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Abstract

Systems Biology research has expanded over the last years together
with the development of omic technologies. The combination and si-
multaneous analysis of different kind of omic data allows the study of
the connections and relationships between different cellular layers. In-
deed, multiomic integration strategies provides a key source of knowl-
edge about the cell as a system. The present Ph.D. thesis aims to
study, develop and apply multiomic integration approaches to the field
of systems biology.

The still high cost of omics technologies makes it difficult for most
laboratories to afford a complete multiomic study. However, the wide
availability of omic data in public repositories allows the use of these
already generated data. Unfortunately, the combination of omic data
from different sources provokes the appearance of unwanted noise in
data, known as batch effect. Batch effect impairs the correct integra-
tive analysis of the data. Therefore, the use of so-called Batch Effect
Correction Algorithms is necessary. As of today, there is a large number
of such algorithms based on different statistical models and methods
that correct batch effect and are part of the data pre-processing steps.
However, the existing methods are not intended for multi-omics de-
signs as they only allow the correction of the same type of omic data
that must be measured across all batches. For this reason, we de-
veloped MultiBaC algorithm, which removes batch effect in multiomic
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designs, allowing the correction of data that are not measured across
all batches. MultiBaC is based on PLS regression and ANOVA-SCA
models and was validated and evaluated on different datasets. We also
present MultiBaC as an R package to facilitate the use of this tool.

Most existing multiomic integration approaches are multivariate meth-
ods based on latent space analysis. These methods are known as
data-driven as they are based on the search for correlations to de-
termine the relationships between the different variables. Data-driven
methods require a large number of observations or samples to find ro-
bust and/or significant correlations among features. Unfortunately, in
the molecular biology field, data sets with a large number of samples
are not very common, again due to the high cost of generating omic
data. As an alternative to data-driven methods, some multiomic inte-
gration strategies are based on model-driven approaches. These meth-
ods can be fitted with a smaller number of observations and are very
useful for finding mechanistic relationships between different cellular
components. However, model-driven methods require a priori informa-
tion, which is usually a metabolic model of the organism under study.
Currently, only transcriptomics and quantitative metabolomics have
been successfully integrated using model-driven methods. Nonetheless,
quantitative metabolomics is not very widespread and most laboratories
generate non-quantitative or semi-quantitative metabolomics, which
cannot be integrated with current methods. To address this issue,
we developed MAMBA, a model-driven multiomic integration method
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that relies on mathematical optimization problems and is able to jointly
analyze non-quantitative or semi-quantitative metabolomics with other
types of gene-centric omic data, such as transcriptomics. MAMBA was
compared to other existing methods in terms of metabolite prediction
accuracy and was applied to a multiomic dataset generated within the
PROMETEO project, in which this thesis is framed. MAMBA proved
to capture the known biology of our experimental design and was useful
for deriving new findings and biological hypotheses.

Altogether, this thesis presents useful tools for the field of systems
biology, covering both the pre-processing of multiomic datasets and
their subsequent statistical integrative analysis.
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Resumen

La investigación en Biología de Sistemas se ha expandido en los últimos
años junto con el desarrollo de las tecnologías ómicas. La combinación
y el análisis simultáneo de diferentes tipos de datos ómicos permite el
estudio de las conexiones y relaciones entre los diferentes niveles de
organización celular, lo cuál permite una visión a nivel de sistema del
organismo estudiado. La presente tesis doctoral tiene como objetivo
estudiar, desarrollar y aplicar estrategias de integración multiómica al
campo de la biología de sistemas.

El todavía elevado coste de las tecnologías ómicas, dificulta que la may-
oría de laboratorios puedan abordar un estudio multiómico completo.
No obstante, la gran disponibilidad de datos ómicos en repositorios
públicos, permite el uso de estos datos ya generados. Desafortunada-
mente, la combinación de datos ómicos provenientes de diferentes orí-
genes, da lugar a la aparición de un ruido no deseado en los datos, lo
que se conoce como efecto lote o “batch effect” en inglés. El efecto
lote impide el correcto análisis conjunto de los datos y, por lo tanto,
es necesario el uso de los llamados Algoritmos de Corrección de Efecto
Lote para eliminarlo. En la actualidad, existe un gran número de és-
tos algoritmos que corrigen el efecto lote que se basan en diferentes
métodos y modelos estadísticos, y que forman parte del paso de pre-
procesado de los datos. Sin embargo, los métodos existentes no están
pensados para los diseños multiómicos ya que solo permiten la cor-

vii



rección de un mismo tipo de dato ómico que debe haber sido medido
en todos los lotes o batches. Por esta razón desarrollamos nuestra
herramienta MultiBaC basada en la regresión PLS y modelos ANOVA-
SCA, que permite la corrección del efecto lote en diseños multiómicos,
permitiendo la corrección de datos que no hayan sido medidos en to-
dos los lotes. En este trabajo, MultiBaC fué validado y evaluado en
diferentes conjuntos de datos, además presentamos MultiBaC como
paquete de R para facilitar el uso de nuestra herramienta.

La mayoría de métodos existentes de integración multiómica son méto-
dos multivariantes basados en el análisis del espacio latente. Estos
métodos se conocen como “dirigidos por datos” o “data-driven” en
inglés. Este tipo de métodos se basan en la búsqueda de correlaciones
para determinar las relaciones entre las distintas variables. Los méto-
dos dirigidos por datos necesitan de gran cantidad de observaciones o
muestras para poder encontrar correlaciones robustas y/o significati-
vas entre las variables. Lamentablemente, en el mundo de la biología
molecular, los conjuntos de datos con un gran número de muestras no
suelen ser muy habituales, debido de nuevo al elevado coste de gen-
eración de los datos ómicos. Como alternativa a los métodos dirigidos
por datos, algunas estrategias de integración multiómicas se basan
en métodos “dirigidos por modelos” o “model-driven” en inglés. Estos
métodos pueden ajustarse con un menor número de observaciones y son
muy útiles para encontrar relaciones mecanísticas entre los diferentes
componentes celulares. Sin embargo, los métodos dirigidos por mode-
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los necesitan de una información a priori, el modelo, que normalmente
es un modelo metabólico del organismo estudiado. Actualmente, úni-
camente transcriptómica y metabolómica cuantitativa, han sido los dos
tipos de dato ómico que se han integrado con éxito usando métodos
dirigidos por modelos. No obstante, la metabolómica cuantitativa no
está muy extendida y la mayoría de laboratorios generan metabolómica
no cuantitativa o semi-cuantitativa, las cuáles no pueden integrarse
con los métodos actuales. Para contribuir en esta cuestión, desarrol-
lamos MAMBA, una herramienta de integración multiómica dirigida
por modelos y basada en métodología de optimización matemática,
que es capaz de analizar conjuntamente metabolómica no cuantitativa
o semi-cuantitativa con otro tipo de ómica asociada a genes, como por
ejemplo la trascriptómica. MAMBA fue comparado con otros métodos
existentes en cuanto a la capacidad de predcción de metabolitos y fué
aplicado al conjunto interno de datos multiómicos. Este conjunto de
datos multiómicos fue generado dentro del proyecto PROMETEO, en
el cuál está enmarcada esta tesis. MAMBA demostró capturar la bi-
ología conocida sobre nuestro diseño experimental, además de ser útil
para derivar nuevas observaciones e hipótesis biológicas.

En conjunto, esta tesis presenta herramientas útiles para el campo de
la biología de sistemas, y que cubren tanto el preprocesado de conjunto
de datos multiómicos como su posterior análisis estadístico integrativo.
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Resum

La investigació en Biologia de Sistemes s’ha expandit els darrers anys
juntament amb el desenvolupament de les tecnologies òmiques. La
combinació i l’anàlisi simultània de diferents tipus de dades òmiques
permet l’estudi de les connexions i les relacions entre els diferents niv-
ells d’organització celůlular, la qual cosa permet una visió a nivell de
sistema de l’organisme estudiat. Aquesta tesi doctoral té com a objec-
tiu estudiar, desenvolupar i aplicar estratègies dintegració multiòmica
al camp de la biologia de sistemes.

L’encara elevat cost de les tecnologies òmiques dificulta que la majoria
de laboratoris puguin abordar un estudi multiòmic complet. Això no
obstant, la gran disponibilitat de dades òmiques en repositoris públics
permet l’ús d’aquestes dades ja generades. Malauradament, la com-
binació de dades òmiques provinents de diferents orígens, dóna lloc a
l’aparició d’un soroll no desitjat en les dades, cosa que es coneix com
a efecte lot o batch effect en anglès. L’efecte lot impedeix la correcta
anàlisi conjunta de les dades i, per tant, cal utilitzar els anomenats al-
gorismes de correcció d’Efecte lot (Batch Effect Correction Algorithms,
BECAs) per eliminar-lo. Actualment hi ha un gran nombre d’aquests
algorismes que corregeixen l’efecte lot que es basen en diferents mè-
todes i models estadístics i que formen part del pas de preprocessament
de les dades. Tot i això, els mètodes existents no estan pensats per als
dissenys multiòmics ja que només permeten la correcció d’un mateix
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tipus de dada òmica que ha d’haver estat mesurada en tots els lots o
batches. Per això desenvolupem la nostra eina MultiBaC basada en
la regressió PLS i models ANOVA-SCA, que pot corregir l’efecte lot
en dissenys multiòmics, permetent la correcció de dades que no ha-
gin estat mesurades a tots els lots. En aquest treball, MultiBaC ha
sigut validat i avaluat en diferents conjunts de dades, a més a més,
presentem MultiBaC com a paquet de R per facilitar l’ús de la nostra
eina.

La majoria de mètodes d’integració multiòmica existents són mètodes
multivariants basats en l’anàlisi de l’espai latent. Aquests mètodes es
coneixen com a "dirigits per dades" o "data-driven" en anglès. Aquest
tipus de mètodes es basen en la cerca de correlacions per determinar les
relacions entre les diferents variables. Els mètodes dirigits per dades
necessiten gran quantitat d’observacions o mostres per poder trobar
correlacions robustes i/o significatives entre les variables. Lamentable-
ment, al món de la biologia molecular, els conjunts de dades amb un
gran nombre de mostres no solen ser molt habituals, degut a l’elevat
cost de generació de les dades òmiques. Com a alternativa als mètodes
dirigits per dades, algunes estratègies d’integració multiòmiques es
basen en mètodes dirigits per models o model-driven en anglès. Aque-
sts mètodes poden ajustar-se amb un nombre menor d’observacions
i són molt útils per trobar relacions mecanístiques entre els diferents
components celůlulars. Tot i això, els mètodes dirigits per models ne-
cessiten una informació a priori, el model, que normalment és un model
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metabòlic de l’organisme estudiat. Actualment, únicament transcrip-
tòmica i metabolòmica quantitativa, han estat els dos tipus de dada
òmica que s’han integrat amb èxit usant mètodes dirigits per models.
No obstant això, la metabolòmica quantitativa no està gaire estesa i la
majoria de laboratoris generen metabolòmica no quantitativa o semi-
quantitativa, les quals no es poden integrar amb els mètodes actuals.
Per contribuir en aquesta qüestió, hem desenvolupat MAMBA, una eina
d’integració multiòmica dirigida per models i basada en la metodolo-
gia d’optimització matemàtica, que és capaç d’analitzar conjuntament
metabolòmica no quantitativa o semi-quantitativa amb un altre tipus
d’òmica associada a gens, com per exemple la trascriptòmica. MAMBA
va ser comparat amb altres mètodes existents quant a la capacitat de
predcció de metabòlits i va ser aplicat al conjunt intern de dades mul-
tiòmiques. Aquest conjunt de dades multiòmiques va ser generat dins
del projecte PROMETEO, en el qual està emmarcada aquesta tesi. Es
demostra que MAMBA capturar la biologia coneguda sobre el nostre
disseny experimental, a més de ser útil per derivar noves observacions
i hipòtesis biològiques.

En conjunt, aquesta tesi presenta eines útils per al camp de la biologia
de sistemes, i que cobreixen tant el preprocessament de conjunt de
dades multiòmiques com la seua posterior anàlisi estadística integra-
tiva.
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1.1 The concept of Systems Biology

1.1 The concept of Systems Biology

The application of systems theory to biology dates back to the early
1960s, when Ludwig von Bertalanffy referred to an open system as the
characteristic state of living organisms [1]. Then in the 1990s, more
specific terms were used to enunciate that the future of biology would
depend on the analysis of systems and complex networks [2]. However,
there is a certain lack of consensus about the exact moment when the
concept was stated as a perfectly defined term.

Systems biology emerged from the linking of a large amount of data
from different cellular layers and different molecular nature, the in-
crease in computational performance, the improvement of data gener-
ation technologies and the collaboration between different disciplines
unable to give large scale understanding about biology on their own
[3]. The field of systems biology was developed through several stages.
First, traditional molecular biology turned into molecular systems biol-
ogy without the use of mathematical models. This fact started when
the structure and function of genes were discovered and the human
genome was decoded. However, on the post-genomic era the study of
biological pathways became a central item for the research community.
Then, the convergence with systems theory took place which allowed
the origin of the systems biology field based on mathematical models
[2, 4].
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The vision of systems biology about biology as an integrative discipline
is opposed to the molecular reductionist vision. Molecular biology con-
sidered the different cellular components as static and isolated, ignoring
the interaction between them in biological processes. Without the in-
tention of detracting the reductionist approach, many authors have
stated the need of integrative approaches since biological systems have
properties that cannot be evaluated analysing their parts in an exclusive
manner [5, 6]. Thus, the integration of different omic data is the main
moving force of systems biology as it combines experimental assays
with model building approaches.

Currently, there is a huge diversity of omic data types (e.g. transcrip-
tomics, metabolomics, proteomics, etc.) and new experimental meth-
ods that allow measuring a bunch of different biomolecules. Moreover,
the powerful computational performance has increased permitting the
application of more complex mathematical models to more complex
biological systems [5–9].

In the last years, the interest of the scientific community on systems
biology has increased since the number of conferences, publications
and/or projects about this topic is wider than ever before and in-
terdisciplinary research combining traditional molecular biology with
the most advance mathematical and computational developments has
made systems biology one of the most interesting research areas. How-
ever, although large-scale omic datasets are becoming more accessible,
and multiomics studies are becoming much more frequent, real multi-
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omic integration remains very challenging [10, 11]. Nonetheless, it has
become increasingly evident that cellular processes are multi-layered
and hence multiomic integration approaches are crucial to understand
the functioning of living cells, e.g. changes in chromatin status affect
gene expression profiles, stability and translation of transcripts, which
in turn causes changes in the cellular metabolism.

1.2 Omic technologies

High-throughput technologies allow the large scale study and quan-
tification of the different cell constituents, increasing the amount,
quality and variety of molecular data (the so-called omic data) [12].
From genotype to phenotype, omic technologies permit to analyze bio-
molecules at different layers, providing information for almost all bio-
chemical transformation/regulation steps (Figure 1.1). Some of the
most widely used omics in systems biology are: epigenomics, tran-
scriptomics, metabolomics and fluxomics.

The study of the chromatin and transcriptome is based on Next Gener-
ation Sequencing (NGS), a high-throughput genomic technology that
consists on sequencing DNA and RNA [12]. Chromatin is dynamic and
the specific set of modifications across the genome regulates the final
synthesis of the mRNA [13]. ChIP-seq (Chromatin Immunoprecipita-
tion Sequencing) is a methodology that detects binding sites of DNA-
binding proteins, either transcription factors, histones or other proteins
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by sequencing bound DNA [14]. In a different way, ATAC-seq mea-
sures chromatin accessibility by sequencing open DNA not protected
(bound) by any kind of DNA-binding protein [15]. These methodolo-
gies allow to build the map of the chromatin status and monitoring its
evolution under certain conditions.

Transcription rates can also be profiled by NGS. GRO-seq [16] and
NET-seq [17] combine the precipitation of the RNA-polymerase pro-
tein to the sequencing of the bound transcripts, giving information of
the nascent RNA. These newly synthetized RNA molecules are then ex-
ported to the nucleus where they can be degraded by the mRNA decay
machinery, stored in specific loci or translated into proteins [18, 19].
Throughout this journey, RNA molecules are guided by RNA-binding
proteins that control their fate [20]. Methods such as PAR-CLIP [21]
allow the study of mRNA bound to proteins in the cytoplasm. More-
over, steady-state levels of mRNA are profiled by RNA-seq which is
the most popular NGS technology in computational biology. Finally,
translation process can also be monitored via Ribo-seq that measures
the mRNA in active translation (bound to ribosomes) [22].

The large scale study of proteins (proteomics) is much more intri-
cate than genomics or transcriptomics, mostly because the total pro-
tein expression profile is highly heterogeneous in terms of physical and
structural properties [23]. Proteomics relies on two basic technologi-
cal cornerstones: a method to fractionate complex protein or peptide
mixtures and a technology to acquire the data necessary to identify
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1.2 Omic technologies

Figure 1.1: The most relevant omic data types in integrative omic studies, represented as
different layers of biological information.
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individual proteins. Mass spectrometry (MS) has been widely used in
the identification of proteins and is usually performed in combination
with a protein separation procedure. These procedures are roughly di-
vided into gel-based [e.g. differential in-gel electrophoresis (DIGE)] or
gel-free [e.g. liquid or gas chromatography (LC and GC, respectively)]
[24]. MS is a technique that allows the detection of compounds by
separating ions by their unique mass (mass-to-charge ratios) using a
mass spectrometer [23]. Although protein identification and quantifi-
cation have improved in the last years, this technique still has a low
signal/noise ratio which makes proteomic data less sensitive than other
omic technologies and hence is strongly biased towards abundant pro-
teins. Targeted proteomics (determining the presence and quantity
of particular proteins or peptides) improves sensitivity in contrast to
untargeted studies (quantitative and qualitative study of all proteins
present in a sample). In addition, missing values are also a relevant
issue in proteomics studies. The occurrence of missing data results
from different biological and/or technical reasons: a peptide is either
not detected, below the detection limit or simply not present in the
sample [24, 25].

Lastly, metabolomics provides a global characterization of the metabolic
profile of a given sample, providing a closer picture of the metabolic
processes. Metabolomics is intricate due to three main reasons: i)
thousands of metabolites could be present at the same time in a sample
and some of them are almost identical in terms of molecular composi-
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tion and abundance, ii) the concentration of two metabolites present
in the same sample may differ in several orders of magnitude and iii)
among the biological constituents of the cell, metabolites present the
largest heterogeneity in terms of chemical and physical properties [26].
Metabolomics analyses are typically performed by three principal ana-
lytical techniques: Gas Chromatography coupled to Mass Spectome-
try (GC-MS), Liquid Chromatography coupled with single-stage Mass
Spectometry (LC-MS) and Nuclear Magnetic Resonance (NMR). NMR
measures the magnetic response of the atomic nucleus of a sample to
an external magnetic field. NMR has become the preferred platform for
long-term or large-scale clinical metabolomic research due to its rela-
tive ease of sample preparation, capacity to measure metabolite levels,
high level of experimental reproducibility, and nondestructive nature
[27]. However, NMR is less sensitive than MS techniques [27]. In
contrast to transcriptomics or proteomics, the availability of published
metabolomic data is still scarce and limited.

All metabolic processes in living cells are performed by interactions of
the different types of biomolecules presented above. These processes
are constituted by a concatenation of metabolic reactions that modi-
fies cell metabolome. Fluxes through metabolic reactions are the final
result of the interplay of proper chromatin modification, gene expres-
sion, protein activity and metabolite concentrations. By analogy to
other omic modalities, measuring the activity of metabolic reactions
was termed “fluxomics”. This omic integrates experimental measure-
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ments of metabolic fluxes with mathematical models to determine the
flux through a metabolic network. While the overall rate of nutrients
consumption or production can be easily measured (e.g., consump-
tion of Glucose or secretion of Ethanol), intracellular fluxes are more
difficult to characterize [28]. The complete set of reactions that con-
sume or produce metabolites is known as metabolism. Metabolic reac-
tions are catalyzed by enzymes (proteins) and are quantified in terms
of metabolic fluxes (units of substrate metabolized per unit of time).
Metabolism allows organisms to perform their vital functions (e.g. grow
and reproduce, respond to the environment, etc.). Due to its close re-
lationship with cellular phenotype, the study of cellular metabolism has
allowed the diagnosis of diseases [29], novel drug target discovery [30]
and improvement of biotechnological processes [31] among others.

Metabolism has been extensively studied by gathering the metabolic
reactions that serve a specific biological demand. A group of intercon-
nected metabolic reactions that operate together to satisfy a certain
biological role, is commonly known as metabolic pathway. In the lit-
erature, there are several well characterized metabolic pathways: Gly-
coysis, Tricarboxylic acid (TCA) cycle, lactic acid or alcoholic fermen-
tation, etc. However, metabolic pathways do not operate in isolation
and therefore, the metabolism of living organism is characterized by
the interaction between different metabolic pathways.

The comprehensive study of the phenotype arises from the use of dif-
ferent omic technologies that allow to measure the set of biomolecules
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of the cell massively and address biological questions that are otherwise
unattainable using conventional methods [32].

1.3 Nature and structure of omic data

In the previous section, several omic technologies have been intro-
duced. For the scope of this work, only NGS and NMR omic data
are being discussed. The nature and the type of data generated are
different between omic technologies and therefore the processing and
analysis of different omic data vary. Nevertheless, data from differ-
ent omic technologies have a similar structure. Particularly, a huge
number of features are observed on (usually) a small number of sam-
ples (Number of features >> Number of samples). Each feature
measures the abundance of biomolecules.

Omic data are commonly represented as matrices: X, where xij indi-
cates the quantification of feature j in sample i. For most omic data
types and prior to any normalization/transformation step, the value of
xij is usually positive and a higher value represents more abundance of
a given feature.

NGS omic technologies differ on how biomolecules are captured/ex-
tracted from organisms or cells. However, the pipelines used to obtain
NGS data are rather similar to each other. Extracted biomolecules
(RNA or DNA) are sheared and the fragments are sequenced by a
high-throughput platform. The sequencing process generates millions
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of short reads with associated quality scores. Those reads are mapped
onto a reference genome to identify the genomic location of each read.
Reference genomes are usually annotated, i.e., gene coordinates are
known. Thus, in the case of gene-centric omics as RNA-seq, the
mapped reads corresponding to each gene can be quantified and the
number of reads mapped to a given gene is an estimation of the ex-
pression level of that gene. Regarding region-based omics as ChIP-seq
or ATAC-seq, a process called peak-calling is performed. Roughly, ge-
nomic regions with a high concentration of mapped genes are declared
as “peaks” and reads mapping those regions are pooled to quantify the
signal of the peaks. Peaks’ signals can be assigned to genes (if needed).
Regardless the omic, the resulting NGS data consist of discrete values
(the number of reads mapping a certain region), the so-called counts.
These data are not directly comparable and have to be corrected/nor-
malized to remove technical biases and allow between-sample compar-
isons. Initial attempts to model NGS omic data assumed the Poisson
distribution [33]. However, due to the variability between biological
replicates, currently the negative binomial distribution is generally ac-
cepted for modeling NGS data as it incorporates over-dispersion in the
definition of the variance [34, 35].

Contrary to NGS, NMR generates continuous values in the form of
spectra. Researchers can record NMR spectra for multiple different nu-
clei (1H, 13C, 15N, and 31P) either separately or simultaneously to study
different metabolite classes [27]. Once metabolites are extracted from
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cells, a suitable solvent suppression before performing the NMR assay
is required [27, 36]. Figure 1.2 shows an example of an NMR spec-
tra. Letters represent different compounds that are separated along
the x-axis according to their chemical composition regarding the tar-
get nuclei. Y-axis indicates the abundance of the target nuclei in each
compound. Therefore, compound concentrations are not directly re-
flected in NMR spectra.

The next step in the NMR data processing pipeline is the identifica-
tion of the compounds in the spectra. Historically, NMR databases of
most chemical compounds were compiled and kept in books. Thanks
to the efforts of a number of metabolomics labs from around the world,
there are now several high-quality, web-based NMR spectral databases
containing reference NMR spectra for hundreds of metabolites. Par-
ticularly, The Human Metabolome Database (HMDB www.hmdb.ca)
[37] is becoming the standard reference for most metabolomic stud-
ies. Moreover, alternative software tools exist that can both identify
compounds and estimate metabolite concentrations from NMR spec-
tra [38, 39]. To quantify the compound, the areas of the peaks are
used and resulting quantification values are modeled using a Normal
distribution [36, 40]. Similarly to NGS data, adequate normalization is
often required to account for technical variability among samples.
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Figure 1.2: Example of NMR spectra for metabolomics. Source: mdpi.com
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1.4 Statistics for systems biology

In the last decades, the use of high-throughput technologies has trans-
formed molecular biology into a data-rich discipline. The study of bi-
ological systems at single-layer level, where all molecular components
(e.g. RNA, proteins, etc.) were studied separately, has been substi-
tuted for the combination of multiple holistic approaches that allow
to understand how biological entities establish highly interconnected
networks where biological functions cannot be characterized by indi-
vidual actors [41]. In this context, Systems Biology has evolved into
an integrative discipline for the study of complex interactions between
biological systems components [42]. However, extraction of knowl-
edge from this wealth of omic data is not trivial [10, 11] and a wide
range of statistical methods has been developed or adapted to cope
with this challenging task. These methodologies comprise algorithms
that range from data pre-processing and normalization strategies to
multiomic integration approaches.

1.4.1 Single-omic data analysis

Available statistical methods for the analysis of omic data are mostly
developed for finding statistically significant differences between two
groups of biological interest (e.g. treated and control) [43]. Since high
throughput transcriptomics is one of the most widely used technique
to profile biological samples, a vast number of approaches exist for
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the analysis of gene expression data. The most relevant and widely
tested data-driven methods used in computational biology are intro-
duced below and classified regarding the task or biological question
they address.

1.4.1.1 Omic data pre-processing and normalization

Once the quantification of omic features is obtained, between- and
within-sample normalization methods are applied to remove or mitigate
technical biases and make samples and features comparable [44, 45].
In particular, most of the normalization strategies intend to eliminate
systematic differences among samples. Samples with higher sequencing
depth or total NMR signal (i.e. sum of the values for all the features)
complicate feature-wise analyses since they introduce artificial high val-
ues compared to the rest of samples. In NMR omic data, this issue
is usually corrected by dividing the area of each peak by the sum of
total spectrum intensity [36]. Similarly, samples from NGS data are
corrected by their library size or sequencing depth, i.e., total number
of counts. In addition to sequencing depth, NGS data are affected by
other specific biases:

• RNA/DNA composition. RNA-seq or ChIP-seq techniques mea-
sure the relative abundance of each gene (or region) in a given bio-
logical sample. To illustrate RNA/DNA composition problem, let
us consider that only a small fraction of genes is highly expressed
in only one biological sample (or group of samples) compared to
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other biological samples. This fraction of genes will capture an
important part of the reads sequenced and hence the rest of genes
(equally expressed among samples) will receive a low number of
reads resulting into low expression values. Therefore, the expres-
sion of those genes where a low amount of reads are assigned will
be underestimated leading to wrong between-sample comparisons.
The most popular method for correcting RNA composition bias is
the Trimmed Mean of M-values (TMM, detailed in Chapter 4)
[46].

• GC content. GC content [nucleotides: Guanine (G) and Cyto-
sine (C)] of genes does not change between samples and therefore
should not affect between-sample differences. However, GC con-
tent affects the sequencing reaction and, as a result gene expres-
sion depends on the percentage of gene GC content [47, 48]. In
Risso et al., 2011 [48] the authors propose the Full-Quantile Nor-
malization for correcting GC content bias. In full-quantile (FQ)
normalization, genes are stratified according to GC content. The
quantiles of the read count distributions are then matched be-
tween GC bins (genes are previously stratified into equally-sized
bins based on GC content), by sorting counts within bins and then
taking the median of quantiles across bins.

• Gene length. Longer genes generate more fragments during the
library preparation and therefore they produce more sequencing
reads, which, in turn, results into more counts compared to short
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transcripts of similar expression. This is a within-sample bias and
some methods have been proposed to correct it. Reads per Kilo-
base Million (RPKM) [49] is an extended method for correcting
gene-length bias. The normalized counts for gene i and sample s

(yis) are defined as: yis = 109xis/(Nsli) where xis is the original
count value, Ns is the total number of counts in sample s, and
li is the length of gene i. However, other authors question the
usefulness of gene-length bias correction. Oshlack and Wakefield,
2009 discussed this issue in [50]. Under some basic assumptions,
they demonstrate that statistical power for comparing two biolog-
ical groups depends on gene-length and hence longer genes are
more likely to be declared significantly expressed. However, this
issue is usually not fully solved after gene-length bias correction.

These technical biases are not always present in NGS omic data at
the same time. Therefore, an adequate quality control step is critical
for assessing the existing biases and applying the correct normalization
methods [51].

1.4.1.2 Batch effect correction

Batch effects appear when omic data are not generated under the exact
same conditions (e.g. time point, laboratory, reagents, etc.). Both
economic and time costs of omic data generation may motivate the
combination of omic data from different sources, i.e. different batches
(e.g.: leverage omic data from public repositories). Batches are often
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an important source of noise in data that confound the biological signal
and impairs statistical analyses. Therefore, batch effects have to be
removed.

Batch effect correction has been addressed by many authors and con-
sequently different approaches have been proposed. The removal of
batch effects is possible as long as no other covariate (biological con-
dition) is confounded with batch effect. ComBat [52] is the most pop-
ular method, which uses either parametric or non-parametric empirical
Bayes frameworks for estimating the batch effect. Other examples are
Limma package [53] that estimates the batch effect using linear models,
and ARSyN [54], which implements ANOVA-SCA (ASCA) decompo-
sition [55]. These methods differ on the way they estimate the batch
effect, but the final goal for all of them is to extract the estimated
batch effect from the data (methods detailed in Chapter 3).

In the multiomic scenario, these methods have to be applied in an
omic-wise manner (intra-omic batch effect correction), but when the
different omic data types come from different sources, the currently
available batch-effect correction methods are not prepared to correct
the inter-omic batch effect.
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1.4.1.3 Identification of differentially expressed/quantified
features

Identifying differentially expressed genes (or biological features in gen-
eral) is a pivotal task in computational biology and there are a lot of
contributions to address this problem. A classification of differential
expression methods can roughly be done considering the underlying
model imposed to the data.

Most of the methods proposed for NGS omic data are parametric and
work directly on the count data using a negative binomial distribution.
Among this group, the most popular methods are edgeR [35] and DE-
Seq2 [56]. A critical part of the inference procedure is to obtain a
reliable estimate of the dispersion parameter for each gene which is
limited by the sample size. Both DESeq and edgeR share information
across genes to estimate a gene-wise dispersion parameter. In fact,
the way these methods implement information sharing accounts for
the main difference between them. edgeR uses a two-step estimation.
First, a common dispersion parameter for all the genes is computed
using a conditional maximum likelihood approach. Then, gene-wise
dispersion is estimated, but the individual estimates are squeezed to-
wards the common one using a weighted likelihood approach [57]. On
the other hand, DESeq2 obtain the dispersion estimates by modeling
the observed mean-dispersion relationship for the genes using local re-
gression. Both methods test for significant differential expression using
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either a variant of an exact test (two-group comparisons) or a gener-
alized linear model (GLMs, for more complex designs).

Regarding non-parametric methods, NOISeq [51] explores the distri-
bution of absolute expression differences and fold-changes between
two biological conditions. Then, this distribution is compared to a
null-distribution generated by permutation techniques to compute the
probability of differential expression for each gene.

Finally, other methods assume omic data follow a normal distribution.
This is true for NMR data but NGS omic data need a previous trans-
formation to meet normality assumptions [58]. Among methods that
assume normal distribution for omic data, Limma R package (Linear
models for microarrays) [53] is the most popular one (detailed in Chap-
ter 4).

Other methods can model either raw counts or normalized data via
GLMs. That is the case of maSigPro R package [59] which is specially
deigned for time-series data (detailed in Chapter 4).

So far, there is no general consensus regarding which method performs
best and new methods are continuously being presented [60]. More-
over, all these methods incorporate multiple testing correction, since
as many tests are performed as the number of existing omic features.
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1.4.1.4 Identifying differentially activated pathways by
functional enrichment analyses

Gene expression analysis methodologies are often focused on identi-
fying particular genes that differ significantly between two states of
interest. These approaches, while useful, are unable to detect biolog-
ical processes such as metabolic pathways, transcriptional programs,
and stress responses, which are spread across a network of genes and
inconspicuous at the level of individual genes. Functional enrichment
analysis (FEA) aims to find those pathways or gene sets that are en-
riched in those features (genes, metabolites or proteins) changing be-
tween conditions. Therefore, FEA is often performed after a differ-
ential expression/quantification analysis. Pathways or gene sets are
defined a priori and there are powerful databases to obtain the list of
pathways or gene sets for a given organism (KEGG www.kegg.jp, RE-
ACTOME www.reactome.org, Gene Ontology www.geneontology.org
or MSigDB www.gsea-msigdb.org). FEA can be performed by three
main approaches:

• Over-representation analysis (ORA). ORA relies on indepen-
dence tests such as Fisher’s exact test [61]. ORA determines
whether features from pre-defined sets (pathways or gene sets)
are present more than would be expected (over-represented) in
a subset of your data (differentially expressed features). There-
fore, this question can be expressed as a contingency table to be
analyzed with an independence test:
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Features not of interest Features of interest
Annotated M-k k
Not annotated N-M - (n-k) n-k

where N is the total number of features (universe), M is the num-
ber of features within the universe that are annotated to the gene
set, n is the size of the list of features of interest (differentially
expressed), and k is the number of genes within that list which
are annotated to the gene set.

• Gene-set Enrichment Analysis (GSEA). GSEA determines whether
a set of features (pathways, gene sets) shows statistically signif-
icant, concordant differences between two biological conditions.
GSEA utilizes the output from a differential expression analysis
(DEA), i.e., an effect size measure (typically log2FC) and the as-
sociated p-values. The output metric is called Enrichment Score
(ES) that reflects the degree to which a given gene set S is over-
represented at the extremes (top or bottom) of the entire ranked
list of genes L (based on DEA output). Although there are dif-
ferent approaches to perform a GSEA analysis, here we introduce
the one proposed by Subramanian et al., 2005 [62] as this is the
method that will be used in this work. In this approach, ES is ob-
tained by walking down the list L evaluating the fraction of genes
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in S weighted by their effect size measures (r(gj)) and the fraction
of genes not in S present up to a given position i in L:

Phit(S, i) =

j≤i∑
gj∈S

|r(gj)|p

NR
,where NR =

∑
gj∈S

|r(gj)|p

Pmiss(S, i) =

j≤i∑
gj /∈S

1

(N −NH)
,where NH = genes in S

(1.1)

The enrichment score is the maximum deviation from zero of
Phit−Pmiss. When p = 0, ES reduces to the standard Kolmogorov-
Smirnov statistic; otherwise, features are weighted by their effect
size values and it is the common way of using GSEA (p = 1). In ad-
dition, a statistical test for significance is performed by condition-
based permutation test procedure and a p-value is also returned
after multiple testing correction [62].

• Gene-Set Variation Analysis (GSVA). GSVA can be used for
functional enrichment analysis. In this case, GSVA is performed
before differential feature analysis. GSVA computes a score per
gene set that somehow summarizes the expression of all the genes
contained. Then the association between GSVA scores and biolog-
ical conditions under study is evaluated, for instance using limma
or classic linear regression. According to the authors, GSVA pro-
vides increased power to detect subtle pathway activity changes
over a sample population in comparison to GSEA. However, GSVA
has been designed and tested only for gene expression data [63].
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These methods are useful to extract deeper biological insights from
omic data beyond differential feature analysis. Yet, mechanistic inter-
pretation of the results and the connection among resulting significant
gene sets are not easy tasks.

1.4.2 Multiomic integration

Separate analysis of omic data modalities allows answering targeted bi-
ological questions regarding a wide variety of biological processes, e.g.
the expression of genes (transcriptomics), abundance of proteins (pro-
teomics), or dynamics of metabolites (metabolomics and fluxomics),
independently. Multiomic integration aims to combine, model, and in-
terpret data sets that contain several of these data types. Cavill and
collaborators [64] elaborated an extended description of multiomic in-
tegration strategies. They described three levels of data integration:
conceptual integration, statistical integration and model-based inte-
gration. Conceptual integration means that “data sets are analyzed
separately and the conclusions are compared and integrated”. Thus,
single-omic methodologies explained above are used in conceptual mul-
tiomic integration. Statistical integration combines data sets and an-
alyzes them jointly, “reaching conclusions supported by all data and
potentially finding signals that are not observable with the conceptual
approach” [65]. Model-based integration indicates the joint analysis
of the data in combination of training of a model, “which itself in-
corporates prior beliefs of the system” [66]. Model-based integration
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was later reclassified to distinguish qualitative reconstruction of bio-
logical pathways or systematic regulatory pathways from quantitative,
mathematical evaluation [67].

In this document, multiomic integration approaches are presented ac-
cording to the definition proposed by Jamil et al., 2020 [68]. The
authors re-defined the multiomic integration workflow into three levels
with increasing complexity. Level 1 is called element-based integration
with two main subclasses: correlation and multivariate analyses. Level
2 is the knowledge-based pathway integration. Finally, level 3 is the
model-driven integration or genome-scale analysis.

1.4.2.1 Level 1: Element-based integration

Correlation analysis

The first level of multiomic integration is an element-based approach
using correlation of features. The basic approach is correlative associa-
tion between two omic data sets. Correlation analysis is focused on the
study of a broad class of statistical relationships involving dependence
between two random variables or two sets of data. The most familiar
measure of dependence between two quantities is the Pearson product-
moment correlation coefficient, or simply "correlation coefficient" [69].
Multiple linear regression models have been also applied for multiomic
integration to model the coordination of different omics to regulate the
response of another molecule [70].
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Multiomic integration strategies based on correlation are useful be-
cause they can indicate a predictive relationship that can be exploited
in practice. However, two potential issues may limit this approach.
Firstly, multicollinearity is a common problem when considering sev-
eral explanatory features as predictors in the same model. Secondly,
sample size in multiomic studies is generally small. Both together make
it enormously difficult to perform a robust statistical inference and find
significant regulators. To solve, or at least mitigate these issues, vari-
able selection strategies such as ElasticNet [71] or Lasso regularization
[72] (or Group Lasso [73]) methods have been used in the field, but
these approaches do not consider the biological meaning of omic fea-
tures and hence interesting findings may be missed.

Multivariate statistics

In the biological research area, traditional statistical techniques (e.g,
linear regression, bi-variate correlations, analysis of the variance or
Fisher’s exact test) have been applied to solve many kind of problems.
However, these techniques became insufficient to exploit the data-rich
environment found in modern biology when omic data emerged, since
these new technologies allow registering a wide range of variables.
Moreover, the relative high cost of omic assays lead to small sample-
sized experiments which is an important issue for traditional statistics.
Thus, in the 70s and 80s new methods were developed to deal with
such high dimensional datasets coming from chemistry and process in-
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dustry, which are the basis of what it is known today as multivariate
statistics.

Multivariate methods (MVA methods) applied in computational bi-
ology can be divided into two main groups: data exploration and
feature-association. The first group aims to understand high dimen-
sional datasets by extracting the most relevant signals from data via
dimension reduction and selection of the most relevant features in data.
The second group seeks to relate different types of data being the most
common situation an explanatory omic type and another response omic
information or an outcome variable (numerical or categorical). These
methods are used mainly for classification among classes, discrimina-
tion and prediction.

Multiomic integration methods that have been developed in this con-
text enforce to solve three important issues: i) Dimensionality reduc-
tion. The analysis has to identify true signals from a noisy background.
ii) The relationships within and between datasets (omics). iii) Easy in-
terpretation and visualization of the results.

Principal Component Analysis (PCA): A Principal Component
Analysis (PCA) [74] finds a variable subspace that explains most of
the variability of data. The original variables are transformed into a
lower number of non-correlated latent variables, the so-called principal
components (PCs). A PCA model summarizes the variability structure
of high dimensional data and is very helpful to cluster the samples
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according to their observed features. A PCA model has the following
expression:

X = TPt + E (1.2)

where X is a N×M data matrix, T is the N×L matrix of scores which
are the projection of the observations over the new subspace. P is the
M×L loading matrix containing the linear combination of the variables
represented in each PC.N and M are the number of observations and
features, respectively, and L is the number of latent variables (PCs) of
the model. Figure 1.3 shows an example to illustrate the PCA model
of a 2-dimensional matrix turned into a PCA model with one latent
variable.

Partial Least Squares regression (PLS): Partial Least Squares re-
gression (PLS) [75] is a projection method used to model the relation-
ship between a multivariate X (N×M) predictor or explanatory matrix
and a set of response variables Y (N × K). Thus, N is the number
of observations or samples, M represent the number of explanatory
variables, and K is the number of response variables. The aim of a
PLS model is to find a variable subspace (a set of L latent variables)
for both matrices that maximize the covariance between them. The
PLS model can be expressed as Y = TCt + E = XB+ E, where B is
the regression coefficient matrix and E is the residuals matrix. B can
be estimated as:

29



Chapter 1. Introduction

Figure 1.3: PCA model example of a 2-dimensional observation. Vectors are represented by
arrows and scalars as dots.
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B = W∗Ct = W(PtW)−1Ct (1.3)

where T is the X-scores matrix, W is the X-weight matrix, P is the
X-loading matrix and C is the Y-weight matrix. While the loadings,
define the subspace that best reconstruct the X matrix given the scores
T, the weightings define the subspace that maximize the covariance
between X and Y. A PLS model can be used as a predictor model by
its equation, Ŷ = TCt = XB. The new set of observations must be
projected into the model, T = XW∗, then the PLS coefficients can be
computed using Equation 1.3 and the prediction is performed.

MVA methods in computational biology: A vast universe

Due to the characteristics of omic datasets (no of variables >> no of
observations) classical statistical methods are hardly applicable, even
impossible in most cases. To solve this, most of the studies in multi-
omic integration use MVA methods based on dimension reduction to
summarize the variability of datasets. There is a wide diversity of these
methods covering almost all experimental designs and analysis possi-
bilities. Multivariate methods are usually classified into two groups:
unsupervised and supervised methods. PCA (unsupervised) and PLS
(supervised) are the most used MVA methods in computational biology
and are also the basis for many other methods that have been devel-
oped over the last years to cover more data structures. In the context
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of multiomic analysis, multiblock PCA and PLS (MB-PCA and MB-
PLS) allow the use of multiple explanatory and/or response matrices
by weighting the different modalities and creating super latent spaces
[76, 77]. Also applied to PCA and PLS, variable selection has a great
interest in the field. Regularized linear regression principles (Lasso
penalization, Ridge regression and Elastic net) have been adapted to
PCA and PLS to obtain the key features in explaining data variability
[78, 79]. These method have been called as sparse versions, sparse
PLS (S-PLS) for instance. In the case of supervised analysis, all of
these approaches include the discriminant analysis version (PLS-DA,
MB-PLS-DA, etc.) for modeling categorical outcomes (classification)
[80, 81]. Moreover, O2-PLS and other approaches were conceived for
separating common and distinctive variability among different matri-
ces (omics) [82–84]. In addition to genes and samples, sometimes a
third dimension is added to an experimental setting. Specially, time
series data is the most common situation where, to represent data, we
need to use three-dimension arrays (samples x genes x time) instead
of matrices. The above methods can be applied in these cases by un-
folding the three-way array into a 2-way matrix (samples x ((genes x
time)), however there are specific approaches for N-dimensional struc-
tures. PARAFAC [85] and Tucker3 [86] are the N-way version of PCA,
and N-PLS adapts PLS regression for N-way data. These approaches
have been successfully applied to biological data [87].
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In conclusion, multivariate statistics has been extensively and success-
fully applied in the multiomic integration field. The high dimensionality
of omic data makes these methods powerful for extracting meaningful
signals from biological data. However, they lack on mechanistic inter-
pretation of data as they are purely data-driven approaches and no a
priori information that relates different features is used. Nevertheless,
there is also a dimension reduction method that uses prior informa-
tion which is the PLS Path Modelling (PLS-PM) where path models
(association among features) need to be defined a priori [88].

1.4.2.2 Level 2: Pathway-based integration

Pathway-based integration is aimed to map omics data sets, either
transcriptome, proteome or metabolome to existing metabolic pathway
databases, e.g. Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.genome.jp/kegg/). There are many software tools avail-
able for multiomic integration at pathway level [89]. These methods
often require a prior feature differential analysis and translate omic-
wise results into a pathway-based joint-omic output. Paintomics web
resource [90] is an example of these approaches and allows multiomic
functional enrichment analysis combining the p-values from omic-wise
ORAs (detailed in Chapter 4). Pathway-based integration was beyond
the scope of this thesis work and hence no further examples or details
are provided. For a comprehensive review of these approaches we rec-
ommend the following references: Ili Nadhirah Jamil et al., 2020 [68],
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Rafael Hernández-de-Diego et al., 2018 [90] and Hernández-de-Diego
et al., 2017 [91].

1.4.2.3 Level 3: Model driven approaches

Data-driven methods are extremely efficient to extract knowledge from
a massive amount of data. However, they require a considerable
amount of experimental data to determine patterns, correlations and
mechanisms. In some cases, it is necessary to add new knowledge ex-
tracted from the literature in order to constraint the space of solutions
to be analyzed. Typically, this information is introduced in the form
of models, which are abstractions of a biological system representing
the interactions and inter-dependencies among the components of the
system (metabolites, genes, proteins, etc.) [92].

These models can be represented as graphs. However these represen-
tations are not accurate, often fail to capture the dynamic behavior of
biological systems, and are ineffective when dealing with vast networks.
Computational models, on the other hand, give a precise mathemati-
cal representation of information that may be used to understand and
assess observed data, analyze system behavior (e.g., identify critical
pieces for a specific behavior), and generate and test hypotheses [92].
As a result, mathematical modeling has become an indispensable tool
for fully understand cell metabolism and its interactions with the envi-
ronment conditions [92]. Next, some of the most relevant model-driven
approaches to study the metabolism are briefly summarized:
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Flux Balance Analysis (FBA)

Flux Balance Analysis (FBA) [93] is one of the most used constraint-
based modeling (CBM) methods in systems biology. In CBM, the fluxes
through metabolic reactions conform the decision variables. The out-
come of each decision in CBMs is constrained by a minimum and maxi-
mum range of limits. Thus, CBMs calculate flux distributions that sat-
isfy three fundamental types of constraints [94] : i) steady-state mass-
balance constraint, which sets the total production and consumption
rates for each metabolite to be equal; ii) thermodynamics (reaction
reversibility), i.e., non feasible metabolic transformations are not al-
lowed; iii) capacity constraints, i.e., upper and lower bounds for fluxes
can be imposed. CBMs are most commonly used with optimization
techniques, such as the use of linear and mixed-integer programming
to maximize an objective function (OF) and find a space of feasible
flux solutions that is consistent with the stoichiometric, thermody-
namic and capacity constraints imposed by a given metabolic model.
The OF (f(x)) is the formal way to parameterize the biological objec-
tive, the phenotype, and defines how much each reaction contributes
to the phenotype of interest. This objective function usually reflects
the growth rate which is defined by an artificial biomass production
reaction, although it can be defined differently as needed [92]. FBA is
mathematically formulated as follows:
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maxf(x)

subject to
(1.4)

Sx = 0 (a)

lb ≤ x ≤ ub (b)

where x is the solution or flux vector, S is the stochiometric matrix
that contains both stochiometric and thermodynamic constraints, and
lb and ub are vectors that contains the lower and upper bound, re-
spectively, which represent the capacity constraints.

Constraint-based methods and Genome-scale Metabolic Models

The basic FBA can be enriched with transcriptomic data to determine
an optimal metabolic flux solution that fits with the given phenotype
which in this case is given by gene expression profile. The integration
of transcriptomic data into CBMs is based on the inference of reaction
activity by using the expression of the associated genes. Overall, exist-
ing integration methods seek to build a metabolic network that satisfies
the thermodynamic and stoichiometric constraints, while maximizing
the concordance between reaction activities and the expression of their
associated genes. However, the way in which gene expression data is
translated from genes to reactions is different between the available
integration methods.
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• Gimme [66, 95] uses transcriptomic data to penalize the activity
of reactions catalyzed by low expressed genes. Low expression is
determined by an user-defined threshold. Setting an optimal gene
expression threshold is critical and testing with several values is
recommended. Gimme algorithm classifies reactions as active or
inactive regarding the expression of their associated genes whether
it is over or below the threshold, respectively. Penalty coefficients
are calculated for each gene on the basis of log transformed ex-
pression:

τg = Emax − Eg

Here, τg indicates the gene-associated penalty for gene g. Eg

indicates the log-expression value of gene g and Emax the maxi-
mum log-expression for all genes in the metabolic network. These
penalties are then mapped to model reactions to obtain a vector
of reaction penalty coefficients, ϕ. The objective function is then
defined as min(ϕx).

• iMat method [96] establishes a discrete state for metabolic reac-
tions (low, intermediate or high) based on the expression of the
associated genes. Then, it maximizes the number of active (high)
reactions associated to highly expressed genes and minimizes the
number of active reactions associated to lowly expressed genes.
Since iMat models a single condition at a time, it is necessary
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to define an upper and a lower expression threshold to determine
whether a gene is over- or under-expressed.

• The method proposed in Gonçalves et al. 2012 [97] was developed
for comparing two conditions (case vs. control) and uses relative
gene expression values. Gene expression levels from one exper-
imental condition relative to a control are used to re-define the
upper and lower bounds of metabolic reactions. That is modifying
the capacity constraints (lower and upper bounds) of metabolic
reactions. Let us consider p as the relative value for a given re-
action flux (based on gene expression), if p > 1, the reaction is
over-expressed constraining its flux to be larger than the refer-
ence value (reaction flux in control condition) multiplied by p:
p · xc < xi ≤ ub, where indexes c and i indicates reaction flux in
control and case conditions, respectively. Similarly, if p < 1, the
reaction is under-expressed and its flux is constrained to be lower
than the reference multiplied by p (lb ≤ xi < p · xc).

• MADE algorithm [98] also uses relative gene expression values.
In this case, metabolic reactions are classified into up-, down-
regulated or constant in one condition relative to a control ac-
cording to the relative expression of the associated genes. In other
words, reaction activities are discretized between conditions. For
instance, if a certain reaction r is associated to gene g which is
significantly down-regulated in the condition compared to the con-
trol, the gene state of gene g is active in control (1) and inactive
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in the condition (0) and in turn the reaction r has zero flux in
the condition and a positive flux in control. These discrete levels
are set by using the log fold change of the associated genes and
the corresponding p-value (p). MADE algorithm finds a solution
that is consistent with maximum number of relative discrete levels.
The optimization process is mathematically defined as:

argmin
x∈X

n−1∑
1=1

w(pi→i+1)|di→i+1 − xi→i+1| (1.5)

where n is the number of conditions, i → i+ 1 represents a tran-
sition from condition ni to ni+1, x is the solution vector contain-
ing the binary gene states, p contains the associated p-values for
each transition, w() is the weighting function (usually defined as
-log10(p)) and d is the vector of observed gene state differences
being: 1 for over-expressed genes, -1 for under-expressed genes
and 0 for genes that do not change at a given i → i + 1 transi-
tion. Thus, the expression above aims to minimize the differences
between the observed gene expression changes and the ones pre-
dicted by the model.

Metabolomic data have also been integrated into CBM [66, 99, 100].
Metabolomics are typically integrated into GEM reconstruction analy-
ses as a set of capacity constraints that limit the flux through a given
reaction/s. To this aim, metabolomic data from experiments using
isotopically labeled subtrates or absolute quantification from label-free
experiments can be used [28]. Nevertheless, the second version of
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Gimme algorithm [66], allows the use of non-quantitative metabolomics
data only for ensure that the detected species are used in the calcu-
lated network operating states as it creates condition-specific models.
Therefore, the inclusion of non-quantitave metabolomics combining
different conditions simultaneously into CBM still remains challenging.
Moreover, only transcriptomics data as a gene-centric information have
been widely utilized to built constraints. However, other gene-centric
omic data, such as histone modifications or chromatin accessibility,
have been found to be linked to cellular metabolism [101–106]. Con-
sequently, the adaptation of current model-driven methodology frame-
work to these omics data and specially their integrative analysis, remain
uncovered by existing CBM approaches.
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2.1 Motivation

The work in this thesis is framed within a research project fully funded
by Generalitat Valenciana via PROMETEO plan, from 2017 to 2020.
The project was entitled The new system biology: development of
statistical methods for multiomic system biology, and it was coordi-
nated between different research groups in Valencia (Spain): Genomic
of Gene Expression Lab from Príncipe Felipe Research Center (CIPF),
Gene Expression and RNA metabolism Lab from Biomedical Institute of
Valencia (IBV) and Multivariate Statistical Engineering Group (GIEM)
from the Technical University of Valencia (UPV). This research project
combined both multiomic data generation and multiomic data analysis.

In the Introduction section we have reviewed the different omic tech-
nologies and the currently available methods and approaches to com-
bine them in multiomic analyses. Particularly, data-driven correlation-
based methods have been vastly used to address multiomic integration
thus far. Dimension-reduction-based approaches have been particularly
exploited for such purpose [107]. These methods, such as Partial Least
Squares regression (PLS) [75] and derivatives, are really useful to ex-
tract global patterns from data and to find bulk relationships between
features among the different omic data types considered [65]. Many
methods have been formulated to address different biological ques-
tions, including, but not limited to, outcome prediction [65, 108], vari-
able selection [108, 109] and regulatory network inference [110]. How-
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ever, data-driven correlation-based methodologies have insurmountable
caveats. Since correlation does not always mean causation, sometimes
these multivariate approaches can lead us to the wrong interpretation
of the system. These approaches also typically need a huge amount
of data to successfully provide both meaningful and significant results.
Those are the reasons why model-driven constraint-based approaches
have also been explored for multiomic integrative analysis. In these
approaches, prior biological knowledge is required, which is mostly the
metabolic network model of the studied organism. Existing method-
ologies in this context are extensions/adaptations of the Flux Balance
Analysis (FBA) [95, 96, 98]. However, only gene expression data have
been successfully integrated for the dynamic modeling of a system and
hence there is a window of opportunity to develop novel strategies
that integrates other omic data types. Therefore, there is space for
formulating novel approaches that extent the use of different types of
gene-centric omic data beyond transcriptomics. Moreover, the simulta-
neous modeling of different conditions that characterize the metabolic
network at different states, remains challenging.

Regarding data pre-processing steps, there has not been much effort in
the development of suitable multiomic data harmonization methods.
Particularly, batch effect is known to affect omic data. This is due
to the fact that obtaining data for all the cellular layers requires sev-
eral experimental technologies that are barely easily and simultaneously
accessible in many research groups as omic data generation is costly.
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As a matter of fact, research groups very often use data from pub-
lic repositories, e.g. GEO, in order to combine those public datasets
with their own information. Unfortunately, when combining different
sources, data will almost unavoidably be affected by an unwanted noise
effect. This unwanted source of variation is commonly known as batch
effect. While single omic-wise batch effect correction is really straight-
forward, in multiomic analysis designs, batch effect correction has not
been properly addressed thus far. Different omics can be corrected
separately but only if they have been measured across all the batches.
In the multiomic scenario, each omic modality may be measured by a
different lab or at a different moment in time, and so it is obtained
within a different batch. When this is the case, the batch effect will be
confounded with the omic type effect and impossible to remove from
the data.

In order to surmount these challenges concerning multiomic integra-
tion, there is a need of tools for removing batch effects on a multiomic
scenario and for integrating mutiomic data to track biological signals
across the different molecular layers to gain an in-depth comprehensive
understanding of the cellular system. The development and application
of such mathematical, statistical and computational methods are the
basis of the objectives for this thesis.
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2.2 Objectives of this thesis

The general aim of the PROMETEO project, in which this thesis is
framed, was to develop statistical methods for the system biology that
integrate multiomic data and can lead to novel hypothesis about bi-
ological processes at different layers of cellular organization. In order
to accomplish that general goal, this project is divided in four different
secondary objectives:

• Objective 1: To develop specific preprocessing pipelines
for each omic data type. Three different omic data types were
generated within PROMETEO project: ChIP-seq of the histone
mark H4 Acetylated (H4ac), RNA-seq and metabolomics. Specific
aims were:

– Perform quality control and normalization on the different
omic data.

– Assess technical validation and biological reproducibility of the
different omic data.

– Perform omic-wise data analysis including differential feature
expression/quantification and functional enrichment.

• Objective 2: To develop a batch effect correction algorithm
for multiomic integration strategies.

Specific aims were:
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– Study the existing batch effect correction methods.

– Analyze boundaries of batch effect magnitudes in real data.

– Formulate a batch effect correction alternative that handles
multiomic batch effect.

– Simulate different multiomic batch effect scenarios to validate
and test the limitations of our model.

– Create an open source R package implementing the new ap-
proach.

• Objective 3: To develop novel multiomic integration ap-
proaches.

Specific aims were:

– Revision of the state of the art of model-driven multiomic
integration and identify flaws of existing methodologies.

– Develop novel Constraint Based Modeling (CBM) approach
that integrates semi-quantitative metabolomic data and other
gene-regulatory omic data.

– Perform technical and biological validation of the new ap-
proach.

– Use the new method to derive novel biological insights about
the experimental setting under study.
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2.3 Contributions

I arrived at Genomics of Gene Expression Lab in 2017 to work on the
PROMETEO research project focused on multiomic integration anal-
ysis. One of my first tasks was to study, define and test processing
pipelines for the different omic data types that were going to be gen-
erated under PROMETEO. Since internal project data were not gener-
ated at the beginning of the project, I used public data for this purpose
and during this process, I came across an important issue involving the
combination of omic data from different sources, which is the batch
effect. Therefore, I studied the existing BECAs and found that there
were not available methods for multiomic data batch effect correction
when different omic data types come from different sources. This ob-
servation led to the development of MultiBaC method that would be
published later [111] and coded into an R package [112], and will be
presented in Chapter 3. This piece of work has been also presented at
several national and international conferences at different states of de-
velopment. At Mini-Arctic conference (November, 2017) I presented
the method and the first validation steps. One year later, at Sym-
posium on Bioinformatics (November, 2018) full method validation
and its application to real data were exposed. Lastly, at ISMB/ECCB
congress (July, 2019) MultiBaC R package was introduced.

When PROMETEO data were generated, previously defined and tested
pipelines were utilized to process these data [113] which is explained
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in Chapter 4. To analyze our internal data in an integrative manner,
I did a research stay at Quantitative Modelling of Cell Metabolism
Lab (Danish Technical University) where I studied Contrainst Based
Modelling (CBM) and collaborated to develop MAMBA method which
is presented in Chapter 5. MAMBA was used to analyze our internal
multiomic dataset and extract biological knowledge from them.

Moreover, during MultiBaC development I delved into multivariate sta-
tistical methodologies and their application to omic data, and attended
to “Multivariate Process Analysis, Monitoring and Diagnosis” (MAMD)
course that was part of the Master’s Degree in Data Analysis, Process
Improvement and Decision Support Engineering (Universitat Politèc-
tica de València). As a result I collaborated in one publication [103] -
advising in the application and interpretation of three-way PLS-, and
taught multivariate methods at MIAGE course (2018). In addition to
MAMD, I also attended a “Data Mining” course as part of the same
Master’s degree program and other courses to improve my skills as a
scientist: i) Research dissemination strategies for researchers, ii) High
standard for scientific production and communication, and iii) Docu-
ment composition and high-quality presentations with LATEX.

2.3.1 Articles in peer-reviewed journals

1 Víctor Sánchez-Gaya, Salvador Casaní-Galdón, Manuel Ugidos,
Zheng Kuang, Jane Mellor, Ana Conesa and Sonia Tarazona. Elu-
cidating the Role of Chromatin State and Transcription Factors
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on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic
Integrative Approach. Frontiers in Genetics, 9:578, 2018.

2 Manuel Ugidos, Sonia Tarazona, José M. Prats-Montalbán, Al-
berto Ferrer and Ana Conesa. MultiBaC: a strategy to remove
batch effects between different omic data types. Statistical Meth-
ods in Medical Research, 2020.

3 Carme Nuño-Cabanes, Manuel Ugidos, Sonia Tarazona, Manuel
Martín-Expósito, Alberto Ferrer, Susana Rodríguez-Navarro and
Ana Conesa. A multi-omics dataset of heat-shock response in the
yeast RNA binding protein Mip6. Scientific Data, 7:69, 2020.

4 Manuel Ugidos, María J. Nueda, José M. Prats-Montalbán, Al-
berto Ferrer, Ana Conesa and Sonia Tarazona. MultiBaC: an
R package to remove batch effects in multi-omic experiments.
Bioinformatics, btac132, 2022.

5 Manuel Ugidos, Igor Marín de Mas, Sonia Tarazona, Carme Nuño-
Cabanes, Alberto Ferrer, Lars Keld Nielsen, Susana Rodríguez-
Navarro and Ana Conesa. MAMBA: a model-driven, constraint-
based multiomic integration approach. (In preparation).
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2.3.2 Conference contributions

1. Manuel Ugidos, Sonia Tarazona, José M. Prats-Montalbán, Al-
berto Ferrer and Ana Conesa. MultiBaC: a strategy to remove
batch effects between different omic data types. Mini Arctic Con-
ference, Valencia, Spain, 2017.

2. Manuel Ugidos, Sonia Tarazona, José M. Prats-Montalbán, Al-
berto Ferrer and Ana Conesa. MultiBaC: a strategy to remove
batch effects between different omic data types. Jornadas de
Bioinformática, Granada, Spain, 2018.

3. Manuel Ugidos, Sonia Tarazona, José M. Prats-Montalbán, Al-
berto Ferrer and Ana Conesa. MultiBaC: a strategy to remove
batch effects between different omic data types. 27th Confer-
ence on Intelligent Systems for Molecular Biology and the 18th
European Conference on Computational Biology (ISMB/ECCB),
Basel, Switzerland, 2019.

2.3.3 Software

1. MultiBaC R package. Available at https://bioconductor.org /pack-
ages/MultiBaC

2. MAMBA toolbox for matlab. Built in Python (10%) and MAT-
LAB (90%). Available at https://github.com/ConesaLab/MAMBA
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2.3.4 Teaching

1. MIAGE 2018 edition. Multiomic Integrative Analysis of Gene Ex-
pression (Centro de Investigación Príncipe Felipe, Valencia).
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Understanding and removing
batch effects on a multiomic

scenario

[1] Ugidos M, Tarazona S, Prats-Montalbán JM, Ferrer A, Conesa A.
MultiBaC: A strategy to remove batch effects between different omic
data types. Stat Methods Med Res. 2020 Oct;29(10):2851-2864.

[2] Ugidos M, Prats-Montalbán JM, Ferrer A, Conesa A, Tarazona
S. MultiBaC: an R package to remove batch effects in multi-omic
experiments. Bioinformatics, btac132, 2022.
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3.1 Introduction

Over the last decade, high-throughput omic technologies such as tran-
scriptomics, metabolomics, proteomics or epigenomics have become
routine assays in many biological research laboratories. Increasingly,
combinations of these methods are proposed to address complex ques-
tions about the molecular regulation of genomes and the physiology of
cellular systems. As different omic assays target different biomolecules
or chemical modifications, the combined study of these various molec-
ular layers has the potential to provide insights into the complex reg-
ulatory networks that operate in living cells. However, simultaneously
generating multiple omic measurements of the same molecular system
for one particular study might be difficult. Challenges arise due to bud-
getary restrictions, time and sample limitations, or simply because of
the convenience of a sequential analysis of the data in order to make
informed decisions for follow up experiments. At the same time, re-
searchers are no longer restricted to their own experimental capacities
in order to obtain multiomic information, as facilities offer these assays
on a commercial basis. Widespread editorial policies requiring omic
data deposition in public repositories before publication of results have
created a wealth of molecular data available to researchers for reuse.
As a consequence, scientists have the opportunity to combine com-
patible data generated in other labs to compose a suitable multiomic
dataset without the need of repeating experiments already performed
by somebody else. Unfortunately, combining data obtained by dif-
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ferent people and/or at different moments in time has an important
drawback. Data will almost unavoidably be affected by an unwanted
effect associated to the experimentation event that, especially for high
throughput molecular assays, may result in important levels of noise
contaminating the biological signal. This unwanted source of variation
is commonly known as batch effect and is very frequently seen as the
first component of variability in the omic dataset, standing out over
the experimental conditions under study.

Batch effects significantly impair the power of statistical algorithms to
detect significant true effects as they increase measurement errors and
data variability. Removing batch effects becomes then necessary in
order to obtain meaningful results from statistical analyses [52, 114].
Provided that the omic experiment has been designed in such a way
that batch effects are not confounded with the effects of interest (e.g.
treatment, disease, cell type, etc.), the so-called Batch Effect Correc-
tion Algorithms (BECAs) can be used to remove, or at least mitigate,
systematic biases. Therefore these methods are extremely useful to
combine data from different laboratories or measured at different times.

Several BECAs for omic data have been proposed. Limma [53] applies
linear models while the ComBat method [115] from sva R package [116]
estimates batch effects as the sum of an additive and a multiplicative
effect with an empirical Bayes approach. RUV [117] estimates the
unwanted variation from negative control genes that are known a priori
to be unaffected by the biological factor of interest. We proposed
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the ARSyN approach [54], that relies on the ANOVA-Simultaneous
Components Analysis (ASCA) framework [118, 119] to decompose the
omic signal into experimental effects, the batch effect and residuals.
ARSyN applies Principal Component Analysis (PCA) to estimate the
systematic variation due to batch effect and then removes it from the
original data. More recent research includes the commercial software
Partek Genomic Suite; the ber R package [120], which assumes a model
similar to ComBat; the exploBATCH [121] and guided PCA (gPCA)
[122] R packages, both based on the study of the latent subspace to
estimate the batch effect, as ARSyN does; and the BatchI R package
[123], which removes batch effects of unknown sources using dynamic
programming.

These methods have been traditionally applied to remove batch effects
from omic data of the same type, as for example gene expression, and
have been instrumental for the combination of data from the public
domain into meta-analyses to reveal novel biological insights that can-
not be discovered with small sample sizes [124–128]. However, while
removing batch effects from a single omic data type with an appro-
priate experimental design is relatively straightforward, it can become
unapproachable when dealing with multiomic datasets. In the multi-
omic scenario, each omic modality may be measured by a different lab
or at a different moment in time, and so it is obtained within a different
batch. When this is the case, the batch effect will be confounded with
the omic type effect and impossible to remove from the data.
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In this chapter, most popular single-omic BECAs are tested and com-
pared. Moreover, MultiBaC method is presented, which is the first
BECA dealing with batch effect correction in multiomic datasets. Multi-
BaC is able to remove batch effects across different omics generated
within separate batches provided that at least one common omic data
type is included in all the batches considered. Although this may seem
a strong requirement, in practice there are many studies that include
at least gene expression or popular histone marks as part of their mul-
tiomic design and hence provide opportunities for data combination
across omic modalities. For example, stress response in yeast has been
studied at the transcriptional rate [129–131], translational rate [132]
and RNA-binding of global proteins [133], in three different studies that
also included RNA-seq profiling. A method that corrects batch effects
across omics will allow for the integration of these data in one single
analysis that jointly evaluates different layers of transcriptional regula-
tion by leveraging public resources and without the need of generating
additional data. MultiBaC is effective in removing batch effects with-
out introducing additional biases and outperforms adaptation of exist-
ing strategies to the multiomic batch problem. MultiBaC is therefore
an effective tool to reuse existing datasets to perform meta-analysis
across omics technologies.
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3.2 Data

3.2.1 A yeast multiomic dataset obtained at different
laboratories

We collected data from Gene Expression Omnibus (GEO) database per-
taining to three different studies that analyzed the effects of glucose
starvation in yeast. These studies used equivalent yeast strains and
experimental conditions, but differed in the types of omic technologies
profiled. Study A (Department of Biochemistry and Molecular Biology,
Universitat de València) collected gene expression (RNA, with acces-
sion number GSE11521) and transcription rates (GRO, with accession
number GSE1002) [129–131]. Study B (Department of Molecular and
Cellular Biology, Harvard University) obtained gene expression (RNA)
and translation rates (RIBO), with accession number GSE56622 [132].
Finally, Study C (Department of Biology, Johns Hopkins University)
measured gene expression (RNA) and global PAR-CLIP data (gPAR-
CLIP) with accession number GSE43747 [133]. Therefore, labs had
one shared (RNA) and one distinct (GRO, RIBO and PAR-CLIP, re-
spectively) data types. This distributed multiomic scenario represents
the type of correction problem MultiBaC addresses. RNA-seq pro-
cessed data from studies B and C studies were obtained from the GEO
database and used without any further pre-processing since no techni-
cal biases were found using NOISeq package [51].
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However the voom transformation from limma R package [53] was
required to make data normally distributed as in study A. GRO-seq data
from study B followed the same steps as gene expression data, including
the voom transformation. For gPAR-CLIP data, genomic region-based
quantification was downloaded and the translation to gene-based data
was performed to analyze both data types with the same PCA model.
To link regions with their closest genes we used RGmatch [134] with
default parameters. We considered associations in which regions felt
into the gene body or 100 bases upstream the transcription start site.
Finally, the voom transformation was again applied. In contrast, raw
data was downloaded for the study A and normalized as described in
the original publications (code provided at Appendix 2). Briefly, this
normalization procedure consists of using a genomic DNA hybridization
signal (also available at the same GEO accession number) to correct
the intensity of the mRNA and GRO hybridization. When all datasets
were independently normalized (if required), a final TMM (Trimmed
Mean of M values) normalization [35] using NOISeq R package was
applied to make all samples have the same dynamic range.

3.2.2 Proof of concept data

We validated MultiBaC on two multiomic datasets that shared all omics
modalities (GEO accession numbers GSE24488 [135] and GSE33136
[136]). In both GEO studies transcription rates and gene expression
data were available and the experimental conditions compared were
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room temperature versus heat-shock stress in yeast. We denote these
datasets “proof of concept” data because both omic data types are
available from both studies and, hence, traditional BECAs for a single
omic can be applied and compared to MultiBaC correction. Each of
the two laboratories considered applied a different technology to ob-
tain omic measurements: study 1 (GSE24488) used microarrays while
study 2 (GSE33136) used sequencing techniques. Data from study 1
share the source with study A in the first section, thus the previously
described pre-processing steps were performed. On the other hand,
data available for study 2 at GEO were not suitable for our analysis.
Hence, we downloaded the fastq files of the study (RNA-seq and GRO-
seq files) and performed the complete pipeline from single-end reads
to counts. First, mapping was done with TopHat2 [137] and the sac-
Cer3 reference genome obtained from the University of California Santa
Cruz (https://genome.ucsc.edu). Next, HTSEQ [34] with default pa-
rameters was used to obtain the gene counts. Once the gene counts
were obtained, the quality control of NOISeq R package [51] detected
library size and RNA composition biases that were corrected using the
tmm function in this package. Finally, the voom transformation from
limma R package [53] was applied on both data types. Again, once all
datasets were independently normalized, a final TMM normalization
using NOISeq R package [51] was applied to make all samples have
the same dynamic range.
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Figure 3.1: Scheme of MultiBaC testing and validation with simulated data [112].

3.2.3 Simulated data

A synthetic multiomic dataset was created that reproduces the scenario
described in the yeast example. Figure 3.1 shows an overview of the
whole process for MultiBaC testing and validation with simulated data.

A) We generated batch-free omic data with MOSim [138], a simu-
lation tool that generates different omic data types together with the
regulatory network between omic features, although we did not use this
last information, but just the omic datasets. The data obtained with
MOSim had the experimental design shown in Figure 3.1, i.e., a com-
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mon omic with 2x observations and two additional non-common omics
with 1x observations. We considered two conditions and 10 replicates
per condition which results in 20 observations for each batch (1x =
20). Moreover, the number of features (gene-centric information) was
the same for every omic data type and was set to five thousand.

B) We had to simulate the batch effect to get a design with two
different laboratories, as in Figure 3.1. For that, we studied the batch
effect behavior in the real datasets presented in this work (see Section
3.2.1 and 3.2.2) to know more about its magnitude and how to simulate
it. The following multiple linear model was estimated to assess the
dependence between the common data X, containing K variables in
columns and M samples in rows, and the batch and treatment factors:

X = 1x̄t +Bβ1 +Tβ2 +BTβ3 + E = 1x̄t +CD+ E (3.1)

where 1 is a M size vector of ones, x̄t is the K size vector of means for
all the omic features, B is the batch design matrix with M rows and
as many columns as the number of batches minus one (J), T is the
treatment design matrix with dimensions M x N , being N the num-
ber of experimental conditions minus one, and BT is the interaction
matrix of batch and treatment effects with dimensions M x N . . . J .
X is the matrix that concatenates X1 and X2 by rows (observations)
and omic features being in columns and E the M x K matrix of resid-
uals. βi coefficients were estimated by the least squares approach:
Ĉ = (DtD)−1DtX, where Ĉ is the matrix with the estimated coeffi-
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Figure 3.2: β1 and β3 distributions from batch effect estimation using mRNA expression data
from Proof of concept Dataset .

cients (β̂1, β̂2 and β̂3) and D is the design matrix containing B, T and
BT dummy variables. Thus, β̂1 and β̂3 vectors contain the batch effect
information, that is, the magnitudes of the batch and batch-treatment
interaction effects. As shown in Figure 3.2, we can assume a normal
distribution with µ = 0 for β1 and β3. We also verified this assump-
tion with a Shapiro-Wilk test [139, 140] (p-value > 0.1 in both cases).
Therefore, we can simulate batch effects from a normal distribution
(βi ∼ N(0, sd)). The standard deviation sd will determine the magni-
tude of the effect. Table 3.1 shows the values for standard deviation
of β1 and β3 in three real datasets. It was different in each case but
always higher for batch (β1) than for interaction (β3) effect.

C) Once the normal distribution was assumed for β1 and β3 coefficients,
we used this information to generate β∗

1 and β∗
3 values for each omic

feature and used them to simulate batch effects as follows:

XBatch = X+Bβ∗
1 +BTβ∗

3 (3.2)
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Table 3.1: Batch/interaction effect simulation: Standard deviation values for β1 (batch) and
β3 (interaction). Effect is referring to batch/interaction effect. First row: gene expression data
from Lab A and Lab B (“A motivating example” data). Second row: gene expression data from
Lab B and Lab C (“A motivating example” data). Third row: gene expression data from “Proof
of concept data”. Fourth row: transcription rates from “Proof of concept data”

Mean SD

GSE11521 and GSE566 (gene expression)
β1 0 1.11
β3 0 0.57

GSE566 and GSE43747 (gene expression)
β1 0 1.01
β3 0 0.25

GSE33136 and GSE24488 (gene expression)
β1 0 1.27
β3 0 0.39

GSE33136 and GSE24488 (transcription rates)
β1 0 1.5
β3 0 0.43

where XBatch is the resulting matrix containing the simulated batch
effect, and β∗

1 and β∗
3 are the simulated values for the coefficients

randomly taken from a normal distribution with mean equal to zero and
different standard deviation values as indicated in Figure 3.3. In total,
sixteen different scenarios were simulated by modifying batch and/or
interaction effect magnitudes. We distinguish three magnitude levels:
low, moderate and high, being magnitudes low and moderate present
in real experimental data. Regarding the batch effect magnitudes, sd
values are considered low, moderate or high as follows: 0.5 is low, 1.0
and 1.5 are moderate and 2.0 is high. As for the interaction magnitude,
0.2 is considered as a low magnitude, 0.4 as a moderate magnitude and
0.8 as high.
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Figure 3.3: Standard deviations for batch effect and interaction simulated distributions. Sixteen
different scenarios are generated .

D) Finally, the simulated data with batch effect are corrected to remove
this effect and then compared with the batch-free simulated data to
evaluate the performance of MultiBaC (or other methods).

3.3 BECAs usage: estimating the batch effect

As it will be explained later on, MultiBaC requires the use of a tra-
ditional BECA in its last step, so one of the previously mentioned
algorithms had to be adapted and implemented to work together with
MultiBaC. Three of the most common BECAs were compared: limma
[53], ComBat [116, 141] and ARSyN [54]
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3.3.1 Methodology behind BECAs

3.3.1.1 Limma

Limma method [53] uses linear models to estimate batch effect. Being
yijk the information from gene y in batch i ,sample j and condition k,
it can be expressed as follows:

yijk = µ+ αi + γk + ϵijk (3.3)

where µ is the mean of gene y across all samples, α is the batch effect
and γ is the treatment or condition effect. Translating this idea to
a linear model expression, limma function computes batch effect by
estimating β coefficients from the expression bellow:

y = β0 + β1 ·Batch+ β2 · Treatment+ ϵ (3.4)

In this case batch effect (α) has been translated to β1 · Batch where
batch is a dummy variable defining batch groups for samples. Similarly,
γ has been substituted by β2 · Treatment. The inclusion of treatment
effect in the model is not mandatory. The way limma corrects batch is
subtracting its effect from original gene value following this formula:

y∗ = y − β1 ·Batch (3.5)

Note that the correction value β1 ·Batch is common for all samples in
the same batch.
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3.3.1.2 ComBat

ComBat method from sva R package [116] described in W. Evan John-
son et al. 2007 [141] uses an empirical Bayes approach to estimate
batch effect. For ComBat model, let Yijg be the expression value for
gene g in sample j and batch i. The following model is defined:

Yijg = αg +Xβg + γig + δigϵijg (3.6)

where αg is the overall gene expression, X is a design matrix for treat-
ments, and βg is the vector of regression coefficients corresponding to
X. The error terms, ϵijg, can be assumed to follow a normal distribu-
tion. The γig and δig represent the additive and multiplicative batch
effects of batch i for gene g, respectively. The batch-effect corrected
data, Y ∗

ijg, is given by

Y ∗
ijg = α̂g +Xβ̂g +

Yijg − α̂g −Xβ̂g − γ̂ig

δ̂ig
(3.7)

where α̂g, β̂g, γ̂ig and δ̂ig are estimators (using empirical Bayes proce-
dures) of αg, βg, γig and δig ,respectively.

3.3.1.3 ARSyN method

ARSyN (ASCA Removal of Systematic Noise) was presented by Nueda
et al. [54] and is a batch effect correction approach that relies on the
ANOVA-Simultaneous Component Analysis (ASCA) framework. Let
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xijr be the gene expression of gene x, measured at treatment i, under
batch j and for replicate r, which can be decomposed as in any ANOVA
model as:

xijr = µ+ αi + βj + (αβ)ij + (αβγ)ijr (3.8)

where µ is an offset term, αi the treatment effect, βj the batch effect,
(αβ)ij the interaction effect between batch and treatment, and (αβγ)ijr

the individual variation (residuals). If our omic data matrix X contains
N genes in columns and M samples in rows, the previous equation can
be expressed using matrix notation as:

X = 1mt +Xa +Xb +Xab +Xabg (3.9)

where 1 is a M size vector of ones, m is an N size vector containing
the estimations of µ for each gene, matrices Xa, Xb and Xab contain
the estimations of parameters αi, βj and (αβ)ij respectively, and Xabg

contains the residuals (αβγ)ijr. Once this ANOVA-like decomposition
is obtained, a PCA is applied on each submatrix and the number of
principal components is determined for each case based on the required
level of explained variability (see details at Appendix 3). The resulting
ASCA model is:

X = 1mt+

Xa︷ ︸︸ ︷
TaP

t
a + Ea+

Xb︷ ︸︸ ︷
TbP

t
b + Eb+

Xab︷ ︸︸ ︷
TabP

t
ab + Eab+

Xabg︷ ︸︸ ︷
TabgP

t
abg + Eabg

(3.10)
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where Ti and Pi are the scores and loadings matrices from the PCA on
each matrix Xi, respectively; and Ei represents the residuals of PCA
models. After estimating the effects with ASCA, ARSyN corrects the
batch effect by subtracting undesirable effects from the original data
according to the following equation:

X∗ = X−

Batch and interaction effects︷ ︸︸ ︷
(TbP

t
b +TabP

t
ab) (3.11)

where X∗ is the corrected matrix without batch or interaction batch-
treatment effects. Batch effect correction can be also performed with-
out the interaction term.

3.3.2 Comparison of BECAs’ performance

In order to compare these three BECAs, the gene expression informa-
tion described in Section 3.2.3 was used since these traditional BECAs
are only able to perform a single omic batch effect correction. Figure
3.4 shows the comparison of different BECAs’ performance including
the original non-corrected data. Althought Limma uses linear mod-
els, it does not take advantage of the interaction between batch and
condition and the correction is not found to be as good as ARSyN or
ComBat are. Nevertheless, linear models can be customized to include
an interaction effect. However, there is an important concern about
batch effect removal when including interactions bewteen the batch
and other factors, which is the model overfitting. This issue could
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modify original omic values and even affect the biological signal of in-
terest. Thus, the possibility to customize the model and the magnitude
of the effect to be extracted from original data, is strongly desirable
and that is exactly what ARSyN does. The highest performance of AR-
SyN, including the estimation of the batch effect and its interactions,
is the most powerful method to correct the batch effect as shown in
Figure 3.4.

Figure 3.4: Comparison of BECAs’ performance on “proof of concept” data by PCA score plots.
(a) Original non-corrected data. (b) Batch effect correction using limma (linear models). (c)
Batch effect correction using ComBat. (d) Batch effect correction using ARSyN. Gray dashed
lines circle samples that should be clustered together since they belong to the same experimental
condition .
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Moreover, ARSyN allows a complete customization of the magnitudes
of the effects removed by modifying the PCA models in Equation 3.10.
In contrast, even though ComBat is a powerfull and very popular
BECA, customizing the model performance is not an easy task and
the interpretation of the resulting parameters is confusing compared to
ARSyN or linear models.

While it should be acknowledge that, although by considering an inter-
action effect in ARSyN the biological signal may be diluted, the method
does not impose a condition term, and instead, the model can be com-
pletely customized to accomodate any experimental design. Therefore,
ARSyN method is the most versatile and powerful approach and those
are the reasons why we implemented ARSyN inside MultiBaC method.

3.4 BECAs for multiomic data

3.4.1 MultiBaC: A multiomic batch effect correction
strategy

MultiBaC (Multiomic Batch Correction) method was conceived to
correct batch effects across different omic data types provided that
at least one omic modality is repeated in all the batches. In the for-
mulation of the MultiBac method we consider that batch effect arises
from different labs generating data, although the method is generally
applicable to any other batch sources such as time or lab technician.
Let us consider a minimal size problem example with two labs, each
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one of them measuring two different omic data types, one of them in
common (Figure 3.5.a). We denote X1 as the common data type from
lab 1, X2 as the common data type from lab 2, K1 as the non-common
data type from lab 1 and Z2 as the non-common data type from lab
2. One important feature of MultiBaC is that the different omics stud-
ied in each lab do not have to share the variable space. This allows
to combine gene-related omics (e.g. RNA-seq) with other technologies
such as proteomics or metabolomics. However, MultiBaC requires that
the same samples are measured for the different omic technologies ob-
tained within the same batch. MultiBaC also assumes that each omic
data matrix (X1, X2, K1, Z2) has been independently normalized to
remove technical biases. We also recommend to transform sequencing
count data to make them approximately follow a normal distribution
(e.g. with log or voom transformations).

MultiBaC assumes that there exists a relationship between two differ-
ent omic data types that does not depend on the laboratory. Basically,
MultiBaC applies a multivariate PLS regression [75] to model the non-
common omic data matrix as a function of the common omic measure-
ments. The models are then used to predict the missing measurements
what results in complete multiomic datasets in all laboratories. Next,
traditional BECA methods are applied to correct the batch effect from
the original matrices. MultiBaC proceeds through three steps (Figure
3.5.b):
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In the Modelling step, PLS models are built for each lab, where the
common omic data type is used as the explanatory matrix X and the
non-common omic is used as the response matrix Y. The PLS model
can be expressed as Y = XB+E, where B is the regression coefficient
matrix and E is the residuals matrix. B can be estimated as:

B = W∗Ct = W(PtW)−1Ct (3.12)

where W is the X-weight matrix, P is the X-loading matrix and C is
the Y-weight matrix.

Therefore, considering a PLS model for each lab, for our minimal size
problem, we will have the following PLS models:

PLS1 : K1 = X1B1 + E1 (3.13)

PLS2 : Z2 = X2B2 + E2 (3.14)

Q2-based cross-validation (CV) optimization, proposed by Tenenhaus
[142], is applied to select the optimal number of components for the
PLS models, since Q2 measures the marginal contribution of each com-
ponent to the predictive power of the model. A good Q2 value > 0.7 is
required to ensure that the model has a good prediction performance
and can be used to infer the missing data modality. In the Prediction
step, MultiBaC will estimate the missing omic data type for each lab
by using the previously obtained PLS coefficient matrices:
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Ẑ1 = X1B2 (3.15)

K̂2 = X2B1 (3.16)

Note that, for predicting Ẑ1, the coefficient matrix relating X2 and Z2

is used, that is, B2. And the procedure is analogous for K̂2. Remember
that we aim to predict the omic information that was not initially
available for each lab. This will allow us to remove the batch effect on
non-common information with traditional methods using the original
and the predicted information, i.e., K1 and K̂2 for instance.

Finally, in the Correction step MultiBaC applies ARSyN to remove
batch effect from every omic data type. Available data are used for
the common omic, while predicted data must be used for the rest of
omics.

X∗ = ARSyN(X1, X2) (3.17)

K∗ = ARSyN(K1, K̂2) (3.18)

Z∗ = ARSyN(Ẑ1, Z2) (3.19)

where ∗ means corrected matrix. Typically, we will discard now the
predicted and corrected omic matrices K̂∗

2 and Ẑ∗
1, and use the original

and corrected matrices, K∗
1 and Z∗

2, for further statistical analyses.

75



Chapter 3. Understanding and removing batch effects on a multiomic scenario

(a)

(b)

Figure 3.5: Description of MultiBaC method to correct batch effects in multiomic data from
different laboratories. (a) Minimal size problem example in which one omic data type is shared
by both laboratories and each laboratory may have other omic data types in an exclusive manner.
(b) Overview of MultiBaC strategy, which combines PLS regression with conventional ARSyN
batch effect correction. 1: A PLS model is built per laboratory to explain the non-common omic
with the shared one. 2: For each laboratory, the initially missing omic is predicted. 3: ARSyN
correction is applied on each omic data type by using predicted data .

3.4.2 Other multiomic batch effect correction
approaches

In addition to MultiBaC strategy, we also adapted two other exist-
ing and conceptually different methodologies that theoretically could
be applicable for solving the multiomic batch effect problem. These
strategies were compared with the MultiBaC method.
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3.4.2.1 Missing data imputation strategy:

In this approach, the values for the non-common omic data types are
considered missing values for the laboratories where these omic data
types are not available. Imputation of missing values is carried on with
the multivariate method Trimmed Scores Regression (TSR) [143, 144],
and then a BECA is applied (e.g. ARSyN). TSR models the structure
in Figure 3.6.a containing missing values (NA) as a unique matrix (X):

X = [XNAX∗] (3.20)

where XNA denotes the missing measurements and X∗ the observed
elements. TSR employs the latent space of the whole matrix, T =

XP = XNAPNA + X∗P∗, to impute missing data according to the
relation between observed variables in each batch by using the common
information as an inner reference, i.e, it reconstructs T from T∗ using
the model: T = T∗B+U, where the least squares estimator of matrix
B is B̂ = (T∗tT∗)−1T∗tT.

3.4.2.2 Product transfer model:

The Joint-Y PLS (JY-PLS) methodology presented by García Muñoz
et al. [145] is based on PLS regression and assumes that both PLS
response matrices (X1 and X2 in Figure 3.6.b) share the same latent
structure. Note that response matrices in this model are X1 and X2
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(a) (b)

Figure 3.6: Outline of alternative methods for multiomic batch correction. The matrix notation
used is the same as in Figure 3.5.a. (a) TSR: After TSR, a traditional BECA (e.g. ARSyN)
can be applied. (b) JY-PLS: Wi, Pi and Ti are weights, loadings and scores of K1 and Z2

matrices, respectively. Ui are the scores for X matrices. Qt is the matrix of common weights of
X matrices. X∗ is used in the JY-PLS inversion step to obtain K∗

1 and Z∗
2 .

(the common data type). Basically, JY-PLS builds a PLS model be-
tween K1 and X1 and another PLS model between Z2 and X2 by
forcing X1 and X2 to share the same weight matrix (Qt), i.e the same
latent space. The ARSyN batch effect corrected common data type
(X∗) is used for the JY-PLS inversion step in order to obtain K∗

1 and
Z∗
2, that is, the non-common batch effect corrected matrices. In brief,

the inversion step tries to transfer a new set of responses which are the
corrected data (e.g X∗

1), in order to obtain which observations of the
non-common omic could be in agreement with that set of responses
(i.e K∗

1).
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3.5 MultiBaC validation

3.5.1 Validation of MultiBaC PLS models

Since MultiBaC uses PLS to model the relationships between omic
datasets, the validation of the PLS model is critical to ensure a good
MultiBaC performance. We investigated the influence of PLS predic-
tion accuracy, determined by the Q2 value, on MultiBaC performance
using our simulated dataset. In this analysis, MultiBaC performance
was evaluated using the conservation of differential expression calls.
Assuming that batch effects impair combination of different experi-
ments but do not affect the inner information structure of one experi-
ment, we consider that differential expression (DE) analysis applied to
individual omic matrices should give the same or very similar results
before and after batch effect correction. In order to assess the con-
cordance of such DE results, we considered the original data as the
true values and the corrected data as the predicted values, and we
used three different scores based on the number of DE genes obtained
from each dataset: Sensitivity (SE), False Discovery Rate (FDR) and
Specificity (SP). FDR measures the false positive rate, i.e. the per-
centage of genes declared as DE after correction but non-DE in the
original matrix. SE assesses the ability to detect, after correction, all
the DE genes obtained from the original data. Finally, SP appraises
the ability to detect, after correction, all the initially non-DE genes.
Differential expression analysis were performed using limma R package
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[53]. (Figure 3.7). We obtained different values of Q2 by adding dif-
ferent magnitudes of random noise to X (explanatory omic type) and
Y (response omic type) matrices, obtaining two new noisy matrices
XN and Y N , respectively (Figure 3.7.a). The relationship between Q2

of the prediction model and MultiBaC performance results is shown
in Figure 3.7.b. We observed that both FDR and SP were hardly im-
pacted by the magnitude of the Q2 value, but the SE was importantly
reduced with lower Q2s, i.e. the power for differential expression anal-
ysis was lower than in the original dataset. This result indicates that,
when the prediction value of the PLS model is reduced, the result-
ing MultiBaC corrected datasets are compromised in their capacity for
preserving their original biological signal, although they do not acquire
false differences between experimental groups. MultiBaC returns Q2

of the PLS model and we recommend that the method is only applied
when Q2 values are 0.7 and greater.

Another important aspect of PLS validation is the linearity. The inner
relationship between the scores of response and predictor matrices for
each component must be linear. We checked this requirement for
MultiBaC PLS models when applied to experimental data (Figure 3.8
and 3.9) and observed a strong linear relationship in all cases, with
correlation coefficients varying from 0.919 to 0.999.
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(a)

(b)

Figure 3.7: Evaluation of MultiBaC performance for different Q2 values. a) Design scheme
used to create analysis scenarios with different Q2 values. This is done by adding different
magnitudes of random noise to X (explanatory omic type) and Y (response omic type) matrices,
obtaining two new noisy matrices XN and YN, respectively. b) Relationship between MultiBaC
performance (FDR, SE and SP) and Q2 values of the PLS model (first Q2 value was obtained
without adding noise). Results for original (before MultiBaC correction) and corrected (after
MultiBaC correction) matrices are compared. Left Y axis are performance values (dotted lines).
Right Y axis indicates the number of differentially expressed genes (bars) .
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R2 = 0.994
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Figure 3.8: PLS models created from “Proof of concept” datasets. Inner relation between scores
from response (u) and predictor (t) matrices for components 1-3. Red line is the diagonal, i.e.
where t = u .
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Figure 3.9: PLS models created from “Real problem” datasets. Inner relation between scores
from response (u) and predictor (t) matrices for components 1-3. Red line is the diagonal, i.e.
where t = u .
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3.5.2 Multiomic BECAs comparison on simulated data

Simulated datasets (Section 3.2.3) were used to test the performance of
MultiBaC method at removing batch effects and preserving the struc-
ture of the original data. Results of this part are summarized in Figure
3.10.

3.5.2.1 Latent space concordance.

This validation strategy was used to assess the performance of the
methods on simulated data by evaluating if original data (before batch
effect addition) and batch effect-corrected data shared the latent space
in a PCA model. Latent space concordance (R2) measures how well the
variability structure of originally simulated matrices is able to explain
the variability of corrected matrices, and the higher the R2 the better
the concordance. Considering the PCA model formula [X = TPt + E

(Equation 1.2)], R2 represents how well TPt models X matrix, and it is
calculated as: R2 = 1−(SCR/SCT ), where SCR =

∑M
i=1

∑N
j=1 e

2
ij and

SCT =
∑M

i=1

∑N
j=1 x

2
ij (M x N is the dimension of X matrix). We

computed latent structure concordance by estimating a PCA model
with the original data and computing R2 for the corrected data after
projection onto that PCA model Figure 3.10.a. In order to remove
rotation effect differences, which could decrease the R2, the PRO-
CRUSTES algorithm [146, 147] was applied in this step. R2 was high
(> 0.7) and very similar for the three tested methods at all batch mag-
nitudes except for the highest values. Moreover, the intensity of the
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batch-condition interaction had little effect on the R2 values. These
results indicate that tested batch correction methods successfully re-
covered the latent structure of the unbiased data when batch effects
were within limits observed in real datasets.

3.5.2.2 Differential expression analysis.

As described in the previous section, in order to assess the concordance
of DE results between original and corrected data, we considered the
original data as the true values and the corrected data as the predicted
values, and we used three different scores based on the number of
DE genes obtained from each dataset: Sensitivity (SE; Figure 3.10.b),
False Discovery Rate (FDR; Figure 3.10.c) and Specificity (SP; Figure
3.10.d). Differential expression analysis were performed using limma R
package [53].

The performance of the compared methods regarding these three indi-
cators was greatly affected by the magnitude of the interaction effect
between the batch and the experimental condition, while the batch
effect magnitude did not seem to have an important effect. FDR is
lower for MultiBaC than for the other two methods in all cases. In
general, this indicator varies from 0 to 20%, while it reaches more
than 50% in some cases for TSR or JY-PLS. In addition, MultiBaC
FDR was less affected by the effect of the interaction when compared
to the other methods. The increase in false positives caused SP rate
to generally decrease at high interaction magnitudes, but JY-PLS and
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MultiBaC performances were very similar, with scores above 80% in
all cases, including at high interaction levels. Regarding SE results,
MultiBaC was once again the best method, with SE above 95% in all
simulations. This means that MultiBaC recovers all the originally dif-
ferentially expressed genes, regardless the magnitude of the interaction
effect. Altogether we conclude that MultiBaC outperforms compared
methods and results in batch corrected data where no apparent addi-
tional biases have been introduced.

Figure 3.10: Performance of MultiBaC correction. Simulated data results. (a) Latent space
concordance (R2). (b) Sensitivity (SE) (c) False Discovery rate (FDR). (d) Specificity (SP).
Rectangles at the bottom represent the batch (top) and interaction (bottom) magnitudes as
explained in Section 3.2.2 .
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3.5.3 MultiBaC validation using "Proof of Concept"
data

Next, MultiBaC was further validated with proof of concept data, where
the same two omics (gene expression and transcriptional rates) had
been measured by two different laboratories. Consequently, traditional
BECAs can be applied on each omic data type to remove the labora-
tory effect and results can be compared to methods correcting batch
across omics. ARSyN and ComBat were used as BECA methods. For
MultiBaC, JY-PLS and TSR, we assumed that gene expression was the
common omic and transcriptional rates were non-common between
labs. We evaluated these results by comparing PCA plots from the
original and corrected data (Figure 3.11). Matrices with different omic
information were merged by genes to compute PCA. As expected, the
PCA of the original data (Figure 3.11.a) showed a strong effect of the
laboratory, captured by the first principal component (PC). This effect
should be removed if correction was successful. PCA plots showed
that the best batch effect correction is performed by ARSyN (Figure
3.11.b) where batch effect is completely removed form PC 1 and 2,
followed by MultiBaC (Figure 3.11.c), which still maintains a residual
lab separation for GRO in the second PC. This separation is much
larger both for JY-PLS (Figure 3.11.d) and TSR (Figure 3.11.e). In-
terestingly, ComBat (Figure 3.11.f) did not appropriately correct the
batch effects although it performs a omic-wise correction, since labs
are still separated by omics and conditions in the first or second PCs.
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After MultiBaC correction, the strongest effect (first PC) is related to
the experimental condition, similarly to ARSyN correction. The sep-
aration between omic data types (second PC) is due to the fact that
each one of them provides information about different biological as-
pects of the system under study and not to bath effects. Therefore,
this example illustrates that MultiBaC performance on experimental
data is equivalent or superior to established BECAs with the advan-
tage that MultiBaC can be applied when specific omic data types are
not included in all batches.

3.5.4 MultiBaC application to a real problem

Lastly, we applied MultiBaC to the real distributed multiomic dataset,
with three labs having gene expression (RNA) as common omic data
type and a second omic assay as non-common (namely GRO, RIBO
and PAR-CLIP). These data showed a pronounced batch effect (Fig-
ure 3.12.a (left-panel)) that stood out above omic methodology and
experimental condition. MultiBaC was successful at correcting these
biases (Figure 3.12.a (right-panel)). After correction, PCA clustered
samples by omic type rather than by laboratory and, within each tech-
nology, separation of samples from the two experimental conditions
was observed, suggesting that technical noise was removed to reveal
biological information. Since no separation is observed between labs
for the common omic, we now expect that separation between the rest
of omic data types is mostly due to the different biological informa-
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Figure 3.11: Performance of batch effect correction on Proof of concept data. (a) PCA score
plot for original data. First principal component (main source of variability) groups samples
by lab instead of by omic or treatment. (b) PCA score plot for ARSyN batch-corrected data.
(c) PCA score plot for MultiBaC batch-corrected data. (d) PCA score plot for JY-PLS batch-
corrected data. (e) PCA score plot for TSR batch-corrected data. (f) PCA score plot for ComBat
batch-corrected data. ComBat corrects batch effect at a single omic level as ARSyN does, thus
this result is only comparable to ARSyN pannel. Dashed line ellipses are grouping samples from
different batches by omic-condition factor.

tion they provide. We further evaluated that MultiBac preserved the
biological information between experimental conditions by comparing
differential expression calls between corrected and non-corrected data
(Table 3.2), as well as the number of common genes in both analyses.
We computed FDR, SE and SP by taking the original data as the true
reference. Although original data do not represent a real true refer-
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Table 3.2: Differential expression results for the yeast multiomic dataset obtained at different
labs. First column (Original) contains the number of differentially expressed genes (DEG) for
each omic computed from original data. Second column (Corrected) contains the same results
but computed from corrected data. Third column (Common) displays the number of DEG that
are common to both analyses. FDR, SE and SP (columns 4-6) were calculated in percentage
by assuming original results as true. Differential expression for omics with the symbol ∗ was
computed without adjusting p-values. Last row (TOTAL) shows the number of DEG obtained
in at least one omic.

Original Corrected Common FDR SP SE
no of genes %

GRO 3075 2616 2615 0.038 99.950 85.041
RNA 2440 2487 2440 1.889 98.253 100

RIBO* 109 87 87 0 100 79.817
PAR* 653 607 601 0.988 99.089 92.037

TOTAL
(unique) 4135 4445 3906

ence without batch effect as happened in simulated data, these results
are still useful to compare the effect of MultiBaC correction with AR-
SyN performance (only applied on RNA data) in terms of differential
expression results.

The sensitivity to detect true positives (SE) was high, around 80%
in the worst case (RIBO-seq), while the specificity exceeded 98% in
all cases and FDR was always below 2%. RNA measurements can
be considered as a control since the correction was made with the
ARSyN method. In this case, a small increase in RNA number of
DEGs revealed that correction slightly affected differential expression
results, even when traditional BECAs and MultiBaC were applied. This

90



3.5 MultiBaC validation

is expected as the removal of batch effects reduces the variability within
experimental conditions and hence improves the differential expression
results. Even so, most DEGs were recovered after correction and we
can state that MultiBaC preserves most of the biological information
in the original data, as happens with any other traditional BECA.

Genes declared as differentially expressed in at least one of the omics
(4135 for the original set and 4445 for the corrected set) were selected
for clustering analysis in order to check if gene profiles across omics
and conditions changed after correction. K-means algorithm [148, 149]
was applied for clustering analysis and each cluster was labeled by its
pattern of change (Table 3.3) across omic data types.
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Table 3.3: Clusters characterization. Each cluster obtained is characterized by a differential
behavior shared by all genes in that cluster. Up or down means up- or down-regulated genes in
treatment condition versus control condition.

Cluster Pattern

1 GRO down
2 GRO and RNA down
3 GRO up and PAR down
4 RNA down
5 PAR down
6 GRO up
7 RNA up
8 GRO and PAR down
9 PAR up
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(a)

(b)

Figure 3.12: MultiBaC results on the “distributed yeast multiomics dataset” data. (a) PCA
score plot of the global matrix with all the omic data types (merged by genes) after MultiBaC
correction. Dashed line ellipses are grouping samples from different batches by omic-condition
factor. (b) RNA values of 42 genes that have changed the sign of their logFC after correction.
Become Positive Genes (BP) are genes that were down-regulated in the original data (white boxes)
but up-regulated after correction (gray boxes). Become Negative genes (BN) had the opposite
behavior. Random Genes (RG) are 100 up-regulated genes randomly selected. Triangles show
the logFC value for each single gene in each lab.
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The number of genes in each cluster before and after MultiBaC cor-
rection was compared and only 42 genes inverted their trend from up
to down regulation or viceversa and just for RNA while the other omic
data types conserved their gene trends. Among these 42 genes, 21
were classified as become positive (BP) genes, since they were initially
down-regulated and after correction they became up-regulated. The
other 21 become negative (BN) genes followed the opposite behavior,
that is, they were initially up-regulated and after the correction they
were down-regulated.

A functional enrichment analysis of these 42 genes did not return any
significant result, which means that these genes are involved in many
different functions but their change in trend when correcting batch
effect is not related to any specific functional category. In order to
further understand why these genes changed their trend, we compared
their expression values to those of 100 randomly selected up-regulated
genes for RNA (RG) that did not change their trend after correction
(Figure 3.12.b). We found that BP genes were originally up-regulated
in Lab A despite of being down regulated when performing the average
between labs. The same happens for BN genes, they were initially down
regulated in one lab. Interestingly, for RG randomly selected genes,
the mean value was the same for all labs and there was no discordant
information. This result suggests that MultiBaC corrects genes with
a true laboratory associated bias. For other genes MultiBaC slightly
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modified the value of the fold-change without introducing a switch in
the direction (sign) of the change.

Finally, we compared MultiBaC results with those from P. L. Nagy et
al., 2003 [132] (Lab B in our example). They focused their analysis on
two groups of genes: RNA & Ribosome Occupancy (RO) up-regulated
(G1) and RNA up- & RO down-regulated (G2) (see Figure 3.13). In
[132], RO denotes the ratio between RIBO and RNA values, while the
ratio between GRO and RNA is named as Polymerase Occupancy (PO)
and we used here the same notation. Regarding RO ratios, there are no
large differences between the original and the corrected state. However,
the PO ratio is greater after correction. This result agrees and improves
the conclusions of the cited paper, where PO values were approximately
the half of RNA values. This means that MultiBaC correction improved
the relationship between omics improving accuracy and in agreement
with previous studies.

3.6 MultiBaC implementation as an R package

MultiBaC algorithm is available at Bioconductor repository under the
same name (https://bioconductor.org/packages/MultiBaC). The Multi-
BaC R package integrates two different batch effect correction meth-
ods: MultiBaC, which deals with batch effect correction in multiomic
designs, and ARSyN (previously described [54]), a flexible method for
single omic type batch effect correction applicable to different data
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Figure 3.13: LogFC values per omic before and after MultiBaC correction. First row: RNA and
Ribosome Occupancy (RO) up-regulated genes. Second row: RNA up-regulated but RO down-
regulated genes. Each line corresponds to the profile of a gene in the corresponding group. The
doted central line is the average profile of all the genes in the group, and the segment at each
point represents the mean value ± the standard deviation. Yellow arrows indicate the increase
in Polymerase Occupancy (PO) logFC values after correction .

modalities (Figure 3.14). In this section, the most relevant functions
and objects of MultiBaC R package are presented and a more detailed
description is provided in the package’s vignette (Appendix 3).

The MultiBaC package uses MultiAssayExperiment objects, a type of
Bioconductor container for multiomic studies [150], that can be cre-
ated from a list of matrices or data.frame objects. These matrices
must have features in rows and samples in columns. It is important
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that all data matrices share the sample space. In addition, common
omic matrices across different batches must share the variable space.
Thus, if the number of omic variables and order are not the same,
the createMbac function will select the common variables. Hence, it
is mandatory that rows are named with the same type of identifiers.
A MultiAssayExperiment object needs to be created for each batch.
The mbac new data structure is a S3 list class of MultiAssayExperi-
ment objects and can be easily generated with the createMbac function
in the package. The resulting mbac object will be the ARSyNbac or
MultiBaC input.

These are the arguments for the createMbac function:

• inputOmics A list containing all the matrices or data.frame ob-
jects to be analysed. MultiAssayExperiment objects can alterna-
tively be provided.

• batchFactor Either a vector or a factor indicating the batch were
each input matrix belongs to (i.e. study, lab, time point, etc.). If
NULL (default) no batch is considered and just ARSyNbac noise
reduction mode could be applied.

• experimentalDesign A list with as many elements as batches.
Each element can be a factor, a character vector or a data.frame
indicating the experimental conditions for each sample in that
batch. When being a data.frame with more than one column
(multi-factorial experimental designs), the different columns will
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be combined into a single one to be used by MultiBaC functions.
In any case, the experimental setting must be the same for all
batches. In addition, the names of the elements in this list must
be the same as declared in batches argument. If not (or if NULL),
names are forced to be the same in as in batches argument and
in the same order.

• omicNames Vector of names for each input matrix. The common
omic is required to have the same name across batches.

• commonOmic Name of the common omic between the batches.
It must be one of the names in omicNames argument. If NULL
(default), the omic name which is common to all batches is se-
lected as commonOmic.

The mbac R structure generated by the createMbac function is an
S3 object that contains just one slot, the ListOfBatches object.
However, the mbac structure may contain more elements that are cre-
ated when running the ARSyNbac: CorrectedData and ARSyNmodels.
Moreover, after applying MultiBaC (explained in next sections) this ob-
ject can incorporate two more slots: PLSmodels and InnerRelation.
The five slots contained in the mbac object are next described:

• ListOfBatches: A list of MultiAssayExperiment objects (one per
batch).

• CorrectedData: Same structure than ListOfBatches but with
the corrected data matrices instead of the original ones.
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• PLSmodels: PLS models created by MultiBaC method (one
model per non-common omic data type). Only available for Multi-
BaC method.

• ARSyNmodels: ARSyN models created either by ARSyNbac or
MultiBaC functions.

• InnerRelation: Table of class data.frame containing the inner
correlation (i.e. correlation between the scores of X (t) and Y (u)
matrices) for each PLS model across all components, for model
validation purposes. Only available for MultiBaC method.

• commonOmic Name of the common omic between batches.

3.6.1 ARSyN batch effect correction

The ARSyN method is implemented into the ARSyNbac function in
MultiBaC package. The arguments of ARSyNbac function are:

ARSyNbac (mbac, batchEstimation = TRUE, filterNoise = TRUE, In-
teraction=FALSE, Variability = 0.90, beta = 2, modelName = "Model
1", showplot = TRUE)

• mbac: mbac object generated by createMbac.

• batchEstimation: Logical. If TRUE (default) the batch effect
is estimated and used to correct the data. If batch effect is un-
known or it is not the main source of noise, this argument must be
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set to FALSE and ARSyNbac will extract unwanted effects from
residuals.

• Interaction: Logical. Whether to model the interaction between
factors or not (FALSE by default).

• Variability: From 0 to 1. Minimum percent of data variability
that must be explained by each model. Used in batch correction
mode. By default, 0.90.

• filterNoise: Logical. If TRUE (default) structured noise is re-
moved form residuals. Use this option when there is an unknown
source of batch effect in data.

• beta: Numeric. Components that represent more than beta times
the average variability are identified as systematic noise in residu-
als. Used in noise reduction mode. By default, 2.

• modelName: Name of the model created. This name will be
showed if you use the explained_varPlot function. By default,
"Model 1".

• showplot: Logical. If TRUE (default), the explained_varPlot is
showed. This plot represents the number of components selected
for the ARSyN model.

When the batch is identified in the batchFactor argument of the
mbac input object (known source of batch effect), its effect can be es-
timated and removed by choosing batchEstimation = TRUE. More-
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over, a possible interaction between the experimental factors and the
batch factor can be studied by setting interaction=TRUE. In addition,
ARSyNbac can also correct data when the source of batch effect is un-
known and in turn cannot be estimated (batchEstimation = FALSE

and filterNoise = TRUE). Finally, when both, known and unknown
batch effect, are present, ARSyNbac is able to correct both sources of
unwanted variation (batchEstimation = TRUE and filterNoise =

TRUE).

3.6.2 MultiBaC correction

Once the mbac object has been created with a multiomic design, it is
used as the input data for MultiBaC function (mbac argument), which
is the wrapper function for the correction of multiomic batch effects.

MultiBaC (mbac, test.comp = NULL, scale = FALSE, center = TRUE,
crossval = NULL, Interaction = FALSE, Variability = 0.90, showplot
= TRUE, showinfo = TRUE)

The arguments of the MultiBaC function correspond to the different
steps of the MultiBaC method:

• mbac: mbac object generated by createMbac.

• test.comp: Maximum number of components allowed for PLS
models. If NULL (default), the minimal effective rank of the ma-
trices is used as the maximum number of components.
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• scale: Logical. Whether X and Y matrices must be scaled. By
default, FALSE.

• center: Logical. Whether X and Y matrices must be centered.
By default, TRUE.

• crossval: Integer: number of cross-validation segments. The
number of samples (rows of ’x’) must be at least >= crossvalI. If
NULL (default), a leave-one-out crossvalidation is performed.

• Interaction: Logical. Whether to model the interaction between
experimental factors and bacth factor in ARSyN models. By de-
fault, FALSE.

• Variability: From 0 to 1. Minimum percent of data variability
that must be explained for each ARSyN model. By default, 0.90.

• showplot: Logical. If TRUE (default), the Q2 and the explained
variance plots are shown.

• showinfo: Logical. If TRUE (default), the information about the
function progress is shown.

3.6.3 Visualization of results

As mentioned before, ARSyNbac and MultiBaC outputs are mbac type
objects. Since the mbac class incorporates a plotting method, the plot

function can by applied on mbac objects to graphically display addi-
tional information about the performance of the methods or the data
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Figure 3.14: Graphical abstract of MultiBaC R package. (a) Multiomic integration challenge
where the batch effect is present and confunded in several omic data. (b) Structure of data
on a real case problem where at least one omic has been measured in all the batches. All the
matrices represented in this figure have variables in columns and samples in rows. (c) ARSyNbac
overview for three different options: 1) Batch effect correction, 2) Noise reduction for unknown
batches, and 3) Correction when both types of unwanted effects are present in the data. In all
cases, an initial ANOVA-like decomposition is performed and followed by PCA for the estimation
of unwanted effects. (d) Overview of MultiBaC strategy, which combines PLS regression with
conventional ARSyN batch effect correction .
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characteristics. The plot function for mbac objects accepts several
additional arguments:

plot (x, typeP = "def", col.by.batch = TRUE, col.per.group = NULL,
comp2plot = c(1,2), legend.text = NULL, args.legend = NULL, ...)

Description of the arguments:

• x: mbac object generated by createMbac, ARSyNbac or MultiBaC.

• typeP: The type of plot to be displayed. Options are: "def" (de-
fault option, "Q2 plot" and "Explained variance plot" for MultiBaC
and "Explained variance plot" for ARSyNbac), "inner" (inner corre-
lation plots for each PLS model across the components of Multi-
BaC output), "pca.org" (PCA plot of original data), "pca.cor"
(PCA plot of corrected data for MultiBaC or ARSyNbac outputs),
"pca.both" (PCA plots for both original and corrected data for
MultiBaC or ARSyNbac outputs), and "batch" ("Batch effect esti-
mation" plot for all the outputs). PCA plots can only be generated
when all data matrices share the same variable space.

• col.by.batch: Argument for PCA plots. Logical. If TRUE (de-
fault), samples are colored according to the batch factor. If
FALSE, samples are colored according to the experimental con-
ditions.
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• col.per.group: Argument for PCA plots. Color for each group
(given by batches or experimental conditions). If NULL (default),
the colors are taken from a predefined pallete.

• comp2plot: Argument for PCA or InnerRel plot. It indicates
which components are to be plotted. The default is c(1,2), which
means that, in PCA plots, component 1 is plotted in "x" axis
and component 2 in "y" axis, and for InnerRel plots, the inner
relation plots of components 1 and 2 are shown. If more than two
components are given, the function will return as many plots as
needed to show all the components.

• legend.text: Argument for PCA plot. A vector of text used
to construct a legend for the plot. If NULL (default) batch or
conditions names included in the mbac object are used.

• args.legend: List of additional arguments to pass to legend().
Names of the list are used as argument names. Only used if
legend.text is supplied.

• ...: Other graphical arguments.

While the plot function can generate all the plot types described
above, each plot can also be independently generated by its correspond-
ing function (Figure 3.15): Q2_plot(mbac), explained_varPlot(mbac),
plot_pca(mbac), batchEstPlot(mbac), or inner_relPlot(mbac,

comp2plot = c(1,2)). All these plots are useful to validate or un-
derstand ARSyNbac or MultiBaC performance.
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Figure 3.15: Collection of visualization possibilities that MultiBaC provides to the users. Colors
represent the output needed for each plot (orange: ARSyNbac, purple: MultiBaC). (a) PCA plot.
(b) Q2 plot. (c) Batch effect estimation plot. (d) Explained variance plot. (e) Inner correlation
plot .

3.7 Discussion

Many methods have been proposed to efficiently remove unwanted ef-
fects from omic data, such as effects related to lab, machine, protocol,
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etc., which are known in general as batch effects. These approaches
(BECAs) deal with just one omic data type at a time and, to the best
of our knowledge, no strategy has been suggested yet for the multi-
omic context, where each omic may have been produced in a different
lab, by a different person or at a different period. Obviously, when
two different omics have been generated in two different batches, it
is difficult, if not impossible, to distinguish between the effect of the
batch and the effect of the omic type itself. However, it is possible
to estimate the batch effect between different omics when there is at
least one common omic data type in all the batches. In this work we
introduce MultiBaC, a new methodology to correct batch effects when
integrating multiomic datasets in this scenario. Thus, the only requi-
site to apply MultiBaC is that one omic data type must be shared by
all the batches to allow batch effect estimation and removal.

We show the application of MultiBaC to integrate different omic tech-
nologies obtained for the same biological system at different labs. How-
ever, MultiBaC could be in principle applied in other situations such as
experiments where the same omic data type has been generated by two
different techniques or protocols. One example could be metabolomics
obtained with Gas Chromatography (GC) and High-Pressure Liquid
Chromatography (HPLC), where a few metabolites are shared by both
protocols but the rest of metabolites are specific of each protocol.
The common metabolites would constitute the common information
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and MultiBaC can be applied to remove the protocol effect so both
datasets can be joined in a single analysis.

To prove the ability of MultiBaC to correct batch effect, we applied the
method on simulated multiomic scenarios. As there are not established
multiomic batch correction methods, we adapted and applied two suit-
able existing algorithms (JY-PLS and TSR) and compared them to
our MultiBaC approach. The performance of MultiBac and the other
methods naturally depends on the magnitude of the batch effect and
on how much this effect interacts with the effect of the experimental
factor of interest. MultiBaC correction worked extremely well at batch
levels expected for these technologies. Batch magnitude affected the
latent structure similarity between original and corrected data but it did
not affect differentially expressed genes (DEG). With extreme interac-
tion magnitudes MultiBaC performance was compromised although it
was still the best approach. We concluded that our results under the
moderate interaction scenario represent very well the MultiBaC perfor-
mance with real interaction effects. All in all, our analyses showed a
good performance of the correction methods in realistic scenarios with
MultiBaC outperforming in all simulated scenarios when correcting real
experimental datasets with a strong laboratory effect. In the “proof of
concept” dataset, where traditional BECAs could also be applied, re-
sults obtained with ARSyN and MultiBaC were very similar according to
the PCA. MultiBaC performance was slightly less powerful than ARSyN
method since MultiBaC does not estimate the batch and interaction
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effects from the non-common omic, while ARSyN does. Thus, the es-
timation and correction of the unwanted variation is not the same and
should be more accurate for ARSyN. Nonetheless, MultiBaC almost
completely removed the batch effect. Finally, in our “real yeast multi-
omic dataset”, differential expression together with clustering analysis
proved that lab effect was removed while the effects of experimental
factors were preserved in all the omics. Few genes changed their trend
after correction but the comparison with previously published results
showed that results after correction were more meaningful, reliable and
concordant with such studies.

MultiBaC models the relationship between omic datasets with PLS
and uses this to infer the batch-corrected data. PLS is a powerful
predictive multivariate technique based on the linear combination of
predictive variables. While the relationship between molecular layers
measured by multiomic methods may or may not be linear, our results
show that the linear approach is effective in modeling relationships for
the purpose of batch correction. However, MultiBaC could be easily
adapted to include, for example, kernel PLS [151, 152] to allow for
non linear relationships. In any case, the method returns the Q2 of the
PLS model to provide control over the accuracy of the predicted batch
correction.

In conclusion, MultiBaC is effective at removing non-biological noise
from multiomic data collected at different studies, and makes these
datasets comparable. We anticipate MultiBac will be a useful tool
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for the reutilisation of existing data for multiomic integration analyses
and in facilitating experimental designs that involved the generation of
multiple and diverse omic assays.
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Generating a multiomic dataset

[1] Nuño-Cabanes, C., Ugidos, M., Tarazona, S. et al. A multiomics
dataset of heat-shock response in the yeast RNA binding protein Mip6.
Sci Data 7, 69 (2020).
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4.1 Introduction

Eukaryotic gene expression is a complex process in which genetic infor-
mation is converted into functions that sustain living cells. Different
cellular components are involved in this process, which perform a series
of interconnected steps in different cellular compartments [153, 154].
One of the earlier steps consists of setting up the appropriate epige-
netic modifications to allow the expression or repression of specific gene
programs [155, 156]. These modifications take place mostly on DNA
and histones, ensuring access to the proper transcriptional machinery.
Methylation and acetylation are the most estudied histone marks as
they have a higher impact on gene expression [157]. This specific
set of modifications across the genome regulates the final synthesis
of the mRNA [13]. Newly synthetized RNA molecules are extensively
modified prior to their export to the cytoplasm, where they can be de-
graded by the mRNA decay machinery, stored in specific organelles or
translated into proteins [18, 19]. Finally, the encoded protein products
participate in numerous processes, including cellular metabolism where
organic compounds are transformed and/or stored. A number of these
compounds, such as Acetyl-CoA, glucose or methyl groups, participate,
in turn, in chromatin modifications. Thus, by profiling chromatin mod-
ifications, steady-state mRNA and metabolites, we have a view of the
whole process from genotype to phenotype.
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In this chapter, the generation of a yeast multiomic dataset is ex-
plained. This dataset features three basic layers of the transcriptional
circuit, measured in the same set of samples. These include one epige-
netic modification (ChIP-seq) - H4K12ac, a mark for active promoters-,
gene expression (RNA-seq) and targeted metabolomics (NMR quantifi-
cation). Moreover, data were obtained for two different yeast strains,
wild type (WT ) and a mip6∆ mutant, in control and heat-shock in-
duced conditions. Mip6 is an RNA-binding protein that participates
in RNA export under stress [106] and consequently is informative of
the contribution of post-transcriptional regulations to the adaptation
of RNA levels to environmental changes.

To obtain the final useful molecular information, raw omic data require
different computational steps depending on the technology [158]. Re-
garding RNA-seq and ChIP-seq data, sequencing output consists of a
huge number of short reads that need to be mapped to a reference
genome to get gene or transcript associated quantification. Before
that, Quality Control (QC) checking is needed to ensure data reliabil-
ity and get rid of residual sequencing adapter sequences. Once mapped,
the gene expressions are given by the number of reads detected for each
gene. In addition to gene-wise quantification, ChIP-seq data can also
be processed as peaks, which are groups of mapped reads that repre-
sent genomic regions close to modified histones [159]. Sequencing data
may have some potential biases that include gene length (longer genes
accumulate more reads) and library size or sequencing depth (differ-
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ent total number of reads for different samples impairs direct sample
comparisons). Removal or mitigation of these biases are needed to
perform further analysis [160]. Many methods have been developed
to correct these caveats [e.g, Reads Per Kilobase Million (RPKM) [49]
and Trimmed Mean of M values (TMM) [35]].

Regarding NMR spectra raw data, between sample normalization is
needed. Peaks are relative quantification of metabolites and are nor-
malized by the total area of the spectra to make samples comparable
between each other. However, within sample comparison of different
metabolites is not possible since peak areas do not correlate with ac-
tual metabolite concentration. NMR metabolomics is a targeted assay
which means that peak-metabolite association is made based on prior
knowledge [36].

In conclusion, in this chapter the analysis and exploration of these data
is performed on a single-omic basis as a preliminary step for the multi-
omic integrative analysis explained in Chapter 5. Therefore, the work
presented in this chapter addresses: quality control of omic data, nor-
malization procedures, identification of differentially expressed/quanti-
fied features and functional enrichment analysis.
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4.2 Experimental design

Figure 4.1 illustrates the experimental design of our dataset. A single
culture (either for WT or mip6∆ strains) was grown at 30◦C until the
exponential growth phase, and was then split across three flasks. One
flask was maintained at 30◦C and labeled as time point 0. The other
two flasks were incubated at 39◦C for 20 minutes and 120 minutes,
respectively. These last two flasks capture the heat-shock response,
while the 30◦C flask serves as a control representing non-stress con-
dition. Then, for each of the flasks described above three aliquotes
were extracted for RNA-seq, NMR metabolomics, and ChIP-seq anal-
yses. Therefore, the three omics assays were performed on the same
cell culture. The process described in Figure 4.1 was repeated 4 times
to generate four biological replicates. Due to hardware limitations,
these 4 replicates were generated and processed at two different time
points which might lead to a batch effect that will be evaluated. Nev-
ertheless, following properly experimental design guidelines, samples
were randomly distributed between days so that the batch is not a
confounding factor for any other covariate (Table 4.1). Note that the
time variable for control samples (30◦C 20 min.) was set as 0 minutes
for subsequent time-series data analysis.

Table 4.1: Experimental design.

Strain Temp
(◦C)

Time
(min.)

Replicate Day
(Batch)

Sample ID
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Strain Temp
(◦C)

Time
(min.)

Replicate Day
(Batch)

Sample ID

WT 30 0 1 1 wt.0.30.1
WT 39 20 1 1 wt.20.39.1
WT 39 120 1 1 wt.120.39.1
WT 30 0 2 2 wt.0.30.2
WT 39 20 2 2 wt.20.39.2
WT 39 120 2 2 wt.120.39.2
WT 30 0 3 1 wt.0.30.3
WT 39 20 3 1 wt.20.39.3
WT 39 120 3 1 wt.120.39.3
WT 30 0 4 2 wt.0.30.4
WT 39 20 4 2 wt.20.39.4
WT 39 120 4 2 wt.120.39.4
mip6∆ 30 0 1 1 mip6.0.30.1
mip6∆ 39 20 1 1 mip6. 20.39.1
mip6∆ 39 120 1 1 mip6.120.39.1
mip6∆ 30 0 2 2 mip6. 0.30.2
mip6∆ 39 20 2 2 mip6. 20.39.2
mip6∆ 39 120 2 2 mip6.120.39.2
mip6∆ 30 0 3 1 mip6.0.30.3
mip6∆ 39 20 3 1 mip6.20.39.3
mip6∆ 39 120 3 1 mip6.120.39.3
mip6∆ 30 0 4 2 mip6.0.30.4
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Strain Temp
(◦C)

Time
(min.)

Replicate Day
(Batch)

Sample ID

mip6∆ 39 20 4 2 mip6.20.39.4
mip6∆ 39 120 4 2 mip6.120.39.4

4.3 Statistical methods

4.3.1 Sequencing data pre-processing

Removing low-count features

The removal of low-count features improves the result of statistical
analyses. In RNA-seq, the expression of low-count features is nois-
ier since read counts could have been assigned by chance [161, 162]
causing background noise and between-sample variability. In this work,
CPM (Counts per Million) method implemented in NOISeq package
[51] was used. This method uses a transformation of expression data
to perform the filtering, the counts per million (CPM). CPM for gene
g in sample s is defined as:

CPMs
g = 106

xsg∑
g x

s
g

(4.1)

where x is the number of raw counts. CPM takes into account se-
quencing depths (total number of counts) of individual samples to
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Figure 4.1: Experimental design and sample management. For each strain and replicate, a yeast
culture flask was grown at 30◦C until the exponential phase, then split into three flasks, each of
them receiving a different treatment. From the same treatment flask, aliquots were collected for
RNA-seq, metabolomics and ChIP-seq.

avoid removing genes with relatively high expression in at least one ex-
perimental condition. The method needs a user-defined value for CPM
(cpm) under which a feature is considered to have low counts. Let us
consider S samples in a given condition, a gene g is removed if the
sum of CPM values across all the samples in the same experimental
condition is below the condition cutoff (

∑
sCPMs

g < cpm × S). For
this work, default cpm value was used: cpm = 1.

Trimmed mean of M-values normalization

Trimmed mean of M-values (TMM) [46] normalization is used when
systematic differences among samples are present in sequencing data.
These systematic biases can often be due to differences in the library
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size (total number of counts) and the RNA composition (distribution
of counts across features). The rationale behind this idea can be ex-
plained with the following hypothetical example. Let us consider two
RNA sequencing experiments (samples), A and B, and two different
sets of genes with the same number of elements: S1 and S2. The first
set, S1, is equally expressed in A and B, whereas S2 is only expressed
in sample A and not in sample B. If the library size (total number
of reads/counts) is the same in both samples, the number of tran-
scripts observed for an S1 gene will be half as many in A as in B even
though it is known that S1 is equally expressed in both samples. In
other words, the probability of observing transcripts for a given gene
depends on its frequency and the total number of transcripts observed.
Thus, it depends on the expression of the rest of genes. In conclusion,
it depends on the RNA composition. This issue impairs further statis-
tical analysis and therefore a proper correction of this bias is pivotal in
high-throughput data analysis. Roughly, first the sample/observation
that have the closest average expressions to mean of all samples is con-
sidered as reference sample, and all others are test samples. For each
test sample, the scaling factor is calculated based on weighted mean
of log ratios between the test and reference. The following framework
is used to provide a more formal explanation for this normalization.
Define Ygk as the raw observed count for gene g in sample k, and Nk

as the total number of counts for sample k. The normalization factor
(log2(TMM

(r)
k )) for sample k based on reference sample r is derived

as follows:
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log2(TMM
(r)
k ) =

∑
G∗ wr

gkM
r
gk∑

G∗ wr
gk

(4.2)

The cases where Ygk = 0 or Ygk = 0 are trimmed in advance of this cal-
culation since log-fold-changes cannot be calculated and G∗ represents
the set of genes not trimmed. M r

gk represents the log-ratios between
test (k) and reference (r) samples and it is defined as:

M r
gk =

(log2
Ygk

Nk
)

log2(
Ygr

Nr
)

(4.3)

The weights, wr
gk, are obtained by the following expression:

wr
gk =

Nk − Ygk
NkYgk

+
Nr − Ygr
NrYgr

(4.4)

TMM normalization is a simple and effective method for estimating
relative RNA production levels from RNA-seq data. However, TMM
normalization assume that the majority of genes are not differentially
expressed.

Batch effect correction

ARSyN (ASCA Removal of Systematic Noise) [54] was used for cor-
recting the batch effect. This approach is based on the ANOVA-

121



Chapter 4. Generating a multiomic dataset

Simultaneous Component Analysis (ASCA) framework and has been
already presented in this document (Chapter 3).

4.3.2 Differential expression/quantification analysis

In this analysis, Time was encoded as a categorical variable and both
Strains were analyzed separately. The aim of this analysis was to pro-
duce the required information for the method further explained in the
next chapter. Therefore, two comparisons were performed for each
Strain: i) 39◦C 20 min. (t-20) vs 30◦C 20 min. (t-0), and ii) 39◦C 120
min. (t-120) vs 39◦C 20 min. In this chapter, comparison (i) is named
as First Transition (FT) and comparison (ii) is named as Second Tran-
sition (ST). Among the variety of available methods for performing
differential expression, limma R package [53] was used in this analysis
as it showed overall robust results in multiple scenarios when compared
with other approaches [60] and it is one of the most extended methods
in the bioinformatics community. Limma (Linear models for microar-
rays) was originally developed for the analysis of microarray data and
hence linear models are the basis of limma modeling. Following the
explanation in Smyth et al., 2004 [163], limma fits a single linear model
for each gene (or omic feature) where gene expression is the response
vector yg = (yg1, . . . , ygs)

T (S being the number of samples). In a sim-
plistic way, it is assumed that: i) E(yg) ≈ Xβg and ii) var(yg) ≈ σ2g ,
where X is the design matrix. Given the large number of gene-wise
linear model fits, limma takes advantage of the parallel structure to es-
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timate the unknown parameters βg and σ2g as the same model is fitted
to every gene. This is done by assuming prior distributions for these
set of parameters. Prior distribution for σ2g is assumed based on a prior
estimator s20 with d0 degrees of freedom:

1

σ2g
∼ 1

d0s20
χ2
d0 (4.5)

This describes how the variances are expected to vary across genes.
Then, the expected distribution of regression coefficients is defined as:

βgj |σ2g ∼ N(0, σ2g) (4.6)

where j represents a given experimental condition (model covariate).
This equations describe a conjugate prior. Under this hierarchical
model, the posterior mean of σ2g given the actual observed residual
sample variance (s2g) is:

s̃2g = E(σ2g |s2g) =
d0s

2
0 + dgs

2
g

d0 + dg
(4.7)

Basically, the observed variances shrinkage towards the prior values
redefine the t-statistic. This new moderated t-statistic is defined as:

˜tgj ≈
β̂gj
s̃g

(4.8)
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This statistic represents a hybrid frequentist/Bayesian approach in which
the posterior variances substitute the usual sample variance in the clas-
sical t-statistic. Both, d0 and s20 are estimated from the data as de-
scribed in Smyth et al., 2004 [163]. The fact that the method shares in-
formation across genes to estimate gene-wise residual variances, makes
limma specially powerful for datasets with small sample sizes which un-
fortunately is an extended scenario in the computational biology field.

Additionally and before applying limma, sequencing data need to be
transformed to approxymately follow a normal distribution. This step
is done with the so called voom transformation [58], implemented also
in the limma R package. Briefly, the aim of this transformation is to
correct the mean-variance relationship present in count data. First,
counts are transformed as log-cpm values (log2(CPM);CPM defined
in (eq.4.4)). Next, the function estimates the mean-variance trend
for log-counts (LOWESS fit) and assigns a weight to each observa-
tion based on its predicted variance which are then used in the linear
modelling process to adjust for heteroscedasticity.

4.3.3 Time-series data modeling

To obtain the genes/metabolites with significant differential time-profile
between Strains, we used maSigPro [59, 164, 165]. maSigPro is a two-
regression step approach. First, it adjusts a gene-wise regression model
with all the defined covariates (Time and Strain in our case) to identify
differentially expressed genes. maSigPro uses polynomial regression to
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model response variables (e.g. gene expression values or metabolite
quantifications) and applies least-squares to estimate the parameters.
Considering our time-course series dataset with T = 3 time points and
S = 2 experimental groups (i = 1, 2 and j = 1, 2, 3), the model of
response yij at time tj is

yij = β0 + β1tj + β2t
2
j + β3zi + β4tjzi + β5t

2
jzi + ϵij (4.9)

where zi represents the dummy variable for the experimental group, i.e.
z ∈ (0, 1). To find genes with statistically significant changes, gene-wise
ANOVA is performed testing the null hypothesis that all coefficients
(except β0) are equal to zero versus the alternative hypothesis where
at least one coefficient is different form zero:

H0 : β1 = β2 = β3 = β4 = β5 = 0

H1 : ∃i/βi ̸= 0, (i = 1, 2, 3, 4, 5)
(4.10)

maSigPro supports Linear Models (LMs) and Generalized Linear Mod-
els (GLMs). Therefore, sequencing data as RNA-seq experiments can
be modelled with maSigPro without any count data transformation.
When analysing sequencing data, maSigPro applies GLMs with Nega-
tive Binomial (NB) distribution:

Yi ∼ NB(µi, θ), where E(Yi) = µi and var(Yi) = µi +
µ2i
θ

(4.11)
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The authors state that maSigPro results do not change much by using
different values of θ and hence it is recommended to use the default
value (θ = 10). However, θ can be estimated form data using available
software (edgeR, [35]).

In a second step, a variable selection strategy (stepwise regression) is
performed to find the conditions for which genes shows statistically
significant profiles changes.

4.3.4 Multiple testing correction

In differential expression/quantification analysis, a single model is fitted
for each feature (e.g., gene, metabolite, etc.) and therefore the number
of statistical tests is considerably large. The repeated application of
a test, for a given level of significance, may lead to a large number
of rejections of the null hypothesis even though no real differences
exist. False Discovery Rate (FDR) is the most common measure of the
error associated to hypothesis testing. FDR is defined as the expected
proportion of null hypothesis that are true among the ones declared as
significant. Thus, considering R as the total number of significant tests
and V as the number significant tests when the null hypothesis is true,
FDR is defined as: FDR = E(VR ), where E() represents the expected
value or statistical expectation. One of the most extended approaches
to control FDR is the Benjamini-Hochberj (BH) correction [166]. Let
us consider a series of independent null hypothesis H1

0 , . . . , H
m
0 , from
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which an equal number of p-values have been obtained p1, . . . , pm.
After ordering p-values by p1 ≤, . . . ,≤ pm, we obtain:

i∗ = max(i : pi ≤
i

m
α) (4.12)

and we reject Hi
0 for i = 1, dots, i∗. FDR parameter, α, is usually set

as 0.05. Adjusted p-values p∗ are obtained as p∗i = minm
i pi, 1.

4.3.5 Multiomic integration

Two types of multiomic data integration were utilized for this chapter:
pathway enrichment analysis (conceptual multiomic integration) and
Multi-Block PLS (statistical multiomic integration).

Pathway enrichment analysis (PEA)

PaintOmics web tool [http://www.paintomics.org/; [167]] was used
for PEA. PaintOmics uses the pathways from KEGG database [168].
The tool identifies the subset of features (genes, proteins or metabo-
lites) that participate in a particular pathway for the input. Then, it
evaluates the fraction of those biological features that overlaps with
the significant set of features provided. Thus, PEA is performed af-
ter differential expression/quantification analysis. Finally, PaintOmics
computes the significance of the overlap using Fisher’s exact test [169].
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To combine the information across different omic data types, PaintOmics
applies the Fisher’s combined probability test [61], which allows the re-
sults from several independent tests for similar null hypotheses to be
combined. Thus, this method combines the p-values for the test of
each omic into one test statistic (X) using the formula:

X = −2

k∑
i=1

log(pi) (4.13)

where k is the number of tests being combined. X follows a χ2 dis-
tribution with 2k degrees of freedom. PEA from PaintOmics was used
to find those gene sets that have a different behavior between strains
during heat stress.

Multi-Block PLS (MB-PLS)

mixOmics R package [81] was used for MB-PLS analysis [108]. MB-
PLS is an extension of the PLS framework. In MB-PLS, the PLS-
components of each group (omic type) are constraint to be built based
on the same loading vectors in X and Y . These global loading vectors
thus allow the samples from each group or study to be projected in
the same common space spanned by the PLS-components. For each
dimension h = 1, . . . , H, MB-PLS seeks to maximize:
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max
||ah||=||bh||=1

J∑
j=1

njcov(X
(j)
h ah,Y

(j)
h bh) (4.14)

where ah and bh are the global loadings vectors common to all groups
(omic types, J), and nj is the number of individuals in each group.
Group-specific PLS-components can also be obtained as t

(j)
h = X

(j)
h ah

and u
(j)
h = Y

(j)
h bh. The global loadings vectors (ah, bh) and global

components can be used to assess overall classification accuracy, whereas
the group-specific loadings and components can be used to analyze in-
dividual block contributions to the model. In this work, MB-PLS was
performed to evaluate which metabolic changes (Y ) are driven jointly
by RNA-seq (X(1)) and ChIP-seq data (X(2)).

4.4 Data acquisition and preprocessing

4.4.1 RNA-seq

RNA extraction protocol is detailed in the original manuscript [113].
Sequencing was done with Illumina using the TruSeq protocol. Between
5060 million reads of 100 bp paired data were obtained from each
sample. Raw sequencing data quality was checked by fastQC and good
overall quality (Figure 4.2.a) was observed in all cases. No adapter
trimming was deemed necessary. Reads were mapped to the yeast
saccer3 genome with Tophat2 [137] and genes were quantified with
HTSEQ [34], intersection-option. The NOISeq [51] R package was
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used to perform the quality control of count data. We observed most of
reads mapped onto protein-coding genes (>80%), as expected (Figure
4.2.b). Low count filtering was applied with the NOISeq cpm method
(with cpm = 1). Cpm stands for counts per million and it represents
theoretical gene counts considering that the sum of all the gene counts
for a given sample is 1 million. NOISeq cpm methods removes features
with an average cpm per condition below a certain threshold (1 in this
case) in all conditions. Systematic differences among samples were
detected and hence raw counts were normalized via TMM method [33].
Principal Component Analysis (PCA) indicated a slight batch effect for
the day of culture growth (Figure 4.2.c [left panel]) that was removed
by ARSyN function from NOISeq package as well [51, 54] (Figure 4.2.c
[right panel]). In total, we obtained gene expression values for 6,379
genes.

4.4.2 Metabolomics

Metabolomics measurements were performed on an NMR platform as
described in Palomino-Schätzlein ([36]). Signal peaks of spectra were
normalized considering that the sum of peak areas across all metabo-
lites was constant for every sample, and values for each metabolite were
given as a fraction of the total area. This targeted NMR technique
implies metabolomic values are not absolute, i.e., metabolites cannot
be compared within a given sample. A total of 45 compounds were
detected, that included 5 sugars, 17 amino-acids, 4 alcohols, 3 vitamin-
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Figure 4.2: RNA-seq data preprocessing. (a) Example of base quality scores across all reads
obtained by fastQC analysis, showing uniform read quality. (b) Biotype plot of NOISeq package,
which indicates that the vast majority of detected features are protein-coding genes. (c) Batch
effect correction. PCA score plots for the first two principal components are represented. The
left panel shows raw data where a day-of-culture batch effect is observed. The right plot shows
the corrected data where this batch effect has been removed .

131



Chapter 4. Generating a multiomic dataset

Figure 4.3: Batch effect correction of metabolomics data. PCA score plots for the two first
principal components are represented. (a) Raw data shows a slight day of culture batch effect
for the 20 min 39◦C condition. (b) Batch effect corrected data .

derivated compounds, 5 carboxylic acids, and other compounds (CMP,
NAD, Glutathione, ATP and GMP), plus 3 unidentified metabolites.
Raw data were log2 transformed and compounds with non-positive
measure across all samples were removed, as they were considered to
be below the reliable limit of detection. PCA analysis indicated a small
batch effect (Figure 4.3.a), that was removed by ARSyN method (Fig-
ure 4.3.b).

4.4.3 Histone modifications

A comprehensive protocol for ChIP-seq data generation is detailed in
the original publication [113]. Two ChIP-seq data files were obtained
for each sample: H4 and H4K12ac. H4 files contain the reads after
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purification of total H4 histone and H4K12ac files contain the data
associated to acetylation of Lysine 12 of H4 histones. Raw sequencing
data quality was checked by fastQC and good overall quality (Figure
4.4.a) was observed in all cases. In this case, trimming of Illumina
adapters was needed and performed using Cutadapt software [170].
Then, reads were mapped to the yeast saccer3 genome with Bowtie2
[171]. Macs2 software [172] was used to call Histone 4 acetylation
peaks on the H4K12ac samples alone. Next, a consensus file was gen-
erated by merging peaks across all samples using the merge command
from bedtools software [173] with default parameters. These consen-
sus regions were used to map back reads of all samples, including
H4 samples. Peaks were quantified with HTSEQ [34], intersection-
option. NOISeq [51] R package was used to perform a quality control
of count data. Moreover, coverage per base was obtained for both, H4
and H4K12ac samples, using the genomecov command from bedtools
[173]. Batch effect was also checked but no correction was needed
(Figure 4.4.b). To obtain the final H4K12ac signal, H4K12ac sam-
ples are divided by H4 values as they represent the total amount of
H4 histone. Therefore, H4K12ac signal is treated as a relative quan-
tification of acetylated histones against total amount. Finally, to use
ChIP-seq data information as a gene-based omic, RGmatch [134] was
used considering regions around gene TSS (Transcription Start Site)
± 200 base pairs.
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Figure 4.4: ChIP-seq data preprocessing. (a) Example of base quality scores across all reads
obtained by fastQC analysis. (b) PCA of H4 and H4K12ac data. The first PC indicates the type
of ChIP-seq assay, while the second PC reflects the heat treatment in the H4K12ac samples. No
batch effect is observed .
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4.5 Technical validation

In order to assess data replicability, pairwise scatter plots were obtained
for RNA-seq data (Figure 4.5.a), metabolomics data (Figure 4.5.b) and
ChIP-seq data (Figure 4.5.c, d). Only WT strain replicates are shown
as mip6∆ strain data behaved similarly. Replicates were highly and
equally correlated with each other, and no experimental outliers were
detected.

4.6 Omic-wise differential expression/quantification
analysis

For each omic, two types of differential expression analysis were per-
formed (see Methods section). First, within-strain differential expres-
sion analysis was performed using limma [53]. Figure 4.6.a and Figure
4.7.a and b show the results of this analysis for RNA-seq, Metabolomics
and ChIP-seq data, respectively. The number of differentially expressed
features (DEF) is represented for each strain-wise comparison: FT
(First Transition, 39◦C 20 min. vs 30◦C 20 min.) and ST (Second
Transition, 39◦C 120 min. vs 39◦C 20 min.). The total amount of DEF
is represented as an horizontal barplot with gray bars at the bottom-left
part of the panels. Intersections between different comparisons (yellow
dots) are represented as blue bars in the center of the panels. Regard-
ing gene expression (Figure 4.6.a), around half of the changes that
occur immediately after heat-shock (FT) are common between strains
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Chapter 4. Generating a multiomic dataset

Figure 4.5: Replicability of processed data. Wild type 39◦C 120 minutes sample is selected as
an example. Log2 transformed data are shown. (a) RNA-seq. (b) Metabolomics. (c) ChIP-seq
(H4). (d) ChIP-seq (H4K12ac). Red diagonal line indicates perfect correlation between samples
.
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4.6 Omic-wise differential expression/quantification analysis

(380/815 for WT and 380/765 for mip6∆). This indicates that an
important part of the heat-shock response is common to both strains
(also shown in Figure 4.6). However, the number of non-common
changes is also relevant for both FT and ST and therefore there are
big differences between strains in terms of heat-shock adaptation. At-
tending metabolic changes (Figure 4.8.a), only a few metabolites are
significant and most of them are common between strains and be-
tween transitions which could suggest adaptation to an initial status.
Interestingly, ST comparisons present a higher number of significant
changes that could indicate a slower metabolic response compared to
changes in gene expression. Lastly, results from ChIP-seq data (Figure
4.8.b) show a big difference between strains in terms of the number of
significant changes. mip6∆ mutant seems less capable to modify the
chromatin compared to the WT . In addition, the number of common
changes between strains is much lower compared to metabolomics and
RNA-seq analyses.

In order to analyze between-strain differences, maSigPro [59] was used
to extract all DEF between strains considering baseline status and
changes in time. Figures 4.6.b and c represent the modeling of two
different genes using maSigPro. These two panels correspond to the
analysis of gene expression data. Figure 4.6.b shows a gene expression
profile where the interaction strain x time is significant. On the other
hand, in Figure 4.6.c the interaction strain x time2 is significant but
not the coefficient for strain x time. Therefore, all features that have
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one significant strain-associated coefficient in maSigPro models (see
Equation 4.9), were selected as DEF. This analysis was also performed
for metabolomics and ChIP-seq data (results not shown).

4.7 Multiomic data integration

4.7.1 PEA identifies significant differences between
strains supported by all omics

Significant DEF returned by maSigPro were uploaded to PaintOmics
for PEA. Two different analyses were run: i) integration of RNA-seq
and metabolomics data, ii) integration of RNA-seq, metabolomics and
ChIP-seq data. Significant gene sets or pathways are shown in Table
4.2 and Table 4.3 for runs (i) and (ii), respectively. Only significant
pathways (combined p-value < 0.05) are shown.

Table 4.2: PEA analysis with all gene expression and metabolomics data.

Pathway Combined p-value
Protein processing in endoplasmic reticulum 0.000
Proteasome 0.000
Starch and sucrose metabolism 0.001
Glycolysis / Gluconeogenesis 0.001
Biosynthesis of secondary metabolites 0.002
Pentose phosphate pathway 0.005
Terpenoid backbone biosynthesis 0.012
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4.7 Multiomic data integration

Base excision repair 0.012
Homologous recombination 0.016
Longevity regulating pathway - multiple species 0.016
Carbon metabolism 0.016
Sulfur metabolism 0.018
Ether lipid metabolism 0.025
Glycerophospholipid metabolism 0.028
DNA replication 0.045

Table 4.3: PEA analysis with all omic data

Pathway Combined p-value
Protein processing in endoplasmic reticulum 0.000
Proteasome 0.003
Glycolysis / Gluconeogenesis 0.003
Starch and sucrose metabolism 0.005
Biosynthesis of secondary metabolites 0.006
Terpenoid backbone biosynthesis 0.019
Ether lipid metabolism 0.025
Carbon metabolism 0.030
Pentose phosphate pathway 0.034

Regarding analysis (i), central carbon metabolism routes (e.g. Glycol-
ysis, Pentose phosphate) and carbon metabolism in general are signifi-
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Figure 4.6: Differential expression analysis of RNA-seq data. a) Strain-wise comparisons using
limma. FT (First Transition, 39◦C 20 min. vs 30◦C 20 min.) and ST (Second Transition, 39◦C
120 min. vs 39◦C 20 min.). The total amount of DEF are represented as an horizontal barplot
with gray bars at the bottom-left part of the panels. Intersections between different comparisons
(yellow dots) are represented as blue bars in the center of the panels. b) and c) maSigPro model
two randomly selected genes. Dots and straight lines represent observed data and average value
across time points. Dashed lines represent maSigPro models. WT is shown in red and mip6∆

in green.
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4.7 Multiomic data integration

Figure 4.7: Differential feature analysis of metabolomics (a) and ChIP-seq data (b). Strain-wise
comparisons using limma. FT (First Transition, 39◦C 20 min. vs 30◦C 20 min.) and ST (Second
Transition, 39◦C 120 min. vs 39◦C 20 min.). The total amount of DEF are represented as an
horizontal barplot with gray bars at the bottom-left part of the panels. Intersections between
different comparisons (yellow dots) are represented as blue bars in the center of the panels.
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Chapter 4. Generating a multiomic dataset

cant. All these pathways are more active in the mip6∆ mutant during
heat-shock treatment. Additionally, DNA replication is also more ac-
tive in the mutant. When ChIP-seq data is incorporated (ii), the same
central carbon metabolism pathways stay as significant although a con-
siderable lower number of gene sets are significant.

4.7.2 Multi-Block PLS finds consistent changes across
omics

Compared to PEA, with MB-PLS we aimed to find those metabolic
changes supported by RNA-seq and ChIP-seq data. Therefore, in this
analysis, metabolomics data is the response matrix (Y ) while the other
two omics are the explanatory matrices (X1 and X2). Figure 4.8 shows
the latent space of the MB-PLS model for every omic type. All omic
data types show similar results. Component 1 separates baseline status
from heat-shock time points (specially 120 min.) and component 2
separates 39◦C 20 min. and 39◦C 120 min. samples. Thus, time or
heat-shock effect is stronger than strain differences.

Lastly, component 3 separates strains (Figure 4.8.d). Therefore, this
analysis shows that experimental conditions (strain and time after heat
stress) explain data variability of the three omic data types. Further
analyses on the relationship among omic data types and the differences
between both strains will be adressed in the next chapter.
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4.7 Multiomic data integration

Figure 4.8: Score plot of MB-PLS analysis. (a) RNA-seq space for PLS Components 1 and 2. (b)
ChIP-seq space for components 1 and 2. (c) and (d) Metabolomics (response) for components
1, 2, 3 and 4.
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4.8 Discussion

Gene transcription and transcriptional regulation are among the most
studied mechanisms in molecular biology. Histone acetylation is gen-
erally associated to active transcription of genes around the modified
histones. However, ChIP-seq signal and RNA-seq data are not always
100% concordant as many post-trancriptional regulation processes also
take place in living cells. Histone modifications require cellular com-
pounds that are in turn produced inside the cell through metabolic
reactions. Thus, to have a complete understanding of biological pro-
cess regulation, different layers of information are needed. The data
we are releasing is a robust multiomic dataset. It contains three layers
that goes from genotype, ChIP-seq data, to phenotype (metabolomics)
through transcriptome (RNA-seq). This represents an unique opportu-
nity to study RNA-metabolism in yeast and to assist the development
of multiomic integration tools. Due to sample management limitations,
samples were generated on two different days which led to a batch ef-
fect. Nonetheless, samples were randomized and thus the batch effect
can be modelled and in turn removed from data.

The quality of sequencing and NMR assays were optimal and samples
show high replicability. PCA analyses after batch effect correction
separate samples according to time in the first place. This means
that the heat stress is the predominant effect which represent most
of the variability of the data. These data are reliable as they reflect
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the state of the art knowledge about heat response in yeast. Global
transcriptional shut down and trehalose production increase are two
main impact of heat-shock in yeast and these processes encompasses
the three layer of information studied.

Within-strain differential expression/quantification analysis confirmed
that an important fraction of heat-shock response was common in
both strains. However, we have also found differences between strains
at every omic data type and thus they also responded differently to
heat stress in some extent. Contrary to RNA-seq data analysis, in
the analysis of metabolomics data the number of significant changes
in the first transition was lower compared to second transition. This
could indicate that transcriptomic changes occur faster and precede
metabolomic changes. Finally, the analysis with ChIP-seq data showed
that the number of significant changes in WT samples was higher
compared to mutant cells. In other words, mip6∆ mutant was less
efficient in modifying histone acetylation status after heat stress.

Delving into between-strains differences, Pathway Enrichment Analysis
(PEA) supported by three omic data types revealed that part of car-
bon metabolism (Glycolysis, Pentose phosphate pathway, Starch and
sucrose metabolism and Biosynthesis of secondary metabolites) was
overactivated in the mip6∆ mutant compared to WT samples dur-
ing heat stress. Finally, Multiblock PLS (MB-PLS) analysis confirmed
that metabolic changes were in the same direction as transcriptomic
and histone acetylation signals.
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All of the above taken together, confirmed the usefulness of these
data for multiomic integration purposes, either method development
or biological insight discovering. Yeast strains included in this study
showed signals of differential behavior regarding heat-shock adapta-
tion. However, a key part of heat stress response was common for both
strains. Data-driven multiomic integration approaches have been useful
for finding between-strain differences although they lack of mechanistic
interpretation. The fact that the heat-shock effect has been shown to
be stronger than the strain effect makes the development of novel mul-
tiomics integration approaches challenging, as a high level of sensitivity
will be required to uncover differences between yeast strains.
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Development of a model-driven
multiomic integration approach

[1] Manuel Ugidos, Carme Nuño-Cabanes, Sonia Tarazona, Alberto
Ferrer, Lars K. Nielsen, Susana Rodríguez-Navarro, Igor Marín de Mas
and Ana Conesa. MAMBA: a model-driven, constraint-based multi-
omic integration method. BioRxiv, 2022.10.09.511458.
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5.1 Introduction

The availability of sequenced genomes, together with the annotation
of genes and their functions has facilitated the reconstruction of high-
quality genome-wide metabolic networks, the so-called, genome-scale
metabolic models or GEMs [174]. These metabolic networks gather
all the known metabolic reactions identified in an organisms genome
and incorporate information about stoichiometry, thermodynamics and
optionally the associations between the reactions and proteins/genes
involved. Constraints-based modeling (CBM) is a family of mathemat-
ical methods suitable for the analysis of these large metabolic networks.
When CBM is applied to GEMs, the fluxes through metabolic reac-
tions represent the model variables to be estimated. The computation
of each variable in CBMs is constrained by a minimum and maxi-
mum range of values. CBMs calculate flux distribution through the
metabolic network that satisfies two fundamental types of constraints
[9] i) steady-state mass-balance, which sets the total production and
consumption rates for each metabolite to be equal; ii) capacity, i.e., up-
per and lower bounds for fluxes can be imposed. One of the most widely
used CBMs is Flux Balance Analysis (FBA). This method describes the
phenotype of an organism making use of an objective function (OF)
that needs to be optimized (i.e. biomass maximization) [175]. The
OF, together with the stoichiometric and thermodynamic parameters
-embedded in the metabolic model- and the imposed constraints are
formalized as numerical matrices that can be solved by a number of

149



Chapter 5. Development of a model-driven multiomic integration approach

mathematical optimization algorithms and software developed for this
purpose to define tissue/organism-specific metabolic network flux pro-
file [93].

In order to improve the metabolic network characterization by CBM
methods, additional biological data can be included into GEMs. One
of the first extended CBM method was the GIMME algorithm [95],
that proposed the incorporation of gene expression data into the FBA
model. GIMME connects a given metabolic reaction to the genes en-
coding the enzymes that carry out the reaction. To determine the
output of reaction fluxes, GIMME minimizes the usage of reactions
where lowly-expressed genes participate, while keeping the OF above a
certain value. Reactions and genes are connected by a set of Boolean
rules that associate reactions to the expression state of the involved
genes using a binary representation. These rules are known as gene-
protein-reaction associations or GPRs and they indicate the collection
of proteins (isozymes, enzymatic subunits, etc.) required for the reac-
tion to carry flux. To determine the expression state of genes, GIMME
and other CBMs require a set of user-supplied expression thresholds
for classifying genes, and in turn reactions, generally as on or off [96],
although more states can also be used. These arbitrary thresholds have
a strong impact in the output of the method and hence must be care-
fully selected, which is an important caveat of such CBMs. Notably,
other approaches that do not require user-supplied expression thresh-
old values have also been developed, e.g. MADE [98]. MADE relies
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on expression data from two or more experimental conditions and uses
the results of a differential expression analysis to determine gene states
across conditions. The inclusion of transcriptomics data into CBMs has
been successfully used for predicting associations between silencing or
expression of genes and the metabolic capabilities of an organism [174,
176]. These approaches rely on the proven existence of a correlation
between transcript levels and reaction activity [177] and it has been
widely demonstrated that GEMs become more powerful by integrating
additional molecular information [178].

Metabolomic data have also been included into CBMs to improve
metabolic network characterization [66, 99, 100, 179]. Metabolomics
are typically integrated into GEM reconstruction analyses as a set of
capacity constraints that limit the flux through a given reaction/s.
To this aim, metabolomic data from experiments using isotopically la-
beled subtrates or absolute quantification from label-free experiments
can be used [28]. However, the inclusion of semi-quantitative (rela-
tive quantification) metabolomics into CBM still remains challenging.
Furthermore, there is growing evidence of a significant contribution of
epigenomics features such as chromatin modifications to the regulation
of the metabolism and vice versa [101, 103, 105]. However, the incor-
poration of chromatin modification data into the CBM framework has
not been yet reported. Finally, to the best of our knowledge, methods
enabling the integration of non-quantitative metabolomics and tran-
scriptomics data combining different time points and conditions are
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still not available. All together, these considerations imply that despite
the power of CBM for modelling metabolic fluxes, there is a significant
number of applications for which these methods have not been adapted
yet. This represents a gap in our understanding of metabolic regula-
tion at large, and a missed opportunity for the analysis of a wealth of
multi-omics data that include metabolomics measurements together
with other molecular layers and/or a variety of experimental designs.

In this chapter we present MAMBA (Metabolic Adjustment via Multi-
omic Block Aggregation), a constraint-based genome-scale metabolic
reconstruction model that integrates gene-centric omics measurements
such as gene expression or histone modifications without requiring ar-
bitrary expression thresholds, and semi-quantitative metabolomic data.
Any experimental design can be modeled with MAMBA. When analyz-
ing time-series data, MAMBA considers the dynamics of the system by
including all time-points in the same model. MAMBA has been tested
with a multi-omic time-series yeast dataset consisting of two strains,
mip6∆ mutant and Wild Type (WT ) subject to heat-shock treatment.
Samples were obtained at three different time points: baseline, 20 min.
and 120 min., after heat-shock and profiled for metabolomics, RNA-
seq and ChIP-seq. MAMBA showed a better performance than other
CBMs to predict metabolite changes, found key differences between
strains regarding dynamic adaptation to heat stress and revealed differ-
ences between the transcriptional and chromatin control of metabolic
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fluxes. MAMBA was implemented in MATLAB and it is freely available
at https://github.com/ConesaLab/MAMBA.git.

5.2 Data and computational details

In this work we have used a multiomic dataset from yeast previously
generated in our lab and deeply explained in the previous chapter and
detailed at Nuno-Cabanes et al., 2020 [113]. Briefly, this dataset con-
sists of gene expression RNA-seq, NMR targeted metabolomic data
and H4K12ac ChIP-seq data generated from the same samples. Yeast
cells were subjected to heat stress and measurements were taken at
three different conditions: 30◦C 20 min., 39◦C 20 min. and 39◦C 120
min. Two different strains were analyzed: Wild Type (WT ) yeast cells
and a strain lacking the mip6 gene (mip6∆), which is a factor involved
in mRNA metabolism [106]. The improved iMM904 Saccharomyces
cerevisiae GEM model [180] was used as the yeast metabolic network.
This metabolic model contains 1226 metabolites, 1577 reactions and
905 genes. RNA-seq data covered the totality of metabolic genes in
the GEM, however only 30 metabolites of the metabolic model were
present in the NMR data, that included 4 sugars, 12 amino-acids, 4
alcohols, 5 carboxylic acids, and other compounds (CMP, NAD, Glu-
tathione, ATP and GMP).

RNA-seq, ChIP-seq and metabolomics data were pre-processed as de-
scribed in Nuno-Cabanes et al., 2020 [113]. Differential gene expression
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and H4K12ac levels were calculated using the limma package [53] and
FDR corrected p-values were used (see Chapter 4 for more details).
The MAMBA method was implemented in Matlab, and Gurobi library
[181] was used as the default solver for linear programming problems.

5.3 Description of the approach

5.3.1 Flux Balance Analysis

Given a metabolic network model containing M metabolites and L

reactions, FBA formalizes the mass balance of internal metabolites as
a set of linear equations that satisfy the condition:

L∑
j=1

sijxj = 0, i = 1, . . . ,M, (5.1)

where xj corresponds to the flux of reaction j, and sij stands for
stoichiometric coefficient of metabolite i in reaction j. This condition
represents the steady state or null neat mass balance, i.e. that for
all cellular metabolites in the network the sum of all productions and
consumptions equals zero. FBA calculates x (vector of fluxes for all
reactions) given S (an M x L stoichiometric matrix), which is known
from the metabolic network model. Capacity constraints can be added
to the equation system as inequalities to delimit the solution space:
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lbj ≤ xj ≤ ubj , j = 1, . . . , L (5.2)

where lbj contains the lower bounds of the reaction j, i.e., minimum
flux value that reaction j is allowed to carry; and ubj indicates upper
bound of reaction j.

For most metabolic networks, this results in an undetermined system of
equations. Thus, the FBA method makes use of linear programming
(e.g.: mixed- integer linear programming or milp) to determine the
optimal flux distributions given the objective function, OF (f(x)):

maxf(x)

subject to (5.3)

Sx = 0

lb ≤ x ≤ ub

The OF, f(x), contains coefficients associated to the values of x to
satisfy the restrictions imposed to the model. In regular FBA, the OF
is usually the maximization of the biomass production reaction and
therefore, only the coefficient of the reaction of biomass production
biomass is set to be distinct from zero. However, the coefficients in
f(x) can be customized to maximize any reaction in the metabolic
network or combination of reactions.
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Figure 5.1 describes FBA model construction for a small toy metabolic
network, where biomass production is obtained through reaction R5

(x5). The metabolic network model provides all required objects except
x, which is the model solution. FBA can only be applied to a single
condition or biological status.

Metabolic model
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Figure 5.1: Illustration of FBA. a) Representation of the metabolic network. b) Mathematical
representation of FBA elements. c) FBA formulated as a linear programming problem. d)
Example of a FBA solution for the toy network.
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5.3.2 Integration of gene/protein associated
information into GEMs

Gene-protein-reaction rules (GPRs) describe the associations between
genes/proteins and reactions by using Boolean definitions that repre-
sent the gene(s) encoding the protein(s) required to catalyze a given
reaction. Therefore, GPRs unlock the integration of gene/protein
associated omic data into metabolic models resulting into the so-
called Genome-scale metabolic models or GEM, that contains both the
metabolic network and the gene-reaction associations. GPRs are used
to constraint the fluxes of metabolic reactions based on gene/protein-
associated omic data. As shown in Figure 5.2, a metabolic reaction is
allowed to be active if and only if the associated GPR is TRUE, which
is determined by the expression state of the gene(s) involved. These
GPR-dependent constraints are included within the capacity constraints
into CBM. Additionally, MAMBA introduces stoichiometric GPRs (S-
GPRs) into the model which provide the information about the sub-
units resulting from the transcription of each gene required to have a
catalytically active unit [182].

5.3.3 Formalizing multiomic-based constraints in
MAMBA

MAMBA uses omic data on top of the metabolic model to constraint
the FBA solution. In particular, a gene-centric omic data type (e.g.
gene expression) and metabolomic data are used to formulate new
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Figure 5.2: Graphical representation of GPRs. Left panel represents a GPR for enzyme subunits
that have an “AND” relationship where both genes need to be expressed for the reaction to
be active. Right panel represents a GPR for enzyme isoforms, which are modelled by “OR”
relationships.

model constraints. Therefore, MAMBA requires several input data in
addition to the metabolic model. MAMBA works by simultaneously
modeling all experimental conditions under study (two at least) as it
uses relative feature quantification. Regarding gene-centric omic data,
the algorithm needs the output of a differential feature analysis, i.e., an
effect-size measure and the associated p-values. Similarly, metabolite
ratios (or an effect-size measure as well) between conditions must be
also given to the model as input data. MAMBA modifies the elements
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of FBA model (Equation 5.3) according to the input data as described
below (Figure 5.3).

5.3.3.1 Gene/protein associated data

MAMBA works with differential values between two comparing condi-
tions -the usual design of omics experiments- rather than with absolute
values. By using differential data, MAMBA bypasses the difficult task
of defining absolute threshold values to determine different levels of
gene expression. More importantly, MAMBA allows the incorporation
in the model of any type of omics data, as long as a gene/protein
associated value can be computed, thereby unlocking the utilization
of multi-omics data in FBA. In the reminder of the model formula-
tion, we will use the notation gene to generally represent any omics
measurement that can be associated to a gene ID such as expression,
protein or chromatin data. Consequently, constraints over reactions
can be generated based on different omic data types and, by com-
paring the resulting models, inferences can be done about the control
of the metabolic network by different molecular regulatory layers. In
this work, we demonstrate MAMBA using gene expression (RNA-seq)
and histone modification (ChIP-seq) data, but other omics modalities,
such as DNA methylation or chromatin accessibility could also be used.
To incorporate gene-associated omics measurements, MAMBA adapts
the MADE model [98] developed for gene expression data. The algo-
rithm requires an effect size measure (typically, log2 Fold-change) or a
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statistic that compares gene values across conditions, together with the
associated p-values. Based on the omics data, genes are classified into
three categories: UP (gene activity increases significantly), DOWN
(gene activity decreases) and CONSTANT (non-significant change).
The algorithm finds a sequence of binary expression states (one gene
state for each comparing condition) that best fits the differential ex-
pression data. Formally, the sequence of binary gene states returned
by the algorithm is expressed as:

argmin
x∈X

N−1∑
i=1

w(pi→i+1)|di→i+1 − xi→i+1| (5.4)

where N is the number of conditions, i → i+ 1 represents a transition
from condition ni to ni+1, x is the solution vector containing the pre-
dicted binary gene states, p contains the associated p-values for each
transition, w() is a weighted function used to prioritize gene state cal-
culations and d is the vector of observed differences being: 1 for UP
genes, -1 for DOWN genes and 0 for CONSTANT genes. Typically the
weighted function w() is the -log10(p-value) of the differential expres-
sion, implying that when two gene transitions (gene states) are not
simultaneously feasible, p-values are used to prioritize and the tran-
sition associated to a lower p-value is reflected in the output of the
model. MAMBA uses equation 5.4 to find a solution of gene states
(i.e., 0 or 1) that minimizes the differences between the observed and
predicted gene state changes. However, in the formulation of the sto-
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ichiometric matrix, vector of differences (d) cannot be included and
hence an equivalent expression of equation 5.4 is used. Therefore, for
a given transition i → i+1, the OF for MAMBA can be defined as the
following weighted sum:

fi→i+1(x) =
∑
x∈U

w(pi→i+1)(xi+1 − xi)

+
∑
x∈D

w(pi→i+1)(xi − xi+1)

−
∑
x∈C

w(pi→i+1)∆xi,xi+1

(5.5)

where U is the list of UP genes, D is the list of DOWN genes and C
is the list of CONSTANT genes. Regarding UP genes, if the solution
matches the expected output (xi = 0 and xi+1 = 1), the first element
of this equation will be positive and therefore contributes to maximize
f(x). The same occurs for DOWN genes as the position of xi and
xi+1 is swapped in the formula. Finally, the third element controls
the contribution of constant genes to the OF by defining ∆xi,xi+1 as a
binary variable that takes the value 0 when xi = xi+1 and 1 otherwise.
Thus, the third element is negative when the solution does not match
the expected result, thereby penalizing f(x).
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5.3.3.2 Metabolomics data

Next to gene-associated omics data, MAMBA also incorporates into
the model semi-quantitative metabolomics data obtained from com-
paring experimental conditions. To add metabolomics data to the
MAMBA model, we incorporated the concept of sink reaction pre-
sented in Schmidt et al., 2013 [66]. This implementation consists of
creating a new set of artificial metabolic reactions, the sink reactions,
that connect measured metabolites to the GEM through a two-step
process. First, reversible reactions are transformed into two irreversible
reactions. Next, for each measured metabolite, a turnover metabolite
is added to the model and connected to every reaction that produce
or consume the actual measured metabolite. Finally, a sink reaction
is included having the turnover metabolite as unique reactant and no
products (Figure 5.3.a). To ensure that all detected metabolites have
associated sink reactions with non-zero flux in the solution, the lower
bound of sink reactions is set to a small positive value limited by the
linear programming solvers numerical tolerance [ 10−8 [181]].

Once turnover metabolites and their corresponding sink reactions are
included in the model, constraints can be formulated. Basically, the
observed metabolite ratios between conditions are modeled. For in-
stance, let us consider a metabolite m measured in two conditions, A
and B with values mA = 6 and mB = 12. Since the quantification of
m is two times greater in condition B than in A, the flux of m through
the sink reaction in condition B should be twice the flux through the
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sink reaction in condition A. This ratio requirement can be added to
the model by imposing both lower and upper bounds of sink reactions
to have the same ratio relationship. However, such modification of
the capacity (hard) constraints dramatically decreases the number of
feasible solutions. Instead, a penalty on the OF, which is a soft model
constraint, was implemented as the parameter r, which reflects the
difference between the observed and the predicted ratio. In order to
deal with positive and negative deviations of the solution with respect
to the expected ratio, two different penalty scores are created, r+ and
r− (Figure 5.3.b and c). The difference between both is that r+ is
constrained to be greater than or equal to zero and r− is constrained
to be lower than or equal to zero. To illustrate the meaning of these
two penalty scores, let us consider v as the flux through the sink reac-
tion associated to metabolite m and only two conditions (A and B),
the penalty imposed is derived from:

vA × mB

mA
− vB + r+m + r−m = 0 (5.6)

From the expression above, one can derive that the lower the values
of r+m and r−m , the higher the concordance between observed and
modeled metabolite ratios. Therefore, the model is forced to minimize
both penalty values:

argmin
m∈M

N−1∑
i=1

r+m,i→i+1 + |r−m,i→i+1| (5.7)
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where N is the number of conditions and M is the number of metabo-
lites (or number of sink reactions). Finally, the new component is
included in the OF (Equation 5.5) and its final form is:

fi→i+1(x) =
∑
x∈U

w(pi→i+1)(xi+1 − xi)

+
∑
x∈D

w(pi→i+1)(xi − xi+1)

−
∑
x∈C

w(pi→i+1)∆xi,xi+1

−
∑
m∈M

g(m) (r+m,i→i+1 + |r−m,i→i+1|)

(5.8)

The expression above is the final OF that MAMBA maximizes to find
the optimal solution for i = 1, . . . , N , being N the number of conditions.
Note that an additional weight function for metabolomic constraints,
g(m), has been included. This function has the purpose of balanc-
ing gene expression and metabolomics constraints to give them similar
weights in the OF. Since constraints from gene expression include a
weight function, w() based on p-values, these constraints may be very
strong for very low p-values, e.g. w(1 × 10−100) = 100 (considering a
p-value = 1 × 10−100). Additionally, without considering any weight
function for metabolomic constraints, every deviation from the actual
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ratio has the same penalty. For instance, let us consider two metabo-
lites m1 and m2 having observed ratios between 2 conditions A and B

defined as: m1,A→B = 3 and m2,A→B = 6, while their predicted ratios
are ˆm1,A→B = 2 and ˆm2,A→B = 5. Both metabolites would contribute
to the OF with the same magnitude, −1, which is the penalty associ-
ated to the difference between observed and predicted ratios according
to Equation 5.6. However, the prediction for metabolite m2 is more ac-
curate than for metabolite m1 (5/6 > 2/3). To account for this issue,
ratios of metabolites are standardized between 0 and 1, being 1 the
highest observed ratio. The metabolite weight function, g(m) captures
these two considerations by defining g(m) as:

g(m) = 1× 10(p−sm) (5.9)

where p is the value of the highest p-value of the gene expression data
after w() (-log10) transformation (considering only genes included into
the GEM) and sm is the standardized ratio of metabolite m. Consider-
ing the previous example with two metabolites, the standardized ratio
for metabolite m1 is 0 and for m2 is 1. Hence, the penalty for m1 is
g(m1) = 1 × 10(p−0), while the penalty for m2 is g(m2) = 1 × 10(p−1),
and therefore, penalty of m2 is lower than penalty of m1 (as p is a
common value).

Finally, MAMBA representation as a linear programming optimization
problem is defined as follows:
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maxf(x)

subject to
(5.10)

L∑
j=1

aijxj ≤ bi, i = 1, . . . ,M, (a)

lbj × zj ≤ xj ≤ ubj × zj (b)

where A (with general element aij) contains original stoichiometric
matrix and transcriptomics and metabolomics constraints, vector b

sets the boundaries of the constraints that can be different from zero,
vector x is the optimal solution to be found and vector z contains the
S-GPR constraints, i.e, zj is 1 if the S-GPR is TRUE and 0 otherwise.
Finally, the final OF including all transitions is represented as f(x) =∑N−1

i=1 fi→i+1(x)

5.3.4 Evaluation of MAMBA method

5.3.4.1 Sensitivity and Robustness analysis

The sensitivity analysis consists in evaluating the impact of each re-
action state on the optimization function. Each reaction, one by one,
was forced to be active (A) or inactive (I) at every condition by mod-
ifying capacity constraints, i.e. a given reaction is forced to be active
by setting its lower bound > 0 and it is forced to be inactive by set-
ting both, lower and upper bounds, equal to zero. The optimization
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function was evaluated in each case and compared to the MAMBA
model without forced reactions. In case the result equals the unforced
model, the reaction is deemed not to be part of the solution, while if
the result is substantially different, the reaction is considered critical in
the model. Therefore, sensitivity analysis identifies both the reactions
that most affect the optimization function and the reactions with an
undetermined state, i.e., the optimization result is the same whether
they are active or inactive. Robustness analysis identifies the consis-
tency of predictions as a function of changes in method parameters
and identifies reaction states (Active or Inactive) that are unambigu-
ously predicted by the model. The varying parameter in robustness
analysis is the logFC threshold to call a gene differentially expressed,
as this parameter is regularly set by the user. Tested logFC values
were set according to the overall distribution of logFC values between
all conditions in the experiment. In particular, quantiles 25, 50 and 75
of the logFC distribution were selected. In addition, logFC equal to 1
was also tested and consequently four different logFC thresholds were
evaluated in the robustness analysis. After performing both analyses,
highly confidence reaction states were determined consisting of those
reactions that pass both the sensitivity and robustness analyses. A
reaction has a highly confident or unambiguous state if i) a change of
its state reduces the result of the OF, and ii) its state does not change
when using different logFC thresholds.
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5.3.4.2 Evaluation of metabolite prediction accuracy

Since the MAMBA model can be used to predict metabolite levels, we
used metabolite prediction accuracy to evaluate MAMBA and compare
it with MADE, a related approach that incorporates gene expression
but no metabolomics data into the GEM. We evaluated the impact
of including metabolomic data into the model prediction error using a
leave-X-out strategy. Basically, we calculated the error of the MAMBA
model in predicting measured metabolites as an increasing number of
metabolites were incorporated in the model, i.e., we first fit a model
including measurements for one metabolite and compute metabolite
prediction error for the remaining metabolite dataset, next we fit the
model including measurements for two metabolites and calculate again
the error estimates. This was repeated increasing by one the number
of included metabolites to reach the complete MAMBA model that in-
cludes all available metabolite data and the whole process is repeated
one thousand times. The Root Mean Square Error of Prediction (RM-
SEP) [183] across all predicted metabolites at each leave-X-out itera-
tion was used as error metric.
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5.4 Results

5.4.1 MAMBA model

The MAMBA model unlocks the utilization of time-course non-quantitative
or relative metabolomics data from different analytic platforms such
as MS or NMR as well as widely adopted multi-omics approaches
that generate sequencing within the CBM framework for the study
of metabolic networks. A number of approaches address partially the
integration of these omics into a CBM framework. In this sense D-
MFA enables the integration of absolute metabolomics concentration
from time-course experiments into a metabolic models, however this
approach is limited to quantitative measurements and restricted to net-
works with low degrees of freedom imposing a strong limitation on the
size of the analyzed network. Other methods like MADE are limited to
the integration of transcriptomic data from time-course experiments
into GEMs. MAMBA addresses this limitation by using relative values
whereby the semi-quantitative omics data are modeled as transitions
(comparison between two conditions) [98]. Hence, the MAMBA frame-
work uses differential expression/quantification data to characterize the
metabolic network across N conditions enabling the dynamic modeling
of the system. Compared to a basic FBA, MAMBA includes two set
of constraints: gene/protein associated constraints and metabolomics
associated constraints.
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This reduces the solution space of the model and the characterization
of the metabolic network is more robust and accurate. A basic FBA
model is defined by (Figure 5.1): the stoichiometric matrix, S, that
indicates the association metabolites (rows) with reactions (columns);
vectors lb and ub that contain the minimal and maximal fluxes allowed
for reactions, respectively; vector b is the right side of the mass balance
equations and is equal to 0 at all its elements to meet the zero mass
balance condition; and vector c contains the reaction coefficients for
the optimization function. The output is a vector x with the same size
as c, i.e., columns of S. For MAMBA, gene/protein (via S-GPRs) and
metabolomic (via Sink reactions) associated constraints are included
alongside S, resulting into a new larger matrix, A . Figure 5.3.c shows
the design of A matrix with a toy metabolic network and considering
only two conditions.

5.4.2 Application of MAMBA to a yeast heat-shock
dataset improves metabolic prediction accuracy

The time-series multi-omic yeast data (see Section 5.2) was used to
test MAMBA. This is a multifactorial experimental design with two
factors: strain (2 levels: WT and mip6∆) and temperature-time (3
levels: baseline or 30◦C 20 minutes, 39◦C 20 minutes and 39◦C 120
minutes) where three omic modalities (RNA-seq, H4K12ac ChIP-seq
and metabolomics) were measured. A separate MAMBA model was
obtained for each strain, each of them including the three time points
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of the heat-shock treatment. Consequently, each MAMBA model con-
tains three conditions and two transitions, that is: i) First transition
= 30◦C 20 min. → 39◦C 20 min., and ii) Second transition = 39◦C
20 min. → 39◦C 120 min.. The two MAMBA outputs were then com-
pared to evaluate the differences between strains regarding heat-shock
adaptation. Table 5.1 shows the number of genes, H4K12ac peaks and
metabolites measured in our experiment and the number of differen-
tially expressed features (presented in Chapter 4) that were used to
feed the MAMBA models.
Table 5.1: Number of genes, H4K12ac peaks and metabolites measured in our experiment and
the number of differentially expressed features (see Methods for details) that were used to feed
the MAMBA models.

WT mip6∆

Total
First
transition

Second
transition

First
transition

Second
transition

Transcripts 6379 815 386 765 379
H4K12ac peaks
(gene-associated)

6379 248 196 114 29

Metabolites 42 8 16 14 15
Number of reactions

MAMBA model 1577 371 186 293 125

We used MAMBA results with the WT strain to validate the consis-
tency of the novel approach. First, predicted metabolite ratios were
compared with experimental measurements and prediction error was
calculated as Root Mean Square Error of Prediction, RMSEP (see sec-
tion 5.3.4.2 for details). In addition, MAMBA was compared with
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MADE algorithm, a similar method that only integrates transcriptomics
data [98]. MAMBA and MADE performances were contrasted to eval-
uate whether the inclusion of a new layer of omic information improves
the prediction accuracy of metabolites. We found that MAMBA out-
performed MADE in terms of metabolite ratios prediction accuracy
with lower RMSEP values in both transitions (Figure 5.4.a). More-
over, the prediction error decreased when each new metabolite data
was incorporated into the model (Figure 5.4.b). These results demon-
strate that the inclusion of metabolite measurements into the GEM
boosts network characterization. We also observed that metabolites
with other measured metabolites close in the metabolic network (e.g.
amino acids), had better predictions than isolated metabolites (Figure
5.4.c), which adds to the consistency of the MAMBA model when in-
corporating metabolic information. This analysis was performed with
the set of metabolites in the model that were measured with experi-
mental data (30).

MAMBA results also recapitulated the known biology. We delved into
the Trehalose pathway, which is a well-known process affected by heat
stress in yeast cells [184]. MAMBA predicted the activation of Tre-
halose production pathway after heat-shock and its maintenance at 120
minutes (Figure 5.5.a). However, trehalose metabolism genes were
down-regulated after 120 minutes compared to 20 minutes of heat
stress (Figure 5.5.b) which was not readily consistent with high tre-
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halose production at 120 minutes. Nonetheless, our metabolomic data
show trehalose rises steadily during heat stress (Figure 5.5.c). Indeed,
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Figure 5.5: MAMBA validation of biological consistency. a) Trehalose pathway: Predicted
reaction status. Trehalose pathway activity is predicted to increase at 20 min and to remain
active allowing trehalose accumulation. b) Expression of genes involved in trehalose pathway.
c) Trehalose quantification from NMR metabolomic data. d) MAMBA prediction of Trehalose
quantification.
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5.4 Results

MAMBA predicted Trehalose over-production (Figure 5.5.d) regardless
of gene expression data. Again, this is consistent with the inclusion of
metabolomics data improving network characterization as only gene ex-
pression is not always completely representative of metabolic changes.

5.4.3 Deciphering differential behavior between strains

We next used MAMBA to study metabolic differences between strains.
Reaction states (active or inactive) were compared, and we found 211
reactions that had a different state between strains at one time point
at least (list of reactions at Appendix 4). To understand the biologi-
cal meaning of these differences, we performed a pathway-level anal-
ysis where yeast pathways from KEGG database were used. Given a
metabolic pathway P containing n reactions, we defined a pathway
enrichment score (PES) as the percentage of reactions of P contained
in the list of differential reactions identified by MAMBA (Q):

PES = 100× |P ∩Q|
n

(5.11)

In order to set a relevance threshold, we compared each pathway PES
to the PES in the general KEGG pathway, “Metabolic Pathways” -that
contains all metabolic reactions-, which was 17%. Thus, those path-
ways with a PES higher than 17% were selected as relevant pathways
to describe strain differences. This resulted into a list of 25 pathways
showed in Figure 5.6.a. We observed that this relevant pathways re-
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Chapter 5. Development of a model-driven multiomic integration approach

capitulate main biological changes across conditions using Gene Set
Variation Analysis (GSVA) method [63], that computes a sample-wise
score for each pathway that summarizes the expression of the genes
contained in it. An unsupervised clustering performed on the GSVA
scores Figure 5.6.a showed that samples (columns) were separated by
both experimental conditions (strain and time), indicating that the
list of relevant pathways summarized the main biological signal across
conditions.

To better represent the predicted activity for these relevant pathways,
we computed the pathway activity scores (PAS) that is the percentage
of active reactions (binary reaction status equal to 1):

PAS = 100×
∑n

i=1 δ(pi, 1)

n
, where δ(i, j) = 1 if i = j and 0 if i ̸= j

(5.12)

Figure 5.6.b represents PAS of two key processes within core carbon
metabolism, Glycolysis and TCA cycle. Activity scores for the rest
of relevant pathways can be found in Appendix 5. We observed that
mip6∆ mutant over-activates Glycolysis and TCA cycle while the WT

decreases the activity of TCA cycle and maintain the status of Glycol-
ysis. Similar to TCA, Pyruvate metabolism is down-regulated in WT

but over-activated in the mutant during heat stress. In fact, global
“Carbon metabolism” pathway presented the same pattern, and “Per-
oxisome metabolism” and “Pentose phosphate pathway” also showed
similar profile. “Fatty Acid (FA) degradation” profile was also different
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5.4 Results

between strains. WT maintains “FA degradation” over time while the
mutant showed a huge increase of FA degradation activity. Interest-
ingly, “FA degradation” and “Peroxisome metabolism” shared most of
the mapped differential reactions that were involve in Peroxisomal FA
degradation (PFAD). Analyzing the average flux through reaction in-
volved in PFAD we observed a consistent pattern where the average flux
decreases in the WT and stay flat in the mutant (Figure 5.6.c). Lastly,
activation scores of “Purine” and “Pyrimidine” metabolism pathways
slightly decrease in the WT and remains flat in the mutant.

The disconnection of TCA cycle and Glycolysis in the WT can be
explained by the increase in Ethanol (ETOH) production after heat-
shock (Figure 5.6.d). MAMBA predicts this differential behavior as the
modeled ethanol ratios for both transitions are 1.4 (time 20 vs time 0)
and 0.6 (time 120 vs time 20) for the WT (Figure 5.4.a).

Based on the list of differential reactions we then evaluated which
reactants and products were predominant. Table 5.2 shows that NAD-
H/NADPH were enriched as products of differential reactions, and
therefore NAD/NADP were enriched as reactants. Moreover, most of
the reactions that have either NADH or NADPH as products (12/15)
were down-regulated in the WT after heat-shock but not in the mu-
tant. This result suggested an imbalance in the generation of reducing
power between strains towards mip6∆ mutant.
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5.4 Results

Figure 5.6: Model of differential adaptation to heat-shock between strains revealed by MAMBA
analysis. a) Relevant pathways heatmap. Those pathways containing reactions with differential
activity state profile between strains were considered. Samples are fully separated according to
experimental conditions. b) Pathway activity score of Glycolisis and TCA cycle, calculated as
the percentage of active reactions. c) MAMBA predicted fluxes through peroxisomal fatty acid
metabolism reactions. MAMBA predicts a shutdown of this pathway in WT while it remains
active in the mutant. d) Ethanol quantification from NMR metabolomics data. e) Explanatory
model of metabolic differences found between strains. From the carbon source (glucose), the WT

produces ethanol, trehalose and LCFAs (Long-chain Fatty acids), that contributes to membrane
stabilization. On the contrary, mip6∆ mutant produces lactate + glutathione instead of ethanol,
a higher amount of trehalose and LCFAs, which are metabolized in the peroxisome to produce
H2O2 resulting in oxidative and heat stress for the mutant cells.

Table 5.2: Number of reactions that have NADH or NADPH as products (left) and NAD or
NADP as reactants (right) separated by whether they are in the list of 211 differential reactions
between strains. Significant enrichment assessed by Fisher’s exact test [61]

NADH/NADPH as products NAD/NADP as reactants
Yes No Yes No

Differential Reac-
tions

15 198 15 198

Rest 31 1333 35 1329
Fisher’s exact test
p-val:

0.0006 0.002

An explanatory model of the main metabolic differences between strains
found by MAMBA is represented in Figure 5.6.e. Starting from the car-
bon source (glucose), the WT produces ethanol, trehalose and LCFAs
(Long-chain Fatty acids), that contributes to membrane stabilization
[185]. On the contrary, mip6∆ mutant produces lactate + glutathione
instead of ethanol, a higher amount of trehalose and LCFAs, which are
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Chapter 5. Development of a model-driven multiomic integration approach

metabolized in the peroxisome to produce H2O2 resulting in oxidative
and heat stress for the mutant cells.

5.4.4 Evaluating the effect of mip6 affinity on metabolic
changes

We seized PAR-CLIP data, a technology that profiles RNA-protein in-
teractions, to assess to which extent metabolic differences between
strains might be caused by direct interaction with mip6. Mip6 is in-
volved in RNA export from the nucleus and in stabilizing mRNAs in the
cytosol through direct protein-RNA interactions [106]. PAR-CLIP data
was available for WT yeast strain on the same heat stress conditions,
indicating a total of 6685 mRNAs bound by mip6, with a small fraction
of them (488) showing differential mip6 affinity after heat stress [106].
We compared this list of mip6-bound RNAs to the 150 genes involed in
the differential reactions identified by MAMBA. We found that this set
of genes showed higher mip6 affinity both at normal growth condition
(30◦C) and after heat-shock (39◦C) (Figure 5.7.a and b) than genes
not involved in MAMBA-detected reactions. However, only 10 genes
showed differential mip6 affinity at 39◦C compared to 30◦C (Table 5.3).

Table 5.3: Genes involved in differential reactions identified by MAMBA and showing a significant
increasing mip6 affinity after heat-shock according to Martin-Exposito et al., 2019 [106].

Gene Name Description
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5.4 Results

Table 5.3: Genes involved in differential reactions identified by MAMBA and showing a significant
increasing mip6 affinity after heat-shock according to Martin-Exposito et al., 2019 [106].

Gene Name Description
AGP1 Low-affinity amino acid permease with broad substrate

range; involved in uptake of asparagine, glutamine, and
other amino acids; expression regulated by SPS plasma
membrane amino acid sensor system (Ssy1p-Ptr3p-Ssy5p);
AGP1 has a paralog, GNP1, that arose from the whole
genome duplication

SFA1 Bifunctional alcohol dehydrogenase and formaldehyde
dehydrogenase; formaldehyde dehydrogenase activity is
glutathione-dependent; functions in formaldehyde detoxi-
fication and formation of long chain and complex alcohols,
regulated by Hog1p-Sko1p; protein abundance increases in
response to DNA replication stress

PDE1 Low-affinity cyclic AMP phosphodiesterase; controls glu-
cose and intracellular acidification-induced cAMP signal-
ing, target of the cAMP-protein kinase A (PKA) pathway;
glucose induces transcription and inhibits translation

GRE3 Aldose reductase; involved in methylglyoxal, d-xylose, ara-
binose, and galactose metabolism; stress induced (os-
motic, ionic, oxidative, heat-shock, starvation and heavy
metals); regulated by the HOG pathway; protein abun-
dance increases in response to DNA replication stress

TPO1 Polyamine transporter of the major facilitator superfamily;
member of the 12-spanner drug:H(+) antiporter DHA1
family; recognizes spermine, putrescine, and spermidine;
catalyzes uptake of polyamines at alkaline pH and excre-
tion at acidic pH; during oxidative stress exports spermine,
spermidine from the cell, which controls timing of expres-
sion of stress-responsive genes; phosphorylation enhances
activity and sorting to the plasma membrane

ADH2 Glucose-repressible alcohol dehydrogenase II; catalyzes the
conversion of ethanol to acetaldehyde; involved in the pro-
duction of certain carboxylate esters; regulated by ADR1
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Chapter 5. Development of a model-driven multiomic integration approach

Table 5.3: Genes involved in differential reactions identified by MAMBA and showing a significant
increasing mip6 affinity after heat-shock according to Martin-Exposito et al., 2019 [106].

Gene Name Description
ADH1 Alcohol dehydrogenase; fermentative isozyme active as

homo- or heterotetramers; required for the reduction of
acetaldehyde to ethanol, the last step in the glycolytic
pathway; ADH1 has a paralog, ADH5, that arose from
the whole genome duplication

GRE2 3-methylbutanal reductase and NADPH-dependent
methylglyoxal reductase; stress induced (osmotic, ionic,
oxidative, heat-shock and heavy metals); regulated by
the HOG pathway; restores resistance to glycolaldehyde
by coupling reduction of glycolaldehyde to ethylene
glycol and oxidation of NADPH to NADP+; protein
abundance increases in response to DNA replication
stress; methylglyoxal reductase (NADPH-dependent) is
also known as D-lactaldehyde dehydrogenase

TPO4 Polyamine transporter of the major facilitator superfamily;
member of the 12-spanner drug:H(+) antiporter DHA1
family; recognizes spermine, putrescine, and spermidine;
localizes to the plasma membrane

One of the genes identified by the MAMBA analysis which showed a
differential mip6 affinity upon heat-shock was ADH1. This gene, re-
sponsible for the reduction of acetaldehyde to ethanol, showed a strong
mip6 affinity increase at 39◦C (Figure 5.7.c) what might explain its sta-
bilization in the WT and therefore the increase in ETOH production.
Interestingly, ADH1 expression did not change between strains after
heat stress which indicates that the lower ETOH production in the
mutant is not caused by differences in gene expression (Figure 5.7.c).
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Figure 5.7: Evaluation of mip6 PAR-CLIP data from Martin-Exposito et al., 2019 [106]. a)
Signal at 30◦C (normal growth condition). b) Signal at 39◦C (heat stress). Mip6 affinity is
compared between genes involved in differential reactions identified by MAMBA and the rest
of genes. Wilcoxon-test p-value is shown [186, 187]. c) ADH1 profile. [left panel] PAR-CLIP
data reflecting ADH1 affinity to mip6, which increases during heat-shock. [right panel] ADH1
expression with no significant differences between strains.
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5.4.5 Metabolic control by ChIP-seq signal
In order to understand the contribution of histone modifications to
metabolic control, MAMBA was run using ChIP-seq data instead of
gene expression to predict reaction fluxes. Firstly, we compared reac-
tion status between RNA-seq and ChIP-seq driven MAMBA models
and found a higher consistency for the WT as the status of 59.8%
of reactions were equally derived from both input data types, while
both outputs for mip6∆ mutant showed a consistency of 40.2% (Table
5.4). MAMBA model using ChIP-seq data also showed a huge differ-
ence between WT and mip6∆ regarding down-regulated reactions after
heat-shock, i.e. the mutant presented a lower number of reactions that
became inactive after heat-shock according to ChIP-seq data.

Table 5.4: Number of reactions that change over time in both strains according to RNA-seq
and ChIP-seq data.

Reaction profile RNA-seq model ChIP-seq model Overlap
First transi-
tion

Second
transition

WT mip6∆ WT mip6∆ WT mip6∆

Constant Decrease 96 57 75 23 64 14
Constant Increase 90 68 77 59 53 32
Increase Constant 68 118 57 101 42 80
Increase Decrease 69 99 12 48 8 37
Decrease Constant 93 54 86 19 75 5
Decrease Increase 141 22 103 0 91 0

Total 557 418 410 250 333 168

We also evaluated ChIP-seq data of those genes contained in the list
of relevant pathways (Figure 5.6.e), and we found statistically signifi-

186



5.5 Discussion

cant differences between strains regarding Peroxisomal FA metabolism
(Figure 5.8.a). WT ChIP-seq signal of this set of genes indicated a
decrease in histone acetylation signal, that was consistent with the
down-regulation of gene expression and the corresponding inactivation
of these metabolic reactions and of the flux through the pathway. On
the contrary, ChIP-seq data in mip6∆ mutant did not change. Figure
5.8.a and Table 5.4 show that mip6∆ mutant has a lower number of
de-acetylation changes compared to the WT . This difference between
strains was not due to gene expression differences of yeast HDACs (Hi-
stone Deacetylases) as they were similarly expressed in both strains
(Figure 5.8.b).

5.5 Discussion

In this chapter we have introduced MAMBA (Metabolic Adjustment
via Multiomic Block Aggregation), a constraint-based genome-scale
metabolic reconstruction algorithm that allows the integration of gene-
associated omic data and semi-quantitative metabolomics. Compared
to previous approaches, MAMBA has a better metabolite prediction
accuracy, which means a more accurate metabolic network character-
ization. Additionally, MAMBA simultaneously models multiple condi-
tions and can therefore be applied to the analysis of time-course data,
providing a modelling framework for dynamic processes. In this work,
we applied MAMBA to study metabolic regulation in two yeast strains
(WT and the mip6∆ mutant) after a heat-shock treatment.
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Figure 5.8: Peroxisomal Fatty acid metabolism control by ChIP-seq signal. a) ChIP-seq signal
of genes involved in peroxisomal FA metabolism. WT underwent de-acetylation of those genes
while no changes were present in the mutant. Statistical significance determined by Wilcoxon-
Mann Whitney test [186, 187] (***: p-value < .001; ****: p-value < .0001) . b) Expression of
the HDACs in S. cerevisiae. No statistically significant differences between strains were found.

The output of MAMBA recapitulates the known yeast behavior under
heat stress condition. Specifically, trehalose production is one of the
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most important heat stress response mechanisms and behaves as a heat
protector in yeast [184]. Trehalose production increases under heat
stress condition [188] and has been shown to be a powerful stabilizer
of proteins and membranes [189]. Only considering transcriptomics
data, our data showed that trehalose production reaches its maximum
at 20 minutes after the heat-shock and then it starts decreasing to show
at 120 minutes similar values to the initial ones. However, trehalose is
accumulated in cells according to metabolomics data and MAMBA was
able to reveal this behavior. Therefore, MAMBA is able to leverage
metabolomics data to improve overall metabolite prediction accuracy
beyond gene expression changes. Importantly, MAMBA is also use-
ful for driving novel biological findings. We focused on comparing
both strains in terms of heat stress adaptation. Using MAMBA, we
have identified the underlying mechanism that explains the differential
dynamics between strains both for transcriptomic and metabolomic
changes. Overall, our results suggest that the mutated strain has a
lower capacity to adapt to heat stress compared to the WT . We
found that Carbon metabolism (Glycolysis, Pyruvate metabolism and
TCA cycle among others) was differentially regulated between strains,
and in consequence, both strains adapt differently to the heat-shock
treatment. Results indicate a disconnection between TCA cycle and
Glycolysis in WT while the mutant requires more flux through these
pathways that could be related to energetic needs. This example also
demonstrates the advantages of model-driven approaches over tradi-
tional gene expression analysis. Following a standard differential ex-
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pression and functional enrichment analysis, TCA cycle was not iden-
tified as being differentially regulated between the two strains (Table
4.2), possibly because only 3 out of 31 genes annotated in TCA cycle
were differentially expressed, which are too few to support a significant
enrichment result. However, reactions codified by those three genes
are critical in the TCA cycle: Pyruvate Dehydrogenase (pyruvate to
ac-CoA), Citrate Synthase (Oxoglutarate to Citrate) and Aconitase
(Citrate to Isocitrate) and this critical contribution of these reactions
to the pathway activity was captured by the metabolic modelling.
Moreover, the analysis at reaction level returned important differ-
ences between strains regarding heat stress adaptation. MAMBA in-
dicated that mip6∆ mutants fail to shut the peroxisomal fatty acid
metabolism down which causes an increased oxidative and heat stress.
One subproduct of the peroxisomal FA degradation is Hydrogen Perox-
ide (H2O2) which generates heat when it is metabolized in the cell. This
may explain why the mip6∆ continues generating reducing power after
the heat-shock (Table 5.2) as well as why the mutant also produces
more Trehalose (heat protective effect) during heat-shock. Addition-
ally, the MAMBA model based on H4K12ac data indicated that the
inactivation of peroxisomal FA metabolism in the WT was controlled
epigenetically, which is consistent with previous studies showing that
the response to heat stress is associated to changes in chromatin acety-
lation [113]. Globally, the ChIP-seq MAMBA model indicated that the
mutant is less efficient in chromatin de-acetylation not only for peroxi-
somal FA metabolism genes but in general for the whole genome-scale
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model. Importantly, this observation in the mutant is not caused by
a lower expression of HDACs as they are not under-expressed in the
mutant. This opens up the question of the existence of a potential
histone de-acetylation regulatory mechanism beyond gene expression
of effector proteins, that might be linked to mip6.
Ethanol production during heat-shock was also different between
strains. Ethanol production increased in WT at time 20min after heat-
shock while it decreased in the mutant. Interestingly, mip6∆ increases
lactate production while WT does not [113]. In the metabolic model
used, lactate can only be produced by a reaction that also produces
glutathione, which is a well known source of cellular reducing power.
Additionally, ethanol production in yeast consumes reducing power in
the form of NADH. Therefore, the difference in the ethanol/lactate
production between strains could also be linked to peroxisomal FA
metabolism. Interestingly, PAR-CLIP data on the same WT strain
revealed a direct interaction between ADH1 and mip6 that could be
related to the known role of mip6 as an mRNA export factor and mRNA
stabilizer in the cytoplasm and an alternative explanation of ethanol
profile in the mutant compared to the WT .
Proline is also able to confer heat protection to yeast cells [190], how-
ever its production decreases during heat-shock in wild type yeast [188].
Proline production increased in the mip6∆ under heat stress strength-
ening the hypothesis of a higher-stressed mutants compared to WT

cells [113].
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All together, the MAMBA model of the mip6∆ mutant heat-response
suggests that the metabolism of the mutant is less flexible to environ-
mental challenges which may be related to the roles of mip6 in the cell:
i) interaction with HDACs and ii) mRNA export and stabilizer. As a
consequence, mip6 knockdown results into a hyper-stressed state com-
pared to WT and therefore the key yeast thermal protectors, trehalose
and proline, are overproduced in the mutant.
In conclusion, we have demonstrated MAMBA is a powerful methodol-
ogy for constructing robust metabolic networks. MAMBA outperforms
other GEMs in terms of metabolite prediction accuracy and is useful to
reveal patterns of metabolic control from the combination of match-
ing transcriptomic and metabolomic data. Moreover, MAMBA allows
the dynamic modeling of the system and therefore is specially power-
ful to analyze time-series data and compare over-time profiles among
different conditions.
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6.1 Conclusions

The main goal of this thesis was to develop new tools to advance the
system biology field for the integration of multiomic data to create
multi-layered systems biology models. Moreover, multiomic data gen-
erated as part of the PROMETEO project was used to support this
goal and the processing and analysis of different omic data types were
also an important part of this work. Additionally, we found a relevant
unsolved limitation in data meta-analysis which was the lack of batch
effect correction methods in multiomic experimental designs. In this
section, the conclusions of this thesis are summarized according to the
objectives defined in Chapter 2.

6.1.1 Objective 1: To develop the different specific
pre-processing pipelines for each omic data type.

• We processed different omic data types that were generated within
PROMETEO project: RNA-seq, Histone H4K12 acetylation ChIP-
seq and Metabolomics data. Data QC and normalization were
applied and batch effect was corrected as samples were collected
at two different time points.

• We evaluated the quality of our multiomic dataset by assessing
their reproducibility in terms of: i) technical replicability (correla-
tion between replicates) and ii) biological consistency (capturing
known yeast biology at heat stress).

• Omic datasets were submitted to public repositories [GEO
(RNA-seq and ChIP-seq data; GSE135568) and MetaboLights
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(Metabolomic data; MTBLS1320)] that ensures data standards
and data availability for the scientific community.

6.1.2 Objective 2: To develop a batch effect correction
algorithm for multiomic integration strategies.

• We developed a novel batch effect correction method, MultiBaC,
for multiomic designs when all the omic data types may not have
been measured for all the batches but there is a common omic
measured in all of them.

• We tested MultiBaC performance on simulated multiomic data
and checked that it works well for different batch effect magnitudes
and requires the validation of PLS models used as part of the
omic data prediction step. MultiBaC was compared to other two
alternatives [Trimmed Scores Regression (TSR) [143, 144] and
Joint-Y PLS (JY-PLS) [145]] and it showed the best performance.

• MultiBaC was compared to other batch-effect correction algo-
rithms (BECAs) [ARSyN [54], ComBat [116, 141] and limma [53]]
using real omic data where all omic data types included were mea-
sured across all the batches and therefore existing BECAs could be
applied. MultiBaC showed similar performance to other methods
even on non-common omic data types, for which MultiBaC does
not use the batch information, unlike the other approaches.

• We also applied MultiBaC to a real multiomic dataset and demon-
strated that batch correction preserves the biological signal of omic
data.
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• We created an R package, MultiBaC, that includes our method
and it was submitted to Bioconductor which is the reference soft-
ware resource for the bioinformatics community.

6.1.3 Objective 3: To develop novel multiomic
integration approaches.

• We presented MAMBA, a multiomic integration method that relies
on COBRA framework. MAMBA is the first CBM method that
allows the use of semi-quantitative metabolomic data which is the
most extended type of metabolomic data.

• MAMBA was compared to MADE [98], other method that only
incorporates gene expression data and checked that the inclusion
of metabolomic data into CBM boosts network characterization
and metabolite prediction accuracy.

• We applied MAMBA to our yeast multiomic dataset and validated
its performance by assessing how MAMBA captures known biology
of heat stress in yeast.

• MAMBA was also used to extract novel biological insights of a
non-characterized mip6∆ mutant yeast strain. By comparing the
metabolic networks predicted by MAMBA between the mutant
and WT strains, we found the main metabolic processes that are
affected in the mutant.

• MAMBA was coded as a Matlab toolbox and it is freely available
at github including comprehensive documentation.
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6.2 Research relevance

The relevance of this thesis is highlighted in the following points:

• This thesis has been developed within the framework of compet-
itive research project from the Conselleria dEducació, Cultura i
Esport (Generalitat Valenciana), coordinated among different re-
search groups. Thus, the tools developed have been used to an-
alyze the data generated during this project and therefore they
contributed to the dissemination of the results.

• Two open source software tools were presented in this thesis:
MultiBaC R package and MAMBA for matlab. They contain the
equally named methods developed in this thesis which can be used
by the scientific community to different purposes: MultiBaC al-
lows the batch effect removal in multiomic datasets and MAMBA
performs a multiomic integrative analysis. The fact that our soft-
ware tools are available at two well known software repositories
(Bioconductor and GitHub), makes them easily accessible for po-
tential users from the scientific community. In addition, they are
properly documented allowing anyone to learn how to use them.

• Both MAMBA and MultiBaC are tools that allow the use of data
in a way that was not possible until now. MultiBaC facilitates
the integration of data from different batches which leads to take
advantage of public data already generated in order to complete
other multiomic datasets. MAMBA, on the other hand, allows
the use of targeted and untargeted semi-quantitative metabolomic
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data, which existing methods cannot do. This opens a way for
researchers to use metabolomic data that they might have not
used before. Additionally, both of them are contributions to the
growing System Biology field which makes them more relevant as
the number of potential users will increase in coming years.

6.3 Future research lines

This PhD dissertation opens some future lines:

Improvement of MultiBaC.
MultiBaC is a very versatile method that is built based on PLS
regression models. We saw that MultiBaC’s performance is highly de-
pendent on the PLS model validity to catch data variability. However,
sometimes bad PLS models can be easily modified to improve their
performance via the inner relation. The inner relation in a PLS model
is the type of relation assumed for X scores and Y scores. It is usually
linear (as in the case of MultiBaC) but it can be transformed into any
kind of relationship. In this sense, MultiBaC could be improved by
allowing alternative non-linear inner relations in the PLS model.

Improvement of MAMBA.
As we have explained in Chapter 4, MAMBA constraints are based on
two omic data: metabolomics plus a gene-centric omic layer. However,
MAMBA’s optimization function is modular and can be adapted to new
layers of omic data. Yet, it would be neccessary to evaluate in deep the
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impact of each layer on the final output and then formulate an omic
weighting solution that could allow the method adaptation to different
characteristics of different omic data types. This way of improvement
adds new parameters to the model that should also be evaluated via
sensitivity-robustness approach as explained in Chapter 4.
In addition, MAMBA can be coded as a toolbox for matlab or either
as an R package. The latter is still not possible as COBRA toolbox is
not yet available for R language (opencobra.github.io).

Experimental validations.
Biological insights obtained from MAMBA application have not been
fully validated yet. Although we demonstrated that MAMBA output
matches with the current knowledge of metabolic changes in yeast
after heat-shock, the new findings and hypothesis need to be validated
before publication to assess the reliability of MAMBA’s results.
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Hardware

The computations in this work have been carried out with a MacBook
Air Intel Core i7, CPU 2,2 GHz, 8GB of RAM and the cluster system
of Príncipe Felipe Reseach Center for heavier computational tasks.

Software

1. Operating systems:

• Mac OS Mojave 10.14.6
• UNIX cluster with Portable Batch System (PBS).

2. Programming environments:

• MATLAB 2014a (COBRA toolbox and gurobi solver).
• RStudio Version 1.1.463 (R version 3.6.1 and 4.0.0).
• Python version 3.6.1.
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Real problem dataset

################################################
#### PRE−PROCESSING REAL PROBLEM DATASETS ####
################################################

# Raw data a r e a v a i l a b l e at GEO, GSE11521 , GSE1002 ,
GSE56622 , GSE43747 .

# RUN IN R USING A .R SCRIPT #
###############################
l i b r a r y (NOISeq )
l i b r a r y ( limma )

##### LAB A −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Data downloaded from GEO GSE11521 , GSE1002 .

# Each sample i s downloaded as a probe w i th
an a s s o c i a t e d genome measure

# to no rma l i z e between a r r a y s .

probe <− read . csv ( ’ probe . t x t ’ , sep = ’ \ t ’ )
genome <− read . csv ( ’ genome . t x t ’ , sep = ’ \ t ’ )

### Norma l i z e
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Ri <− apply ( genom , 2 , sum)
Gj <− apply ( probe , 2 , sum)
k <− ( Ri / Gj )

probe_norm <− t ( apply ( probe , 1 , funct ion ( x ) x∗k ) )

# Probe i s e i t h e r a gro or a rna sample
# This i s r e p e a t ed f o r each probe ( sample )

labA_RNA <− cbind(< a l l probe_norm>)
( i f p robe s a r e RNA sample s )

labA_GRO <− cbind(< a l l probe_norm>)
( i f p robe s a r e GRO sample s )

##### LAB B −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Proce s s ed data i s downloaded , count s i n RPKM
labB <− read . csv ( ’ GSE56622_Z idP ro c e s s edDa taA l l . t x t ’ ,

quote = ’ ’ ,
sep = ’ \ t ’ , heade r = T)

r i b o_ i n i <− r i b o_v a l u e s [ , c ( 18 , 19 , 28 , 29 ) ]
rna_ i n i <− r i b o_v a l u e s [ , c ( 26 , 27 , 30 , 31 ) ]

# Q u a l i t y c o n t r o l w i th NOISeq
mydata <− readData ( data = <r i b o_ i n i or rna_ i n i >,
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f a c t o r s = data . frame ( factor ( c ( 0 , 1 , 0 , 1 ) ) ) )
### RNA compos i t i on
mycd<− dat (mydata , t ype = " cd " , norm = TRUE,

re fCo lumn = 1)
e xp l o . plot (mycd , samp le s = 1 : 4 )

# voom t r a n s f o r m a t i o n
labB_rna <− voom( rna_ i n i )$E
labB_r i b o <− voom( r i b o_ i n i )$E

##### LAB C −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Proce s s ed data i s downloaded , RNA−seq count s i n RPKM

rna_ i n i <−

read . csv ( ’ GSE43747_T r a n s c r i p t_abundance_mRNAseq . t x t ’ ,
quote = ’ ’ , sep = ’ \ t ’ ,
heade r = T) [ , 4 : 7 ]

# Q u a l i t y c o n t r o l w i th NOISeq
mydata <− readData ( data = rna_ i n i ,

f a c t o r s = data . frame ( factor ( c ( 0 , 1 , 0 , 1 ) ) ) )
### RNA compos i t i on
mycd<− dat (mydata , t ype = " cd " , norm = TRUE,
re fCo lumn = 1)
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e xp l o . plot (mycd , samp le s = 1 : 4 )

# voom t r a n s f o r m a t i o n
labC_rna <− voom( rna_ i n i )$E

# gPAR−CLIP data i s i n cove r age pe r r e g i o n form
and we need to get gene_r e l a t e d data

# Step 1 : t r an s f o rm o r i g i n a l data mat r i x i n . bed format
par_ i n i <−

read . csv ( ’ GSE43747_Bind ing_ s i t e_cove r age_gPARCLIP . t x t ’ ,
heade r = T, sep = ’ \ t ’ )

# t h i s f i l e c o n t a i n s the chr , s t r and , s t a r t and s i t e
p o s i t i o n o f the peaks

# and the q u a n t i f i c a t i o n o f them f o r a l l the samp le s .
We create a bed f i l e

# per sample t a k i n g the r e s p e c t i v e columns .

write . table (<sample>, f i l e = ’<sample . bed>’ ,
sep = ’ \ t ’ , row .names = F , co l .names = F ,
quote = F)

# Step 2 : Map r e g i o n s to Genes
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# RUN IN HPC CLUSTER WITH A .SH SCRIPT #
########################################

# We use RGmatch to map the r e g i o n s i n t o
n e a r e s t genes .

python rgmatch . py −t 0 −g s a c c e r 3 . g t f −b
<sample . bed> −o <sample . t x t>

# A r e g i o n i s a s s o c i a t e d to a c e r t a i n gene i f
the r e g i o n o v e r l a p s the TSS ,

# the TTS or the gene_body .

######### VERSION OF THE GENOME USED:
Re f e r en c e Saccharomyces c e r e v i s i a e :

v e r s i o n : sacCer3
source : UCSC " h t t p s : //genome . ucsc . edu "

Genes : sacCer3 . g t f

# RUN IN R USING A .R SCRIPT #
##############################
# Combining d a t a s e t s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

par_ i n i <− read . csv (<sample . t x t >)
( merg ing the q u a n t i f i c a t i o n fo r a l l samp le s )

labC_PAR <− voom( par_ i n i )$E
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i n t e r s e c t i o n <− i n te r sec t ( rownames ( labA_RNA) ,
i n te r sec t ( rownames ( labB_rna ) ,

rownames ( labC_rna ) ) )
r ea l_da t a s e t <− cbind ( labA_RNA[ i n t e r s e c t i o n , ] ,

labB_RNA[ i n t e r s e c t i o n , ] ,
labC_RNA[ i n t e r s e c t i o n , ] ,
labA_GRO[ i n t e r s e c t i o n , ] ,
labB_RIBO [ i n t e r s e c t i o n , ] ,
labC_PAR[ i n t e r s e c t i o n , ] )

# Trimmed mean o f M (tmm) n o r m a l i z a t i o n from NOISeq
i s a p p l i e d to remove

# s y s t e m a t i c b i a s e s between samp le s .

Proof of concept data

##########################################
## PRE−PROCESSING PROOF OF CONCEPT DATA ##
##########################################

# Raw data a r e a v a i l a b l e at GEO, GSE33136 ,
GSE24488

# RUN IN HPC CLUSTER WITH A .SH SCRIPT #
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########################################

## RNA−seq and GRO−seq data ( GSE33136)−−−−−−−−−−−−−

## Step 1 : Mapping f i l e s to r e f e r e n c e genome

######### VERSION OF THE GENOME USED:
Re f e r en c e Saccharomyces c e r e v i s i a e :

v e r s i o n : sacCer3
source : UCSC " h t t p s : //genome . ucsc . edu "

Genes : sacCer3 . g t f

######### VERSIONS OF THE SOFTWARE
s amtoo l s v e r s i o n 0 . 1 . 1 8
TopHat v e r s i o n 2 . 1 . 0

## Step 1 : Mapping r e ad s to genome
tophat −o <ou tpu td i r > <sacCer3> <sample . f a s t q . gz>

## Step 2 : Q u a n t i f i c a t i o n o f r e ad s : u s i n g h t s eq
htseq−count −a 20 −m union <sample>.sam

<sacCer3 . g t f > <sample_count s . t x t>
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# RUN IN R USING A .R SCRIPT #
##############################

## LIBRARIES TO USE
l i b r a r y (NOISeq )
l i b r a r y ( limma )

# Get gene l e n g t h s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

g f f <− read . csv ( " s a c c e r 3_M. g t f " , s k i p = 5 ,
heade r = F , sep = "\ t " )
genes <− sapply ( g f f $V9 , funct ion ( x ) {

s t r s p l i t ( s t r s p l i t ( t o S t r i n g ( x ) , " ; " )
[ [ 1 ] ] [ 1 ] , " ␣ " ) [ [ 1 ] ] [ 2 ]

})
g f f <− data . frame ( g f f , genes )
gene_ l e n <− sapply ( unique ( gene_ l e n [ , 1 ] ) ,
funct ion ( x ) {

aux <− gene_ l e n [ which ( gene_ l e n [ ,1]==x ) , ,
drop = FALSE ]
c ( as . character ( x ) , max( aux [ , 2 ] ) )

})
gene_ l e n <− t ( gene_ l e n )
vgene_ l e n <− as . numeric ( gene_ l e n [ , 2 ] )
names( vgene_ l e n ) <− gene_ l e n [ , 1 ]
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vgene_ l e n <− vgene_ l e n [ rownames ( s eqda ta ) ]

# Reading f i l e w i th r e g i o n raw count s
raw_data = read . d e l im ( " sample_count s . t x t " ,
heade r = TRUE, as . i s = TRUE, sep = "\ t " )

# A n a l y s i s o f b i a s e s u s i n g NOISeq
# ( rna−seq and gro−seq data s e p a r a t e l y )

mydata <− readData ( data = raw_data ,
f a c t o r s = data . frame ( factor ( c (1 ,
1 , 1 , 0 , 0 , 0 ) ) ) ,

length = vgene_ l e n )
### S a t u r a t i o n p l o t
mysa tu r a t i on <− dat (mydata , k = 0 , ndepth = 7 ,
type = " s a t u r a t i o n " )
e xp l o . plot ( mysa tu ra t i on , t o p l o t = 1 ,
samp le s = 1 : 24 )

### RNA compos i t i on
mycd<− dat (mydata , t ype = " cd " ,
norm = F , re fCo lumn = 1)
e xp l o . plot (mycd , samp le s = 1 : 6 )
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### Length b i a s
my l enb i a s <− dat (mydata ,
t ype = " l e n g t h b i a s " )
e xp l o . plot ( my lenb ia s , samp le s = NULL ,
t o p l o t=" g l o b a l " )

#### CPM
mycounts <− dat (mydata , factor = NULL ,
type = " coun t s b i o " )
e xp l o . plot ( mycounts , t o p l o t =1,
samp le s = NULL , p l o t t y p e = " b a r p l o t " )

#### TMM n o r m a l i z a t i o n
s eqda ta <− tmm( assayData (mydata )$ expr s ,
l ong = vgene_ l e n )
# ( merge rna−seq and gro−seq data m a t r i c e s )

# Voom t r a n s f o r m a t i o n u s i n g limma
l a b1_RNA <− voom( seqda ta )$E

( i f s eqda ta = RNA−seq samp le s )
l ab1_GRO <− voom( seqda ta )$E

( i f s eqda ta = GRO−seq samp le s )

#### RNA and GRO ( GSE24488 ) −−−−−−−−−−−−−−−−−
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# Each sample i s downloaded as a probe w i th an
a s s o c i a t e d genome measure

# to no rma l i z e between a r r a y s .

probe <− read . csv ( ’ probe . t x t ’ , sep = ’ \ t ’ )
genome <− read . csv ( ’ genome . t x t ’ , sep = ’ \ t ’ )

### Norma l i z e
Ri <− apply ( genom , 2 , sum)
Gj <− apply ( probe , 2 , sum)
k <− ( Ri / Gj )

probe_norm <− t ( apply ( probe , 1 , funct ion ( x ) x∗k ) )

# Probe i s e i t h e r a gro or a rna sample
# This i s r e p e a t ed f o r each probe ( sample )
l a b2_RNA <− cbind(< a l l probe_norm>)

( i f p robe s a r e RNA samples )
l ab2_GRO <− cbind(< a l l probe_norm>)

( i f p robe s a r e GRO sample s )

#### Combine d a t a s e t s −−−−−−−−−−−−−−−−−−−−−−−−−−

# m a t r i c e s s t r u c t u r e = f e a t u r e s x sample
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i n t e r s e c t i o n <− i n te r sec t ( rownames ( l ab1_RNA) ,
rownames ( l ab2_RNA) )

p r oo f_matrix <− cbind ( l ab1_RNA[ i n t e r s e c t i o n , ] ,
l a b1_GRO[ i n t e r s e c t i o n , ] ,
l a b2_RNA[ i n t e r s e c t i o n , ] ,
l a b2_RNA[ i n t e r s e c t i o n , ] )

# Trimmed mean o f M (tmm) n o r m a l i z a t i o n from
NOISeq i s a p p l i e d to remove

# s y s t e m a t i c b i a s e s between samp le s .
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Introduction
Simultaneously generating multiple omic measurements (e.g. transcriptomics, metabolomics, proteomics or epigenomics)
of the same molecular system for one particular study is not always possible. As a consequence, researchers sometimes
combine compatible data generated in different labs or in different batches. In such cases, data will usually be affected by
an unwanted effect associated to the experimentation event (lab, batch, technology, etc.) that, especially for high
throughput molecular assays, may result in important levels of noise contaminating the biological signal. This unwanted
source of variation is commonly known as ``batch effect’’ and is very frequently seen as the first source of variability in the
omic dataset, standing out over the experimental conditions under study.

Removing batch effects becomes then necessary in order to obtain meaningful results from statistical analyses. Provided
that the omic experiment has been designed in such a way that batch effects are not confounded with the effects of
interest (treatment, disease, cell type, etc.), the so-called Batch Effect Correction Algorithms (BECAs) can be used to
remove, or at least mitigate, systematic biases.Therefore these methods are extremely useful to combine data from
different laboratories or measured at different times. One of these BECAs is the ARSyN method [1], which relies on the
ANOVA-Simultaneous Components Analysis (ASCA) framework to decompose the omic signal into experimental effects
and other unwanted effects. ARSyN applies Principal Component Analysis (PCA) to estimate the systematic variation due
to batch effect and then removes it from the original data.

BECAs have been traditionally applied to remove batch effects from omic data of the same type, as for example gene
expression. However, while removing batch effects from a single omic data type with an appropriate experimental design is
relatively straightforward, it can become unapproachable when dealing with multiomic datasets. In the multiomic scenario,
each omic modality may have been measured by a different lab or at a different moment in time, and so it is obtained
within a different batch. When this is the case, the batch effect will be confounded with the ``omic type effect’’ and will be
impossible to remove from the data. However, in some scenarios, the multiomic batch effect can be corrected. MultiBaC is
the first BECA dealing with batch effect correction in multiomic datasets. MultiBaC can remove batch effects across
different omics generated within separate batches provided that at least one common omic data type is included in all the
batches.

The MultiBaC package includes two BECAs: the ARSyN method for correcting batch effect from a single omic data type
and the MultiBac method, which deals with the batch effect problem on multi-omic assays.

Batch effect correction on a single omic

About ARSyN

ARSyN method overview

1 2 3

1

2

3
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ARSyN (ASCA Removal of Systematic Noise) is a method that combines Analysis of Variance (ANOVA) and Principal
Component Analysis (PCA) for the identification of structured variation from the estimated ANOVA models for experimental
and unwanted effects on an omic data matrix. ARSyN can remove undesired signals to obtain noise-filtered data for further
analysis [1]. In MultiBaC package, ARSyN has been adapted for filtering the noise associated to identified or unidentified
batch effects. This adaptation has been called ARSyNbac.

In the ARSyN method, the ANOVA model separates the signal identified with each one of the factors involved in the
experimental design from the residuals. The algorithm can be applied on multi-factorial experimental designs. One of the
factors in the model can be the batch each sample belongs to, if this information is known. In such case, the ANOVA
model is applied to separate the batch effect from the remaining effects and residuals. The PCA analysis will hence detect
the possible existence of a structured variation due to the batch effect, that is identified with the principal components
explaining a given proportion of the total variation in the data, which can be set by the user.

However, ARSyN can also be applied when the batch factor is not known since the PCA on the residual matrix can detect
correlated structure associated to a source of variation not included in the experimental design. We alert of this signal in
the residuals when the first eigenvalues of the PCA are noticeably higher than the rest, because if there is not any
structure the eigenvalues will be approximately equal. In this case the selection of components is controlled by the beta
argument. Components that represent more than beta times the average variability are identified as systematic noise and
removed from the original data.

How to cite ARSyN
Nueda MJ, Ferrer A, Conesa A.(2012). ARSyN: A method for the identification and removal of systematic noise in
multifactorial time course microarray experiments. Biostatistics 13:553-66.

Example: Yeast expression data
The yeast expression example data sets were collected from the Gene Expression Omnibus (GEO) database and from
three different laboratories (batches). In all of them, the effect of glucose starvation in yeast was analyzed. Lab A is the
Department of Biochemistry and Molecular Biology from Universitat de Valencia (accession number GSE11521) [2]; Lab B
is the Department of Molecular and Cellular Biology from Harvard University (accession number GSE56622) [5]; and Lab
C is the Department of Biology from Johns Hopkins University (accession number GSE43747) [6].

After a proper data pre-processing for each case, a voom transformation (with limma R package) was applied when
necessary. Finally TMM normalization was performed on the whole set of samples from all labs. A reduced dataset was
obtained by selecting 200 omic variables from each data matrix and just 3 samples from lab A. This yeast multiomic
reduced dataset is included in MutiBaC package to illustrate the usage of the package. The gene expression matrices can
be loaded by using the data(“multiyeast”) instruction.

The three studies used equivalent yeast strains and experimental conditions but, as shown in Figure 1 , the main effect on
expression is due to data belonging to different labs, which are the batches in this case.
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Figure 1: PCA plot of original gene expression data (before correction)
Batches are completely separated from each other. Plot generated with MultiBaC package (see Visualization of results Section).

ARSyNbac input data
The MultiBaC package uses MultiAssayExperiment objects, a type of Bioconductor container for multiomic studies, that
can be created from a list of matrices or data.frame objects. These matrices must have features in rows and samples in
columns as shown next for one of the data matrices from the yeast example (A.rna). It is important that all data matrices
share the variable space. If the number of omic variables and order are not the same, the createMbac function will select
the common variables. Hence, it is mandatory that rows are named with the same type of identifiers.

data("multiyeast")
head(A.rna)

##         A.rna_Glu+_1 A.rna_Glu+_2 A.rna_Glu+_3 A.rna_Glu-_1 A.rna_Glu-_2
## YOR324C     7.174264     6.976815     7.482661     8.020596     7.736636
## YGL104C     4.239493     4.284775     3.100898     4.957403     3.673252
## YOR142W     8.819824     8.496966     9.026971    10.374525    10.294006
## YOR052C     6.721211     7.011932     7.557519     8.504503     8.586738
## YGR038W     5.878483     5.894121     6.468361     7.856822     7.806318
## YER087W     5.131089     5.295029     5.750657     2.920250     5.496136
##         A.rna_Glu-_3
## YOR324C     7.922425
## YGL104C     1.587184
## YOR142W    10.979224
## YOR052C     8.221168
## YGR038W     8.108436
## YER087W     2.879254

A MultiAssayExperiment object needs to be created for each batch (lab in this example). The mbac new data structure is a
list of MultiAssayExperiment objects and can be easily generated with the createMbac function in the package. The
resulting mbac object will be the ARSyNbac input.
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data_RNA<- createMbac (inputOmics = list(A.rna, B.rna, C.rna), 
                    batchFactor = c("A", "B", "C"),
                    experimentalDesign = list("A" =  c("Glu+", "Glu+", 
                                                "Glu+", "Glu-", 
                                               "Glu-", "Glu-"),
                                       "B" = c("Glu+", "Glu+", 
                                               "Glu-", "Glu-"),
                                       "C" = c("Glu+", "Glu+", 
                                               "Glu-", "Glu-")),
                    omicNames = "RNA")

These are the arguments for the createMbac function:

inputOmics A list containing all the matrices or data.frame objects to be analysed. MultiAssayExperiment objects can
alternatively be provided.
batchFactor Either a vector or a factor indicating the batch were each input matrix belongs to (i.e. study, lab, time
point, etc.). If NULL (default) no batch is considered and just ARSyNbac noise reduction mode could be applied.
experimentalDesign A list with as many elements as batches. Each element can be a factor, a character vector or a
data.frame indicating the experimental conditions for each sample in that batch. When being a data.frame with more
than one column (multi-factorial experimental designs), the different columns will be combined into a single one to be
used by MultiBaC or ARSyNbac. In any case, the experimental setting must be the same for all batches. In addition,
the names of the elements in this list must be the same as declared in batches argument. If not (or if NULL), names are
forced to be the same in as in batches argument and in the same order.
omicNames Vector of names for each input matrix. The common omic is required to have the same name across
batches.
commonOmic Name of the common omic between the batches. It must be one of the names in omicNames argument.
If NULL (default), the omic name which is common to all batches is selected as commonOmic.

The mbac R structure generated by the createMbac function is an S3 object that initially contains just one slot, the
ListOfBatches object. This mbac structure will incorporate more elements as they are created when running ARSyNbac or
MultiBaC functions. These new slots are CorrectedData, PLSmodels, ARSyNmodels or InnerRelation and are described
next:

ListOfBatches: A list of MultiAssayExperiment objects (one per batch).
CorrectedData: Same structure than ListOfBatches but with the corrected data matrices instead of the original ones.
PLSmodels: PLS models created by MultiBaC method (one model per non-common omic data type). Only available for
MultiBaC method.
ARSyNmodels: ARSyN models created either by ARSyNbac or MultiBaC functions.
InnerRelation: Table of class data.frame containing the inner correlation (i.e. correlation between the scores of X (t)
and Y (u) matrices) for each PLS model across all components, for model validation purposes. Only available for
MultiBaC method.
commonOmic: Name of the common omic between the batches.

In addition to plot, other method is supplied for visualizing mbac objects: summary, which show the structure of the object.

summary(data_RNA)

## [1] "Object of class mbac: It contains 3 different bacthes and 1 omic type(s)."

RNA

A TRUE

B TRUE

C TRUE

ARSyNbac correction
The function to remove batch effects or unwanted noise from a single omic data matrix in the MultiBaC package is the
ARSyNbac function, which allows for the following arguments:
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ARSyNbac (mbac, batchEstimation = TRUE, filterNoise = TRUE,
          Interaction=FALSE, Variability = 0.90, beta = 2,
          modelName = "Model 1",
          showplot = TRUE)

mbac: mbac object generated by createMbac.
batchEstimation: Logical. If TRUE (default) the batch effect is estimated and used to correct the data. Use TRUE
when the source of the batch effect is known.
filterNoise^: Logical. If TRUE (default) structured noise is removed form residuals. Use this option when there is an
unknown source of batch effect in data.
Interaction: Logical. Whether to model the interaction between factors or not (FALSE by default).
Variability: From 0 to 1. Minimum percent of data variability that must be explained by each model. Used in batch
correction mode. By default, 0.90.
beta: Numeric. Components that represent more than beta times the average variability are identified as systematic
noise in residuals. Used in noise reduction mode. By default, 2.
modelName: Name of the model created. This name will be showed if you use the explaine_var plot function. By
default, “Model 1”.
showplot: Logical. If TRUE (default), the explained_var plot is showed. This plot represents the number of components
selected for the ARSyN model.

Therefore, the ARSyNbac function offers three types of analysis: ARSyNbac batch effect correction , when the batch
information is provided, ARSyNbac noise reduction, if the batch information is unknown, and the combination of both
modes when there is a known source of batch effect and another possible unknown source of unwanted variability. In the
following sections we explain how to proceed with each one of them.

ARSyNbac batch effect correction
When the batch is identified in the batchFactor argument of the mbac input object, its effect can be estimated and
removed by choosing batchEstimation = TRUE (considering one source of batch effect only, filterNoise = FALSE ).
Moreover, a possible interaction between the experimental factors and the batch factor can be studied by setting
Interaction=TRUE.

par(mfrow = c(1,2))
arsyn_1 <- ARSyNbac(data_RNA, modelName = "RNA", Variability = 0.95, 
                 batchEstimation = TRUE, filterNoise = FALSE, Interaction = FALSE)
plot(arsyn_1, typeP="pca.cor", bty = "L",
     pch = custom_pch, cex = 3, col.per.group = custom_col,
     legend.text = c("Color: Batch", names(data_RNA$ListOfBatches),
                     "Fill: Cond.", unique(colData(data_RNA$ListOfBatches$A)$tfactor)),
     args.legend = list("x" = "topright",
                        "pch" = c(NA, 15, 15, 15, 
                                  NA, 15, 0),
                        "col" = c(NA, "brown2", "dodgerblue", "forestgreen",
                                  NA, 1, 1),
                        "bty" = "n",
                        "cex" = 1.2))



Figure 2: Batch correction when Interaction=FALSE
Left: Explained variance plot. Default plot when showplot = TRUE. It represents the number of components (x axis) needed to explain a certain
variability (y axis) of the effect of interest (batch effect). The number of components selected in the model is indicated with a triangle symbol.
Gray dashed line indicates the threshold given by the Variability argument (in percentage). Right: PCA plot of corrected gene expression data
when not considering the interaction batch-condition.

According to the left plot in Figure 2, two principal components (PCs) have been selected to explain at least 95% of the
total variability of batch effect. PCA of corrected data with this analysis is shown in the right panel. Now the main source of
variability in the data (PC1) is given by the experimental condition, while samples are not clustered by batches anymore.

par(mfrow = c(1,2))
arsyn_2 <- ARSyNbac(data_RNA, modelName = "RNA", Variability = 0.95, 
                 batchEstimation = TRUE, filterNoise = FALSE, Interaction = TRUE)
plot(arsyn_2, typeP="pca.cor", bty = "L",
     pch = custom_pch, cex = 3, col.per.group = custom_col,
     legend.text = c("Color: Batch", names(data_RNA$ListOfBatches),
                     "Fill: Cond.", unique(colData(data_RNA$ListOfBatches$A)$tfactor)),
     args.legend = list("x" = "topright",
                        "pch" = c(NA, 15, 15, 15, 
                                  NA, 15, 0),
                        "col" = c(NA, "brown2", "dodgerblue", "forestgreen",
                                  NA, 1, 1),
                        "bty" = "n",
                        "cex" = 1.2))
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Figure 3: Batch correction when Interaction = TRUE
Left: Explained variance plot. Default plot when showplot = TRUE. It represents the number of components (x axis) needed to explain a certain
variability (y axis) of the effect of interest (batch effect). The number of components selected in the model is indicated with a triangle symbol.
Gray dashed line indicates the threshold given by the Variability argument (in percentage). Right: PCA plot of corrected gene expression data
considering the interaction batch-condition.

In Figure 3 (right panel) all the points with negative PC1 correspond to Glu- samples, and the positive PC1 to Glu+
samples, as happened when not including the interaction in the model (Figure 2, right panel). However, in this second
model, PC1 explains a higher percentage of the variability in the data, indicating a better batch effect correction. In general,
we recomend the use of the default argument (Interaction=FALSE), as including part of the signal as batch effect could
lead to a dilution of the effect of the signal of interest. However, the interaction between batch and experimental condition
is sometimes strong and we should consider to include it in the model in order to get a better correction of the data.

The PCA plots shown in Figures 1, 2 and 3 have been created by the customized plot function in MultiBaC package. More
details about this function can be found at the “Visualization of ARSyN and MultiBaC results” section, where a complete
description of the arguments in plot is given.

ARSyNbac noise reduction
When batch is not identified, ARSyNbac analyses the existence of systematic noise in the residuals by setting
batchEstimation = FALSE and filterNoise = TRUE .

par(mfrow = c(1,2))
arsyn_3 <- ARSyNbac(data_RNA, modelName = "RNA", beta = 0.5, 
                 batchEstimation = FALSE, filterNoise = TRUE)
plot(arsyn_3, typeP="pca.cor", bty = "L",
     pch = custom_pch, cex = 3, col.per.group = custom_col,
     legend.text = c("Color: Batch", names(data_RNA$ListOfBatches),
                     "Fill: Cond.", unique(colData(data_RNA$ListOfBatches$A)$tfactor)),
     args.legend = list("x" = "topright",
                        "pch" = c(NA, 15, 15, 15, 
                                  NA, 15, 0),
                        "col" = c(NA, "brown2", "dodgerblue", "forestgreen",
                                  NA, 1, 1),
                        "bty" = "n",
                        "cex" = 1.2))
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Figure 4: Noise reduction mode
Left: Explained variance plot. Default plot when showplot = TRUE. It represents the percentage of variability in the residuals (y axis) explained by
a model with a given number of principal components (x axis). The number of selected components in the final model is indicated with a triangle
symbol, and computed to explain beta times the average variability of the residuals. Right: PCA plot of corrected gene expression data.

In Figure 4 we can see that even though the batch is considered unidentified (batchEstimation=FALSE), ARSyN has
removed the noise from the data by estimating the main source of unwanted variation. In this noise reduction mode, we
can modulate the magnitude of the residual noise removal with the beta parameter. Basically, components that represent
more than beta times the average variability are identified as systematic noise in residuals (3 components were selected in
this model). Thus a greater beta value leads to the selection of a lower number of components in the residuals.

ARSyNbac both modalities
When the source of the batch effect is known but there might be an extra unknown source of unwanted variability,
ARSyNbac can perform both previous ways by setting batchEstimation = TRUE and filterNoise = TRUE . Note that this
mode could also be useful if the known batch effect does not represent the main source of noise in our data.

par(mfrow = c(1,2))
arsyn_4 <- ARSyNbac(data_RNA, modelName = "RNA", beta = 0.5, 
                 batchEstimation = TRUE, filterNoise = TRUE,
                 Interaction = TRUE,
                 Variability = 0.95)
plot(arsyn_4, typeP="pca.cor", bty = "L",
     pch = custom_pch, cex = 3, col.per.group = custom_col,
     legend.text = c("Color: Batch", names(data_RNA$ListOfBatches),
                     "Fill: Cond.", unique(colData(data_RNA$ListOfBatches$A)$tfactor)),
     args.legend = list("x" = "topright",
                        "pch" = c(NA, 15, 15, 15, 
                                  NA, 15, 0),
                        "col" = c(NA, "brown2", "dodgerblue", "forestgreen",
                                  NA, 1, 1),
                        "bty" = "n",
                        "cex" = 1.2))
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Figure 5: Both modes together
Left: Explained variance plot. Default plot when showplot = TRUE. It represents the percentage of variability in the residuals (y axis) explained by
a model with a given number of principal components (x axis). The number of selected components in the final model is indicated with a triangle
symbol, and computed to explain beta times the average variability of the residuals. Right: PCA plot of corrected gene expression data.

In Figure 5 we can see that performing both modalities together, ARSyNbac reaches its maximum PC1 variance explained
(specially compared to 3). In this third mode, we can modulate the magnitude of the residual noise removal with the beta
parameter and the batch effect associated explained variance. In this example, as shown in 4, known batch effect
represents the main (and almost unique) source of unwanted variatio. Thus, in other scenarios with more than one batch
source, the result with this third mode might be very different form the other two previous ways of operation.

Batch effect correction on a multiomic dataset

About MultiBaC

MultiBaC method overview
Multiomic data integration has become a popular approach to understand how biological systems work. However,
generating this kind of datasets is still costly and time consuming. Consequently, it is quite common that not all the
samples or omic data types are produced at the same time or in the same lab, but in different batches. In addition, when
research groups cannot produce their own multiomic datasets, they usually collect them from different public repositories
and, therefore, from different studies or laboratories (again, from different batches). Thus, in both situations, batch effects
need to be previously removed from such datasets for successful data integration. Methods to correct batch effects on a
single data type cannot be applied to correct batch effects across omics and, hence, we developed the MultiBaC strategy,
which corrects batch effects from multiomic datasets distributed across different labs or data acquisition events.

However, there are some requirements for the multi-omic data set in order to remove across-omics batch effects with
MultiBaC:

There must be, at least, one common omic data type in all the batches. We may have, for instance, gene expression
data measurements in all the batches, and then other different omic data types in each batch. It is not necessary that
the commom omic (e.g. gene expression) is measured with the same technology. We could have microarray
expression data in one batch and RNA-seq data in another batch, for example.

The omic feature identifiers must be the same for all the common data matrices. We cannot use, for instance, Ensembl
identifiers in one batch and RefSeq in another batch. It is not necessary to have the same number of omic features,
e.g. genes, in all the batches. MultiBac will extract the common identifiers from all the common data type matrices to
perform the analysis.
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Within the same batch, the experimental design must be the same for all the omic in that batch, that is, the same
experimental groups, with the same number of replicates obtained from the same individuals. All these samples must
be in the same order in all the omic data matrices.

How to cite MultiBaC
Ugidos M, Tarazona S, Prats-Montalb'an JM, Ferrer A, Conesa A.(2020). MultiBaC: A strategy to remove batch effects
between different omic data types. Statistical Methods in Medical Research .

Example: Yeast multiomic dataset
The yeast multiomic dataset comes from the same studies that the yeast expression data described in ARSyNbac section.
While the three labs produced gene expression data (RNA), each of them generated a different additional omic data type.
Lab A collected transcription rates (GRO, with accession number GSE1002) [2]. Lab B obtained translation rates (RIBO,
with accession number GSE56622) [5]. Finally, Lab C measured global PAR-CLIP data (PAR-CLIP, with accession
number GSE43747) [6]. Therefore, labs have one shared (RNA) and one distinct (GRO, RIBO and PAR-CLIP,
respectively) data types. This distributed multiomic scenario represents the type of correction problem MultiBaC
addresses. A scheme of the data structure is shown in Figure 6.

Figure 6: Scheme of the yeast example data structure

This yeast multiomic dataset is included in the MutiBaC package to illustrate the usage of the package. The six matrices
can be loaded by using the data(“multiyeast”) instruction.

MultiBaC input data
As commented before, the MultiBaC package uses MultiAssayExperiment objects, a type of Bioconductor container for
multiomic studies, that can be created from a list of matrices or data.frame objects. These matrices must have features in
rows and samples in columns (see example in ARSyNbac section). Since MultiBaC computes regression models between
omics from the same batch, it is important that matrices from the same batch have the same experimental design: the
same number of samples and in the same order. MultiBaC relates the commonOmic information from the different batches
as well. Thus, it is also important that commonOmic matrices share the variable space. In this case, if the number of omic
variables and order are not the same, MultiBaC will take the common variables for the model. Hence, it is mandatory that
rows are named with the same type of identifiers.

The mbac object that will be the MultiBaC function input can be easily generated with the createMbac function in the
package:
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my_mbac <- createMbac (inputOmics = list(A.rna, A.gro, 
                                               B.rna, B.ribo, 
                                               C.rna, C.par), 
                    batchFactor = c("A", "A", 
                                    "B", "B", 
                                    "C", "C"),
                    experimentalDesign = list("A" =  c("Glu+", "Glu+", 
                                                "Glu+", "Glu-", 
                                               "Glu-", "Glu-"),
                                       "B" = c("Glu+", "Glu+", 
                                               "Glu-", "Glu-"),
                                       "C" = c("Glu+", "Glu+", 
                                               "Glu-", "Glu-")),
                    omicNames = c("RNA", "GRO", 
                                  "RNA", "RIBO", 
                                  "RNA", "PAR"))

More details about the createMbac function can be found in ARSyNbac input data Section. Note that we do not need to
indicate which is the common omic (in commonOmic argument) since there is only one omic in common (RNA) for all the
batches (labs) and the function detects it as the common omic.

MultiBaC correction
Once the mbac object has been created with the createMbac function, it is used as the input data for MultiBaC function
(mbac argument), which is the wrapper function for correction of multiomic batch effects.

MultiBaC (mbac,
          test.comp = NULL, scale = FALSE, 
          center = TRUE, crossval = NULL, 
          Interaction = FALSE,
          Variability = 0.90,
          showplot = TRUE,
          showinfo = TRUE)

The arguments of the MultiBaC function correspond to the different steps of the MultiBaC method:

mbac: mbac object generated by createMbac.
test.comp: Maximum number of components allowed for PLS models. If NULL (default), the minimal effective rank of
the matrices is used as the maximum number of components.
scale: Logical. Whether X and Y matrices must be scaled. By default, FALSE.
center: Logical. Whether X and Y matrices must be centered. By default, TRUE.
crossval: Integer: number of cross-validation segments. The number of samples (rows of ‘x’) must be at least >=
crossvalI. If NULL (default), a leave-one-out crossvalidation is performed.
Interaction: Logical. Whether to model the interaction between experimental factors and bacth factor in ARSyN
models. By default, FALSE.
Variability: From 0 to 1. Minimum percent of data variability that must be explained for each ARSyN model. By default,
0.90.
showplot: Logical. If TRUE (default), the Q2 and the explained variance plots are shown.
showinfo: Logical. If TRUE (default), the information about the function progress is shown.

The usage of MultiBaC function on the yeast example data is shown bellow:

my_final_mbac <- MultiBaC (my_mbac,
                        test.comp = NULL, scale = FALSE, 
                        center = TRUE, crossval = NULL, 
                        Interaction = TRUE,
                        Variability = 0.9,
                        showplot = TRUE,
                        showinfo = TRUE)



## Step 1: Create PLS models

##   - Model for batch A

##   - Model for batch B

##   - Model for batch C

## Step 2: Generating missing omics

## Step 3: Batch effect correction using ARSyNbac

## [1] "Table: Inner correlation between scores for each PLS model computed."
## 
## 
##                    A: GRO     B: RIBO      C: PAR
## -------------  ----------  ----------  ----------
## Component: 1    0.9471967   0.9987790   0.9396986
## Component: 2    0.9277123   0.9991239   0.9998556
## Component: 3    0.9992129   1.0000000   1.0000000
## Component: 4    0.9999867          NA          NA
## Component: 5    1.0000000          NA          NA

Figure 7: Q2 and explained variance plots
Q2 plot (left) shows the number ob components (x) needed to reach a certain Q2 value (y). The number of components selected for each model
is indicated with a triangle symbol. Gray dashed line indicates the 0.7 Q2 threshold. Explained variance plot (right) represents the number of
components (x) needed to explain a certain varibility (y) of the effect of interest (batch effect). The number of components selected for each
model is indicated with a triangle symbol. Gray dashed line indicates the Variability argument in percentage.

By default (showinfo = TRUE), the table containing the inner correlations of PLS models is displayed in propmt. Moreover,
the default plots (showplot = TRUE) are “Q2 plot” and “Explained variance plot” (see Figure 7), which contain important
information about MultiBaC performance. The “Q2 plot” represents the PLS model prediction capability given by the \
(Q^2\) score. The x axis indicates the number of components extracted for the PLS models and the y axis the \(Q^2\)
value. The performance of the MultiBaC method will be better for higher \(Q^2\) values, since a high \(Q^2\) indicates a
good PLS prediction of the missing omics and hence will result in a better estimation of the batch effect. Note that,
depending on the rank of the matrices, each PLS model could have a different maximum number of components. The
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“Explained variance plot” provides the batch effect related variability explained using the ASCA decomposition that ARSyN
method provides. The x axis indicates the number of components extracted for the ASCA model and y axis reflects the
percentage of explained variance. In this case, a higher explained variance leads to a better batch effect estimation. In both
plots, the number of components selected for each model is indicated with a triangule symbol. In the “Q2 plot”, the selected
number of components is the one that maximize the Q2 value while in the “Explained variance plot”, this number is the
minimum number of components that reaches a explained variability (y axis) higher than the Variability argument of the
function (gray dashed line).

Running MultiBaC step by step
All the different steps performed by the MultiBaC wrapper function can be independently computed with specific functions,
as described next, from the initial mbac object. The MultiBaC strategy can be divided into three main steps that will be
described next in detail: 1) PLS model fitting, 2) Prediction of missing omics, and 3) Batch effect correction.

PLS model fitting
The genModelList function produces the PLS models between distinct and common omic data types. It computes the
optimal number of components via a crossvalidation approach.

my_mbac_2 <- genModelList (my_mbac, test.comp = NULL, 
                          scale = FALSE, center = TRUE,
                          crossval = NULL,
                          showinfo = TRUE)

##   - Model for batch A

##   - Model for batch B

##   - Model for batch C

The arguments of the genModelList function are:

mbac: mbac type object.
test.comp Maximum number of components allowed in PLS models. If NULL (default), the minimal effective rank of the
matrices is used as the maximum number of components.
scale: Logical. Whether X and Y matrices must be scaled. By default, FALSE.
center: Logical. Whether X and Y matrices must be centered. By default, TRUE.
crossval Integer indicating the number of cross-validation segments. The number of samples (rows of ‘x’) must be at
least >= crossvalI. If NULL (default), a leave-one-out crossvalidation is conducted.
showinfo: A logical value indicating whether to show the information about the function progress. By default, TRUE.

The output of genModelList is a mbac object with a new slot, PLSmodels, a list of the PLS models obtained with the ropls
package. Each slot of the output corresponds to a batch in ListOfBatches. If one batch contains more than one non-
common omic, the “batch” element in genModelList contains in turn as many elements as non-common omics in that
batch, i.e. one PLS model per non-common omic.

Prediction of missing omics
The prediction of the initially missing omics is performed with the genMissingOmics function from the output of the
genModelList function.

multiBatchDesign <- genMissingOmics(my_mbac_2)

The result after running genMissingOmics is a list of MultiAssayExperiment structures. In this case, each batch contains all
the omics introduced in MultiBaC. For instance, if two batches are being studying, “A” and “B”, given that “A” contains
“RNA-seq” and “GRO-seq” data and “B” contains “RNA-seq” and “Metabolomics” data, after applying genMissingOmics
function, batch “A” will contain “RNA-seq”, “GRO-seq” and also the predicted “Metabolomics” data.

Batch effect correction
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my_finalwise_mbac <- batchCorrection(my_mbac_2, 
                                     multiBatchDesign = multiBatchDesign,
                                     Interaction = TRUE,
                                     Variability = 0.90)

As described before, ARSyN applies an ANOVA-like decomposition to the data matrix in order to estimate the batch effect
and, next, a PCA is applied on each submatrix. The number of principal components for each PCA is adjusted by the
Variability argument. The output of this function consists of two different objects: CorrectedData and ARSyNmodels. The
first one has the same structure than ListOfBatches slot. However, in this case, all batches contain all the omics introduced
in MultiBaC after correcting the batch effect on each omic data type separately. Note that we discard the predicted omic
matrices and only use the corrected original matrices for further statistical analyses. The ARSyNmodels slot contains the
ASCA decomposition models for each omic data type.

Visualization of ARSyN and MultiBaC results
As mentioned before, the ARSyNbac and MultiBaC outputs are mbac type objects. Since the mbac class incorporates a
plotting method, the plot function can by applied on mbac objects to graphically display additional information about the
performance of the methods and the data characteristics. The plot function for mbac objects accepts several additional
arguments:

plot (x, typeP = "def",
      col.by.batch = TRUE,
      col.per.group = NULL,
      comp2plot = c(1,2),
      legend.text = NULL,
      args.legend = NULL, ...)

Description of the arguments:

x: Object of class “mbac” returned by MultiBaC method.
typeP: The type of plot to be displayed. Options are: “def” (default option, “Q2 plot” and “Explained variance plot” in
case of MultiBaC and “Explained variance plot” in case of ARSyNbac outputs), “inner” (inner correlation plots for each
PLS model acroos the components for MultiBaC output), “pca.org” (PCA plot of original data for MultiBaC or
ARSyNbac outputs), “pca.cor” (PCA plot of corrected data for MultiBaC or ARSyNbac outputs), “pca.both” (PCA plots
for both original and corrected data for MultiBaC or ARSyNbac outputs), and “batch” (“Batch effect estimation” plot for
all the outputs). Remember that PCA plots can only be generated when all the omics share the same variable space
(e.g. gene identifiers are provided as names of variables for all data matrices).
col.by.batch: Argument for PCA plots. TRUE or FALSE. If TRUE (default), samples are colored according to the batch
factor. If FALSE, samples are colored according to the experimental conditions.
col.per.group: Argument for PCA plots. Color for each group (given by batches or experimental conditions). If NULL
(default), the colors are taken from a predefined pallete.
comp2plot: Argument for PCA or InnerRel plot. It indicates which components are to be plotted. The default is c(1,2),
which means that, in PCA plots, component 1 is plotted in “x” axis and component 2 in “y” axis, and for InnerRel plots,
the inner relation plots of components 1 and 2 are to be shown. If more components are indicated, the function will
return as many plots as needed to show all the components.
legend.text: A vector of text used to construct a legend for the plot. Argument for PCA plot. If NULL (default) batch or
conditions names included in the mbac object are used.
args.legend: list of additional arguments to pass to legend(); names of the list are used as argument names. Only used
if legend.text is supplied.
…: Other graphical arguments.

While the plot function can generate all the plot types described above, each plot can also be independently generated by
its corresponding function: Q2_plot (mbac), explained_varPlot (mbac), plot_pca (mbac, typeP = c(“pca.org”, “pca.cor”,
“pca.both”), col.by.batch, col.per.group, comp2plot, legend.text, args.legend), batchEstPlot (mbac), or inner_relPlot (mbac,
comp2plot = c(1,2)).

All these plots are useful to validate and understand MultiBaC or ARSyNbac performance. All of them can be used with a
MultiBaC output, while those that show information related to the PLS models are not available for an ARSyNbac output
(see typeP argument).
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In addition to “Q2 plot” and “Explained variance plot” (Figure 7), which are the default plots, and were explained in previous
sections, next sections are devoted to describe the rest of plots in MultiBaC package.

Inner correlation in PLS models
An important aspect to be validated in MultiBaC is the inner correlation between X and Y scores in PLS models. As we
indicated before, MultiBaC function displays by default this information as numerical output but a visual representation can
also be invoked.

plot (my_final_mbac, typeP = "inner", comp2plot = c(1,2))

## Hit <Return> to see next plot:

## Inner correlation of scores. Batch: A; Model for omic: GRO

## Warning in par(initpar): graphical parameter "cin" cannot be set

## Warning in par(initpar): graphical parameter "cra" cannot be set

## Warning in par(initpar): graphical parameter "csi" cannot be set

## Warning in par(initpar): graphical parameter "cxy" cannot be set

## Warning in par(initpar): graphical parameter "din" cannot be set

## Warning in par(initpar): graphical parameter "page" cannot be set

Figure 8: Plot of inner relations of PLS components
Only results for batch ‘A’ are shown as example. Each panel represents the inner correlation of one component of the PCA model. Red line
indicates the diagonal when the correlation is maximal (1:1).

The inner correlation between scores of the PLS model that relates both omic data types in batch “A” is shown in Figure 8.
While we have only shown the plot for batch “A”, running plot (typeP = “inner”)}, the inner correlation plots for all the PLS
models generated during MultiBaC performance are displayed using the tag “Hit to see next plot:”, thus requiring user’s
interaction to show the complete set of plots. The information about the model (batches and omics included) is shown in
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the R prompt too. The “inner correlation plot” is a pivotal result, since it represents the validation of the PLS model. The
correlation between x score (t) and y score (u) (in every component) is suppossed to be linear, as shown in Figure 8. If a
non-linear correlation is observed, a transformation of data would be desirable.

Batch effect estimation plot
This plot illustrates the magnitude of the estimated batch effects. Tipically, this plot is used before MultiBaC or ARSyNbac
performance since it just requires a basic mbac returned by createMbac function.

plot (my_final_mbac, typeP = "batch")

Figure 9: Batch effect estimation plot
Dashed lines represent theoretical batch magnitudes. Violin plots represent the distribution of batch effect coefficents observed in data.

Theoretical batch effect magnitudes for the yeast example are displayed in Figure 9. The violin plot shows the distribution
of batch effect coefficients along the variable space (genes in case of RNA-seq data). Coefficients with higher values are
the one that contribute the most to the existence of a batch effect, thus when the distribution is closer to zero, the batch
effect is lower. MultiBaC correction performance has been tested and validated with small and medium batch effect
magnitudes while it decreases at high magnitudes. ARSyN is not so much affected by the batch effect magnitude.

PCA plots
The goodness of ARSyNbac or MultiBaC correction can be assessed with the PCA plots before and after the correction. In
the case of MultiBaC, this plot can only be generated when all the omic data matrices share the same variable space. In
our yeast example, every omic data type was obtained as gene-related information, thus matrices can be merged by
variables (genes) and the PCA is feasible.

An example of the usage of these PCA plots for the ARSyNbac output can be found in the ARSyN section. Here we
illustrate how to generate and interpret them for MultiBaC correction. The PCA on the original data (Figure 10) and on the
corrected data (Figure 11) were obtained with the plot function by using either “typeP = pca.org”  or “typeP = pca.cor” ,
respectively.

plot (my_final_mbac, typeP = "pca.org",
      cex.axis = 1, cex.lab = 1, cex = 3, bty = "L", 
      cex.main = 1.2, pch = 19)



Figure 10: Default PCA plot on the original data

plot (my_final_mbac, typeP = "pca.cor", 
      cex.axis = 1, cex.lab = 1, cex = 3, bty = "L", 
      cex.main = 1.2, pch = 19)

Figure 11: Default PCA plot on the corrected data

By default, this function takes random colors to represent each group (batches by default). However, it would be useful to
display the experimental factors information too. For that, we recommend the use of custom col.per.group and pch
arguments. An example is shown in Figure 12, using typeP = pca.both to show both PCA plots together. We could also plot
more than two components indicating the desired number with comp2plot argument. The user can also include a custom
legend by using two arguments: legend.text and args.legend. With legend.text we indicate the text labels of the legend
and the rest of the legend arguments are collected in args.legend (x, y, pch, fill, col, bty, etc). If legend.text is not provided
to the function, args.legend is not considered.



custom_col <- c("brown2", "dodgerblue", "forestgreen")
custom_pch <- c(19,19,19,1,1,1,15,15,15,0,0,0, # batch A
                  19,19,1,1,17,17,2,2,  # batch B
                  19,19,1,1,18,18,5,5)  # batch C

plot(my_final_mbac, typeP = "pca.both", col.by.batch = TRUE, 
     col.per.group = custom_col, comp2plot = 1:3,
     cex.axis = 1.3, cex.lab = 1.2, cex = 3, bty = "L", 
     cex.main = 1.7, pch = custom_pch,
     legend.text = c("Color", names(my_final_mbac$ListOfBatches),
                     "Shape", c("RNA", "GRO", "RIBO", "PAR"),
                     "Fill", levels(colData(my_final_mbac$ListOfBatches$A)$tfactor)),
     args.legend = list("x" = "topright",
                        "pch" = c(NA, 15, 15, 15, 
                                  NA, 19, 15, 17, 18, 
                                  NA, 19, 1),
                        "col" = c(NA, "brown2", "dodgerblue", "forestgreen",
                                  NA, rep(1, 4),
                                  NA, 1, 1),
                        "bty" = "n",
                        "cex" = 2))

Figure 12: Customized PCA plots
Original (left panels) and Corrected (right panels) data. Upper panels show the second principal component (PC) against the first one while panels
at the bottom show the third PC against the first one.

In this case, batch effect correction is observable in common data (RNA-seq, dots). Batch effect has been removed as
common data is placed all together and after the correction, the components (especially the second and the third
component) separate the common data based on the experimental condition instead of separating batches. As shown in
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the legend, point shape indicates the omic data type, however batch effect correction is only visible in common data.

Session info
Here is the output of sessionInfo() on the system on which this document was compiled:

sessionInfo()



## R version 4.2.0 RC (2022-04-19 r82224)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.4 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.15-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.15-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] ropls_1.28.0                ggplot2_3.3.5              
##  [3] MultiAssayExperiment_1.22.0 SummarizedExperiment_1.26.0
##  [5] Biobase_2.56.0              GenomicRanges_1.48.0       
##  [7] GenomeInfoDb_1.32.0         IRanges_2.30.0             
##  [9] S4Vectors_0.34.0            BiocGenerics_0.42.0        
## [11] MatrixGenerics_1.8.0        matrixStats_0.62.0         
## [13] MultiBaC_1.6.0              BiocStyle_2.24.0           
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-7           fs_1.5.2               usethis_2.1.5         
##  [4] devtools_2.4.3         rprojroot_2.0.3        tools_4.2.0           
##  [7] bslib_0.3.1            utf8_1.2.2             R6_2.5.1              
## [10] DBI_1.1.2              colorspace_2.0-3       withr_2.5.0           
## [13] tidyselect_1.1.2       prettyunits_1.1.1      processx_3.5.3        
## [16] compiler_4.2.0         cli_3.3.0              desc_1.4.1            
## [19] DelayedArray_0.22.0    labeling_0.4.2         bookdown_0.26         
## [22] sass_0.4.1             scales_1.2.0           callr_3.7.0           
## [25] stringr_1.4.0          digest_0.6.29          rmarkdown_2.14        
## [28] XVector_0.36.0         pkgconfig_2.0.3        htmltools_0.5.2       
## [31] sessioninfo_1.2.2      plotrix_3.8-2          fastmap_1.1.0         
## [34] highr_0.9              rlang_1.0.2            rstudioapi_0.13       
## [37] jquerylib_0.1.4        generics_0.1.2         farver_2.1.0          
## [40] jsonlite_1.8.0         dplyr_1.0.8            RCurl_1.98-1.6        
## [43] magrittr_2.0.3         GenomeInfoDbData_1.2.8 Matrix_1.4-1          
## [46] Rcpp_1.0.8.3           munsell_0.5.0          fansi_1.0.3           
## [49] lifecycle_1.0.1        stringi_1.7.6          yaml_2.3.5            
## [52] zlibbioc_1.42.0        brio_1.1.3             pkgbuild_1.3.1        
## [55] grid_4.2.0             crayon_1.5.1           lattice_0.20-45       
## [58] magick_2.7.3           knitr_1.38             ps_1.7.0              
## [61] pillar_1.7.0           pkgload_1.2.4          glue_1.6.2            
## [64] evaluate_0.15          pcaMethods_1.88.0      remotes_2.4.2         
## [67] BiocManager_1.30.17    vctrs_0.4.1            testthat_3.1.4        
## [70] gtable_0.3.0           purrr_0.3.4            assertthat_0.2.1      
## [73] cachem_1.0.6           xfun_0.30              tibble_3.1.6          
## [76] memoise_2.0.1          ellipsis_0.3.2
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
2MBALDt M-2mbald-

c
M-2mbald-
e

NA 1 -1 -1 -1 1 1

2MBTOHtm M-2mbtoh-
c

M-2mbtoh-
m

NA -1 1 -1 1 1 1

AASAD1 M-L2aadp-
c M-atp-c
M-h-c
M-nadph-c

M-
L2aadp6sa-
c M-
TM-atp-c
M-amp-c
M-nadp-c
M-ppi-c

sce00300-
Lysine-
biosynthesis
sce00770-
Pantothenate-
and-CoA-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

-1 1 -1 1 0 1

AASAD2 M-L2aadp-
c M-atp-c
M-h-c
M-nadh-c

M-
L2aadp6sa-
c M-
TM-atp-c
M-TM-nad-
c M-amp-c
M-nad-c
M-ppi-c

sce00300-
Lysine-
biosynthesis
sce00770-
Pantothenate-
and-CoA-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

-1 -1 1 -1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ACACT1m M-accoa-m M-aacoa-m

M-coa-m
sce00071-
Fatty-acid-
degradation
sce00072-
Synthesis-
and-
degradation-
of-ketone-
bodies
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00310-
Lysine-
degradation
sce00380-
Tryptophan-
metabolism
sce00620-
Pyruvate-
metabolism
sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce00640-
Propanoate-
metabolism
sce00650-
Butanoate-
metabolism
sce00900-
Terpenoid-
backbone-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01212-
Fatty-acid-
metabolism

1 1 -1 1 0 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ACHLE1 M-h2o-c M-

iamac-c
M-TM-ac-c
M-ac-c
M-h-c
M-iamoh-c

NA 1 1 -1 1 0 1

ACHLE2 M-h2o-c M-
ibutac-c

M-TM-ac-c
M-ac-c
M-h-c
M-ibutoh-c

NA -1 1 -1 1 1 1

ACHLE3 M-aces-c
M-h2o-c

M-TM-ac-c
M-TM-
etoh-c
M-ac-c
M-etoh-c
M-h-c

NA -1 1 -1 1 1 1

ADA M-adn-c M-
h2o-c M-h-
c

M-ins-c M-
nh4-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways

-1 1 -1 -1 1 1

ADK1m M-amp-m
M-atp-m

M-adp-m sce00230-
Purine-
metabolism
sce00730-
Thiamine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 1 -1 1 1 1

ADK4m M-amp-m
M-itp-m

M-adp-m
M-idp-m

sce00230-
Purine-
metabolism
sce00730-
Thiamine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ADNCYC M-atp-c M-TM-atp-

c M-camp-c
M-ppi-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways
sce04113-
Meiosis
sce04213-
Longevity-
regulating-
pathway

1 -1 -1 1 1 1

ADNK1 M-adn-c M-
atp-c

M-TM-atp-
c M-adp-c
M-amp-c
M-h-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways

-1 1 1 1 1 1

ADNUC M-adn-c M-
h2o-c

M-ade-c M-
rib–D-c

sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
AGTi M-ala–L-c

M-glx-c
M-TM-
ala–L-c
M-TM-gly-
c M-gly-c
M-pyr-c

sce00250-
Alanine,-
aspartate-
and-
glutamate-
metabolism
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce04146-
Peroxisome

-1 1 1 1 1 1

ALCD2x-
copy1

M-etoh-c
M-nad-c

M-TM-
etoh-c
M-TM-nad-
c M-acald-c
M-h-c
M-nadh-c

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00071-
Fatty-acid-
degradation
sce00350-
Tyrosine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ALDD2ym M-acald-m

M-h2o-m
M-nadp-m

M-ac-m
M-h-m
M-nadph-m

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00071-
Fatty-acid-
degradation
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00310-
Lysine-
degradation
sce00330-
Arginine-
and-proline-
metabolism
sce00340-
Histidine-
metabolism
sce00380-
Tryptophan-
metabolism
sce00410-
beta-Alanine-
metabolism
sce00561-
Glycerolipid-
metabolism
sce00620-
Pyruvate-
metabolism
sce00770-
Pantothenate-
and-CoA-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 -1 1 1 1

AMPN M-amp-c
M-h2o-c

M-ade-c M-
r5p-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ASNN M-asn–L-c

M-h2o-c
M-TM-
asn–L-c
M-TM-
asp–L-c
M-asp–L-c
M-nh4-c

sce00250-
Alanine,-
aspartate-
and-
glutamate-
metabolism
sce00460-
Cyanoamino-
acid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 -1 1 1 1

ASPt2n M-asp–L-c
M-h-c

M-TM-
asp–L-c
M-asp–L-n
M-h-n

NA -1 1 -1 1 1 1

ASPt2r M-asp–L-e
M-h-e

M-TM-
asp–L-c
M-asp–L-c
M-h-c

NA 1 -1 1 1 1 1

ATPH1 M-atp-c M-
h2o-c

M-TM-atp-
c M-amp-c
M-h-c
M-pi-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

1 -1 1 1 1 1

ATPM M-atp-c M-
h2o-c

M-TM-atp-
c M-adp-c
M-h-c
M-pi-c

NA 1 -1 -1 -1 -1 1

ATPS3m M-adp-
m M-h-c
M-pi-m

M-atp-m
M-h2o-m
M-h-m

sce00190-
Oxidative-
phosphorylation
sce01100-
Metabolic-
pathways

-1 0 1 1 1 1

BTDD-RR M-btd-RR-
c M-nad-c

M-TM-
nad-c
M-actn–
R-c M-h-c
M-nadh-c

sce00650-
Butanoate-
metabolism

-1 -1 -1 -1 0 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
CERASE224er M-cer2-24-r

M-coa-r
M-h-r

M-
psphings-r
M-ttccoa-r

sce00600-
Sphingolipid-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

CERS224er M-
psphings-r
M-ttccoa-r

M-cer2-24-r
M-coa-r
M-h-r

sce00600-
Sphingolipid-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

CHLPCTD M-cholp-c
M-ctp-c
M-h-c

M-cdpchol-
c M-ppi-c

sce00440-
Phosphonate-
and-
phosphinate-
metabolism
sce00564-
Glycerophospholipid-
metabolism
sce01100-
Metabolic-
pathways

-1 -1 1 1 1 1

CO2tm M-co2-c M-co2-m NA -1 1 1 1 1 1
COAtim M-coa-c M-coa-m NA 1 -1 1 1 1 1
CTPS2 M-atp-c

M-gln–L-c
M-h2o-c
M-utp-c

M-TM-atp-
c M-TM-
gln–L-c
M-TM-
glu–L-c
M-adp-c
M-ctp-c
M-glu–L-
c M-h-c
M-pi-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

-1 1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
CYSS M-acser-c

M-h2s-c
M-TM-ac-c
M-ac-c
M-cys–L-c
M-h-c

sce00270-
Cysteine-and-
methionine-
metabolism
sce00920-
Sulfur-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

1 -1 1 1 1 1

CYTD M-cytd-c
M-h2o-c
M-h-c

M-nh4-c M-
uri-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

CYTK1 M-atp-c M-
cmp-c

M-TM-
atp-c M-
TM-cmp-c
M-adp-c
M-cdp-c

NA -1 -1 -1 1 -1 1

DHAK M-atp-c M-
dha-c

M-TM-atp-
c M-adp-c
M-dhap-c
M-h-c

sce00051-
Fructose-and-
mannose-
metabolism
sce00561-
Glycerolipid-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
DURIPP M-duri-c

M-pi-c
M-2dr1p-c
M-ura-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 1 -1 1 1 1

DUTPDP M-dutp-c
M-h2o-c

M-dump-
c M-h-c
M-ppi-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

-1 1 -1 1 0 1

D-LACDm M-ficytc-m
M-lac–D-m

M-focytc-m
M-pyr-m

sce00620-
Pyruvate-
metabolism
sce01100-
Metabolic-
pathways

-1 -1 1 1 1 1

ECOAH11p M-h2o-x M-
hxc2coa-x

M-3hxccoa-
x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ECOAH4p M-3hdcoa-x M-dc2coa-x

M-h2o-x
sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH6p M-3htdcoa-
x

M-h2o-x M-
td2coa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH7p M-
3hhdcoa-x

M-h2o-x M-
hdd2coa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH8p M-
3hodcoa-x

M-h2o-x M-
od2coa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

EX-
2mbald-e

M-2mbald-
e

NA NA 1 1 -1 1 1 1

EX-acald-e M-acald-e NA NA -1 1 1 1 1 1
EX-asp–L-e M-asp–L-e NA NA 1 1 -1 -1 -1 1
EX-for-e M-for-e NA NA 1 -1 1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
EX-fum-e M-fum-e NA NA -1 1 1 1 1 1
EX-glu–L-e M-glu–L-e NA NA 1 -1 1 1 1 1
EX-glyc-e M-glyc-e NA NA 1 -1 1 -1 1 -1
EX-lac–D-e M-lac–D-e NA NA -1 1 1 1 0 1
EX-nh4-e M-nh4-e NA NA -1 1 -1 1 1 1
EX-oaa-e M-oaa-e NA NA -1 1 -1 1 1 1
EX-orn-e M-orn-e NA NA -1 -1 -1 1 1 1
EX-pyr-e M-pyr-e NA NA 1 -1 -1 1 1 1
EX-succ-e M-succ-e NA NA -1 0 1 1 0 -1
FACOAL161 M-atp-c

M-coa-c
M-hdcea-c

M-TM-atp-
c M-amp-c
M-hdcoa-c
M-ppi-c

sce00061-
Fatty-acid-
biosynthesis
sce00071-
Fatty-acid-
degradation
sce01100-
Metabolic-
pathways
sce01212-
Fatty-acid-
metabolism
sce04146-
Peroxisome

1 1 -1 1 1 1

FACOAL80p M-atp-x
M-coa-x
M-octa-x

M-amp-x
M-occoa-x
M-ppi-x

sce00061-
Fatty-acid-
biosynthesis
sce00071-
Fatty-acid-
degradation
sce01100-
Metabolic-
pathways
sce01212-
Fatty-acid-
metabolism
sce04146-
Peroxisome

1 1 -1 1 0 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
FALDH M-fald-c M-

gthrd-c M-
nad-c

M-Sfglutth-
c M-TM-
gthrd-c
M-TM-nad-
c M-h-c
M-nadh-c

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00071-
Fatty-acid-
degradation
sce00350-
Tyrosine-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 1 1 1 1 1

FBP M-fdp-c M-
h2o-c

M-TM-fdp-
c M-f6p-c
M-pi-c

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00030-
Pentose-
phosphate-
pathway
sce00051-
Fructose-and-
mannose-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 1

FECOSTt M-fecost-e M-fecost-c sce02010-
ABC-
transporters

-1 1 1 1 0 1

FRDm M-fadh2-m
M-fum-m

M-fad-m
M-succ-m

NA 1 -1 1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
FTHFLi M-atp-c M-

for-c M-thf-
c

M-10fthf-c
M-TM-atp-
c M-adp-c
M-pi-c

sce00670-
One-carbon-
pool-by-folate
sce01100-
Metabolic-
pathways

-1 -1 1 1 1 1

G3PCt M-g3pc-e M-TM-
g3pc-c
M-g3pc-c

NA -1 1 1 1 1 1

G3PD1ir M-dhap-
c M-h-c
M-nadh-c

M-TM-
nad-c
M-glyc3p-c
M-nad-c

sce00564-
Glycerophospholipid-
metabolism
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04011-
MAPK-
signaling-
pathway

1 -1 1 1 1 1

G3PIt M-g3pi-e M-g3pi-c NA 1 1 -1 -1 1 -1
G3PT M-glyc3p-c

M-h2o-c
M-TM-
glyc-c
M-glyc-c
M-pi-c

sce00561-
Glycerolipid-
metabolism
sce01100-
Metabolic-
pathways

-1 1 1 1 1 1

G5SADrm M-glu5sa-m M-1pyr5c-
m M-h2o-m
M-h-m

NA 1 -1 1 1 1 1

G5SD2 M-glu5p-
c M-h-c
M-nadh-c

M-TM-
nad-c
M-glu5sa-c
M-nad-c
M-pi-c

sce00330-
Arginine-
and-proline-
metabolism
sce00332-
Carbapenem-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
G6PDH2r M-g6p-c M-

nadp-c
M-6pgl-
c M-h-c
M-nadph-c

sce00030-
Pentose-
phosphate-
pathway
sce00480-
Glutathione-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 0 1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
GCC2bim M-alpam-m

M-thf-m
M-dhlam-m
M-mlthf-m
M-nh4-m

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00020-
Citrate-cycle-
(TCA-cycle)
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00310-
Lysine-
degradation
sce00380-
Tryptophan-
metabolism
sce00620-
Pyruvate-
metabolism
sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce00640-
Propanoate-
metabolism
sce00670-
One-carbon-
pool-by-folate
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
GLCS2 M-udpg-c M-TM-

udpg-c M-
glycogen-c
M-h-c
M-udp-c

sce00500-
Starch-and-
sucrose-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 1 1 1 1

GLNt2r M-gln–L-e
M-h-e

M-TM-
gln–L-c
M-gln–L-c
M-h-c

NA -1 -1 1 1 1 1

GLUSx M-akg-c
M-gln–L-
c M-h-c
M-nadh-c

M-TM-
gln–L-c
M-TM-
glu–L-c
M-TM-nad-
c M-glu–L-c
M-nad-c

sce00250-
Alanine,-
aspartate-
and-
glutamate-
metabolism
sce00910-
Nitrogen-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

-1 -1 1 1 1 1

GLUt7m M-glu–L-c M-TM-
glu–L-c
M-glu–L-m

NA -1 -1 -1 1 1 1

GLYCDy M-glyc-c
M-nadp-c

M-TM-
glyc-c
M-dha-
c M-h-c
M-nadph-c

sce00561-
Glycerolipid-
metabolism
sce01100-
Metabolic-
pathways

1 -1 1 1 1 1

GLYK M-atp-c M-
glyc-c

M-TM-
atp-c M-
TM-glyc-c
M-adp-c
M-glyc3p-c
M-h-c

sce00561-
Glycerolipid-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
GLYOX M-h2o-c M-

lgt–S-c
M-TM-
gthrd-c
M-gthrd-
c M-h-c
M-lac–D-c

sce00620-
Pyruvate-
metabolism
sce01100-
Metabolic-
pathways

1 -1 -1 1 0 1

GNNUC M-gsn-c M-
h2o-c

M-gua-c M-
rib–D-c

sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

H2Otp M-h2o-c M-h2o-x NA -1 0 1 1 1 1
HACD10p M-3hxccoa-

x M-nad-x
M-
3ohxccoa-x
M-h-x
M-nadh-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 -1

HACD7p M-
3ohdcoa-x
M-h-x
M-nadh-x

M-
3hhdcoa-x
M-nad-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 -1

HCO3E M-co2-c M-
h2o-c

M-h-c
M-hco3-c

NA 1 1 -1 -1 0 -1

HCO3tn M-hco3-c M-hco3-n NA -1 1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
HMGCOAS M-coa-c

M-h-c M-
hmgcoa-c

M-aacoa-c
M-accoa-c
M-h2o-c

sce00072-
Synthesis-
and-
degradation-
of-ketone-
bodies
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00650-
Butanoate-
metabolism
sce00900-
Terpenoid-
backbone-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1

HSDxi M-aspsa-
c M-h-c
M-nadh-c

M-TM-
nad-c
M-hom–L-c
M-nad-c

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00270-
Cysteine-and-
methionine-
metabolism
sce00300-
Lysine-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

1 1 -1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ICL M-icit-c M-TM-

succ-c
M-glx-c
M-succ-c

sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 1 1 1 1 1

ILEt2r M-h-e
M-ile–L-e

M-TM-ile–
L-c M-h-c
M-ile–L-c

NA -1 1 -1 1 1 1

ILEtmi M-ile–L-m M-TM-
ile–L-c
M-ile–L-c

NA -1 1 -1 1 1 1

IPPMIb M-2ippm-c
M-h2o-c

M-3c3hmp-
c

sce00290-
Valine,-
leucine-and-
isoleucine-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01210-2-
Oxocarboxylic-
acid-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
IPPSm M-3mob-m

M-accoa-m
M-h2o-m

M-3c3hmp-
m M-coa-m
M-h-m

sce00290-
Valine,-
leucine-and-
isoleucine-
biosynthesis
sce00620-
Pyruvate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01210-2-
Oxocarboxylic-
acid-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

-1 -1 1 1 1 1

ITCOALm M-atp-m
M-coa-m
M-itacon-m

M-adp-m
M-itaccoa-
m M-pi-m

sce00020-
Citrate-cycle-
(TCA-cycle)
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 1 1 1 1
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Chapter 6. Conclusions and Future Work

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
LALDO3 M-h-c M-

mthgxl-c
M-nadph-c

M-lald–L-c
M-nadp-c

sce00040-
Pentose-and-
glucuronate-
interconversions
sce00620-
Pyruvate-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce04011-
MAPK-
signaling-
pathway

-1 1 1 1 1 1

LEUt2r M-h-e
M-leu–L-e

M-TM-leu–
L-c M-h-c
M-leu–L-c

NA 1 0 -1 1 1 1

LGTHL M-gthrd-c
M-mthgxl-c

M-TM-
gthrd-c
M-lgt–S-c

sce00620-
Pyruvate-
metabolism
sce01100-
Metabolic-
pathways

1 -1 -1 1 0 1

LNS14DM M-h-c M-
lanost-c
M-nadph-c
M-o2-c

M-44mctr-c
M-for-c
M-h2o-c
M-nadp-c

sce00100-
Steroid-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 1 1 1 1

LPP-SC M-dagpy-
SC-c M-
h2o-c

M-h-c M-
pa-SC-c
M-pi-c

sce00561-
Glycerolipid-
metabolism
sce00564-
Glycerophospholipid-
metabolism
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
LSERDHr M-nadp-c

M-ser–L-c
M-2amsa-c
M-TM-ser–
L-c M-h-c
M-nadph-c

sce00240-
Pyrimidine-
metabolism
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce01100-
Metabolic-
pathways

1 -1 -1 1 1 -1

MALt2r M-h-e
M-mal–L-e

M-h-c
M-mal–L-c

NA -1 1 -1 -1 -1 -1

MDHm M-mal–L-m
M-nad-m

M-h-m M-
nadh-m M-
oaa-m

sce00020-
Citrate-cycle-
(TCA-cycle)
sce00270-
Cysteine-and-
methionine-
metabolism
sce00620-
Pyruvate-
metabolism
sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 1 1 1 1

MEVK1 M-atp-c M-
mev–R-c

M-5pmev-c
M-TM-atp-
c M-adp-c
M-h-c

sce00900-
Terpenoid-
backbone-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04146-
Peroxisome

-1 1 -1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
MEVK3 M-gtp-c M-

mev–R-c
M-5pmev-c
M-gdp-c
M-h-c

sce00900-
Terpenoid-
backbone-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04146-
Peroxisome

1 -1 -1 1 1 1

MEVK4 M-mev–R-c
M-utp-c

M-5pmev-
c M-h-c
M-udp-c

sce00900-
Terpenoid-
backbone-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04146-
Peroxisome

1 -1 1 1 1 1

NADPPPS M-h2o-c M-
nadp-c

M-TM-nad-
c M-nad-c
M-pi-c

NA 1 -1 -1 -1 1 -1

NDP3 M-gdp-c M-
h2o-c

M-TM-
gmp-c
M-gmp-
c M-h-c
M-pi-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

NDP7 M-h2o-c M-
udp-c

M-h-c
M-pi-c
M-ump-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

-1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
NDPK3 M-atp-c M-

cdp-c
M-TM-atp-
c M-adp-c
M-ctp-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1

NDPK8 M-atp-c M-
dadp-c

M-TM-atp-
c M-adp-c
M-datp-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1

NH4tm M-nh4-c M-nh4-m NA -1 1 1 1 1 1
NTD2 M-h2o-c M-

ump-c
M-pi-c M-
uri-c

sce00760-
Nicotinate-
and-
nicotinamide-
metabolism

-1 -1 -1 1 1 1

NTP3 M-gtp-c M-
h2o-c

M-gdp-c M-
h-c M-pi-c

NA -1 -1 1 -1 -1 -1

OAAt M-oaa-c M-oaa-e NA -1 1 -1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
OHPBAT M-glu–L-c

M-ohpb-c
M-TM-
glu–L-c
M-akg-c
M-phthr-c

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00270-
Cysteine-and-
methionine-
metabolism
sce00680-
Methane-
metabolism
sce00750-
Vitamin-B6-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

-1 0 -1 1 1 1

ORNTA M-akg-c M-
orn-c

M-TM-
glu–L-c
M-glu5sa-c
M-glu–L-c

sce00330-
Arginine-
and-proline-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 0 -1 1 1 1

P5CDm M-1pyr5c-
m M-h2o-m
M-nad-m

M-glu–L-m
M-h-m
M-nadh-m

NA 1 -1 1 -1 1 1

PAK-SC M-atp-c M-
pa-SC-c

M-TM-atp-
c M-adp-c
M-dagpy-
SC-c

NA 1 1 -1 1 1 1

PAPtm M-pap-c M-pap-m NA 1 1 -1 -1 -1 -1

270



6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PDE1 M-camp-c

M-h2o-c
M-amp-c
M-h-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways

1 -1 -1 1 1 1

GCC2cm-
copy2

M-dhlam-m
M-nad-m

M-h-m M-
lpam-m M-
nadh-m

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00020-
Citrate-cycle-
(TCA-cycle)
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00310-
Lysine-
degradation
sce00380-
Tryptophan-
metabolism
sce00620-
Pyruvate-
metabolism
sce00630-
Glyoxylate-
and-
dicarboxylate-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 1 1 1 1

PEtm-SC M-pe-SC-c M-pe-SC-m NA -1 1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PGI M-g6p-c M-f6p-c sce00010-

Glycolysis-/-
Gluconeogenesis
sce00030-
Pentose-
phosphate-
pathway
sce00500-
Starch-and-
sucrose-
metabolism
sce00520-
Amino-
sugar-and-
nucleotide-
sugar-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 1 1 1 1

PGM M-2pg-c M-3pg-c sce00010-
Glycolysis-/-
Gluconeogenesis
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

1 1 -1 1 1 1

272



6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PI35BP5P-
SC

M-h2o-c M-
ptd135bp-
SC-c

M-pi-c
M-ptd3ino-
SC-c

sce00562-
Inositol-
phosphate-
metabolism
sce01100-
Metabolic-
pathways
sce04070-
Phosphatidylinositol-
signaling-
system

-1 1 1 1 1 1

PI3P5K-SC M-atp-c
M-ptd3ino-
SC-c

M-TM-atp-
c M-adp-c
M-h-c M-
ptd135bp-
SC-c

sce00562-
Inositol-
phosphate-
metabolism
sce01100-
Metabolic-
pathways
sce04070-
Phosphatidylinositol-
signaling-
system
sce04145-
Phagosome

-1 1 1 1 1 1

PLD-SC M-h2o-c M-
pc-SC-c

M-chol-
c M-h-c
M-pa-SC-c

sce00564-
Glycerophospholipid-
metabolism
sce00565-
Ether-lipid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04144-
Endocytosis

-1 -1 1 1 1 1

PPND M-nad-c M-
pphn-c

M-34hpp-c
M-TM-nad-
c M-co2-c
M-nadh-c

NA 1 1 1 1 -1 1

PROt2r M-h-e
M-pro–L-e

M-TM-pro–
L-c M-h-c
M-pro–L-c

NA -1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PSERSm-
SC

M-cdpdag-
SC-m
M-ser–L-m

M-cmp-m
M-h-m
M-ps-SC-m

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00564-
Glycerophospholipid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 -1 1 0 1

PTRCt3i M-h-c
M-ptrc-e

M-h-e
M-ptrc-c

NA -1 -1 1 1 1 1

PTRCtex2 M-ptrc-c M-ptrc-e NA -1 1 1 1 1 1
PUNP1 M-adn-c M-

pi-c
M-ade-c M-
r1p-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PUNP6 M-din-c M-

pi-c
M-2dr1p-c
M-hxan-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1

PYRt2 M-h-e
M-pyr-e

M-h-c
M-pyr-c

NA -1 0 1 1 1 1

RNDR3 M-cdp-c M-
trdrd-c

M-dcdp-c
M-h2o-c
M-trdox-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00480-
Glutathione-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

SERAT M-accoa-c
M-ser–L-c

M-TM-
ser–L-c
M-acser-c
M-coa-c

NA 1 -1 1 1 1 1

SLFAT M-adp-c M-
h-c M-so4-c

M-aps-c M-
pi-c

sce00230-
Purine-
metabolism
sce00920-
Sulfur-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 1 1

THIORDXi M-h2o2-c
M-trdrd-c

M-h2o-c M-
trdox-c

NA -1 -1 1 1 1 1

THIORDXp M-h2o2-x
M-trdrd-x

M-h2o-x M-
trdox-x

sce04122-
Sulfur-relay-
system

-1 -1 -1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
THMP M-h2o-c M-

thmmp-c
M-TM-
thm-c
M-pi-c
M-thm-c

NA 1 -1 -1 1 1 1

THRt2r M-h-e
M-thr–L-e

M-h-c
M-thr–L-c

NA -1 -1 1 1 1 1

TKT1 M-r5p-c M-
xu5p–D-c

M-g3p-c M-
s7p-c

sce00030-
Pentose-
phosphate-
pathway
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

1 1 -1 1 1 1

TMDK1 M-atp-c M-
thymd-c

M-TM-atp-
c M-adp-c
M-dtmp-c
M-h-c

NA -1 1 1 1 -1 1

TMN M-h2o-c M-
thm-c

M-
4ahmmp-c
M-4mhetz-
c M-TM-
thm-c
M-h-c

NA 1 1 -1 1 1 1

TREH M-h2o-c M-
tre-c

M-TM-glc–
D-c M-
TM-tre-c
M-glc–D-c

sce00500-
Starch-and-
sucrose-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 -1 -1 1 1 1

TREt2v M-h-c
M-tre-c

M-TM-tre-
c M-h-v
M-tre-v

NA 1 1 -1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
UPPRT M-prpp-c

M-ura-c
M-ppi-c M-
ump-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

1 1 -1 1 0 1

UREASE M-atp-c M-
hco3-c M-
urea-c

M-TM-atp-
c M-adp-c
M-allphn-
c M-h-c
M-pi-c

sce00220-
Arginine-
biosynthesis
sce00791-
Atrazine-
degradation
sce01100-
Metabolic-
pathways

-1 -1 -1 1 1 1

URIK1 M-atp-c M-
uri-c

M-TM-atp-
c M-adp-c
M-h-c
M-ump-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

-1 1 -1 1 1 1

VALt2r M-h-e
M-val–L-e

M-TM-val–
L-c M-h-c
M-val–L-c

NA 1 -1 -1 1 0 1

2MBALDt-
reverse

M-2mbald-
e

M-2mbald-
c

NA 1 -1 1 1 1 1

3C3HMPtm-
reverse

M-3c3hmp-
m

M-3c3hmp-
c

NA -1 -1 1 1 1 1

ACALDt-
reverse

M-acald-c M-acald-e NA -1 1 1 1 1 1

ACALDtm-
reverse

M-acald-c M-acald-m NA -1 1 -1 1 1 1

ACCOAC-
reverse

M-adp-c
M-h-c M-
malcoa-c
M-pi-c

M-TM-
atp-c
M-accoa-c
M-atp-c
M-hco3-c

sce00061-
Fatty-acid-
biosynthesis
sce00620-
Pyruvate-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01212-
Fatty-acid-
metabolism

-1 1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ADK1-
reverse

M-adp-c M-TM-atp-
c M-amp-c
M-atp-c

sce00230-
Purine-
metabolism
sce00730-
Thiamine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 -1 1 1 1

ADK3m-
reverse

M-adp-m
M-gdp-m

M-amp-m
M-gtp-m

sce00230-
Purine-
metabolism
sce00730-
Thiamine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 -1 1 1 1

ADK4m-
reverse

M-adp-m
M-idp-m

M-amp-m
M-itp-m

sce00230-
Purine-
metabolism
sce00730-
Thiamine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 1 1 1 1

AKGMAL-
reverse

M-akg-e M-
mal–L-c

M-akg-c M-
mal–L-e

NA -1 -1 1 1 1 1

ASPt2n-
reverse

M-asp–L-n
M-h-n

M-TM-
asp–L-c
M-asp–L-c
M-h-c

NA 1 -1 1 1 1 1

ASPt2r-
reverse

M-asp–L-c
M-h-c

M-TM-
asp–L-c
M-asp–L-e
M-h-e

NA 1 1 -1 1 1 1

BTDD-RR-
reverse

M-actn–
R-c M-h-c
M-nadh-c

M-TM-
nad-c M-
btd-RR-c
M-nad-c

sce00650-
Butanoate-
metabolism

-1 -1 -1 -1 0 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
CYSt2r-
reverse

M-cys–L-c
M-h-c

M-cys–L-e
M-h-e

NA -1 1 -1 1 1 1

CYTK1-
reverse

M-adp-c M-
cdp-c

M-TM-
atp-c M-
TM-cmp-c
M-atp-c
M-cmp-c

NA -1 -1 -1 -1 0 1

DASYN-
SC-reverse

M-cdpdag-
SC-c M-
ppi-c

M-ctp-c
M-h-c
M-pa-SC-c

sce00564-
Glycerophospholipid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce04070-
Phosphatidylinositol-
signaling-
system

1 1 -1 1 1 1

DURIPP-
reverse

M-2dr1p-c
M-ura-c

M-duri-c
M-pi-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 1 1 1 1

ECOAH11p-
reverse

M-3hxccoa-
x

M-h2o-x M-
hxc2coa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ECOAH4p-
reverse

M-dc2coa-x
M-h2o-x

M-3hdcoa-x sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH6p-
reverse

M-h2o-x M-
td2coa-x

M-3htdcoa-
x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH7p-
reverse

M-h2o-x M-
hdd2coa-x

M-
3hhdcoa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

ECOAH8p-
reverse

M-h2o-x M-
od2coa-x

M-
3hodcoa-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ENO-
reverse

M-h2o-c M-
pep-c

M-2pg-c sce00010-
Glycolysis-/-
Gluconeogenesis
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids
sce03018-
RNA-
degradation

1 1 -1 1 1 1

EX-h-e-
reverse

NA M-h-e NA -1 -1 1 1 1 1

FACOAL140-
reverse

M-amp-c
M-ppi-c
M-tdcoa-c

M-TM-atp-
c M-atp-c
M-coa-c
M-ttdca-c

sce00061-
Fatty-acid-
biosynthesis
sce00071-
Fatty-acid-
degradation
sce01100-
Metabolic-
pathways
sce01212-
Fatty-acid-
metabolism
sce04146-
Peroxisome

-1 1 1 1 1 1

FACOAL181-
reverse

M-amp-c
M-odecoa-c
M-ppi-c

M-TM-atp-
c M-atp-c
M-coa-c
M-ocdcea-c

sce00061-
Fatty-acid-
biosynthesis
sce00071-
Fatty-acid-
degradation
sce01100-
Metabolic-
pathways
sce01212-
Fatty-acid-
metabolism
sce04146-
Peroxisome

1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
FACOAL80p-
reverse

M-amp-x
M-occoa-x
M-ppi-x

M-atp-x
M-coa-x
M-octa-x

sce00061-
Fatty-acid-
biosynthesis
sce00071-
Fatty-acid-
degradation
sce01100-
Metabolic-
pathways
sce01212-
Fatty-acid-
metabolism
sce04146-
Peroxisome

1 1 -1 1 0 1

FALDH-
reverse

M-Sfglutth-
c M-h-c
M-nadh-c

M-TM-
gthrd-c
M-TM-nad-
c M-fald-c
M-gthrd-c
M-nad-c

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00071-
Fatty-acid-
degradation
sce00350-
Tyrosine-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 1 1 1 1 1

282



6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
FBA-
reverse

M-dhap-c
M-g3p-c

M-TM-fdp-
c M-fdp-c

sce00010-
Glycolysis-/-
Gluconeogenesis
sce00030-
Pentose-
phosphate-
pathway
sce00051-
Fructose-and-
mannose-
metabolism
sce00680-
Methane-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

1 -1 1 1 1 1

FECOSTt-
reverse

M-fecost-c M-fecost-e sce02010-
ABC-
transporters

-1 1 1 1 0 1

FUMm-
reverse

M-mal–L-m M-fum-m
M-h2o-m

sce00020-
Citrate-cycle-
(TCA-cycle)
sce00620-
Pyruvate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 1

FUMt2r-
reverse

M-fum-c
M-h-c

M-fum-e
M-h-e

NA -1 1 1 1 1 1

G3PCt-
reverse

M-g3pc-c M-TM-
g3pc-c
M-g3pc-e

NA -1 1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
G3PIt-
reverse

M-g3pi-c M-g3pi-e NA 1 1 -1 -1 1 -1

GLUt2r-
reverse

M-glu–L-c
M-h-c

M-TM-
glu–L-c
M-glu–L-e
M-h-e

NA 1 1 -1 1 1 1

GLYCt-
reverse

M-glyc-e M-TM-
glyc-c
M-glyc-c

NA -1 1 -1 1 1 1

H2Otp-
reverse

M-h2o-x M-h2o-c NA -1 -1 1 1 1 1

HACD10p-
reverse

M-
3ohxccoa-x
M-h-x
M-nadh-x

M-3hxccoa-
x M-nad-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 -1

HACD7p-
reverse

M-
3hhdcoa-x
M-nad-x

M-
3ohdcoa-x
M-h-x
M-nadh-x

sce00410-
beta-Alanine-
metabolism
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01200-
Carbon-
metabolism

-1 -1 -1 1 1 -1

HMGCOAtm-
reverse

M-hmgcoa-
m

M-hmgcoa-
c

NA 1 1 -1 1 0 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
ILETAm-
reverse

M-3mop-m
M-glu–L-m

M-akg-m
M-ile–L-m

sce00270-
Cysteine-and-
methionine-
metabolism
sce00280-
Valine,-
leucine-and-
isoleucine-
degradation
sce00290-
Valine,-
leucine-and-
isoleucine-
biosynthesis
sce00770-
Pantothenate-
and-CoA-
biosynthesis
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01210-2-
Oxocarboxylic-
acid-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

-1 1 -1 1 1 1

ITCOALm-
reverse

M-adp-m
M-itaccoa-
m M-pi-m

M-atp-m
M-coa-m
M-itacon-m

sce00020-
Citrate-cycle-
(TCA-cycle)
sce00640-
Propanoate-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

-1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
LSERDHr-
reverse

M-2amsa-
c M-h-c
M-nadph-c

M-TM-
ser–L-c
M-nadp-c
M-ser–L-c

sce00240-
Pyrimidine-
metabolism
sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce01100-
Metabolic-
pathways

1 -1 -1 1 1 -1

LYSt2r-
reverse

M-h-c
M-lys–L-c

M-TM-lys–
L-c M-h-e
M-lys–L-e

NA -1 -1 1 1 1 1

L-LACtm-
reverse

M-h-m M-
lac–L-m

M-TM-lac–
L-c M-h-c
M-lac–L-c

NA -1 1 -1 -1 -1 1

OHPBAT-
reverse

M-akg-c M-
phthr-c

M-TM-
glu–L-c
M-glu–L-c
M-ohpb-c

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00270-
Cysteine-and-
methionine-
metabolism
sce00680-
Methane-
metabolism
sce00750-
Vitamin-B6-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism
sce01230-
Biosynthesis-
of-amino-
acids

-1 0 -1 1 1 1

PHEt2r-
reverse

M-h-c
M-phe–L-c

M-TM-
phe–L-c
M-h-e
M-phe–L-e

NA -1 -1 1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PPM-
reverse

M-r5p-c M-r1p-c sce00010-
Glycolysis-/-
Gluconeogenesis
sce00030-
Pentose-
phosphate-
pathway
sce00052-
Galactose-
metabolism
sce00230-
Purine-
metabolism
sce00500-
Starch-and-
sucrose-
metabolism
sce00520-
Amino-
sugar-and-
nucleotide-
sugar-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 -1 -1 1 1 1

PRASCSi-
reverse

M-25aics-c
M-adp-
c M-h-c
M-pi-c

M-5aizc-c
M-TM-
asp–L-c M-
TM-atp-c
M-asp–L-c
M-atp-c

sce00230-
Purine-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

1 1 -1 1 1 1

PROtm-
reverse

M-pro–L-m M-TM-
pro–L-c
M-pro–L-c

NA 1 -1 1 -1 -1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
PSERS-SC-
reverse

M-cmp-
c M-h-c
M-ps-SC-c

M-TM-
cmp-c
M-TM-
ser–L-c
M-cdpdag-
SC-c M-
ser–L-c

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00564-
Glycerophospholipid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 1 1 1 1

PSERSm-
SC-reverse

M-cmp-m
M-h-m
M-ps-SC-m

M-cdpdag-
SC-m
M-ser–L-m

sce00260-
Glycine,-
serine-and-
threonine-
metabolism
sce00564-
Glycerophospholipid-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 -1 1 0 1

PTD1INOtn-
SC-reverse

M-ptd1ino-
SC-n

M-ptd1ino-
SC-c

NA -1 1 1 1 1 1

PUNP6-
reverse

M-2dr1p-c
M-hxan-c

M-din-c M-
pi-c

sce00230-
Purine-
metabolism
sce00240-
Pyrimidine-
metabolism
sce00760-
Nicotinate-
and-
nicotinamide-
metabolism
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites

-1 1 1 1 1 1
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6.3 Future research lines

Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
SACCD2-
reverse

M-akg-
c M-h-c
M-lys–L-c
M-nadh-c

M-TM-
lys–L-c
M-TM-nad-
c M-h2o-c
M-nad-c
M-saccrp–
L-c

sce00300-
Lysine-
biosynthesis
sce00310-
Lysine-
degradation
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01230-
Biosynthesis-
of-amino-
acids

-1 -1 -1 1 1 1

SERt2r-
reverse

M-h-c
M-ser–L-c

M-TM-ser–
L-c M-h-e
M-ser–L-e

NA 1 -1 -1 1 1 1

SUCD2-
u6m-
reverse

M-fum-m
M-q6h2-m

M-q6-m M-
succ-m

sce00020-
Citrate-cycle-
(TCA-cycle)
sce00190-
Oxidative-
phosphorylation
sce01100-
Metabolic-
pathways
sce01110-
Biosynthesis-
of-secondary-
metabolites
sce01200-
Carbon-
metabolism

1 -1 1 1 1 1

THIORDXp-
reverse

M-h2o-x M-
trdox-x

M-h2o2-x
M-trdrd-x

sce04122-
Sulfur-relay-
system

-1 -1 -1 1 1 1

THRt2r-
reverse

M-h-c
M-thr–L-c

M-h-e
M-thr–L-e

NA -1 -1 -1 1 1 1

TRDOXtp-
reverse

M-trdox-x M-trdox-c NA 1 1 -1 1 0 1

TRDRDtp-
reverse

M-trdrd-x M-trdrd-c NA 1 1 -1 1 0 1

TREt2v-
reverse

M-h-v
M-tre-v

M-TM-tre-
c M-h-c
M-tre-c

NA -1 1 -1 1 1 1
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Reaction data Wild Type mip6∆

Rxn Reactants Products Pathways t0 t20 t120 t0 t20 t120
URIDK2r-
reverse

M-adp-c M-
dudp-c

M-TM-atp-
c M-atp-c
M-dump-c

sce00240-
Pyrimidine-
metabolism
sce01100-
Metabolic-
pathways

-1 -1 1 1 1 1
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