJ 

supports the extension of a single model, whereas Hyper/J supports the integration of multiple 

models [Kiz97], [Kiz01].  

3.2.3. Composition Filters (CF) 
The model of Composition Filters (CF) [Ber94] emerges as another solution to support the 

definition of crosscutting concerns in an entity that is different from an object. This model, 

which is proposed by Mehmet Aksit and his research group of the Twente University, uses 

filters to define crosscutting concerns [Ber01]. As a result, this model also allows the 

composition, reuse and evolution of multiple concerns. 

Filters are used to define complex and crosscutting concerns in a technology-independent 

way. Filters can be attached to objects that are programmed in different programming 

languages without modifying the content of the objects. The CF model is an asymmetric model 

that extends objects in an orthogonal way, that is, the semantics of a filter is independent of 

other filters. In addition, these filters are specified in modules. The modular and orthogonal 

properties of filters are the main differences between this model and other asymmetric models.  
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Figure 3. The Composition Filter Model with Superimposition [Ber01]  

 

The CF model allows the management of input and output messages of an object by means 

of filters [Ber04]. The filters that intercept the incoming to and outgoing messages from an 

object can express a wide range of changes. These changes generate an adaptation of the 

behaviour of objects without modifying their implementation. The process of applying filter 

modules to objects is called superimposition [Car01] (see Figure 3 , extracted from [Ber01]). 

Figure 3 illustrates that superimposition introduces a layer of filter instances over the 

objects, and the input and output messages of the object must pass through this layer in order to 

be executed in a suitable way. Figure 3 also shows that the declaration of a filter interface 

separates its declaration from its instantiation. 

It is possible to conclude that superimposition allows the multiple composition of 

crosscutting concerns by superimposing filter interfaces. The concerns are defined as filters and 

they intercept and transform the messages that arrive to or depart from an object. 

A clear advantage of the CF model specifies its filters in a declarative way without adopting 

a general purpose language such as AspecJ or Hyper/J. As a result, this model can be applied to 

different technologies and programming languages. Since the common pattern-matching 

Incoming Outgoing 

Incoming filters 

Outgoing filters 

Filter Modules 
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language, which is used to specify filters, is highly expressive, it provides filters with a concern 

semantics. However, the interoperability between filters and objects that are programmed in 

different languages is not addressed in the work.  

Moreover, a strong encapsulation of objects is preserved and the specification of filters is 

modular, facilitating the composition of modules. However, filter modules can only be used to 

extend the behaviour of objects and the way to extend non-object-oriented models with this 

model it is not very well-defined. 

3.3. ASPECT-ORIENTED DEVELOPMENT IN THE 
SOFTWARE LIFE CYCLE 

During the development process of a software system, concerns arise throughout all the stages 

of the software life cycle. It is important to take into account that concerns are not strictly 

related to non-functional requirements; they can also be related to functional ones. In addition, 

the crosscutting-concerns can vary, change their granularity, increase or decrease their number 

depending on the stage of the software life cycle. This is due to the fact that each stage has 

different needs. Examples of concerns of early stages are response time, quality, security, 

safety, etc, whereas concerns introduced by the technology chosen at the design or 

implementation stages are exception handling, caching, buffering, synchronization, etc. As a 

result, aspect-oriented development has emerged in order to apply aspect-orientation to every 

stage of the software life cycle. 

Aspect-oriented software development deals with the identification of aspect candidates at 

early stages of the software life cycle and the maintenance of their traceability throughout the 

entire cycle. Traceability must be preserved in order to keep the consistency of software 

systems and their evolution capabilities. Traceability mechanisms should take into account that 

candidate aspects of early stages may or may not be aspects in later stages, and that aspects of 

one stage can be refined in its later stages.  

An overview of the aspect-oriented software development is provided in this section. The 

main goal is to provide a notion of the research works that are being developed to apply aspect-
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orientation to the requirements, analysis, design, and implementation stages of the software life 

cycle. 

3.3.1. Requirements 
One of the first approaches that introduced aspect-orientation in the requirements stage is the 

Aspect-Oriented Requirements Engineering (AORE) approach [Ras02], [Ara02]. In fact, the 

authors introduced the notion of early aspects for aspect-oriented works related to requirements 

engineering and architecture design [EAR06], and they promoted the fact that aspects are 

primitives of modelling. 

AORE is an approach for handling crosscutting concerns at the requirements stage. It is 

designed to be used by asymmetric models and is based on viewpoint detection, that is, the 

identification of the points where functional elements or requirements are crossed by non-

functional aspects or concerns. The approach can be summed up in seven steps[Ras02]: 

1. Identification of concerns: Identification of non-functional requirements 

2. Specification of concerns 

3. Identification of view points:  Identification of the functional elements that are affected 

by non-functional requirements. 

4. Identification of candidate aspects: Identification of concerns that crosscut more than 

one viewpoint 

5. Specification of functional requirements using use-case models [Ara02] 

6. Composition of functional requirements with aspects using overlapping, overriding and 

wrapping techniques [Bri02]  

7. Specification of Aspects: The aspect is specified and its influence throughout the 

software life cycle is established 

This same process is enriched in [Mor02] by considering quality attributes. The process has 

been extended with other works on use-case models [Ara03] and interaction diagrams 

[Whi03]. The work of Araujo and Moreira [Ara03] extends use-case models to support non-

functional requirements and to identify the crosscutting of functional use cases. The work of 

Whittle, Araujo and Kim [Whi03] addresses the modelling of aspects in interaction diagrams; 
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aspects are modelled as Interaction Pattern Specifications (IPSs) and are composed with non-

aspectual interactions using instantiation. Finally, it is important to mention the Concern-

Oriented Requirements Engineering Model (CORE) [Mor05a], [Mor05b]. It is an adaptation 

of the AORE approach designed to be used by symmetric models instead of asymmetric 

models. 

Another approach that applies aspect-oriented techniques to the requirements stage is 

Aspect-Oriented Software Development with Use Cases (AOSD/UC) [Jac03][Jac05]. This 

approach is based on the idea that uses cases are crosscutting concerns because their 

performance affects several classes. This approach extends use-case models by adding 

pointcuts, use-case slices, and use-case modules. A use-case slice is the specification of a use-

case in a specific stage of the software development phase, and a use-case module contains the 

specification of a use case at all the stages of the software life cycle. For this reason, this 

approach is applied at all stages of the software life cycle starting from the requirements stage. 

This approach is a model-driven iterative process that preserves the traceability between the 

stages of the software development. The aspect modelling of AOSD/UC follows a symmetric 

approach because there are no dominant functional aspects (use cases). Therefore, the aspects 

are associated to classes or components in order to build the complete system. 

There are other approaches that apply goal-oriented requirements engineering to take into 

account the SoC at the requirements stage. Goal-oriented requirements engineering is focused 

on the analysis and specification of goals, which are the main issues that made up software 

systems [Myl99], [Lam03]. One of the first approaches that used this methodology for treating 

aspects at the requirements stage is the Goal-oriented REquirements Methodology founded on 

the SoC principle (GREMSoC) Model [Sou03]. This approach promotes the reusability and 

maintainability. It also improves the comprehensibility of requirements specification by using 

aspect-orientation. This approach specifies functional and non-functional requirements 

separately. In addition, the relationships between the crosscutting requirements and the 

requirements that they crosscut are also specified separately. Another approach that combines 

aspect-oriented techniques with goal-oriented techniques is the Aspects in Requirements Goal 

Models (ARGM) Model [YuY04]. The ARGM approach proposes the identification of 
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aspects by means of the relationships between functional and non-functional goals that are 

represented using a V-Graph. The V-Graph has the shape of the letter V, where the two top 

vertices are the functional and non-functional goals, and the bottom vertex represents the tasks 

that must be performed to satisfy both goals. The identification of the candidate aspects of a 

software system consists of a systematic and iterative process that refines the V-Graphs. 

Cosmos is a symmetric approach based on Hyper/J that is applied to the requirements stage 

[Sut02]. It is a general-purpose concern-space modelling schema. It models concern spaces  

using concerns, relationships, predicates and topics. Concerns are classified into two categories: 

physical and logical. The physical concerns are related to hardware components and the logical 

concerns are related to conceptual software entities. This classification is a new contribution to 

the analysis of requirements.  

An important task at the requirements stage is the analysis of the documents where the 

requirements are specified. The Theme/Doc approach supports aspect identification and 

analysis in requirements documentation for symmetric models [Ban04], [THE06]. This 

approach is based on the theme notion for analyzing the relationships between behaviours of a 

requirements document to identify aspects. A theme represents a feature of the software 

system. It classifies the themes into base themes and crosscutting themes. These crosscutting 

themes are aspects in the Theme/Doc approach. This approach is also supported by the 

Theme/Doc tool, which provides a set of views to the analyst to analyze the requirements 

specified in the documents. 

Finally, the approach that is being developed to identify PRISMA aspects and proto-

architectures at the requirements stage is the ATRIUM approach (Architecture generaTed from 

RequIrements applying a Unified Methodology) [Nav03]. This approach combines the goals 

models, the scenarios models, and the quality attributes (the ISO/IEC 9126 quality model 

[ISO01]) to obtain aspect-oriented proto-architectures from requirements specifications. 

ATRIUM proposes an iterative and incremental process to define and refine the different 

artefacts and allow the analyst to reason about partial views, of both  the requirements and the 

architecture. It consists of five steps: 
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1. Definition of the Goals Model: The different concerns of the software and the 

crosscutting between them are identified using a Goals Model. These concerns are 

candidates to be classified as aspects to be realized through aspects that are 

integrated into components and/or connectors [Nav04a], [Nav04b] . 

2. Definition of the Scenarios Model: the set of scenarios is identified. Each scenario 

describes the elements that interact to satisfy a specific goal and their level of 

responsibility. These elements are candidates to be components of an ATRIUM 

proto- architecture. 

3. Definition of Collaborations: The collaborations among the candidate 

components are defined and the previous models are refined. The main purpose is 

to obtain a skeleton of the architecture. 

4. Formalization: A set of derivation rules is provided to generate a formal 

specification from scenarios, goals, and collaborations. The artefacts, which are 

defined in the previous steps, are specified in the 3APL language [Hin99], which 

provides an interpreter to verify its specifications 

5. Compilation: An aspect-oriented proto-architecture is obtained using the previous 

formalization and a set of heuristics. 

3.3.2. Analysis and Design  
There are a great number of works that propose approaches to support aspect-oriented 

principles at the analysis and design stages of the software life cycle. Since the PRISMA 

approach proposed in this thesis is applied to these same stages, the approaches that combine 

software architectures and aspect-oriented software development are analyzed in detail in the 

next chapter. For this reason, this section presents an overview on the approaches that propose 

an extension of the object-oriented model by means of the introduction of aspects in a specific 

object-oriented modelling language.  

These approaches usually extend the Unified Modelling Language (UML) because it is one 

of the most widely used languages in the software engineering community. It is the standard 

established by the OMG, and it provides easy mechanisms to perform its extensions [UML06]. 
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There are two kinds of extension mechanisms: heavy and light. Heavy mechanisms consist of 

adding new elements to the UML metamodel without modifying the original ones. Light 

mechanisms (or profiles) use stereotypes, tagged values, and constraints of the UML 

metamodel to define new derived concepts (metaclasses) from the standard UML metaclasses. 

An important contribution that addresses the requirements needed for defining a UML profile 

for AOSD is the work of Aldawud et al [Ald03], who also proposes his own approach for 

supporting aspect-oriented concepts at the analysis and design stages. This approach is called 

SUP (State charts and Uml Profile) and defines a UML profile based on state charts for 

symmetric models [Ald01].   

Most approaches use profiles to extend the UML metamodel; however they introduce the 

notion of aspect in a different way. One of them is the UML extension of the Theme approach, 

which is called Theme/UML and is presented in section 3.3.1 . It defines a profile where base 

and aspect themes are modelled using packages. The theme packages are denoted by the 

<<theme>> stereotype. These packages contain class diagrams to specify the structure and 

behaviour of aspects. Another approach that models aspects using UML packages is the 

Aspect-oriented Architecture Modelling (AAM) approach [Fra04], which models aspects for 

asymmetric models. The main feature of this approach is that it provides two kinds of aspects, 

context-free and context-specific aspects. The context-free aspects are reusable and are 

specified at a high abstraction level, whereas the context-specific aspects are instances of the 

context-free aspects that are specified for use in specific design models. 

Aspect-Oriented Design Modelling (AODM) [Ste02b] is another approach for asymmetric 

models that defines an AO UML profile [Sut02], [Ste03]. It models aspects using UML classes 

with the stereotype <<aspect>>. As a result, the crosscutting is modelled by means of class 

diagrams and an operation denoted by the <<advice>> stereotype. Another approach that also 

proposes this kind of extension is the UML for AOSD (UML4AO) approach [Paw01]. 

UFA (UML for Aspects) [Her02] is an approach that extends UML and that is focused on 

the extension of the UML collaboration diagrams. It proposes an Aspectual Collaboration 

Diagram (ACM) for symmetric models. The aspect concept is introduced as a package that 

contains a class diagram that represents an aspectual part of the software system. 
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Another way of extending UML is by introducing aspects through the classifier element of 

UML, which is an abstract UML-metaclass that describes structural and behavioural features. 

One example of this extension is the Uml eXchange Format (UXF) approach, which supports 

the Aspect-Oriented information exchange between UML case tools [Suz99].  

There are other approaches that define their own non-UML language. One example is the 

CoCompose approach [Wag02], which proposes its own graphical design language to define 

aspects at the analysis and design stages of symmetric models. Aspects are specified as features 

with a well-defined semantics. Another example is the Implementation Driven Aspect 

Modelling (IDAM) approach, which defines its own diagrams called Dynamic Aspect 

Diagrams (DAD) [Coe04]. This approach proposes a combination of aspect-oriented 

programming and model-driven development by generating its DADs from AspectJ code. 

3.3.3. Implementation  
Since AOP was developed for Java environments through AspectJ [Kiz01], it is being 

transferred to other technology platforms and programming languages. Currently, we can find 

aspect-oriented extensions for original programming languages such as COBOL 

(AspectCOBOL [Läm05]), C++ (AspectC++ [Spi02]), BPEL4WS (AO4BPEL [AO406] ), or 

C# (AspectC# [Kim02], AOP#   [Scü02]). In addition, there are a lot of well-known aspect-

oriented languages that have been created from scratch. They are CaesarJ [Mez03], FuseJ 

[Suv05b], HyperJ [Oss00], Jac [Paw04], JBoss [Hil04], Jasco [Suv03], and so forth. Aspect-

oriented programming languages usually need new execution mechanisms that are not 

supported by current development platforms. As result, most of them have developed their 

middlewares to support their execution models [Lou05].  

Since the approach proposed in this thesis has been applied to the .NET technology, a 

detailed study about approaches for this technology has been performed. This study was 

necessary in order to know whether there was a .NET approach that supported the needs of a 

dynamic, mobile, distributed, aspect-oriented and component based model. Some of the most 

important needs are: 



Aspect-Oriented Software Development 

81 

 Reusability of Aspects and Base Code: The weaving should be programmed in another 

entity 

 Evolution of aspects: The approach must be able to add and remove aspects at run-time  

 Definition of join points using language constructors: The approach allows the 

definition of join points using the language constructors without adding additional 

communication mechanisms such as labels (see section 3.1.2). 

 Definition of the relation between aspects: The approach should allow the definition of 

the relationships that can emerge between aspects when they share a join point. 

 Aspect-Oriented Mobility: The approach should provide mechanisms to move the base 

code as well as the aspects that intercept this code. 

AspectC# [Kim02]and SourceWeave.Net [Jac04] support AOP in .NET. These approaches 

propose joining the base code with the aspects by specifying the weavings in an XML file. 

Weave.Net [Laf03] and AspectDNG [ASP06b] also define the weavings through an XML file. 

However, they only use the base code, aspect and weaving assemblies to join the code without 

the source code being available. Loom.Net [Sch02] is another .NET approach for supporting 

AOP. It has a graphical interface that allows the addition of defined aspects by means of 

reusable code templates and allows the performance of weavings.  

The approaches mentioned above clearly separate the base code, the aspects, and the 

weavings in different entities. However, none of them supports mechanisms for dynamically 

adding or removing aspects. The Rapier-Loom.Net [Sch03]approach does allow dynamic 

addition and removal of aspects, but it defines the weavings inside the aspects, thereby losing 

their reusability. SetPoint [SET06]also allows for dynamic addition and removal of aspects. Its 

weaving is based on the evaluation of logical predicates in which the base code is marked with 

meta-information that permits the evaluation of such predicates. As a result, the weaving is 

only performed using additional labels to the code. EOS [Raj03]is another dynamic approach 

that is able to attach aspects at instance-level by means of events.  

None of the approaches mentioned above takes into account the emerging relations that 

result from the aggregation of various aspects at the same point of the base code (joinpoint). 

However, JAsCo.Net [Ver03]provides an expressive language that permits the definition of 
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relations among aspects. JAsCo.Net integrates AOP and CBSD. It introduces the concept of 

connectors for the weaving between the aspects and the base code, which allows for a high 

level of aspect reusability.  One inconvenience of this approach is that the dynamic weaving of 

aspects to the base code is referential but not inclusive. This requires an execution platform to 

intercept the application and insert it into the aspects at execution time. 

The principal disadvantage of these approaches is that none of them integrates the needed 

properties at the same time to allow the mobility, the reusability and the evolution of aspect-

oriented components. These properties are dynamic weaving, the combination of the base code 

and the aspects inside the same entity, and the reusability of aspects. Therefore, the code 

mobility is limited because not all the properties of the object code can be moved. However, 

PRISMA defines a model that combines AOP and the dynamic reconfiguration of the CBSD 

models. The aspects are separately defined from the weavings and are highly reusable. The 

components are formed from aspects which can be inclusively and dynamically aggregated. In 

addition, PRISMA permits the dynamic mobility of its components. The concept of base code 

does not exist, so the component is solely formed by aspects. The implementation of the 

PRISMA model in .NET permits the dynamic addition and removal of aspects as well as the 

dynamic modification of the weavings without stopping the execution of the component. 

3.4. CONCLUSIONS 
The origins of AOP and the main concepts that are necessary to understand this approach has 

been presented in this chapter. A brief overview about how AOSD is currently being 

introduced to all the stages of the software life cycle has also been provided. More detailed 

information about the aspect-oriented works on requirements, analysis and design, 

middlewares, and aspect-oriented programming languages can be found in the [Chi05], 

[Lou05], [Bri05] surveys of the AOSD European network, respectively.   

Based on the information presented in this chapter, AOSD can be considered as a positive 

advance in software engineering and a step forward in the application of Separation of 

Concerns (SoC). AOSD provides important advantages such as the introduction of non-
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invasive changes, the low impact of changes, improvement in comprehension, reduction of 

complexity, facilitation of evolution and integration, customizability, and reusability. 
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CHAPTER 4 
4. ASPECT-ORIENTED SOFTWARE 

ARCHITECTURES 
 

<< One thing only I know, and that is that I know nothing.  >> 

Socrates 

 

 

The relevance that non-functional requirements have acquired in current software systems has 

led to the emergence of crosscutting concerns in software architectures. These crosscutting-

concerns are spread throughout software architectures.  

There is a wide variety of ADLs that have been proposed in order to specify software 

architectures, such as ACME [Gar00], Aesop [Gar94], [Gar95b], C2 [Med96], [Med99], 

Darwin [Mag95], [Mag96], MetaH [Bin96], [Ves96][Bin96], Rapide [Luc95b], [Luc95a], 

SADL [Mor95], [Mor97], UniCon [Sha95] [Sha96], Weaves [Gor91], [Gor94]and Wright 

[All97a],[All97b]. An interesting comparison with respect to these ADLs is presented in 

[Med00]. In addition to this work by Medvidovic and Taylor, there are other interesting 

surveys on ADLs such as the ones presented in the PhD. Thesis by Cuesta [Cue02], which 

covers the analysis of other ADLs such as Conic [Kram85], [Mag89], DURRA [Bar01], AML 

[Wyd01], and Armani [Mon98]. It is also important to mention other approaches that are 

especially prepared to support evolution in software architectures, such as CommUnity 

[And03], [Fia04], LEDA [Can00], Pilar [Cue02], GUARANA [Oli98] or R-RIO [Loq00]. 

These ADLs do not explicitly distinguish the conventional architectural elements from 

concerns that crosscut multiple architectural elements of software architectures. One of the few 

approaches that deals with the separation of concerns is the work by Jose Fiadeiro. This work 
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addresses the separation of distribution, mobility [Fia04], contex-awareness [Lop05] and 

coordination [And03] in software architectures. However, none of these original ADLs 

supports the separation of concerns by means of the aspect-orientated approach at the 

architectural level. For this reason, several approaches have emerged to cover this need either 

by extending original ADLs or by creating new ADLs from scratch. 

The combination of AOSD and software architectures has created two new challenges: 

how to define the concept of aspect at the architectural level and how to integrate aspects and 

architectural elements in a suitable way. In this chapter, the most relevant approaches that deal 

with these two questions are analyzed. Starting from the premise that an aspect-oriented 

software architecture approach should completely support the development and maintenance 

processes of software, the set of desirable properties that aspect-oriented software architecture 

approaches should fulfil are also presented.  Finally, a comparison of these approaches using 

this set of properties is presented and discussed. 

4.1. ASPECT-ORIENTED APPROACHES AT THE 
ARCHITECTURAL LEVEL 

The incorporation of aspects at the architectural level implies considering what an aspect is at 

this level. An aspect is a new entity for modularizing and encapsulating specifications in 

software architectures. As a result, it is necessary to define how aspects are related to the rest of 

the main concepts of software architectures, especially to components and connectors. It is also 

necessary to define the kind of relationships (reference, connection, composition, etc) that they 

have with these elements. 

In this section, the most important works of the area are analyzed paying special attention to 

the way that they introduce the notion of aspect in software architectures, how they coordinate 

aspects and architectural elements, and their main properties. Due to the fact that there has not 

been much work done at the architectural level, not only are ADL extensions analyzed, but also 

aspect-oriented component models that could be applied at the architectural level. 
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4.1.1. PCS: The Perspectival Concern-Space Framework  
The Perspectival Concern-Space (PCS) [Kan03] approach is based on the MDSOC model (see 

section 3.2.2) and IEEE-Std-1471. It uses UML for modelling concerns at the architectural 

level.  PCS describes concerns by means of architectural views. These views consist of one or 

more models and one or more diagrams. A perspective in PCS is defined as “a way of looking” 

at a multidimensional space of concerns from a specific viewpoint. As a result, this approach 

defines a perspectival concern-space as a projection of a concern-space that involves a set of 

related concerns, their reifications into models, and the realization of these models (see Figure 

4).  

 
Figure 4. A Perspectival Concern-Space in Overview [Kan03] 

 

The PCS approach uses UML to specify aspect-oriented software architectures, and it 

extends UML by defining a profile that supports the modelling of aspects and components. The 

profile simulates aspects by means of architectural connectors based on the idea that aspects act 

as coordinators among components to intercept their interactions and then replace or add 

behaviour either before or after them [Kan02b]. As a result, PCS is based on an original ADL 

without connectors, whose aspect-oriented behaviour is introduced by means of connectors. 

Components and aspects are modelled by means of UML classes that have been profiled in 

order to have ports through publishing services. In addition, aspect classes are distinguished by 

component clasess by means of the <<aspect>> stereotype [Kan02a]. A disadvantage of this 
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combination of aspects and software architectures is the loss of the advantages that connectors 

provide to ADLS and the opportunity to specify how concerns crosscut the coordination rules 

of connectors. 

The PCS approach is supported by the ConcernBase tool [Kan03]. This tool provides 

mechanisms for modelling software systems, and it also allows the translation from UML 

models to the SADL language [Mor97]. 

Technological independence is a clear advantage that this approach offers. Yet, at the same 

time, it is a drawback of PCS because it does not provide support to translate its models to a 

programming language or to trace from models to implementation. As a result, its models 

cannot be executed on a technological platform. 

4.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented 
Platform  

CAM/DAOP is an approach that supports the separation of concerns from the design to the 

implementation stages of the software life cycle. It is composed of the CAM model, the DAOP 

-ADL [Pin03], and the DAOP platform [Pin05]. 

The CAM model extends UML in order to specify the components, the aspects and the 

mechanisms that compose components and aspects. Components are the core functionality that 

is crosscut by non-functional concerns, which are specified as aspects. In CAM, aspects are 

presented as special components, which are differentiated from the original ones by means of 

the <<aspect>> stereotype. Specifically, since its component model does not have the notion of 

connector (see section 2.4.2), CAM introduces aspects as special connectors among 

components. The coordination of these connectors is performed by intercepting the services 

that arrive to or depart from components and by adding behaviour before, after or instead of 

their services. As a result, CAM does not introduce a new concept in software architectures for 

modelling aspects; it uses a refined version of the connector concept in order to simulate the 

behaviour of aspects and the composition of aspects and components. One of the advantages of 

this model is the fact that the weaving process between aspects and components is defined by 

means of interfaces. As a result, the encapsulation and reusability of components and aspects 

are preserved. In addition, this allows CAM to define the weaving process using the interfaces 
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and also to execute it dynamically [Fue05]. However, the model does not provide original 

connectors to specify the architecture of the system. As a result, the model loses the advantages 

that connectors provide to ADLS and the opportunity to specify how concerns crosscut the 

coordination rules of connectors. Finally, it is important to emphasize the local or remote 

instantiation of components and the four kinds of instantiation that the CAM model provides 

for aspects: a single instance for each aspect, one aspect instance for each user of the system, 

one aspect instance for all the components that play the same role, and one aspect instance for 

each instance of a component. 

CAM specifies aspect-oriented software architectures using its DAOP-ADL. This ADL 

uses XML to describe components, aspects, and their interactions. On one hand, this is an 

advantage because it is a standard of data exchange between tools, it is widely extended and 

there are other languages that support query and management mechanisms for XML 

documents. On the other hand, this is a disadvantage because XML is not a formal language, 

and it can involve problems of correctness, accuracy, inconsistency, etc. In addition, it 

introduces limitations such as mechanisms to validate properties, to automatically generate 

code without ambiguity, etc. Finally, with regard to the DAOP-ADL, it is important to 

emphasize that it is independent of technology. As a result, their specifications do not introduce 

expressions or syntaxes of specific programming languages or technologies. 

The DAOP platform has been implemented in Java, and it provides a middleware in order 

to support the execution of aspects, components, and the dynamic weaving between them over 

the Java technology. The platform and the DAOP-ADL specifications are integrated because 

the input of the DAOP platform is the XML document that contains the specification of the 

architectural model in XML. As a result, the middleware can perform the dynamic weaving 

since it knows all the information about the architectural model and knows the weavings that 

can be executed by each one of the aspects. The middleware performs the weaving by 

intercepting service requests and determining which aspect must be executed. In addition, the 

XML document contains the information needed to instantiate components and aspects. For 

this reason, when the document is loaded by the DAOP platform, the instantiation of 
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components and aspects starts taking into account the instantiation information defined in the 

document. 

4.1.3. Superimposition  
The work of Sihman and Katz proposes the use of superimposition for incorporating aspects 

into object-oriented programs. The generic operation of superimposition consists of applying a 

concept on top of another one. In this approach, aspects are superimposed on top of base 

applications. This approach creates the SuperJ constructor in order to pre-process aspect-

oriented superimpositions over AspectJ.  

A superimposition consists of a set of aspects and new classes that represent the extension 

of an application. A SuperJ implements an algorithm to apply a superimposition to a base 

application. Base applications do not reference superimpositions, and superimpositions can also 

be defined and compiled independently of base applications. However, when a 

superimposition is connected to a base application using the SuperJ constructor, the code of the 

superimposition makes reference to the state of the base application and it is not independent 

(see Figure 5). In fact, the needed advices and pointcuts are defined inside the aspects of a 

superimposition. As a result, the behaviour of the aspect and its connections to the base 

program are not defined separately. Despite the fact that the specification of an aspect is done at 

a high abstraction level, the specification of advices and pointcuts inside aspects reduces the 

capabilities of aspect reuse of the approach. In addition, superimposition allows the 

specification of conditions of applicability or the definition of desired results for the process of 

applying a superimposition to a base application.  

 
Figure 5. Superimposition [Sih03] 
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This approach allows us to combine superimpositions and to check the constraints that have 

been defined in a superimposition. It has been implemented using Java, and it uses AspectJ in 

order to apply this technique over Java base applications. As a result, the Java implementation 

of the SuperJ makes this model dependent on technology and it is closer to object-oriented 

programming languages than ADLs. 

4.1.4. TRANSAT  
Transat [Bar04b] is an approach for managing the evolution of software architecture 

specifications using aspect-oriented programming principles. The approach starts from a core 

architectural model that either needs to be extended during its development process or needs to 

be evolved during its maintenance process. The mechanisms of extension and evolution are 

provided using AOP techniques. As a result, this approach incrementally obtains a complete 

software architecture with business and technical concerns from a business software 

architecture.  

This approach is supported by a framework that allows the evolution of software 

architectures by integrating new technical concerns. The framework guides the separated 

definition of technical and business concerns. Business concerns are the core architectural 

model, and technical concerns are the aspects that extend the basic functionality of the system. 

The framework provides aspect-oriented mechanisms to weave both.  

The core architectural model is defined using its component model, SafArchie [Bar03]. 

This model is a hierarchical component model that defines software architecture by means of 

composition relationships. The new technical concerns such as persistence, security, or 

transaction management are modelled as components. Finally, the weavings between business 

components and aspect components are defined by means of adapters and weavers. Adapters 

define the integration rules between technical components and business components, and 

weavers define the coordination rules between them. In other words, adapters and weavers 

materialize the integration of the core architecture and their extensions by identifying the join 

points in the core architecture and by defining the pointcuts at adapters and weavers. 
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The Transat framework consists of a tool called SafArchie Studio [Bar04a]This tool is an 

extension of ArgoUML, which offers several views of the evolution process depending on the 

kind of user. 

One of the main advantages of this approach is that it is based on ADL for defining the core 

architectural model. As a result, the formal definition of software architecture and its 

independence from a technological platform are guaranteed.  

Another advantage is the way that evolution is supported. The integration of new 

requirements does not break the consistency of the original software architecture. In addition, 

the application of AOP principles to this integration ensures both the separation of concerns in 

the software architecture extension and better management if new requirements for these 

concerns arise. Finally, this extension mechanism allows analysts to easily identify where the 

original software architecture has been modified; they only need to find the adapters and 

weavers of the complete architecture. 

A great limitation of this approach is the constraint of starting the development from a core 

architectural model without considering concerns from the beginning. Also, the fact that 

concerns are only technical and not more generic is another drawback. As a result, aspects in 

this approach are not introduced as a new concept for modelling software architectures. 

Software architectures are defined using a pure compositional ADL, and aspects only appear as 

an extension or evolution mechanism of software architectures. 

4.1.5. ASAAM: Aspectual Software Architecture Analysis Method  
ASAAM [Tek04] is the approach that introduces aspect-orientation techniques to the SAAM 

approach ( see section 2.2), which introduces three perspectives to analyze software 

architecture specifications: functionality, structure and allocation. As a result, ASAAM is an 

extension and refinement of SAAM. The steps of ASAAM are the following: 

1. Develop a candidate architecture: A candidate architecture is generated taking into 

account quality attributes and potential aspects. 

2. Develop scenarios: The scenarios that define the business rules of the system and 

possible future changes are created. 
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3. Perform scenario evaluations: The scenarios are evaluated and categorized, and 

potential aspects are identified for each scenario. 

4. Assess scenario interaction and classify components: The separation of concerns is 

assessed for both crosscutting-concerns and non-crosscutting concerns. 

5. Refactor the architecture: A refactorization of the architecture is proposed using 

conventional techniques and aspect-oriented techniques. 

This evaluation method of aspect-oriented software architectures has been implemented as 

an Eclipse add-in called ASAAM-T [Tek05]. The main difference between this approach and 

the others is the fact that the purpose of ASAAM is to assess an aspect-oriented software 

architecture instead of specifying and implementing a software architecture. As a result, this 

approach is a valuable contribution to the field for evaluating if an aspect-oriented software 

architecture has considered the correct aspects, and if the aspects are factorized in a proper way. 

4.1.6. AVA: Architectural Views of Aspects  
AVA is an approach where aspects are introduced in software architectures as views [Kat03]. 

The notion of aspect in software architectures is simulated by the architectural view concept. 

This facilitates the comprehensibility of the model for the software architecture community. 

However, an aspect is not semantically a view because an aspect has its own behaviour 

independently of the architectural elements that it affects. Furthermore, this approach constrains 

the notion of architectural view to an aspect, losing other viewpoints for defining views such as 

kinds of users, models, level of abstraction, features, etc.  

In AVA, an aspect is a module that encapsulates a set of components and their connections 

that are crosscut by this aspect. As a component can be crosscut by more than one aspect, the 

dependencies between different aspects must be explicitly specified in order not to lose the 

consistency of the software architecture. Since it is possible to define several aspects for the 

same concern in AVA, aspect modules (S,O) can be composed to form a single concern 

module (C) (see Figure 6). This aspect composition is performed using superimposition, which 

is an asymmetric operation in which one aspect is applied on top of another one [Kat02]. As a 

result, the software architecture is completely remodularized in different modules that represent 
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aspects or concerns, depending on the level of abstraction. This modularization distributes 

components into different modules taking into account the aspects that affect them. The main 

disadvantage of this remodularization is the loss of the complete software architecture view. 

However, this concern and remodularization structure of modules allows analysts to easily 

locate where to introduce new changes, taking into account the concerns that should be 

modified. 

 
Figure 6. Concern Diagram of AVA [Kat03] 

 

The AVA model has been created by defining a UML profile. As a result, the definition of 

AVA software architectures is really intuitive because these architectures use the OMG 

standard. In addition, the use of UML allows analysts to specify software architectures 

independently of technology and in a graphical way. In the AVA profile, the aspect is a 

stereotype of the package UML metaclass, and the concern diagram is an extension of the 

component diagram.  

The AVA approach has also been applied to the definition and documentation of pattern 

systems [Ham05], and the MADE tool has been developed to support it [Ham04].  

4.1.7. AspectLEDA  
AspectLeda is an approach that extends the LEDA ADL [Can00][Can99] with aspect-oriented 

concepts [Nav05]. This approach consists of two steps: the definition of an initial architectural 

model and the addition of aspects. The initial architectural model is defined using the LEDA 

ADL in order to have the advantages of a formal basis, to validate the software architecture by 
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executing a prototype, and to be independent of technology. Once the initial architecture has 

been defined, the new requirements that emerge during the development and maintenance 

processes are incorporated in the architecture such as aspects. This is a clear drawback of this 

approach because it does not give the analyst the chance to introduce aspects at the beginning 

of the software development process. Aspects are only used at the maintenance stage or at 

refinement processes of the development stage. In addition, it is important to take into account 

that not all new requirements of a system are aspects. However, AspectLEDA forces the 

analyst to introduce new requirements into the model as new aspects without taking into 

account whether they are aspects or not. 

In AspectLEDA, aspects are specified in the way as components because LEDA is an 

ADL without connectors. However, aspect components and components of the initial software 

architecture are defined in different levels. Since AspectLEDA does not have architectural 

connectors, it cannot specify the concerns that crosscut connectors, and it loses the advantages 

that connectors provide to ADLs. However, AspectLEDA introduces the notion of coordinator 

to define the weaving process that synchronizes aspects and components and coordinates both 

levels. This coordinator preserves the reusability and encapsulation of aspects because the 

coordination of aspects and components is specified outside aspects. 

Finally, it is important to emphasize that this approach is still only a proposal. It does not 

have a tool to support for its methodology, and it is not able to compile its aspect-oriented 

software architecture into any technological platform. 

4.1.8. AOCE: Aspect-Oriented Component Engineering  
The Aspect-Oriented Component Engineering approach (AOCE) is based on AOREC 

(Aspect-Oriented Requierements for Component-Based Systems). AOREC uses the notion of 

aspect in order to suitably define and categorize the requirements of components in terms of 

what they provide or require through their services. In AOREC, an aspect is a characteristic of a 

system for which components provide and/or require services. This approach takes into 

account some aspects such as user interface, collaboration, persistence, distribution, and 

configuration. As a result, AOREC uses aspects in order to attain multiple perspectives of the 
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components in order to better understand and reason about the behaviour and semantics of 

these components.  

Since AOCE is the step after AOREC in the development process, AOCE defines aspects 

in the same way that AOREC does; aspects are specified as components. The definition of an 

aspect component is done separately from the component specification in order to be 

independent and reusable. However, an AspectManager must be introduced in order to 

coordinate aspect components and components. Despite the fact that this approach does not 

have connectors (because is a component-based approach), it still must introduce a connector 

called AspectManager to weave aspects and components at run-time.  

Apart from not having the notion of connector and not classifying the interfaces of 

connectors in terms of aspects, the main disadvantage of this approach is the fact that the design 

language of AOCE is based on a specific component-based platform, the JViews [Grun98] 

AOP implementation platform, which is not independent of technology. 

Finally, it is important to mention that AOREC and AOCE have a tool to support their 

methodology. They have extended the tool of JViews to support aspects. This tool is called 

JComposer [Grun98]. 

4.1.9. Component Views  
The component views approach [Sto02] is not really an approach to specify aspects of software 

architectures. The component views approach is an extension of component-based models to 

define views using concerns as viewpoints. As a result, this approach decomposes the 

architecture taking into account which components and connections among them are affected 

by a specific concern. The result of this decomposition is that each view of a concern contains 

the components and relationships affected by this concern. This approach defines a UML 

profile to support the definition of these views for software architectures. However, this 

approach does not introduce new concepts or simulates the notion of aspect because it does not 

support this notion. It only works with concerns which are only used to analyze component-

based models. Their specification is made using a UML profile. The purpose is not to execute 

an aspect-oriented component-based model, it is simply to analyze component models. 
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4.1.10. Aspectual Components  
Aspectual Components are proposed as a new kind of component by the work of Lieberherr 

[Lie99]. They are defined using a generic data model called a participant graph. This graph is 

then refined to deploy aspects as normal components.  

This approach proposes adding a new dimension to aspects over the organization of an 

object-oriented application. As a result, the first task of the software development process is to 

decompose software into aspects. The second one is to decompose each aspect into classes 

following the object-oriented approach. The result of this process is an aspectual component 

composed of object-oriented classes. However, these aspectual components should be 

composed with the application base. In other words, the new dimension of aspects must be 

communicated to the bottom dimension of the application. This communication is achieved by 

means of connectors that coordinate both dimensions. 

Aspectual components can be programmed using Java programming language because this 

approach does not introduce a new programming constructor; instead, aspectual components 

are implemented as normal components. However, this approach does not offer a tool to 

support work with this model. 

4.1.11. Caesar  
Caesar is a model for aspect-oriented programming [Mez03] with its own programming 

language. This model is characterized by being technology-dependent and by developing a 

higher-level module to develop aspects independently of the mechanisms for join point 

interceptions. 

Caesar specifies the implementation of aspects and their weaving relationships in a separate 

way in order to reuse the aspect independently of what the aspect is related to. The main feature 

that distinguishes Caesar from other aspect-programming models is the concept of Aspect 

Collaboration Interface (ACI). An aspect is specified by means of an ACI. An ACI decouples 

the implementation and weavings of aspects. An ACI is composed of two different interrelated 

modules: an implementation aspect module and a binding aspect module. The former 

implements the methods that the aspect provides, independently of the context. The latter 

implements the required methods from a specific context by means of pointcuts and advices. In 
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addition, an ACI can be composed of other ACIs, which provide a complete level of 

composition in order to define aspects over the base code.  

Caesar defines an instantiation mechanism for its ACIs. To instantiate ACIS, the 

implementation and a specific binding for the aspects must be composed in the same unit; this 

unit is called weavelet. A weavelet is a class that is composed of the interface that provides and 

requires. Once, the weavelets are defined; they can be instantiated in a static or dynamic way. 

This mechanism of instantiation allows several instances of the same weavelet to be defined. It 

also provides a choice of different weavelets using aspectual polymorphism. 

4.1.12. JASCO  
JAsCo is originally an aspect-oriented programming language for the Java Beans component 

model [Suv03]; however, a prototype for .NET platform is currently being developed [Ver03]. 

As a result, JAsCo is a programming language that is dependent on technology. It introduces 

three new concepts to extend Java to support aspect-oriented programming, which include 

aspects, hooks, and connectors. 

In JAsCo, aspects are composed of a set of hooks that define how to link an aspect to a 

specific context. A hook consists of two parts: the pointcut (when the hook is activated) and the 

advice (what is going to be executed as a result of the activation). Finally, connectors allow the 

definition of the mappings between a hook and one or more elements of the base code 

(joinpoint and pointcut correspondence). 

The JAsCo execution model is very flexible and provides many advantages. It supports 

aspectual polymorphism, which is the weaving between aspects and code. This is dynamic 

because aspects can be added and removed at run-time. However, the referential nature of the 

dynamic weaving requires an execution platform to intercept the application and insert it into 

the aspects at execution time. In addition, aspects can be combined to form complex structures 

by means of inheritance and aggregation relationships. 

Finally, it important to mention that there are a pair of tools that support the JAsCo 

approach. One of them transforms a Java bean into a JAsCo bean, and the other one is the 

integration of JAsCo into the PacoSuite [Van01], [Wyd01], which allows modelling 
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component models at a high abstraction level and also allows generating one or more JAsCo 

connectors from its models. 

4.1.13. FUSEJ  
FuseJ is a programming language for component-based software architectures onto the Java 

Beans component model [Suv05b]. This language asserts that there are no aspects and these 

services can be implemented as a component. It is a platform dependent language that does not 

make distinctions between normal components and aspect components. It is based on the 

component architecture presented in Figure 7. Each concern and component is programmed as 

a component of the Component Layer. The provided and required services of components are 

sent through the gates of the Gate Layer by preserving the encapsulation of components (black 

box view). Finally, the coordination among the gates is programmed using connectors of the 

Connector Layer. However, this connector must be implemented in different ways depending 

on whether two normal components are being coordinated or a component and an aspect 

component are being coordinated. In this last case, the coordination is performed using the 

aspect-oriented primitives to define the pointcuts and advices (to specifying the weaving 

process). 

 
Figure 7. Unified Component Architecture [Suv05b] 

 

With regard to instantiation, aspects are instantiated as regular components; each aspect can 

have more than one instance. Finally, it is important to emphasize that the tool support for 

FuseJ is currently being developed. 
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4.1.14. JAC  
JAC is a framework to develop aspect-oriented distributed applications in Java programming 

language [Paw04]. The main contribution of the programming model of JAC is the fact that 

aspects can be distributed. They also have a dynamic nature, which means they can be added 

and removed at run-time.  

JAC provides a set of classes and methods that are extended when a new JAC application is 

developed. JAC provides two different levels of aspect-oriented programming: the 

programming level and the configuration level. The former is used when new aspects are 

programmed from scratch. The latter is used when existing aspects are customized for new 

requirements. 

Since JAC packages normal components inside containers, it also defines aspects as 

components that are inside containers. The components that define aspects are called aspect 

components. These containers are remote servers that can represent normal or aspect 

components. JAC aspect components crosscut normal components that are not necessarily in 

the same location as the aspect components. As a result, JAC gives support to distributed 

weaving processes. This need emerges because aspects are treated as components and the 

weaving process (the pointcuts and advices) are defined inside the aspect. If the weaving 

process were defined in a different entity of the aspect such as a connector, this distribution 

need would not arise, because the distributed communication is supported by components and 

connectors. The main drawback is not the effort needed to support distributed communication 

in pointcuts, it is the fact that the behaviour of the aspect cannot be reused. JAC loses the 

reusability of aspects because the relationships for applying the aspect to a specific context are 

defined inside it.  

4.1.15. JIAZZI  
Jiazzi is an aspect-programming model that extends Java by means of encapsulated code 

modules called units [McD03]. They are separately compiled and are externally linked code 

modules that are introduced into a Java program. These units were originally created to obtain 

higher modularity of code. However, they are currently being used to add aspects to non-

aspect-oriented Java programs in a non-invasive way. This is possible because JIAZZI also 
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provides linking units like connectors to specify the connections of units and a base Java 

program.  

Jiazzi units are composed of Java classes that implement the behaviour of a specific 

concern. They are compiled independently of linking units and base code; as well as the type 

checking is also performed internally. In addition, an external compilation is needed to perform 

the connection between base code and units by means of linking units. In this compilation 

process, the types of connections must also be checked.  

Jiazzi does not extend the syntax of the Java programming language because it introduces 

aspects as externally linked Java modules. Jiazzi and its interaction with Java are implemented 

using Java, and it runs perfectly on this technology. Its main drawback is the fact that it is a 

technology-dependent model and the pre-compilation and encapsulation of its modules before 

its integration reduces the flexibility to evolve aspects at run-time. 

4.2. COMPARISON OF ASPECT-ORIENTED SOFTWARE 
ARCHITECTURES  

There are several features that are essential for analyzing and to comparing the different 

approaches that have been presented in the previous section. The features that have been used 

as comparison criteria have been selected starting from the premise that an aspect-oriented 

software architecture approach should completely support the development and maintenance 

processes of software. It is important to mention that there are important features, such as the 

instantiation mechanisms and the types checking, that have not been used to compare the 

different approaches because the proposal does not usually give very much information about 

these features.  The analysis of these features is included in their descriptions above for those 

approaches that provide information about them. 

Next, we detail the features of comparison and the reasons because they have been 

considered as a classification criteria of aspect-oriented architectural models.  

 Aspect-oriented model: This feature defines the kind of aspect-oriented model that is 

integrated with the software architectural model. The four kinds are: asymmetric, 

symmetric, multidimensional, and composition filters (see section 3.2). This characteristic 
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is important because the integration is completely different depending on the aspect-

oriented model. 

 Architectural model: This feature determines whether an architectural model provides 

connectors for modelling software architectures or not. Those that have connectors provide 

features that improve the structure and maintenance of software architecture (see section 

2.4.2 for details).  

 Definition of Aspects: The most distinguishable feature of aspect-oriented architectural 

models is how they integrate aspects and software architectures. There are two ways of 

doing this: by simulating the notion of aspect by means of another architectural concept or 

by defining a new concept in software architecture for aspects. The first way refines the 

architectural concepts varying their original semantics; and the second one requires 

understanding a new concept to model software architectures. 

 Definition of Weavings: This is an important feature of aspect-oriented models, and of 

aspect-oriented architectural models. The definition of weavings feature specifies where 

the weaving process between aspects and architectural elements is defined. If the pointcuts 

and advices are defined inside the aspect, the aspect is dependent on the context that the 

aspect is connected to. However, if they are defined outside the aspect, the behaviour of the 

aspect can be reused independently of where they will be connected. 

 ADL: Another feature that is necessary to take into account when comparing architectural 

models is whether the ADL is a formal language or not. The formal nature of an ADL is 

an indispensable property of architectural models if the purpose of the approach is to 

generate code without ambiguity, to verify properties, to validate behaviour, to trace the 

different levels of abstraction in a suitable way, to evolve software architectures preserving 

the consistency of the system and so forth. 

 Aspect-Oriented Evolution: The evolution of aspect support is an important feature that 

can improve the evolution and run-time evolution of software architectures. As a result, an 

approach that provides mechanisms for adding or removing aspects is a great advantage. 
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 Purpose: The purpose of the approach is an essential feature to be able to compare 

models. There are aspect-oriented architectural models that give complete support during 

the development process, others that analyze or evolve models, and still others that fulfil 

several purposes. 

 Technology: This is an important feature that distinguishes the wide variety of aspect-

oriented architectural models that exists. An aspect-oriented architectural model should be 

specified in an abstract way by means of an ADL. As a result, the same specification can 

be applied to different platforms and different programming languages. However, if the 

model depends on a specific platform and/or programming language, its application and 

flexibility are considerably reduced. 

 Graphical support: The graphical specification of aspect-oriented software architectures 

is a necessary feature to avoid the complexity of using ADLs. The graphical support is 

achieved by defining the graphical metaphor of ADLs by means of a new language or by 

extending a well-known graphical language. 

 Tool support: A significant feature of the aspect-oriented architectural models is its 

support by means of a framework that guides the analyst during the development and 

maintenance processes. A framework can provide a wide variety of facilities such as 

modelling support, ADL generation, code generation, code execution, validation, 

verification, evolution, run-time evolution, etc.  

 

A comparison table has been developed from the features and the approaches analyzed in 

the above section.  This table is divided into two separate tables due to the limitation of the page 

dimensions. Blank cells indicate that no information was available. 
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 Aspect-oriented 
model 

Architectural 
model 

Definition of 
Aspects 

Definition of 
Weavings 

ADL 

PCS Multidimensional 
and symmetric 

Without 
connectors 

Aspects like 
connectors 

Inside aspects SADL: 
Formal 

compositional 
ADL 

CAM/DAOP Asymmetric Without 
connectors 

Aspects like 
connectors 

Outside aspects 
using 

communication 
between 
interfaces 

DAOP –
ADL: Not 

formal, based 
on XML 

Superimposition Asymmetric: 
Two levels: 
aspects and 
architectures 

 Java Classes 
inside a 

superimposition 
layer 

Inside aspects  

TRANSAT Asymmetric. 
Only technical 

aspects 

Without 
connectors 

Aspects like 
components. 

Aspect 
components 

Outside 
aspects. Using 

adapters or 
weavers ≅ 
connectors 

SafArchie 
component 

model 

ASAAM Asymmetric Not fixed Scenarios Outside 
Aspects 

Not fixed 

AVA Asymmetric Not fixed Aspects as views Outside 
Aspects 

Not fixed 

AspectLEDA Asymmetric: 
Two levels: 
Aspects and  
architectures 

Without 
connectors 

Aspects as 
components 

Outside aspects 
using 

coordinators ≅ 
connectors 

Leda: Formal 
Compositional 

ADL 

AOCE Asymmetric Without 
connectors 

Aspects as 
components 

Outside aspects 
using aspect 
managers ≅ 
connectors 

 

Component 
Views 

Asymmetric  Not aspects. 
Concerns as 

viewpoints for 
defining 

architectural 
views  

  

Aspectual 
Components 

Asymmetric: 
Two levels: 
Aspects and 

object-oriented 
applications 

 Aspects as 
components:  

Aspectual 
components 

Outside aspects 
with 

connectors 
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Caesar Asymmetric  Aspect 
Collaboration 

Interface (ACI) 

Separation of 
ACI modules 

into 
implementation 
and interaction 

of aspects 

 

JASCO Asymmetric   Aspects Hooks and 
connectors 

 

FUSEJ  With 
Connectors 

Without Aspects: 
Components 

Connectors  

JAC Asymmetric  Aspects as 
components: 

aspectcomponents 
 

Inside aspects  

JIAZZI Asymmetric: 
Two levels: 
Aspects and 

object-oriented 
applications 

 Units  Linking units  

Table 1. First comparison of aspect-oriented software architecture 
approaches 

 
 Aspect-

Oriented 
Evolution 

Purpose Technology Graphical 
support 

Tool support 

PCS  Development 
of  AO 

Software 
Architecture 

Independent UML 
profile: 

Aspect is a 
stereotype of 
a UML class 

ConcernBase 
tool: modelling 
support, ADL 

generation from 
UML, no code 
generation, no 

execution 
CAM/DAOP Dynamic 

weaving but 
not adding 

and 
removing 
aspects at 
run-time 

Development 
of  AO 

Software 
Architecture 

Independent UML profile DAOP 
platform: Java 
Technology, 
modelling 

support,  DAOP 
middleware for 
code execution  

Superimposition  Programming 
aspect-oriented 

Java 
applications 
and verifying 
properties of 

aspect-oriented 
superimposition 

Dependent 
on Java 

technology 
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TRANSAT  Only evolution 
support, the 

initial aspect-
oriented 

specification is 
not supported. 

Independent UML profile SafArchie 
Studio. 

Extension of 
ArgoUML 

ASAAM  Analysis of 
Software 

Architectures 

Independent UML 
profile: 

scenarios 

ASAAM-T 

AVA  Development 
of  AO 

Software 
Architecture 

Independent UML 
profile: 

aspect is an 
stereotype of 

a UML 
package that 
contains an 
extension of 
component 

diagram 

MADE tool: 
modelling 
support 

AspectLEDA  Development 
of  AO 

Software 
Architecture 

Independent   

AOCE Dynamic 
weaving 

Development 
of  AO 

Software 
Architecture 

Dependent 
on JViews 

 JComposer: An 
extension of the 

JViews tool 

Component 
Views 

 Analysis of 
software 

architectures 

Independent UML profile  

 
 
 

Aspectual 
Components 

 
 
 

 
 

Programming 
aspect-oriented 

Java 
applications 

 
 

Dependent 
on Java 

technology 

 
 
 

 
 
 

Caesar  Programming 
aspect-oriented 

Caesar 
applications 

Dependent 
on Caesar 

programming 
language 

 Programming 
framework 

JASCO Dynamic 
weaving and 
support for 
adding and 
removing 
aspects at 
run-time 

Programming 
aspect-oriented 

application 

Dependent 
on Java or 

.Net 
technology 

 Programming 
framework 



Aspect-Oriented Software Architectures 

107 

FUSEJ  Programming 
aspect-oriented 

applications 
onto Java 

Beans 

Dependent 
on the Java 

Beans 
component 

model 

  

JAC  Programming 
aspect-oriented 

Java 
applications 

Dependent 
on Java 

technology 

  

JIAZZI  Programming 
aspect-oriented 

Java 
applications 

Dependent 
on Java 

technology 

  

Table 2. Second comparison of aspect-oriented software architecture 
approaches 

4.3. CONCLUSIONS 
After the analysis and comparison of different approaches for aspect-oriented software 

architecture, it is possible to conclude that these proposals at the architectural level usually 

extend ADLs without connectors and mainly follow an asymmetric model by considering 

functionality as architectural components. Despite the fact that there has been a lot of work 

done, these proposals are only focused on a single specific purpose: the analysis, evolution or 

development of software architectures. They do not pursue several purposes simultaneously to 

provide a complete development and maintenance support. Furthermore, they always introduce 

the notion of aspect by using original architectural concepts, despite the fact that they do not 

provide the suitable semantics for aspects. As a result, it is necessary to provide an aspect-

oriented model for symmetric aspect-oriented models and ADLs with connectors. This model 

should include: 

  A suitable semantics for the aspect concept  

 A graphical modelling metaphor 

 Analysis and evolution capabilities 

 Technological support in order to execute the aspect-oriented architectural models that 

have been defined independently of technology 

 A guided support during the development and maintenance processes of software 



PRISMA: Aspect-Oriented Software Architectures 
 

108 

The PRISMA approach has been defined to fulfil these needs. PRISMA integrates an 

aspect-oriented symmetric model with an ADL that has connectors thereby, creating its own 

aspect-oriented architectural model that corresponds to an Aspect-Oriented ADL (AOADL). In 

this thesis, the PRISMA model and framework are presented as an important step forward in 

the combination of the aspect-oriented paradigm and software architectures. 
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CHAPTER 5 
5. PRELIMINARIES 

 
 

<<Sincerity and truth are the basis of every virtue>> 

Confucius 

 

 

The main purpose of this chapter is to provide an introduction to the case study that has been 

chosen to demonstrate the PRISMA approach and to introduce the formalisms that have been 

used to describe software architectures in PRISMA and to formalize the PRISMA model.  

5.1. TELEOPERATION SYSTEMS: THE TEACHMOVER 
ROBOT 

There is a wide variety of domains that can take advantage of the PRISMA approach for 

developing software systems. PRISMA has been put into practice in the tele-operation domain, 

which unlike academic examples, provides real problems that must be solved in real industrial 

systems. This domain has been chosen because it offers a framework for applying software 

engineering techniques.  

The main purpose of this section is to provide an introduction to the tele-operation domain 

as well as to present the suitability of tele-operation systems to apply an aspect-oriented 

software architecture approach such as PRISMA. In addition, the specific robot that has been 

completely developed using PRISMA is presented. This robot is used throughout the thesis in 

order to illustrate the PRISMA approach and its main concepts. 
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5.1.1. The Tele-operation Domain  
Tele-operation systems are control systems that depend on software to perform their 

operations. Designing these systems is a difficult task that must integrate mechanical and 

electrical elements with software components in the same system. They are used for tele-

operating mechanisms (robots, vehicles, and tools) that handle inspection and maintenance 

tasks. This thesis focuses specifically on robotic tele-operated systems. Tele-operated robots are 

software intensive systems that are used to perform tasks that human operators cannot carry out 

due to the dangerous nature of the tasks or the hostile nature of the working environment. 

The importance of considering the software architecture in robotic tele-operated systems is 

well known [Cos00]. However, despite the fact that robotic tele-operated systems usually have 

many common requirements in their definition and many common components in their 

implementation, it is impossible for a single architecture to be flexible enough to cope with all 

the variability of the domain. Therefore, a further step is needed to provide a flexible and 

extensible architectural framework to develop systems with different requirements and 

commonalities. There have been numerous efforts to provide developers with frameworks such 

as [Bru02], [Sch01] and [Vol01].  All of them make very valuable contributions that simplify 

the development of systems. However, the way that the component-oriented approach has been 

applied may reduce some of its benefits. These frameworks are object-oriented or component-

oriented frameworks that rely on object-oriented technologies and that highly depend on a 

given infrastructure (Linux O.S. and the C++ language). As a result, a technology-independent 

framework is necessary. This framework should provide mechanisms to define abstract 

software architectures that can be mapped into specific software architectures as well as 

mechanisms to dynamically evolve the interaction patterns among components. In addition, 

tele-operated systems have a wide range of common concerns in their domain. These concerns 

can be modelled as aspects in order to take advantage of AOSD. Some of these candidate 

aspects of the tele-operation domain are distribution, safety, mobility, security, coordination, 

etc. 

The European project EFTCoR (Environmental Friendly and Cost-effective Technology 

for Coating Removal) [EFT02], in which the DSIE (System Division and Electronic 
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Engineering) Group of the Polytechnic University of Cartagena participates, has developed the 

design and construction of a robotic teleoperated system. This system is a family of robots 

called EFTCoR [Fer05]. The EFTCoR is a robotic platform that cleans the hulls of ships in a 

way that reduces the environmental pollution. This robotic tele-operated system has strong 

requirements in terms of adaptability to different devices, operator safety, response time, 

dynamic reconfiguration, etc. As a result, the DSIE group decided to apply PRISMA to these 

kinds of systems in order to cope with these requirements. Since the EFTCoR is a family of 

robots that are very large (big dimensions) and very heavy (high tonnage), a complete 

development of a small-scale robot has been done before developing the software architecture 

of EFTCoR. This robot is called TeachMover [TEA06]. The TeachMover is simpler than 

EFTCoR, but it has the same architectural features, which, in a near future, will permit the 

development of the EFTCoR tele-operated system reusing the implemented components of the 

TeachMover robot. 

5.1.2. The TeachMover Robot  
The TeachMover robot is a robotic arm that is frequently used to teach the fundamentals of 

robotics (see Figure 8). This robot was specially designed for the purpose of simulating the 

behaviour of large and heavy industrial robots. 

 
Figure 8. The TeachMover Robot 

 

5.1.2.1. The morphology of the TeachMover Robot 
The TeachMover is formed by a set of joints that permit the movement of the robot. These 

joints are: Base, Shoulder, Elbow and Wrist. In addition, it has a Tool to perform different tasks 

(see Figure 9). The movements that the robot is able to perform are: the rotation of the robot 
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using the base, the articulation of the elbow and shoulder joints, and the rotation of the wrist. In 

this case, the Tool is a gripper, whose open and close actions allow the robot to pick up and 

deposit objects. 

 
Figure 9. Joints of the TeachMover robot 

 

The robot has six electric step motors for driving the direction of the movements of each 

joint.  These motors perform the movements through gears that are joined by a cable system. 

The TeachMover can be moved at a specific speed by means of half-steps or inverse 

cinematics. A half-step movement moves the robot using the number of teeth that a gear of a 

joint must be moved as a measure. And, an inverse cinematic movement moves the robot using 

a specific point in the space as a measure. These features, together with the features of the 

gripper, allow the robot to move objects from an initial position to a final one.  

In addition, safety directives of the robot require its movements to be checked to make sure 

that they are safe for the robot and the environment that surrounds it. The internal safety of the 

robot is preserved by establishing a set of constraints that forbid certain movements that will 

break the gears of the robot due to the position of the gears inside the robot. These constraints 

are defined by establishing minimum and maximum values for the movements of each joint. 

These values are specified in degrees as follows: 

 Base: ± 90° 

 Shoulder: + 144°, - 35° 

 Elbow: + 0° , -149° 
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 Gradient of the Wrist: ± 90° 

 Rotation of the Wrist: ± 180° 

 Opening of the gripper: 0 inches, + 3 inches (7,62 cm.) 

The robot has a sensor to pick up objects without breaking them. The weight of the objects 

that the robot is able to carry when its arm is stretched out is 450 grammes. Furthermore, the 

gripper presses the objects with a maximum pressure of 14 Newtons. Finally, the speed of 

movements fluctuates between 0 or 7 inches per second (178 mm/s) depending on the load that 

the robot carries when the movement is performed. 

It is important to mention that the movements of the robot are commanded by an operator 

from a computer. This communication between the computer and the robot is possible by 

means of the serial/RS232C port. In order to stop the robot in situations of emergency, the 

robot has an interruption mechanism for disconnecting the power of the robot by means of 

software. This is possible because this interruption mechanism is connected to the parallel port 

of the computer.   

All these features allow the TeachMover robot to simulate the movements of most of the 

industrial tele-operated robots that are currently in use. This robot allows the testing and 

verification of new solutions to be applied to more complex robotic systems in the future. 

5.1.2.2. The Software Architecture of the TeachMover Robot 
The TeachMover architecture has different levels of abstraction for its components, connectors 

and the interactions among them. The lowest abstraction level of the robot architecture has 

sensors and actuators as basic components, which are communicated with the hardware joints 

of the robot. The functionality of the actuators and sensors are the following: 

 Actuator: An actuator sends commands to a joint of the robot. These commands are 

performed by the joint or the tool.  

 Sensor: A sensor reads the results of the commands in order to know whether or not they 

have been performed successfully. 
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Figure 10. Architectural Elements of the TeachMover Software Architecture 

 

An actuator and a sensor are coordinated by means of a connector. These three architectural 

elements (actuator, sensor, and SUCconnector) are encapsulated inside a complex component 

called the Simple Unit Controller (SUC) (see Figure 10). However, two special SUCs have 

been identified in order to take into account the peculiarities of the wrist joint and the tool. The 

SUC, the Wrist SUC and the Tool SUC must be composed and coordinated in order to form 

the complete structure and functionality of a tele-operated robot. This composition generates 

different levels of granularity (see Figure 10): 
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 Mechanism Unit Controllers (MUCs): This architectural element type represents the 

arm of the robot, which is composed of the SUC and Wrist SUC coordinated by means of 

a connector.  

 Robot Unit Controllers (RUCs): This architectural element represents the robot, which is 

composed of MUCs and Tool SUCs coordinated by means of a connector. 

 The Architectural Model: This level represents the interactions between operators and 

robots through a connector.  

5.2. FORMALISMS 
Since in this thesis architectural elements are observable processes that have state and 

behaviour, the formalisms that are used to formalize the PRISMA model are a Modal Logic of 

Actions [Sti92] and π-calculus algebra [Mil93]. π-calculus is used to specify and formalize the 

processes of the PRISMA model, and the Modal Logic of Action is used to formalize how the 

execution of these processes affects the state of architectural elements.  

5.2.1. Modal  Logic of Actions 
A variant of the Modal Logic of Actions presented in [Sti92] is used in this thesis. In addition, 

this Modal Logic of Actions has been used for implementing obligations, prohibitions, and 

permissions. As a result, it permits the analysis and formulation of assertions of processes that 

change the execution environment. A formula of this Modal Logic of Actions is written 

following the structure ψ [a] ϕ. ψ and ϕ are well-formed formulae (wff) of the first order of the 

logic, which characterize the state before or after the execution of the action a, respectively. ‘[ ]’ 

is the operator of “need”, and a represents an action. As a result, the meaning of the formulae 

that are constructed following the pattern ψ [a] ϕ is the following: “if  ψ is satisfied before the 

execution of a, ϕ must be satisfied after the execution of a”.  

The kinds of formula that are used in this thesis are the following: 

 ψ  [a] false: a cannot be executed in those states in which ψ is satisfied. 

 ψ  [¬a] false: a must be executed in those states in which ψ is satisfied. 
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 ψ  [a] ϕ: a can be executed in those states in which ψ is satisfied. If  ψ is satisfied before 

the execution of a, ϕ must be satisfied after the execution of a. 

 

In this thesis, the Modal Logic of Actions is interpreted using a Kripke structure (Ω, ω0, ρ), 

where Ω is a set of possible worlds, ω0 is the initial world, and ρ is the relationship of 

accessibility between the worlds (see Figure 11).   

 
Figure 11. Simple Kripke structure 

 

First-order formulae are valid in one world whereas modal logic of actions formulae are 

valid in more than one world. This is due to the fact that they are formulae that describe 

changes of state. As a result, the Modal Logic of Actions interpreted using a Kripke structure 

describes the effects that the execution of a process produces in the state. 

5.2.2. π - Calculus 
The formalism that is used to specify and formalize the processes of the PRISMA model is π-

calculus [Mil93]. It has been selected because it is a model to specify concurrent processes. In 

addition, it is an advance over the Calculus of Communicating Systems (CCS) [Mil80] due to 

the fact that π-calculus provides mechanisms for specifying mobility and evolution of 

concurrent software systems. π-calculus is presented as the best candidate to describe the 

processes that are performed in software architectures due to the fact that the computation of 

architectural elements is concurrently executed, the configurations of software architectures are 

continuously evolving, and architectural elements must be mobile when software architectures 

are distributed. For this reason, PRISMA uses π-calculus to specify the protocols (processes) 

that architectural elements execute. π-calculus has also been used to formalize the 

computational semantics of PRISMA because it provides the necessary primitives to formalize 
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PRISMA. As a consequence, it is not necessary to introduce a new formalism to formalize the 

computational semantics of PRISMA, thus facilitating the understanding of this formalization. 

π-calculus is based on the notion of naming.  A name can reference different entities such as 

an address, an identifier, a pointer, a channel, etc. Unlike object-oriented approaches, the 

primitive of π-calculus is the naming of channels, and not the naming of agents. This is a 

notable difference because it is not possible to directly reference the name of a process from 

another process that wants to communicate with it. The communication between two processes 

is only possible if a process references the other process through the name of the channel that 

permits the access. Another important property is that the name of the channel should be 

unique because names do not have structure; in other words, it is not possible to use the dot 

mechanism1 as in object-oriented programming approaches to reference names.  

The most widely-known variants of the π-calculus are: monadic π-calculus and polyadic π-

calculus . The former only permits sending a single value through the channel (name), and the 

latter permits sending several values through the channel. Polyadic π-calculus is the formalism 

that has been chosen to specify the concurrent processes of PRISMA, since the use of polyadic 

π-calculus is easier and more flexible than monadic π-calculus. 

5.2.2.1. Main Concepts of π-calculus 
This section presents the main concepts of the original π-calculus, i.e., the main concepts of 

monadic π-calculus.  

The primitive concept of π-calculus is the name. The other concept that exists in π-calculus 

is the process. Processes are built from names by the following syntax: 

0|)(|!|||.:: PxPQPPP
Ii ii νπ∑∈

=  

In this definition of a process P, I is a set of indexes and the prefix π, which appears in the 

π.P expression, represents an atomic action, exactly the first action that is performed by π.P. 

The π prefix can have the three forms that are presented following: 

                                                      

1 ClassName.servicename, ClassName.attributename 
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 x (y) : this prefix means that “input the name y along the link or channel named x” 

 
__
x (y): this prefix means that “output the name y along the link or channel named x” 

 τ :  this prefix means silence. It represents an internal action 

 The operation P | Q, which appears in the definition of P, means that the processes P and Q 

are concurrently executed (parallel composition). The operation !P means replication, that 

is, to automatically create as many copies as are necessary of the process P (infinite 

copies). The operation (νx)P declares a new name call x and its scope is restricted to the 

process P. And finally, the process 0 means that it is a null process. 

5.2.2.2. PRISMA dialect of π-calculus 
There are several versions of the π-calculus, as well as variations of the syntax. The version of 

π-calculus that has been used in this thesis is not the original version of π-calculus (monadic π-

calculus). In fact, monadic π-calculus is the least used version of π-calculus. This thesis uses a 

new version of π-calculus based on polyadic π-calculus and some of its widely used extensions 

[Liu95],  [San01], [Bar95], [Mil99]. In addition, this version extends the standard polyadic π-

calculus by providing support for priority, which results in the addition of a new action and 

modifies the meaning of other actions. Table 3 presents the syntactic conventions that have 

been adopted in this version of π-calculus with priorities, some derived operators that have 

been defined in other versions, and the new actions that have been defined.  

The syntax that has been adopted varies from the syntax of monadic π-calculus presented in 

the previous section. The main reason for this change is to facilitate the description and analysis 

of the specifications using a standard keyboard. This has been done to avoid symbols above 

letters, and symbols that can be confused with each other such as the symbol ‘|’ that represents 

the parallel composition operation and the non-deterministic selection operation. 

Table 3 shows that the input and output prefixes take the form x?(y)  and x!(y), respectively. 

The input prefix x?(y) defines the reception of a service request, and the output prefix x!(y) 

defines the invocation of a service or the sending of an answer when the is used interanally. 

Since the sequence of processes has been expressed by P  Q, the continuation of the process 
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after an input, output, or silence prefixes have also been specified using the symbol ,  i.e., 

x?(y) P, x!(y) P and τ P, respectively. As a result, the symbol  means the sequence of 

processes and the sequence of prefixes inside a process.  

The original π-calculus does not have a sequence operator due to the fact that π-calculus 

does not provide an adequate notion of termination as CSP algebra provides [Hoa85]. 

However, most of high-level languages present an intuitive notion of sequential composition, 

and therefore something similar to this kind of construction should be described in terms of the 

π-calculus. As a result, it is quite common to simulate this notion of termination in π-calculus 

by using a termination channel as well as the notion of composition of π-calculus. Specifically, 

this simulation is obtained by creating processes with the convention of sending a signal 

through this termination channel when they finish their execution, and receiving this signal 

before they start their execution. This convetion is even syntactically enforced in some 

languages that are based on π-calculus by providing a specific operator such as Pict [Pie00]. 

This convention is also adopted in this thesis by providing an operator of sequential 

composition. This operator is introduced as a syntactic sugar in the PRISMA dialect in order to 

avoid the complexity that the explicit specification of this convention would introduce in the 

language. As a result, this operator of sequential composition is not exactly a derived operator, 

it is just a syntactic schema that simplifies the specification of processes. 

The sequence operator is usually represented by the symbol ‘;’ as in CSP algebra [Hoa85]. 

But, the PRISMA dialect of π-calculus uses the symbol ‘ ’ because it represents the intuitive 

meaning of the compositional sequence better than the symbol ‘;’. The arrow does not only 

represent the sequence graphically, but it also depicts its obligatory direction. 

As a result, P  Q is specified using the PRISMA dialect of π-calculus, it is assumed that 

there are two processes are defined as follows: 

P1(p) ::= (original definition of P).p!()              for p ∉ fn(P) 
Q1(q) ::= q?(). (original definition of Q)            for q ∉ fn(Q) 

 

Finally, what it is meant by this syntactic schema is the following structure:  

 (νx)(P1(x) | Q1(x))  
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It must be taken into account that this is a simplified definition due to the fact that the 

process P could have several branches. This just tries to present the way in which the definition 

works. 
x,y,z           Name  ( service, process, parameter, identifier) 

>−

x ,
>−

y ,
>−

z          Array of names where x, y , z are parameters 

D,E,F          Constant 

P,Q,R          Process 

D ::= P 

         | (x)P         Abstraction 

         | 〈x〉P         Realization 

 

P ::= 0         Null process 

         | x?(y) P        Input prefix  

         | x!(y) P                     Output prefix 

         | τ P         Silence prefix 

         | (υ x).P         Restriction 

         | P + Q         Non-deterministic selection (OR) 

         | P | | Q         Parallel composition 

         | D (x)         Constant application 

         | *P         Replication  

         | | x=y |P         Comparison 

         | P  Q         Sequential composition  

         | if  b then P else Q      Alternative (derived operator) 

         | case( b ▷ P  Q)       Multiple alternative (derived operator)        

         |  (y) : nº P        Priority 

 
Table 3. Polyadic π-calculus with priorities 

 
Since this π-calculus version is based on polyadic π-calculus, it is possible to define an 

array or tuple of names 
>−−>−−>−−

zyx ,, in the same way as polyadic π-calculus establishes. As a 

result, the input and output prefixes take the form x?(y1…yn) and x!(y1…yn), respectively. 
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The operation P || Q represents the parallel composition, i.e., P and Q are concurrently 

executed. As in other versions, this operation is represented by the symbol ‘||’ instead of the 

symbol ‘|’ to avoid possible confusions with the operation OR of other languages. In contrast, 

the operation P + Q represents the non-deterministic choice, i.e., either P is executed or Q is 

executed. In this operation, the symbol ‘+’ is used instead of the symbol ‘|’ to clearly 

distinguish the differences with the symbol ‘||’. 

D(x) and *P are interchangeable operators because they define processes with the same 

capabilities. The operation D(x) represents the instantiation of the process that represents the 

constant D. The operation *P permits the definition of infinite copies of a process without 

executing it recursively, as is necessary with the D(x) operation. As in other versions, the 

replication operation is represented by the symbol ‘*’ instead of the symbol ‘!’ to avoid 

confusions with the output prefix x!(y). 

(x)P represents an abstraction operation. This operation can also be expressed with the more 

explicit notation (λx1…λxn) P, which is an abstraction of names from a process. This operation 

is usually used to define a parametric (abstract) definition of a process (agent). The concretion   

( 〈x〉P ) is the  operation that uses concrete parameters in abstract processes that have been 

previously defined using an abstraction operation.  

The operation |x =y| P introduces the mechanism to compare two names and only executes 

a process when the names are equals. The comparison structures with double (if  b then P else 

Q) or multiple (case( b ▷ P  Q)) alternatives have been derived from this operation. These 

structures appear as derived operators of polyadic π-calculus [Mil93] and other extensions of π-

calculus such as [Liu95],  [San01]. These two derived structures usually substitute the original 

one because they are more expressive.  

As mentioned above, this dialect of π-calculus extends the standard π-calculus by 

introducing the notion of priority. This extension consists of introducing a new action to specify 

priorities. This action emerges from the need to create a mechanism that establishes the priority 

of the execution of services that participate in a process through a non-deterministic selection. 

This mechanism has already been defined for process algebras, specifically for CCS [Cle01]. 
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Priority is especially necessary in those coordination processes that must take into account 

emergency situations and when several invocations of services can arrive at the same time. The 

priority action provides the mechanism to define a partial order of the execution of services.  

In this thesis, this priority operation has been introduced in π-calculus. This operation is 

represented by adding the level of priority after the parameters of the name. The maximum 

priority is 0 and the minimum is no constraint, depending on the system and the levels of 

priority that the user wants to define. As a result, the way of defining a reception of a service 

request or invocation is x ? (y) : nº P and x ! (y) : nº P, respectively. In the case of the 

TeachMover, the service stop, which stops the movements of the robot in emergency 

situations, has a higher priority than other services of the software system such as the service 

movejoint. The invocation of these services using the π-calculus with priorities is specified as 

follows: 
stop!():0 + moveJoint!(NewSteps, Speed):1 

 
If a priority is not specified, the minimum priority (no constraint) is assumed. Finally, it is 

important to note that it is only necessary to define this extension in those systems that require 

different levels of priority in the execution of services, such as emergency systems.  

5.3. CONCLUSIONS 
This chapter has detailed the preliminary notions of this thesis. Robotic tele-operated systems 

have been chosen as application domain for the PRISMA approach, since these provide real 

systems that need real solutions for their development and maintenance processes. Specifically, 

PRISMA has been applied to the TeachMover tele-operated robot, which is used to illustrate 

the main concepts of PRISMA as well as its methodology. 

The formalisms used in this thesis to describe and formalize the PRISMA model have been 

presented. The need to represent changes of state in an architectural model as a consequence of 

service executions has led us to use a Modal Logic of Actions to formalize this behaviour. The 

concurrent nature of processes that are executed in software architecture as well as the evolving 

and distributed nature of software architectures have led us to choose the polyadic π-calculus to 

describe the protocols of PRISMA and to formalize its execution model. Since complex 



Preliminaries 

125 

software systems sometimes need to prioritize the execution of their services, a dialect of 

polyadic π-calculus called polyadic π-calculus with priorities has been defined and adopted in 

this thesis. 
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CHAPTER 6 
6. THE PRISMA MODEL 

 

<< Before a diamond shows its brilliancy and prismatic colours  

it has to stand a good deal of cutting and smoothing.>> 

Anonymous Author 

 

 

PRISMA provides a model for the definition of complex software systems. Its main 

contributions are the way in which it integrates elements from aspect-oriented software 

development and software architecture approaches, as well as the advantages that this 

integration provides to software development. The PRISMA model introduces the notion of 

aspect following an architectural model with connectors and a symmetrical aspect-oriented 

model.  

The purpose of this chapter is to define, formalize and exemplify the main concepts of the 

PRISMA model. First a brief overview of the PRISMA model is presented and then, each one 

of the concepts is formalized and described in detail.  

6.1.  INTRODUCTION TO THE PRISMA MODEL 
PRISMA provides a model for the description of software architectures of complex and large 

systems. It introduces aspects as first-order citizens of software architectures. This means that, 

in PRISMA, aspects are not simulated through other architectural concepts such as connectors, 

views or similar mechanisms as in other approaches. PRISMA creates a new concept for 

modeling concerns called aspects. As a result, PRISMA specifies different characteristics 
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(distribution, safety, context-awareness, coordination, etc.) of an architectural element 

(component, connector) using aspects. 

  From the aspect-oriented point of view, PRISMA is a symmetrical model that does not 

distinguish a kernel or core entity to encapsulate functionality; functionality is also defined as 

an aspect. One concern can be specified by several aspects of a software architecture, whereas a 

PRISMA aspect represents a concern that crosscuts the software architecture. This crosscutting 

is due to the fact that the same aspect can be imported by more than one architectural element 

of a software architecture. In this sense, aspects crosscut those elements of the architecture that 

import their behaviour (see Figure 12).  

 
Figure 12. Crosscutting-concerns in PRISMA architectures 

 
The fact that PRISMA is a symmetrical model is an advantage. This facilitates the 

construction of software architectures since the model does not manage two different concepts 

(class or component, and aspect) in different ways. In addition, the reusability of functional 

properties is independent of the architectural element that imports it because the functionality is 

specified as an aspect. However, if this functionality were implemented as a kernel class of the 

architectural element, the reuse of the functionality would only be achieved by reusing the full 
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architectural element. Consequently, a more uniform model is obtained because of the 

homogeneity of the concepts that build an architectural element. 

A PRISMA architectural element can be seen from two different views: internal and 

external. In the external view, architectural elements encapsulate their functionality as black 

boxes and publish a set of services that they offer to other architectural elements (see Figure 

13). These services are grouped into interfaces to be published through the ports of architectural 

elements. Each port has an associated interface that contains the services that are provided and 

requested through the port. As a result, ports are the interaction points of architectural elements. 

 

 
Figure 13. Black box view of an architectural element 

 

The internal view shows an architectural element as a prism (white box view). Each side of 

the prism is an aspect that the architectural element imports. In this way, architectural elements 

are represented as a set of aspects (see Figure 14 ) and the weaving relationships among 

aspects.  

 
Figure 14. White box view of an architectural element 

 
Since PRISMA is a symmetrical aspect-oriented model that it is applied at the architectural 

level, the weaving process does not define the pointcuts between the base code and the aspect 

code and their corresponding advices. In PRISMA, there is no base code; all behaviour of the 
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system is defined as an aspect. As a result, the weaving process is composed of a set of 

weavings, and a weaving indicates that the execution of an aspect service can trigger the 

execution of services in other aspects. From the AOP point of view PRISMA weavings can be 

defined as follows: every service of an aspect is a join point , the services that  trigger a weaving 

are the pointcuts, and the services that are executed as a consequence of weavings are the 

advices. In PRISMA, in order to preserve the independence of the aspect specification from 

other aspects and weavings, weavings are specified outside aspects and inside architectural 

elements. As a result, aspects are reusable and independent of the context of application and 

weavings weave the different aspects that form an architectural element. This way of 

specifying weavings achieves not only the reusability of the aspects in different architectural 

elements, but also the flexibility of specifying different behaviours of an architectural element 

by importing the same aspects and defining different weavings.  

The communications between the white box and black box views is possible by means of 

interfaces; which are associated to ports and are used by aspects (see Figure 15). Consequently, 

a request for a service that arrives to a port of an architectural element is processed by an aspect 

that uses the same interface that is used by this port. 

 
Figure 15. Communication between the white box and the black box views 

 

PRISMA has three kinds of architectural elements: components, connectors, and systems. 

Components and connectors are simple, but systems are complex components. A component is 

an architectural element that captures the functionality of software systems and does not act as a 
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coordinator among other architectural elements; whereas, a connector is an architectural 

element that acts as a coordinator among other architectural elements. 

Connectors do not have the references of the components that they connect and vice versa. 

Thus, architectural elements are reusable and unaware of each other. This is possible due to the 

fact that the channels defined between components and connectors have their references 

(attachments) instead of architectural elements. Attachments are the channels that enable the 

communication between components and connectors. Each attachment is defined by attaching 

a component port with a connector port. 

 
Figure 16. Attachaments 

 

PRISMA components can be simple or complex. The complex ones are called systems. A 

PRISMA system is a component that includes a set of architectural elements (connectors, 

components and other systems) that are correctly attached. In addition, a system can have its 

own aspects and weavings as components and connectors. Since a system is composed by 

other architectural elements, the composition relationships among them must be defined. These 

composition relationships are called bindings. Bindings establish the connection among the 

ports of the complex component (the system) and the ports of the architectural elements that a 

system contains (see Figure 17). 

In PRISMA, the dynamics of aspect-oriented architectures are treated at the meta-level. The 

meta-level contains the elements that define the PRISMA concepts as data. They can be 

created, modified and destroyed through the execution of the services of the meta-level. In this 

way, the execution of services is reflected in the architecture by updating this data (the concept 

of reflection). As a result, the PRISMA meta-level allows for the creation, destruction and 

evolution of architectural elements and aspects as well as the dynamic reconfiguration of 

software architectures. The PRISMA meta-level is represented by means of a metamodel that 
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contains one metaclass for each PRISMA concept. These metaclasses define a set of properties 

and services for each concept considered in the model (see chapter 7). 

 
Figure 17. Systems 

6.2. PRISMA FORMALIZATION 
In this section, each one of the concepts is formalized using the Modal Logic of Actions (see 

section 5.2.1) to formalize the change of state and π-calculus (see section 5.2.2) to formalize the 

semantics of the processes and their execution.  

6.2.1.  Interface 
An interface publishes a set of services. It describes the signature of the services that can be 

invoked or requested through that interface. The signature of a service specifies its name and 

parameters. The data type and the kind (input/output) of parameters are also declared. 

An example in the TeachMover robot is the ImotionJoint interface that publishes the 

services needed to move a joint of the robot (see Figure 18 and Figure 19). This interface 

publishes two services and specifies their signatures: moveJoint and stop. The moveJoint 

service allows the movement of a joint indicating the number of half-steps and the speed at 
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which the movement must be executed as input parameters. The stop service allows an 

emergency stop of the joint. 

 

        
Figure 18. Specification of the interace IMotionJoint 

 

 
Figure 19. The interface IMotionJoint  

6.2.2.  Service 
A service is a process that executes a set of actions to produce a result. Services can be private 

or public; private services are not published by any interface. In addition, they can be simple or 

complex. A complex service is composed of a set of services that are executed in a 

transactional way (all or nothing), these services are called transactions. 

Formalization of Services 

Let S be a service. The semantics of S is a process in the polyadic π-calculus, called PS. This 

process has a channel CS through which it can be invoked for execution (see Figure 20).  We 

shall see in section 6.2.6 that services are not invoked directly by other processes but through 

weavings that coordinate execution of services within architectural elements. 

 

 
Figure 20. Formalization of a service 

 
Invocation of services 

Interface IMotionJoint 

   moveJoint (input NewSteps: integer, input Speed: integer); 

   stop(); 

End_Interface IMotionJoint; 
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Let 
>−

x = x1…xn be the input parameters of S and 
>−

y = y1…ym be its output parameters. The 

invocation of S is formalized by means of an invocation through CS. In addition, each output 

parameter yi has a return channel ryi that is created dynamically at each invocation using the 

operation restriction of π-calculus (υ). These channels are used to transmit the results of S and 

to acknowledge when S has finished executing. As a result, the invocation of a service is 

captured by the following process:  

(υ yr
>−

) (CS !( 
>−

x , yr
>−

)  ry1?(y1)…rym?(ym)) 
Service 

The process PS can be divided into the following three actions: 

• Reception of requests: The first action of PS must be the reception of the messages that 

arrive at CS. This reception is specified as follows: 

      CS? (
>−

x , yr
>−

) 

 
• Execution: The execution of PS consists of processing a set of internal actions. These 

internal actions create the output parameters (
>−

y =y1…ym) and assign them a value. 

This internal execution is specified as follows: 

      (υ 
>−

y ) (τ) 

 

• End: The last action of PS consists in sending the output parameters (
>−

y =y1…ym ) 

through the return channels ( yr
>−

= ry1…rym). In this way, the fact that S has been 

executed is confirmed. This end of execution is specified as follows: 

 
ry1!(y1)… rym!(ym) 

 
As a result, the complete formalization of PS is the replicated sequence of these three 

actions. This replication allows us to execute the service as many times as it is necessary. 
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PS::= *( CS? (
>−

x , yr
>−

)   (υ 
>−

y ) ((τ)  ry1!(y1)… rym!(ym))) 
 

An example in the Teach Mover robot is the moveJoint service introduced in section 6.2.1. 
 

   moveJoint(input NewSteps: integer, input Speed: integer); 

 
As moveJoint does not have output parameters and the system does not need to know when 

the service has finished, it does not create new return channels in its invocation. As a result, this 

service can be invoked from any entity of the software architecture as follows: 
 

moveJoint!(NewHalfSteps, Speed) 

 

During the execution of the service, requests are received and a set of actions is performed 

internally. The latter is captured by the τ expression (silence action see section 5.2.2). 
 

PmoveJoint::= moveJoint?(NewHalfSteps, Speed)  τ 

 

Valuations are used to specify the internal process of a service, that is, the operation τ (see 

section 6.2.4).  

6.2.3.  Played_Role 
A played_role is a process that defines the behaviour of a specific interface. A played role 

establishes how and when the services of an interface can be required or provided. 

Formalization of Played_Roles 

Let PR be a played_role of an interface I. The semantics of PR is a process called PPR that 

establishes a partial order for the requests and invocations of the services of I. These 

invocations and requests are formalized as in section 6.2.2. 

An example in the Teach Mover robot is the played_role ACT for the interface 

IMotionJoint (see Figure 21). This played_role defines a non-deterministic selection between 

the invocation of stop and moveJoint. This means that when this played_role is used in a port 

(see 6.2.5), it restricts the behaviour of the interface to the invocation of its services. 
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Figure 21. Specification of the played_role ACT 

6.2.4.  Aspect 
An aspect defines the structure and the behaviour of a specific concern of the software system. 

Examples of concerns are functionality, coordination, safety, distribution, among others.  

Structure is defined by a set of attributes, each of which has a value in every state. The state 

of the aspect at any given moment is determined by the value of its attributes. An aspect can 

define constraints, which must be satisfied during the execution of the aspect. 

An aspect declares a number of interfaces and defines a semantics for the services that these 

interfaces publish. This semantics captures when the services cannot be executed, how the 

execution of services changes the state of the aspect, and the order in which they can be 

executed. This semantics is provided by preconditions, valuations and played_roles (see 

section 6.2.3), respectively.  

An aspect can be private, that is, it does not publish any of its services and it does not define 

the semantics of any interface. As a result, this kind of aspect does not specify any played_role 

and all its services are private. 

An example of a private aspect is SMotion. This safety aspect describes the behaviour that 

should be taken into account in order to ensure the safety of the Teach Mover robot, the safety 

of operators that control it, and the safety the environment that surrounds them. As it can be 

seen in Figure 22, this aspect does not import any interface because it is private. 

 

 

 

 
 

Figure 22. The private aspect SMotion 
 

An example of a public aspect is the coordination aspect CProcessSuc (see Figure 23) that 

describes the behaviour required to synchronize the actuator and the sensor of a joint in order to 

Safety Aspect SMotion 

… … 

End_Aspect SMotion; 

ACT for IMotionJoint = moveJoint ! (NewSteps, Speed) + stop !(); 
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move the hardware joint. This aspect uses four interfaces to provide this behaviour: 

IMotionJoint to request that a joint be moved, IRead to know whether the joint has moved or 

not, IJoint to receive requests for movements and to notify what happened with the request, and 

IPosition to query and update the position of the joint. 

 

 

 

 
 

Figure 23. The public aspect CProcessSuc 
 

The behaviour of an aspect is defined by means of a protocol. When an aspect is public, the 

protocol describes how the different played_roles and private services are coordinated. When 

an aspect is private, the protocol coordinates the different private services that are specified in 

the aspect. 

The different concerns that have to be taken into account in a software system vary 

depending on the domain. Those concerns that crosscut the software system are defined as 

aspects. The domains in which PRISMA has been applied allow the following kinds of aspects 

to be considered: 

  Functional Aspect: A functional aspect captures the semantics of the information system 

by defining its attributes and behaviour. 

 Coordination Aspect: A coordination aspect defines how architectural elements are 

synchronized while they communicate with each other. 

 Safety Aspect: A safety aspect specifies the safe values and strategies to apply in order to 

ensure the accurate and safe execution of the software system. 

 Distribution Aspect: A distribution aspect specifies the features and strategies that are 

related to its distributed communication by means of patterns [Ali03]. A distribution aspect 

specifies the site where the architectural element is located and indicates when an element 

needs to be moved [Ali05a] 

Coordination Aspect CProcessSuc using IMotionJoint,  

                        IRead, IJoint, IPosition 

   … … 

End_Aspect CProcessSuc; 
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 Contex-Awareness Aspect: A context-awareness aspect provides context-information 

and supports inspection in order to retrieve the structural properties of the provided 

information [Jae03]. 

 Mobility Aspect: A mobility aspect provides mobility services to architectural elements in 

order to be mobile or to move other architectural elements [Ali06], [Ali05b]. 

 Integration Aspect: An integration aspect allows the integration of COTS components 

(Commercial Off-The-Shelf) in PRISMA software architectures in an abstract way. 

This thesis is focused on the functional, coordination, safety, and integration aspects. They 

are the aspects that have been used in the TeachMover. 

Formalization of Aspects 

An aspect is defined by the tuple (A, X, Φ, Π): 

 A: a set of attributes 

  X: a set of services (see section 6.2.2) 

 Φ: a set of formulae in modal logic of actions 

 Π: a set of terms in π-calculus 

Formalization of Φ 

Φ is a set of formulae in modal logic of actions. These formulae define how and when the 

services of an aspect (X) change the value of the attributes of the aspect (A). They are 

valuations, preconditions and constraints. 

 Valuations: Valuations define the change of the state of an aspect when one of its services 

is executed. They are formalized by the following formula: 

                                               ψ  [a] ϕ 

This means that if  ψ is satisfied before the execution of a, ϕ must be satisfied after 

the execution of a. ψ and ϕ are wff that make reference to the states before and after 

the execution of a, respectively. As a result, valuations define the internal process of a 

service (τ, see section 6.2.2 ).  

The FJoint aspect defines a service newPosition, its valuation consists in storing 

the position of the joint (see Figure 24). In this valuation, the ψ wff is empty because it 
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is not necessary for defining the state before the execution of moveJoint. The ϕ wff is 

defined by the expression halfSteps := halfSteps + NewSteps. ϕ establishes that the 

attribute halfSteps will have the value of the HalfStepts and NewSteps2 addition after 

the moveJoint execution.. 

 
Figure 24. Specificatio of the valuation of the service moveJoint 

 

 Preconditions: Preconditions define prohibitions of the execution of actions. They are 

formalized by the following formula: 

                                   ¬ψ  [a] false 

This means that if ψ is not satisfied, a cannot be executed; it is prohibited. ψ is a 

wff that expresses a condition on the state of the aspect.  

In the case of the service newPosition , its precondition establishes that the service 

newPosition can only be executed when the attribute validMovement has the value 

true (see Figure 25).  

 
Figure 25. Specification of the precondition of the service newPosition  

 

 Constraints: Constraints are conditions that must be satisfied throughout the entire 

execution process of the aspect. They can be classified into static or dynamic. Static 

constraints make reference to one state of the aspect whereas dynamic constraints make 

reference to several states of the aspect. They use operators of temporal logic: always3 for 

                                                      

2 The operator “:=” is used for the ϕ formula instead of using the operator “=”because it can 
be interpreted more intuitively.  
3 If there is a formula without a temporal operator, its assumed that the semantics of the 
formula is the semantics of the operator always. 

Preconditions 

       newPosition(NewSteps) if (validMovement = true)

in/out moveJoint(input NewSteps: integer, input Speed: integer); 

          Valuations 

            [in moveJoint (NewSteps, Speed)] 

       tempHalfSteps := NewSteps; 
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static constraints, and sometimes, since, next or until for dynamic constraints. They are 

formalized by the following formulae: 

always ψ, sometimes ψ, ψ since ψ’, ψ next ψ’, ψ until ψ’ 
 

Formalization of Π 

Let A be a public aspect whose behaviour is specified by played_roles PR1…PRn and the 

protocol PRT1. Its semantics is the process PA defined as follows: 

PA::= PR1 || … || PRn || PRT1 
 

This means that the played_roles and the protocol of a public aspect are processes that are 

executed concurrently. For this reason, PA is defined as their parallel composition. During this 

concurrent execution, the protocol communicates with the played_roles and the private services 

of the aspect in order to synchronize them. 

Let PRA be a private aspect whose behaviour is specified by the PRT1 protocol. Its 

semantics is the process PPRA defined as follows: 

PPRA ::= PRT1 
 

This means that the process of a private aspect is its protocol. This is because, as already 

mentioned, a private aspect does not have played_roles and its protocol only synchronizes the 

private services of the aspects. 

6.2.5.  Port 
Ports are the interaction points of architectural elements (components and connectors). Every 

port has a type, which is an interface whose behaviour is specified by a played_role for that 

interface. This played_role (see section 6.2.3) has to be defined in one of the aspects of the 

corresponding architectural element.  

Formalization of Ports 

Let P be a port of an architectural element whose behaviour is specified by the played_role 

PR1 (see section 6.2.3) of an aspect corresponding to the architectural element. Its semantics is 

the process PP  defined as follows: 
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PP ::= PR1 
 

This means that the process of a port is its played_role.  

An example is the port PAct (see Figure 26). It belongs to one of the architectural elements 

of the TeachMover system. This port is typed by the IMotionJoint interface and the ACT 

played_role, which is defined in the CProcessSuc coordination aspect.   

 
 

Figure 26. Specification of the port PAct 

6.2.6.  Weaving 
A weaving specification defines how the execution of a service of an aspect can trigger the 

execution of a service of another aspect. The same service can be involved in several weavings.  

In order to preserve the independence of the aspect specification from other aspects and 

weavings, weavings are specified outside aspects and inside architectural elements. As a result, 

weavings coordinate the different aspects that an architectural element imports.  

A weaving is defined by means of operators that describe the order in which services are 

executed.  

A weaving that relates service s1 of aspect A1 and service s2 of aspect A2 can be specified 

using the following operators: 

 A2.s2 after A1.s1: A2.s2 is executed after A1.s1 

 A2.s2 before A1.s1: A2.s2 is executed before A1.s1 

 A2.s2 instead A1.s1: A2.s2 is executed in place of A1.s1 

 A2.s2 afterif (Boolean condition) A1.s1: A2.s2 is executed after A1.s1 if the condition is 

satisfied. 

 A2.s2 beforeif (Boolean condition) A1.s1: if the condition is satisfied, A2.s2 is executed 

followed by A1.s1; otherwise, only A2.s2 is executed. 

Ports 

      PAct: IMotionJoint, 

              Played_Role CProcessSuc.ACT; 

      … …    

End_Port; 
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 A2.s2 insteadif (Boolean condition) A1.s1: A2.s2 is executed in place of A1.s1 if the 

condition is satisfied. 

The invocation of A1.s1, the second argument of the weaving, triggers the execution of 

weaving (pointcut). When a weaving is specified, the operator is chosen from the trigger 

service point of view; depending on whether the trigger service needs the execution of a service 

before, after, or instead of it (advice). 

Formalization of Weavings 

The semantics of a weaving is a process that intercepts the invocation of a service A1.s1 

and either replaces it with, or executes it in relation to, another service A2.s2. A1.s1 and A2.s2 

belong to different aspects.  

The weaving must be executed each time that A1.s1 is invoked, upon which it executes 

either A2.s2 instead of  A1.s1 or A1.s1 and A2.s2 in the correct order. This means that the 

invocation of a service does not automatically trigger the execution of its associated process. In 

terms of our formalization in π-calculus, and given a service S that the weaving is controlling, 

the weaving process PW interacts with PS via the channel CS defined in 6.2.2 and provides a 

channel CwS that other processes can use to invoke S (see Figure 27). 

 

 
Figure 27. Formalization of a service controlled by a weaving 

 

Taking into account these two channels, the invocation of S by the weaving process is as 

follows: 

(υ yr
>−

)(CS !( 
>−

x , yr
>−

)  ry1?(y1)…rym?(ym)) 
 

The invocation of S by other processes is as follows: 

(υ yr
>−

) (CwS ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 
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Each weaving operator defines a process with a specific behaviour. The processes 

associated with the operators are specified as follows: 

 A2.s2 after A1.s1 

Let AW be A2.s2 after A1.s1. Its semantics is the process PAW defined as follows: 

 
 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 

PAW::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))   

             (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))  ry1 ! (s11)… rym ! (s1m))     
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

 

This means that PAW receives the invocation of A1.s1 from another process (P1..n) through 

CwA1_s1. Because AW is an “after” weaving, PAW starts by invoking A1.s1 using CA1_s1. Then, 

PA1_s1 receives the invocation, executes a set of internal actions, sends the results, and notifies 

the weaving that execution has finished. Next, the second service of the weaving is executed: 

PAW invokes A2.s2 using CA2_s2, and PA2_s2 receives the invocation upon which it executes a set 

of internal actions, sends the results, and notifies the weaving that execution has finished. 

Finally, PAW sends the results to the process that invoked A1.s1. 
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 A2.s2 before A1.s1 

Let BW be A2.s2 before A1.s1. Its semantics is the process PBW defined as follows: 

 
 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 

PBW::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))  

             (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))  ry1 ! (s11)… rym ! (s1m))         
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

 

This means that PBW receives the invocation of A1.s1 from another process (P1..n)  through 

CwA1_s1. Because BW is a “before” weaving, PBW starts by invoking A2.s2 using CA2_s2. Then, 

PA2_s2 receives the invocation, executes a set of internal actions, sends the results and notifies the 

weaving that execution has finished. Next, PBW invokes A1.s1 using CA1_s1, and PA1_s1 receives 

the invocation upon which it executes a set of internal actions, sends the results, and notifies the 

weaving that the execution has finished. Finally, PBW sends the results to the process that 

invoked A1.s1. 
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 A2.s2 instead A1.s1 

Let IW be A2.s2 instead A1.s1. Its semantics is the process PIW defined as follows: 

 
 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 

PIW::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))   

             ry1 ! (s21)… rym ! (s2m))            
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

 

This means that PIW receives the invocation of A1.s1 from another process (P1..n) through 

CwA1_s1. Because IW is an “instead” weaving, PIW invokes A2.s2 instead of A1.s1, PIW invokes 

A2.s2 using CA2_s2. Next, PA2_s2 receives the invocation, executes a set of internal actions, sends 

the results, and notifies the weaving that execution has finished. Finally, PIW sends the results to 

the process that invoked A1.s1. 

 

 A2.s2 afterif (boolean_condition) A1.s1  

Let AWIF be A2.s2 afterif (Boolean_condition) A1.s1. Its semantics is the process PAWIF 

defined as follows: 
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P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 

PAWIF::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))    

               if (boolean_condition = true) then 

                      (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))  
                       ry1 ! (s11)… rym ! (s1m))            
               else 
                       ry1 ! (s11)… rym ! (s1m))          
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

 

This means that PAWIF receives the invocation of A1.s1 from another process (P1..n) through 

CwA1_s1. Because AWIF is an “after” weaving, PAWIF starts by invoking A1.s1 using CA1_s1. 

Then, PA1_s1 receives the invocation, executes a set of internal actions, sends the results, and 

notifies the weaving that execution has finished. Since, the AWIF is a conditional weaving, it 

has an associated condition. Next, if the boolean condition of the AWIF is true, the second 

service of the weaving is executed; otherwise PAWIF sends the results to the process that invoked 

A1.s1. In the first case, when the condition is satisfied, PAWIF invokes A2.s2 using CA2_s2 and 

PA2_s2 receives the invocation upon which it executes a set of internal actions, sends the results, 
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and notifies the weaving that execution has finished. Finally, PAWIF sends the results to the 

process that invoked A1.s1. 

 A2.s2 beforeif (boolean_condition) A1.s1 

Let BWIF be A2.s2 beforeif (Boolean_condition) A1.s1. Its semantics is the process PBWIF 

defined as follows: 

 
 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 
 

PBWIF::= *(CwA1_s1? ( 
>−

x , yr
>−

)    (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))  

               if (boolean_condition = true) then 

                    (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))   
                    ry1 ! (s11)… rym ! (s1m))            
               else 
                    ry1 ! (s21)… rym ! (s2m))            
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
 

 

This means that PBWIF receives the invocation of A1.s1 from another process (P1..n)  through 

CwA1_s1. Because BWIF is a “before” weaving, PBWIF starts by invoking A2.s2 using CA2_s2. 

Then, PA2_s2 receives the invocation, executes a set of internal actions, sends the results, and 

notifies the weaving that execution has finished. Next, if the boolean condition of the BWIF is 
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true, the first service of the weaving is executed; otherwise PBWIF sends the results of A2.s2 to 

the process that invoked A1.s1. In the first case, when the condition is satisfied, PBWIF invokes 

A1.s1 using CA1_s1 and PA1_s1 receives the invocation upon which it executes a set of internal 

actions, sends the results, and notifies the weaving that the execution has finished. Finally, 

PBWIF sends the results of A1.s1 to the process that invoked A1.s1. 

 A2.s2 insteadif (boolean_condition) A1.s1 

Let IWIF be A2.s2 insteadif (Boolean_condition) A1.s1. Its semantics is the process PIWIF 

defined as follows. 

 
 

P1..n ::= (υ yr
>−

) (CwA1_s1 ! ( 
>−

x , yr
>−

)   ry1?(y1)…rym?(ym)) 

 

PIWIF::= *(CwA1_s1? ( 
>−

x , yr
>−

)     

               if (boolean_condition = true) then  

                    (υ 2sr
>−

) (CA2_s2! ( 
>−

x , 2sr
>−

)  rS21?(s21)… rS2m?(s2m))    
                    ry1 ! (s21)… rym ! (s2m))            
               else 

                    (υ 1sr
>−

) (CA1_s1! ( 
>−

x , 1sr
>−

)  rs11?( s11)… rs1m?( s1m))   
                    ry1 ! (s11)… rym ! (s1m))            
 
 

PA1_s1::= *(CA1_s1? (
>−

x , 1sr
>−

)  (υ 1

>−

s ) ((τ)  rs11!(s11)… rs1m!(s1m))) 
 

PA2_s2::= *(CA2_s2? (
>−

x , 2sr
>−

)  (υ 2

>−

s ) ((τ)  rs21!(s21)… rs2m!(s2m))) 
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This means that PIWIF receives the invocation of A1.s1 from another process (P1..n) through 

CwA1_s1. Because IWIF is a conditional “instead” weaving, if the boolean condition is true, 

PIWIF invokes A2.s2 instead of A1.s1; otherwise PIWIF invokes A1.s1. In the first case, PIWIF 

invokes A2.s2 using CA2_s2. Next, PA2_s2 receives the invocation, executes a set of internal 

actions, sends the results, and notifies the weaving that execution has finished. Finally, PAW 

sends the results of A2_s2 to the process that invoked A1.s1. In the second case, PIWIF invokes 

A1.s1 using CA1_s1. Then, PA1_s1 receives the invocation, executes a set of internal actions, sends 

the results, and notifies the weaving that execution has finished. Finally, PIWIF sends the results 

of A1_s1 to the process that invoked A1.s1. 

The semantics of a set of weavings defined inside an architectural element is the PW 

process: 

              PW ::= PAW1 || …|| PAWn || PBW1 || …|| PBWn || PIW1  || …|| PIWn || PAWIF1 || …|| PAWIFn  
                                        || PBWIF1 || …|| PBWIFn || PIWIF1|| …|| PIWIFn 

 

This means that the weavings are executed concurrently, interacting as specified. In 

addition, the same service can be involved in several weavings of the same architectural 

element and there is an order for processing the different weavings that a service triggers. This 

order establishes that weavings are executed from more restrictive to less restrictive. The order 

is as follows: InsteadIf, Instead, BeforeIf, Before, After, AfterIf. The interblocks and infinite 

loops that could appear using these operators are avoided at the specification time.   

 
 

Figure 28. Specification of a weaving between moveJoint and 
DANGEROUSCHECKING 

 

An example of a weaving appears in the connector that synchronizes the actuator and the 

sensor of a joint in order to move the hardware joint. This connector imports the SMotion safety 

Weavings 

      SMotion. DANGEROUSCHECKING (FTransStepsToAngle(NewSteps), Speed,  

                                  Secure) 

      beforeif (Secure = true) 

      CoordJoint.moveJoint(NewSteps, Speed); 

End_Weavings; 
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aspect and the CProcessSUC coordination aspect presented in 6.2.4. The need for a weaving 

emerges due to the fact that a joint is moved only after the connector is sure that a movement is 

safe. The invocation of the moveJoint service (the second argument of the weaving) of 

CProcessSUC triggers the execution of the weaving (see section 6.2.2). The weaving of the 

connector implies that the DANGEROUSCHECKING service of SMotion will be executed 

before the moveJoint service of CProcessSUC. The condition also establishes that the 

execution of moveJoint must only be performed if the Secure parameter of 

DANGEROUSCHECKING returns true (see Figure 28).  

6.2.7.  Architectural Element 
An architectural element is formed by a set of aspects, their weaving relationships, and one or 

more ports. These ports represent interaction points among architectural elements. There are 

two kinds of architectural elements, components and connectors. 

Formalization of Architectural Elements 

Let AR be an architectural element, A1…An the aspects that it imports, P1...Pm its ports, and 

W its set of weavings.  

AR is defined by the tuple (A, X, Φ, Π): 

 A: the union of the attributes of the aspects A1…An 

  X: the union of the services of the aspects A1…An 

 Φ: the union of the formulae in modal logic of actions of the aspects A1…An 

 Π: the process PAR defined as follows: 

PAR ::= PP1 ||…|| PPm || PA1 || …|| PAn || PW 
 

This means that the processes of the ports, weavings and aspects of the architectural 

element are executed concurrently. For this reason, PAR is defined as their parallel composition. 

6.2.8.  Connector 
A connector is an architectural element that acts as a coordinator between other architectural 

elements. As such, connectors have a coordination aspect. 
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An example is the CnctJoint that synchronizes the Actuator and the Sensor of a joint (see 

Figure 29). This connector imports the SMotion safety aspect and the CProcessSuc 

coordination aspect as mentioned above and is formed by the follow set of ports and weavings 

(see Figure 30): 

 
Figure 29. The CnctJoint connector  

 
 

 
Figure 30. Specification of the connector CnctJoint  

 

Connector CnctJoint 

 

  Coordination Aspect Import CProcessSuc; 

   Safety Aspect Import SMotion; 

  

   Weavings 

 SMotion. DANGEROUSCHECKING(NewSteps, Speed, Secure) 

 beforeif (Safe = true)  

       CProcessSuc.movejoint(NewSteps, Speed); 

 

   End_Weavings;   

  

   Ports 

      PAct : IMotionJoint, 

       Played_Role CProcessSuc.ACT; 

      PSen : IRead, 

       Played_Role CProcessSuc.SEN; 

      PJoint : IJoint, 

             Played_Role CProcessSuc.JOINT; 

      PPos : IPosition, 

       Played_Role CProcessSuc.POS; 

   End_Ports 

 

   … … 

End Connector CnctJoint; 
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6.2.9.  Component 
A component is an architectural element that captures a given functionality of a software 

system. As such, components do not have a coordination aspect. 

An example is the Actuator (see Figure 31). It sends commands to a joint of the robot. 

These commands are performed by the joint or the tool. The Actuator of the TeachMover only 

imports a functional aspect (see Figure 32).  

 
Figure 31. The component Actuator  

 

 
Figure 32. Specification of the component Actuator  

 

6.2.10. Attachment 
An attachment establishes a connection between two architectural elements, more precisely, 

between a port of a component and a port of a connector. 

An attachment is a channel that transmits the invocations and results of services from one port 

to another. It solves mismatches of service names and ensures compatibility of played_roles. 

Played_roles are compatible if: 

 They define the semantics of the same interface or one interface is a subset of the other. 

 They can communicate with each other, i. e., at least one service requested by one of the 

played_roles must be provided by the other. 

Component Actuator 

   Integration Aspect Import RS232; 

 

   Ports 

      PCoord : IMotionJoint, 

              Played_Role RS232.INTMOVE; 

   End_Ports; 

    … … 

End_Component Actuator; 
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Formalization of Attachments 

Let ATCH be an attachment that connects ports PC and PCnct. Let PC be the port of a 

component and PCnct the port of a connector. The semantics of PC and PCnct is defined by 

two played_roles called  PRPC and PRPCnct, respectively (see section 6.2.5). Let CS1…CSn and 

CnS1…CnSm be the services that participate in PRPC and PRPCnct , respectively. The 

formalization of PRPC and PRPCnct is defined as in section 6.2.3. As a result, the semantics of 

PRPC is a process that establishes a partial order for the requests and invocations of the services 

CS1…CSn through the channels CcS1…CcSn.The semantics of PRPCnct is a process that 

establishes a partial order for the requests and invocations of the services CnS1…CnSm through 

the channels CcnS1…CnSm. The semantics of ATCH is a process called PATCH. PATCH 

coordinates the services of PRPC and PRPCnct through the channels that these services provide 

(see section 6.2.2) (see Figure 33). 

 
Figure 33. Formalization of Attachments 

 

The formalization of ATCH is presented in two steps as follows: 

1. Invocation from the component 

The process that formalizes the behaviour of Cs when the component invokes a service is 

defined as follows: 

Pcs ::=  … (υ yrpc
>−

) (CcS1 !( 
>−

x , yrpc
>−

)  rpcy1?(y1)… rpcym?(ym))  

                           ||  …   ||  

(υ yrpc
>−

) (CcSn !( 
>−

x , yrpc
>−

)  rpcy1?(y1)… rpcym?(ym))… 

 

The process that formalizes the behaviour of Cns when the component invokes a service is 

defined as follows: 

Pcns ::=  … CcS1 ?( 
>−

x , yr
>−

)     (υ
>−

y ) ((τ)  ry0!(y0)… rym!(ym))  



PRISMA: Aspect-Oriented Software Architectures 
 

156 

||  …   ||  

CcSn ?( 
>−

x , yr
>−

)  (υ
>−

y ) ((τ) ry0!(y0)… rym!(ym)) … 

 

The process that formalizes the behaviour of ATCH when the invocation of services is 

executed from a component is defined as follows: 

PATCH ::=  CcS1 ? ( 
>−

x , yrpc
>−

)  (υ yr
>−

) (CcnS1 ! ( 
>−

x , yr
>−

)   

                               ry0?(y0)… rym?(ym))  rpcy0!(y0)…rpcym!(ym)  
                               ||  …   ||  

                              CcSn ?( 
>−

x , yrpc
>−

)  (υ yr
>−

) (CcnSm ! (
>−

x , yr
>−

)   

                              ry0?(y0)… rym?(ym))  rpcy0!(y0)…rpcym!(ym) … … 
 

This means that the process receives the invocations from PC and sends the invocation of 

the services with the correct name to PCnct in a concurrent way.  

 

2. Invocation from the connector 

The process that formalizes the behaviour of Cs when the connector invokes a service is 

defined as follows: 

Pcs ::=  … (CcS1 ?( 
>−

x , yrpc
>−

)  (υ
>−

y ) ((τ)  rpcy1!(y1)… rpcym!(ym))  

             ||  …   ||  

    CcSn ?( 
>−

x , yrpc
>−

)  (υ
>−

y ) ((τ)  rpcy1!(y1)… rpcym!(ym))… 

 

The process that formalizes the behaviour of Cns when the connector invokes a service is 

defined as follows: 

Pcns ::=  … (υ yr
>−

) (CcS1 !( 
>−

x , yr
>−

)  ry0?(y0)… rym?(ym))  

||  …   ||  

 (υ yr
>−

)  (CcSn !( 
>−

x , yr
>−

)  ry0?(y0)… rym?(ym)) … 
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The process that formalizes the behaviour of ATCH when the invocation of services is 

executed from a connector is defined as follows: 

PATCH ::=  CcnS1? (
>−

x , yr
>−

)  (υ yrpc
>−

) (CcS1 !( 
>−

x , yrpc
>−

)   

   rpcy0?(y0)…rpcym?(ym))  ry1!(y1)…rym!(ym) 
   ||  … ||  

   CcnSn? (
>−

x , yr
>−

)  (υ yrpc
>−

) (CcSn !( 
>−

x , yrpc
>−

)   

   rpcy0?(y0)…rpcym?(ym))  ry1!(y1)…rym!(ym) … … 
 

This means that the process receives the invocations from PCnct and sends the invocation of 

the services with the correct name to PC in a concurrent way.  

PATCH defines the parallel composition between the processes that define the behaviour of 

ATCH when the invocation is from a connector and from a component. The process PATCH is 

defined as follows: 

PATCH ::= CcS1 ? ( 
>−

x , yrpc
>−

)  (υ yr
>−

) (CcnS1 ! ( 
>−

x , yr
>−

)   

  ry0?(y0)… rym?(ym))  rpcy0!(y0)…rpcym!(ym) ||  …   ||  

  CcSn ?( 
>−

x , yrpc
>−

)  (υ yr
>−

) (CcnSm ! (
>−

x , yr
>−

)   

  ry0?(y0)… rym?(ym))  rpcy0!(y0)…rpcym!(ym) … …   
  || …|| 

  CcnS1? (
>−

x , yr
>−

)  (υ yrpc
>−

) (CcS1 !( 
>−

x , yrpc
>−

)   

  rpcy0?(y0)…rpcym?(ym))  ry1!(y1)…rym!(ym)||  … ||  

  CcnSn? (
>−

x , yr
>−

)  (υ yrpc
>−

) (CcSn !( 
>−

x , yrpc
>−

)   

  rpcy0?(y0)…rpcym?(ym))  ry1!(y1)…rym!(ym) … … 
 

An example of attachment is the channel that connects the Actuator (see Figure 31) and the 

CnctJoint (see Figure 29) (see Figure 35 and Figure 34).  
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Figure 34. Specification of an attachment between the Actuator and the 

CnctJoint  
 

 
Figure 35. The attachment between the Actuator and the CnctJoint 

 

The channel connects the ports PCoord and PAct, which are defined in the Actuator (see 

Figure 32) and the CnctJoint (see Figure 30), respectively. Their played_roles INTMOVE and 

ACT of PCoord and PAct are specified in Figure 36. In addition, the minimum and maximum 

cardinalities of the attachment are specified. They define the connection pattern by constraining 

the minimum and maximum instances of the attachment. These cardinalities can be defined as 

follows: 

connector.port (min, max)  component.portt(min, max) 

  connector.port (min, max) defines how many instances of the attachment can be 

connected to one instance of the connector through the port  

 component.portt(min, max) defines how many instances of the attachment can be 

connected to one instance of the component through the port.  

For example, the semantics of CnctJoint.PAct(1,1) is that an instance of the connector 

CnctJoint must have one and only one attachment of this type connected to the port CoorAct, 

and the semantics of Actuator.PCord(1,1) is that an instance of the component Actuator must 

have one and only one attachment of this type connected to the port RobotAct. 

Attachments 

  AttchActCnct: CnctJoint.PAct(1,1)<--> Actuator.PCoord(1,1); 

      … … 

End_Attachements; 
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Figure 36. Specification of played_roles ACT and ROBOT 

 

The process of the attachment that connects both played_roles is the following: 

 
stop!()  stop?() || 

moveJoint!(Newsteps, Speed)  movejoint? (NewSteps, Speed) 

6.2.11. Binding 
A binding relationship defines the composition between a complex component and one of its 

architectural elements, specifically, between a port of a complex component and a port of one 

of its architectural elements. In PRISMA, complex components are called systems (see 6.2.12).  

A binding is a relay, a channel that redirects the invocations and results of services from one 

port to another. It solves mismatches of service names and ensures the compatibility of 

played_roles. Played_roles are compatible if: 

 They define the semantics of the same interface, or one interface is a subset of the other 

one. 

 They can communicate with each other, i. e., at least one service requested by one of the 

played_roles must be requested by the other, or one service provided by one of the 

played_roles must be provided by the other. 

Formalization of Bindings 

Let PAR be the port of an architectural element of a system and let PS be a port of the 

system. The semantics of PAR and PS are defined by two played_roles called  PRPAR and PRPS, 

respectively (see section 6.2.5). Let ARS1…ARSn and SS1…SSm be the services that participate 

in PRPAR and PRPS, respectively. The formalization of PRPAR and PRPS is defined as in section 

6.2.3. As a result, the semantics of PRPAR is a process that establishes a partial order for the 

requests and invocations of the services of ARS1…ARSn through the channels CARs1…CARsn. 

ACT for IMotionJoint ::= moveJoint ! (NewSteps, Speed)               

                 + stop ! (); 

INTMOVE for IMotionJoint ::= stop ? ()                            

                            + moveJoint ? (NewSteps, Speed); 
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The semantics of PRPS is a process that establishes a partial order for the requests and 

invocations of the services of SS1…SSm  through the channels CsS1…CsSm.  

Let BD be a binding that connects the ports PAR and PS. The semantics of BD is a process, 

called PBD, that coordinates the services of PRPAR and PRPS through the channels that they 

provide for their invocation (see section 6.2.2). When PRPAR and PRPS are linked by a binding, 

PRPS invokes the services provided by the binding BS1…BSp using the channels CBs1…CBsp and 

receives the service invocations from these channels in order to redirect the invocations from 

PS to PAR.  

The semantics of a BD is a process, called PBD. PBD redirects the invocations of the services 

of PRPC and PRPCnct through the channels that these services provide and the channels of the 

services of the binding (see section 6.2.2) (see Figure 37). 

 
Figure 37. Formalization of Bindings 

 

1. An invocation arrives to the system 

PsS receives invocations of services that arrive to PS and redirects invocations to PBD: 

Pss::= … CsS1 ?( 
>−

x , yrs
>−

) (υ yrbs
>−

)  (CBs1 !( 
>−

x , yrbs
>−

)   

          rbsy0?(y0)… rbsym?(ym))  rsy0!(y0)…rsym!(ym)  
           ||  …   ||  

                        CsSm ?( 
>−

x , yrs
>−

)  (υ yrbs
>−

)  (CBsp !( 
>−

x , yrbs
>−

)   

                        rbsy0?(y0)… rbsym?(ym))  rsy0!(y0)…rsym!(ym) … 
 

PARs receives invocations from PBD and sends them through PAR to be processed by the 

architectural element of the system.  

PARs::= … CARs1 ?( 
>−

x , ARsyr
>−

)  (υ
>−

y ) ((τ)  rARs y0!(y0)…rARs ym!(ym) 

                           ||  …   || 

                          CARsn ?( 
>−

x , ARsyr
>−

)  (υ
>−

y ) ((τ)  rARs y0!(y0)…rARs ym!(ym)…  
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The process that formalizes the behaviour of BD when invocations of services arrive to PS 

is as follows: 

PBD::= CBs1 ?( 
>−

x , yrbs
>−

)  (υ ARsyr
>−

)  (CARs1 !( 
>−

x , ARsyr
>−

)   

           rARs y0?(y0)…rARs ym?(ym))  rbsy0!(y0)… rbsym!(ym) 
           ||  …   ||  

                         CBsp ?( 
>−

x , yrbs
>−

)  (υ ARsyr
>−

) (CARsn !( 
>−

x , ARsyr
>−

)   

                        rARs y0?(y0)…rARs ym?(ym))  rbsy0!(y0)… rbsym!(ym) … 
 

This means that PBD receives the invocations from PsS and sends the invocation of the 

services with the correct name to PARs in a concurrent way. 

2.An invocation from the architectural element of the system 

PARs invokes services through PAR: 

PARs::= … (υ ARsyr
>−

)  (CARs1 ! (
>−

x , ARsyr
>−

)  rARs y0?(y0)…rARs ym?(ym)) 

            ||  …   || 

              (υ ARsyr
>−

)  (CARsn ! (
>−

x , ARsyr
>−

)  rARs y0?(y0)…rARs ym?(ym)) … 

 

PsS receives invocations from PBD and sends them through PS in order to request them from 

an external architectural element of the system: 

Pss::=  … CBs1 ?( 
>−

x , yrbs
>−

)  (υ yrs
>−

) (CsS1 ! (
>−

x , yrs
>−

)  

            rsy0?(y0)…rsym?(ym))  rbsy0!(y0)… rbsym!(ym)  
                          ||  …   ||  

            CBsp?( 
>−

x , yrbs
>−

)  (υ yrs
>−

) (CsSm ! ( x0…xn, rsy0…rsym)  

            rsy0?(y0)…rsym?(ym))  rbsy0!(y0)… rbsym!(ym) … 
 

The process that formalizes the behaviour of BD when invocations of services arrive to 

PAR is as follows: 

PBD::= CARs1 ?( 
>−

x , ARsyr
>−

)  (υ yrbs
>−

) (CBs1 ! (
>−

x , yrbs
>−

)   

           rbsy0?(y0)… rbsym?(ym))  rARs y0!(y0)…rARs ym?(ym)  
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          ||  …   ||  

          CARsn ?( 
>−

x , ARsyr
>−

)  (υ yrbs
>−

) CBsp ! (
>−

x , yrbs
>−

)   

          rbsy0?(y0)… rbsym?(ym))  rARs y0!(y0)…rARs ym?(ym) 
 

This means that PBD receives the invocations from PARs and sends the invocation of the 

services with the correct name to PsS in a concurrent way. 

PBD defines the parallel composition between the processes that define the behaviour of BD 

when the invocation is from the system and from a architectural element. The process PATCH is 

defined as follows: 

PBD::= CBs1 ?( 
>−

x , yrbs
>−

)  (υ ARsyr
>−

)  (CARs1 !( 
>−

x , ARsyr
>−

)   

           rARs y0?(y0)…rARs ym?(ym))  rbsy0!(y0)… rbsym!(ym) ||  …   ||  

                         CBsp ?( 
>−

x , yrbs
>−

)  (υ ARsyr
>−

) (CARsn !( 
>−

x , ARsyr
>−

)   

                        rARs y0?(y0)…rARs ym?(ym))  rbsy0!(y0)… rbsym!(ym)  
                        ||  …   ||  

          CARs1 ?( 
>−

x , ARsyr
>−

)  (υ yrbs
>−

) (CBs1 ! (
>−

x , yrbs
>−

)   

           rbsy0?(y0)… rbsym?(ym))  rARs y0!(y0)…rARs ym?(ym) ||  …   ||  

          CARsn ?( 
>−

x , ARsyr
>−

)  (υ yrbs
>−

) CBsp ! (
>−

x , yrbs
>−

)   

          rbsy0?(y0)… rbsym?(ym))  rARs y0!(y0)…rARs ym?(ym) 
 

An example of binding is the channel that communicates the CnctJoint connector (see 

Figure 29) and the Joint system (see Figure 38 and Figure 39).  

 
Figure 38. The binding between the CnctJoint and the Joint of the 

TeachMover 
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Figure 39. Specification of a binding between the Joint and the CnctJoint 
  

The channel connects the ports PJointSystem and PJoint, which are defined in the Joint (see 

Figure 38) and the CnctJoint (see Figure 30), respectively. They have the same played_role, 

JOINT of the CnctJoint (see Figure 40). In addition, the minimum and maximum cardinalities 

of the binding are specified as in the definition of attachments (see section 6.2.10).  

 

 

 
 
 
 

 
Figure 40. Specification of the played_role JOINT  

 

The played_role JOINT is adapted to the PJointSystem in order to be able to communicate 

with the binding channel. This adaptation is performed automatically by the system and the 

user does not have to explicitly specify it. This communication is established as follows:  
 JOINT for IJoint::=  stop?():0   Bstop!():0 +  

                        (moveJoint?(NewSteps, Speed):1  

                          BmoveJoint!(NewSteps, Speed):1 

                         + cinematicsMoveJoint?(NewAngle, Speed):1                   

                          BcinematicsMoveJoint!(NewAngle, Speed):1                   

                         ) 

                          

                         BmoveOK?(Success)  moveOk!(Success); 

 

The binding process that connects the two played_roles is the following: 
 

   … … 

  Bindings 

      PJointSystem(1,1)<--> CnctJoint.PJoint(1,1); 

   End_Bindings; 

… …

JOINT for IJoint ::= stop?():0  +  

                       (moveJoint?(NewSteps, Speed):1  

                        + cinematicsMoveJoint?(NewAngle, Speed):1 

                        ) 

                         

                        moveOk!(Success); 
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                  Bstop?():0  stop!():0   +  

                 (BmoveJoint?(NewSteps, Speed):1  

                   moveJoint!(NewSteps, Speed):1 

                  + BcinematicsMoveJoint?(NewAngle, Speed):1                   

                   cinematicsMoveJoint!(NewAngle, Speed):1) 

                   

                  moveOK?(Success)  BmoveOk!(Success); 

6.2.12.  System 
PRISMA components can be simple or complex. Complex components are called systems. A 

PRISMA system is a component that includes a set of connectors, simple components, and 

other systems that are correctly attached to one another. 

The difference between a system and a simple component is that a system is composed of a 

set of architectural elements (simple components, systems, and connectors) and the attachments 

and bindings that connect them. 

As a component, a system captures the functionality of a software system and does not act 

as a coordinator. The composition of architectural elements can lead to new aspects. These 

aspects and their new weavings belong to the system. Since systems address the functionality 

of software architectures in the same way as simple components, they do not have any 

coordination aspects. 

It is important to take into account that interfaces and played_roles that type the ports of a 

system must be specified by one of the system aspects, or they must be specified by one of the 

ports of the system architectural elements.  

A system is specified as a pattern, so that, it can be reused in any software architecture 

where necessary. This permits not only defining how its architectural elements are connected, 

but also constrains the number of instances that can be created for each one of its architectural 

elements. These constraints concern the minimum and maximum cardinalities, whose default 

values are one and infinite, respectively. 

Sometimes, the aspects of a system require services from the architectural elements of the 

system and vice versa. For this reason, systems must provide a mechanism for their aspects to 

communicate with their architectural elements. However, architectural elements can only 
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communicate with other architectural elements by means of their ports and the attachments or 

bindings that link them; similarly, aspects can only communicate with other aspects by means 

of weavings. A global access between the different aspects and architectural elements of a 

system is a simple solution to this problem. However, it is also important to keep in mind that a 

system and its architectural elements can be distributed. Therefore, in order to prepare 

PRISMA to develop distributed software architectures in the future, the global access solution 

may not be possible because the system architectural elements and the system could be located 

in different sites of the network. For this reason, a solution must be found for new aspects that 

result from composition in order to communicate with the architectural elements of the system 

without using global access. Moreover, this solution should not violate the aspect-oriented and 

software architecture approaches, i.e, aspects can only communicate with other aspects by 

means of weavings, and architectural elements can only communicate with other architectural 

elements by means of their ports and connection relationships (attachments and bindings). In 

order to enforce these rules, the new aspects of a system that result from the composition are 

wrapped inside a component. This way, the aspects of the system can communicate with the 

architectural elements by means of the ports of the wrapper component. As a result, the main 

properties of aspects and architectural elements are preserved as well as their reuse and 

independence.  

Composition of systems and their architectural elements can be inclusive or weak. An 

inclusive composition means that the only way to interact with the architectural elements is 

through the ports of the system. A weak composition means that it is possible to communicate 

directly with the architectural elements of the system.  

Formalization of Systems 

Let SC be the component that wraps the new aspects of a system that result from the 

composition; let P1…Pm be its ports; let A1..An be the aspects of the system; and let W be the set 

of weavings among them.  
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SC is defined by the tuple (A, X, Φ, Π): 

 A: the union of the attributes of the aspects A1…An 

  X: the union of the services of the aspects A1…An 

 Φ: the union of the formulae in modal logic of actions of the aspects A1…An 

 Π: the process PSC defined as follows: 

PSC::= PP1 ||…|| PPm|| PA1 || …|| PAn || PW 
 

Let S be a system, SC the component that wraps its aspects and weavings, P1..Pn its ports, 

AR1..ARm the architectural elements that it contains, and ATCH1..ATCHn and BD1..BDp the 

attachments and bindings that interconnect them, respectively. The semantics S is defined by 

the process PS: 

PS ::=PSC || PAR1 || … || PARm || PATCH1 || … || PATCHn  
|| PBD1 || ... || PBDp 

 

It important to keep in mind that the set of attachments ATCH1…ATCHn not only contains 

the attachments among the architectural elements that the system contains, but also the 

attachments between the SC and these architectural elements. In the same way, the set of 

bindings BD1…BDp not only contains the bindings between the system and its architectural 

elements, but also the bindings between the system and the component SC to publish the 

system behaviour.  

An example of system is the Joint system of the TeachMover robot (see Figure 41).  This 

system defines a pattern to specify architectures for joints of robots such as a base, elbow, 

shoulder, etc. The system Joint imports a functional aspect to manage the position of the joint. 

It defines a port to communicate with the rest of the robot parts. The system also imports the 

types that are necessary to define the architectural pattern so that joints can be defined and the 

number of instances can be constrained. In this case, the types are the Actuator and Sensor 

components and the connector, and the default cardinality of instantiation has been applied, i.e., 

one instance as minimum and one instance as maximum. Finally, the attachments between the 

imported elements and the binding are defined. 
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Figure 41. The Joint system  

 

6.3. CONCLUSIONS 
The PRISMA model has been presented in this chapter. This model allows us to describe 

software architectures of complex and large systems and to improve their reusability and 

maintainability. This is possible because the application of aspect-oriented software 

development to software architectures provides different levels of reusability and maintenance: 

the concern level (aspects) and the functional level (architectural elements).  

 The concern level places the properties of a concern inside an aspect. As a result, the 

modification of a concern is easily found in the aspects of this concern, and the aspects of a 

concern can be reused by any architectural element that needs their properties. 

 The functional level places functional or coordination processes of the business rules of the 

software system in components and connectors, respectively. These can be easily found in 

order to be reused or modified.  

System Joint 

   Functional Aspect Import FJoint; 

    

    Ports 

      PJointSystem : IJoint, 

         Played_Role CProcessSuc.JOINT; 

    End_Ports 

 
    Import Architectural Elements Actuator, CnctJoint, Sensor, 

                                  WrappAspSys; 

   Attachments 

     CnctJoint.PAct(1,1)<--> Actuator.PCoord(1,1); 

      … … 

   End_Attachements; 

 

   Bindings 

      PJointSystem(1,1)<--> CnctJoint.PJoint(1,1); 

   End_Bindings; 

   … … 
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Another important property of this model is the fact that the weavings between aspects and 

the relationships among architectural elements are defined outside aspects, which improves 

their reusability and maintenance.  

Instead of using a kernel or core entity to encapsulate functionality, aspects to define non-

functional requirements and their weavings, this model only uses aspects and weavings to 

define architectural elements. The symmetrical way in which aspects are introduced in 

PRISMA software architectures provides homogeneity to the model and a clean and novel way 

of modelling software architectures. In PRISMA, architectural elements and aspects are used as 

it they were pieces of a puzzle that fit together to form a software architecture. This way of 

specifying PRISMA software architectures is presented in detail in chapter.  

This chapter also has presented the formalization of the model combining the Modal Logic 

of Actions and π-calculus to cope with both the structure and the behaviour of PRISMA 

software architecture. This formalization defines the properties of the model and provides a 

formal language that is independent of technology (see chapter 8) to specify PRISMA software 

architectures and to automatically generate code from its specifications (see section 9.2). 

The work related to the PRISMA model has produced a set of results that are published in 

the following publications: 

 Jennifer Pérez, Manuel Llavador, Jose A. Carsí, Jose H. Canós, Isidro Ramos, 

Coordination in Software Architectures: an Aspect-Oriented Approach, fifth Working 

IEEE/IFIP Conference on Software Architecture (WICSA), IEEE Computer Society 

Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 

2005 (position paper)  

 Nour H. Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsi, Aspect Reusability in Software 

Architectures. The 8th International conference of Software Reuse (ICSR), July, 2004. 

(poster) 

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, Elena Navarro , PRISMA: 

Towards Quality, Aspect Oriented and Dynamic Software Architectures, 3rd IEEE 

International Conference on Quality Software (QSIC 2003), IEEE Computer Society 

Press, pp.59-66, ISBN: 0-7695-2015-4, Dallas, Texas, USA, November 6 - 7, 2003.  
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 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, PRISMA: Development of 

Software Architectures with an Aspect Oriented, Reflexive and Dynamic Approach, 

Dagstuhl Seminar Nº 03081, Report Nº 36 "Objects, Agents and Features",Copyright (c) 

IBFI gem. GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany . Eds.H.-D. Ehrich 

(Univ. Braunschweig, D), J.-J. Meyer (Utrecht, NL), M. Ryan (Univ. of Birmingham, 

GB), pp. 16, Germany, January, 2003. 

 Jennifer Pérez,Nour H. Ali, Isidro Ramos, Jose A. Carsí, PRISMA: Aspect-Oriented and 

Component-Based Software Architectures, Workshop on Aspect-Oriented Software 

Development (DSOA), Conference on Software Engineering and Databases (JISBD), 

Technical Report TR-20/2003 of the Polytechic School of the University of Extremadura, 

pp. 27-36, Alicante, November, 2003. (In Spanish) 

 Jennifer Pérez,  Isidro Ramos,  OASIS as a Formal Support for the Dynamic, Distributed 

and Evolutive Hypermedia Models, Technical Report DSIC-II/22/03, pp. 144, Polytechnic 

University of Valencia, October 2003. (In Spanish) 

 Jorge Ferrer, Ángeles Lorenzo, Isidro Ramos, José Ángel Carsí, Jennifer Pérez, 

Modeling Dynamic Aspects in Architectures and Multiagent Systems, Logic Programming 

and Software Engineering (CLPSE), pp. 1-13, Copenhagen, Denmark, affiliated with 

ICLP, july 2002. 
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CHAPTER 7 
7.  THE PRISMA METAMODEL 

 

<< There are two distinct classes of what are called thoughts: 

 those that we produce in ourselves by reflection and the act of thinking,  

and those that bolt into the mind of their own accord.>> 

Thomas Paine  

 

 

Metamodels define models and establish their properties in a precise way. In addition, 

metamodels facilitate the automation and maintenance of software development thanks to the 

support that modeling tools currently offer for these tasks. In order to take advantage of these 

properties, the PRISMA meta-level is represented by means of a metamodel that contains a set 

of metaclasses that are related to each other. These metaclasses define a set of properties and 

services for each concept considered in the model. The metaclasses and their relationships 

define the structure and the information that is necessary to describe PRISMA architectural 

models.  In addition, the PRISMA metamodel defines the constraints that must be satisfied by a 

PRISMA architectural model. These constraints guide the methodology for modelling 

PRISMA architectural models. At the end of the modelling process, all of them must be 

satisfied in order to ensure that an architectural model is correct.  

The PRISMA metamodel has been specified using the class diagram of the Unified 

Modelling Language (UML) 1.5. and the Object Constraint Language (OCL) 2.0 [UML06]. 

UML has been used to model the metaclasses and their relationships, attributes and services. 

OCL has been used to specify the constraints of the metamodel. The choice of these languages 
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over others is based on the fact that they are standards and are widely extended languages. As a 

result, they facilitate the comprehension of the model by new users. 

In this chapter, each one of the packages of the PRISMA metamodel is presented in detail. 

In addition to the metaclasses, relationships and constraints that packages consist of, the 

attributes and services of the metaclasses are also explained. The services that are presented are 

those that allow the construction of PRISMA architectural models.  

7.1. THE PRISMA METAMODEL 
The PRISMA metamodel is composed of three main packages: Types, Architecture 

Specification, and Common (see Figure 42 ).  

 

 

 

 

Figure 42. Main packages of the PRISMA metamodel 
 

 

 

 

 

Figure 43. The package Types of the PRISMA metamodel 
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The package Types contains the packages Interfaces, Aspects, Architectural Elements and 

Attachments of the PRISMA model (see Figure 43). These packages define the properties of 

PRISMA types. 

The package Architecture Specification defines the elements that form an architectural 

model using the types that are defined in the package Types. This package provides the 

mechanisms to build an architectural model. 

The package Common defines the utilities that are necessary to develop any kind of model. 

These utilities are structured in five sub-packages: DataTypes, Parameters, Constants, 

Formulae and Process. These sub-packages provide mechanisms to define data types, 

parameters, constant values, formulae of different kinds and complex process, respectively (see 

Figure 44). 

 

 

 

 
 

Figure 44. The package Common of the PRISMA metamodel 

7.2. THE PACKAGE “TYPES” 
7.2.1. The Package “Interfaces” 
An interface publishes a set of services. This set of services is composed of at least one service, 

and there is no limit to the number of services that can be specified (see Figure 45). The 

services that make up an interface are called InterfaceServices. These services are defined in an 
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abstract way, without specifying whether they are going to be provided (in), requested (out), or 

provided and requested (in/out) by architectural elements. An InterfaceService only specifies its 

signature. 

 
Figure 45. The package Interfaces of the PRISMA metamodel 

 

The signature of a service specifies its name and parameters. The parameters are defined in 

a specific order. The data type and kind (input/output) of parameters are also defined (see 

Figure 46). 

 
Figure 46. The package SignatureOfService of the PRISMA metamodel 

 

The metaclass InterfaceService inherits its properties from the metaclass 

ServiceDescription. This class allows the creation of services using the service newService, 

whose parameter defines the name of the service that is created. The attribute name stores the 

value of the ServName parameter of newService. The service addParameter adds parameters 

to services (see the Parameter metaclass in Figure 76). 
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The metaclass Interface creates interfaces. The service newInterface creates a new interface, 

whose parameter defines the name of the interface that is created. The service addService adds 

a service to the interface, whose parameter provides the InterfaceService that is added to the 

interface. 

7.2.2. The package “Aspects” 
An aspect defines structure and behaviour of a specific concern of the software system. The 

Aspects package includes all the metaclasses that are necessary to specify an aspect. The 

structure and the behaviour of aspects are defined by attributes, services, preconditions, 

valuations, constraints, played_roles and protocols. These concepts are sub-packages of the 

Aspects package (see Figure 47).  

 

 

 

 

 

Figure 47. The sub-packages of the package Aspects of the PRISMA 
metamodel 

 

The metaclass Aspect (see Figure 48) has two attributes, name and concern. These 

attributes store the name of the aspect and the concern that the aspect belongs to, respectively. 

The service newAspect creates a new aspect, whose parameters define the name, the concern 

and the protocol of the aspect.  
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Figure 48. The metaclass Aspect of the package Aspects of the PRISMA 

metamodel 
 

Aspects may need to store information to successfully perform their computation. For this 

reason, the Aspect metaclass has an aggregation relationship with the Attribute metaclass . This 

relationship aggregates the attributes that an aspect is composed of (see the describe 

aggregation relationship in Figure 48). This aggregation is established by invoking the 

addAttribute service. This service adds attributes to an aspect through its Attr parameter by 

providing the attribute that is added to the aspect. Aspects may need to constrain the value of 

attributes. For this reason, an aspect can be composed of constraints that determine the value of 

aspect attributes (see the satisfy aggregation relationship in Figure 48). 

Aspects must be composed of three or more services. The three services that are required 

are the following: The services begin and end to start and finish the execution of the aspect, and 

at least one service to perform the necessary computations of an aspect (see the belongsTo 

aggregation relationship in Figure 48). Aspect services can be private or public. Public services 

of an aspect are those that are published by an interface whose semantics is defined by the 

aspect. As a result, aspects import the interfaces whose semantics they define (see the using 

association relationship in Figure 47). In order to associate interfaces and services to aspects, 
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the aspect metaclass provides the addInterface and addService services, whose Inter and Serv 

parameters provide the interface and the service that are added to aspects.  

In order to define the semantics of aspect services, aspects are composed of preconditions, 

valuations, played_roles and a protocol (see the aggregation relationships condition, include, 

play and executes in Figure 48). For this reason, the Aspect metaclass has three services to 

associate preconditions, valuations, and played_roles to aspects. These services are 

addPrecondition, addValuation, and addPlayedRole, respectively. 

In addition to these attributes, services, and relationships, the metaclass Aspect has an 

associated set of constraints to completely model its properties (see Figure 49). 

 
Figure 49. Constraints of the metaclass Aspect 

 

These constraints correspond to the OCL rules shown in Figure 49. They specify the 

following: 

<<Every aspect has a “begin” service>> 

<<Every aspect service must participate in the protocol of the aspect>> 

<<Every aspect has an “end” service>> 
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<<For each interface that an aspect imports, the aspect must define at least a played_role 

associated to this interface>> 

<<Every service of an interface that is imported by an aspect must be a service of the 

aspect>> 
 

7.2.2.1. The package “Attributes” 
Attributes store a value of a specific data type. Therefore, each aspect attribute must be 

associated to a data type (see Figure 50). 

 
Figure 50. The package Attributes of the PRISMA metamodel 

 

The metaclass Attribute has two attributes, name and default. The attribute name stores the 

name of the aspect and the sttribute default stores the default value of the attribute when 

necessary. The service newAttribute creates a new attribute, whose parameters define the name 

and the default value of the attribute.  

In PRISMA, it is possible to define different kinds of attributes. The semantics of each kind 

is defined in the kindsofAttributes sub-package of the Attributes package. Attributes can be 

classified into derived and non-derived attributes (see Figure 51). Derived attributes calculate 

their values on demand by applying a derivation rule. The derivation rule is associated to the 

derived attribute (see Figure 52).  Non-derived attributes store their values, and it is possible to 

constrain the fact that they must contain a value by means of the notNull attribute (see the 

NonDerivedAttribute metaclass in Figure 51). If notNull is true, the attributes must contain a 

value; if notNull is false, no value is required. In order to correctly define the semantics of non-
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derived attributes, there are two constraints associated to the NonDerivedAttribute metaclass. 

These constraints correspond to the OCL rules shown in Figure 51. They specify the following: 

<<For each non-derived attribute that cannot contain a null value, there is a postcondition 

of the begin service valuation that must provide a value to the attribute >> 

<<The”notNull” attribute of a constant attribute is always true>> 

 
Figure 51. The package KindsOfAttributes of the PRISMA metamodel 

 
Non-derived attributes can be constant or variable. Constant attributes store values that 

cannot change; i.e., they cannot be modified during the execution of the aspect. Also, variable 

attributes store values that can be modified during the execution of the aspect. 

 

 
Figure 52. The package Derivations of the PRISMA metamodel 
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7.2.2.2. The package “Services” 
The metaclass Service is a specialization of the metaclass InterfaceService (see Figure 53). As a 

result, it inherits all its properties and services. The metaclass Service defines that every service 

of an aspect must be characterized by the behaviour that it offers in the context of the aspect. 

This means that the service can either be provided, requested or both by the aspect. This 

characteristic is specified by the type attribute of the metaclass. The type values are in, out and 

in/out to define the behaviour of a server (provide), a client (request), or both a server and 

aclient (provide and request), respectively. A service of an aspect can also have an alias. An 

alias permits changing the name of an InterfaceService inside the aspect. This metaclass stores 

the alias name and provides the newAlias service to change the name. The parameters of 

newAlias are the service whose name is going to be changed and the new alias.  

 
Figure 53. The package Services of the PRISMA metamodel 

 

There are two kinds of services: simple services and transactions (see Figure 54). A 

transaction is a complex service that it is composed of more than one service and is executed in 

a transactional way (all or nothing) (see the composedService aggregation in Figure 54). A 
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transaction describes a process, which models how and when the different services that 

compose the transaction are executed. As a result, a transaction is a specialization of the 

Process metaclass (see Figure 80). 

 
Figure 54. The package KindsOfServices of the PRISMA metamodel 

 

7.2.2.3. The package “Constraints” 
Constraints are formulae that establish conditions on the state of the aspect that they belong to. 

As a result, each time that a service execution is finished, the value of each attribute must 

satisfy the aspect constraints. As explained in (see section 6.2.4), there are two kinds of 

constraints: static and dynamic (see Figure 55).  

 
Figure 55. The package Constraints of the PRISMA metamodel 

 
The metaclass Constraint is an abstract class that has only one attribute, the name of the 

constraint. This metaclass is specialized into two metaclasses: StaticConstraint and 
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DynamicConstraint. Each one of them provides a constructor service to create instances of 

static and dynamic constraints, respectively. The service newStaticConstraint creates a new 

static constraint giving the name and the condition of the constraint as parameters. The service 

newDynamicConstraint creates a new dynamic constraint, whose parameters define the name 

of the constraint and a condition that uses a temporal operator (see the Formulae package in 

Figure 78). 

7.2.2.4. The package “Preconditions” 
Preconditions establish the condition that must be satisfied to execute an aspect service. 

Therefore, the metaclass Precondition has the aggregation relationship establishCondition and 

aggregation relationship constrains with the metaclasses Condition and Service, respectively 

(see Figure 56). The first aggregation establishes that a precondition must define the service that 

it affects. The second aggregation establishes the condition that must be satisfied to execute the 

service. 

 
Figure 56. The package Preconditions of the PRISMA metamodel 

 
The metaclass Precondition only has one attribute, the name of the precondition. The 

service newPrecondition creates a new precondition, whose parameters define the name, the 

condition that must be satisfied, and the service that will only be executed if the condition is 

satisfied.In addition, the metaclass Precondition has an associated constraint in order to ensure 

that the aspect execution is not conditioned by a precondition. This constraint corresponds to 

the OCL rule shown in Figure 56. It specifies the following: 
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<<A service begin does not have preconditions associated to it since the start of the aspect 

execution cannot be conditioned by the aspect itself>> 

This constraint is necessary because preconditions are used to define the business logic of 

the software system and not to define the mechanisms of creating, destroying or executing 

instances. 

7.2.2.5. The package “Valuations” 
Valuations establish how the service executions affect the aspect state. This semantics is 

specified by means of two conditions: one that must be satisfied before the service execution 

and another that must be satisfied after the service execution. For this reason, the metaclass 

Valuation has three aggregation relationships with the metaclasses Condition, Service and 

Postcondition (see Figure 57).  

 
Figure 57. The package Valuations of the PRISMA metamodel 

 

The metaclass Condition defines the condition that specifies the state of the aspect before 

the service execution. This condition is optional, this means it does not have to be specified 

when the state before the execution is not relevant to the state change (see the conditioned 

aggregation in Figure 57). However, the specification of the condition after the service 

execution is mandatory. The postcondition must be satisfied after the service execution. Since 

the metaclass Postcondition defines the change in one attribute or parameter and a valuation 

can affect several attributes or parameters, a valuation can have more than one postcondition 

associated to it in order to model the service changes in several attributes and/or parameters (see 

the evaluate aggregation in Figure 57). 
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The metaclass Valuation has only one attribute, the name of the valuation. The service 

newValuation creates a new valuation, whose parameters define the name, the service that 

produces the change of state, and the condition that must be satisfied after the service execution. 

Moreover, it has two services addCondition and addPostCondition. The addCondition adds a 

condition to the valuation. This condition must be satisfied before the service execution. The 

addPostCondition adds more that one postcondition when the valuation affects several 

attributes or parameters.  

7.2.2.6. The package “PlayedRoles” 
PlayedRoles establish how the services of an interface can be executed. As a result, a 

played_role defines a process that orchestrates the service execution of a specific interface. 

Since the metaclass Played_Role defines a process, it inherits the properties of the metaclass 

Process (see the Processes package in Figure 80).  

 
Figure 58. The package PlayedRoles of the PRISMA metamodel 

 

The metaclass Played_Role has two association relationships with the metaclasses Interface 

and Service (see Figure 58). A played_role defines the behaviour of only one interface (see the 
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the for association in Figure 58) and describes the execution process of more than one service 

(see the order association in Figure 58). However, the played_role cannot be related to any 

interface or service of the software system. As a result, these relationships are constrained by 

three constraints. These constraints correspond to the OCL rules shown in Figure 58. They 

specify the following: 

<<Every interface that an aspect imports must have associated a played_role>> 

<<The interface of a played_role is one of the interfaces that imports the aspect that the 

played_role belongs to>> 

<<Every service that participate in a played_role must be a service of the played_role 

interface>> 

The metaclass Played_Role has one attribute, the name of the played_role. The service 

newPlayedRole creates a new played_role, whose parameters define the name and the 

interface. The behaviour of this interface is defined by the played_role. 

7.2.2.7. The package “Protocols” 
A protocol establishes how the services of an aspect can be executed. As a result, a protocol 

defines a process that coordinates the private and public services of an aspect. Since the 

metaclass Protocol defines a process, it inherits the properties of the metaclass Process (see the 

Processes package in Figure 80).   

 
Figure 59. The package Protocols of the PRISMA metamodel 
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A service can be private or public and only belongs to one aspect. For this reason, a service 

can only participate in one protocol: the protocol of the aspect that it belongs to (see the 

privateandpublicsynch association Figure 59). In addition, each service of the aspect must 

participate in its protocol (see the constraint in the Aspect package in Figure 49).These services 

can be either private or public services, but there must be at least three: the begin and end 

services of an aspect, and one service to perform the computation of the aspect (see the 

privateandpublicsynch association in Figure 59). 

A protocol is the glue of the played_roles and the private services of the aspect. As a result, 

the protocol coordinates the many different played_roles that have been defined in the aspect 

that it belongs to. However, a played_role is only coordinated one protocol, its aspect protocol 

(see the coordinates association in Figure 59). Played_roles are specified using the public 

services of an aspect. Since aspect services can be private or public, those that are private are 

not related to played_roles (see the order association in Figure 59). 

The metaclass Protocol has one attribute, the name of the protocol. The service 

newProtocol creates a new protocol by providing the name of the protocol as a parameter. 

7.2.3. The package “ArchitecturalElements” 
In PRISMA, there are three kinds of architectural elements: components, connectors, and 

systems (see Figure 60). The package ArchitecturalElements defines the metaclass 

ArchitecturalElement. It is an abstract metaclass that specifies the commonalities of the three 

kinds of PRISMA architectural elements. In addition, it includes all subpackages that define the 

concepts required to specify PRISMA architectural elements. 

The metaclass ArchitecturalElement has two aggregation relationships with the 

metaclassess Port and Weaving, and one association relationship with the metaclass Aspect (see 

Figure 61). An architectural element has at least one port; the port is part of the architectural 

element and does not have its own entity without the architectural element. In other words, the 

aggregation between the port and the architectural element is inclusive (see the has aggregation 

in Figure 61). An architectural element imports at least one aspect and an aspect can be 

imported by one or more architectural elements of the software system (see the imports 
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association in Figure 61). In addition, an architectural element can include a set of weavings to 

synchronize its aspects. These Weavings are related to the architectural element by means of an 

inclusive aggregation (see the weaves aggregation in Figure 61).  

 

 

 

 

 

 

Figure 60. The subpackages of the package ArchitecturalElements of the 
PRISMA metamodel 

 
The metaclass ArchitecturalElement has one attribute, the name of the architectural 

element. In addition, it has three services addAspect, addPort, addWeaving to associate aspects, 

ports, and weavings to the architectural element, respectively (see Figure 61). It is important to 

emphasize that this metaclass does not have a constructor (new service) because it is an abstract 

class that cannot be instantiated. 

The metaclass ArchitecturalElement has two constraints associated to it in order to 

completely define its properties. These constraints correspond to the OCL rules shown in 

Figure 61. They specify the following: 

<<There are no two ports of an architectural model that have the same interface and the 

same played_role associated >> 

<<An architectural element cannot import more than one aspect of the same concern>> 
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Figure 61. The package ArchitecturalElements of the PRISMA metamodel 

 

The package KindsOfArchitecturalElements is a subpackage of the package 

ArchitecturalElements, and it classifies architectural elements into components and connectors. 

As a result, this package specifies that components and connectors inherit the properties of the 

ArchitecturalElement metaclass, and it also contains the packages that define components and 

connectors. 

 

 
Figure 62. The package KindsOfArchitecturalElements of the PRISMA 

metamodel 
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7.2.4. The package “Weaver” 
The package Weaver defines the weavings of architectural elements. It contains the metaclass 

weaving which is formed by two aspect services. One of the services, the pointcut service, 

triggers the execution of the weaving; the other service, the advice service, is executed as a 

consequence of the weaving . The relationships between the weaving and these two services 

are modelled in the metamodel by means of two aggregations (see Figure 63). In addition, if 

the weaving is conditional, it has a condition associated to it. 

There are certain constraints that must be satisfied in order to associate the appropiate 

services to a weaving definition. As a result, the metaclass Weaving has constraints associated 

to it. These constraints correspond to the OCL rules shown in Figure 64. They specify the 

following: 

<<The services that participate in the weaving must belong to aspects that are imported by 

the architectural element in which the weaving is defined>> 

<<If the weaving uses a conditional operator, it must have a condition associated to it. 

However, if the weaving does not use a conditional operator, it cannot have a condition 

associated to it>> 

<<The services that participate in a weaving must belong to different aspects>> 

<<The aspects of the services that participate in a weaving must define different 

concerns>> 

 
Figure 63. The package Weaver of the PRISMA metamodel 
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Figure 64. Constraints of the metaclass Weaving 

 
The metaclass Weaving  has two attributes, name and operator (see Figure 63). These store 

the name of the aspect and the operator that the weaving applies to the service execution, 

respectively. The service newWeaving creates a new aspect; whose parameters define the 

name, the operator of the weaving, and the two services that participate in the weaving. In 

addition, the metaclass provides a service for adding a condition to a weaving when it uses a 

conditional operator. This service is called addCondition. 

7.2.5. The package “Components” 
The package Components defines simple and complex components (see Figure 65). Since 

components cannot be coordinators of the software system, there is a constraint that specifies 

that a component cannot import an aspect whose concern is coordination.  
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The metaclass Component provides a service to create components. This service is called 

newComponent, and its parameter is the name of the component that is created as a result of the 

service execution. 

 
Figure 65. The package Components of the PRISMA metamodel 

 
Since systems are complex components, they inherit all the properties of components. For 

this reason, the package that defines a system is a subpackage of the Component metaclass. 

7.2.6. The package “Connectors” 
The package Connectors defines the connector architectural element (see Figure 66). Since 

connectors act as coordinators of components, the metaclass Connector has an associated 

constraint that specifies that a connector must import an aspect whose concern is coordination 

(see the first constraint that appears in Figure 66).  

 
Figure 66. The package Connectors of the PRISMA metamodel 
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Morevover, the metaclass Connector has another constraint associated to it that specifies 

the following: 

<<A connector must have at least two attachments associated to it, and each attachment 

must connect the connector to two different components>> 

The metaclass Connector provides a service to create connectors. This service is called 

newConnector, and its parameter is the name of the connector that is created as a result of the 

service execution 

7.2.7. The package “Attachments” 
Attachments define types of communication channels between the ports of a component and 

the port of a connector. As a result, the metaclass Attachment is related to the metaclass Port by 

means of an association relationship (see Figure 73). This relationship establishes that the 

attachment must be related to two ports. However, it is necessary to constrain this association 

with a constraint in order to establish that one of the ports must belong to a component and that 

the other one must belong to a connector. 

 
Figure 67. The package Attachments of the PRISMA metamodel 

 

 
Figure 68. The attachment between the Joint and the CnctMUC of the 

TeachMover 
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card_max_port_component = 1 

card_max_port_connector = 1 

 
card_max_port_component = 1 

card_max_port_connector = n 

 
card_max_port_component = n 

card_max_port_connector = 1 

 
card_max_port_component = n 

card_max_port_connector = n 

 
Figure 69. Different configuration of an architecture depending on the 

maximum cardinality of an attachment 
 

In addition to the attachment name for storing the name of the attachment, the metaclass 

Attachment has four more attributes to specify the attachment communication pattern, i.e., the 

instantiation pattern of the attachment. It is necessary to constrain how many instances of the 

attachment can be attached to the port of the component instance and the port of the connector 

instance. The attribute card_min_port_component specifies the minimum number of 

attachment instances that must be connected to one instance of this component through the 
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port. The attribute card_max_port_component specifies the maximum number of attachment 

instances that must be connected to one instance of this component through the port. The 

attribute card_min_port_connector specifies the minimum number of attachment instances that 

must be connected to one instance of this connector through the port. The attribute 

card_max_port_connector specifies the maximum number of attachment instances that must 

be connected to one instance of this connector through the port. Figure 69 shows an example 

of how the maximum cardinality of the attachment can vary the configuration of the 

architecture at the instance level. The attachment defined between the Joint  system and the 

CnctMUC connector of the TeachMover architecture is used to exemply this variation (see 

Figure 35). 

Moreover, the metaclass Attachment has the service newAttachment to create a new 

attachment. Its parameters are the name of the attachment that is created as a result of the 

service execution, the component port and the connector port that it connects, and the 

minimum and maximum cardinalities for each one of the ports. 

 

7.2.8. The package “Systems” 
The package Systems defines complex components (see Figure 70). Systems are complex 

components that are composed of a set of architectural elements and their attachments. For this 

reason, the metaclass System has an aggregation with each one of the metaclasses Component, 

Connector and Attachment.  

The architectural elements that compose a system can be directly related to other elements 

or their access can only be possible through the system. These two kinds of composition are 

referential and inclusive, respectively. The analyst can model any of these compositions for the 

architectural elements of the system, depending on the requirements of the system. However, 

the definition of an inclusive composition between a system and an architectural element 

requires the definition of a channel between a system port and a port of the architectural 

element. This channel is required to resend the provided and requested services of the 

architectural element through the system port. These channels are called bindings. Therefore, 
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the metaclass System has an aggregation relationship with the metaclass Binding. Bindings are 

defined in the Bindings subpackage of the System package.  

 
Figure 70. The package Systems of the PRISMA metamodel 

 

The metaclass System must be related to at least one component in order to be complex (see 

the containsComp aggregation in Figure 70). In addition, it has an associated constraint that 

ensures a correct composition. It specifies the following: 

<<If a system does not import any aspect, the system must have at least one binding 

associated to it >> 

The metaclass System has four services. The service newSystem creates a new system by 

providing the name of the system as a parameter. In addition, the services addComponent, 

addConnector, addAttachment and addBinding add components, connectors, attachments and 

bindings, respectively, to the system. 

7.2.9. The package “Bindings” 
The metaclass Binding is related to the metaclass Port by means of two association 

relationships (see Figure 73). These associations establish that the binding must be related to a 

system port and an architectural element port. However, the architectural element that the port 

belongs to must be one of the architectural elements of the system. This constraint is applied 
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not only at the types level, but also at the configuration level (instances). For this reason, the 

metaclass Binding has an associated constraint that specifies this requirement. 

In addition to the attribute name for storing the name of the binding, the metaclass Binding 

has four more attributes to specify the communication pattern of the binding. As a result, the 

attribute card_min_port_AR specifies the minimum number of binding instances that must be 

connected to one instance of this architectural element through the port. The attribute 

card_max_port_AR specifies the maximum number of binding instances that must be 

connected to one instance of this architectural element through the port. The attribute 

card_min_port_Sys specifies the minimum number of binding instances that must be 

connected to one instance of this system through the port. The attribute card_max_port_Syst 

specifies the maximum number of binding instances that must be connected to one instance of 

this system through the port. 

 
Figure 71. The package Bindings of the PRISMA metamodel 
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Moreover, the metaclass Binding has the service newBinding to create a new binding. Its 

parameters are the name of the binding that is created as a result of the service execution, the 

system port and architectural element port that it connects, and the minimum and maximum 

cardinalities for each one of the ports. 

7.2.10. The package “Ports” 
Ports publish the services of an interface and constrain how these services can be provided or 

requested by means of a played_role. For this reason, the metaclass Port has two aggregation 

relationships with the metaclasses Interface and Played_Role (see Figure 72). 

 
Figure 72. The package Ports of the PRISMA metamodel 

 
However, ports cannot be related to any interface or played_role of the software system. As 

a result, these relationships are constrained by the following two constraints that correspond to 

the two that appear in Figure 73: 

<<If the architectural element that the port belongs to is not a system, the played_role of 

the port must be defined for one of the aspects that the architectural element imports. In 

addition, the interface of the played_role must be the same one as the interface of the port>> 

 

<<If the architectural element that the port belongs to is a system, there are two possible 

options: 1) either the played_role of the port is defined for one of the aspects that the system 

imports, and the interface of the played_role is the same as the interface of the port; 2) or the 

port has the same interface and played_role as one port of the architectural element of the 

system>> 
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Figure 73. Constraints of the metaclass Port 

 
The metaclass Port has one attribute, the name of the port. The service newPort creates a 

new port by providing the name of the port, the interface and the played_role as parameters. 

 

7.3. THE PACKAGE “ARCHITECTURE SPECIFICATION” 
The package Architecture Specification defines how a PRISMA architecture can be defined 

using the types defined in the package Types. The metaclass PRISMAArchitecture has five 

aggregation relationships with each one of the first-order citizens of the PRISMA model. They 

are components, connectors, aspects, interfaces, and attachments. Since components, 

connectors, interfaces, and aspects are reusable, they can be used by more than one 

architectural element (see Figure 74).  
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Figure 74. The package Architecture Specification of the PRISMA 

metamodel 
 

The metaclass PRISMAArchitecture has one attribute, the name of the architectural model. 

The service newArchitecture creates a new architectural model by providing its name as a 

parameter. In addition, the metaclass provides five services to add attachments, components, 

connectors, interfaces and aspects to the architectural model. In order to ensure that a model is 

correctly defined, the metaclass PRISMAArchitecture has a set of constraints associated to it 

(see Figure 74). Their meaning is the following:  

<<An architectural model must include every aspect that is imported by its components 

and/or connectors>> 

<<An architectural model must include every interface that is used by its aspects >> 
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7.4. THE PACKAGE “COMMON” 
The package Common defines the utilities that are necessary to develop any kind of model. 

These utilities consist of providing mechanisms to define data types, parameters, constant 

values, different kinds of formulae and complex processes. Since these are utilities that are 

common to all models, they are not going to be explained in detail in this thesis. However, the 

different packages that the Common package is composed of are shown in the figures that are 

presented in this section in order to provide the complete specification of the PRISMA 

metamodel. 

 

 
Figure 75. The package DataTypes of the PRISMA metamodel 

 

 

 
Figure 76. The package Parameters of the PRISMA metamodel 

 

 

 
Figure 77. The package Constants of the PRISMA metamodel 
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Figure 78. The package Formulae of the PRISMA metamodel 

 
 
 

 
 

Figure 79. The constraint of the metaclass Postcondition of the Package 
Formulae 



PRISMA: Aspect-Oriented Software Architectures 
 

202 

 
 

Figure 80. The package Processes of the PRISMA metamodel 
 

 
Figure 81. Constraints of the metaclass Transition of the package Processes 
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7.5. CONCLUSIONS 
The PRISMA metamodel has been presented in this chapter. This metamodel permits the 

creation of PRISMA architectural models in a correct way and the accurate definition of their 

properties. In addtition, it facilitates the integration of the PRISMA model into modelling tools 

that support the incorporation of new metamodels. 

The PRISMA metamodel defines the required metaclasses, their properties and services, 

and their relationships with each other. In addition, the metamodel specifies the constraints to 

ensure that the definition of an architectural model is correct.  

In the thesis, only the services for creating architectural models are presented. Each 

metaclass provides a set of services to create the concept that it defines, as well as a set of 

services to relate the concept to other concepts. It is assumed that each one of the metaclasses 

has the necessary services to destroy and delete architectural models in a consistent way.  

The metamodel is the repository structure that stores PRISMA architectural models, 

preserving the reusability of interfaces, architectural elements and aspects. In addition, the 

metamodel introduces a methodology to follow when a PRISMA architectural model is 

specified by means of constraints. 

The PRISMA metamodel has been defined to be able to support evolution at run-time in 

the future. This evolution could be supported at different levels of granularity by adding the 

evolution services to the different metaclasses of the metamodel.  This would consist of adding 

or removing architectural elements of the model, or adding or removing properties of an aspect 

(attributes, services, etc). In addition to adding evolution services to the metamodel, a 

mechanism to invoke these services at run-time should be provided to support run-time 

evolution. 

The PRISMA metamodel with its properties of creation, destruction and evolution has been 

published in the following publications: 

 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Dynamic Evolution in Aspect-

Oriented Architectural Models, Second European Workshop on Software Architecture, 

Springer LNCS 3527, pp.59-16, ISSN: 0302-9743, ISBN: 3-540-26275-X , Pisa, Italy, 

June 2005. 



PRISMA: Aspect-Oriented Software Architectures 
 

204 

 Jennifer Pérez,  Isidro Ramos, Jose A. Carsí, A Compiler to Automatically Generate the 

Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-

II/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish) 
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CHAPTER 8 
8. THE PRISMA ASPECT-ORIENTED 

ARCHITECTURE DESCRIPTION 
LANGUAGE 

 

<< Language is the dress of thought>> 

Samuel Johnson 

 

 

The PRISMA approach provides an Architecture Description Language (ADL) to specify 

software architectures following the PRISMA model. Since the PRISMA model combines 

AOSD with software architectures, its language is an Aspect-Oriented Architecture Description 

Language (AOADL). 

The PRISMA AOADL provides the syntactical constructions that allow the description of 

PRISMA architectural models. It is based on a Modal Logic of Actions [Sti92] and the dialect 

of polyadic π-calculus [Mil93] that is presented in section 5.2. In addition, some of the 

syntactical constructions of the language and the Modal Logic of Actions that is used come 

from the OASIS language [Let98]. OASIS is a formal language that defines conceptual models 

of information systems. As a result, the PRISMA AOADL defines the semantics of the 

architectural models in a formal way.   

The PRISMA AOADL defines the architectural elements at different levels of abstraction: 

the type definition level and the configuration level. The type definition level defines 

architectural types with a high abstraction level in order to be reused by other types or specific 

architectures. 
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 The configuration level designs the architecture of software systems by creating and 

interconnecting instances of the defined architectural elements in the type definition level. In 

other words, it specifies the topology of a specific architectural model.  

The purpose of this chapter is to present the structure and syntax of the PRISMA AOADL 

in detail. In this chapter, only the most important structures are presented. The complete BNF 

of the PRISMA AOADL and its notation is presented in detail in appendix A  

8.1.  THE TYPE DEFINITION LEVEL 
The type definition level of PRISMA defines architectural patterns (complex components) and 

the first-class citizens of the language: interfaces, aspects, components, and connectors.  

8.1.1.  Interface 
An interface describes the signature of the services that can be provided or requested through 

that interface. The specification of the interface consists of specifying its name and the list of 

services that it publishes between the reserved words Interface and End_Interface. Services are 

specified by defining their signature. The signature of a service specifies its name and 

parameters. The data type and the kind (input/output) of parameters are also declared. The 

template for specifying an interface is presented in Figure 82. 

With regard to the nomenclature of concepts, it is recommended to follow an agreement 

during the specification. PRISMA proposes that the names of interfaces start with the letter I in 

uppercase. It is also recommended that the first letter of parameters be written with a capital 

letter and the first letter of services be written with a small letter. 

An example of an interface in the TeachMover robot is the IMotionJoint interface, which 

publishes the moveJoint and stop services (see Figure 83). The moveJoint service has two input 

parameters whose names are NewSteps and Speed. Both parameters store values of the integer 

data type and are input parameters. Input parameters are those that provide information for the 

service execution; whereas output parameters are those that provide the result of the execution 

of the service. In addition, it is possible to declare services without parameters; an example is 

the stop service that the ImotionJoint also publishes. 
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Figure 82. Specification template of interfaces 

 

        
 

Figure 83. Specification of the interface IMotionJoint 
   

8.1.2.  Aspects 
An aspect defines the structure and the behaviour of a specific concern of the software system. 

A common syntax of aspects has been defined independently of the concern that they define. 

The template for specifying an aspect is composed of several sections (see Figure 84). 

The aspect specification is delimited by the reserved words Aspect and End_Aspect. The 

head of an aspect specifies its name and the kind of concern it defines: functional, coordination, 

safety, etc. Moreover, interfaces whose semantics are defined by aspects are detailed next to the 

reserved word using.  

Figure 85 shows the head of the aspect CProcessSuc of the TeachMover software 

architecture. Since the aspect specifies coordination rules, the concern of the aspect is 

Coordination. This aspect uses four interfaces: IMotionJoint, IRead, IJoint, and IPosition. As a 

result, they are specified in the head of the aspect definition. 

 

<interface> ::=   Interface <interface_name>  

               <iservice_list>  

                   End_ Interface <interface_name> ; 

<iservice>  ::=  <service_name> ‘(‘ [<param_service_list>]  ’)’ ‘;’ 

<param_service>  ::=  <parameter_type>   <parameter> 

<parameter_type>  ::=  input | output 

<parameter>  ::=  <parameter_name> ‘:’   <data_type> 

Interface IMotionJoint 

   moveJoint (input NewSteps: integer, input Speed: integer); 

  stop(); 

End_Interface IMotionJoint; 
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Figure 84. Specification template of aspects 

 

 
Figure 85. Specification of an aspect head with interfaces (CProcessSuc) 

 

However, it is also possible to define an aspect without using any interface. This is the case 

of the SMotion aspect of the TeachMover software system (see Figure 86). 

                                 
Figure 86. Specification of an aspect head without interfaces (SMotion) 

 

The sections that the aspect is composed of are explained in the following subsections. 

Safety Aspect SMotion 

… … 

End_Aspect SMotion; 

Coordination Aspect CProcessSuc using IMotionJoint, IRead, IJoint, 

                                      IPosition 

   … … 

End_Aspect CProcessSuc; 

<aspect> ::=  <concern>  Aspect  <aspect_name>  [using  <interface_name_list>]  

                           [ <constant_attributes> ] 

                           [ <variable_attributes> ] 

                          [ <derived_attributes> ] 

                           <services>  

                           [ <preconditions> ]  

                          [ <transactions> ] 

              [ <constraints> ] 

                           [<played_roles>] 

                           <protocol>        

           End_Aspect  <aspect_name>‘;’ 

 

<concern> ::= functional | coordination | safety | integration | distribution |  

           replication | mobility | quality | persistence | presentation |  

           navigational | context-awareness 
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8.1.2.1. Attributes 
Attributes are specified inside an aspect. They are necessary to store information about the 

characteristics of the aspect. Attributes are preceded by the reserved word Attributes and they 

have a name and a data type. The data type defines the kind of values that the attribute can 

store. There are three kinds of attributes:  

 Constant: The stored values cannot change 

 Variable: The stored values can be changed 

 Derived:  The value is calculated on demand applying its derivation rule. 

The template for specifying these three kinds of attributes is presented in Figure 87. In the 

aspect specification, the different kinds of attributes are denoted by the reserved words 

Constant, Variable, or Derived. 

Variable and constant attributes can store a value by default, which can only be modified 

when the attribute is variable. In addition, variable attributes can specify that they must always 

store a value by specifying the reserved word NOT NULL after their data type specification.  

 
Figure 87. Specification template of attributes 

 

Derived attributes must specify the derivation formula that describes how to calculate their 

value. This formula can be a condition, an arithmetic expression, or a function that has been 

defined by the user.  

<constant_attributes>  ::=  Constant  < cons_attribute_seq> 

<variable_attributes>  ::=  Variable  <var_ attribute_seq> 

<derived_attributes>  ::=  Derived  <der_attribute_seq> 

 

< cons_attribute>  ::=  <attribute_name>‘:’  <data_type> [, DEFAULT:] <value> 

<var _attribute>  ::=  <attribute_name>‘:’  <data_type>[‘,’  NOT NULL ]  

                                              [, DEFAULT:] <value> 

 

<der_attribute>  ::=  <attribute_name>‘:’  <data_type>‘,’  derivation‘:’  <formulae>  

<formulae>  ::=  <condition>  |  <arithmetic_expression>  |  <function> 
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With regard to the nomenclature of concepts, PRISMA proposes that the first letter of an 

attribute be written in small letters to clearly distinguish attributes from parameters, which start 

whith capital letters. 

An example of the specification of constant attributes is the specification of the attributes of 

the SMotion aspect (see Figure 88). This aspect specifies the minimum, maximum attributes, 

whose data type is integer and they must store a value. 

 
Figure 88. Specification of the constant attributes of the aspect SMotion 

 

 
Figure 89. Specification of the variable and derived attributes of the aspect 

FJoint  
 

Another example is the specification of the attributes of the FJoint aspect, which shows 

how to specify variable and derived attributes (see Figure 89). It specifies one variable attribute, 

halfSteps. Its data type is integer and is constrained by the NOT NULL property. Therefore, it 

cannot be empty.  

In addition, the aspect specifies the derived attribute angle. In this case, the attribute is 

calculated using a function defined by the user. The function FtransHalfStepsToAngle 

Safety Aspect SMotion 

Attributes 

      Constant 

          minimum, maximum: integer; 

          … … 

End_Aspect SMotion; 

Functional Aspect FJoint using IPosition 

   Attributes 

      Variable 

         halfSteps : integer, NOT NULL; 

      Derived 

         angle: integer, derivation: 

                              FtransHalfStepsToAngle(halfSteps); 

         … … 

End_Aspect FJoint; 
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transforms a datum from a half-steps measure to a degree measure in order to know angle 

corresponds to a specific number of half-steps. 

8.1.2.2. Services 
An aspect defines the semantics of services. The specification of services is preceded by the 

Services reserved word. The set of services specified in an aspect must contain the begin 

service, the end service, and the interface services that the aspect defines. begin and end 

services do not mean that it is possible to instantiate an aspect by itself. These services can only 

be requested from the creation and destruction services of the architectural elements that import 

the aspects that begin and end services belong to (see the creation and destruction services of 

architectural elements in Figure 105).  

 
Figure 90. Specification template of services  

 

The specification of a service consists of defining its name and parameters. Sometimes it is 

necessary for the service name of the aspect to be different from the service name of the 

interface that it belongs to.  The language provides a mechanism to rename the service without 

losing the traceability between the aspect service and the interface service. The aspect defines 

an alias name for the service using the reserved word as. The as indicates that the service name 

of the aspect is an alias and that it is the same service as the interface service, whose name is 

specified after the as. A hypothetical alias for the service moveJoint of the interface 

IMotionJoint is defined in the example shown in Figure 91. 

 

<services>  ::=  Services  <service_section_seq> 

<service_section>  ::=  begin‘(‘  [<param_service_list>]‘)’‘;’  [ <valuations> ]  

           <domain_services_seq>   

                                      end‘(‘  ‘)’‘;’  

<domain_services>  ::=  <service>  [  as  <service_name>] [ <valuations> ] 

<service>  ::=  <service_type>  <service_name>‘(‘  [<param_service_list>]‘)’  

<service_type>  ::=  in  |  out  |  in/out 
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Figure 91. Specification of aliases 

 

In addition, it is important to take into account that the same service can have four different 

behaviours. The first behaviour is when a service is requested, the second behaviour is when a 

request service is received and executed, the third behaviour is when the service sends its 

execution result, and the fourth behaviour is when an aspect receives the results of a service 

execution. The possibility of having these four behaviours depends on whether or not the 

service returns a result. In other words, a service has these four behaviours if it has output 

parameters; otherwise the service only has the first and second behaviours. These behaviours 

are distinguished taking into account the kinds of parameters of the service as well as the 

reserved words in, out, in/out. The patterns of specification to define a specific behaviour are 

the following:    

 A service without output parameters 

• in: The service is provided and executed by the aspect. This is the case of the 

moveJoint service of the RS232 aspect. 
 

       in moveJoint(input NewSteps:integer, input Speed:integer)  

 

• out: The service is requested by the aspect. This is the case of the moveJoint 

or stop services of the functional aspect that models the behaviour of the 

operator (the aspect. FOperator). 
 

       out moveJoint(input NewSteps:integer,   input Speed:integer) 

       out stop() 

 

Coordination Aspect CProcessSuc using IMotionJoint, IRead, IJoint, 

                                       IPosition 

  Services 

      in/out move (input NewSteps: integer, input Speed: integer)  

             as moveJoint; 

     …. …. 

End_ Aspect CProcessSuc; 
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• in/out: This is the way of specifying that the service has both the in and out 

behaviours without repeating the specification of the service, which means 

that:  

o The service is provided and executed by the aspect, and the service is also 

requested by the aspect. This is the case of the moveJoint  service of the 

CProcessSuc aspect: 

 
          in/out moveJoint(input NewSteps:integer,  

                           input Speed:integer)  

 

 A service with output parameters 

 

• in/out: It defines two possible behaviours 

o The service is provided and executed by the aspect (in), and the aspect 

sends the results of the service execution (out). This is the case of the 

check service of the SMotion aspect. 
 

          in/out check (input Degrees: integer,  

                        output MovSecure: boolean) 

 
o The service is requested by the aspect (out) and the aspect receives the 

result of the service (in). This is the case of the moveOk service of the 

CProcessSuc aspect. 

 
          in/out moveok(output Success: boolean); 

 

As can be seen from these patterns, when the service does not have any output parameter, 

the properties in, out and in/out define the behaviour of the services without ambiguities. 

However, when the service has output parameters, the property in/out has two possible 

meanings. This ambiguity disappears thanks to the definition of the service valuations 

presented below. 
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8.1.2.3. Valuations 
A service can have one or more valuations associated to it (see Figure 90). Valuations specify 

the changes in the value of attributes and parameters by the execution of services. The template 

for specifying the service valuations is presented in Figure 92. 

 
Figure 92. Specification template of valuations 

 

The valuations of a service are preceded by the reserved word Valuations. The specification 

of a valuation consists of three sections: condition, action and postcondition. A condition is 

validated in the aspect state before its execution, and its specification is optional. The action 

specifies the service that executes the action by specifying its name and the name of its 

parameters. In addition, the action specifies the property in or out of the service in which the 

valuation must be performed. The property that can be used in the valuation definitions 

depends on the service specification, i.e., if the service has an in/out property it is possible to 

define out valuations and in valuations; whereas if the service only has an out property or the 

service only has an in property it is only possible to define out valuations or in valuations, 

respectively.  

The semantics of the valuation depends on the in and out properties and the use of the 

parameters inside the valuation. The meaning of the postcondition is presented following the 

same classification used above for the services properties and parameters. 

 A service without output parameters 

• in: The service is provided and executed by the aspect.  

o Valuation in: The postcondition must be satisfied after the service 

execution. 

• out: The service is requested by the aspect.  

<valuations>  ::=  Valuations  <valuation_seq> 

<valuation>  ::=  [‘{‘  <condition>  ‘}’]  ‘[‘  <action>  ‘]’  <postcondition_list>  

<action>  ::=  <service_type>  <service_name>‘(‘  [<parameter_name_list>]‘)’   

<postcondition>  ::=  <property>  ‘:=’  <formulae> 

<property>  ::=  <attribute_name>  |  <parameter_name> 



The PRISMA Aspect-Oriented Architecture Description Language 

215 

o Valuation out: The postcondition must be satisfied after the service 

request 
 

• in/out: The service is provided and executed by the aspect, and the service is 

also requested by the aspect. In this case, it is possible to define the two kinds 

of valuations: 

o Valuation in: The postcondition must be satisfied after the service 

execution 

o Valuation out: The postcondition must be satisfied after the service 

invocation 

 

 A service with output parameters 

A service with output parameters always has an in/out behaviour. Its semantics varies 

depending on the service is provided or requested. 

• in/out: It defines two possible behaviours. To specify one behaviour or the 

other, the valuation must be specified as is presented bellow: 

o The service is provided and executed by the aspect, and the aspect sends 

the results of the service execution.  

 Valuation in: The postcondition must be satisfied after the 

service execution. The output parameters of the service cannot 

be used as a right term of the valuation in any case, neither in the 

condition nor in the postcondition, due to the fact that the service 

has not been executed and its output parameters do not have 

value. In fact, output parameters are usually used as a left term of 

the postcondition in order to satisfy the condition that requires 

output parameters to have a value after the service execution. 

An example of this case is the check service of the SMotion 

aspect that has two associated in valuations that define the state 

of the aspect after the service execution. This is due to the fact 
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that the output parameter is not used as a right term of 

conditions. In addition, the postcondition establishes the 

condition that must be satisfied (left term) as a result of the 

service execution (see Figure 93). In this case, the value of the 

output parameter value must be equal to a specific value, 

eithertrue or false. 

      
Figure 93. Specification of the service check 

and its valuations 
             

 Valuation out: The postcondition must be satisfied after 

sending the result. The semantics of the out valuation is 

conditioned by the semantics of the in valuation. If the in obtains 

a result, the out is related to sending the result. Since the service 

has already been executed and the output parameters have value, 

they can be used in the condition and in the right terms of 

postcondition. 
 

o The service is requested by the aspect and the aspect receives the result of 

the service.  

 Valuation in: The postcondition must be satisfied after the 

reception of the service result. Since the service has already been 

executed and the output parameters have value, they can be used 

in the condition and in the right terms of postcondition. 

in/out check (input Degrees: integer,  

               output MovSecure: boolean); 

   Valuations 

   {(Degrees >= minimum) and (Degrees <= maximum)}     

   [in check (Degrees, MovSecure)]   

    MovSecure := true; 

    

   {(Degrees < minimum) or (Degrees > maximum)}        

   [in check (Degrees, MovSecure)]   

   MovSecure := false; 
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An example of this case is the moveOk service of the 

CProcessSuc aspect that has two associated in valuations that 

define the state of the aspect after the reception of the service 

result. This is due to the fact that its output parameter has a value 

that is used in the condition to establish a different action 

depending on its value (see Figure 94). 

 
Figure 94. Specification of the service moveOk 

 and its valuations 
 

 Valuation out: The postcondition defines the state of the aspect 

after the service request. The output parameters of the service 

cannot be used as a right term of the valuation in any case, 

neither in the condition nor in the postcondition due to the fact 

that the service has not been executed and its output parameters 

do not have value. 

8.1.2.4. Preconditions 
An aspect can define preconditions to establish conditions that must be satisfied to execute 

aspect services. The specification of preconditions is preceded by the reserved word 

Preconditions. The precondition specification consists of defining a condition and the service 

that the condition affects. The service is specified by describing its name and the name of its 

parameters in brackets. The condition is preceded by the reserved word if and is specified in 

curly brackets (see Figure 95).  

in/out moveok(output Success: boolean); 

   Valuations 

     {Success = true}     

     [in moveok(Success)]  

     ValidMovement := true, 

 

     {Success = false}     

     [in moveok(Success)]  

    ValidMovement := false;
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An example of a precondition is the precondition of the CProcessSuc aspect shown in 

Figure 96. In this case, the precondition establishes that the newposition service can only be 

executed if the validMovement attribute has the value true. This precondition defines that the 

position of a joint is only modified when the movement has been successfully performed. 

 
Figure 95. Specification template of preconditions 

 
 

 
Figure 96. Specification of preconditions 

 

8.1.2.5. Constraints 
An aspect can define constraints to condition the value of its attributes. The specification of 

constraints is preceded by the reserved word Constraints. The constraint specification consists 

of defining a static or dynamic condition (see Figure 97). If the condition is dynamic, it uses 

ones of the temporal operators offered by the PRISMA AOADL: always, never, since, until, 

and their possible combinations. 

In the TeachMover, none of its aspects have the specification of a constraint. However, it is 

possible to imagine a hypothetical constraint for the halfSteps attribute of the FJoint aspect, in 

which it was specified that the halfSteps attribute must always contain a value higher than 10 

(see Figure 98). 

Coordination Aspect CProcessSuc using IMotionJoint, IRead, IJoint,  

                                      IPosition 

    … …  

   Preconditions 

    newposition(newHalfSteps) if (validMovement = true) 

    … …  

End Aspect CProcessSuc; 

<preconditions>  ::=  Preconditions <precondition_seq> 

<precondition>  ::=  <invocation> if  ‘{‘ <condition> ‘}’  

<invocation>  ::=  <service_name>‘(‘  [<parameter_name_list>]‘)’   
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Figure 97. Specification template of constraints 

 

 
Figure 98. Specification of constraints 

8.1.2.6. Transactions 
An aspect can not only define simple services, it can also define complex services composed of 

simple services and/or other complex services. These complex services are transactions due to 

the fact that they are executed in a transactional way. In other words, the services that compose 

a transaction are atomically executed (all or none). As a result, if the execution of one of the 

transaction services fails, the execution of the services that have already been executed is 

undone.  

The specification of transactions is preceded by the reserved word Transactions. In the first 

instance, the specification of a transaction consists of defining its name in capital letters and the 

Functional Aspect FJoint using IPosition 

Attributes 

      Variable 

            halfSteps: integer; 

 … … 

Constraint 

        always {halfSteps > 10} 

  … … 

End_Aspect FJoint; 

<constraints>  ::=  Constraints  <constraint_seq> 

<constraint>  ::=  always  ‘{‘  <condition>  ‘}’  |  never  ‘{‘  <condition>  ‘}’| 

                             <condition_before>  since  <condition_after>  | 

                             <condition_before>  until  <condition_after>  | 

                             always  <condition_before>  since  <condition_after>  | 

                             always  <condition_before>  until  <condition_after>  | 

                             never  <condition_before>  since  <condition_after>  | 

                             never  <condition_before>  until  <condition_after>  | 

<condition_before>  ::= <condition> 

<condition_after> ::= <condition> 
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list of parameters that are necessary to execute the transaction.  This list of parameters is 

specified in brackets. In the second instance, the process that describes the transaction is 

specified after a colon (see Figure 99). The process specification consists of a set of processes 

that coordinate a set of services. These processes are specified and synchronized with each 

other using the π-calculus with priorities (see section 5.2.2). Each one of these processes has a 

name (channel) that identifies it and allows the rest of the states to call it. In the case of the first 

transaction process, its name is always the transaction name. 

 
Figure 99. Specification template of transactions 

 

An example of a transaction is the transaction DANGEROUSCHECKING of the aspect 

SMotion (see Figure 100). This transaction receives the needed information about the 

movement as input parameters. It provides the information about whether or not the movement 

is safe as a result of its execution. This transaction is composed of two checking services: 

controlSpeed and check. First, controlSpeed is executed to check if the speed is suitable for the 

movement; and second, check is executed to ensure that the movement is safe for the robot, the 

operator, and the environment that surrounds them. The execution of these two services 

<transactions>  ::=  Transactions <transaction_seq> 

<transaction>  ::=  <service_type> <transaction_name>  

                                ‘(‘ [<param_service_list>] ‘)’‘:’   

                  <initial_transaction_process>  <transaction_process_seq>  

                    [ <valuations> ] 

 

<initial_transaction_process>  ::=  <transaction_name>‘::=’  <process>  ‘ ’      

                                             <process_name>‘;’ 

<transaction_process> ::= <process_name> ::= <process>  [‘ ’ <process_name> ] 

<transaction_service>  ::=  [‘{’  <condition>  ‘}’]  <service_name>  <channel_kind>   

                                            ‘(‘  [<parameter_name_list> ]’)’ 

<channel_kind>  ::=  <input_channel>  |  <output_channel> 

<input_channel>  ::=  ‘?’ 

<output_channel>  ::=  ‘!’ 
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together determines whether or not the movement is safe. The result is specified by means of a 

valuation that establishes the value of the Secure output parameter, and is based on the results 

obtained by the simple services that compose the transaction. 

 
Figure 100. Specification of transactions  

Safety Aspect SMotion     … … 

   Services      … … 

     in/out check (input Degrees: integer, output MovSecure: boolean); 

         Valuations 

           {(Degrees >= minimum) and (Degrees <= maximum)}     

           [in check (Degrees, MovSecure)]  MovSecure := true; 

           {(Degrees < minimum) or (Degrees > maximum)}              

           [in check (Degrees, MovSecure)]  MovSecure := false;             

     in/out controlSpeed (input CurrentSpeed: integer,  

                           output SpdSecure: boolean); 

         Valuations 

           {(CurrentSpeed >= 1) and (CurrentSpeed <= 180)}     

           [in controlSpeed (CurrentSpeed, SpdSecure)]   

            SpdSecure := true; 

           {(CurrentSpeed < 1) or (CurrentSpeed > 180)}              

           [in controlSpeed (CurrentSpeed, SpdSecure)]  

            SpdSecure := false;        

   Transactions        

    in/out DANGEROUSCHECKING (input Steps: integer,  

                      input CurrentSpeed:integer, output Secure: boolean): 

    dangerousChecking = controlSpeed ! (CurrentSpeed, SpdSecure)   

                   controlSpeed ? (CurrentSpeed, SpdSecure)  CURRENTPOS; 

    CURRENTPOS = (POS_currentPosition ! (Pos)   

                  POS_currentPosition ? (Pos))  SAFESTEPS;  

    SAFESTEPS = check ! (FTransHalfStepsToAngle (checkPos), MovSecure)   

                check ? (FTransHalfStepsToAngle (checkPos), MovSecure);  

      Valuations 

          {(MovSecure = true) and (SpdSecure = true)}     

          [in DANGEROUSCHECKING(Steps, CurrentSpeed, Secure)]   

          Secure := true; 

          {(MovSecure = false) or (SpdSecure = false)}     

          [in DANGEROUSCHECKING(Steps, CurrentSpeed, Secure)]   

   Secure := false; … … 

End Aspect SMotion; 
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8.1.2.7. Played_Roles 
An aspect also defines the set of roles that can be played taking into account the semantics of 

services. They are called played_roles and their definition is preceded by the reserved word 

Played_Roles. A played_role specification consists of its name in capital letters and a process. 

The process is specified using the dialect of π-calculus with priorities. Every service that 

composes a played_role process belongs to the same interface. This interface is specified after 

the played_role name with the reserved word for and the name of the interface (see Figure 

101).  

 
Figure 101. Specification template of played_roles 

 
 

 
Figure 102. Specification of played_roles of the aspect CProcessSuc  

 
For example, the CProcessSuc aspect defines some played_roles. Two of them are the ACT 

and JOINT played_roles. ACT defines the client behaviour for the movejoint and stop services, 

i.e., it requests the services. Whereas, JOINT defines the server behaviour for these services, 

and it also defines the client behaviour of the moveOk service (see Figure 102). 

Coordination Aspect CProcessSuc using IMotionJoint, IRead, IJoint, 

                                      IPosition 

   … … 

PlayedRoles  

   ACT for IMotionJoint ::= moveJoint ! (NewSteps, Speed) + stop ! (); 

   JOINT for IJoint ::= moveJoint ? (NewSteps, Speed) + stop ? ()           
                      + moveOk ! (Success); 

  … … 

End_Aspect CProcessSuc; 

<played_roles>  ::=  Played_Roles  <played_role_seq> 

<played_role>  ::=  <played_role_name>  for  <interface_name>  ‘=’  

                                 <process>‘;’ 

<played_role_service>  ::=  <service_name>  <channel_kind>  

                                               ‘(‘ [<parameter_name_list>]’)’ 
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8.1.2.8. Protocols 
The language that has been used to specify protocols is a high-level language that is based on 

the dialect of π- calculus with priorities. This high-level Language for PRISMA Protocols 

(LPP) has been defined due to the fact that the PRISMA services are context-aware in 

protocols. As a result, protocols must be specified taking into account the context of the service.  

LPP introduces the context of a prefix using the π- calculus with priorities as a base 

language. This prefix is an action that has been created because in PRISMA, it is sometimes 

necessary to know the different contexts where a name is used (see Table 4).  
 
P_x       Context of the name, where P is the process context and x is the  

                  name of a service 

All |  *       Every context  

 
Table 4. Prefixes with Context of LPP 

 
The context information is an important advantage to constrain the invocation of a name in 

a specific context. The context of the name is added as a prefix of the name as P_x, with P 

being the process context and x the name of the service. This expression might be confused 

with a hierarchy; however, it is not a hierarchy. In fact, the name is not a hierarchical 

composition of names as when the dot naming uses dots for naming (P.x). P_x is the complete 

name and cannot be divided.  This is syntactic sugar, which means that a name x is used in the 

process P. In the case that this same name x is used by another process Q, it can be 

distinguished by the expression Q_x. However, it is important not to lose sight of the fact that x, 

P_x, and Q_x are the same names. As a result, this equivalence must be explicitly specified.  

An example in which this action could be useful is the following:  

<< In the business rules of a bank system, there is a process W that executes a set of internal 

actions that allow the withdrawal of money from a bank account. This process can be invoked 

with the withdrawal name. In addition, there are two different processes, VIPC and C. VIPC 

describes the actions that a VIP customer of the bank can execute, and C describes the actions 

that a normal customer of the bank can execute. Finally, the process B specifies the actions that 

the bank can execute as well as the coordination rules of VIPC and C. The three processes 
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VIPC, C, and B can execute the W process using the prefix withdrawal!(). However, B must 

establish when the withdrawal name can be requested by a VIP customer, a normal customer, 

or the bank, depending on its state. Note that in the specification of the process B, there is no 

way of distinguishing who is invoking the withdrawal from the process B:  
VIPC ::= … … + withdrawal !(money)  VIPC + … …  

C::= … … + withdrawal !(money)  C + … … 

B ::= … … + withdrawal !(money)  B + … … 

 

As a result, in B the context action is necessary to establish when the withdrawal can be 

executed and by whom. The way of defining the different execution contexts of the W process 

is by using the context action specified as VIPC_withdrawal!(), C_ withdrawal!(), 

withdrawal!(). An example in which process B constrains the invocation of the withdrawal 

name from the process VIPC is presented below. This constraint is defined using a variable that 

provides the bank the information about whether or not there are VIP customers in the bank. 
VIPC ::= … … + withdrawal !(money)  VIPC + … …  

C::= … … + withdrawal !(money)  C + … … 

 

B ::= … … + if  (ThereAreVIPCustomers) then BVIP else BC  

     + … … 

BVIP ::= (withdrawal !(money) + VIPC_withdrawal !(money)  

           + C_withdrawal !(money))  B 

BC::= (withdrawal !(money) + C_withdrawal !(money))  B 

Being: 

  withdrawal !(money) = VIPC_ withdrawal !(money) = C_withdrawal !(money) 

>> 

In PRISMA, this action is necessary to specify protocols, which are the glue of the set of 

services of the aspect and the different played_roles (processes) that have been defined inside 

the aspect. To facilitate the definition of protocols, it is assumed that the context specifications 

whose names are the same, without considering the context prefix, refer to the same name. As a 

result, PRISMA performs this equivalence (P_x  = Q_x = x) automatically in order to suitably 

process the behaviour specified. 
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An aspect must define its protocol. The protocol specification is preceded by the reserved 

word Protocol (see Figure 103). Since protocols are the glue of the private services and 

played_roles, the specification of protocols consists of a set of processes that coordinates a set 

of private services and/or services of the played_roles. Each process that forms a protocol 

represents a state of the aspect where the services of this process can be executed. Some of 

these services can produce changes in the aspect state that are relevant for the business logic of 

the software system. As a result, these changes can vary the set of services that can be executed. 

The new state of the aspect is modelled by another process that only allows the execution of the 

permitted services. Thus, the services that change the aspect state provoke a transition between 

the current process (state) and the process that models the new state of the aspect. 

Furthermore, the different processes that make up an aspect can be executed in a concurrent 

way. The specification of each protocol process consists of specifying its name and the 

processes that coordinate the services that the protocol is composed of. The name is specified 

before the symbol ‘::=’, and the process is specified after it. The name of the first process of the 

protocol specifies the name of the aspect in small letters, whereas it is recommended that the 

rest of process names be specified in capital letters. 

The protocol services are specified using the LPP language. As a result, those services that 

participate in played_roles must specify their context in order to clearly identify the played_role 

that they belong to. This is true especially for those cases where one service participates in more 

than one played_role. In addition, in those software systems in which the priority is required, 

each service must specify its priority. As a result, when a process has a non-deterministic 

selection, it can determine the order of service executions. 

An example of a protocol is the protocol that glues the ACT and JOINT played roles of the 

CProcessSuc aspect presented in Figure 102. The partial view of the protocol that it is 

presented in Figure 104 specifies a non-deterministic choice among the execution request of 

the services end, moveJoint and stop. This means that the aspect can receive execution requests 

of the services end, moveJoint or stop. However, if several execution requests arrive at the same 

time and one of them makes reference to the stop service, the stop service is executed before 

the others due to the fact that it has the maximum priority (0). The stop service is modelled in 
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the example TeachMover with priorities since this service is used for emergency situations in 

which the robot must be urgently stopped.  

 
Figure 103. Specification template of protocols 

 
 

 
Figure 104. Specification of the protocol of the aspect CProcessSuc 

 

<protocol>  ::=  Protocol  <initial_process>  <protocol_process_seq> 

<initial_process>  ::=  <aspect_name>  ‘::=’  <process>  ‘ ’  < process_name>‘;’ 

<protocol_process>  ::=  <process_name>  ‘::=’  <process>   

                                         [‘ ’  <process_name>] 

<protocol_service>  ::=  [‘{’  <condition>  ‘}’]  <protocol_service_type>  

                                      <channel_kind>  ‘(‘  [<parameter_name_list>]’)’’:’  

                                      <priority> 

<process_service_type>  ::=  <public_service>  |  <private_service> 

<public_service>  ::=  <played_role_name>’_’<service_name> 

<private_service>  ::=  <service_name> 

<priority>  ::=  <priority_value> 

Coordination Aspect CProcessSuc using IMotionJoint, IRead, IJoint,  

                                      IPosition 

   … … 

Services  

   … …    

  in/out moveJoint(input NewSteps : integer, input Speed : integer) 

  in/out stop() 

  … … 

  Protocol 

     COORDJOINT ::=  begin():1 --> MOTION        

     MOTION ::=end():1       

               + (JOINT_moveJoint?(NewSteps, Speed):1                

                  ACT_moveJoint!(NewSteps, Speed):1)  MOTION        

               + (JOINT_stop?():0              

                  ACT_stop!():0)  MOTION 

                 … … 

End_Aspect CoordJoint; 
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In addition to the non-deterministic choice, the protocol establishes that after the processing 

of the execution request of the JOINT played_role, the same service must be requested using 

the ACT played_role in order to be performed by the robot. In this case, the parameter values 

are the same because their values have not been changed by their valuations. In this way, the 

processes of both played_roles are coordinated by the protocol. 

8.1.3. Simple Architectural Elements: Components and Connectors 
A simple architectural element is specified with the set of ports, the aspects it is formed of, and 

the aspect weavings.  

 
Figure 105. Specification template of simple architectural elements 

 

<component>  ::=  Component  <component_name> 

                                              <aspects_importation_seq> 

                                       [<weavings>] 

                        <ports> 

                                                     <creation> 

                                       <destruction> 

                                End_Component <component_name>‘;’ 

<connector>  ::=  Connector  <connector_name> 

                                                 <aspects_importation_seq> 

                                                 [<weavings>] 

                                <ports> 

                                                 <creation> 

                                                <destruction> 

                              End_Connector  <connector_name>‘;’ 

<aspects_importation>  ::=  <concern>  Aspect   Import  <aspect_name> 

<creation>  ::=  new‘(‘  [<param_service_list>]‘)’  ‘{‘  <start_aspects_seq>  ‘}’ 

<destruction>  ::=  destroy‘(‘  ‘)’  ‘{‘  <stop_aspects_seq>  ‘}’ 

<start_aspects>  ::=  <aspect_name>‘.’begin‘(‘  [<parameter_name_list>]‘)’ 
<stop aspects>  ::=  <aspect name>‘.’end‘(‘  ‘)’



PRISMA: Aspect-Oriented Software Architectures 
 

228 

The aspect specification in section 8.1.2 shows that an aspect definition does not include the 

points where an aspect needs to coordinate with the other aspects (aspect weavings). This 

independence of the aspect specification from other aspects and weavings makes aspects 

reusable. Furthermore, the fact that the specification of weavings is inside architectural 

elements provides the flexibility of specifying different behaviours of an architectural element 

by importing the same aspects and defining different weavings. Therefore, when architectural 

elements are defined, they import the aspect and define their weavings.  An aspect weaving is 

specified by determining the aspects that participate in the weaving, the services of the aspects 

where they are weaved, and the weaving operators.  

Components and connectors are simple architectural elements in PRISMA. Their 

specification is performed in the same way; the only difference is the reserved words that 

precede and end their specifications. These reserved words are Component…End_Component 

and Connector…End_Connector for the specification of components and connectors, 

respectively. The specification of simple architectural elements consists of a name, the 

importation of needed aspects, the weavings among the aspects, a set of ports, and the two 

sections that allow the creation and destruction of the architectural element (see Figure 105). 

The importation of an aspect is specified by defining the concern and the name of the 

aspect. Between the concern and the name, the reserved words Aspect Import must be specified 

(see Figure 105). 

 
Figure 106. Specification template of weavings 

 

The weavings section is optional because an architectural element can import aspects 

without having to synchronize them. The weaving section is preceded by the reserved word 

<weavings>  ::=  Weavings  <weaving_seq>  End_Weavings’;’ 

<weaving>::= <aspect_name>’.’<service_name>‘(‘  [ <parameter_name_list> ]‘)’  

                         <weaving_operator>  <aspect_name>’.’<service_name>  

                         ‘(‘  [ <parameter_name_list>]‘)’ 

<weaving_operator>  ::=  after  |  before  |  instead  |  afterif‘(‘  <condition>  ‘)’ 

                                        | beforeif‘(‘  <condition>  ‘)’ | insteadif‘(‘  <condition>  ‘)’ 
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Weavings and is ended by the reserved word End_Weavings .The specification of a weaving 

consists of the following: specifying the service that is executed as a consequence of the 

weaving (advice) and the aspect that it belongs to; the weaving operator; and the service that 

triggers the weaving (pointcut) and the aspect that it belongs to. If the weaving operator is a 

conditional operator, the condition must be specified (see Figure 106). 

The port section specifies the set of ports of the architectural element. This section is 

preceded and ended by the reserved words Ports and End_Ports, respectively. Each port is 

specified by defining its name, the interface that it publishes, and the played_role that it 

associates to the interface.  The played_role specification is preceded by the reserved word 

Played_Role (see Figure 107). 

 
Figure 107. Specification template of ports 

 
Finally, the creation and destruction sections must be specified (see Figure 105). On the one 

hand, the creation section is preceded by the reserved word new and the list of parameters. 

Next, the invocations of the begin services of the imported aspects are specified in curly 

brackets. The destruction section is preceded by the reserved word destroy. Next, the 

invocations of the end services of the imported aspects are specified in curly brackets. 

An example is the CnctJoint connector that synchronizes the Actuator and the Sensor of a 

joint. This connector imports the SMotion safety aspect and the CProcessSuc coordination 

aspect. The two aspects are coordinated by means of a weaving that ensures that movements of 

the robot are safe for the robot. In addition, the connector has four ports: PAct, PSen, PJoint and 

PPos. All of them export the services of different interfaces and/or have a different played_role 

defined for the interface. In this case, all the played_roles are defined by the CProcessSuc 

aspect. After the port definitions, the creation section is specified by invoking the begin services 

of the SMotion and CProcessSuc aspects. Finally, the destroy service of the connector is 

specified by invoking the end services of both aspects.  

<ports>  ::=  Ports  <port_seq>  End_Ports ‘;’ 

<port>  ::=  <port_name>’:’  <interface_name>‘,’   

                                                Played_Role  <aspect_name>’_’<played_role_name> 
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Figure 108. Specification of the connector CnctJoint 

 

8.1.4. Attachments 
Attachment specifications define the connection among ports of components and connectors. 

They can be specified inside systems (complex components) to connect the components and 

connectors that compose systems or outside systems as part of the software architecture. They 

are specified in the same way in both cases.  

Connector CnctJoint 

   Coordination Aspect Import CProcessSuc; 

   Safety Aspect Import SMotion; 

  

   Weavings 

 SMotion. DANGEROUSCHECKING(NewSteps, Speed, Secure) 

 beforeif (Safe = true)  

       CProcessSuc.movejoint(NewSteps, Speed); 

 

   End_Weavings;   

  

   Ports 

      PAct : ImotionJoint, 

       Played_Role CProcessSuc.ACT; 

      PSen : IRead, 

       Played_Role CProcessSuc.SEN; 

      PJoint : IJoint, 

             Played_Role CProcessSuc.JOINT; 

      PPos : IPosition, 

       Played_Role CProcessSuc.POS; 

   End_Ports 

 

   new(input Argmin: integer, input Argmax: integer) 

      {CProcessSuc.begin(); 

       SMotion.begin(input InitMinimum: integer,  

                     input InitMaximum : integer); } 

  destroy(){ 

            CProcessSuc.end(); 

            SMotion.end();} 

End_Connector CnctJoint; 
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Figure 109. Specification template of attachments 

 
The specification of attachments is preceded and ended by the reserved words Attachments 

and End_Attachments, respectively. Each attachment is specified by defining its name followed 

by the specification of the connector port and the component port separated by the symbol ‘  

’. The connector port specification consists of specifying the connector name, the port name 

and the minimum and maximum cardinalities. The component port specification consists of 

specifying the component name, the port name and the minimum and maximum cardinalities 

(see Figure 109).  

An example of an attachment is the attachment AttchActCnct that connects the CnctJoint 

and the Actuator through their respective ports PAct and PCoord. In this case, their cardinalities 

establish than only one attachment instance can be defined between the ports of the same 

instances of CnctJoint and Actuator. 

 
Figure 110. Specification of an attachment between the Actuator and the 

CnctJoint  

8.1.5. Systems 
The specification of systems permits the definition of architectural patterns that can be reused to 

define the configuration of one or several software architectures. A system specification is 

<attachments>  ::=  Attachments  <attachment_seq>  End_Attachments’;’ 

<attachment>  ::=  <attachment_name> ‘:’  

                                              <connector_name>’.’<port_name>     

                              ‘(‘ <card_min_value> ‘,’ <card_max_value >‘)’         

                               ‘ ’  

                               <component_name>’.’<port_name> 

                               ‘(‘ <card_min_value> ‘,’ <card_max_value>‘)’ 

<card_min>  :=  <natural_value> 

<card_max>  ::=  <natural_value>

Attachments 

 AttchActCnct: CnctJoint.PAct(1,1) <--> Actuator.PCoord(1,1); 

      … … 

End_Attachements; 
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preceded and ended by the reserved words System and End_System, respectively. The 

specification of a system consists of a name, the importation of needed aspects, the weavings 

among aspects, a set of ports, the importation of architectural elements, the attachments among 

architectural elements, the bindings between the system and the architectural elements, and the 

two sections create and destroy systems (see Figure 111). It is important to keep in mind that a 

system can be defined without aspects and weavings, attachments or bindings. As a result, 

these sections of the system specification are optional.  

Systems import aspects and define the weavings among these aspects in the same way as 

simple architectural elements (see Figure 105 and Figure 106). The ports of the system are 

specified in the same way that it is presented in Figure 107. In addition, the set of architectural 

elements, that are necessary to define the system are imported, and the number of instances that 

can be specified at configuration time are constrained. These architectural elements can be 

components, connectors and other systems, and their specification is defined by specifying the 

name and the minimum and maximum number of instances that can be created for each 

architectural element at configuration time. 

Moreover, the connections among the different types of architectural elements are specified 

in order to define the architectural pattern of the system. The attachments inside a system are 

defined in the same way that is presented in section 8.1.4. The bindings among the system ports 

and the connector or/and component ports that the system is composed of are specified.  

The specification of bindings is preceded and ended by the reserved words Bindings and 

End_Bindings, respectively. Each binding is specified by defining its name followed by the 

specification  of  the  system  port  and  the  architectural  element  port  separated  by  the 

symbol ‘  ’. The system port specification consists of specifying the port name and the 

minimum and maximum cardinalities, whereas the architectural element port specification 

consists of specifying the architectural element name, the port name, and the minimum and 

maximum cardinalities (see Figure 112). 
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Figure 111. Specification template of systems 

 

 
Figure 112. Specification template of bindings 

 

Finally, the creation and destruction sections must be specified (see Figure 113). These 

sections specify the signature of the services for creating the system at configuration time. 

These sections establish the parameters and requests required to correctly create the elements 

that compose the system. Then, the parameters and requests are instantiated at configuration 

time. The creation section is preceded by the reserved word new, the list of parameters when 

the system imports aspects, and the list of the number of instances of each architectural element 

or channel of the system. This number establishes the exact number of instances that must be 

<bindings>  ::=  Bindings  <binding_seq>  End_Bindings’;’ 

<binding>  ::=  <binding_name> ‘:’ <port_name>‘(‘  <card_min_value> ‘,’  

                         <card_max_value>‘)’  ‘ ’   <architectural_element>’.’<port_name>  

                        ‘(‘  <card_min_value>‘,’ <card_max_value>‘)’          

<system>  ::=  System  <system_name> 

                                       [<aspects_importation_seq>]  

                                       [<weavings>]   

                                       <ports> 

                                       <architectural_element_importations>    

                                        [<attachments>] 

                                        [<bindings>]   

                                        <system_creation>   

                                       <system_destruction> 

                        End_System <system_name>‘;’ 

<architectural_element_importations>  ::=  Import  Architectural  Elements  

                                                                        <architectural_element_import_list>‘;’ 

<architectural_element_import> ::= <architectural_element> ‘(‘<min_number_value>  

                                                              ‘,’ <max_number_value>‘)’ 

<architectural_element > ::=  <component_name>  |  <connector_name>  |  

                                                    <system name>
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created for each architectural element, attachment and binding at configuration time. Then, the 

requests of the begin services of the imported aspects and the requests of the new services of 

architectural elements, attachments and bindings are specified in curly brackets. The begin 

service of aspects requires the parameters that are necessary in order to start the execution at 

configuration time. The new service of architectural elements also requires the value of the 

parameters that are necessary in order to create the architectural element. The new services of 

binding and attachments relationships need to know the instance name of the instances that 

they connect at configuration time.  

The destruction section is preceded by the reserved word destroy(). Then, the requests of 

the end services of the imported aspects and the destroy services of the architectural elements, 

attachments and bindings are specified in curly brackets. With regard to the attachment and 

binding creation, the template fixes the parameters. This is due to the fact they always have the 

same number of parameters, and the only thing that varies is the name of the instances that they 

connect. 

An example is the Joint system, which imports a functional aspect that allows the system to 

manage its position (see Figure 41). It has a port (PJoinSystem) to communicate with external 

architectural elements (see section Ports, Figure 41). The Joint is composed of an Actuator, a 

Sensor, and a CnctJoint connector that synchronizes them (see section Import Architectural 

Elements, Figure 41). In addition, since it has a functional aspect that needs to communicate 

with the CnctJoint in order to suitably update the joint position, a component that acts as a 

wrapper of the functional aspect has been specified. This component wrapper is called 

WrappAspSys and permits the communication between the aspect of the system and the 

CnctJoint through an attachment (see section 6.2.12).This attachment (AttchPos) and two more 

attachments have been defined to communicate the Actuator with the CnctJoint (AttActCnct) 

and the Sensor with the CnctJoint (AttSenCnct) (see the Attachments section, Figure 41).Also, a 

binding (BndJCnct) has been defined to publish the services of the CnctJoint through the 

PJoint port to the exterior of the Joint (see the Bindings section, Figure 41).  
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Figure 113. Specification template of the creation and destruction of systems 

<system_creation>  ::=  new ‘(‘ [<param_service_list>‘,’]  

                                        <architectural_element_number_list>                 

                                       [’,’ <attachment_number_list>’,’ <binding_number_list>] ‘)’  

                                       ‘{‘[<start_aspects_seq>]<architectural_elements_creation_seq>  

                                          [<attachments_creation_seq>] [<bindings_creation_seq>]  ‘}’ 

<architectural_element_number> ::=  input Num_<architectural_element_name>‘:’  

                                                                 natural 

<attachment_number>  ::=  input   Num_<attachment_name>‘:’ natural 

<binding_number> ::=  input   Num_<binding_name>‘:’ natural 

<architectural_elements_creation >  ::=  new  <architectural_element_name> 

                                                                    ‘(‘ [<param_service_list>]‘)’ 

<attachments_creation >  ::=  new  <attachment_name> ‘(‘<param_attachment>‘)’ 

<param_attachment >  ::= input ArgCnctName: string, input ArgCnctPort: string,   

                                            input ArgCompName: string, input ArgCompPort: string 

<bindings_creation >  ::=  new  <binding_name>  ‘(‘  <param_binding>  ‘)’ 

<param_binding >  ::=  input ArgSysPort: string, input ArgAEName: string,  

                                        input ArgAEPort: string 

<system_destruction> ::= destroy ‘(‘ ‘)’ ‘{‘ [<stop_aspects_seq>]  

                                      <architectural_elements_destruction_seq>          

                                      [<attachments_destruction_seq>] [<bindings_creation_seq>] ‘}’ 

<architectural_elements_destruction> ::=  

                                                                 <architectural_element_name> ’.’ destroy‘(‘ ‘)’ 

<attachments_destruction >  ::=  <attachment_name>’.’destroy‘(‘  ‘)’ 

<bindings_destruction >  ::= <binding_name>’.’destroy‘(‘  ‘)’ 
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Figure 114. Specification of the system Joint 
 

After these definitions, the new service is specified (see the new section, Figure 41). The list 

of parameters of the new service consists of the following parameters: a parameter that provides 

the initial position of the joint (ArghalfSteps), which is a value that is required by the FJoint 

System Joint 

   Functional Aspect Import FJoint; 

    

    Ports 

      PJointSystem : IJoint, 

         Played_Role CProcessSuc.JOINT; 

    End_Ports 

 
    Import Architectural Elements Actuator, CnctJoint, Sensor, 

                                  WrappAspSys; 

   Attachments 

     AttchActCnct: CnctJoint.PAct(1,1)<--> Actuator.PCoord(1,1); 

     AttchSenCnct: CnctJoint.PSen(1,1)<--> Sensor.PCnct(1,1); 

     AttchPos: CnctJoint.PPos(,1)<--> WrappAspSys.PPosition(1,1); 

   End_Attachements; 

   Bindings 

      BndJCnct: PJointSystem(1,1)<--> CnctJoint.PJoint(1,1); 

   End_Bindings; 

 

  new(input ArghalfSteps, input num_Actuator: integer,  
       input num_CnctJoint: integer, input num_Sensor: integer,  
       input num_AttActCnct: integer, input num_AttSenCnct: integer,  
       input num_BndJCnct: integer) 
     { 
       new WrappAspSys(input ArghalfSteps: integer)); 
       new Actuator(); 
       new CnctJoint new(input Argmin: integer, input Argmax:integer); 

       new Sensor(); 

       new AttActCnct(input ArgCnctName: string,input ArgCnctPort: string,  
          input ArgCompName: string, input ArgCompPort: string); … 

       new BndJCnct(input ArgSysPort: integer, input ArgAEName: integer, 
                    input ArgAEPort: integer);   } 
  
   destroy(){destroy Actuator(); destroy CnctJoint(); destroy Sensor(); 
            destroy WrappAspSys(); destroy AttActCnct();  
            destroy AttSenCnct(); destroy AttchPos(); destroy BndJCnct();} 
End_System Joint; 
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aspect, and the parameters that provide the cardinalities of each architectural element, binding, 

and attachment of the system. These cardinalities allow the Joint to know how many instances 

of each type must be created at configuration time.  

Note that there are no parameters to provide the cardinalities for the WrappAspSys and the 

AttchPos. This is due to the fact that they are not architectural elements and attachments of the 

software system. They are mechanisms that are created on purpose in order to permit the 

communication between the system aspects and the architectural elements of the system. They 

are only instantiated once.  

The Joint new service specifies the request of the begin service of its imported aspects and 

the new services of architectural elements, attachments and bindings that the joint includes (see 

the new section, Figure 41). Since a wrapper is used for the system aspects, the begin service of 

the FJoint aspect is invoked through the new service of the WrappAspSys. In addition, the 

request of the new services for the CnctJoint, Sensor, Actuator, AttActCnct, BndJCnct, etc, are 

specified. Those new services that need parameters to be properly instantiated must also be 

specified. A clear example is the CnctJoint, which need a set of parameters to provide a value 

to some of the attributes of the SMotion aspect (see Figure 88).  

 Finally, the destroy service of the Joint is specified by invoking the destroy services of the 

architectural elements that it imports.  

8.2. THE CONFIGURATION LEVEL 
The configuration level is used to define a specific architectural model for a software system. In 

order to do this, all required connector, component and system types should be instantiated. 

Then, all attachment and binding instances should be connected among these type instances. At 

this point, the new services are instantiated and the constraints that have been defined for 

systems are validated in order to ensure pattern satisfaction. 
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Figure 115. Specification template of configurations of architectural models 
 
 

The architectural model specification is preceded by the reserved word 

Architectural_ModelConfiguration and the name of the architectural model configuration. The 

specification of the new service is defined in curly brackets and is preceded by the reserved 

word new and the architectural model name. The specification of the new service consists of 

the request of the new services of the architectural elements, attachments and bindings that 

compose the configuration in order to instantiate them.  

<architectural_model_configuration>  ::=    Architectural_Model_Configuration    

   <configuration_name>  ‘=’ new  <model_name> ‘{‘ <components_instantiation_seq>  

                          [<systems_instantiation_seq>] <connectors_instantiation_seq>  

                           <attachments_intantiation_seq> ‘}’ 

<components_instantiation>  ::=  <component_instance_name> ‘=’  new  

                                           <component_name>‘(‘ [<param_value _list> ] ‘) 

<connectors_instantiation>  ::= <connector_instance_name> ‘=’ new  

                                           <connector_name> ‘(‘ [<param_value_list> ] ‘) 

<attachments_instantiation>  ::= <attachment_instance_name>1 ‘=’ new 

                                          <attachment_name> ‘(‘<param_attachment_value>‘)’ 

<systems_instantiation> ::= <system_instance_name>1 ‘=’ new  <system_name>  

              ‘(‘[<param_service_value_list>‘,’] <architectural_element_number_value_list>,    

    [<attachment_number_value_list>’,’   <binding_number_value_list>] ‘)’  

               ‘{‘  [<start_aspects_seq>]  <architectural_elements_instantiation_seq>  

                   <attachments_instantiation_seq>  <bindings_instantiation_seq>  ‘}’ 

<architectural_element_instantiation >  ::=  <components_instantiation>  |   

                                                               <connectors_instantiation>  |  

                                                                <systems_instantiation> 

< bindings_instantiation>  ::=  <binding_instance_name>1 ‘=’ new   

                                        <binding_name> ‘(‘  <param_binding_value>  ‘)’ 
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Figure 116. The TeachMover architectural model (The Base Configuration) 
 

An example is the architectural model of the TeachMover. The specific configuration of the 

Elbow joint is presented in Figure 116. This configuration consists of instantiating the 

architectural elements of a Joint by providing the needed values to obtain the Base. In addition, 

the attachments and binding relationships are also instantiated by connecting the instances 

instead of the architectural element types. 

8.3. CONCLUSIONS 
The PRISMA AOADL has been presented in this chapter. This language allows us to define 

PRISMA architectural models. The structure, design and maintainability of architectures 

specified in the PRISMA AOADL are improved by reusing entities at different levels of 

granularity (interfaces, aspects, components, connectors and systems). This reusability is 

achieved thanks to the independence of the concept specifications. In other words, interfaces 

are specified without referencing aspects and ports, aspects are specified without referencing 

Architectural_Model_Configuration    

       TeachMover  = new  TeleOperatedRobot { 

                                       … …  

         ELBOW = new Joint(0,1,1,1,1,1,1,1) 

        {ElbowWrappAspSys = new WrappAspSys(0); 

                ElbowActuator= new Actuator(); 

                ElbowConnector = new CnctJoint(0, -149); 

                ElbowSensor= new Sensor(); 

                ElbowAttActCnct= new AttActCnct(ElbowConnector, 
                                                PAct, ElbowActuator,  
                                                PCoord); 
                ElbowAttSenCnct= new AttSenCnct(ElbowConnector, PSen, 
                                                ElbowSensor, PCnct); 
                  ElbowAttchPos= new AttchPos(ElbowConnector, PPos,  
                                            ElbowWrappAspSys,  
                                            PPosition); 
          ElbowBndJCnct= new BndJCnct(PJointSystem, PJoint, 
                                            ElbowConnector);} 

         }; 

… … 

}; 
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other aspects or architectural elements, and architectural elements are specified without 

referencing other architectural elements. The references among aspects are specified by means 

of weavings, and the references among architectural elements are specified using attachments 

and bindings. Therefore, an interface can be reused by several aspects and ports; an aspect can 

be reused by several architectural elements and can be synchronized in different ways and with 

different aspects inside these architectural elements; and an architectural element can be 

attached and bound to several architectural elements. 

This reusability is also improved by means of the division of the language into two levels of 

abstraction: types and configuration. The types defined at the type definition level can be reused 

by the configuration level to specify different software architectures such as the TeachMover, 

EFTCoR, etc. At the same time, the division of the language into two levels of abstraction 

provides two more important advantages. One of the advantages is the fact that it is possible to 

independently manage types and the specific configuration of an architectural model, which 

improves the reusability of types and the maintenance of the system.   The other advantage is 

that it is possible to easily differentiate between a change in a type and a change in the 

configuration of the architecture. As a result, this provides a suitable framework to introduce 

evolution mechanisms at two different levels of abstraction: types and configuration.  

In addition, the fact that the PRISMA AOADL integrates AOSD in software architectures 

provides better maintenance. This is due to the fact software architectures are well modularized 

by a functional decomposition; however, in PRISMA this modularization has been improved 

by the specification of the crosscutting-concerns inside aspects. Thus, if a change in the features 

of a specific concern is required, it would only be necessary to modify or change the aspect that 

defines the concern, and every architectural element that imports it will automatically be 

updated. As a result, the changes of the functionality are well located thanks to the architectural 

elements, and the changes of crosscutting-concerns are well located thanks to aspects. 

It is important to take into account that most ADLs only permit the specification of the 

skeleton of architectures and the services that are interchanged among their different 

architectural elements. The PRISMA AOADL has greater expressive power and can specify 
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more features and requirements using aspects. This complete specification of the system 

requirements facilitates code generation. 

Finally, it is important to emphasize that the PRISMA AOADL is a formal language that 

allows the validation and verification of PRISMA architectural models and facilitates the task 

of automatically generating code from its specifications. Since PRISMA AOADL is a 

language independent of the technology, the same PRISMA architectural model can also be 

compiled into different programming languages and technologies, thereby reducing 

development time and preserving the traceability between an architectural model and its 

application code. 

The work related to the PRISMA ADL has produced a set of results that have been 

materialized in the following publications: 

 Jennifer Pérez, Nour Ali, Jose Ángel Carsí, Isidro Ramos, Designing Software 

Architectures with an Aspect-Oriented Architecture Description Language, 9th 

Symposium on the Component Based Software Engineering  (CBSE), Springer Verlang 

LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Suecia, 

June 29th-July 1st, 2006.  

 Jennifer Pérez,  Isidro Ramos,  OASIS as a Formal Support for the Dynamic, Distributed 

and Evolutive Hypermedia Models, Technical Report DSIC-II/22/03, pp. 144, Polytechnic 

University of Valencia, October 2003. (In Spanish) 
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PART V 

THE PRISMA FRAMEWORK 

 

 
 

“Van Gogh Painting Sunflowers”, Paul Gauguin, 1888 
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CHAPTER 9 
9. THE PRISMA CASE 

 

<< Knowledge is a treasure, but practice is the key to it. >> 

Thomas Fuller 

 

Some new approaches have recently emerged in order to improve software development. Their 

common characteristic is that they try to improve the early stages of the software life cycle by 

automating their activities as much as possible by following Model-Driven Development 

(MDD). MDD is a software development paradigm that is based on models that use automatic 

generation techniques in order to obtain the software product. MDD is included within Model–

Driven Engineering (MDE), which increases the variety of software artefacts that can be 

represented as models (ontologies, UML models, relational schemas, XML schemas, etc). The 

use of models to develop software provides solutions that are independent of technology, 

whose source code can be obtained by means of automatic code generation techniques for 

different technologies and programming languages. The high level of abstraction that models 

provide permits working with metamodels in the same way as with specific models or domain-

specific models.  

Since the PRISMA model is a technology-independent model, the PRISMA approach 

follows the MDD paradigm to obtain its advantages during the development and maintenance 

processes of PRISMA architectures. The main goal of the PRISMA approach is to give 

support to the development of technology-independent aspect-oriented software architectures, 

which could be compiled for different technological platforms and languages using automatic 

code generation techniques. A PRISMA CASE has been developed to give support to the 
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PRISMA approach following the MDD paradigm. PRISMA CASE currently supports the 

generation of aspect-oriented C# code that is executable on .NET technology. The PRISMA 

CASE is composed of the PRISMA metamodel, a graphical modelling tool, a model compiler, 

and a middleware (see Figure 117).  

 
Figure 117. PRISMA CASE 

 

The PRISMA metamodel is part of  the PRISMA CASE since the metaclassess that allow 

the creation of PRISMA aspect-oriented software architectures, as well the OCL rules of the 

PRISMA metamodel, must be available in the CASE tool. They are necessary to be able to 

model PRISMA architectural models and to make sure that they satisfy the PRISMA model. 

The PRISMA AOADL is a formal language. Even though the use of a formal language 

clearly provides advantageous characteristics, the use of a formal language is really difficult. 

For this reason, PRISMA CASE provides a graphical language and a graphical modelling tool 

to model PRISMA software architectures using an intuitive and friendly graphical AOADL 
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Since PRISMA CASE must generate executable C# code in .NET technology and the 

.NET framework does not provide support for the Aspect-Oriented approach, this thesis 

presents a .NET middleware that has been developed to provide a solution. This middleware is 

called PRISMANET. PRISMANET extends the .NET technology through the execution of 

aspects on the .NET platform in accordance with the PRISMA model. 

Finally, the PRISMA model compiler has been developed to automatically generate C# 

code from the PRISMA architectural models that are defined using PRISMA CASE. 

This chapter presents the PRISMA CASE in detail. First, it is explained how the PRISMA 

CASE supports the metamodel and how the modelling tool gives support to the graphical 

PRISMA AOADL. Second, the PRISMA model compiler and its code generation patterns are 

introduced. Then, the chapter explains how the configuration of software architectures is 

integrated in PRISMA CASE and how PRISMA configurations can be executed. Finally, the 

PRISMANET middleware is presented to show how the execution of PRISMA software 

architectures is supported by the .NET platform. 

 

9.1. GRAPHICAL MODELLING TOOL 
The PRISMA CASE provides a graphical language and a modelling tool to support more 

intuitive and friendly aspect-oriented software architecture modelling. However, a formal 

specification is more suitable for some details of PRISMA specifications; for instance, the 

specification of formulae such as valuations or preconditions. Thus, only the main concepts and 

their relationships are graphically specified; the rest of the concepts are represented using the 

AOADL (see chapter 8 and appendix A), and their specifications are included in the definition 

of the corresponding graphical shapes.  

9.1.1. PRISMA UML Profile 
UML is a standard of the OMG and a widely extended notation [UML06]. These 

characteristics make graphical notations based on UML more understandable to users. There 

are a wide variety of tools based on UML that interchange UML models using XMI 

documents and provide extension mechanisms. This means there is no need to develop a tool 
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from scratch in order to create a customized tool. Therefore, UML was initially chosen as a 

graphical notation for PRISMA.  

Although UML is intended for object-oriented modelling, thanks to its extension 

mechanisms that are associated to the definition of a UML profile, it can be customized to the 

particular needs of new models. These extension mechanisms are stereotypes, tagged values, 

and constraints, which are all used to define new derived concepts (metaclasses) from the 

standard UML metaclasses. Thus, a set of specific extensions is called a UML profile.  

A PRISMA profile was developed not only to have a graphical notation that follows a 

standard, but also to achieve the PRISMA support by any modelling tool that supports UML or 

XMI documents. This profile includes all the necessary extensions for using UML as a 

graphical notation for PRISMA specifications. It has been implemented by extending the 

metaclasses of the UML metamodel version 1.5. and by preserving the satisfaction of the 

requirements that Aldawud stated for defining a UML profile for AOSD. This extension is 

necessary because, despite the fact that UML 1.5 includes the following concepts: component, 

connector and interface (required or provided), the provided expressivity is too basic in 

comparison with PRISMA. Furthermore, UML 1.5. does not include the aspect, port, weaving, 

attachment and binding concepts. A simplified version of the PRISMA UML profile is 

presented in appendix B. 

One of the advantages of defining a UML profile is that modelling tool support can be 

easily obtained by means of available tools based on UML, such as Rational Rose [RAT06], 

Argo UML [ARG06], Visio  [VIS06], etc. Most of them provide mechanisms to extend their 

functionality. This means that there is no need to develop a tool from scratch but that any of the 

existing ones can be extended. Several of these tools were considered and reviewed as support 

for PRISMA modelling, but Visio was finally selected for the following reasons: 

1. Visio allows straightforward management, both for using and modifying shapes. This 

characteristic is highly relevant for PRISMA purposes because all the kinds of concepts 

that are included in the PRISMA profile can easily have different shapes related to their 

functionality.  
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2. Visio provides an add- to translate a UML model to XMI. This means that other tools 

such as those listed in [OCL06] can be used for semantic analysis. This provides for 

simple consistency checks and type checking in terms of defined OCL constraints of the 

PRISMA profile. 

A lightweight extension of Visio called EGV-PRISMA was developed by means of a 

template to support the above mentioned needs of the PRISMA profile [Per06b], [Per06a]. 

However, Visio does not provides a repository where the PRISMA metamodel can be 

introduced and where its constraints can be verified during the modelling process. The models 

can only be semantically verified when the model is finished, using other tools such as the ones 

that appear in [OCL06]. Furthermore, Visio does not provide mechanisms to develop a model 

compiler that automatically generates the source code from the graphical models.  

Since Visio does not provide a framework that could support all the requirements that a 

PRISMA analyst has, the selection of another tool that would support these needs was 

mandatory. As a result, DSL tools were selected to develop the PRISMA framework because 

they provide specific mechanisms to define models, graphical support and code generation 

templates. However, DSL tools are not based on a standard such as UML, an ad-hoc graphical 

AOADL has been defined for the PRISMA CASE. 

9.1.2. Domain-Specific Language Tools (DSL Tools) 
The PRISMA approach follows the MDD paradigm. There are two main approaches that 

apply this paradigm. They are the Model-Driven Architecture (MDA) approach proposed by 

the OMG [MDA06], and the Software Factories approach proposed by Microsoft [Gre04]. 

MDA deals with the lack of software system adaptation to different technologies and 

programming languages. Software Factories leads to the reuse of architectures, software 

components, techniques and tools to improve software development. The set of tools and 

techniques that give support this approach are integrated into DSL Tools (Domain Specific 

Languages Tools)  [DSL06].  

DSL Tools is the framework that has been selected to develop and support the development 

of PRISMA aspect-oriented software architectures. It is a set of tools for creating, editing, 
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visualizing, and using domain-specific models to automate and improve the software 

development process (see Figure 118). This set of tools is integrated into the Visual Studio 

2005 framework to define domain models with their customized graphical representations. The 

tools and mechanisms that compose this framework are the following: 

 Project wizard: The framework allows you to define your own customized solution 

where the specific model, its graphical representation and its code generators are defined. 

Its integration inside the Visual Studio 2005 permits the validation of the generated code 

by executing it in the framework. The wizard requires the choice of one of the templates 

that it offers on which to base the definition of a domain model.  

There are currently four templates available: 

o Minimal Language: This is the generic template for the definition of any 

domain model.  

o Activity Diagrams: This is a template for the activity diagrams of UML 

o Class Diagrams: This is a template for the class diagrams of UML 

o Use Case Diagrams: This is a template for the use cases diagrams of UML 

 Model designer: The Model Designer tool creates a domain model project and permits 

the definition of a domain model associated to this project. In the domain model, concepts 

are represented in a graphical way by classes and relationships (see Figure 118). Classes 

have value properties and participate in relationships. A domain model defined in the 

model designer is translated to .NET Framework classes. These C# classes are provided 

with an interface to access and update value properties, to navigate across relationships, 

and to enable an object to participate in a relationship. In addition, the classes can be 

extended to introduce verification and validation rules depending on whether the domain 

model is a meta-model or a model, respectively. 
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Figure 118. DSLTools Framework: Domain Model of PRISMA 

 
 

 Graphical designer: The Model Designer tool stores the definition of the domain model 

in an XML document (see Solution Explorer in Figure 118). In this XML document, the 

design decisions and the graphical representation of each one of the concepts of the model 

can be defined without any manual coding. These definitions have an effect on the 

generated solution, where it is possible to define specific models following the domain 

model defined in the domain model project. The Graphical Designer tool creates the 

designer project, i.e., the diagram types that are associated to a domain model, the concepts 

that can be drawn in each diagram as well as the shapes that are associated to each concept 

and the toolboxes. 

 Other projects: In addition to the two predefined Domain Model and Designer projects, 

DSL can add as many projects as necessary to develop a customized modelling tool.  

Onces the DSL solution has been completely defined, it can be compiled and executed. As 

a result, a modelling tool for the domain specific model that has been defined is generated. This 
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tool is called Debugging Solution. This generated tool provides a customized toolbox, a tree 

that is organized according to the metamodel in which concepts can be queried and updated, 

mechanisms for browsing through the tree, and mechanisms to update and query the properties 

of the defined concepts. This solution not only provides a customized modelling tool, it also 

provides a new project in its solution explorer called Code Generation Designer, which 

provides a set of templates in order to automatically generate the code using a set of code 

generators. These templates help users to define a model compiler in an easy way by browsing 

through the concepts that have been modelled and stored in the metamodel (DSL Domain 

Model). The DSL code generators take the templates, the domain model definition and its 

XML document as inputs of the code generation process. The output of this process is 

generated by the code generators following the defined templates and substituting the 

parameters for the concepts stored in the metamodel.  

9.1.3. PRISMA as a Domain-Specific Language 
DSL tools have been created to model specific models such as the model of a web page, a 

banking system, a tele-operated system, etc. The debugging solution of this model is then used 

ftoor define specific web pages, banks systems, tele-operated systems with domain-specific 

tool boxes and concepts that have been defined in the Domain Model and the Designer 

projects. However, the PRISMA model is a metamodel that permits the definition of PRISMA 

models whose instantiation defines specific systems. In this sense, PRISMA has taken a step 

forward. In PRISMA, DSL tools are used to define a metamodel as a domain-specific 

language, i.e., aspect-oriented software architectures are defined as a domain-specific model.  

In order to develop PRISMA CASE, a DSL project has been generated using the Minimal 

Language template (see section 9.1.2).This is the template that provides mechanisms for 

introducing the PRISMA metamodel in DSL Tools. The predefined projects DomainModel 

and Designer are generated as a result of this template selection. 

The project DomainModel provides a toolbox to define the domain-specific model in DSL 

(see Figure 119). In PRISMA, every metaclass and relationship of the PRISMA metamodel is 
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been introduced in the domain model. For example, Figure 120 shows the definition of the 

architectural element and aspect concepts in the DomainModel. 

 
Figure 119. Toolbox of the Domain Model 

 

 

 

 

 
 

 
(a)  Architectural Element   (b) Aspect 

Figure 120. Definition of Architectural Elements and Aspects in the 
DomainModel of DSL 

 
All the classes of the PRISMA domain model are translated to partial C# classes in order to 

access and update value properties, to navigate across relationships, and to enable an object to 

participate in a relationship. These partial classes can be implemented by parts and/or by 

different files. Therefore, a folder Verification has been created in the Domain Model, which 

includes a set of DSL files that allow the implementation of verification rules (see Figure 121). 
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This folder also includes the files that extend the partial classes of PRISMA types that have 

associated constraints which must be verified during the modelling process. These constraints 

are presented in chapter 7 using OCL language. 

 
Figure 121. PRISMA Domain Model of DSL 

 

DSL tools distinguish between two kinds of verification: verification rules that must always 

be satisfied (hardconstraints), and verification rules that must be satisfied once the model has 

been completely finished (verification rules). The Verification folder of the Domain Model 

contains the Verification Rules. Verification rules are not verified while the user is modelling, 

they are verified when it is explicitly requested by the user or when the model is saved. These 

Verification Rules are PRISMA constraints that act as warnings during the modelling process. 

These warnings must be rectified before the model is finished so that, it is compliant with the 

PRISMA metamodel. For example, an architectural element must always have at least one 

aspect associated to it. However, the structure of the architectural model can be modelled 

without associating the behaviour and then, the architectural model relationships with aspects 

can be modelled. 

The Designer project of PRISMA associates a graphical metaphor to each PRISMA class 

of the domain model that requires it. This project also stores the graphical representations 

selected for the PRISMA concepts and implements the PRISMA hardconstraints (see Figure 

122). 
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Figure 122. PRISMA Designer of DSL 

 

 
Figure 123. The Visual Studio Project of PRISMA 
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Hardconstraints are verified while the user is modelling. They are very close to the 

graphical metaphor and they do not permit links between certain graphical entities, 

compositions of certain entities, changes of name, etc. For example, two aspects cannot be 

linked using an attachment.  

A new project has been added to the PRISMA domain-specific model in order to generate a 

setup for the PRISMA CASE and to facilitate its installation for users (see Figure 122). This 

setup creates a new kind of project for Visual Studio 2005 called PRISMACase (see Figure 

123). The creation of a PRISMA CASE project consists of launching PRISMA CASE and 

starting the development process. 

9.1.4. The PRISMA Modelling Tool 
The PRISMA Modelling tool is generated from the projects defined in the above section. The 

modelling tool is composed of a toolbox, a drawing sheet, a model explorer, a window of 

properties and a PRISMA menu (see Figure 124). 

 
Figure 124. PRISMA Modelling Tool 

9.1.4.1. The Graphical AOADL of PRISMA 
The toolbox of the PRISMA modeling tool provides a gallery of shapes that permits the 

graphical modelling of PRISMA models by dragging and dropping the shapes to the drawing 



The PRISMA CASE 

257 

sheet (see Figure 125). In PRISMA, only the main concepts and their relationships are 

graphically represented; the rest of the concepts are specified using the AOADL and are 

included in the definition of the corresponding shapes.  

The graphical AOADL is shown below detailing how to complete the specification of the 

graphical concepts using the model explorer and the window of properties that the PRISMA 

modelling tool offers. 

 
Figure 125. PRISMA Tool Box 

 
 Interfaces 

Interfaces are represented by a rectangle with its corners rounded off (see Figure 126). The 

interface includes the definition of the services that it publishes. The services can be added 

using the context-menu that is associated to interfaces (see step 1, Figure 127). Then, their 

arguments and argument properties can be defined using the model explorer and the window of 

properties, respectively (see steps 2 and 3, Figure 127). 
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Figure 126. Interface Shape 

 
  

(1)  Adding services to an 
interface 

(2)  Adding arguments to a 
service of an interface 

(3)  Filling the properties of 
an argument 

Figure 127. Modelling Services of Interfaces 
 

 Aspects 

Aspects are represented by a rectangle (see Figure 128). The aspect includes the definition of 

attributes, services, valuations, preconditions, constraints, played_roles and transactions. They 

can be added using the context-menu that is associated to each concept as in step 1 of Figure 

127. Ten, their properties can be filled using the model explorer and the window of properties 

as presented in steps 2 and 3 of Figure 127. Each aspect defines properties of a specific 

concern. Each concern has a colour associated to it and, depending on the value of the aspect 

concern, the aspect is painted in one colour or another. For example, the concern coordination 

has the green colour associated to it (see Figure 128).  
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The importation of interfaces by an aspect is specified using the link AspectHasInterface, 

which is provided by the tool box. This link automatically includes the interface services as 

services of the aspect that is linked to the interface (see Figure 129). 

 
Figure 128. Aspect Shape 

 

 
Figure 129. Link Shape between Aspects and Interfaces 
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The aspect also includes the specification of its protocol. The protocol is modelled in a 

graphical way. Protocols are specified by modelling a State Transition Diagram (STD) (see 

Figure 130). The tool box provides a set of shapes to model the protocol of an aspect. These 

shapes are states, substates, and transitions between these states (see Figure 125).  

States define relevant states of the software system business logic. A state establishes the 

services that can be executed when the aspect execution is placed in it. These states are 

graphically characterized because they are painted in the same colour as the aspect (see Figure 

130).  

Substates help to define sequences of services that may or may not be transactional. They 

are not states of the business logic of the software system and are characterized by always being 

painted white (see Figure 130). 

Transitions define the jump from one source state to another target state. Both the source 

state and the target state can be states or substates (see Figure 130). The transition between 

states has a service associated to it and can also have a condition, a played_roled and a 

transaction associated to it. These properties of the transition are filled using the window of 

properties.   

 
Figure 130. STD for modelling protocols 

 

In addition to these generic shapes for modelling aspects and the concepts related to them, 

two specialized shapes have been defined in the toolbox to define an aspect that has properties 

that are different to the rest. The first one is the integration aspect, which is the mechanism for 

integrating COTS in PRISMA software architectures (see section 10.2), it is graphically 



The PRISMA CASE 

261 

represented by a rectangle. Integration aspects are painted grey to denote their wrapper 

semantics viewed as a black box (see Figure 125). The second one is the link to connect this 

kind of aspects to interfaces (Integration_AspectHasInterface), it is graphically represented by 

a line.  

 Components, Connectors and  Systems 

Components, connectors and systems are represented by rectangles that have one pin for each 

one of the ports that are associated to them (see Figure 128). The components, connectors and 

systems are distinguished by the colour. Components are blue, connectors are green, and 

systems are yellow. 

   

(1)  Component (2)  Connector (3)  System 

Figure 131. Shapes of Architectural Elements 
 

Since the number of ports is not fixed, there is a rectangular white shape that corresponds to 

the port so that as many ports as are necessary can be added to each architectural element. 

When the port shape is drawnand droppedon top of an architectural element, the port is 

automatically associated to this architectural element. The use of the window of properties 

makes it possible to define the interface and played_role that types the port. 

The importation of aspects by architectural elements is specified using the link 

ArchitectecturalElementHasAspect, is provided by the tool box. In addition, there is another 

specialized link for importing the integration aspect called  

ArchitectecturalElementHasIntegrationAspect. 

Since systems are composed of other architectural elements, the architectural elements that 

are dropped on top of systems are automatically included in the systems. The association of 

architectural elements to systems can also be done by hand using the system window of 

properties.  
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 Weavings 

Weavings are represented by a diamond that joins the aspects that participate in the weaving 

using incoming and outgoing arrows (see Figure 132). The arrows determine the direction in 

which the weaving service is executed, i.e., the aspect service with the outgoing arrow is the 

first to be executed, and the aspect service with the incoming arrow is the second to be 

executed. The services that participate in the weaving as well as the operator are specified using 

the window of properties. After specifying the operator, the operator is displayed in the center 

of the diamond.  

 
Figure 132. Weaving Shape 

 
 Attachments 

Attachments are represented by a line that links a component port to a connector port (see 

Figure 133). The properties of the attachment are specified using the window of properties.  

 
Figure 133. Attachment Shape 

 
 Bindings 

Bindings are represented by a dashed line that links an architectural element port to a system 

port (see Figure 134). The properties of the binding are specified using the window of 

properties.  
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Figure 134. Binding Shape 

 

9.1.4.2. Verification of PRISMA Models 
The hardconstraints that have been defined in DSL tools are checked throughout the entire 

modeling process. As a result, when the user tries to model something that violates a 

hardcontstraint, the PRISMA modeling tool shows a prohibition sign.  

The verification rules defined in DSL tools are checked each time that the model is saved. 

The list of errors is displayed in the Error List window (see Figure 135). 

 
Figure 135. Error List 

 

Verification rules can also be checked whenever the user requires it. The PRISMA menu 

offers the option of checking these rules in a complete or partial way (see Figure 136). The 



PRISMA: Aspect-Oriented Software Architectures 
 

264 

complete way checks all the verification rules, while the partial way allows you to only check 

one kind of PRISMA type. The options that are provided to check an architectural model in a 

partial way are the following: interfaces, aspects, components, connectors, systems and 

attachments. For example, if the user requests the Interface Verification, only the rules 

associated to interfaces are checked. The advantage of this partial verification is that the user 

can incrementally check the models and focus on the problems of a specific type of the model. 

 
Figure 136. Verification Menu 

 

In addition, the graphical modelling tool offers the mechanism of checking only one 

element of the architectural model. This is possible by executing the option that appears in the 

contextual menu that is associated to the element that the user wants to check. For example, 

Figure 137 shows the contextual menu that only verifies the interface IMotionJoint. 

 
Figure 137. Contextual Menu of an Element 

9.2. MODEL COMPILER 
The PRISMA modelling tool also provides a set of templates to automatically generate the 

code from the models that have been graphically modelled. The templates for generating the 

AOADL specification and the C# code are already available. They can be extended to generate 
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the code for other languages.  The templates and the command to execute the generators that 

produce the result are provided by the window Solution Explorer of PRISMA CASE. This 

command is called Transform All Templates. Its execution calls the code generators that 

execute the code generation templates of PRISMA by substituting the parameters for the 

elements that have been modeled. The PRISMA templates are stored in two different folders: 

ADLCodeGeneration and CSharpCodeGeneration. These folders contain the templates to 

generate each PRISMA type and the file that contains the result of the last Transform All 

Templates execution (see Figure 138). 

 
Figure 138. PRISMA Code Generation Templates 

 

The ADLCodeGeneration folder contains the formal specification of the software 

architecture that has been modelled following the PRISMA AOADL. Despite the fact that the 

specifications are introduced in the graphical shapes using the PRISMA AOADL, the AOADL 

generation permits the user to see the complete textual specification of the model. 

The CSharpCodeGeneration folder contains the C# code generation, which allows the 

execution of the specified software architecture on the PRISMANET. The implementation of a 

specific PRISMA software architecture is performed by extending the classes provided by 
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PRISMANET (see section 9.4.2). In order to develop these code generation templates, a set of 

patterns has been identified and defined to generate the C# code for each one the PRISMA 

concepts to be executed over PRISMANET. Next, the mappings of components and aspects 

are presented in a simplified way by using the Actuator component and the FunctionActuator 

aspect as an example. The complete list of patterns is presented in detail in [Cab05].  

9.2.1. Components 
A component is implemented as a serializable C# class. This class is serializable in order to 

enable mobility in future versions of PRISMA CASE. This class inherits from the 

ComponentBase class of PRISMANET, which implements the component of the PRISMA 

model. The component name is the same as the one in the PRISMA specification. The set of 

ports and aspects that make up a component are included by invoking the constructors of the 

port and aspect PRISMANET classes. Both classes implement the port and aspect elements of 

the PRISMA model. For example, Figure 139 shows an initial specification of the component 

Actuator and the C# code that the component pattern of the PRISMA CASE has automatically 

generated from the specification. 

 

 

Component Actuator 

   Integration Aspect Import RS232; 

 

   Ports 

      PCoord : IMotionJoint, 

              Played_Role RS232. INTMOVE; 

   End_Ports; 

   new(){RS232.begin(); 

   destroy(){RS232.end();} 

End_Component Actuator; 
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Figure 139. The generated C# code of the component Actuator 

 

9.2.2. Aspects 
An aspect is implemented as a serializable C# class to enable mobility in the network. This 

class inherits from the AspectBase class of PRISMANET, which implements the aspect 

element of PRISMA model. The aspect name is the same as the name in the PRISMA 

specification as well as the interface that it implements. Moreover, the kind of aspect is 

specified in the implementation as defined in the specification.  
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The attributes of an aspect are implemented as variables of the C# class. The services 

specified by a PRISMA aspect are implemented as methods of the aspect class. The 

played_roles that make up an aspect are included by invoking the constructors of the 

played_role PRISMANET class. The different states of the protocol are implemented as 

internal variables that are checked inside of the service methods in which the priority of each 

method is taken into account. The implementation of these methods follows a pattern that 

implements the set of steps that must be executed in order to properly execute a PRISMA 

service. These steps are the following: 

 

1. Verification of Protocol: It must be verified that there is a valid transition for the 

required service. This transition must depart from the state that the protocol is 

executing at that moment.  

2. Verification of Preconditions: It must be verified that every precondition associated 

to the service is satisfied. 

3. Selection of Valuations: The valuations that must be executed must be selected 

depending whether or not their conditions are satisfied or not.  

4. Execution of Valuations: The variables that represent the attributes or parameters 

that must be updated due to the service method execution are modified. 

5. Verification of Constraints: It must be verified that the constraints of the aspect are 

satisfied by the new state of the aspect that has been reached due to the service method 

execution. This verification is performed using exceptions as the verifications of 

protocols and preconditions. 

6. Execution of Service Sequences: There are services whose execution implies the 

automatic execution of other services. In this case, these services are invoked. 

7. Change of the protocol: If the method execution implies a change in the protocol 

state, this change is performed by updating the state variable.  
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For example, Figure 140 shows the partial specification of the CProcessSuc coordination 

Aspect (see the complete specification in C.3) and the C# code that the aspect pattern of the 

PRISMA CASE has automatically generated from the specification. 

 

 

 

Coordination Aspect CProcessSuc using ImotionJoint, IJoint, IRead,  

                                      IPosition 

Attributes 

   Variables 

      validMovement: boolean, DEFAULT: false; 

Services  

   begin();   

   in/out moveJoint(input NewSteps : integer, input Speed : integer);     

   in/out stop() 

   in/out moveOk(output Success : boolean; … 

   out newPosition(input NewSteps : integer) 

   end(); 

…… 

End_Aspect CProcessSuc; 
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Figure 140. The generated C# code of the aspect FunctionActuator 
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9.3. CONFIGURATION MODEL 
The PRISMA model that has been introduced in the Domain Model of DSL tools is a 

metamodel, and the modelling tool (debugging solution) that has been developed from this 

model provide us mechanisms to specify PRISMA aspect-oriented software architectures. 

However, it is necessary to instantiate and to configure these architectures into specific ones 

and provide the user mechanisms to do so. In order to cope with these needs, PRISMA CASE 

automatically generates a domain specific graphical modelling tool to configure the software 

architectures that have been defined using PRISMA CASE. As a result, the PRISMA 

modelling tool is composed of two different tools: the modelling type tool and the modelling 

configuration tool. The modelling configuration tool is generated from the models that have 

been specified using the modelling type tool. As a result, the PRISMA graphical modelling is 

compliant with the PRISMA AOADL, which is also divided into types and configuration (see 

Figure 141).   

A configuration modelling tool is generated for each PRISMA software architecture that is 

modelled using the PRISMA modelling type tool. The configuration modelling tool is used to 

develop specific software architectures using the PRISMA types defined in PRISMA type 

modelling tools as modelling primitives.  

The capacity to store all the information needed to automatically generate a domain-specific 

tool permits the use of PRISMA architecture as a domain specific language in other model 

specifications. It also permits the generation of the specification of the configuration language. 

This information is generated using the code generators of DSL and is stored in the persistence 

and configuration language folders of PRISMA type modelling tool (see Figure 142). The 

information of these folders is the input for creating the new project for the domain-specific 

PRISMA software architecture that has been defined. 
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(1) PRISMA Type Modelling Tool 

 

(2) PRISMA Configuration Modelling Tool 

 
Figure 141. Generation and Execution of the PRISMA Modelling 

Configuration Tool  
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Figure 142. Model Persistence and Configuration Language Information 

 

The automatic generation of a tool for modelling configurations of a PRISMA software 

architectures is performed by executing the PRISMA Model Configuration option of the menu 

PRISMA after the transformation of all templates has been done (see step 1 in Figure 141). 

Next, a new project is automatically created and can be used as a configuration modelling tool. 

Step 2 of Figure 141 shows how the Actuator and Sensor types defined in step 1, Figure 141 

appear in the tool box of the Configuration Modelling Tool as shapes for modelling. It shows 

how these types have been dragged and dropped on the drawing sheet generating two 

instances. As a result, the base joint is modelled by defining its actuator and sensor. 

In addition, the configuration modelling tool provides a command to transform its templates 

to obtain the AOADL specification that corresponds to the configuration that has been defined 

using the tool. Finally, this tool permits the execution of the generated code. In order to do this, 

the PRISMA menu offers the option PRISMANET, which executes the middleware 

PRISMANET and instantiates the defined configuration. As a result of this execution, a 
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generic GUI is launched to interact with the architecture by invoking its services and checking 

the value of its attributes (see Figure 143). The main purpose of the generic GUI is to assist the 

user in checking the behaviour of the architecture without having to worry about aesthetic 

details and without forcing the user to define a GUI in order to obtain a result.  

 
Figure 143. Generic GUI of PRISMA Applications 

 

However, it is important to mention that the use of this interface is not mandatory. In other 

words, if the users prefer to define their own specialized forms, they can do so. They only have 

to integrate them with the architecture by using the presentation aspect that the PRISMA 

modelling tool offers. Users must define the services to interact with the defined forms inside 

the presentation aspect and to synchronize them with the rest of aspects that belong to the same 

architectural element by means of weavings. The forms are included in the project folder so 

that the GUI of the user is executed instead of the generic interface that PRISMA CASE 

provides by default. 
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9.4. PRISMANET 
PRISMANET implements the PRISMA model by extending the .NET technology with the 

incorporation of aspects. PRISMANET is the platform-dependent model of PRISMA, which 

permits PRISMA software architectures to be developed and executed on the .NET platform.  

PRISMANET offers extra functionalities and characteristics that .NET does not directly 

provide. It allows for the execution of aspects, the concurrent execution of aspects and 

architectural elements, the loading of components, the creation of execution threads, the 

management of the local components, etc. 

Even though PRISMANET has only been used for software architectures that are locally 

executed, due to the distributed nature of software, the distributed execution of software 

architectures will be supported by PRISMANET in the near future. To completely reuse 

PRISMANET when it will be extended to support distribution and mobility capabilities, 

aspects and components have been developed so that they can be executed and can 

communicate with each other in both a local and distributed way.   

This section presents how the PRISMA model, its execution model, and its aspect-oriented 

properties have been implemented in the .NET technology. 

 

9.4.1. PRISMANET Architecture 
The .NET framework consists of several layers at different levels of abstraction. Not all the 

technologies that support AOP in the .NET platform are applied to the same layer of the .NET 

framework. Figure 144 shows the different layers that .NET framework consists of and also 

classifies the AOP .NET technologies according to the layers they have been applied to. These 

technologies are analyzed in section 3.3.3. 

 



PRISMA: Aspect-Oriented Software Architectures 
 

276 

 
Figure 144. Layer classification of technologies that support AOP in .NET 

framework  
 

The AOP .NET technologies can be classified into three kinds. These kinds of AOP .NET 

technologies are defined by the way in which the base code and the aspect code are weaved 

and by the layer in which this weaving process is performed [Jac04]. These three kinds of AOP 

.NET technologies are the following: 

 AOP .NET technologies applied to the Common Language Runtime (CLR) layer: 

This kind of AOP .NET technology extends the CLR by adding new mechanisms to 

perform weavings (see Figure 144). The advantage of this kind of AOP .NET technology 

is that its approach is independent of the programming language. However, one of its 

inconveniences is that the pointcuts are limited by the mechanisms used for weaving the 

aspect code and the base code at the CLR level. Moreover, since the CLR is modified, the 

standard debugging tools cannot be used. 

 AOP .NET technologies applied to the MicroSoft Intermediate Language (MSIL) 

layer: This kind of AOP .NET technology modifies the MSIL to weave the base code and 

the aspect code (see Figure 144). Most of these technologies modify the MSIL of the 

assemblies to intercept the methods at runtime, thereby executing aspects. The advantage 

of this kind of AOP .NET technology is that its approach is independent of the 
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programming language. However, the standard debugging tools cannot be used as in the 

previous kind, and it does not allow for the dynamic definition of weavings. 

 AOP .NET technologies applied to the Common Language System/Common Type 

System (CLS/CTS) layer: This kind of AOP .NET technology extends the CLS/CTS to 

weave the base and aspect code at compilation time (see Figure 144). One of the main 

inconveniences of these technologies is their dependence on the programming language. 

Another inconvenience is the need to adapt compilers of the programming languages that 

this kind of technology extends in order to adjust them to the evolution of these 

programming languages. 

These three kinds of AOP Technologies share an additional inconvenience. They depend 

on the .NET platform. As a result, they must be modified in order to be compatible with future 

versions of the .NET platform. In order to avoid these inconveniences, PRISMANET has been 

applied to a higher layer of abstraction without extending the development platform. 

PRISMANET implementation is localized in a new layer that sits over the .NET framework 

(see Figure 144). This can be done because PRISMA is a technology-independent model. 

PRISMANET implementation has been carried out in C# language using the standard 

techniques and mechanisms that the .NET framework provides, that is, without extending the 

development platform. As a result, PRISMANET does not have to be updated to the new 

versions of the CLR, MSIL and so forth, and it can be executed in the .NET platform without 

having to do anything else other than starting the execution of the middleware. The most 

important .NET technology mechanisms [Rob03] that have been used are: delegates, 

reflection, serialization and .NET Remoting [MIC05]. 

The PRISMANET architecture is constituted by four main modules (see Figure 145): 

 The PRISMA Execution Model: This module implements the basic functionality of the 

PRISMA types. This implementation is divided into two modules that contain the classes 

that implement this functionality: the Types and Communications modules. The Types 

module implements aspects and architectural elements, and the Communications module 

implements attachments and bindings. As a result, the implementation of the PRISMA 

application is achieved by extending these classes. 
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Figure 145. PRISMANET Middleware 

 
 Memory Persistence: This module provides services to manage and maintain the 

instances of architectural elements that are stored in the main memory during their 

execution. The middleware manages the instances that are locally executed. Some of these 

services are the loading of architectural elements instances, the creation of execution 

threads, and the management of architectural element lists. 

 Transaction Manager: This module provides services to suitably execute transactions. 

 Log: This module logs every operation that it is performed by the middleware in order to 

register the execution history of software architectures.  

PRISMANET has to be running on all PCs where a PRISMA application is being 

executed. The middleware manages the architectural elements instances that are being 

executed in the PC, providing the necessary services to its instances. As a result, there are two 

kinds of communications concerning PRISMANET and the applications that run on it: 

 Communication among PRISMANET and the architectural element instances to ask for 

maintenance services. 

 Communication among different PRISMA components as a result of the execution of the 

application. 
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9.4.2. PRISMA model implementation 
 
Each concept defined in the PRISMA model has been implemented in the module PRISMA 

Execution Model of PRISMANET. The implementation has been carried out preserving the 

following features: 

 The implementation has to be as close as possible to the PRISMA model in order to 

facilitate automatic code generation. Therefore, PRISMANET is the PRISMA model that 

is dependent on the .NET technology, i.e., it is the platform-dependent model of PRISMA. 

 The execution of attachments, connectors and components must be concurrent in order to 

be compliant with the PRISMA Model Formalization (see section 6.2). In addition, the 

concurrency among the different aspects that make up a component must be preserved. 

The Types and Communication modules that compose the module PRISMA Execution 

Model have been grouped by namespaces of .NET in order to clearly identify the 

implementation of each one of the PRISMA types (see Figure 146). 

 
Figure 146. Namespaces of the module PRISMA Execution Model 
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9.4.2.1. Asynchronous executions 
There are mechanisms that the .NET platform offers to support asynchronous invocations of 

services such as the classes Delegate and AsyncResult. However, these mechanisms are 

managed by the .NET platform and they cannot be customized for the specific needs of a new 

execution model such as the PRISMA model. Therefore, a new class AsyncResult has been 

created to implement the asynchronous invocations of the PRISMA model by hiding the 

specific details of the .NET platform, and by dealing with the PRISMA peculiarities such as the 

management of requests, the service execution based on priorities, the request resendings to 

other architectural elements, etc. 

The class AsyncResult is the structure that allows the client of a service to verify whether or 

not its request has been successfully executed once the service execution has finished. If it has 

been successfully executed, the results can be obtained. For this reason, in PRISMA, every 

service provided by a server that can be asynchronously executed must return an AsyncResult 

structure. 

 Execution of an asynchronous invocation 

PRISMA servers have a mechanism that stores the requests that they receive while they are 

executing another request. This mechanism consists of creating a delegate and an AsyncResult 

structure for each request that the server receives and storing them to be processed afterwards. 

Then, the server sends the reference of the AsyncResult structure that the server has created to 

the client. Thus, the client does not have to wait for the result and can continue its execution.  

When the server processes the client request, it executes the delegate associated to this 

request, i.e., it executes the request service and stores the results in the AsyncResult structure 

associated to the request. Since the client has the reference of the AsyncResult structure, this 

structure can be queried by the client whenever necessary. The client checks the request 

execution as well as the results that have been obtained from it. 

This execution model together with the AsyncResult structure allows for the asynchronous 

execution of the requests of PRISMA services. 
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9.4.2.2. Aspects 
The aspect type has been implemented as a C# class called AspectBase of the PRISMANET 

(see Figure 147). This class stores the name of the aspect and its thread reference as well as 

other properties. The AspectBase class has the references of the component and the middleware 

that it belongs to in order to request services from them. This class offers services to start the 

execution of the aspect thread, to stop the execution of the aspect thread, and to abort the 

execution of the aspect thread.  

A played_role has been implemented as a C# class called PlayedRoleClass (see Figure 

147), which stores information about the services of the played_role and their priorities. The 

played_roles of an aspect are stored in the class PlayedRoleCollection that the aspect is related 

to (see Figure 147). 

The class AspectBase also contains a priority queue to deal with the service requests that 

arrive to the aspect in the order specified by the protocol (see Figure 147). 

 
Figure 147. Main classes of the namespace Aspects of PRISMANET4 

                                                      

4 The set of classes that appear in the figure have been automatically generated from the 
source code of PRISMANET using the Sparx tool http://www.sparxsystems.com/ 
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The kinds of aspects that can be defined in the PRISMA model are unlimited. However, 

each one has the functionality described above. Therefore, the kinds of aspects are subclasses of 

the class AspectBase and inherit this functionality (see Figure 148). 

PRISMANET allows the implementation of specific aspects by creating C# classes that 

inherit from one of the classes that represents one kind of aspect. These specific aspects must be 

serializable to enable the mobility of aspects in future PRISMA distributed architectures. These 

aspect classes are packaged in an assembly to facilitate their integration in a repository and their 

future distribution over the network. 

 

 
Figure 148. Classes of some of the kinds of aspects4 

 

 Execution Model of Aspects 

Due to the fact that the middleware must guarantee the execution of services without blocking 

the requesters, when an aspect service requires its execution at the same time that another 

service is being processed, the aspect stores the service that cannot be immediately attended in 

a priority queue.  

An aspect is divided into two parts for the management of services: a public part and a 

private part. The private part specifies the functionality that must be executed by each service of 

the aspect, whereas the public part receives the requests of the services and adds them to the 

aspect queue (see public and private methods in Figure 149). 
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Figure 149. Execution Model of an Aspect 

 
 

The execution of an aspect service is performed as described below: 

<<When the execution of a service is requested from an aspect, the request comes from the 

public method of the service (see step 1, Figure 149). The request is added to the queue of the 

aspect with all the needed information to execute it (see step 2, Figure 149). To prevent the 

requester that is waiting for the result from being blocked, the reference of the AsyncResult 

structure is sent to the requester as explained in section 9.4.2.1  (see step 3, Figure 149). 

Requests are then extracted from the queue in order to be executed taking into account the 

priorities of the services and whether they can be executed in the state that the aspect is in that 

moment. The requests are extracted from the queue following a FIFO policy ordered by the 

service priority. As a result, the requests with higher priority are executed first and the requests 

with the same priority are ordered using the standard FIFO policy (see step 4, Figure 149). It 

must also be taken into account that sometimes the first request of the queue cannot be 

executed because its execution is not allowed by the state of the protocol. In this case, the 

request is not extracted from the queue, and its number of execution attempts is increased and 
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the next request in the queue is executed. After its execution, the execution of the first request 

of the queue is tried again because the state of the protocol could have been changed by the 

previous execution. In this way, the aspect thread gives the previously failed services the 

chance of being executed. However, if a service request fails the maximum of number of 

execution attempts that has been determined by PRISMANET, the request is extracted from 

the queue and generates an exception that is sent to the requester. If the first request of the 

queue can be processed, the functionality of its corresponding private method is executed and 

the result of the execution is stored in its AsyncResult structure (see step 5, Figure 149).  Finally, 

this structure will be queried by the requester to obtain the results of the service execution. >> 

It is important to emphasize that while the aspect thread is executing a private method the 

public method can concurrently receive new requests and can add them to the queue. It must 

also be emphasized that to stop the execution of an aspect appropiately, three steps must be 

performed: 1. reject new requests from the public part; 2. execute the requests that are already 

stored in the queue until it is empty, and 3. stop the aspect thread. 

9.4.2.3. Simple Architectural Elements: Components and Connectors 
The architectural element type has been implemented as a C# class of PRISMANET called 

ComponentBase. This class stores the name of the architectural element, its own thread and its 

middleware references, the dynamic list of aspects, the dynamic list of weavings, and the 

references to the ports to be able to receive and request services. In addition, the 

ComponentBase class offers services to initiate the architectural element thread execution, to 

stop the architectural thread execution, to abort the architectural element thread execution, to 

query if an aspect of the architectural element is weaved with another aspect, and to add aspects 

and weavings from an architectural element. Finally, it is important to emphasize that the 

architectural element contains a queue that guarantees the execution of services without 

blocking the requesters by storing the service requests that cannot be immediately attended to. 
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Figure 150. Main classes of the namespace Components of PRISMANET4 
 

Connectors have been implemented as components because the functionality that they must 

provide in the middleware is the same. The difference between components and connectors is 

that connectors implement the interface IConnector and components implement the interface 

IComponent. However, the interface IConnector inherits the properties of IComponent, but it 

does not extend its properties. In fact, this interface is only used as an identification mechanism 

between components and connectors. 

As a result, PRISMANET allows the implementation of a specific architectural element by 

creating a C# class that inherits from the ComponentBase class. It is important to keep in mind 

that architectural elements must be serializable in order to enable their mobility in future 

PRISMA distributed architectures. 

 Ports 

The port type has been implemented as a C# class called Port. The ports of an architectural 

element are classified into input (inPorts) and output (outPorts) ports. As a result, inPorts and 

outPorts inherit their properties from the class Port. This class stores the name of the port, the 

references to the interface and the played_role that is associated to it, and the list of attachments 

that are connected to it (see Figure 151). 
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Figure 151. Main classes of the namespace Ports of PRISMANET4 

 

InPorts publish the services that architectural elements provide. An InPort publishes an 

interface that is implemented by one of the architectural element aspects. In addition, an InPort 

is in charge of adding the received service requests to the architectural element queue.  

OutPorts are in charge of providing mechanisms to send service requests to other 

architectural elements. An OutPort only permits the sending of those service requests that 

belong to the OutPort interface. 

Ports offer reflection mechanisms to be dynamically queried, and thereby to dynamically 

get the list of interfaces that are associated to the architectural element ports making dynamic 

communications feasible. In addition, the implementation of ports also allows the isolation of 

aspect services and the services that architectural elements publish through their ports. Since the 

aspect that implements the port interface is known, ports have a set of delegates that point to 

each of the aspect services that must be executed when an interface service is requested. As a 

result, when a service interface is requested, its corresponding delegate is stored in the 

architectural element queue. 
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 Weavings 

An architectural element contains a weaving manager that checks whether or not a service has 

associated weavings. If so, the weaving manager executes them synchronously, and, if not, the 

service is resent to the corresponding aspect. 

There are no previous .NET works that implement weavings at the source code level and 

that could dynamically perform weavings (see Figure 144). From the different strategies of 

implementing weavings, the static code injection strategy provides the best performance, and 

the code interception strategy is the most flexible. Therefore, in order to balance the advantages 

of performance and flexibility, weavings have been implemented as a dynamic linked list with 

three levels of depth. This list is part of the weaving manager of the architectural element and 

contains the weavings that belong to the architectural element. Thus, this weaving 

implementation facilitates the management of the weavings.  

The dynamic list is implemented by the C# class WeavingsCollection (see Figure 152). 

Each element of this dynamic list is an instance of the C# class AspectTypeNode, which 

contains the aspect type and another dynamic list called weavingAspectList. Each element of 

the WeavingAspectList is an instance of the C# class WeavingNode. This class stores the 

service name, which triggers the weaving execution as well as a delegate of this service for its 

dynamic invocation. It also stores three more lists, each of which belongs to a weaving operator 

(after, before, instead) and contains instances of the C# class WeavingMethod. This class stores 

the delegate, which points to the method that must be executed as a result of the weaving 

(advice service). It also stores the method that has triggered the weaving execution (pointcut 

service), and the weaving operator (after, before, instead, afterif, beforeif, insteadif) (see Figure 

152). 

The weaving manager executes weavings. This weaving execution consists of searching 

the methods that are involved in the weaving by going through the lists beforeList, afterList and 

insteadList. The execution of the corresponding delegates must be performed in the correct 

order. To preserve this order, the first services in being executed are the advice services of the 

weaving that are stored in WeavingNode.beforeList, and then their pointcut services are 

executed. The second services in being executed are the advice services of the weaving that are 
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stored in WeavingNode.insteadList. Finally, the third services in being executed are the pointcut 

services of the weaving that are stored in the WeavingNode.afterList., and then their advice 

services are executed. 

 
Figure 152. Dynamic List of Weavings4 

 

 Execution Model of Architectural Elements 

An architectural element is composed of input (InPorts) and output (OutPorts) ports, a queue 

that temporally stores the services that will be processed by the thread of the architectural 

element, a weaving manager, and a set of aspects that are concurrently executed. 

 
 

Figure 153. The execution model of an architectural element 
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Taking into account the properties of the elements that architectural elements are composed 

of, the execution of a service that is requested from an architectural element performs the 

following process: 

<<When the execution of a service is requested from an architectural element, the request 

comes from the port that publishes the service (see step 1, Figure 153). The port sends the 

request to the queue of the architectural element (see step 2, Figure 153). Due to the fact that 

several ports can try to add requests to the queue at the same time, the queue is protected from 

concurrent access using monitors. As a result, only one port can add a request to the queue at 

the same time.  

Once the architectural element thread extracts the requested service from the queue, the 

architectural element checks if the requested service has weavings associated to it (see step 3, 

Figure 153). If the service does not have any weavings, its delegate is asynchronously executed 

so that the architectural element can process another request from the queue. The delegate 

execution consists of adding the service to the queue of the corresponding aspect. Then, the 

aspect thread executes the service (see step 5, Figure 153). However, if the service has 

weavings associated to it, before executing step 5, the service is sent to the weaving manager 

(see step 4, Figure 153). The manager processes weavings by creating its own thread and 

freeing the component from this task. >> 

With regard to starting or stopping an architectural element, when the middleware calls the 

start service of an architectural element, the architectural element calls the startAspect service 

of each one of its aspects. When the middleware calls the stop or abort services of an 

architectural element, the threads of its aspects must also be stopped or aborted. To stop an 

architectural element in a secure way, a set of operations must be performed to achieve a secure 

state that will permit the start of the architectural element execution in the future. An 

architectural element is in a secure state when it does not have requests in its aspect queues and 

there are no executing services. These operations consist of rejecting new services in their 

queues and processing all the services that were already stored in the queue before the stop 

execution. 
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9.4.2.4. Communication: Attachments and Bindings 
PRISMANET supports the communication of the architectural elements without making 

architectural elements aware of each other. To make architectural elements as reusable as 

possible, they do not have references to the other architectural elements that they communicate 

with. The communication among components is the responsibility of attachments and 

bindings. Thus, an attachment has the references of the communicating components and 

connectors, and a binding has the references of the communicating systems and architectural 

elements that systems are composed of.  

 Attachments 

To support attachments, PRISMANET contains three classes: the class Attachment, the class 

AttachmentServerBase and the class AttachmentClientBase (see Figure 154). For each 

component port, there is at least one instance of an Attachment class. When a component 

instance is created, PRISMANET creates the instances of the attachments associated to each 

port. Each PRISMA port has been implemented in two parts, a client port (outPort) and a 

server port (inPort) (see Figure 151). At the same time, attachments have also been 

implemented in two parts, a Server Attachment (AttachmentServerBase) and a Client 

Attachment (AttachmentClientBase). An instance of the Attachment class automatically 

instantiates an AttachmentClientBase and an AttachmentServerBase class.   

 
Figure 154. Main classes of the namespace Attachments of PRISMANET4 
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Figure 155 shows how a component and a connector are connected to each other through 

an attachment. The ports of both the component and the connector have an attachment 

associated to them. Specifically, the component port has the attachment X associated to it and 

the connector port has the attachment Y associated to it. The AttachmentClientBase of the 

attachment X listens to the component outPort (see step 1, Figure 155 ) and resends services to 

the AttachmentServerBase of the connector attachment Y (see step 2, Figure 155 ). Then, 

AttachmentServerBase of the attachment Y resends services to the connector inPort in order to 

be executed by it (see step 3, Figure 155 ).  The communication in the inverse direction is 

performed in the same way. The AttachmentClientBase of the attachment Y listens to the 

connector outPort (see step 4, Figure 155 ) and resends the services to the 

AttachmentServerBase of the component attachment X (see step 5, Figure 155 ).  Finally, the 

AttachmentServerBase of the attachment X resends the services to the component import in 

order to be executed (see step 6, Figure 155 ). 

 
Figure 155. The execution model of an attachment 

 
An AttachmentClientBase instance has a thread that listens to a specific outPort of an 

architectural element instance. When the AttachmentClientBase instance detects that there is a 

request in the outPort, the request is resent to the instance of an AttachmentServerBase. Thus, 

the AttachmentClientBase instance has a reference or a proxy of the AttachmentServerBase. 

The AttachmentServerBase is a MarshalByRefObject class of the .NET Remoting framework. 

This is necessary to create a proxy of the instance to allow the AttachmentClientBase instance 

to access to it remotely in a future version of PRISMANET. 
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All elements that are involved in an attachment are related to each other in one way or 

another.  As a result, it is possible to define an invocation cycle that involves all the elements 

that participate in the attachment. When an element that participates in this cycle receives a 

request, it must process the established actions and propagate the invocation to the next element 

in the cycle. The execution order of the cycle, taking into account the attachment presented in 

Figure 155, is the following: 
Attachment: InterfaceX  AttachmentClientBase:InterfaceYClient  

AttachmentServerBase:InterfaceYServer  Attachment:InterfaceY  

AttachmentClientBase:ClientInterfaceX  

AttachmentServerBase:InterfaceXServer  Attachment:InterfaceX 

This cycle determines the execution model of an attachment. The invocation cycle starts 

and stops at the same point to detect when the communication has been finished.  

 

The attachments are solely responsible for the communication of the components and 

connectors. PRISMANET only participates in the creation of attachment instances between its 

component and connectors instances. To store the list of attachments in its site, the middleware 

has an AttachmentCollection class (see Figure 154). Since middleware does not manage the 

communication process, its implementation is simplified and the independence and 

maintainability of attachments are increased.  

 

 Bindings 

Bindings connect system ports and ports of the architectural elements that the system is 

composed of. Bindings have been designed in a way similar to attachments. Bindings consist 

of two parts: the part of the system (SystemBinding) and the part of the architectural element 

that the system is composed of (ComponentBinding) (see Figure 156). The difference between 

attachments and bindings is introduced by a binding manager, which is called SystemBinding. 

There is only one SystemBinding for each system, i.e., there is not a SystemBinding for each 

system port as occurs in attachments. As a result, SystemBinding contains the references of 

every binding connected to the system ports. In addition, the SystemBinding does not have a 

server part and a client part as attachments have; it only has a server part., which is called 
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SystemBindingServer (see Figure 156). The SystemBindingServer is in charge of localizing the 

system’s architectural elements that are connected to bindings and resending them the requests 

that arrive to the bindings. However, the part of the binding related to the system’s architectural 

element (ComponentBinding) is implemented in the same way as attachments. The 

ComponentBinding has a ComponentBindingClient that listens to its outPort and resends 

services to the SystemBindingServer of the system as well as a ComponentBindingServer that 

receives the request through its inPort (see Figure 156).  

 
Figure 156. Main classes of the namespace Bindings of PRISMANET4 

 

When the SystemBindingServer detects that there is a request in a system inPort, the request 

is added to the system queue (see step 1, Figure 157). Then, when the request is extracted from 

the queue by the SystemBinding (see step 2, Figure 157), and it resends the request to the 

correspondent ComponentBidingServer. When the ComponentBindingServer receives the 

request (see step 4, Figure 157), it is sent to the InPort (see step 4, Figure 157), and it is 
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processed by the architectural element. On the other hand, when an internal architectural 

element sends a request through its Outport (see step 5, Figure 157), since its 

componentBindingClient is listening to the OutPort all the time, it realizes that there is a request 

and it resends the request to the SystemBindingServer (see step 6, Figure 157). Finally, the 

SystemBindingServer sends the request through the corresponding outPort of the system (see 

step 7, Figure 157). 

 
Figure 157. The execution model of bindings 

9.4.2.5. Complex Architectural Elements: Systems 
Systems are been implemented as a specialized class of ComponentBase called SystemBase. 

This class inherits the properties of components and defines a set of services that characterize 

the system. These services allow components, connectors, attachments and bindings to be 

added to the system. They are grouped by the interface ISystem, which is implemented by the 

class SystemBase (see Figure 158). 

The class SystemBase is in charge of maintaining the list of architectural elements, 

attachments and bindings that the system is composed of. In addition, SystemBase invokes the 

services needed by the middleware to start the execution of those elements that the system is 

composed of. 
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Due to the fact that a system is composed of a set of elements, it overwrites the start and 

stop services of the ComponentBase class by extending their behaviour to start the execution of 

these elements. 

 

 
Figure 158. Main classes of the namespace Systems of PRISMANET4 

 

9.4.3. Memory Persistence 
The class MiddlewareSystem implements the functionality that is dependent on the .NET 

technology (see Figure 159). It provides a wide variety of services to the PRISMA architectural 

elements so that they are properly maintained. This maintenance is managed by 

MiddlewareSystem and its different functionalities have been structured in different related 

classes. These classes are the class ElementManagementServices, which manages the 

architectural elements and connections, and the class TypeManagementService, which 

manages types (see Figure 159). 
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The class ElementManagementServices manages the creation and destruction of instances 

of components, connectors, systems, attachments and bindings. It also starts and stops the 

threads of the instances that it creates. 

The class TypeManagementServices searches the different types that are required by 

architectural models and loads their assemblies. Its services are used to dynamically create 

ports, attachments, and bindings.  

 

 

 
Figure 159. Main classes of the namespace Middleware of PRISMANET4 

 

9.4.4. Transaction Manager 
The Transaction Manager is a module of the middleware that provides services to suitably 

execute transactions (see Figure 145). The execution of a PRISMA transaction can involve 

more than one aspect since that it can invoke services that belong to different aspects of the 

transaction aspect. These aspects can also be imported by either the same architectural element 

that imports the transaction aspect or other different architectural elements. As a result, to 

correctly perform a transaction and to guarantee its atomic execution, the aspects involved in 

the transaction must be aware of when they are executing a transaction. In order to cope with 

this need, transactional contexts have been implemented in PRISMA.. 
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A transactional context defines the boundaries of a transaction. In PRISMA, transactional 

contexts notify aspects if they are executing a service that is involved in a transaction. 

Therefore, the aspect is blocked by the transactional context and it only executes requests that 

come from this transactional context until the transaction finishes. This notification is 

performed by adding the transactional context name to the service request that is temporarily 

stored in the queue of the aspect. 

The class TransactionManager is responsible for the transactional context management. 

When the execution of a transaction is started, the middleware is notified and a new entry to the 

TransactionalContext list of the Transaction Manager is added (see Figure 160). 

TransactionManager stores an incremental sequence number, a reference to the 

MiddlewareSystem, the TransactionalContext list and the reference of the TransactionLog file. 

 
Figure 160. Main classes of the namespace TransactioManager of 

PRISMANET4 
 

The class TransactionalContext has a context identifier and maintains the information 

related to the transaction failures. It stores which is the state of the transaction and when it 

finishes.  
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It is important to take into account that there can be transactions that have other nested 

transactions [Mos87]. A transactional hierarchy is created, which can be represented as a tree 

whose root is the initial transaction. Thus, each transaction that is involved in a nested 

transaction has an associated nesting level number, where 0 is the nesting level number of the 

root, and where the highest nesting level number is the most nested transaction. The class 

TransactionalContext is in charge of storing the nesting level number of each transaction.  

When a transaction has nested transactions and one of them fails, every action performed 

by the nested transaction will be undone unless the transaction can treat the failure. The commit 

of a nested transaction is considered to be partial commit until it has beenconfirmed that every 

transaction that includes the nested transaction does not fail. In fact, the only commit that is not 

partial in a hierarchical transaction is the commit of the root transaction. As a result, a 

transactional context has the following possible states (see the relationship state in Figure 160): 

 ACTIVE : The transaction is being executed 

 PRECOMMITTED : The transaction has finished. However, since it belongs to a 

transactional hierarchy, it must wait for the end of all the transactions of the hierarchy in 

order to confirm the commit or execute a rollback.. 

 PREROLLBACK : The transaction has finished. However, since it belongs to a 

transactional hierarchy, it must wait for the end of the root transaction because it 

establishes the execution order of the transitions that it nests. 

 COMMITTED : The transaction has finished successfully. 

 ROLLBACKED : The transaction has finished due to a failure.  

There is a TransactionLog file for each transactional context, in which all the actions of the 

transactional process are recorded. Each entry of the TransactionLog has a sequence number, a 

reference to the previous sequence number, and the inverse action of the action that has been 

performed. As a result, each transactional context has a TransactionLog file that is executed by 

the middleware when a transaction fails. This file execution reestablishes the state of the 

architecture that there was after the transaction execution. 
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Figure 161. Main classes of the TransactioLog of PRISMANET4 

 

9.4.5. Log 
The Log is a module of PRISMANET that logs every operation that is performed by the 

middleware in order to register the execution history of software architectures (see Figure 145). 

It is important to emphasize that this log is different from the TransactionLog; its functionality 

consists of recording the actions that are executed by the middleware like as if it were a 

blackboard. The only purpose of this log is to provide information about the software 

architecture execution. This log is shown by PRISMANET during its execution and provides 

the updated information at runtime (see Figure 162 ). 

 
Figure 162. Execution of a PRISMANET Log 
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9.5. CONCLUSIONS 
PRISMA CASE has been presented in this chapter. PRISMA CASE is a framework that 

provides complete support for developing software systems following the PRISMA approach. 

It is composed of a set of tools that is suitably integrated to provide a unique framework that 

gives support to the user throughout the software life cycle. This integration also provides 

traceability during the different stages of the software life cycle and facilitates the maintenance 

of the developed software products. 

 This set of tools includes the PRISMA Types Graphical Modelling Tool with its code 

generation patterns, the PRISMA Configuration Graphical Modelling Tool with its code 

generation patterns, the generic Graphical User Interface for PRISMA applications, and the 

middleware PRISMANET. 

The PRISMA Types and Configuration Graphical Modelling Tools give support to the 

developmento of PRISMA software architectures following the MDD approach and using the 

PRISMA AOADL in a graphical way. As a result, PRISMA offers mechanisms to develop 

software architectures in a more intuitive and friendly way and mechanisms to verify their 

models. In addition, the code generation patterns that PRISMA modelling tools offer allow 

automatically generate executable C# code on PRISMANET from the specified graphical 

models. Thus, PRISMA CASE deals with the traceability between software architectures and 

implementation and reduces the time and cost invested in the development and maintenance 

processes. 

PRISMA CASE provides a generic Graphical User Interface to execute software 

architectures. This is an important advantage because it is a simple way of validating that 

software architectures provide the behaviour expected by the user without having to develop a 

customized graphical user interface. 

RISMANET is an innovative middleware based on the PRISMA model, which allows the 

implementation of complex, aspect-oriented and component-based software systems using C# 

language. PRISMANET has been developed with C# language using the standard techniques 

that the framework provides, that is, without extending the development platform. As a result, 

PRISMANET can be executed on every computer that has the .NET framework installed. 
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PRISMANET offers extra functionalities for the .NET platform. It allows the execution of 

aspects, the configuration of software architectures (local and distributed), the communication 

among different components that are unaware of each other, etc. PRISMANET has also been 

tested in case studies such as the TeachMover tele-operated robot, banking systems, electronic 

auctions, etc.  

This chapter demonstrates that all the tools and mechanisms that PRISMA CASE provides 

make PRISMA a mature and well-supported approach for developing large and complex 

software systems. 

The work related to the PRISMA model has produced a set of results that is published in 

the following publications: 

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for 

Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and 

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer 

Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area), 

March 27th-30th, 2006.  

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, Graphical Modelling for 

Aspect Oriented SA, 21st Annual ACM Symposium on Applied Computing, ACM, pp. 

1597-1598, ISBN: 1-59593-108-2, Dijon, France, April 23 -27, 2006. (short paper)  

 Jennifer Pérez, Nour Ali, Cristobal Costa, José Á. Carsí, Isidro Ramos, Executing Aspect-

Oriented Component-Based Software Architectures on .NET Technology, 3rd 

International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic, 

May-June 2005. 

 Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsi, Isidro Ramos,  PRISMANET 

middleware: Support to the Dynamic Evolution of Aspect-Oriented Software 

Architectures, X Conference on Software Engineering and Databases (JISBD), pp. 27-34, 

ISBN: 84-9732-434-X, Granada, September, 2005. (In Spanish) 
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 Rafael Cabedo, Jennifer Pérez, Nour Ali, Isidro Ramos, Jose A. Carsí, Aspect-Oriented 

C# Implementation of a Tele-Operated Robotic System, III Workshop on Aspect-Oriented 

Software Development (DSOA), X Conference on Software Engineering and Databases 

(JISBD), pp. 53-59, ISBN: 84-7723-670-4, Granada, September, 2005. (In Spanish) 

 Rafael Cabedo, Jennifer Pérez, Jose A. Carsí, Isidro Ramos, Generation and Modelling 

of PRISMA Architecture using DSL Tools, IV Workshop DYNAMICA – DYNamic and 

Aspect-Oriented Modeling for Integrated Component-based Architectures, pp.79-86, 

Archena, Murcia, November, 2005. (In Spanish) 

 Cristobal Costa, Jennifer Pérez,  Jose Ángel Carsí,  Study and Implementation of an 

Aspect-Oriented Component-Based Model in .NET technology, Technical Report, DSIC-

II/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish) 

 Nour Ali Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos,  Implementation 

of the PRISMA Model in the .Net Platform,II workshop DYNAMICA – DYNamic and 

Aspect-Oriented Modeling for Integrated Component-based Architectures, Conference on 

Software Engineering and Databases (JISBD), pp. 119-127, Málaga, November, 2004.  
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CHAPTER 10 
10. THE PRISMA METHODOLOGY 

 
 

<< Art and science have their meeting point in method. >> 

Edward Bulwer-Lytton 

 

Every development approach has an associated methodology that must be followed in order to 

obtain a quality software and to reduce the cost and the time invested in its development 

process. The PRISMA approach defines its own methodology for developing software 

systems.  

This methodology follows the MDD and is divided into three stages: detection of 

architectural elements and aspects, software architecture modelling, and code generation and 

execution. These three stages are applied by the analyst of the software system in an iterative 

and an incremental way depending on his/her needs. 

In this chapter, the PRISMA methodology is presented in detail using the TeachMover 

robot case study as an example. The different stages of the methodology are described 

considering that the development process is started from scratch. However, the development of 

a software system can be done starting from other software architectures that have been 

previously developed in a partial or complete way. In this sense, the methodology also 

considers the integration of COTS in PRISMA software architecture in order to reuse software 

and to reduce the development time. 
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10.1. STAGES OF THE PRISMA METHODOLOGY 
10.1.1. First Stage: Detection of Architectural Elements and Aspects 
The first tasks for developing software architectures are to identify which architectural elements 

make up the software architecture and to detect the aspects that crosscut this software 

architecture. Several works have been proposed for the identification of components, they are 

usually based on a widely-extended criterion that consists of the functional decomposition of 

software. One of these works applies this criterion to multi-agent systems [Nor98] and another 

work applies this criterion to software architectures (the Architecture Based Design Method 

(ABD)) [Bac00]. A detailed survey of criteria to identify software components can be found in 

[Ira00].  

Other works have been developed for the identification of aspects in requirements 

specifications such as [Ban04], [Mor05a], [Nav03], [Sou03], [Sut02], and [YuY04]. An 

extended survey of these can be found in [Chi05] (see section 3.3.1).  The identification of 

aspects is one of the new challenges that have emerged as a consequence of introducing aspects 

in software architectures. However, there is no defined, consolidated, guided process to identify 

architectural elements and the aspects that crosscut them. Until now, the detection of 

architectural elements and aspects has usually been performed from the requirements 

document in an intuitive way.  

In PRISMA, the computational units (components) and the coordination units (connectors) 

are identified from the requirements specification of software systems, and the concerns that 

crosscut the software architecture can be detected. 

10.1.1.1.  Identification of Architectural Elements 
The identification of architectural elements in the TeachMover robot has been done using the 

manual of the robot. The manual shows that the TeachMover is composed of a set of 

components that represent a set of joints, a set of connectors that coordinate the joints, and a set 

of systems that allows the composition of joints to form a robot. The result of this identification 

is the set of components and connectors that is presented in detail in section 5.1.2.2. 
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Both architectural elements and the services that must be interchanged among them can be 

identified during this stage. These services can be requested and/or provided by the 

architectural elements. Since a PRISMA interface is a set of services that is provided and/or 

requested by means of the ports of architectural elements, the identification of these services 

implies the identification of the interfaces. The ports of architectural elements and the 

interconnections among these ports can also be detected taking into account the identified 

interfaces. 

10.1.1.2. Identification of Crosscutting Concerns 
The concerns that crosscut the software system must be identified from the requirements 

specification in order to modularize them into reusable entities called aspects. In the case of the 

TeachMover, the crosscutting concerns that we have identified are the following: 

 Functional: The purpose of the TeachMover software system is to move the robot. The 

robot has a motor to accurately perform movements by half-steps. A half-step is an angular 

advance that is produced by a stimulating impulse. In the case of the TeachMover, the 

movements can be requested using half-steps or inverse cinematics (moving to a specific 

point in space). This functionality, together with the gripper functionalities, allows the 

robot to move objects from an initial position to a final one. The movements of the robot 

are ordered by an operator from a computer.  

 Safety: Safety directives are necessary for monitoring the TeachMover movements in 

order to make sure that the movements are safe for the robot, the operator, and the 

environment that surrounds them. 

 Coordination: The inner behaviour of joints (SUCs) and the movements in which more 

than one joint has to be moved must be coordinated. In addition, the requests of the 

operator and the performance of the movements must be synchronized. 

 

10.1.2. Second Stage: Software Architecture Modelling 
Once the interfaces, aspects, architectural elements and their ports have been identified, the 

skeleton of the architectural elements and the aspects can be defined. The analyst is then ready 

to start the modelling process of the software architecture using the PRISMA CASE. This stage 
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can be divided into five modelling steps: Interfaces, Aspects, Simple Architectural Elements, 

Systems, and Configuration (see Figure 163).  

 
Figure 163. The methodology of the PRISMA approach 

 

It is important to keep in mind that the enumeration of these steps is not in a restrictive 

order. The enumeration simply indicates the dependencies between the different concepts that 

arise when the architectural model is being modelled. 

  To configure an architectural model, the concepts that are instantiated during the 

configuration process must have been previously defined. 

 To completely define a complex architectural element, the architectural elements that it 

consists of must have been previously defined. 

 To completely define an architectural element, the aspects that it imports and the interfaces 

that their ports use must have been previously defined. 

 To completely define an aspect that uses interfaces, the interfaces must have been 

previously defined. 
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Even though the order of these can be different, it should be followed to completely define 

an architectural model. In other words, it does not mean that partial descriptions of the 

architectural elements, aspects or architectural models cannot be performed during the 

development process. The analyst can start the modelling process from either the steps 1, 2, 3 

or 4, obtaining partial solutions of the model, and can go backward or forward depending on 

his/her needs. 
 

10.1.2.1. Interfaces 
Interfaces are specified in step 1 of the PRISMA architecture modelling stage,. This is due to 

the fact that it is not necessary to previously define other elements of the model. Interfaces are 

stored in a PRISMA repository for reuse (see step 1, Figure 163). 

The specification of the interfaces identified in the stage presented in section 10.1.1.1 

consists of modelling the interface services and their signatures. This task is performed using 

the graphical constructors provided by the Modelling Type Tool of PRISMA CASE. The 

specifications of the interfaces of the joint of the TeachMover are presented in detail in 

appendix C.  

10.1.2.2. Aspects 
Aspects are modelled in step 2 of the PRISMA architecture modelling stage using the graphical 

shapes provided by the PRISMA Modelling Type Tool and the Modal Logic of Actions.  

The aspects that specify the semantics of the services of an interface must be defined after 

the interface has been defined. This is why interfaces are defined in step 1 and aspects are 

defined in step 2 of the methodology. However, this does not constrain the specification order. 

Either the interface is defined before the aspect, or the services are initially defined as private 

services of the aspect and are then changed to publish services by means of an interface. 

Furthermore, when the needed interfaces are reused from the PRISMA CASE repository, step 

1 is not necessary. 

The aspects are defined by taking into account the crosscutting concerns identified in stage 

3.1.1.  The number of aspects for the same concern is decided by the analyst, taking into 

account the software system and criteria such as reusability and/or understanding. Depending 
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on the analyst’s criteria, he/she will define one aspect for a concern or several aspects for the 

same concern. Aspects are reusable entities that define a specific behaviour of a crosscutting 

concern and are, therefore, stored in a PRISMA repository (see step 2, Figure 163). As a result, 

not only can aspects be used more than once in a software architecture description, they can 

also be reused in different software architectures. The specifications of the aspects of the joint 

of the TeachMover are presented in the appendix C.  

10.1.2.3. Simple Architectural Elements 
The definition of simple architectural elements is performed in step 3 of the PRISMA 

architecture modelling stage. The aspects that are defined in step 2 are used to completely 

define these architectural elements. An architectural element imports the aspects that define the 

concerns that it requires. For this reason, aspects must be defined before architectural elements. 

The same aspect is imported by each architectural element that needs to take into account 

the same behaviour of this concern (crosscutting concerns). As a result, an aspect can be 

imported by one or more architectural elements (see steps 2 and 3 of Figure 163). It is 

important to note that the changes performed in an aspect also affect every architectural 

element that imports this aspect.  

The architectural elements that are defined in this step are types that are reusable by 

different software architectures because they are stored by PRISMA CASE. The storage of 

PRISMA architectural elements implies the storage of the aspects that they import. In addition, 

the reusability of the aspect can be due to the fact that it is reused in many architectural 

elements and also when the architectural element that imports the aspect is reused. 

The simplest components that are found in the joint system of the TeachMover are 

specified in the appendix C. 

10.1.2.4. Systems 
Systems are defined for the definition of PRISMA software architectures in step 4 of the 

PRISMA architecture modelling stage. To completely specify a system, the architectural 

elements that the system is composed of should be previously defined. In addition, the 

communication channels that permit the communication among them are defined. It is 
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important to emphasize that the attachments are only defined if the system includes 

components and connectors that must be coordinated. 

Besides having reusable aspects, components, and connectors, systems are also reusable. 

They are defined as patterns or architectural styles that can be reused in any software 

architecture whenever they are needed. For this reason, they are stored by PRISMA CASE.  

It is important to note that any changes that occur in aspects affect the architectural elements 

that import them and, consequently, affect the systems that import these architectural elements. 

Moreover, the changes that occur in architectural elements that are imported by a system also 

affect the system (see step 3, Figure 163).  

In the case of the TeachMover, there are several systems, at different levels of granularity. 

These systems are guided by the skeleton identified in the stage 10.1.1 (see Figure 10 in section 

5.1.2.1) 

The highest layer of composition provides the most abstract view of the software 

architecture, which is called the Architectural Model.  It is important to emphasize that since the 

architectural model does not define a system that encapsulates it, bindings do not need to be 

defined. 

10.1.2.5. Configuration of Software Architectures 
Finally, the architectural elements that have been defined in the previous steps and have been 

stored by the PRISMA CASE are instantiated in step 5. In order to understand the step trace of 

the approach, it is important to take into account that instances have all the properties and 

behaviours of their architectural elements, and as a consequence, instances have the properties 

and behaviours of the aspects that their architectural elements import.  

A specific software architecture is defined by connecting a set of components, systems, and 

connector instances with each other (see Figure 163). This step of the modelling stage is 

performed using the PRISMA Modelling Configuration Tool for modelling tele-operated 

systems (see section 9.3). This tool has been generated from types defined in previous steps of 

this stage using the PRISMA Modelling Type Tool.. The instantiation of the architectural 

elements of a model and the definition of attachment and binding relationships among 
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instances is necessary to obtain an executable architectural model.  This configuration is the 

input of the third stage of the PRISMA methodology 

10.1.3. Third Stage: Code Generation and Execution 
Once a specific configuration is defined, the automatic C# code generation can be performed. 

This generation is possible thanks to the code generation templates of the PRISMA CASE, 

which isolate the specification from the source code preserving its independence.  

The PRISMANET and the generated application can then be executed. The user can 

interact with the application using the generic console that the PRISMA CASE provides. 

In the Teach Mover case, an application has been generated to move the robot using an 

aspect-oriented C# code that has been automatically generated from a formal aspect-oriented 

software architecture specification. 

10.2. INTEGRATION OF COTS IN PRISMA 
The use of Commercial Off-The-Shelf (COTS) during the development process has increased 

in the last few years due to the market competitiveness [Obe97],[Car00]. This increase has led 

developers to try to reduce the time and cost required to develop a software product. As a result, 

developers are using the software components of other companies more and more. These 

software components provide the functionality that developers need and have been tested and 

have a quality guarantee. The use of COTS is supported by the PRISMA approach to avoid 

having to remodel already existing software components, and to improve the development 

time. PRISMA provides mechanisms to integrate COTS in its software architectures without 

violating the principles of the PRISMA model. 

COTS integration is usually presented as a handicap for developers because there are a lot 

of incompatibilities with programming languages, frameworks, platforms, communications, 

etc. Therefore, COTS must be adapted so that can be reused in a software system. There are 

three well-known techniques for integrating COTS in software systems: wrappers, gluewares, 

and proxies. Wrappers wrap COTS in a kind of software artefact of the software system; 

gluewares are intermediaries between the COTS and the software components of the software 

system; and proxies are adapters that hide the incompatibilities between COTS and the 
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components of the software system. PRISMA uses the wrapper technique to integrate COTS 

in its aspect-oriented software architectures. Aspects are the PRISMA type that has been 

selected to wrapp COTS. A a new kind of aspect has been defined to do this, it is called 

Integration Aspect (see section 9.1.4.1). 

An integration aspect contains a reference to the COTS that it is related to and has an 

associated PRISMA interface that defines all the services that the COTS provides. In order for 

the COTS integration to be compliant with the PRISMA model, the aspect must be imported 

by an architectural element of the model so that it can publish its services through its ports and 

communicate with other architectural elements through attachments or bindings. 

The code generation template of integration aspects is different from other kinds of aspects 

because they only have references to COTS services. Moreover, to properly execute COTS 

services, the assemblies of COTS must be stored in the same folder as the PRISMA project. 

This is so that the assemblies of COTS can be added to the compilation process and to start 

their executions in the same way as other PRISMA software architectural elements. 

10.3. CONCLUSIONS 
This chapter has presented the PRISMA methodology for developing PRISMA aspect-

oriented software architectures. This methodology allows the development of aspect-oriented 

software architectures as if aspects and architectural elements were building blocks. Thus, it is 

possible to work with them in different ways to obtain different results. This flexibility and 

facility for working is achieved thanks to the modelling mechanisms provided by PRISMA 

CASE and the fact that aspects and architectural elements are independent entities that can be 

imported by different entities of the same software architectures.  

The PRISMA CASE also promotes the reuse of architectural elements and aspects in 

different software architectures because their specifications are stored for reuse. For example, 

most of the architectural elements of the TeachMover can be reused in the other software 

architectures of tele-operated robots, such as the EFTCoR.  The reused components and/or 

aspects can be reused as they were defined, or they can be updated and/or extended without 

having to start from scratch. However, it should be noted that even though reuse is limited by 
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the system domain, a repository of PRISMA aspects and architectural elements can be a great 

contribution for reuse in product families such as the tele-operation family. Furthermore, a large 

repository with good searching mechanisms can provide excellent support for the development 

and maintenance of software. 

It is also important to take into account that the step order of the methodology is not a 

restrictive order. The analyst is not forced to define all the interfaces of the system to specify the 

aspects nor is the analyst forced to define all the aspects to start the definition of simple 

architectural elements, etc. The analyst can completely define some interfaces, aspects, and 

architectural elements of the software system to obtain a part of a software architecture. Then, 

he/she can go back and define another piece of the software architecture starting from steps 1, 

2, 3, or 4 depending on his/her needs,  and so on. The steps that have been presented only 

define the elements that must be defined before the specification of other elements. These steps 

can be applied in an incremental and iterative way by the analyst. 

Finally, this chapter has introduced the integration of COTS in PRISMA models as part of 

the PRISMA methodology. This is an important characteristic due to the fact that the use of 

COTS is starting to be widely used, and any development approach that needs to reduce the 

development time must provide it. PRISMA uses aspects as wrappers of COTS. These aspects 

must be imported by an architectural element in order to publish their services through ports 

that enable their communication with other architectural elements. This is a novel and 

advantageous way of introducing COTS in software architectures because the COTS services 

can be requested and received and also can be extended by weaving them with other aspects 

that architectural elements import. As a consequence, COTS can be easily extended using the 

aspect-oriented mechanisms that PRISMA offers. 

The work related to the PRISMA model has produced a set of results that are published in 

the following publications: 

 
 Rafael Cabedo, Jennifer Pérez,  Isidro Ramos, The application of the PRISMA 

Architecture Description Language to an Industrial Robotic System, Technical Report, 

DSIC-II/11/05, pp.180, Polytechnic University of Valencia, September 2005. (In Spanish) 
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 Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, DIAGMED: An 

Architectural model for a Medical Diagnosis, IV workshop DYNAMICA – DYNamic 

and Aspect-Oriented Modeling for Integrated Component-based Architectures, pp. 1-7, 

Archena, Murcia, November, 2005. (In Spanish)  

 Jennifer Pérez, Rafael Cabedo, Pedro Sánchez, Jose A. Carsí, Juan A. Pastor, Isidro 

Ramos, Bárbara Álvarez, PRISMA Architecture of the Case Study: an Arm Robot,  II 

workshop DYNAMICA – DYNamic and Aspect-Oriented Modeling for Integrated 

Component-based Architectures, Conference on Software Engineering and Databases 

(JISBD), pp. 119-127, Málaga, November 2004. (In Spanish)   

 Jennifer Pérez,  Nour Ali , Jose A. Carsí, Isidro Ramos,  PRISMA Architecture of the 

Robot 4U4 Case Study, Technical Report DSIC-II/13/04, pp. 72, Polytechnic University 

of Valencia, 2004. (In Spanish) 

 Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sánchez, Bárbara 

Álvarez, Development of a Tele-Operation System using the PRISMA Approach, VIII 

Conference on Software Engineering and Databases (JISBD), pp. 411-420, ISBN: 84-

688-3836-5, Alicante, November, 2003. (In Spanish) 
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CHAPTER 11 
11. CONCLUSIONS AND FURTHER 

RESEARCH 
 

<< But all endings are also beginnings. We just don't know it at the time. >> 

Mitch Albom 

 

This chapter presents and analyzes the main contributions of the thesis. It also presents future 

work that can be done to continue this research and to extend the results that have already been 

obtained. 

11.1. CONCLUSIONS 
The complexity of current software systems and the fact that their non-functional requirements 

have become very relevant to the user are challenges to be faced in all software development. 

Software Architectures and AOSD have emerged to overcome these needs. Software 

Architectures reduce the complexity of software development and improve its maintenance by 

increasing software reuse. AOSD improves the quality of software and accurately satisfies the 

needs of the user giving equal importance to functional and non-functional requirements from 

the early stages of the software life-cycle. AOSD also reduces the complexity of software 

development and improves its maintenance by increasing the reusability of software.  

In order to take advantage of Software architectures and AOSD, several approaches have 

emerged to combine both approaches providing all their advantages together. However, these 

approaches usually extend architectural models without connectors and mainly follow an 

asymmetric model. They are only focused on a single specific purpose: analysis, evolution or 
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development of software architectures without attempting to provide complete development 

and maintenance support. Furthermore, these approaches always introduce the notion of aspect 

by using original architectural concepts, despite the fact that they do not provide the suitable 

semantics for aspects. This thesis presents a new software development approach that 

integrates Software Architectures and AOSD to fulfil these needs.  

In this thesis, the PRISMA approach is presented as an important advance in the 

combination of the aspect-oriented paradigm and software architectures. The PRISMA 

approach integrates an aspect-oriented symmetric model with an architectural model that has 

the notion of connector. The PRISMA approach is also based on the Model-Driven 

Development (MDD) to provide complete support during the development and maintenance 

processes of software. 

In PRISMA, aspects and software architectures are smoothly integrated with a clear 

semantics, which has been formalized using a Modal Logic of Actions and π-calculus. In 

addition, a PRISMA metamodel has been defined to define the PRISMA model and to 

establish its properties in a precise way. This metamodel has facilitated the automation and 

maintenance tasks of PRISMA software architectures since modelling tools are based on 

metamodels to support these tasks. In this case, the metamodel has been introduced in DSL 

Tools to develop the PRISMA framework. 

Another important contribution of this thesis is the Aspect-Oriented Architecture 

Description Language (AOADL), which supports the PRISMA model. This AOADL allows 

the definition of PRISMA aspect-oriented software architectures, not only providing 

components and connectors as first-order citizens of the language, but also provides aspects and 

interfaces. The structure, design and maintainability of architectures specified in the PRISMA 

AOADL are improved by defining and reusing entities at different levels of granularity 

(interfaces, aspects, components, connectors and systems). This improvement is possible since 

(1) AOADL provides interfaces and aspects, (2) weavings are defined outside aspects, (3) 

aspects are defined independently of architectural elements, and (4) architectural elements are 

defined without being aware of the architectural elements that are connected to them. As a 

result, an interface can be used by several aspects, an aspect can be used by several architectural 
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elements, and an architectural element can be used by several software architectures. In 

addition, the precise semantics of the PRISMA AOADL and its independence of technology 

provide the opportunity to validate PRISMA software architecture properties and to compile 

models for different programming languages and platforms. The language division into two 

levels of abstraction (types and configuration) permits the stored types defined at the type 

definition level to be reused by the configuration level to define a specific software architecture 

as many times as necessary. Since the use of a formal language is a hindrance for many users, a 

graphical AOADL has been designed to describe formal software architectures using a friendly 

graphical notation. This graphical modelling language is supported by the modelling tool that 

PRISMA CASE offers.  

PRISMA AOADL has been created to specify industrial projects where the software 

systems are complex, open, and active such as the TeachMover robot. It is important to keep in 

mind that most ADLs only allow us to specify the skeleton of architectures and the services that 

are interchanged among their different architectural elements. However, the PRISMA 

AOADL has great expressive power to specify more features and requirements related to the 

software system by means of aspects. Therefore, PRISMA AOADL is not only able to specify 

simple architectural systems for academic projects such as pipelines, filters, blackboards, etc, 

but it is also able to completely specify complex software systems. 

PRISMA CASE is the framework that supports the complete PRISMA approach by 

integrating the PRISMA metamodel, AOADL (graphical and textual), model compiler, 

middleware and methodology. Therefore, PRISMA is presented as a well supported approach 

for developing software systems. 

Another important contribution of this thesis is the PRISMA model compiler, which has 

been developed using the templates and code generators provided by DSL tools. It permits the 

compilation of PRISMA architectural models in different programming languages and 

technologies, thereby reducing the development time and preserving the traceability between 

architectural models and their application code. The PRISMA model compiler currently 

generates C# code and PRISMA textual specifications from graphical PRISMA architectural 

models. Despite the fact that the .NET framework does not provide support for the Aspect-
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Oriented approach, PRISMA is able to execute the generated aspect-oriented C# code on the 

.NET platform. This is possible thanks to the PRISMANET middleware that has been 

developed. PRISMANET extends the .NET technology by the execution of aspects on the 

.NET platform, the concurrent execution of aspects and architectural elements, the loading of 

components, the creation of execution threads, the management of the local components, etc. 

Therefore, PRISMANET is an important contribution for the .NET community since it 

provides mechanisms to support AOP mechanisms. 

Just as important is the methodology that has been defined to guide the user during the 

development process of PRISMA software architectures. This methodology is supported by 

the PRISMA CASE and consists of three stages that define how to define software 

architectures from scratch or how to reuse software by importing PRISMA architectural 

elements and aspects and COTS. 

All the contributions of this thesis have been demonstrated using the the TeachMover robot 

case study. The reuse capabilities of the PRISMA model have been presented by means of the 

TeachMover case study. The TeachMover architecture has also helped to present the 

capabilities of the PRISMA modelling tool. The case study has been totally specified and its 

code has been generated and executed by PRISMACASE.  

Software architectures are very important in robotic tele-operated systems [Cos00]. Robotic 

tele-operated systems must be developed using flexible and extensible architectural 

frameworks instead of being developed just using programming languages such as ADA95 or 

programming languages for automatons (for example STEP 7 of Siemens). There have been 

numerous efforts to provide developers with frameworks such as OROCOS [Bru02], MCA 

[Sch01] and CLARAty [Vol01].  All of them make very valuable contributions that simplify 

the development of systems. However, the way that the component-oriented approach has been 

applied may reduce some of its benefits. These frameworks are object-oriented or component-

oriented frameworks that rely on object-oriented technologies and that highly depend on a 

given infrastructure (Linux O.S. and the C++ language). As a result, a technology-

independence is not provided. Another framework for developing robotic tele-operated 

systems is ACROSET, which is technology-independent but it does not provides a real 
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component oriented language for developing their software architectures, they use interface 

definition languages (such as CORBA-IDL), which are not enough to completely define 

components. In this thesis, a software engineering approach has been applied to the 

development of a robotic system. This development takes advantage of the good properties 

provided by this software engineering approach, especially the reuse of components, 

maintainability, traceability, technology-independence, code generation techniques, etc. 

All these contribution have been published in thirteen international conferences, three 

international workshops, four national conferences, nine national workshops, and five technical 

reports. These contributions are the following: 
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LNCS 4063 ,pp. 123-138, ISSN: 0302-9743, ISBN: 3-540-35628-2, Vasteras, Suecia, 

June 29th-July 1st, 2006.  

 Nour Ali, Jennifer Pérez, Cristóbal Costa, Isidro Ramos, José Ángel Carsí, Mobile 

Ambients in Aspect-Oriented Software Architectures, IFIP Working Conference on 

Software Engineering Techniques: Design for Quality- SET 2006, Springer, Volume 227 

pp. 37-48, ISSN: 1571-5736, ISBN: 0-387-39387-0, Warsaw, Poland, October, 17-20, 

2006. 

 Jennifer Pérez, Elena Navarro, Patricio Letelier, Isidro Ramos, A Modelling Proposal for 

Aspect-Oriented Software Architectures, 13th Annual IEEE International Conference and 

Workshop on the Engineering of Computer Based Systems (ECBS), IEEE Computer 

Society , pp.32-41, ISBN: 0-7695-2546-6, Potsdam, Germany (Berlin metropolitan area), 

March 27th-30th, 2006.  
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Press, pp. 219-220, ISBN: 0-7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 

2005 (position paper)  

 Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, Integrating Ambient Calculus in 

Mobile Aspect-Oriented Software Architectures, Fifth Working IEEE/IFIP Conference on 

Software Architecture (WICSA), IEEE Computer Society Press, pp. 233-234, ISBN: 0-

7695-2548-2, Pittsburgh, Pennsylvania, USA, 6-9 November, 2005 (position paper)  

 Jennifer Pérez, Nour Ali, Cristobal Costa, José Á. Carsí, Isidro Ramos, Executing Aspect-

Oriented Component-Based Software Architectures on .NET Technology, 3rd 

International Conference on .NET Technologies, pp. 97-108, Pilsen, Czech Republic, 

May-June 2005. 

 Nour Ali, Jennifer Pérez, Isidro Ramos, Aspect High Level Specification of Distributed 

and Mobile Information Systems, Second International Symposium on Innovation in 

Information & Communication Technology ISSICT, pp. 14, Amman, Jordania,21-22, 

April, 2004.  

 Nour Ali, Jennifer Pérez Isidro Ramos, Jose A. Carsí , Aspect Reusability in Software 

Architectures, 8th International conference of Software Reuse (ICSR), July, 2004 (poster)  

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Goals Model-Driving Software 

Architecture, 2nd International Conference on Software Engineering Research, 

Management and Applications (SERA), pp. 205-212, ISBN:0-9700776-9-6, May 5-8, 

2004, Los Angeles, CA, USA.  
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Mobility and Replicability Patterns in Aspect-Oriented Component- Based Software 

Architectures, 15th IASTED International Conference, Parallel and Distributed 

Computing and Systems (PDCS), ACTA Press, ISBN: 0-88986-392-X, ISSN: 1027-

2658, pp. 820-826, Marina del Rey, California, USA, 3-5, November 2003,  

 Jennifer Pérez , Isidro Ramos , Javier Jaén, Patricio Letelier, Elena Navarro , PRISMA: 
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International Conference on Quality Software (QSIC 2003), IEEE Computer Society 

Press, pp.59-66, ISBN: 0-7695-2015-4, Dallas, Texas, USA, November 6 - 7, 2003.  

 Elena Navarro, Isidro Ramos, Jennifer Pérez, Software Requirements for Architectured 

Systems, 11t h IEEE International Requirements Engineering Conference (RE'03), IEEE 

Computer Society Press, pp. 365-366, ISSN: 1090-705X, ISBN: 0-7695-1980-6, 

Monterey, California, 8-12 September 2003 (Poster)  
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 Jennifer Pérez, Nour Ali, Jose A. Carsí, Isidro Ramos, Dynamic Evolution in Aspect-

Oriented Architectural Models, Second European Workshop on Software Architecture, 

Springer LNCS 3527, pp.59-16, ISSN: 0302-9743, ISBN: 3-540-26275-X , Pisa, Italy, 

June 2005. 
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Barcelona, October 2006. (In Spanish) 

 Cristóbal Costa, Jennifer Pérez, Nour Ali, Jose Angel Carsi, Isidro Ramos,  PRISMANET 

middleware: Support to the Dynamic Evolution of Aspect-Oriented Software 

Architectures, X Conference on Software Engineering and Databases (JISBD), pp. 27-34, 

ISBN: 84-9732-434-X, Granada, September, 2005. (In Spanish) 

 Jennifer Pérez, Nour H. Ali, Isidro Ramos, Juan A. Pastor, Pedro Sánchez, Bárbara 

Álvarez, Development of a Tele-Operation System using the PRISMA Approach, VIII 

Conference on Software Engineering and Databases (JISBD), pp. 411-420, ISBN: 84-

688-3836-5, Alicante, November, 2003. (In Spanish) 

 Jennifer Pérez, Isidro Ramos , Ángeles Lorenzo, Patricio Letelier, Javier Jaén,  PRISMA: 

OASIS PlatfoRm for Architectural Models, VII Conference on Software Engineering and 

Databases (JISBD), pp. 349-360, ISBN: 84-688-0206-9, El Escorial (Madrid), November, 
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 Mª Eugenia, Nour Ali, Jennifer Pérez, Isidro Ramos, Jose A. Carsí, DIAGMED: An 
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PRISMA Approach, II workshop DYNAMICA – DYNamic and Aspect-Oriented 

Modeling for Integrated Component-based Architectures, pp. 111-118, Almagro, Ciudad 
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Component-based Architectures, Conference on Software Engineering and Databases 

(JISBD), pp. 119-127, Málaga, November 2004. (In Spanish)   

 Nour Ali Jennifer Pérez, Cristobal Costa, Jose A. Carsí, Isidro Ramos,  Implementation 

of the PRISMA Model in the .Net Platform,II workshop DYNAMICA – DYNamic and 

Aspect-Oriented Modeling for Integrated Component-based Architectures, Conference on 

Software Engineering and Databases (JISBD), pp. 119-127, Málaga, November, 2004.  

 Nour H. Ali, Josep F. Silva, Javier Jaen, Isidro Ramos, Jose Á. Carsí, Jennifer Pérez, 
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Workshop Distributed Objects, Languages, Methods and Environments (DOLMEN), 

pp.74-80, Alicante, November, 2003.  
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II/12/05, pp. 198, Polytechnic University of Valencia, September, 2005. (In Spanish) 
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Robot 4U4 Case Study, Technical Report DSIC-II/13/04, pp. 72, Polytechnic University 
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 Jennifer Pérez,  Isidro Ramos, Jose A. Carsí, A Compiler to Automatically Generate the 

Metalevel of Specifications using Properties of the Base Level, Technical Report, DSIC-

II/23/03, pp. 107, Polytechnic University of Valencia, October, 2003.(In Spanish) 

 

11.2. FURTHER RESEARCH 
PRISMA is a new approach that opens a perfect setting for further research. All the parts that 

the PRISMA approach is composed of can be extended in order to face new challenges. 

PRISMA has been applied to both: the tele-operation domain and the electronic bank 

domain. However, other domains can have other specific properties that are not taken into 

account in PRISM. As a result, the application of the PRISMA model to other domains can 

assist us in defining new aspects that can introduce new properties of modelling and differences 

in aspect specifications. In fact, PRISMA only supports the definition of software architectures 

that are locally executed, despite the fact that most software architectures have a distributed 

nature. For this reason, we are currently working on introducing distribution and mobility 

properties in PRISMA using aspects. In addition, until now, PRISMA has been applied to 

software architectures that do not require persistence. However, information systems usually 

store their information in secondary memory. As a result, persistence is another important 

property that the model should support. There are other concepts from software architectures 

that PRISMA does not provide such as views and architectural patterns. In the long term, these 

concepts should also be defined in PRISMA. 

The PRISMA model extensions imply modifications in the PRISMA AOADL at its 

different levels of abstraction (types and configuration) and at its different kinds of 

representation (textual and graphical). PRISMA AOADL supports cardinality constraints to 

define systems, but it should be extended to support other kinds of constraints as well.  

Since PRISMA does not yet provide model checking mechanisms to check the properties 

of its architectural specifications such as reachability, deadlock detection and liveness, these 

model checking techniques should also be applied to PRISMA. 
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Another important property of software systems is the continuous evolution that they 

undergo. Development frameworks must provide mechanisms to support evolution and to 

facilitate the software maintenance. As a result, PRISMA must be able to support the evolution 

of aspect-oriented software architectures. The division of the PRISMA architecture 

specifications into two levels of abstraction opens the opportunity to distinguish between the 

evolution of types and the evolution of a specific architecture. Despite the fact that the 

PRISMA evolution services have been identified and included in the PRISMA metamodel to 

modify software architectures, this only permits its modification at modelling time. However, 

since there are a lot of software systems that cannot stop their execution to be modified, run-

time evolution must be provided. This run-time evolution is usually called dynamic 

configuration. Therefore, we are currently working on defining mechanisms to dynamically 

execute evolution services at run-time. Over the long term, our work with regard to software 

evolution will be related to the data evolution problem of software architectures, where we will 

apply our previous experience on data migration and data evolution of object-oriented 

conceptual schemas [Per02a], [Per02b], [Per02c]. 

For the application of PRISMANET, there are a lot of lacks that must be dealt with in the 

near future. The most important ones are the support of transactions and fault tolerance. In the 

long term, PRISMANET must also provide distributed and evolution mechanisms to the 

architectural elements. Automatic code generation of other programming languages and 

technologies is future work that could imply the implementation of other middlewares if 

required by the new technological platforms. Furthermore, an abstract middleware that would 

hide the differences between the different platforms could also be developed. 

The PRISMA UML profile that is presented in this thesis allows us to export PRISMA 

specifications to other modelling tools and model management platforms in XMI format. 

Another further task is to automatically generate PRISMA XMI documents from PRISMA 

architectural specifications to be exported to other tools whose use could be advantageous. 

The PRISMA methodology does not support the identification of architectural elements 

and aspects from the requirements specification. As a result, one future work is to integrate 
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ATRIUM [Nav03]with PRISMA to provide complete support to every stage of the software 

life-cycle (from requirements to implementation).  

In addition, the extension of PRISMA methodology also offers opportunities for future 

work. This extension can consist of providing mechanisms that will take into account product 

family modelling as well as the variability that software architectures of this kind would 

introduce at the PRISMA modelling stage. Yet another task is to create a repository with a 

query language and metadata description of the architectural elements and aspects to improve 

reusability even more. The incorporation of COTS introduces the possibility of importing web 

services in PRISMA, making the study of PRISMA as a Service-Oriented Architecture (SOA) 

necessary. Therefore, another interesting task is to analyze what implications the SOA support 

will have for the PRISMA MODEL and the PRISMANET implementation. 

Finally, it is necessary to evaluate PRISMA using different applications and case studies in 

order to perform a quantified evaluation of the approach. A comparison of aspect-oriented and 

non-aspect oriented applications is necessary to be able to measure the advantages that 

PRISMA provides in comparison with other approaches. This measurement should be made 

taking into account different case studies and domains in order to have a wide sample that will 

allow us to get a set of well based conclusions.  
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APPENDIX A 
A.  PRISMA AOADL SYNTAX 

 

 

 

This appendix presents the BNF of the PRISMA AOADL. The notation that has been used 

is the following: 

 bold term is a terminal term 

 ‘ bold term ’ is a terminal punctuation mark 

 [term] is an optional term 

 |  is an alternative 

Some simplifications are used in the BNF to define names, values, blocks, lists or 

sequences of terms. Let be x a term of the grammar. The simplifications are the following: 

 Names that are identifiers:  

<x_name>  ::=  is a terminal that corresponds to a string of characters. 

 Value of a property:  

<x_value>  ::=  is a terminal that corresponds to a concordant constant value with the type  

                          of the property x. 

 Blocks:  

<x_block>  ::=  <x_block> <x>  |  <x> 

 Lists: 

<x_list>  ::=  <x_list> ‘ , ‘ <x>  |  <x> 

 Sequences: 

<x_seq>  ::=  <x_seq> ‘ ; ‘ <x> | <x> ‘ ; ‘ 
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A.1. ARCHITECTURAL MODEL 
 

<architectural_model>  ::=  Architectural_Model <model_name>  

                                                <interface_block> 

                                                <aspect_block> 

                                               <component_block> 

                                               <connector_block> 

                                               <attachments_block> 

                                               [<system_block>] 

            End_Architectural_Model <model_name>‘;’ 

A.2. INTERFACES 
 

<interface>  ::=    Interface <interface_name>  

               <iservice_list>  

                    End_ Interface <interface_name> ; 

<iservice>  ::=  <service_name> ‘(‘ [<param_service_list>]  ’)’ ‘;’ 

A.3. ASPECTS 
 

<aspect> ::=  <concern>  Aspect  <aspect_name>   

                       [using  <interface_name_list>]  

                         [ <constant_attributes> ] 

                          [ <variable_attributes> ] 

                           [ <derived_attributes> ] 

                            <services>  
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                           [ <preconditions> ]  

                            [ <transactions> ] 

                [ <constraints> ] 

                           [<played_roles>] 

                           <protocol>        

             End_Aspect  <aspect_name>‘;’ 

<concern> ::= functional | coordination | safety | integration | distribution |  

                        replication | mobility | quality | persistence | presentation |  

                        navigational | context-awareness 

 

A.3.1. Attributes 
 

<constant_attributes>  ::=  Constant  < cons_attribute_seq> 

<variable_attributes>  ::=  Variable  <var_ attribute_seq> 

<derived_attributes>  ::=  Derived  <der_attribute_seq> 

< cons_attribute>  ::=  <attribute_name>‘:’  <data_type> [‘,‘DEFAULT’:’]  

                                       <value> 

<var _attribute>  ::=  <attribute_name>‘:’  <data_type>[‘,’  NOT NULL ]  

                                              [‘,’ DEFAULT’:’] <value> 

<der_attribute>  ::=  <attribute_name>‘:’  <data_type>‘,’  derivation‘:’  

                                 <formulae>  
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A.3.2. Services 
 

<services>  ::=  Services  <service_section_seq> 

<service_section>  ::=  begin‘(‘  [<param_service_list>]‘)’‘;’  [ <valuations> ]  

   <domain_services_seq>  end‘(‘  ‘)’‘;’  

<domain_services>  ::=  <service>  [  as  <service_name>] [ <valuations> ] 

<service>  ::=  <service_type>  <service_name>‘(‘  [<param_service_list>]‘)’  

<service_type>  ::=  in  |  out  |  in/out 

<valuations>  ::=  Valuations  <valuation_seq> 

<valuation>  ::=  [‘{‘  <condition>  ‘}’]  ‘[‘  <action>  ‘]’  <postcondition_list>  

<action>  ::=  <service_type>  <service_name>‘(‘  [<parameter_name_list>]‘)’   

<postcondition>  ::=  <property>  ‘:=’  <formulae> 

<property>  ::=  <attribute_name>  |  <parameter_name> 

 

A.3.3. Preconditions 
 

<preconditions>  ::=  Preconditions <precondition_seq> 

<precondition>  ::=  <invocation> if  ‘{‘ <condition> ‘}’  

<invocation>  ::=  <service_name>‘(‘  [<parameter_name_list>]‘)’   

 

A.3.4. Transactions 
 

<transactions>  ::=  Transactions <transaction_seq> 

<transaction>  ::=  <service_type> <transaction_name> 
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                                                                     ‘(‘[<param_service_list>] ‘)’‘:’   

                            <initial_transaction_process>  <transaction_process_seq>  

                            [ <valuations> ] 

<initial_transaction_process>  ::=  <transaction_name>‘::=’  <process>  ‘ ’      

                                                          <process_name>‘;’ 

<transaction_process> ::= <process_name> ::= <process>  [‘ ’ <process_name> ] 

<transaction_service>  ::=  [‘{’  <condition>  ‘}’]  <service_name>  

       <channel_kind>  ‘(‘  [<parameter_name_list> ]’)’ 

<channel_kind>  ::=  <input_channel>  |  <output_channel> 

<input_channel>  ::=  ‘?’ 

<output_channel>  ::=  ‘!’ 

 

A.3.5. Constraints 
 

<constraints>  ::=  Constraints  <constraint_seq> 

<constraint>  ::=  always  ‘{‘  <condition>  ‘}’  |  never  ‘{‘  <condition>  ‘}’   

                              <condition_before>  since  <condition_after>  | 

                             <condition_before>  until  <condition_after>  | 

                             always  <condition_before>  since  <condition_after>  | 

   always  <condition_before>  until  <condition_after>  | 

                             never  <condition_before>  since  <condition_after>  | 

   never  <condition_before>  until  <condition_after>  | 

<condition_before>  ::= <condition> 
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<condition_after> ::= <condition> 

 

A.3.6. Played_Roles 
 

<played_roles>  ::=  Played_Roles  <played_role_seq> 

<played_role>  ::=  <played_role_name>  for  <interface_name>  ‘=’  

                                 <process>‘;’ 

<played_role_service>  ::=  <service_name>  <channel_kind> 

                                              ‘(‘ [<parameter_name_list>]’)’ 

 

A.3.7. Protocol 
<protocol>  ::=  Protocol  <initial_process>  <protocol_process_seq> 

<initial_process>  ::=  <aspect_name>  ‘::=’  <process>  ‘ ’  < process_name>‘;’ 

<protocol_process>  ::=  <process_name>  ‘::=’  <process>   

                                         [‘ ’  <process_name>] 

<protocol_service>  ::=  [‘{’  <condition>  ‘}’]  <protocol_service_type>  

                                      <channel_kind>  ‘(‘  [<parameter_name_list>]’)’’:’  

                                      <priority> 

<process_service_type>  ::=  <public_service>  |  <private_service> 

<public_service>  ::=  <played_role_name>’_’<service_name> 

<private_service> ::= <service_name> 

<priority>  ::=  <priority_value> 
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A.4. COMPONENTS 
 

<component>  ::=  Component  <component_name> 

                             <aspects_importation_seq> 

                             [<weavings>] 

   <ports> 

                             <creation> 

                                         <destruction> 

                            End_Component <component_name>‘;’ 

<aspects_importation>  ::=  <concern>  Aspect   Import  <aspect_name> 

<creation>  ::=  new‘(‘  [<param_service_list>]‘)’  ‘{‘  <start_aspects_seq>  ‘}’ 

<destruction>  ::=  destroy‘(‘  ‘)’  ‘{‘  <stop_aspects_seq>  ‘}’ 

<start_aspects>  ::=  <aspect_name>‘.’begin‘(‘  [<parameter_name_list>]‘)’ 

<stop_aspects>  ::=  <aspect_name>‘.’end‘(‘  ‘)’ 

A.5. WEAVINGS 
 

<weavings>  ::=  Weavings  <weaving_seq>  End_Weavings’;’ 

<weaving>::= <aspect_name>’.’<service_name>‘(‘  [ <parameter_name_list> ]‘)’  

                         <weaving_operator>  <aspect_name>’.’<service_name>  

                         ‘(‘  [ <parameter_name_list>]‘)’ 

<weaving_operator>  ::=  after  |  before  |  instead  |  afterif‘(‘  <condition>  ‘)’ 

                                        | beforeif‘(‘  <condition>  ‘)’ | insteadif‘(‘  <condition>  ‘)’ 
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A.6. PORTS 
 

<ports>  ::=  Ports  <port_seq>  End_Ports‘;’ 

<port>  ::=  <port_name>’:’  <interface_name>‘,’   

                                                Played_Role  <aspect_name>’_’<played_role_name> 

A.7. CONNECTORS 
 

<connector>  ::=  Connector  <connector_name> 

                                                 <aspects_importation_seq> 

                                                 [<weavings>] 

                        <ports> 

                                                 <creation> 

                                                <destruction> 

                              End_Connector  <connector_name>‘;’ 

A.8.  ATTACHMENTS 
 

<attachments>  ::=  Attachments  <attachment_seq>  End_Attachments’;’ 

<attachment>  ::=  <attachment_name> ‘:’ <connector_name>’.’<port_name>     

                              ‘(‘ <card_min_value> ‘,’ <card_max_value >‘)’  ‘ ’  

                               <component_name>’.’<port_name> 

     ‘(‘ <card_min_value> ‘,’ <card_max_value>‘)’ 

<card_min>  :=  <natural_value> 

<card_max>  ::=  <natural_value> 
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A.9. SYSTEMS 
 

<system>  ::=  System  <system_name> 

                                       [<aspects_importation_seq>] 

                                       [<weavings>] 

              <ports> 

                                        <architectural_element_importations> 

                                        [<attachments>] 

                                        [<bindings>] 

                                        <system_creation> 

                                        <system_destruction> 

                   End_System <system_name>‘;’ 

<architectural_element_importations>  ::=  Import  Architectural  Elements  

                                                                        <architectural_element_import_list>‘;’ 

<architectural_element_import>  ::=  <architectural_element>  

                                                                ‘(‘  <min_number_value>‘,’  

                                                                      <max_number_value>‘)’ 

<architectural_element >  ::=  <component_name>  |  <connector_name>  |  

                                                    <system_name> 

<bindings>  ::=  Bindings  <binding_seq>  End_Bindings’;’ 

<binding>  ::=  <binding_name> ‘:’  <port_name>‘(‘  <card_min_value>‘,’  
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                                                    <card_max_value>‘)’  ‘ ’   

                                                    <architectural_element>’.’<port_name>     

                                                   ‘(‘  <card_min_value>‘,’ <card_max_value>‘)’       

 <system_creation>  ::=  new ‘(‘ [<param_service_list>‘,’]  

                                                    <architectural_element_number_list>,                 

                                                    [<attachment_number_list>, 

                                                    <binding_number_list>] ‘)’  

                                       ‘{‘  [<start_aspects_seq>] 

                                           <architectural_elements_creation_seq>  

                                            [<attachments_creation_seq>]  

                                            [<bindings_creation_seq>]  ‘}’ 

<architectural_element_number>  ::=   

        input  Num_<architectural_element_name>‘:’ natural 

<attachment_number>  ::=  input  Num_<attachment_name>‘:’ natural 

<binding_number>  ::=  input  Num_<binding_name>‘:’ natural 

<architectural_elements_creation >  ::=  new  <architectural_element_name> 

                                                                    ‘(‘ [<param_service_list>]‘)’ 

<attachments_creation >  ::=  new  <attachment_name> ‘(‘<param_attachment>‘)’ 

<param_attachment >  ::= input ArgCnctName: string,  

                                             input ArgCnctPort: string,   

                                             input ArgCompName: string,   
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                                             input ArgCompPort: string 

<bindings_creation >  ::=  new  <binding_name>  ‘(‘  <param_binding>  ‘)’ 

<param_binding >  ::=  input ArgSysPort: string, input ArgAEName: string,  

                                        input ArgAEPort: string 

<system_destruction> ::= destroy ‘(‘ ‘)’ ‘{‘ [<stop_aspects_seq>]  

                                      <architectural_elements_destruction_seq>          

                                      [<attachments_destruction_seq>]  

                                      [<bindings_creation_seq>] ‘}’ 

<architectural_elements_destruction >  ::=     

                                                           <architectural_element_name>’.’destroy‘(‘  ‘)’ 

<attachments_destruction >  ::=  <attachment_name>’.’destroy‘(‘  ‘)’ 

<bindings_destruction >  ::= <binding_name>’.’destroy‘(‘  ‘)’ 

A.10. CONFIGURATION 
 

<architectural_model_configuration>  ::=   

                            Architectural_Model_Configuration  <configuration_name>  ‘=’  

                                    new  < model_name>  ‘{‘ <components_instantiation_seq> |  

                                                                             [<systems_instantiation_seq>]  

                                                                            <connectors_instantiation_seq>  

                                                                             <attachments_intantiation_seq>  ‘}’ 
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<components_instantiation>  ::=  <component_instance_name>5  ‘=’  new  

                                                       <component_name>‘(‘ [<param_value _list> ] ‘) 

<connectors_instantiation>  ::= <connector_instance_name>6 ‘=’ new  

                                                       <connector_name> ‘(‘ [<param_value_list> ] ‘) 

< attachments_instantiation>  ::= <attachment_instance_name>7 ‘=’ new 

                                                 <attachment_name> ‘(‘<param_attachment_value>‘)’ 

<systems_instantiation> ::= <system_instance_name>8 ‘=’ new  <system_name>  

                                                 ‘(‘[<param_service_value_list>‘,’]  

                                                    <architectural_element_number_value_list>’,’                 

                                                    [<attachment_number_value_list>’,’ 

                                                    <binding_number_value_list>] ‘)’  

                                      ‘{‘  <architectural_elements_instantiation_seq>  

                                        <attachments_instantiation_seq>  

                                        <bindings_instantiation_seq>  ‘}’ 

<architectural_element_instantiation >  ::=  <components_instantiation>  |   

                                                                            <connectors_instantiation>  |  

                                                      

5 component_instance_name is a simplification that represents the name of an instance of the 
component_name type  
6 connector_instance_name is a simplification that represents the name of an instance of the 
connector_name type 
7 attachment_instance_name is a simplification that represents the name of an instance of the 
attachment_name type 
8 system_instance_name is a simplification that represents the name of an instance of the 
system_name type 
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                                                                            <systems_instantiation> 

< bindings_instantiation>  ::=  <binding_instance_name>9 ‘=’ new   

                                                    <binding_name> ‘(‘  <param_binding_value>  ‘)’ 

A.11. COMMON ELEMENTS 

A.11.1. DataTypes 
 

<data_type > ::= boolean | char | currency | date | double | integer |  

 natural | string  

<data_type_values>  ::=  <boolean> | <char> | <currency> | <date> |  

<double> | <integer> | <natural> | <string>  

 

A.11.2. Parameters 
 

<param_service>  ::=  <parameter_type>   <parameter> 

<parameter_type>  ::=  input | output 

<parameter>  ::=  <parameter_name> ‘:’   <data_type> 

 

A.11.3. Formulae 
 

<formulae>  ::=  <condition>  |  <arithmetic_expression>  |  <function> 

 

                                                      

9 binding_instance_name is a simplification that represents the name of an instance of the 
binding_name type 
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A.11.4. Conditions 
 

<condition>  ::=  ‘(‘  <condition>  ‘)’  |  NOT  ‘(‘  <condition>  ‘)’ | 

                            ‘(‘  <condition>  AND  <condition>  ‘)’  |   

                              ‘(‘  <condition>  OR  <condition>  ‘)’  | 

                              ‘(‘  <condition>  XOR  <condition>  ‘)’  | 

                              ‘(‘  <arithmetic_expression>  <op_rel>   

                                     <arithmetic_expression>  ‘)’  |  

                               true  |  false  

<op_rel>  ::=  ‘=’  |  ‘< >’  |  ‘>=’  |  ‘<=’  |  ‘>’  |  ‘<’  

 

A.11.5. Arithmetic Expressions 
 

<arithmetic_expression>  ::=  ‘(‘  <arithmetic_expression>  ‘)’  |    

                                                   <mathematical_term> | 

                                                   <mathematical_term>  <operator>   

                                                    <arithmetic_expression> 

<mathematical_term>  ::=  <value> |  <attribute> | <parameter> |  

                                              <function> 

<operator>  ::=  ‘+’ |  ‘-‘ | ‘*’ | ‘/’ | ‘%’  
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A.11.6. Functions 
 

<function>  ::=  <data_type>  <function_name>  

                            ‘(‘  [<param_service_list>]‘)’ 

 

A.11.7. Processes 
 

<process>  ::=  <process_service> |   ‘(‘<process >  ‘+’  <process >‘)’  | 

                       ‘(‘<process >   ‘||’   <process >‘)’ |  ‘(‘<process >  ‘ ’  <process >‘)’ |  

                       if  ‘(‘<condition>‘)’ then  ‘{‘  <process>  ‘}’  else  ‘{‘  <process>  ‘}’ |  

                       case  <property_name>‘:’  <case_seq>  

<process_service>  ::=  <transaction_service> | <played_role_service> |  

                                        <protocol_service> 

<case_seq>  ::=  <property_value> ‘:’   ‘{‘ <process> ‘}’  
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APPENDIX B 
B. THE PRISMA UML PROFILE 

 

 

 

This appendix presents the PRISMA UML profile. The development of the profile has been 

realized following the steps proposed by the works  [Ana03] and [Rib02]. These steps are the 

following: 

1. To define a metamodel for a specific domain (see chapter 7).  

2. To establish the correspondences between the metamodel concepts and the UML 

concepts. 

3. To creation of a UML profile for the specific domain. 

4. To complete the UML profile by textually describing the semantics of each concept 

and by introducing its OCL constraints. 

Throughout the definition process of the PRISMA profile, especially for AOSD elements, it 

has been taken into account the satisfaction of the requirements that Aldawud et al stated for 

defining a UML profile for AOSD: 

 The Profile shall enable specifying, visualizing, and documenting the artifacts of software 

systems based on Aspect-Orientation. This requirement has been satisfied by means of the 

stereotypes and their visual representation as described below. 

 The Profile shall be supported by UML (avoid “Heavy-weight” extension mechanisms), 

this allows a smooth integrating of existing CASE tools that support UML. This 

requirement has also been satisfied since our UML profile is defined according to the 

established construction rules for UML profiles. 
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 The Profile shall support the modular representation of crosscutting concern. The 

separation of concerns provided by PRISMA along with the defined weaving relationships 

allows us to identify and manage crosscutting efficiently.  

 The Profile shall not impose any behavioral implementation for AOSD, however it shall 

provide a complete set of model elements (or stereotypes) that enable representing the 

semantics of the system based on Aspect-Orientation. No constraint has been defined 

about the implementation, only a proper semantic that is related to the way we use the 

PRISMA elements has been defined.  

This appendix presents a simplified version of the PRISMA UML profile with the main 

purpose of showing the extensions that have been done. As a result, this profile is presented 

without entering in details. The appendix presents the points 2, 3 and 4 of the PRISMA profile 

development without presenting the OCL constraints associated to the extension of each 

concept.  

B.1. CORRESPONDENCES BETWEEN PRISMA CONCEPTS AND 
UML CONCEPTS 

 
PRISMA metamodel Exact Correspondence in the UML metamodel 

Aspect NO 

PRISMA Component NO 

System NO 

Connector NO 

Attachment NO 

Binding NO 

Port NO 

Weaving NO 

PRISMA Interface UML Metaclass: Interface 

Protocol NO 

Table 5. Correspondences between PRISMA and UML 
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B.2. PRISMA UML PROFILE 

B.2.1. Aspect 
 

Stereotype Base Class Parent Tag Values Description 
Aspect 

<<Aspect>> 
Classifier N/A None An aspect defines the structure and the 

behaviour of a specific concern of the 
software system.  

Table 6. Description of the stereotype Aspect 
 

Stereotype Base Class Parent Tag Values Description 
Functional 

<<Functional>> 
 Aspect None A functional aspect defines the structure 

and the behaviour of the functional 
concern of the software system. 

Table 7. Description of the stereotype Functional Aspect 
 

Stereotype Base Class Parent Tag Values Description 
Coordination 

<<Coordination>> 
 Aspect None A coordination aspect defines the 

structure and the behaviour of the 
coordination concern of the software 

system. 
Table 8. Description of the stereotype Coordination Aspect 

 

Stereotype Base Class Parent Tag Values Description 
Safety 

<<Safety>> 
 Aspect None A safety aspect defines the structure and the 

behaviour of the safety concern of the 
software system. 

Table 9. Description of the stereotype Safety Aspect 
 

Stereotype Base Class Parent Tag Values Description 
    Integration 

<<Integration>> 
 Aspect None A integration aspect permits to wrap a 

COT 
Table 10. Description of the stereotype Integration Aspect 
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Figure 164. Modelling of the stereotype Aspect 

B.2.2.  Component 
 

Stereotype Base Class Parent Tag Values Description 
    Component 

<<Component>> 
Component 

 
N/A None A component is an architectural 

element that captures a given 
functionality of a software system. . 
As such, components do not have a 

coordination aspect. 
Table 11. Description of the stereotype Component 

 

 
Figure 165. Modelling of the stereotype Component 
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Stereotype Base Class Parent Tag Values Description 
Connector 

<<Connector>> 
 PRISMA 

Component 
None A connector is an architectural 

element that acts as a coordinator 
between other architectural 

elements. As such, connectors 
have a coordination aspect. 

Table 12. Description of the stereotype Connector 
 

Stereotype Base Class Parent Tag Values Description 
System 

<<System>> 
 PRISMA 

Component 
None A PRISMA system is a 

component that includes a set 
of connectors, simple 

components, and other 
systems that are correctly 
attached to one another. 

Table 13. Description of the stereotype System 
 

B.2.3. Port 
 

Stereotype Base Class Parent Tag Values Description 
Port 

  <<Port>> 
Interface 

 
N/A None A Port is an interaction point of an 

architectural element (component or 
connector).  

Table 14. Description of the stereotype Port 
 

 
Figure 166. Modelling of the stereotype Port 
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B.2.4. Protocol 
 

Stereotype Base Class Parent Tag Values Description 
Protocol 

<<Protocol>> 
StateMachine 

 
N/A None APprotocol establishes how the services 

of an aspect can be executed. 
Table 15. Description of the stereotype Protocol 

 

 
Figure 167. Modelling of the stereotype Protocol 

B.2.5. Weaving 

Stereotype Base Class Parent Tag Values Description 
Weaving 

<<Weaving>> 
Dependency 

 
N/A None A Weaving defines how the execution of a 

service of an aspect can trigger the 
execution of a service of another aspect. 

Table 16. Description of the stereotype Weaving 
 

 
Figure 168. Modelling of the stereotype Weaving 
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B.2.6. Attachment 
 

Stereotype Base Class Parent Tag Values Description 
Attachment 

<<Attachment>> 
Dependency 

 
N/A None An Attachment establishes a 

connection between two 
architectural elements, more 
precisely between a port of a 

component and a port of a connector 
Table 17. Description of the stereotype Attachment 

 

 

 
Figure 169. Modelling of the stereotype Attachment 

 

B.2.7. Binding 
 

Stereotype Base Class Parent Tag Values Description 
Binding 

<<Binding>> 
Dependency 

 
N/A None A Binding relationship defines the 

composition between a complex 
component and one of its architectural 

elements, more precisely between a port 
of a complex component and a port of 

one of its architectural elements. 
Table 18. Description of the stereotype Binding 
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Figure 170. Modelling of the stereotype Binding 
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APPENDIX C 
C. PRISMA SOFTWARE ARCHITECTURE 

OF THE TEACHMOVER 
 

 

This appendix presents the complete specification of the Joint system of the TeachMover robot 

using the PRISMA AOADL as well as the specification of its instances Base, Shoulder and 

Elbow. This specification has been automatically generated by the PRISMACASE. The 

complete specification of the TeachMover can be found in [PRI06]. 

C.1. COMMON 

 
 

 
 

Transformation_Functions 

 FTransHalfStepsToAngle (input Steps : integer, output RAngle : integer); 

End_Transformation_Functions; 

    

Domains 

        natural,   

        integer,   

        double,   

        char,   

        string,   

        boolean,   

        date,    

End_Domains; 
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C.2. INTERFACES 
 

 
 

 
 

 
 

 
 

 
 

 

 

Interface IPosition  

   newPosition (input NewSteps : integer); 

   currentPosition (output Pos : integer); 

End_Interface IPosition; 

Interface IRS232  

   send (input Joint : integer, input Steps : integer,  

         input Speed : integer, output Move : boolean); 

   stopRobot (input Joint : integer); 

End_Interface IRS232; 

Interface Iread 

    moveOk (output Success: boolean); 

End_Interface IRead; 

Interface IMotionJoint 

   moveJoint(input NewSteps: integer, input Speed: integer); 

   stop(); 

End Interface IMotionJoint;

Interface IJoint 

  moveJoint (input NewSteps: integer, input Speed: integer); 

  cinematicsMoveJoint (input NewAngle: integer, input Speed: integer); 

  stop (); 

  moveOk (output Success: boolean); 

End_Interface IJoint; 
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C.3. ASPECTS 
 

 
 

 

 

 

Integration Aspect RS232 using IRS232, IMotionJoint, IRead 

   Services 

      begin(); 

      in/out send (input Joint : integer, input Steps : integer,  

                   input Speed : integer, output Move : boolean); 

      out stopRobot(input Joint : integer); 

      in moveJoint (input NewSteps: integer, input Speed: integer); 

      in stop (); 

      out moveOk (output Success: boolean); 

      end (); 

 

   PlayedRoles                            

      INTMOVE for IMotionJoint ::= moveJoint ? (NewSteps, Speed) 

                                   + stop ? (); 

 

      INTLISTEN for IRead ::= moveOk ! (Success); 

 

   Protocol 

RS232 = begin  MOTION; 

MOTION = (INTMOVE_stop ? ():0  

          stopRobot ! (Joint):0  MOTION)  

          + (INTMOVE_moveJoint ?(Newhalfsteps, Speed):1  

          send ! (Joint, Steps, Speed, Move):1)  MONITOR 

          + end; 

MONITOR = (send ? (Joint, Steps, Speed, Move):1                  

           INTLISTEN_ moveOk ! (Move):1  MOTION)  

          + end;  

End Integration Aspect RS232; 
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Functional Aspect FJoint using IPosition 

   Attributes 

      Variable 

         halfSteps : integer, NOT NULL; 

      Derived 

         angle: integer, derivation: 

                              FtransHalfStepsToAngle(halfSteps); 

  Services  

      Begin (input IniPos : integer); 

         Valuations 

         [begin(IniPos) ] 

     halfSteps:=IniPos;    

      in newPosition (input NewSteps : integer) 

         Valuations 

         [newPosition (NewSteps)] 

      halfSteps:=halfSteps + NewSteps; 

      in/out currentPosition (output Pos : integer); 

          Valuations 

          [in currentPosition (Pos)] 

       Pos:=halfSteps;   

      end(); 

   

   PlayedRoles  

 UPDATE for IPosition ::= newPosition ? (NewSteps) 

                                + (currentPosition ? (Pos)  

                            currentPosition ! (Pos)); 
   Protocol 

      FJOINT ::=  begin(IniPos):1  POS        

      POS ::= UPDATE_ newPosition ? (NewSteps):1  POS 

           + (UPDATE_currentPosition ? (Pos) :1  

           UPDATE_currentPosition ! (Pos) :1)  POS; 

            + end():1             

End Functional Aspect FJoint; 
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Safety Aspect SMotion, IPosition 

  Attributes 

      Constant 

    minimum, maximum: integer; 

      Variable 

         checkPos: integer;  

   Services 

      Begin ( input InitMinimum: integer, input InitMaximum: integer); 

          Valuations 

[begin (InitMinimum, InitMaximum)]  

   minimum := InitMinimum,  

          maximum := InitMaximum;  

     in/out check (input Degrees: integer, output MovSecure: boolean); 

         Valuations 

           {(Degrees >= minimum) and (Degrees <= maximum)}     

           [in check (Degrees, MovSecure)]  MovSecure := true; 

           {(Degrees < minimum) or (Degrees > maximum)}              

           [in check (Degrees, MovSecure)]  MovSecure := false;          

     in/out controlSpeed (input CurrentSpeed: integer,  

                           output SpdSecure: boolean); 

         Valuations 

           {(CurrentSpeed >= 1) and (CurrentSpeed <= 180)}     

           [in controlSpeed (CurrentSpeed, SpdSecure)]   

            SpdSecure := true; 

           {(CurrentSpeed < 1) or (CurrentSpeed > 180)}              

           [in controlSpeed (CurrentSpeed, SpdSecure)]  

            SpdSecure := false;   

    in/out currentPosition (output Pos : integer); 

          Valuations 

          [in currentPosition (Pos)] 

       checkPos := Pos;    

  PlayedRoles  

 POS for IPosition ::= currentPosition ! (Pos)  

                       currentPosition ? (Pos); 
  Transactions        

     in DANGEROUSCHECKING (input Steps: integer,  

                           input CurrentSpeed:integer,  

                           output Secure: boolean): 
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Coordination Aspect CProcessSuc using IMotionJoint, IJoint, IRead,  

                                      IPosition 

Attributes 

   Variables 

      validMovement: boolean, DEFAULT: false; 

Services  

   begin();   

   in/out moveJoint(input NewSteps : integer, input Speed : integer);    

   in/out stop() 

   in/out moveOk(output Success : boolean) 

     {Success=1} [in moveok(Success)]  validMovement := true; 

     {Success=0} [in moveok(Success)] validMovement := false; 

   out newPosition(input NewSteps : integer) 

   end(); 

      dangerousChecking = controlSpeed ! (CurrentSpeed, SpdSecure)  

                           controlSpeed ? (CurrentSpeed, SpdSecure) 

                           CURRENTPOS; 

      CURRENTPOS = (POS_currentPosition ! (Pos)   

                     POS_currentPosition ? (Pos))  SAFESTEPS;  

      SAFESTEPS = check ! (FTransHalfStepsToAngle (checkPos),  

                   MovSecure)   

                  check ? (FTransHalfStepsToAngle (checkPos),  

                  MovSecure);  

      Valuations 

          {(MovSecure = true) and (SpdSecure = true)}     

          [in DANGEROUSCHECKING(Steps, CurrentSpeed, Secure)]   

          Secure := true; 

          {(MovSecure = false) or (SpdSecure = false)}     

          [in DANGEROUSCHECKING(Steps, CurrentSpeed, Secure)]   

   Secure := false;  

   Protocol 

SMOTION = begin():1  POS       

CHECKING= DANGEROUSCHECKING ? (Steps, CurrentSpeed, Secure):1 

           CHECKING + end():1; 

End Safety Aspect SMotion; 



PRISMA Software Architecture of the TeachMover 

389 

 

C.4. ARCHITECTURAL ELEMENTS 
 

 
 

Component Actuator 

   Integration Aspect Import RS232; 

 

   Ports 

      PCoord : IMotionJoint, 

              Played_Role RS232. INTMOVE; 

   End_Ports; 

    

   new(){RS232.begin(); 

   destroy(){RS232.end();} 

End_Component Actuator; 

  Preconditions 

   newPosition(NewSteps) if (validMovement = true) 

 

 PlayedRoles  

      SEN for IRead ::= moveOk ? (Success); 

      ACT for IMotionJoint ::= stop ! ()   

                               + moveJoint ! (NewSteps, Speed);    

      JOINT for IJoint ::= stop ? ()                             

                       + moveOk ! (Success)                             

                       + moveJoint ? (NewSteps, Speed); 

      POS for IPosition ::= newPosition ! (NewSteps); 

 

   Protocol  

     CPROCESSSUC ::=  begin():1  COOR        

     COOR ::= (JOINT_stop?():0    ACT_stop!() :0)  COOR     

              + (JOINT_moveJoint?(NewSteps, Speed):1               

                  ACT_moveJoint!(NewSteps, Speed)):1  COOR        

              + (SEN_moveOk?(Success):1               

                  POS_newPosition!(NewSteps):1         

                  JOINT_moveOk!(Success):1)  COOR          

End Coordination Aspect CProcessSuc; 
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Connector CnctJoint 

   Coordination Aspect Import CProcessSuc; 

   Safety Aspect Import SMotion; 

  

   Weavings 

 SMotion. DANGEROUSCHECKING(NewSteps, Speed, Secure) 

 beforeif (Secure = true)  

       CProcessSuc.movejoint(NewSteps, Speed); 

 

   End_Weavings;   

  

   Ports 

      PAct : ImotionJoint, 

       Played_Role CProcessSuc.ACT; 

      PSen : IRead, 

       Played_Role CProcessSuc.SEN; 

      PJoint : IJoint, 

             Played_Role CProcessSuc.JOINT; 

      PPos : IPosition, 

       Played_Role CProcessSuc.POS; 

   End_Ports 

   new(input Argmin: integer, input Argmax: integer) 

      {CProcessSuc.begin(); 

       SMotion.begin(input InitMinimum: integer,  

                     input InitMaximum : integer); } 

Component Sensor 

   Integration Aspect Import RS232; 

  

   Ports 

      PCnct : IRead, 

              Played_Role RS232. INTLISTEN; 

   End_Ports; 

    

   new(){RS232.begin();} 

   destroy(){RS232.end();} 

End_Component Sensor; 
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System Joint 

   Functional Aspect Import FJoint; 

    

    Ports 

      PJointSystem : IJoint, 

         Played_Role CProcessSuc.JOINT; 

    End_Ports 

 
    Import Architectural Elements Actuator, CnctJoint, Sensor, 

                                  WrappAspSys; 

   Attachments 

     AttchActCnct: CnctJoint.PAct(1,1)<--> Actuator.PCoord(1,1); 

     AttchSenCnct: CnctJoint.PSen(1,1)<--> Sensor.PCnct(1,1); 

     AttchPos: CnctJoint.PPos(,1)<--> WrappAspSys.PPosition(1,1); 

   End_Attachements; 

   Bindings 

      BndJCnct: PJointSystem(1,1)<--> CnctJoint.PJoint(1,1); 

   End_Bindings; 

Component WrappAspSys 

   Functional Aspect Import FJoint; 

    

   Ports 

      PPosition : IPosition, 

     Played_Role FJoint.UPDATE; 

   End_Ports; 

 

   new(input ArghalfSteps: integer) 

     { FJoint.begin(input IniPos : integer); } 

   destroy(){ FJoint.end();} 

End_Component WrappAspSys; 

   destroy(){ CProcessSuc.end(); 

       SMotion.end(); 

      } 

End_Connector CnctJoint; 
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C.5.  CONFIGURATION 
 

 

Architectural_Model_Configuration  

   TeachMoverJoints = new TeleOperationDomainJoints{ 

       BASE = new Joint(0,1,1,1,1,1,1,1) 

        {BaseWrappAspSys = new WrappAspSys(0); 

 BaseActuator= new Actuator(); 

                BaseConnector = new CnctJoint(90, -90); 

   new(input ArghalfSteps, input num_Actuator: integer,  
       input num_CnctJoint: integer, input num_Sensor: integer,  
       input num_AttActCnct: integer, input num_AttSenCnct: integer,  
       input num_BndJCnct: integer) 
     { 
       new WrappAspSys(input ArghalfSteps: integer)); 
       new Actuator(); 
       new CnctJoint new(input Argmin: integer, input Argmax:integer); 

       new Sensor(); 

       new AttActCnct(input ArgCnctName: string,  
                      input ArgCnctPort: string,  
                      input ArgCompName: string,  
                      input ArgCompPort: string); 
       new AttSenCnct(input ArgCnctName: string,  
                      input ArgCnctPort: string,  
                      input ArgCompName: string, 
                      input ArgCompPort: string); 
       new AttchPos(input ArgCnctName: string,  
                    input ArgCnctPort: string,  
                    input ArgCompName: string,  
                    input ArgCompPort: string); 
       new BndJCnct(input ArgSysPort: integer, 
                    input ArgAEName: integer, 
                    input ArgAEPort: integer); 
   } 
  
   destroy(){ 
             destroy Actuator(); 
             destroy CnctJoint(); 
             destroy Sensor(); 
             destroy WrappAspSys(); 
             destroy AttActCnct(); 
             destroy AttSenCnct(); 
             destroy AttchPos(); 
             destroy BndJCnct(); 
 } 
 
End_System Joint; 
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                BaseSensor= new Sensor(); 

                BaseAttActCnct= new AttActCnct(BaseConnector, PAct, 
                                               BaseActuator, PCoord); 
          BaseAttSenCnct= new AttSenCnct(BaseConnector, PSen, 
                                               BaseSensor, PCnct); 
          BaseAttchPos= new AttchPos(BaseConnector, PPos,  
                                          BaseWrappAspSys, PPosition); 
          BaseBndJCnct= new BndJCnct(PJointSystem, PJoint,  

                                   BaseConnector);} 

 

       SHOULDER = new Joint(0,1,1,1,1,1,1,1) 

        {ShoulderWrappAspSys = new WrappAspSys(0); 

                ShoulderActuator= new Actuator(); 

                ShoulderConnector = new CnctJoint(144, -35); 

                ShoulderSensor= new Sensor(); 

                ShoulderAttActCnct= new AttActCnct(ShoulderConnector, 
                                                   PAct, 
                                                   ShoulderActuator,  
                                                   PCoord); 
          ShoulderAttSenCnct= new AttSenCnct(ShoulderConnector, 
                                                   PSen, 
                                                   ShoulderSensor,  
                                                   PCnct); 
          ShoulderAttchPos= new AttchPos(ShoulderConnector,  
                                               PPos,  
                                               ShoulderWrappAspSys,  
                                               PPosition); 
          ShoulderBndJCnct= new BndJCnct(PJointSystem, PJoint, 

                                        ShoulderConnector);} 

        ELBOW = new Joint(0,1,1,1,1,1,1,1) 

        {ElbowWrappAspSys = new WrappAspSys(0); 

                ElbowActuator= new Actuator(); 

                ElbowConnector = new CnctJoint(0, -149); 

                ElbowSensor= new Sensor(); 

                ElbowAttActCnct= new AttActCnct(ElbowConnector, 
                                                PAct, ElbowActuator,  
                                                PCoord); 
                ElbowAttSenCnct= new AttSenCnct(ElbowConnector, PSen, 
                                                ElbowSensor, PCnct); 
                  ElbowAttchPos= new AttchPos(ElbowConnector, PPos,  
                                            ElbowWrappAspSys,  
                                            PPosition); 
          ElbowBndJCnct= new BndJCnct(PJointSystem, PJoint, 

                                     ElbowConnector);} 

    } 
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ACRONYMS 
 

 

 

ADL Architecture Description Language 

AOADL Aspect-Oriented Architecture Description Language 

AOP Aspect-Oriented Programming 

AOSD Aspect-Oriented Software Development 

CASE Computer-Aided Software Engineering 

CBSD Component-Based Software Development 

CCS Calculus of Communicating Systems 

CF Composition Filters 

CLR Common Language Runtime 

CLS Common Language System 

COTS Commercial Off-The-Shelf 

CSP Communicating Sequential Processes 

CTS Common Type System 

DSL Domain-Specific Language 

FIFO First In First Out 

GUI Graphical User Interface 
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MDA  Model Driven Architecture 

MDE Model–Driven Engineering  

MDD Model-Driven Development 

MDSOC Multi-Dimensional Separation of Concerns 

MSIL MicroSoft Intermediate Language 

MUC Mechanism Unit Controller 

OCL Object Constraint Language 

OOP Object-Oriented Programming 

PC Personal Computer 

RUC Robot Unit Controller 

SEI Software Engineering Institute 

SoC Separation of Concerns 

STD State Transition Diagram 

SUC Simple Unit Controller 

UML Unified Modelling Language 

 

 



Index 

397 

INDEX 
 

π 

π- calculus · 223 
π-calculus · 117, 118, 134, 205, 220, 222 

monadic π-calculus · 119 
naming · 119 
polyadic π-calculus · 119 
prefix · 119 
π-calculus with priorities · 120 

A 

AAM · 79 
ACM · 79 
Advice · 65, 144 

After · 65 
After Returning · 66 
After Throwing · 66 
Around · 65 
Before · 65 

After · 65, 143, 145, 287, 365 
After Returning · 66 
After Throwing · 66 
Afterif · 143, 147, 287, 365 
Alias · 180 
Analysis · 57 
AODM · 79 
AOP .NET Technologies · 275 
AORE · 75 
AOSD/UC · 76 

Use Case Module · 76 
Use Case Slice · 76 

Architectural Element · 131, 142, 152, 159, 
                                      186, 284, 379, 381 

Aspect · 175 
Formalization · 152 
Port · 186, 197 
Weaving · 186, 189 

Architectural Model · 102 
Architectural Style · 53 
Architectural Views of Aspects · 93 
Architecture Description Language · 41, 53, 
                                                           85, 102 

Architecture Specification · 198 
ARGM · 76 
Arithmetic Expression · 372 
Around · 65 
ASAAM · 92 
Aspect · 60, 66, 69, 86, 129, 138, 143, 152,  
              175, 258, 281, 360, 377, 382 

Attribute · 138, 176, 178 
Behaviour · 139 
Changes of State · 138 
Composition · 68 
Constraint · 138, 141, 176, 181 
Context-awareness · 140 
Coordination · 138, 139, 152, 153, 154, 
                        229, 378, 379 
Definition · 102 
Distribution · 139 
Formalization · 140 
Functional · 139 
Instantiation · 67 
Integration · 140 
Interface · 138 
Management · 68 
Mobility · 140 
Order · 68 
Played_role · 138 
Played_Role · 177, 184 
Precondition · 138, 141, 177, 182 
Private · 138, 139 
Protocol · 177, 185, 380 
Public · 138, 139 
Safety · 138, 139, 151, 153, 229 
Semantics · 138 
Service · 138, 143, 176, 380 
Services · 138 
State · 66, 138 
Structure · 138 
Valuation · 138, 140, 177, 183 

Aspect Collaboration Interface · 97 
Aspect Component · 95, 96, 97, 100 
Aspect Oriented Programming · 64 
AspectJ · 60 
AspectLeda · 94 
Aspect-Oriented Architecture Description 

Language ·                                              29 
Aspect-Oriented Component Engineering · 95 
Aspect-Oriented Evolution · 102 



PRISMA: Aspect-Oriented Software Architectures 
 

398 

Aspect-Oriented Model · 101 
Aspect-Oriented Programming · 59, 62 

Data Type System · 67 
Properties · 66 
Semantics · 68 

Aspect-Oriented Software Development · 29, 
31, 61 
Asymmetric Model · 69 
Symmetric Model · 69 

Asymmetric Model · 69 
Asynchronous · 280 
ATAM · 43 
ATRIUM · 77 
Attachment · 52, 133, 154, 192, 262, 290, 366,  
                      381 

AttachmentClientBase · 290 
AttachmentServerBase · 290 
Communication Pattern · 193 
Formalization · 155 

Attribute · 176, 178 
Constant · 179, 361 
Derived · 178, 361 
Non-derived · 178 
Variable · 179, 361 

Automatic Code Generation · 31 

B 

Base Code · 64 
Before · 65, 143, 146, 287, 365 
Beforeif · 143, 149, 287, 365 
Binding · 133, 159, 195, 262, 290, 292, 367 

Communication Pattern · 196 
ComponentBinding · 292 
Formalization · 159 
SystemBinding · 292 

Bindings · 53 
BNF PRISMA AOADL · 36, 359 

Block · 359 
Instance · 370 
List · 359 
Name · 359 
Sequence · 359 
Value · 359 

C 

Caesar · 97 
Calculus of Communicating Systems (CCS) ·   

                                                                   118 
CAM/DAOP · 88 
Class Diagram · 79 
Classifier · 80 
CLR · 276 
CLS · 277 
CoCompose · 80 
Code Generation Pattern · 266 

Aspect · 267 
Component · 266 

Collaboration Diagram · 79 
Communication · 57 
Complex Component · 53 
Component · 47, 99, 132, 152, 154, 164, 186, 
                     190, 261, 285, 365, 378, 381 
Component View · 96 
Component-Based Software Development · 
                                                                 29, 30 
Composition Filters · 72 

Filter · 72 
Superimposition · 73 

Composition Relationship · 53 
Computer-Aided Software Engineering · 29 
Concern · 60, 130, 138, 139, 175, 282, 377 
Concern Space · 70 
Condition · 372 
Configuration Model · 271 

Modelling Tool · 271 
Specification · 369 

Connection · 52 
Connector · 49, 88, 98, 132, 152, 154, 186, 
                   191, 261, 285, 366, 379 
Constraint · 56, 176, 181, 363 

Dynamic · 181 
Static · 181 

CORE · 76 
Cosmos · 77 
COTS · 31, 140, 260 
Crosscutting-Concerns · 60, 64, 66, 130 
CTS · 277 

D 

DAOP · 88 
Data Type · 371 
Delegate · 277 
Domain Specific Language · 249 
Domain-Specific Model · 245, 250 
DotNET Remoting · 277 
DotNET technology · 246 
DotNET Technology · 275 



Index 

399 

DSL Tools · 249 
Code Generation Designer · 252 
Debugging Solution · 252 
Domain Model · 250, 252 
Model Designer · 251, 252, 254 
Setup · 256 
Verification · 253, 263 

Complete · 263 
Hardconstraint · 254 
Partial · 263 
Verification Rule · 254 

Dynamic Aspect Diagram · 80 

E 

Early Aspect · 75 
EFTCoR · 112 

F 

Filter · 72 
Formulae · 371 
Functional Decomposition · 61, 64, 69 
FuseJ · 99 

G 

Goal-Oriented Requirements Engineering · 76 
Graphical Modelling · 103 
GREMSoC · 76 

H 

Hyper/J · 70, 77 
Concern Space · 70 
Encapsulation · 70, 71 
Hyper/JTM · 70 
Hypermodule · 71 
Hyperslice · 71 
Hyperspace · 71 
Identification · 70 
Integration · 70, 71 
Relationship Definition · 70, 71 

Hypermodule · 71 
Hyperslice · 71 
Hyperspace · 71 

Hyperspaces · 70 

I 

InPorts · 286 
Instead · 143, 147, 287, 365 
Insteadif · 144, 150, 287, 365 
Interface · 47, 131, 132, 134, 137, 138, 142,  
                164, 173, 206, 257, 360 
InterfaceService · 173 

J 

JAC · 100 
Jiazzi · 100 

Linking Unit · 101 
Unit · 101 

Join Point · 64 
Joint · 113 

K 

Kinds of Aspects · 282 
Kripke Structure · 118 

L 

Language for PRISMA Protocols · 223 
Log · 299 

M 

Maintenance · 57 
MDSOC · 70, 87 

Hyper/J · 70, 77 
Hyperspaces · 70 
On-Demand Remodularization · 70 

Memory Persistence · 295 
Metaclass · 134, 171 
Meta-level · 133 
Metamodel · 133, 171 

Utilities · 200 
MiddlewareSystem · 295 
Modal Logic of Actions · 117, 134, 140, 205, 
                                          307 



PRISMA: Aspect-Oriented Software Architectures 
 

400 

Model-Driven Architecture · 249 
Model-Driven Development · 29, 32, 245, 

249, 300, 303 
Model–Driven Engineering · 245 
MSIL · 276 

N 

Non-UML language · 80 

O 

Object Constraint Language (OCL) · 171 
Object-Oriented Programming · 61 
Obliviousness · 62 
On-Demand Remodularization · 70 
OutPorts · 286 

P 

Package · 79 
Paradigm of Automatic Programming · 29, 31 
Parameter · 371 
Perspectival Concern-Space · 87 
Played_Role · 137, 138, 142, 155, 159, 164, 
                       177, 184, 281, 364 

Compatible · 154, 159 
Formalization · 137 

Pointcut · 65, 76, 144 
Port · 52, 131, 142, 152, 154, 155, 159, 160,  
          164, 186, 197, 261, 284, 285, 366, 381 

Formalization · 142 
Interface · 142 
Played_Role · 142 
Type · 142 

Precondition · 177, 182, 362 
Prism · 131 
PRISMA · 77, 129 

AOADL · 246 
CASE · 245 
Methodology · 29, 303 

PRISMA CASE · 29 
PRISMA Graphical AOADL · 257 
PRISMA model · 29 
PRISMA Model Compiler · 264 
PRISMA Modelling tool · 256 
PRISMANET · 247 

Architecture · 275 

Log · 278 
Memory Persistence · 278 
PRISMA Execution Model · 277, 279 

Communication Module · 279 
Communications Module · 277 
Type Module · 277, 279 

Transaction Manager · 278 
Property · 56 
Protocol · 139, 177, 185, 260, 364, 380 

Q 

Quantification · 62 

R 

Reflection · 277 
Reuse · 56 

S 

SAAM · 43, 92 
Scenarios Model · 77 
Separation of Concerns · 59, 85 
Serialization · 277 
Service · 134, 135, 137, 176, 180, 282, 362 

Alias · 180 
Begin · 362 
End · 362 
Formalization · 136, 144 
Invocation · 135, 144, 155, 156, 160, 161 
Private · 135, 282 
Process · 136 
Public · 135, 282 
Semantics · 135 
Signature · 134, 174, 206 
Transaction · 180 
Type · 180 

Software Architecture · 39, 40, 56, 86 
Analysis · 43, 57, 92 
Definition · 44 
Description · 54, 55 
Evolution · 91 
Properties · 41, 43, 56 

Design · 42 
Quality Attributes · 43 

Software Architecture Evolution · 57 
Software Architectures · 30 



Index 

401 

Software Factories · 249 
State · 260 
State Transition Diagram · 260 
Substate · 260 
Superimposition · 73, 90 
Symmetric Model · 69 
Symmetrical · 130 
System · 53, 132, 159, 164, 186, 194, 261, 
               294, 367, 379 

Binding · 195 
Composition · 165 

Inclusive · 165 
Weak · 165 

Emergent Behaviour · 164 
Formalization · 165 
Pattern · 164 

T 

Tangled Code · 60 
TeachMover · 113 

Actuator · 115 
Base · 113 
Elbow · 113 
Mechanism Unit Controllers (MUCs) · 117 
Robot Unit Controlers (RUCs) · 117 
Sensor · 115 
Shoulder · 113 
Tool · 114 
Wrist · 113 

Tele-operation Domain · 111 
Tele-operation Systems · 112 
Theme · 77 
Theme/Doc · 77 
Theme/UML · 79 
TOPSA · 43 
Transaction · 180, 296 

Active · 298 
Committed · 298 
Precommitted · 298 
Prerollback · 298 
Rollbacked · 298 
Transactional Context · 297 
TransactionLog · 298 

Transaction Manager · 296 
Transat · 91 

U 

UFA · 79 
UML · 78 

Heavy Extension Mechanism · 79 
Light Extension Mechanism · 79 
Profile · 79 

Understanding · 56 
Unified Modelling Language (UML) · 171 
UXF · 80 

V 

Valuation · 177, 183, 362 
Condition · 183 
Postcondition · 183 
Service · 183 

Valuations · 137 
V-Graph · 77 
View · 93, 96 
Viewpoint · 75 
Views · 42, 55 

W 

Weaving · 65, 66, 131, 143, 152, 164, 186,  
                189, 262, 284, 287, 365, 380 

Advice Service · 189 
Definition · 102 
Dynamic · 66 
Formalization · 144 
Operator · 145, 365 

After · 143, 145, 287, 365 
Afterif · 143, 147, 287, 365 
Before · 143, 146, 287, 365 
Beforeif · 143, 149, 287, 365 
Instead · 143, 147, 287, 365 
Insteadif · 144, 150, 287, 365 

Operators · 143 
Pointcut Service · 189 
Set · 151 
Static · 66 
Weaving Time · 66 

Weaving Manager · 287 

 



PRISMA: Aspect-Oriented Software Architectures 
 

402 

 
 


	ABSTRACT
	 RESUMEN
	 RESUM
	 KEY WORDS
	 TABLE OF CONTENTS
	 INDEX OF FIGURES
	INDEX OF TABLES
	PART I
	INTRODUCTION
	1. INTRODUCTION
	1.1.  MOTIVATION
	1.2. OBJECTIVES OF THE THESIS 
	1.3.  RESEARCH METHODOLOGY OF THE THESIS 
	1.4. STRUCTURE OF THE THESIS 

	PART II
	2. SOFTWARE ARCHITECTURES
	2.1. SOFTWARE ARCHITECTURES IN THE SOFTWARE LIFE CYCLE
	2.2. PROPERTIES OF SOFTWARE ARCHITECTURES 
	2.3. DEFINITION OF SOFTWARE ARCHITECTURE
	2.4. MAIN CONCEPTS OF SOFTWARE ARCHITECTURES 
	2.4.1. Component
	2.4.2. Connector
	2.4.3. Port
	2.4.4. Connection
	2.4.5. System
	2.4.6. Composition Relationship
	2.4.7. Architectural Style
	2.4.8. View
	2.4.9. Property and Constraint

	2.5. CONCLUSIONS

	3. ASPECT-ORIENTED SOFTWARE DEVELOPMENT
	3.1. AOP: ASPECT-ORIENTED PROGRAMMING 
	3.1.1. Base Code
	3.1.2. Join Point
	3.1.3. Pointcut
	3.1.4. Advice
	3.1.5. Aspect
	3.1.6. Properties

	3.2. ASPECT-ORIENTED MODELS
	3.2.1. Symmetric vs. Asymmetric Models
	3.2.2. Multi-Dimensional Separation of Concerns (MDSOC)
	3.2.3. Composition Filters (CF)

	3.3. ASPECT-ORIENTED DEVELOPMENT IN THE SOFTWARE LIFE CYCLE
	3.3.1. Requirements
	3.3.2. Analysis and Design 
	3.3.3. Implementation 

	3.4. CONCLUSIONS

	4. ASPECT-ORIENTED SOFTWARE ARCHITECTURES
	4.1. ASPECT-ORIENTED APPROACHES AT THE ARCHITECTURAL LEVEL
	4.1.1. PCS: The Perspectival Concern-Space Framework 
	4.1.2. CAM/DAOP: Component-Aspect Model/Dynamic Aspect-Oriented Platform 
	4.1.3. Superimposition 
	4.1.4. TRANSAT 
	4.1.5. ASAAM: Aspectual Software Architecture Analysis Method 
	4.1.6. AVA: Architectural Views of Aspects 
	4.1.7. AspectLEDA 
	4.1.8. AOCE: Aspect-Oriented Component Engineering 
	4.1.9. Component Views 
	4.1.10. Aspectual Components 
	4.1.11. Caesar 
	4.1.12. JASCO 
	4.1.13. FUSEJ 
	4.1.14. JAC 
	4.1.15. JIAZZI 

	4.2. COMPARISON OF ASPECT-ORIENTED SOFTWARE ARCHITECTURES 
	4.3. CONCLUSIONS

	PART III
	5. PRELIMINARIES
	5.1. TELEOPERATION SYSTEMS: THE TEACHMOVER ROBOT
	5.1.1. The Tele-operation Domain 
	5.1.2. The TeachMover Robot 

	5.2. FORMALISMS
	5.2.1. Modal  Logic of Actions
	5.2.2. ( - Calculus

	5.3. CONCLUSIONS

	PART IV
	6. THE PRISMA MODEL
	6.1.  INTRODUCTION TO THE PRISMA MODEL
	6.2. PRISMA FORMALIZATION
	6.2.1.  Interface
	6.2.2.  Service
	6.2.3.  Played_Role
	6.2.4.  Aspect
	6.2.5.  Port
	6.2.6.  Weaving
	6.2.7.  Architectural Element
	6.2.8.  Connector
	6.2.9.  Component
	6.2.10. Attachment
	6.2.11. Binding
	6.2.12.  System

	6.3. CONCLUSIONS

	7.  THE PRISMA METAMODEL
	7.1. THE PRISMA METAMODEL
	7.2. THE PACKAGE “TYPES”
	7.2.1. The Package “Interfaces”
	7.2.2. The package “Aspects”
	7.2.3. The package “ArchitecturalElements”
	7.2.4. The package “Weaver”
	7.2.5. The package “Components”
	7.2.6. The package “Connectors”
	7.2.7. The package “Attachments”
	7.2.8. The package “Systems”
	7.2.9. The package “Bindings”
	7.2.10. The package “Ports”

	7.3. THE PACKAGE “ARCHITECTURE SPECIFICATION”
	7.4. THE PACKAGE “COMMON”
	7.5. CONCLUSIONS

	8. THE PRISMA ASPECT-ORIENTED ARCHITECTURE DESCRIPTION LANGUAGE
	8.1.  THE TYPE DEFINITION LEVEL
	8.1.1.  Interface
	8.1.2.  Aspects
	8.1.3. Simple Architectural Elements: Components and Connectors
	8.1.4. Attachments
	8.1.5. Systems

	8.2. THE CONFIGURATION LEVEL
	8.3. CONCLUSIONS

	PART V
	9. THE PRISMA CASE
	9.1. GRAPHICAL MODELLING TOOL
	9.1.1. PRISMA UML Profile
	9.1.2. Domain-Specific Language Tools (DSL Tools)
	9.1.3. PRISMA as a Domain-Specific Language
	9.1.4. The PRISMA Modelling Tool

	9.2. MODEL COMPILER
	9.2.1. Components
	9.2.2. Aspects

	9.3. CONFIGURATION MODEL
	9.4. PRISMANET
	9.4.1. PRISMANET Architecture
	9.4.2. PRISMA model implementation
	9.4.3. Memory Persistence
	9.4.4. Transaction Manager
	9.4.5. Log

	9.5. CONCLUSIONS

	10. THE PRISMA METHODOLOGY
	10.1. STAGES OF THE PRISMA METHODOLOGY
	10.1.1. First Stage: Detection of Architectural Elements and Aspects
	10.1.2. Second Stage: Software Architecture Modelling
	10.1.3. Third Stage: Code Generation and Execution

	10.2. INTEGRATION OF COTS IN PRISMA
	10.3. CONCLUSIONS

	PART VI
	CONCLUSIONS AND FURTHER RESEARCH
	11. CONCLUSIONS AND FURTHER RESEARCH
	11.1. CONCLUSIONS
	11.2. FURTHER RESEARCH

	 BIBLIOGRAPHY
	A.  PRISMA AOADL SYNTAX
	A.1. ARCHITECTURAL MODEL
	A.2. INTERFACES
	A.3. ASPECTS
	A.3.1. Attributes
	A.3.2. Services
	A.3.3. Preconditions
	A.3.4. Transactions
	A.3.5. Constraints
	A.3.6. Played_Roles
	A.3.7. Protocol
	A.4. COMPONENTS
	A.5. WEAVINGS
	A.6. PORTS
	A.7. CONNECTORS
	A.8.  ATTACHMENTS
	A.9. SYSTEMS
	A.10. CONFIGURATION
	A.11. COMMON ELEMENTS
	A.11.1. DataTypes
	A.11.2. Parameters
	A.11.3. Formulae
	A.11.4. Conditions
	A.11.5. Arithmetic Expressions
	A.11.6. Functions
	A.11.7. Processes

	B. THE PRISMA UML PROFILE
	B.1. CORRESPONDENCES BETWEEN PRISMA CONCEPTS AND UML CONCEPTS
	B.2. PRISMA UML PROFILE
	B.2.1. Aspect
	B.2.2.  Component
	B.2.3. Port
	B.2.4.  Protocol
	B.2.5. Weaving
	B.2.6. Attachment
	B.2.7. Binding

	C. PRISMA SOFTWARE ARCHITECTURE OF THE TEACHMOVER
	C.1. COMMON
	C.2. INTERFACES
	C.3. ASPECTS
	C.4. ARCHITECTURAL ELEMENTS
	C.5.  CONFIGURATION

	ACRONYMS
	 INDEX


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


