
����������
�������

Citation: Aceituno, J.M.; Guasque,

A.; Balbastre, P.; Simó, J.; Crespo, A.

Interference-Aware Schedulability

Analysis and Task Allocation for

Multicore Hard Real-Time Systems.

Electronics 2022, 11, 1313. https://

doi.org/10.3390/electronics11091313

Academic Editor: Christos Volos

Received: 31 March 2022

Accepted: 19 April 2022

Published: 21 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Interference-Aware Schedulability Analysis and Task
Allocation for Multicore Hard Real-Time Systems
José María Aceituno †, Ana Guasque † , Patricia Balbastre *,† , José Simó † and Alfons Crespo †

Instituto de Automatica e Informatica Industrial (ai2), Universitat Politècnica de València, Camino de Vera, s/n,
46022 Valencia, Spain; aceituno@ai2.upv.es (J.M.A.); anguaor@ai2.upv.es (A.G.); jsimo@ai2.upv.es (J.S.);
acrespo@ai2.upv.es (A.C.)
* Correspondence: patricia@ai2.upv.es
† These authors contributed equally to this work.

Abstract: There has been a trend towards using multicore platforms for real-time embedded systems
due to their high computing performance. In the scheduling of a multicore hard real-time system,
there are interference delays due to contention of shared hardware resources. The main sources of
interference are memory, cache memory, and the shared memory bus. These interferences are a great
source of unpredictability and they are not always taken into account. Recent papers have proposed
task models and schedulability algorithms to account for this interference delay. The aim of this
paper is to provide a schedulability analysis for a task model that incorporates interference delay, for
both fixed and dynamic priorities. We assume an implicit deadline task model. We rely on a task
model where this interference is integrated in a general way, without depending on a specific type of
hardware resource. There are similar approaches, but they consider fixed priorities. An allocation
algorithm to minimise this interference (Imin) is also proposed and compared with existing allocators.
The results show how Imin has the best rates in terms of percentages of schedulability and increased
utilisation. In addition, Imin presents good results in terms of solution times.

Keywords: multicore; hard real-time; scheduling; hardware resource contention

1. Introduction

The use of embedded systems is nowadays spreading at an increasing speed, to all
aspects of modern life as well as all phases of industrial production. The processing
capability of multicore systems permits multiple embedded applications on a single shared
hardware platform. Nevertheless, multicore systems add many sources of indeterminism,
leading to a number of execution delays. These sources of indeterminism mainly involve
shared hardware resources, such as buses, caches, and memories. It is necessary to analyse
the temporal model in the context of a multicore system and not just when it is running
without contenders [1]. Specifically, the interference appears when cores contend for these
shared resources. In addition, in highly critical systems, the static plan must take the
interference into account. If not, the system’s feasibility may be jeopardized.

When this interference is taken into account, the model and the schedulability analysis
is often limited to a particular type of hardware resource and even a particular type
of memory.

Recently, in [2], a new task model is proposed that takes into account the interference
of hardware shared resources in the context of multicore hard real-time systems. This
model is general for any kind of hardware resource. However, there is no schedulability
test for this new task model. This interference delay can be large and highly variable,
posing a major challenge to the schedulability of real-time critical multicore systems.

Contribution: This paper proposes a schedulability test for multicore real-time sys-
tems for the model presented by Ref. [2], since in this work they did not present any
schedulability analysis.

Electronics 2022, 11, 1313. https://doi.org/10.3390/electronics11091313 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091313
https://doi.org/10.3390/electronics11091313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2900-8466
https://orcid.org/0000-0001-9458-4083
https://orcid.org/0000-0002-6606-7406
https://doi.org/10.3390/electronics11091313
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091313?type=check_update&version=1


Electronics 2022, 11, 1313 2 of 21

An allocation algorithm to minimise this interference is also proposed and compared
with existing allocators. Our proposal is valid for both fixed and dynamic priorities.

The novelty of the contribution is the consideration of dynamic priority scheduling in
a model that considers interference due to shared hardware resources. We use a general
model that can be used with different types of shared hardware resources in contrast with
other works that assume a very specific kind of resource. Other works assume only fixed
priorities or that the interference is only valid for a specific type of shared resource [2].

The paper is organized as follows: Section 2 presents the relevant works in partitioned
multicore systems scheduling. In Section 3, the system model used is presented. Section 4
presents the contention aware utilisation factor that is the basis for the schedulability
analysis in Section 5. In Section 6 the allocation algorithm that minimises the interference is
proposed. The evaluation of the proposal is presented in Section 7, while the conclusions
and further work are given in Section 8.

2. Related Works

There is a lot of research about real-time multicore systems scheduling, and one of
the most relevant surveys in this area is [3]. In multicore scheduling there are two main
branches depending on the criticality required: partitioned and global scheduling. Since our
scope of application is hard real-time, from now on we will assume partitioned scheduling.
Partitioned multicore scheduling involves two phases: task to core allocation and task
scheduling of each core.

The allocation of tasks to cores can be solved with bin packing techniques. We know
that this problem is NP-hard in the strong sense [4]. Some of the most popular heuristics,
cited in Refs. [5,6] are Worst fit (WF), First fit (FF), and Best fit (BF). Coffman et al. [7]
describes many of these algorithms in detail.

It is important to note that the previous allocators do not take into account the unpre-
dictability produced by shared hardware resources. In Ref. [8] a comprehensive analysis of
all possible sources of indeterminism is presented. These sources are classified into primary
and secondary. They consider primary sources such as caches, memory, FSB, and memory
controller and secondary sources such as power saving strategies, hardware-prefetching,
system management interrupts, and translation look-aside buffer.

Additionally, in [1] a state-of-the-art about contention delays is presented. This topic
is also analysed in [9], where the sources of timing interference in single-core, multi-core,
and distributed systems are presented. As stated in this paper, memory interference can
render a system infeasible. It is shown in [10] that it is possible that memory interference
can cause a worst-case response time increase of almost 300%, even for tasks that spend
only 10% of their time fetching memory on an eight-core system.

There are some works that reduce interference delays by using modified task models.
In [11], a new model called PREM (predictable execution model) is proposed. This proposal
divides one task into two phases: communication and execution. A similar technique
is used in [12], which schedules the system with the goal of minimising the makespan
by letting the scheduler decide when it is appropriate to avoid interference. For DAG
task models, Ref. [13] proposes a scheduling method that applies the LET (Logical Execu-
tion Time) paradigm and considers the communication timing between nodes to reduce
interference delay due to shared hardware resources.

Other works, such as Ref. [14], proposes a feedback control scheme where critical
and non-critical tasks are separated and assigned to different partitions for ensuring the
execution of the critical tasks, so a hypervisor manages the multicore hardware system
in order to limit memory bus access in non-critical cores measured with Performance
Monitor Counters. In Ref. [15], the authors propose an analysis of memory contention
as an optimisation problem, which tries to minimize memory interference. They split
tasks intro three phases and consider multiple memory transactions issued during each
phase. Other approaches, such as the one presented in Ref. [16], reduce contention using
synchronisation-based interference models and specific memory allocation schemes.



Electronics 2022, 11, 1313 3 of 21

The survey in Ref. [17] provides an overview on timing verification techniques for
multicore real-time systems until 2018. This survey considers single shared resources
(memory bus, shared cache, DRAM) and also multiple resources, which is what this work
focuses on. The most relevant works come from the Multicore Response Time Analysis
framework in Ref. [18], which provides a general approach to timing verification for
multicore systems. They omit the notion of worst case execution time (WCET) and instead
directly target the calculation of task response times through execution traces. They start
from a given mapping of tasks to cores and assume fixed-priority preemptive scheduling.

Other works cited in the survey, such as Ref. [19,20] consider the amount of time for
shared resources accesses and the maximum number of access segments, which is out of
the scope of this work.

Regarding mapping and scheduling, the survey presents several works grouped by
the techniques that are used: bin-packing algorithms, genetic algorithms, ILP and MILP
(Integer/Mixed Integer Linear Programming), etc. ILP and MILP techniques consider
scratch-pad memories with different objectives: to minimise the initiation intervals of task
graphs, to minimise the WCETs, to minimize the worst case response time (WCRT) of task
graphs, etc. The presented techniques are not scalable to large numbers of cores in the
system and the authors present heuristics that are scalable.

There are some works that introduce interference due to memory contention as a
new parameter in the temporal model. In Ref. [21] WCRA (Worst Case number of shared
Resource Accesses) is defined and added to the WCET. In the same way, Ref. [22] proposed
the concept of interference-sensitive Worst-Case Execution Time (isWCET). A dynamic
approach is presented in Ref. [23] so that, depending on the progress of each kernel, the
dependencies of the isWCET schedules are reduced or completely eliminated. The concept
of isWCET is similar to our work, but the proposals are centred around minimising the
effect of interference with new scheduling methods while our work focuses on allocation
algorithms and schedulability conditions. In Ref. [24] memory interference is analysed
in a similar way to our work, as it is also represented as a parameter of the temporal
model. However, their work is based on the interference produced only by the DRAM
memory while our proposal is agnostic with respect to the shared hardware resource
used. Their work also considers fixed priority scheduling while our proposal considers
dynamic priorities.

The work in Ref. [25] provides the Multicore Resource Stress and Sensitivity (MRSS)
task model that characterises how much stress each task places on resources and its sensi-
tivity to such resource stress. This work considers different types of interference (limited,
direct, and indirect) and fixed priority scheduling policies. In contrast to this work, the
task-to-cores allocation is known a priori.

In Ref. [2], the interference due to contention is added to the temporal model. Instead
of adding it to the WCET, they propose a scheduling algorithm that computes the exact
value of interference and an allocator that tries to reduce this total interference.

In Ref. [26], partitioned scheduling that considers interference while making partition
and scheduling decisions is presented. They present a mixed integer linear programming
model to obtain the optimal solution but with a high computation cost and they also
propose approximation algorithms. They only consider implicit deadline models. This
paper differentiates between isolated WCET and the WCET with interference and overhead.
They define an Inter-Task interference matrix, in which each element of the matrix is the
interference utilisation between two tasks, considering the inflated WCET when two tasks
run together. This work is similar to Ref. [2], but in Ref. [2] a general model is considered,
valid for any type of shared hardware resource while Ref. [26] only interference due to
cache sharing is considered.

Our work continues the research of Ref. [2], so we use the same temporal model to
provide a schedulability bound. Therefore, our model does not only provide a schedulabil-
ity analysis for both fixed and dynamic priorities with a general model for interference, but
also a new allocation algorithm that minimizes this bound.



Electronics 2022, 11, 1313 4 of 21

3. Problem Definition and Task Model

The aim of this work is to provide a schedulability condition and an interference-
conscious allocator for the task model presented below. This task model is the same as the
one presented in Ref. [2].

We suppose a multicore system with m cores (M0, M1, M2, . . . , Mm−1) where a task set
τ of n independent tasks should be allocated. Each task τi is represented by the tuple:

τi = (Ci, Ti, Ii) (1)

where Ci is the WCET, Ti is the period and Ii is the interference. We assume implicit
deadlines, so the deadlines are equal to periods. When we refer to Mτi , we mean the core
in which τi is allocated.

The hyperperiod of the task set, H, is defined as the least common multiple (lcm) of
the periods of all the periodic tasks:

H = lcm{Ti | i = 0, . . . , n− 1} (2)

We define Ai as the number of activations that τi has throughout H:

Ai = H/Ti (3)

Since the goal of this paper is to obtain a schedulability test, we will assume a syn-
chronous task system.

To visualize the concept of Ii, we can observe Figure 1, where the computation time
(C0) of task τ0 is represented. As part of this computation time, the time in which the task
performs read and/or write operations in memory has been differentiated (depicted with
diagonal lines), as an example of access to a shared hardware resource. It is possible that
when the task wants to do one of these r/w operations, the requested resource is busy. Or
the other way around, that when the task is accessing this hardware resource, other tasks
are blocked from accessing this resource. In any case, this time is the time considered as
interference caused to other tasks in other cores Ii. In general, the term Ii is the time the
task takes to access shared hardware resources. Although Ii is part of Ci, during the time
the task is accessing the shared resource, other tasks on other cores will be delayed. So
this interference time is defined independently of Ci, as will be used to represent the delay
caused to other tasks. Although the parameter Ii is defined in [2], it is worth describing in
detail by means of an example.

Figure 1. The interference time is included during the time execution.

Example of task set execution with interference: We have a task set composed of
three tasks and three cores. Every task is allocated to a different core. τ0 and τ2 request



Electronics 2022, 11, 1313 5 of 21

access to the same shared hardware resource, as I0, I2 > 0. However, τ1 will not be affected
by the interference of the other tasks, as I1 = 0.

τ0 = (3, 6, 1) τ1 = (5, 8, 0) τ2 = (6, 12, 1)

The scheduling of this system is represented in Figure 2.

Figure 2. Example of interference.

As we can observe in Figure 2, on one hand, task τ1 does not receive any interference
from the other tasks, so its execution time is not affected by the contention. On the other
hand, τ0 and τ2 suffer an increase in their execution time. At the beginning, both tasks (τ0
and τ2) suffer a delay of 1 unit because of the interference between them. In t = 6, τ0 is
released again and coincides with the first job of τ2. In that moment, each task provokes a
unit of interference in the execution of the other task. We represent the interference as unit
times in unified blocks, positioned in the beginning of the execution in order to facilitate
the calculation but always preserving the real magnitude of the contention.

Once the model has been defined, we will now present some parameters necessary for
the development of the following sections.

From Figure 2, it is deduced that, if contention is considered, the total utilisation of a
task does not only depend on its computation time and period, but also on the interference
received from other tasks.

We consider that the interference parameter refers to a single type of hardware resource.
If there are several types of hardware resources, the model would have to extend to as
many interference parameters as there are hardware resources. Considering parameter I
for all interference types would result in an even more pessimistic model.

It should be taken into account that a task τj will cause interference to other task τi
when the following conditions are met:

• τi and τj are not allocated to the same core (Mτi 6= Mτj );
• τi and τj are active at the same time;
• τi and τj have at least 1 unit of interference (Ii > 0, Ij > 0)

Therefore, the real utilisation (we refer to real utilisation to the utilisation that includes
the interference delay) of a task, U′i , is:

U′i = Ui + Uint
i (4)

where Ui = Ci/Ti and Uint
i are the utilisation due to the interference caused by other tasks

to τi:

Uint
i =

IT
i

H
(5)

where IT
i the total interference that a task τi receives from other tasks in a period Ti.



Electronics 2022, 11, 1313 6 of 21

Therefore:

U′i =
Ci
Ti

+
IT
i

H
(6)

Hence, the utilisation of a core would be the sum of all the task utilisations:

U′Mk
= ∑

τi∈Mk

U′i (7)

And the utilisation of all the system would be the sum of all the core utilisations:

U′τ = ∑
∀k

U′Mk
(8)

4. Contention Aware Utilisation Factor

In this section, we are going to provide an upper bound to Uint
i , so we will be able to

provide a schedulability test. This bound will be called Uiub
i . First, we need two definitions,

which were also introduced in Ref. [2]:

Definition 1 ([2]). A task is defined as a receiving task when it accesses shared hardware resources
and it suffers an increment of its computation time due to the interference produced by other tasks
allocated to other cores.

Definition 2 ([2]). A task is defined as a broadcasting task when it accesses shared hardware
resources and it provokes an increment of computation time in other tasks allocated to other cores
due to contention.

If Ii = 0, τi is neither broadcasting nor receiving task. If Ii > 0, τi will be a broadcasting
and receiving task if there is at least one task τj in other core whose Ij > 0.

To estimate Uiub
i , we will calculate the maximum total interference that will depend on

the maximum number of activations of a broadcasting task that fall within a receiving task.

Definition 3. Let ITub
j→i (in what follows, the expression j→ i means that τj is a broadcasting task

and τi is a receiving task) be the maximum total interference that τj can cause to τi in a period of
τi, Ti.

Definition 4. Let Aj→i be the maximum number of activations of the broadcasting task τj that fall
within an activation of the receiving task, τi.

From the two previous definitions, it is clear that:

ITub
j→i = Ai · Aj→i · Ij (9)

Note that ITub
j→i is an upper bound because the maximum number of interferences does not

have to occur in all activations. Besides, ITub
j→i only takes into account the interference caused by

τj. To calculate Uiub
i , we need to consider all tasks allocated to other cores. Therefore:

Uiub
i =

∑τj /∈Mτi
ITub
j→i

Ti
(10)

From Equation (10), it is easy to see that we have reduced the study of Uiub
i to the

study of ITub
j→i.



Electronics 2022, 11, 1313 7 of 21

Worst Case Estimation of ITub
j→i

To calculate ITub
j→i, we need to know the exact value of Aj→i. To do this, we will calculate

Aj→i assuming the following conditions:

• τi and τj are allocated to different cores;
• Ii, Ij > 0;
• Tj ≥ Ti (the period of the broadcasting task is greater than the period of the receiv-

ing task).

We will have further considerations of the case in which Tj < Ti.
Let us study the total interference received by τi. First, the maximum number of

activations of τj that fall within an activation of τi is calculated:

Aj→i =

⌈
Ti − 1

Tj

⌉
+ K (11)

being

K =

{
0 If periods Ti and Tj are harmonics

1 Elsewhere

Equation (11) expresses the relationship between the periods of broadcasting and
receiving task modified by factor K and minus 1 to reflect the number of activations of
the broadcasting task that fall within a period of the receiving task. With the division of
periods, we obtain the whole times that a task is included in the other and we apply the
ceiling function in order to obtain the greatest integer number of times. Moreover, the
worst scenario happens if one of the tasks is shifted one unit of time. That is why the minus
one is added to the formula.

Then, two cases are possible:

• Harmonic periods, with zero or small residues in the division of periods. Then, K = 0;
• Non-harmonic periods. Then, K = 1.

The above definition of ITub
j→i is very pessimistic in the sense that it considers that

the maximum interference occurs equally in all activations. This is not always true, as it
depends on how the activations of the two tasks coincide.

Once the definition of ITub
j→i is provided, let us consider the case in which Ti > Tj (the

period of the broadcasting task is shorter than the period of the receiving task) with the
following example: let us suppose two tasks τi and τj allocated to a dual-core platform,
with Ii = 2Ij. Figures 3 and 4 represent the maximum interference that may be produced
when tasks τi and τj are executed simultaneously. Note that, for the sake of simplicity, we
have not depicted the tasks computation times, but only the interference.

Figure 3. Example of interference from τj to τi.



Electronics 2022, 11, 1313 8 of 21

Figure 4. Example of interference from τi to τj.

Figure 3 considers that τj is the broadcasting task and τi the receiving task. In this
case, the period of the broadcasting task τj is greater than the period of the receiving
task τi, and the total received interference is equal to ITub

j→i = 4. This scenario has been
studied previously.

Let us consider now that τi is the broadcasting task and τj is the receiving task, as
depicted in Figure 4. In this case, the period of the broadcasting task is shorter than the
period of the receiving task. Could we apply Equation (11)? We are going to prove it
numerically. Suppose that Ti = 4 and Tj = 6. Applying Equation (11), the maximum
number of activations of the broadcasting task that fall within an activation of the receiving

task is Ai→j =
⌈ Tj−1

Ti

⌉
+ 1 = 3. As seen in Figure 4, τi never falls three times within an

activation of τj. So Equation (11) can not be applied when the period of the broadcasting
task τj is shorter than the period of the receiving task.

Then, we are proposing a methodology to relate the total interference between a
broadcasting and a receiving task, regardless of the lengths of their periods.

Theorem 1. The ratio of interference received and broadcast by τj to τi is:

ITub
i→j =

Ii
Ij

ITub
j→i (12)

Proof. At time 0, as both tasks are released, interference is always introduced. Moreover,
every time any task is released, Ij units of interference may be introduced. In particular, it
happens as many times as activations the tasks have in a hyperperiod minus one, because
the first activation has already been considered. Then, the total number of times is:

1 +
(

H
Ti
− 1
)
+

(
H
Tj
− 1

)
=

H
Ti

+
H
Tj
− 1

Then, the maximum number of interferences that a task τj provokes in τi is:

IT
j→i =

(
H
Ti

+
H
Tj
− 1

)
Ij

Then, let us have a look at the total interference received by task j, IT
i→j. If we repeat

the previous process, the maximum number of interferences that the task τi provokes in
τj is:

IT
i→j =

(
H
Tj

+
H
Ti
− 1

)
Ii

It is easy to deduce that the only difference between both situations is the coefficient
of interference of the task that provokes the interference.



Electronics 2022, 11, 1313 9 of 21

Therefore, we can conclude that the total interference that task j provokes to task i is
related with the total interference that task i provokes to task j as follows:

ITub
i→j =

Ii
Ij

ITub
j→i

Then, the total number of interferences between two tasks may be calculated inter-
changeably, from the point of view of both tasks. Thus, from now on and for calculus
purposes, this work considers that, when two tasks interfere, the task with the biggest
period provokes the interference on the task with the shortest period. If it is not the case,
we will apply Equation (12).

To conclude with the example in Figures 3 and 4, as we deduced that ITub
j→i = 4, from

Equation (12):

ITub
i→j =

Ii
Ij

ITub
j→i =

2Ij

Ij
4 = 8

and this result coincides with that depicted in Figure 4.

5. Schedulability Analysis

Once an upper value is given for ITub
j→i, we can estimate an upper bound of the utilisation

of a receiving task τi, Uub
i , taking into account interferences due to contention.

Uub
i = Ui + Uiub

i = Ui +
∑τj /∈Mτi

ITub
j→i

Ti

Note that, if τi is not a receiving task, then Uiub
i = 0.

This upper bound is always greater or equal to the real utilisation of the receiving task
i, U′i . This results from the fact that:

IT
i ≤ ∑

τj /∈Mτi

ITub
j→i

Therefore, the upper bound of the utilisation of each core is defined as the sum of the
upper bounds of the utilisations of the tasks that belong to that core, Uub

Mk
= ∑τi∈Mk

Uub
i .

Similarly, the upper bound of the system utilisation is defined as the sum of the upper
bound of the utilisations of all cores (or all tasks), Uub

τ = ∑Mk
Uub

Mk
. Then, the system will

be schedulable if:

1. The upper bound of the utilisation of each task is less or equal to n(2
1
n − 1) for fixed

priorities and to one for dynamic priorities, Ref. [27]:

Uub
i ≤

{
n(2

1
n − 1), for fixed priorities

1 for dynamic priorities

}
∀i = 0, . . . , n− 1

2. The upper bound of the utilisation of each core Mk is less or equal to one:

Uub
Mk
≤ 1 ∀k = 0, . . . , m− 1

As a consequence of (i) and (ii), the upper bound of the system utilisation is less or
equal to the number of cores [28], m:

Uub
τ ≤ m

As utilisations Uub
i are overestimated, we can conclude that if previous conditions are

accomplished, the system will be schedulable.
Note that this is a necessary but not a sufficient condition.



Electronics 2022, 11, 1313 10 of 21

Example

Let us show the procedure to be followed with an example: let us consider the
following task set, τ = [τ0, τ1, τ2] with τ0 = (2, 3, 0), τ1 = (4, 8, 2), and τ2 = (5, 12, 1),
allocated to a system with three cores. τ0 is allocated to core M0, τ1, in M1, and τ2, in
M2. Once the tasks are allocated to cores, the Earliest Deadline First (EDF) algorithm [27]
schedules tasks in each core. The actual execution of the task set is shown in Figure 5.

Figure 5. τ = [τ0, τ1, τ2] with τ0 = (2, 3, 0), τ1 = (4, 8, 2), and τ2 = (5, 12, 1) allocated to a system
with three cores.

We are applying the method described in Section 4 to calculate the upper bound of the
system utilisation. Then we will compare it with the actual system utilisation, shown in
Figure 5.

• Step 1: Define τj and τi. The task with the greatest period is the broadcasting task τj,
and the receiving task is the task with the shortest period, τi. In this example, τj = τ2
and τi = τ1. As I0 = 0, τ0 is neither receiving nor broadcasting.

• Step 2: Calculate the maximum number of times that task τ2 falls within an activation
of τ1, A2→1. As depicted in Figure 6, τ2 falls twice within the second activation of τ1.
It may be calculated applying Equation (11):

A2→1 =

⌈
T1 − 1

T2

⌉
+ 1 =

⌈
8− 1

12

⌉
+ 1 = 1 + 1 = 2

Figure 6. Upper bound of the interference received by τ1, ITub
2→1.



Electronics 2022, 11, 1313 11 of 21

• Step 3: To calculate the maximum total interference that τ2 can cause to τ1. First,
we calculate the number of activations of task τ1 in a hyperperiod, A1 = H/T1 = 3.
Following Equation (4):

ITub
2→1 = A1 · A2→1 · I2 = 3 · 2 · 1 = 6

The maximum total interference is only received in the second activation of τ1, as
shown in Figure 6, but we consider the worst case, in which all activations receive the
maximum of interference from τ2.

• Step 4: Calculate the total interference received by the other receiving tasks, τ2, as
shown in Figure 7. As the period of τ2 is greater than the period of τ1, we apply the
Equation (12):

ITub
1→2 =

I1

I2
ITub
2→1 =

2
1
· 6 = 12 (13)

Figure 7. Upper bound of the interference received by τ2, ITub
1→2.

• Step 5: Calculate the upper bound of the utilisation of each task.

Uub
0 =

C0

T0
=

2
3
= 0.667

Uub
1 =

C1

T1
+

IT
2→1
H

=
4
8
+

6
24

= 0.75

Uub
2 =

C2

T2
+

IT
1→2
H

=
5

12
+

12
24

= 0.91667

From Figure 5, the actual utilisations of the tasks are:

U
′
0 =

16
24

= 0.667 ≤ Uub
0

U
′
1 =

14
24

= 0.5833 ≤ Uub
1

U
′
2 =

14
24

= 0.5833 ≤ Uub
2

It is deduced that the actual utilisations of the tasks are equal or less than the upper
bounds estimated in this paper. Therefore, the system is schedulable.

6. Task Allocation Algorithms

In the following, we first briefly discuss several existing allocation techniques. We
then propose a new mapping strategy. Allocation is a problem that appears with multicore
systems. It comes to answer the question: which processor will execute each task?



Electronics 2022, 11, 1313 12 of 21

The main disadvantage of the partitioning approach to multicore scheduling is that
the task allocation problem is analogous to the bin packing problem and is known to be
NP-Hard [29].

6.1. Overview of Existing Heuristic Bin-Packing Algorithms

Refs. [5,6] detailed some of the most well-known bin-packing heuristics:

• First Fit (FF). Each item is always packed into the first bin where it fits. A new bin is
open if any item does not fit in the open bin;

• Worst Fit (WF). Each item is placed into the open bin with the largest amount of room
remaining. If it does not fit any bins, a new bin is opened.

One problem with the previous mentioned heuristics is that, if the items are not
ordered properly, large items could not be packed efficiently. Therefore, items should be
ordered effectively to avoid these problems. One way is to pack the items in order of
decreasing weights or utilizations. This way, WF becomes WFDU (Worst Fit Decreasing
utilisation), and FF becomes FFDU (First Fit Decreasing utilisation).

6.2. Overview of Aceituno’s Method

In Ref. [2], a task model that takes into account interference delays due to contention of
shared hardware resources is proposed. Moreover, three tasks-to-cores allocation methods
are also presented.

In that paper, a discrepancy-based method is presented, which is defined as the
difference between the maximum and minimum utilisation of a multicore system, UDτ .
One of the algorithms is focused on reducing the discrepancy, UDmin, and the other on
maximizing it, UDmax. On the one hand, UDmin behaves as the heuristic WFDU, as both
balance the load among cores. They present excellent schedulability ratios (98.1% and 100%,
respectively) but reach high rates of increment of utilisation due to the system interference
(2.3%). On the other hand, UDmax behaves as FFDU, as it unbalances the load among cores.
In contrast to UDmin/WFDU, it reaches a low rate of increment of utilisation but their
rates of schedulability are very low (around 43%). The Wmin allocator accounts for the
possible interference produced for each task and it provides a low increment of utilisation
(0.266%) and high schedulability ratio (up to 89%), with respect to previous algorithms.

6.3. Proposed Allocator Considering the Interference: Imin

Previous bin-packing and discrepancy-based algorithms do not take into account the
interference produced when two or more tasks allocated to different cores coincide in exe-
cution. However, Wmin does take interference into account, although not exactly, but based
on a binary matrix (W) of possible interference between tasks on other cores. This allocator
tries to minimise the number of 1 s in the matrix, which represent a possible interference.

In this subsection, a new allocation algorithm to minimise the interference is proposed—
Imin. As it has been analysed in previous sections, Uub

i is the upper bound of the utilisation
taking into account the maximum possible interference. The allocator Imin obtains the task
allocation to cores that minimises this upper bound as much as possible. This allocator is
based on integer linear programming to obtain an optimal solution. For that, we define a set
of parameters and variables shown in Table 1.



Electronics 2022, 11, 1313 13 of 21

Table 1. Model notation of the implicit deadline task model.

SETS AND INDICES
i, j Task index i, j ∈ {0, 1, 2, . . . , n− 1}
k Core index k ∈ {0, 1, 2, . . . , m− 1}

PARAMETERS
Ci Worst case execution time of τi
Ti Period of τi
Ui Utilisation of τi
H Hyperperiod of the task set τ

ITub
j→i Maximum interference that τj can cause to τi during (0,Ti)

DECISION VARIABLES
Uiub

i Upper bound of the utilisation due to interference of τi
Uub

i Upper bound of the total utilisation of τi
UMk Utilisation of Mk
Oik Allocation matrix. 1 if τi is allocated to core k and 0 otherwise.

As has been previously stated, the objective is:

Minimise ∑
∀i

Uub
i (14)

s.t:

∑
∀k

Oik = 1 ∀i (15)

Uiub
i =

∑τj /∈Mτi
ITub
j→i

Ti
∀i (16)

Uub
i = Ui + Uiub

i ∀i (17)

UMk = ∑
∀i

Oik ·Ui ∀k (18)

UMk ≤ 1 ∀k (19)

Oik ∈ {0, 1} (20)

Uiub
i , Uub

i , UMk ≥ 0 (21)

Constraint (15) assures that a task is allocated to one and only one core. Equation (16) sets
the value of the extra utilisation of a task provoked by the interference in its upper bound.
Equation (17) sets the value of the total utilisation taking account the interference in its
upper bound, which means in its maximum value, as it has been explained and established
in this paper. The total utilisation per core is calculated as the sum of the utilisations of
the tasks that belong to that core (Equation (18)) and its value should be less or equal to 1
(Equation (19)). Equations (20) and (21) represent the decision variable domains.

7. Evaluation
7.1. Experimental Conditions

To validate our proposed technique, we implemented a synthetic task generator to
generate up to 5400 random feasible task sets with different configurations. The task
generator works by calculating the following parameters:

• Uτ : utilisation of the task set calculated using the UUniFast discard algorithm [30];
• Ti: task periods, which are generated randomly in [20, 1000];
• Ci: computation times are deduced from the periods and the utilisations, as Ci = Ui · Ti.

The experimental parameters of the evaluation are specified in Table 2. To ensure
the reproducibility of the results, these parameters coincide with those used in [2]. The



Electronics 2022, 11, 1313 14 of 21

only difference is that a wide range of theoretical utilisations and interference factors are
also studied.

The theoretical utilisation of the maximum load of all cores varies between 50% and
75% of the maximum load of the system. For example, the maximum load of a system with
8 cores is 8, so for evaluation purposes, the initial utilisation is set to 4 (50%) and 6 (75%).

As is well shown in Table 2, the number of broadcasting tasks is 25% of the total
number of tasks, except for scenarios 1–6 (2 cores), which is 50%. This is due to the fact
that, if only one task is broadcasting, no interference will be produced. Each combination
of the number of cores and utilisation is evaluated in three cases, with 10%, 20%, and 30%
of interference over the WCET. It means that, for example, if the percentage of interference
in a task set is established to 20% and a broadcasting task of this set has 10 units of WCET,
then the interference of this broadcasting task should be 2 units.

Table 2. Experimental parameters selected for the evaluation process.

Experimental Parameters

Number of cores 2 4 8

Number of tasks 4 12 20

Number of broadcasting tasks 2 3 5

Theoretical utilisation 1.1 1.5 2.1 3 4 6

Number of sets 900 900 900 900 900 900

Interference (%) over WCET 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30

Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

With this setup, we apply the proposed Imin allocator and the already existing allo-
cation methods (FFDU, WFDU, and Wmin) to the synthetic task sets. Once the allocation
phase is complete, it must be checked if all tasks have been allocated to cores assuring that
the maximum capacity per core is not exceeded, i.e., UMk ≤ 1 ∀k = 0, . . . , m− 1. If any of
the allocators cannot allocate the task set, this task set will be discarded and a new one
is generated.

To perform the allocators Imin and Wmin, we use Gurobi optimizer 9.0 [31], from
Gurobi Optimization, Inc. (Houston, TX, USA), which is the fastest and most powerful
mathematical programming solver available for ILP, MILP and other problems. It provides
a Python interface.

The evaluation process is executed on an Intel Core i7 CPU with 16 GB of RAM
(Santa Clara, CA, USA).

Once all allocations are validated, the task sets are scheduled following the contention
aware scheduling algorithm proposed in [2] which takes into account the interference.
The selected priority-based algorithm for the mentioned scheduling algorithm is EDF [27]
but any fixed-priority algorithm could also be used. As an output of this phase, the real
utilisation of the system, U′τ , is obtained.

After the scheduling phase, the scheduling plans must be validated in order to en-
sure that the temporal constraints are met throughout the hyperperiod. In addition, the
following performance parameters are measured to compare different methods:

• Schedulability ratio. It is calculated as the relation between the number task sets with
feasible scheduling plans and the number task sets with feasible allocations, expressed
as a percentage;

• Increased utilisation. It is calculated as the relation between the increase in utilisation

with respect to the theoretical utilisation. This is calculated as 1−∑k
UMk
U′Mk

= 1− Uτ
U′τ

;

• Relation between the upper bound of utilisation, Uub
τ , and the actual utilisation, U′τ .



Electronics 2022, 11, 1313 15 of 21

7.2. Experimental Results

Depending on the experimental parameters specified in Table 2, different scenarios
are defined (numbered from 1 to 18).

Figures 8 and 9 depict the comparison of schedulability ratio and the increased utilisa-
tion for each scenario and each allocator. In Figure 8 it is shown that, as was expected, that
generally, as the number of cores and tasks increases, the schedulability ratio decreases.
Regarding the percentage of interference, it is shown that, as a general rule, with the same
number of cores and tasks, the higher percentage of interference, the lower is the schedu-
lability for all the allocators, even though there are some exceptions to this rule, such as
FFDU in scenarios 7, 8, and 9 or scenarios 10, 11, and 12. After an analysis of the data with
the exception cases, we realized that these exceptions are just provoked by the randomness
of the tasks generated as input data. In general terms, the allocators FFDU and WFDU
are affected by the increase of interference percentage more than Wmin and Imin. This
property can be clearly shown, for example, in scenarios 7, 8, and 9 of Figure 8, where the
percentage of interference is 10, 20, and 30%, respectively. In these cases, FFDU and WFDU
have very different results depending on the amount of interference but Wmin and Imin
maintain almost the same values in spite of the variations in the amount of interference.

Figure 8. Percentage of schedulability task sets for each allocator depending on the scenario.

Figure 9 shows the increased utilisation for each scenario. The results vary a lot
depending on the scenario and the allocator. In the case of FFDU, the increased utilisation
with 2 cores is clearly higher than 4 and 8 cores. In the case of WFDU the increased
utilisation is always the highest with respect to other allocators. In the case of Wmin and
Imin the increased utilisation is significantly lower with respect to WFDU.

In Figures 8 and 9, average values of all scenarios of schedulability and increased
utilisation are represented for each allocator. In Figure 10 it is shown that Imin has the
highest rate of schedulability from all the allocators with a 76.83%. We should be aware
that Wmin also has a high index of schedulability, almost the same as Imin, 76.8%. The
FFDU allocator has the worst percentage of schedulability with 35.56% and WFDU has an
acceptable rate of schedulability with 76.48%.



Electronics 2022, 11, 1313 16 of 21

Figure 9. Increased utilisation resulted after the scheduling for each allocator depending on the scenario.

Figure 10. Average percentage of schedulable task sets depending on the allocators.

It is important to note that the results in [2] showed that WFDU could always ensure
schedulability for all the task sets (100%). In our case, this behaviour has not been repro-
duced. This difference lies in the interference coefficient selected in the evaluation process.
In Ref. [2], Ii = 1 ∀τi ∈ τ. In this work, Ii ≥ 0.1 · Ci ∀τi ∈ τ, which is always greater or
equal than 1. Adding small interferences does not affect the schedulability of allocators
that balance the load, as WFDU does. In fact, when more interference is considered, these
results vary. With bigger interferences, the percentage of schedulability is reduced.

In Figure 11 it is shown that the WFDU algorithm has by far the highest increase
in utilisation while Wmin and Imin have the best results. For WFDU and FFDU, the
schedulability ratio and increased utilisation are directly proportional, which is not the
desired behaviour. This is not the case of Wmin and Imin, in which a high schedulability
ratio does not suppose an increment in the interference and then, in the utilisation of
the system.



Electronics 2022, 11, 1313 17 of 21

Figure 11. Average of increased utilisation depending on the allocators.

The comparison between the upper bound (Uub
τ ) and the real utilisation (U′τ) for the

best allocators is depicted in Figure 12 (Imin), and Figure 13 (Wmin). They are expressed in
terms of utilisation system percentage. As was expected, in both graphics, the real utili-
sation is always equal or less than its upper bound utilisation. Also, in both graphics, the
more cores and tasks in the scenario, the more percentage of system utilisation is estimated.

Figure 12. Imin algorithm: theoretical utilisation upper bound values compared to the real utilisation
values measured after the scheduling.

In Figure 14, the comparison between the utilisation upper bound of Wmin and Imin
is depicted. We can see that the results are very similar as in previous figures, but Imin
achieves a slight lower value for Uub

i because Imin minimises the upper bound while Wmin
minimises W matrix. However, the results are very similar since both represent the possible
interference between tasks in other cores.



Electronics 2022, 11, 1313 18 of 21

Figure 13. Wmin algorithm: theoretical utilisation upper bound values compared to the real utilisa-
tion values measured after the scheduling.

Figure 14. Comparison of Wmin and Imin utilisation upper bounds values.

Finally, the solution times for the MILP approaches are evaluated in Figure 15. It
shows that, generally, as the number of cores increases, the solution time increases. This is
more obvious in the cases of 8 cores scenarios (scenarios 13 to 18). This is because when the
number of cores increases (and consequently, the number of tasks and broadcasting tasks),
the complexity of the search of the optimal solution also increases. Moreover, it is observed
that, specially in the 8 cores scenarios, the solution time for Imin is clearly lower than the
solution time needed for Wmin. This is a clear advantage of Imin allocator.



Electronics 2022, 11, 1313 19 of 21

Figure 15. Solution times for MILP approaches depending on the experimental scenario.

8. Conclusions

This paper has proposed a schedulability analysis for task models that consider
the delay produced by the contention of hardware shared resources in a hard real-time
multicore system. Then, an allocation algorithm that minimises this contention, Imin, has
been proposed and evaluated by comparison with other existing allocators.

After the results of the experimental evaluation, we can conclude that the allocation
algorithm proposed in this paper, Imin, has the best rates in terms of percentages of
schedulability and increased utilisation. In addition, Imin presents good results in terms
of solution times. So, it is reasonable to affirm that Imin may be an eligible option as an
allocator for the implementation of a multicore system, especially in those systems where
the priority is to maximize the scheduling rate or to minimise the contention produced in
hardware shared resources.

We plan to further investigate how to improve Imin in order to achieve a lower
utilisation rate without decreasing the schedulability. We also plan to find a less pessimistic
upper bound for the utilisation and extend the model to the constrained deadlines.

Author Contributions: Conceptualization, J.S.; investigation, J.M.A., A.G. and P.B.; methodology,
J.M.A., A.G., P.B., J.S. and A.G.; project administration, A.C.; resources, A.G.; software, J.M.A. and
A.G.; supervision, P.B., J.S. and A.C.; validation, J.M.A.; visualization, J.M.A. and A.G.; writing—
original draft, J.M.A., A.G., P.B., J.S. and A.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported under Grant PLEC2021-007609 funded by MCIN/ AEI/ 10.13039/
501100011033 and by the “European Union NextGenerationEU/PRTR”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fernandez, G.; Abella, J.; Quiñones, E.; Rochange, C.; Vardanega, T.; Cazorla, F. Contention in Multicore Hardware Shared

Resources: Understanding of the State of the Art. In Proceedings of the 14th International Workshop on Worst-Case Execution
Time Analysis, Ulm, Germany, 8 July 2014.

2. Aceituno, J.M.; Guasque, A.; Balbastre, P.; Simó, J.; Crespo, A. Hardware resources contention-aware scheduling of hard real-time
multiprocessor systems. J. Syst. Arch. 2021, 118, 102223. [CrossRef]

http://doi.org/10.1016/j.sysarc.2021.102223


Electronics 2022, 11, 1313 20 of 21

3. Davis, R.I.; Burns, A. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems. ACM Comput. Surv. 2011, 43, 35.
[CrossRef]

4. Johnson, D. Near-Optimal Bin Packing Algorithms. Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA, USA, 1973.

5. Oh, Y.; Son, S.H. Allocating Fixed-Priority Periodic Tasks on Multiprocessor Systems. Real-Time Syst. 1995, 9, 207–239. [CrossRef]
6. Coffman, E.G.; Garey, M.R.; Johnson, D.S., Approximation Algorithms for Bin Packing: A Survey. In Approximation Algorithms for

NP-Hard Problems; PWS Publishing Co.: Boston, MA, USA, 1996; pp. 46–93.
7. Coffman, E.G., Jr.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D., Bin Packing Approximation Algorithms: Survey and Classifica-

tion. In Handbook of Combinatorial Optimization; Pardalos, P.M.; Du, D.Z.; Graham, R.L., Eds.; Springer: New York, NY, USA, 2013;
pp. 455–531. [CrossRef]

8. Dasari, D.; Akesson, B.; Nélis, V.; Awan, M.A.; Petters, S.M. Identifying the sources of unpredictability in COTS-based multicore
systems. In Proceedings of the 2013 8th IEEE International Symposium on Industrial Embedded Systems (SIES), Porto, Portugal,
19–21 June 2013; pp. 39–48. [CrossRef]

9. Mitra, T.; Teich, J.; Thiele, L. Time-Critical Systems Design: A Survey. IEEE Des. Test 2018, 35, 8–26. [CrossRef]
10. Pellizzoni, R.; Schranzhofer, A.; Jian-Jia Chen.; Caccamo, M.; Thiele, L. Worst case delay analysis for memory interference in

multicore systems. In Proceedings of the 2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010), Dresden,
Germany, 8–12 March 2010; pp. 741–746. [CrossRef]

11. Pellizzoni, R.; Betti, E.; Bak, S.; Yao, G.; Criswell, J.; Caccamo, M.; Kegley, R. A Predictable Execution Model for COTS-Based
Embedded Systems. In Proceedings of the 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
Chicago, IL, USA, 11–14 April 2011; pp. 269–279. [CrossRef]

12. Rouxel, B.; Derrien, S.; Puaut, I. Tightening Contention Delays While Scheduling Parallel Applications on Multi-Core Architectures.
ACM Trans. Embed. Comput. Syst. 2017, 16, 164. [CrossRef]

13. Igarashi, S.; Ishigooka, T.; Horiguchi, T.; Koike, R.; Azumi, T. Heuristic Contention-Free Scheduling Algorithm for Multi-core
Processor using LET Model. In Proceedings of the 2020 IEEE/ACM 24th International Symposium on Distributed Simulation
and Real Time Applications (DS-RT), Virtual Conference, 14–16 September 2020. pp. 1–10. [CrossRef]

14. Crespo, A.; Balbastre, P.; Simó, J.; Coronel, J.; Gracia Pérez, D.; Bonnot, P. Hypervisor-Based Multicore Feedback Control of
Mixed-Criticality Systems. IEEE Access 2018, 6, 50627–50640. [CrossRef]

15. Casini, D.; Biondi, A.; Nelissen, G.; Buttazzo, G. A Holistic Memory Contention Analysis for Parallel Real-Time Tasks under
Partitioned Scheduling. In Proceedings of the 2020 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Sydney, NSW, Australia, 21–24 April 2020; pp. 239–252. [CrossRef]

16. Reder, S.; Becker, J. Interference-Aware Memory Allocation for Real-Time Multi-Core Systems. In Proceedings of the 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), Sydney, Australia, 21–24 April 2020; pp. 148–159.

17. Maiza, C.; Rihani, H.; Rivas, J.M.; Goossens, J.; Altmeyer, S.; Davis, R.I. A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems. ACM Comput. Surv. 2019, 52, 1–38. [CrossRef]

18. Altmeyer, S.; Davis, R.I.; Indrusiak, L.; Maiza, C.; Nelis, V.; Reineke, J. A Generic and Compositional Framework for Multicore
Response Time Analysis. In Proceedings of the 23rd International Conference on Real Time and Networks Systems, Lille, France,
4–6 November 2015; Association for Computing Machinery: New York, NY, USA, pp. 129–138. [CrossRef]

19. Huang, W.H.; Chen, J.J.; Reineke, J. MIRROR: Symmetric Timing Analysis for Real-Time Tasks on Multicore Platforms with
Shared Resources. In Proceedings of the 53rd Annual Design Automation Conference; Association for Computing Machinery,
Austin, TX, USA, 5–9 June 2016. [CrossRef]

20. Choi, J.; Kang, D.; Ha, S. Conservative modeling of shared resource contention for dependent tasks in partitioned multi-core
systems. In Proceedings of the 2016 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany,
14–18 March 2016; pp. 181–186.

21. Galizzi, J.; Vigeant, F.; Perraud, L.; Crespo, A.; Masmano, M.; Carrascosa, E.; Brocal, V.; Balbastre, P.; Quartier, F.; Milhorat, F.
WCET and Multicores with TSP. In Proceedings of the DASIA 2014 DAta Systems In Aerospace, Warsaw, Poland, 3–5 June 2014.

22. Nowotsch, J. Interference-Sensitive Worst-Case Execution Time Analysis for Multi-Core Processors. Ph.D. Thesis, Fakultät für
Angewandte Informatik, Universität Augsburg, Augsburg, Germany, 2014.

23. Skalistis, S.; Kritikakou, A. Dynamic Interference-Sensitive Run-time Adaptation of Time-Triggered Schedules. In Proceedings of
the ECRTS 2020—32nd Euromicro Conference on Real-Time Systems, Virtual Conference, 7–10 July 2020; pp. 1–22. [CrossRef]

24. Kim, H.; De Niz, D.; Andersson, B.; Klein, M.; Mutlu, O.; Rajkumar, R. Bounding and Reducing Memory Interference in
COTS-Based Multi-Core Systems. Real-Time Syst. 2016, 52, 356–395. [CrossRef]

25. Davis, R.I.; Griffin, D.; Bate, I. Schedulability Analysis for Multi-Core Systems Accounting for Resource Stress and Sensitivity. In
Leibniz International Proceedings in Informatics (LIPIcs), Proceedings of the 33rd Euromicro Conference on Real-Time Systems (ECRTS
2021), Online, 5–9 July 2021; Brandenburg, B.B., Ed.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Dagstuhl, Germany,
2021; Volume 196, pp. 7:1–7:26. [CrossRef]

26. Guo, Z.; Yang, K.; Yao, F.; Awad, A. Inter-Task Cache Interference Aware Partitioned Real-Time Scheduling; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 218–226.

27. Liu, C.L.; Layland, J.W. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. J. ACM 1973, 20, 46–61.
[CrossRef]

http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1007/BF01088806
http://dx.doi.org/10.1007/978-1-4419-7997-1-35
http://dx.doi.org/10.1109/SIES.2013.6601469
http://dx.doi.org/10.1109/MDAT.2018.2794204
http://dx.doi.org/10.1109/DATE.2010.5456952
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1145/3126496
http://dx.doi.org/10.1109/DS-RT50469.2020.9213582
http://dx.doi.org/10.1109/ACCESS.2018.2869094
http://dx.doi.org/10.1109/RTAS48715.2020.000-3
http://dx.doi.org/10.1145/3323212
http://dx.doi.org/10.1145/2834848.2834862
http://dx.doi.org/10.1145/2897937.2898046
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.4
http://dx.doi.org/10.1007/s11241-016-9248-1
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2021.7
http://dx.doi.org/10.1145/321738.321743


Electronics 2022, 11, 1313 21 of 21

28. Baruah, S.; Fisher, N. The partitioned multiprocessor scheduling of sporadic task systems. In Proceedings of the 26th IEEE
International Real-Time Systems Symposium (RTSS’05), Miami, FL, USA, 5–8 December 2005. [CrossRef]

29. Garey, M.R.; Johnson, D.S. Computers and Intractability; A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York,
NY, USA, 1979.

30. Davis, R.I.; Burns, A. Priority Assignment for Global Fixed Priority Pre-Emptive Scheduling in Multiprocessor Real-Time Systems.
In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, Washington, DC, USA, 1–4 December 2009; pp. 398–409.
[CrossRef]

31. Gurobi Optimizer Reference Manual; Gurobi Optimization, Inc.: Beaverton, OR, USA, 2019.

http://dx.doi.org/10.1109/RTSS.2005.40
http://dx.doi.org/10.1109/RTSS.2009.31

	Introduction
	Related Works
	Problem Definition and Task Model
	Contention Aware Utilisation Factor
	Schedulability Analysis
	Task Allocation Algorithms
	Overview of Existing Heuristic Bin-Packing Algorithms
	Overview of Aceituno's Method
	Proposed Allocator Considering the Interference: Imin

	Evaluation
	Experimental Conditions
	Experimental Results

	Conclusions
	References

