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Abstract: Cyber threat intelligence feeds the focus on atomic and computed indicators of compromise.
These indicators are the main source of tactical cyber intelligence most organizations benefit from.
They are expressed in machine-readable formats, and they are easily loaded into security devices
in order to protect infrastructures. However, their usefulness is very limited, specially in terms of
time of life. These indicators can be useful when dealing with non-advanced actors, but they are
easily avoided by advanced ones. To detect advanced actor’s activities, an analyst must deal with
behavioral indicators of compromise, which represent tactics, techniques and procedures that are not
as common as the atomic and computed ones. In this paper, we analyze why these indicators are not
widely used, and we identify key requirements for successful behavioral IOC detection, specification
and sharing. We follow the intelligence cycle as the arranged sequence of steps for a defensive team
to work, thereby providing a common reference for these teams to identify gaps in their capabilities.

Keywords: cyber threat intelligence; indicator of compromise; IOC; TTP; MITRE ATT&CK

1. Introduction

Indicators of compromise (IOC) are key to cyber threat intelligence (CTI), as they
enable and speed up the detection of malicious activities in technological infrastructures.
They allow one to specify both the usage of technological capabilities, such as tools or
artifacts, and the tactics, techniques and procedures (TTP) developed by threat actors.
However, this last use case, the specification of TTP, is not extended among threat intelli-
gence providers. These providers focus on the sharing of basic indicators, which provide
immediate results when loaded into security platforms but which present an important
problem: their lifespans. As they are easily modified by hostile actors, their usefulness
is limited. In other words, most of the IOC shared today in threat intelligence sharing
platforms are not the best ones, but the easiest to use ones.

We need cyber threat intelligence sharing to detect and respond to hostile actors’
activities. We usually get indicators that allow us to achieve this goal on two main fronts:
compromised hosts, with indicators such as hashes, filenames or mutexes; and networks,
with indicators such as IP addresses or domain names. In fact, it is usual to differentiate
indicators based on where they are seen [1]: network and host-based ones. However,
apart from the problem of false positives with these atomic and computed indicators of
compromise [2], those simple IOC, as we have stated before, have limited usefulness. For
this reason, we must focus on the effective detection and sharing of behavioral IOC to face
advanced threats, as these indicators are harder for a hostile actor to modify.

In this work we analyze this situation and we identify the key requirements for the
effective detection and sharing of behavioral indicators of compromise; IOC of this type
represent the tactics, techniques and procedures of threat actors, and their values are much
higher than those of the basic indicators. By not exploiting and sharing them, defensive
teams present an important gap in the detection of malicious activities.
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The contributions of this paper are as follows:

• Analyzing the problems of specification, detection and sharing of behavioral indicators
of compromise.

• Extracting the key features of cyber operations from advanced threat actors.
• Identifying and structuring the key requirements, from an intelligence perspective, for

the detection and sharing of behavioral indicators of compromise.
• Identifying current efforts to fulfill those requirements and the failures of those efforts.

The rest of the paper is organized as follows. The background, Section 2, provides con-
cepts regarding indicators of compromise and the intelligence cycle. In Section 3, we assess
the problem of the detection and sharing of indicators of compromise. Section 4 analyzes
the different approaches identified to specification and sharing of tactics, techniques and
procedures. In Section 5, we identify the key requirements for specification and sharing
among actors, and we discuss those requirements and the current status in Section 6, where
future lines of research are also identified. Finally, Section 7 highlights the main results of
our work.

2. Background
2.1. Indicators of Compromise

In CTI, an indicator of compromise is defined [3] as a piece of information that can be
used to identify a potentially compromised system. This piece of information can range
from a simple IP address to a complex set of tactics, techniques and procedures. In all
cases, this information meets the definition of IOC: it can be used to identify a potentially
compromised system.

Most researches [4–6] follow the classification of IOC stated by [7,8]. This classification
defines the following three categories for IOC, based on their levels of complexity and
related to the granularities of data represented by them:

• Atomic. Atomic indicators are those which cannot be broken down into smaller parts
and retain their meanings in the context of an intrusion. Examples of atomic indicators
include IP addresses and domain names.

• Computed. Computed indicators are those which are derived from data involved
in an incident. Examples of computed indicators include hash values and regular
expressions.

• Behavioral. Behavioral indicators are collections of computed and atomic indicators,
often subject to qualification by quantity and possibly combinatorial logic. An example
of a complex behavioral indicator could be repeated social engineering attempts of a
specific style via email against low-level employees to gain a foothold in the network,
followed by unauthorized remote desktop connections to other computers on the
network delivering specific malware [4]; a simpler example could be a document file
creating an executable object. Such indicators are captured as tactics, techniques and
procedures, representing the modus operandi of the attacker [6].

While behavioral indicators of compromise are related to operational threat intel-
ligence, atomic and computed ones are related to tactical threat intelligence. All those
indicators are relevant to detecting compromises, but tactical intelligence has a shorter
lifespan than operational intelligence, and it can also be more easily evaded, so in general
terms it is less useful. In Figure 1, the relationship between indicators of compromise and
intelligence levels is shown.



Electronics 2022, 11, 416 3 of 20

STRATEGIC
Very long time of life

Very low quantity
Very high value

OPERATIONAL
Behavioral IOC:TTP

Long time of life
Low quantity
High value

TACTICAL
Atomic and computed IOC

Short time of life
High quantity

Low value

Figure 1. Indicators of compromise and intelligence levels.

Although less useful than behavioral ones, atomic and computed indicators of com-
promise are considered by many organizations the most valuable pieces of threat intelli-
gence [9]. The main justification for this perception is related to the fact that the indicators
representing tactical intelligence are usually expressed in machine-readable formats, so
they can be easily loaded into security devices, providing immediate results. On the other
hand, operational or strategic intelligence feeds in most cases require manual processing.

In today’s interconnected world, it is not possible to deal with security in an isolated
box; incidents are not unique, and organizations inhabit security ecosystems with common
threats, vulnerabilities, risks and capabilities. Thus, in order to enhance one’s own security it
is mandatory to share cyber threat intelligence with other parties, such as private companies,
interest groups or law enforcement agencies. Furthermore, of course, inside this scheme,
IOC are a key piece: they are in fact the most shared type of threat intelligence. However,
the major part of available shared data relates to atomic and computed indicators [10–12],
such as IP addresses, file hashes or domain names. Data related to higher level threat
intelligence, the most useful data, are by far less shared, so they are less used. In fact, when
dealing with indicators of compromise, it is usual to refer only to atomic and computed
ones [13].

2.2. Intelligence Cycle

NATO [14] defines intelligence as the product resulting from the directed collection and
processing of information regarding the environment and the capabilities and intentions
of actors, in order to identify threats and offer opportunities for exploitation by decision-
makers. The same work also defines the intelligence cycle as the sequence of activities
whereby information is obtained, assembled, converted into intelligence and made available
to users. Although there are different versions of this cycle, we can summarize them in the
following five steps:

• Direction. Determination of intelligence requirements, planning the collection effort,
issuance of orders and requests to collection agencies and maintenance of continuous
checking on the productivity of such agencies.

• Collection. The exploitation of sources by collection agencies and the delivery of the
information obtained to the appropriate processing unit for use in the production
of intelligence.

• Processing. The conversion of information into usable data suitable for analysis.
• Analysis. Tasks related to integration, evaluation or interpretation of information to

turn it into intelligence: a contextualized, coherent whole.
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• Dissemination. The timely conveyance of intelligence, in an appropriate form and by
any suitable means, to those who need it.

A sixth step for the intelligence cycle [15] would be the evaluation and feedback: all
steps, but specially the dissemination of the final product, feed a new iteration of the cycle,
as shown in Figure 2.

DIRECTION

COLLECTION

PROCESSINGANALYSIS

DISSEMINATION

Figure 2. Intelligence cycle.

Intelligence as a product is regarded as the final result of a set of actions, which are
sequentially launched; this set of actions, the intelligence cycle, is a simple explanation of a
complex intelligence process. It starts when someone, such as an authority or a government,
has particular information needs in order to make the best decision about a subject. At
this point the cycle starts, identifying the requirements and planning the acquisition of the
information that will be later processed and analyzed, in order to generate intelligence.

Once planned, the next stage is to acquire information, and this acquisition can be
performed through different intelligence collection disciplines [16] commonly referred as
“the INTs”: Signals Intelligence (SIGINT), open-source intelligence (OSINT), measurement
and signature intelligence (MASINT), human intelligence (HUMINT) and geospatial in-
telligence (GEOINT). The essential elements of these INTs are not formally defined [17],
neither are they agreed on between authors, but they define the families of sources the
information can be gathered from: for example, a simple public website, a satellite, an
intercepted artifact or a mole.

With the information gathered, processing and exploitation turn the information
previously collected into a form suitable for the production of finished intelligence [18].
This stage includes tasks such as decryption, translation or data conversion, and as a
part of the cycle, it is mandatory to analysis, in which the intelligence, the final product,
is generated. This analysis must include the information gathered and processed, no
matter which collection discipline it comes from. In this sense, we can refer to all-source
intelligence, defined by [19] as, “The intelligence products, organizations and activities that
incorporate all sources of information and intelligence, including open-source information,
in the production of intelligence”.

Finally, once the intelligence as a product has been generated, it is delivered to the
customer, the entity which had the information needs stated before, in a suitable form for
its use and by a variety of means. This product will be used to aid the decision making
process, and possibly, to start a new iteration of the intelligence cycle.

3. The Issue
3.1. Threat Specification

In CTI, many efforts have been made in order to characterize threats, campaigns
and particular attacks by indicators of compromise, especially to establish a structured
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and standardized information sharing scheme between actors. Back in 2007, the Internet
Engineering Task Force (IETF) defined [20] IODEF (Incident Object Description Exchange
Format), an XML data representation that provides a framework for sharing information
commonly exchanged about computer security incidents. Although it is fairly static [21],
over the years IODEF has been extended for different needs, such as the reporting of
phishing events [22].

Private companies have also developed well-known standards to enable threat infor-
mation sharing. Mandiant’s OpenIOC is an extensible XML schem designed to describe
the technical characteristics of evidence of compromise [23]. It provides indicators about
files (such as full paths, imports and exports, or compile times), hosts and networks (such
as DNS or URI), processes (such as handles or paths), registry entries (such as names or
text), services (such as name or DLL) and signatures (such as Snort or Yara), among others.

Structured Threat Information Expression (STIX) is a language and serialization format
used to exchange cyber threat intelligence, whose goal is to identify and represent all the
elements of cyber threats in a flexible, automatable and human-readable way. Upon a
standardized language, in XML format, the standard provides a common mechanism for
addressing structured cyber threat information, improving consistency, efficiency, interop-
erability, and overall situational awareness through a unified architecture that structures
and links all those elements of a threat, from lower level, observables or indicators, to
higher level, campaigns and actors [24]. STIX was defined in 2012; it was sponsored by US
Department of Homeland Security. In 2015, all the intellectual property and trademarks
associated with STIX were licensed to OASIS, a nonprofit organization focused on the
development and integration of open technological standards.

As of its release of version 2.0, STIX integrates Cyber Observable eXpression (CybOX),
a structured language for cyber observables also developed by MITRE. In STIX 2.1, the
latest version at the time of writing, the standard defines three types of core objects to
represent cyber threat intelligence: one of them, SCO (STIX Cyber-observable Object), is
used to characterize host-based and network-based information. SCO was introduced
in STIX 2. In previous versions cyber-observables could only exist as objects within an
Observed Data object. SCO represents observed facts about a network or host that may be
used and related to higher level intelligence to form a more complete understanding of the
threat landscape. STIX 2.1 defines the cyber-observable objects shown in Table 1, each of
them with its corresponding properties.

Table 1. STIX 2.1 Cyber-observable objects.

Artifact Autonomous System (AS) Directory

Domain name Email Address Email Message
File IPv4 Address IPv6 Address
MAC Address Mutex Network Traffic
Process Software URL
User Account Windows Registry Key X.509 Certificate

Although both of them are still available and extensions can be made, OpenIOC and
IODEF are today considered legacy formats [25]. STIX has been widely adopted, its partic-
ular applications having been explored in various fields, from malware detection [26] to
critical infrastructure and industrial control system protection [27,28]. It has been extended
to detect more complex patterns [29], and it can be used to provide improvements to other
formats, being able to embed not only IODEF extensions but also other formats, such as
OpenIOC or Yara rules [29,30]. In this way, STIX can be considered the most accepted
CTI standard among the security community and the de facto one for describing threat
intelligence data [31,32]. The European Union Agency for Cybersecurity (ENISA) [33] has
recommended European Union states to implement STIX as a globally accepted standard.
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3.2. Real-World IOC

Despite all the efforts toward the characterization of threats exposed in the previous
section, the most shared indicators of compromise are still the simplest ones. STIX is a
complex standard, but it is mainly used to share atomic and computed indicators. The
identification of the most used and shared types of indicators of compromise is a key ques-
tion, as they will be the ones that hostile actors will try to evade in first place. IP addresses
addresses and file hashes are considered the most shared indicators of compromise in the
current literature [34]. Other authors progressively expanded this list to domain names [10],
URLs [35] or malware signatures [11]. Reference [36] also includes in their list file names,
dynamic link libraries, registry keys, email addresses, message objects and attachments or
links inside messages.

We have processed all the information (available events) from some private MISP
(Malware Information Sharing Platform) instances used in public and private security
operations centers. Hashes such as MD5, SHA1 and SHA256 represent the most used
types of indicator (23.23%), followed by IP addresses (21.10%) and domains and hostnames
(19.75%). All the other types of indicators analyzed represent the remaining 35.92%, and
their presence is far rarer (as an example, mutexes represent only 0.03% of global indicators).
These results are consistent with the hypothesis stated in [37] about the types of indicators
generally available, and of course they are aligned with our own experience.

Hashes are mainly linked to implants, whereas IP addresses and domain names are
linked to command and control (C2) or exfiltration servers. This means that, theoretically,
only with these kinds of indicators can we detect most activities in the persistence stage
of an attack. In spite of the fact that most of the shared indicators among the community
belong to these three classes, this security perception is not real. All of them are easily
changed by a hostile actor, so the discovery of hashes, IP addresses and domain names
causes little pain to the attacker, as the “Pyramid of Pain” [38] states. Any hostile actor who
wants to evade detection will defeat, at least, these three types of IOC, as they are the most
used ones. If an actor is able to cheat these indicators, it will be able to evade approximately
65% of the defender detection capabilities.

As main IOC types are almost useless when facing advanced threats, analysts have
to look for alternatives to detect intrusions. Different approaches to provide other atomic
and computed indicators of compromise have been developed, but they are not commonly
shared among intelligence groups, so their usage is not as extended as it should be. In
many cases this is mainly due to the lack of automatic tools to load intelligence and to
get immediate results. For example, to identify minor changes between objects, which of
course produce different hashes, fuzzy hashes [39,40] have been used. Through algorithms
such as ssdeep and sdhash, this approach is able to detect similarities between files, help-
ing the analyst to identify those changing objects. However, in any case, this similarity
hashing provides just another computed indicator that again can be easily evaded by an
advanced actor.

To provide more accurate detection, CTI must deal with the detection and sharing
of behavioral indicators. This approach would allow analysts to detect the tactics and
techniques of attackers no matter which atomic or computed indicators they use in a
particular campaign (this is, no matter which hash, which IP address or which domain
name). However, CTI sharing is mainly focused on those simple indicators of compromise
that are easily evaded. In [41], the authors state that hashes, IP addresses and domain
names are the easiest indicators to trace, to identify and to exploit quickly. As all of them
can be easily expressed in machine-readable formats, for example, a simple blacklist, many
security devices can be configured to load them automatically, so they provide immediate
results. In fact, such types of indicators focus on immediacy [42], whereas complex ones,
those related to goals or TTP, provide richer analysis but take more time to process.
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4. Approaches and Limitations

The detection of behavioral indicators, instead of atomic or computed ones, has
been largely studied in the malware field [43,44]; the so called behavioral signatures are
applied in dynamic malware analysis and rely on the malware’s behavior to identify
patterns through multiple means, from the monitoring of system calls to temporal logic
formulae [45]. These methods extend the classical static signature detection, complementing
or superseding it. However, if we do not focus on such a specific piece of an attack, the
malware, and we try to expand this detection approach to the tactics, techniques and
procedures of an attacker, the work gets complicated.

The STIX “Attack Pattern” SDO describes the tactics, techniques and procedures that
adversaries develop to compromise targets: this is, just what behavioral indicators represent.
This SDO contains textual descriptions of the patterns, along with references to external
objects; it relates to other SDO, such as “Indicator”, but these ones are, again, pure atomic or
computed indicators of compromise. Therefore, although STIX allows the specification of
tactics, techniques and procedures, it does not provide a common vocabulary for describing
TTP, making STIX not suitable for a machine-readable specification of behavioral indicators
of compromise.

In [46], TTPDrill was presented, a tool to extract threat actions from CTI unstructured
text; it is the first approach to represent TTP in a structured form, in this case from published
threat intelligence reports. However, although TTPDrill provides a novel model to identify
threat actions in a machine-readable format from unstructured text, it relies on specific
observables, not providing a general capability for the use of behavioral signatures.

Representing how an adversary works in an operation is not standardized among
the CTI community, so this information has to be manually handled in most cases. As
the relevant security information is usually consolidated in a security information event
management (SIEM) platform, these technologies are the place where this information
must be analyzed to detect indicators of compromise. Microsoft has developed Kusto
Query Language, used in Azure both to monitor and to perform threat hunting [47], which
is a non-standard language that cannot be used as is outside the Microsoft ecosystem; in
addition, providers such as Elastic have defined their own open rules and language (EQL,
Event Query Language) to query Elastic SIEM. Both examples are proprietary ones, and
their particular specifications cannot be shared with other technologies.

An important effort towards the normalization of a language that allows analysts to
query SIEM technologies in order to detect all kinds of IOC has been made with SIGMA
rules. SIGMA https://github.com/Neo23x0/sigma (accessed on 23 December 2021) is a
generic and open signature format used to describe relevant log events in a straightforward
manner. In other words, SIGMA is to SIEM events what Snort is to network traffic or Yara
is to files. Although SIGMA’s goal is not to standardize a format to describe behavioral
indicators of compromise, the language can be used to query SIEM events, and provides
full coverage for all kind of indicators, from atomic to behavioral. For example, the Turla
Advanced Persistent Threat group executes different lateral movement techniques in a
compromised Windows system, identified as T1059, T1077, T1083 and T1135 by MITRE
ATT&CK. ATT&CK—Adversarial Tactics, Techniques, and Common Knowledge—is a
globally accessible knowledge base of adversary tactics and techniques based on real-world
observations. The following SIGMA rule allows one to query an SIEM for these lateral
movement techniques, looking for the execution of particular commands in Windows
systems that are registered by sysmon and sent to the SIEM:

action: global
title: Turla Group Lateral Movement
id: c601f20d-570a-4cde-a7d6-e17f99cb8e7f
status: experimental
description: Detects automated lateral movement by Turla group
references:

https://github.com/Neo23x0/sigma
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- https://securelist.com/the-epic-turla-operation/65545/
tags:
- attack.g0010
- attack.execution
- attack.t1059
- attack.lateral_movement
- attack.t1077
- attack.discovery
- attack.t1083
- attack.t1135
author: Markus Neis
date: 2017/11/07
logsource:
category: process_creation
product: windows
falsepositives:
- Unknown
---
detection:
selection:
CommandLine:
- ’net use \\%DomainController%\C$ "P@ssw0rd" *’
- ’dir c:\\*.doc* /s’
- ’dir %TEMP%\\*.exe’
condition: selection
level: critical
---
detection:
netCommand1:
CommandLine: ’net view /DOMAIN’
netCommand2:
CommandLine: ’net session’
netCommand3:
CommandLine: ’net share’
timeframe: 1m
condition: netCommand1 | near netCommand2 and netCommand3
level: medium

This simple example does fit into the category of behavioral IOC, and of course the
language allows one to specify more complex rules. SIGMA has become the de facto
standard to query SIEM events, but it does not provide full coverage for the specification of
all behavioral procedures. This standard must be improved and complemented with post
processing capabilities or equivalent over the stored data to be able to specify a full range of
behavioral indicators of compromise. In addition, although SIGMA is supported by most
SIEM technologies, such as QRadar and Splunk, it is not the native query language in these
technologies. This fact, in addition to the limitations of the language, it forces analysts to
maintain queries in different platform-dependent query languages if they want to utilize
its SIEM capabilities maximally.

User behavior and entity analytics, UEBA, sometimes referred simply as user behavior
analytics (UBA, an older concept superseded by UEBA), is also an effort to track behavioral
indicators with tools and htrough integration into SIEM technologies. UEBA offers [48]
profiling and anomaly detection based on a range of analytic approaches, usually using
a combination of basic (e.g., rules that leverage signatures, pattern matching and simple
statistics) and advanced analytics methods (e.g., supervised and unsupervised machine
learning). UEBA’s strengths are related to its advanced methods, but although these
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could be efficient approaches in many cases, machine learning has not been proved to
be a practical solution for the hunting of advanced actors. The problems in the anomaly
detection field are clear and were identified years ago [49]. For the detection of advanced
actors, many of them are linked to the stealth attacks these actors usually perform, and to
the complexity of identifying anomalies by establishing a user or entity behavior baseline.
Although UEBA is a promising approach, it still lacks maturity regarding advanced actors,
and in any case, it does not provide a suitable standard with which to share behavioral
indicators between different technologies or platforms.

5. Key Requirements for Behavioral IOC Detection and Sharing

By adopting the intelligence cycle as a working model, we have identified key re-
quirements for the detection and sharing of behavioral IOC. In this section, we provide
those requirements in each of the steps of the cycle. They all should be considered in the
planning stage, to establish the direction of the process from the collection of data to the
dissemination of intelligence in the form of behavioral IOC. Our final goal is to generate
behavioral IOC that can be shared and used in an effective way to detect threat actors
TTP. These requirements are focused on the detection and sharing of behavioral IOC: they
must be considered together with other requirements for a security operations center to
perform threat hunting activities in an effective way. For example, we do not emphasize
requirements such as automatizing or false positive reduction, as they are not focused on
behavioral IOC detection but on general detection capabilities.

During our research, we have analyzed threat actors’ cyber operations, information
on which is available both in frameworks such as MITRE ATT&CK, in intelligence reports
about particular threat actors such as [50–52] and in campaign reports such as [53]. Particu-
larly, we have analyzed the activities of different advanced persistent threats from Russia
(APT28, APT29, Turla, etc.), China (APT1, APT17, Ke3chang, etc.) and Iran (APT33, Clever
Kitten, etc.). This analysis allowed the identification of key features of advanced offensive
cyber operations, including not only their techniques, but also characteristics related to
their goals, targets and artifacts. The most relevant identified features are shown in Table 2.

Table 2. Key features in offensive operations.

Feature Description

Multiple targets
Advanced threat actors target a wide spectrum of victims, including
sectors such as military, government, technology, energy or even
non-profit organizations

Broad range of
techniques

Advanced threat actors achieve their goals through a broad range of
techniques. These techniques are usually stealth, in order to go
unnoticed, and one single threat actor can execute different
techniques linked to the same tactic, even in a single operation
against a particular target

Tailored tools and
artifacts

Advanced threat actors can use multiple tools and artifacts in their
operations. These tools and artifacts range from specifically
developed malware to legitimate system tools, and in many cases the
threat actor is aware of the deployed counter measures in the target
and knows how to evade them

Potential indicators

Hostile activities leave traces in targeted systems and internal
network traffic. In addition, the target perimeter security must be
monitored in order to detect connections to command and control or
exfiltration servers

Compromises spread
over time

Once a target is compromised, this compromise spreads over time in
most operations, thereby giving the threat actor the ability to control
its target for months or years
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The fact that a single threat actor targets multiple victims from different sectors is
directly linked to the targeting of multiple infrastructures, protected by multiple security
technologies. These technologies are provided by different vendors, and each of them uses
its custom logging formats and data. In order to guarantee accurate detection and response
capabilities, these data must be normalized, regardless of the technological data source,
to a common format that allows analysts to search for hostile activities regardless of the
technology used. These data must be analyzed through a common platform-independent
language that can be shared among different defensive teams and exploited no matter
which technologies are monitored and which specific analysis platform is used in each case.

As advanced threat actors can achieve their tactics through different techniques, even
in the same campaign, defensive teams must be able to find hostile behaviors regard-
less of the mechanisms used in each case. This means that the analysis tool, usually the
SIEM [54,55], must provide these teams the ability to specify all previously identified
techniques and the new ones that are discovered during a particular analysis. This pro-
cess must be quick for the defensive team, in order to provide agility to the detection of
potential compromises.

The employment of tailored tools and artifacts, including legitimate tools provided by
operating systems, is related to the stealth techniques executed by threat actors. Covertness
being a must in hostile operations, most movements will not generate any alerts in security
systems such as antivirus software or firewalls. This situation forces the defensive team to
identify not only misuses, but especially anomalies, so it is mandatory to analyze, so to ac-
quire and process, normal activities in systems and networks, and in most cases, to establish
a baseline or a reference to define the normal behavior of the users and infrastructures.

Hostile activities leave traces in different points of the targeted infrastructure: the
compromised systems and the network traffic. In fact, as we have stated before, atomic and
computed indicators of compromise are usually divided into host and network based. A
particular subset of network indicators are those related to domain names and IP addresses,
which are usually seen on the network’s perimeter. This distribution of indicators forces the
defensive team to analyze data from multiple sources, establishing relationships between
them in a central repository where these data are received and stored. Although not
particularly focused on the detection of behavioral IOC, works such as [56,57] reflect the
requirement to analyze, and so to acquire, these multi source data. In fact, ATT&CK
matrices available online from MITRE define the mandatory data sources for the detection
of each technique, most of them being multisource.

Once a threat actor compromises its target, this compromise spreads over time. Persis-
tence periods range from months to years in many cases. For example, a threat actor such
as APT1 can maintain access to victim networks for an average of 356 days. Four years
and ten months is the longest persistence period reported [58]. For this reason, to make a
whole picture of the operation, the defensive team must be able to analyze, and so to store,
historical data in order to identify the initial entry point, the hostile activities performed
and the internal systems that have been compromised.

To deal with the identified features of advanced offensive cyber operations, we have
identified the key requirements for effective behavioral IOC detection and sharing. Follow-
ing each of the steps of the intelligence cycle, in Table 3 we summarize these requirements.
Please note that they are applicable not only in information technology infrastructure, but
also in industrial control environments, where cyber threat intelligence is also a must [27,59]
and where all the problems we have identified in our work are also present.
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Table 3. Key requirements for TTP detection.

IC Stage Key Requirements

Acquisition Acquire data from multiple, relevant sources
Acquire not only alerts, but regular events

Processing Central data repository where relationships can be established
Common format for stored data
Long term retention

Analysis Platform-agnostic implementation
Full native coverage for all techniques
Correlation of data from multiple sources
Comparison of correlated data against a reference

Dissemination Machine readable and exportable format
Standard query language among providers

5.1. Acquisition

For effective TTP detection, it is mandatory to acquire information from multiple data
sources, those where main TTP can be identified. Taking as a reference the MITRE ATT&CK
framework [60], where tactics and techniques are analyzed, we found the different data
sources that enable the detection of each particular technique. Summarizing these data
sources, we identified three main points to acquire data from:

• Endpoint, including not only user endpoints but also servers, where processes are
created, files are opened and threat activities are performed at last; this data source
includes global infrastructures for endpoints, such as Windows Active Directory.

• Network, including payload and net flow, where threat movements, both lateral and
external, are performed.

• Perimeter, where input and output of data between the threat actor and its target is
performed, including network devices such as firewalls, data loss prevention systems
and virtual private network servers.

In all cases, the mandatory information to acquire is that related to regular activities,
not only that related to alerts. Although we identify this key requirement, this global,
regular data acquisition is not widely extended [25], thereby impacting the quality of later
steps of the intelligence cycle and the final intelligence product. A suspicious behavior
is an event or a sequence of events; in most cases, no one event is suspicious by itself.
In other words, a behavioral indicator of compromise is not simply a set of atomic or
computed ones. Thus, while atomic and computed indicators of compromise can be
detected by rule-based systems such as Snort (for network indicators) and Yara (mainly
for host indicators), whereas many of the behavioral ones can not be identified this way.
These systems provide specific misuse detection capabilities, so it would be hard for them,
especially for Yara, to allow an analyst to identify tactics and techniques represented by
behavioral indicators of compromise. This is an important point, as most tactics cannot
detect security alerts using only a data source: as stated before, most threat actors will
not generate security alerts in their regular activities. In fact, from a classical intrusion
detection systems perspective, alerts could be considered “misuse detection”, which has to
be complemented with “anomaly detection” through the processing and analysis of the
acquired regular events.

5.2. Processing

We have also identified particular requirements for the detection of behavioral IOC
in the processing stage, once the analysts have acquired specified data. In the first place,
to achieve this detection, it is mandatory to have a centralized point where data can be
collected; this point is usually a SIEM, where logs from multiple sources are stored in a
common format. Related to the data acquisition from multiple sources, as detailed before,
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in the processing stage it is a key requirement to receive and store these data, as they will
be later correlated in the analysis stage.

Although this should be also a requirement for the detection of all kinds of IOC, in
the case of behavioral data, the requirement of having a centralized point with a common
format for logs from multiple sources is especially relevant, as it allows the correlation
between events from these different sources. As we will detail in the next section, unlike
the detection of atomic or computed indicators, techniques to detect behavioral IOC are
usually based on the correlations of data from multiple sources, so we must consider this
particular requirement as a key one.

In addition, as we detail when speaking on the analysis stage, long-term retention
is a must for a successful behavioral IOC detection. In fact, it is a must, from a forensic
point of view, to detect all kinds of IOC: when a threat intelligence feed is received, analysts
must look backwards for its presence in the stored events. However, when dealing with
behavioral IOC, apart from this forensic approach, long-term retention is mandatory to
identify stealthy behaviors. The detection of these stealthy techniques requires the analysis
of events far in time, to compare them and to establish relationships to identify the behavior
of a threat actor. Without this long-term retention, it may not be possible to identify
techniques linked to advanced threat actors. Of course, to enable this kind of retention, and
considering that an identified key requirement is to gather not only alerts, but also regular
events from different sources, big data architectures that can handle all this information
are a must, not only for the processing stage, but for all of the activities of the intelligence
cycle [61,62].

5.3. Analysis

The analysis stage is perhaps the most important one in the intelligence cycle, al-
though it cannot be accomplished without proper acquisition and processing activities. The
requirements we have stated in previous steps of the intelligence cycle are mandatory for a
successful analysis, thereby enabling different capabilities for analysts to work, especially
through the SIEM.

The first identified key requirement for the analysis is to be able to specify the behav-
ioral IOC in a technology-agnostic way. This requirement implies that the IOC can be used
regardless of the SIEM deployed in each case, but also that the same IOC specification
regarding particular data sources can be used regardless of the technology of these data
sources. For example, given a particular firewall (data source) and an IOC detecting a
malicious behavior on the firewall, by analyzing the data on this SIEM, the results should
be able to be loaded in any other SIEM to assist firewall technology in the industry. As
we will see later in this section, it is a must to be able to load shared behavioral IOC from
third parties.

This IOC specification capability has to provide native full-coverage for all identified
techniques. This coverage can be achieved through a common query language, such as
SIGMA, or through a common format for stored data and a suitable API to query this
data. As we have detailed in Section 4, the first option is the most extended among SIEM
providers. It would need to overcome the incompatibility of various languages. Following
this identified requirement, in the case of SIGMA it is mandatory to expand the language to
provide full coverage for all techniques, or to give SIGMA post-processing capabilities to
generate results in a format suitable to be managed by common programming languages.

Most techniques cannot be identified by analyzing events from a single data source [63];
in fact, only about ten particular MITRE ATT&CK techniques (out of 185) can be detected
using a single data source. Thus, as we have stated before, the ability to establish rela-
tionships between events from different sources is a must. To achieve this requirement,
SIEM technologies have to provide this capability, especially through the normalization to
a common format of the information received from different data sources.

To identify most behavioral indicators, it is also mandatory, in the analysis stage, to
establish a relationship between events or alerts by comparing them against a specific refer-
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ence. This relationship is usually a temporal one, but it can also be based on dependencies
or simply on a comparison against a normality model. For example, a parent–child process
match that can be considered suspicious.

SIEM environments are the main repository for storing events from relevant sources
from a security perspective. They collect not only misuse alerts, for example, from systems
such as intrusion detection systems and antivirus systems, but also "normal" events from all
kinds of data sources, from endpoints to firewalls. They also provide the ability to establish
relationships between events, so as we have stated before, SIEM should be the right place
to identify all types of indicators of compromise.

5.4. Dissemination

At this point, successful detection of behavioral IOC could have been performed
in a security operations center. However, as we have stated before, threat intelligence
sharing between defensive centers is a must: without a proper sharing, no single center
can detect most hostile operations, especially those performed by advanced actors. For
this reason, organizations collaborate to define defensive actions against complex attack
vectors by sharing information about threats [64]. Thus, now we will approach the last
stage of the intelligence cycle that relates to the dissemination, to the sharing, of the final
intelligence product.

As with atomic or computed indicators, behavioral ones must be usually shared by
uploading them to a threat intelligence sharing platform such as MISP. To do so, behavioral
IOC must be exportable as a single intelligence unit, commonly called “hunt”. This implies
that a single behavioral IOC generated in one platform, for example, in a specific SIEM, can
be exported from this SIEM in the form of intelligence unit.

In this dissemination stage, another key requirement for sharing behavioral IOC is that
the intelligence unit has to be machine readable: that is, it has to be actionable when loaded
into a SIEM. As with atomic and computed indicators of compromise, whose extended
use mainly relies on the fact that they can be loaded into security devices and generate
immediate results, as we have stated before [41], with behavioral IOC, we identify the same
requirement in order for effective sharing.

To achieve this last requirement, we also identify as a previous mandatory requirement
a common accepted language for the specification and sharing of behavioral IOC among
providers. Without such a capability, the effort that has to be made to translate TTP from
natural language to specific, sometimes proprietary technical standards such as the ones
referenced in this work, is not acceptable. With the current lack of a common language,
analysts have to iterate the specifications among many platforms, with independent and
non-compatible specification languages, thereby multiplying their work not only for the
initial specification, but most importantly, to its maintenance and upgrade.

Please note that in this section we have focused on the technological requirements for
behavioral IOC sharing; other relevant aspects, such as legal or human matters, are out of
the scope of our work, and in fact are common to all CTI sharing approaches [65,66], not
specifically to the dissemination of behavioral IOC.

5.5. A Practical Example

To provide a practical test for our proposal, we have analyzed a particular technique
performed by threat actors and how the different requirements we have identified must be
fulfilled. We have chosen the command and control (C2) tactic stated by MITRE ATT&CK,
in particular, the T1071.001 technique, related to command and control through web traffic
protocols. While using this technique, adversaries may communicate using application
layer protocols associated with web traffic to avoid detection and network filtering by
blending in with existing traffic. A malicious HTTP/S hit is hidden inside the legitimate
web traffic. Commands to the remote system, and often the results of those commands,
will be embedded within the protocol traffic between the client and server, as the MITRE
ATT&CK framework states. For our example, we have chosen a particular implementation
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of the technique in which the hostile actor buys and uses domains whose names contain
strings related to legitimate sites, trying in this way to go unnoticed. We must highlight
that this technique is behavioral, so it is not possible to detect it through the use of atomic
or computed indicators of compromise.

The detection of this particular technique requires one in first place to acquire, process
and analyze information from a main data source: the web proxy or equivalent where
navigation logs are stored. These logs must be analyzed with a mechanism that is able
to detect the use of legitimate strings inside malicious website names; a simple approach
can be looking for preidentified legitimate strings related to existing companies, such as
“google”, “microsoft” or “adobe”, in the domain names that have been navigated to by the
organization.

Once a suspicious navigation event has been identified, a set of actions must be
performed by the analysis team. These activities are shown in Figure 3 in the form of
playbook. In first place, the analysts will query intelligence sources to check if the domain
is suspicious or not—for example, by confirming whether it is registered by the original
company or by a third party entity. In the latter, as the domain will be considered suspicious,
the analysts will look for more hits in the historical navigation records (for example, in the
stored proxy logs with the available retention period) with the goal of identifying the time
period the domain has been connected to by the organization.

Suspicious 
HTTP hit

Check domain data

Suspicious?

Check domain historical
navigation

Identify endpoints that contacted the suspicious domain

Identify executable that launched the connection

Extract and analyze executable

Malicious?

Incident

END

END

Proxy logs

Historical proxy logs

Endpoint activity

NO

NO

Intel sources

Data Sources Operations

Figure 3. Playbook for the analysis of suspicious HTTP hits.
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By analyzing data from these historical records, the analyst will identify the set of
endpoints that contacted the suspicious domain; for all of them, and by the analysis of
endpoint activity logs, the executable that performed the suspicious connection will be
identified, in order to extract and analyze it in a malware laboratory. If this last analysis
confirms that the executable is malicious, an incident will be raised; otherwise, it will be
considered a false positive and the investigation will be closed. If an incident is detected,
it is mandatory to specify the detection of the technique in the form of behavioral IOC,
to automate its detection not only in the organization, but also to share it with other
interest groups.

With this simple example, we can confirm the mandatory requirements for the detec-
tion of a behavioral IOC. In first place, it is clear that data from multiple sources must be
acquired to enable the detection of the technique: in this case, from the navigation logs and
from the endpoint activity. None of these sources can provide by itself the full picture of the
situation to the analyst, as they log different types of information that must be considered
together for the whole detection scheme. In addition, as an anomalous domain web hit is
not a security violation by itself, it does not generate an alert in any security mechanism. In
this way, if we register only alerts, these anomalous hits will go unnoticed.

Regarding the processing step, we must remember in first place the need for retention
of the data. We must have a long term retention scheme to identify historical records that
help us to draw the global picture of our investigation: the total number of endpoints
contacting the suspicious domain, the occasion at which this domain was first seen in the
organization or the frequency of hits. In addition, when dealing with medium or large
organizations, it is mandatory to centralize information from multiple sources in a single
repository and with a common format. This requirement will enable analysts to establish
relationships between events from these sources; otherwise, these relationships will be
manually established, which is not possible in most organizations.

The analysis step is performed in the SIEM platform. This platform must provide
mechanisms for the full analysis of all data from multiple sources, as it has to centralize
all the information from these sources and provide the capability to exploit it. In this
exploitation, correlation is mandatory for the analysts to establish relationships between
different datasets, as they must establish a common reference (usually a temporal one) for
all the data. A platform-agnostic implementation is also a must for two main reasons: The
first one, to compare data from different technologies across the organization. A single
organization can have proxies, firewalls or EDR (endpoint detection and response) from
multiple vendors, each of them generating logs in its own proprietary format. The second
one is perhaps the most important—to be able to automate and share. As we will see in next
step, this means the use of one technique among multiple organizations that will surely
have different security technologies.

Finally, in the dissemination step, to be able to share the specifications of the technique
with other security groups, and also to receive and exploit specifications from these security
groups, the two key requirements we have identified must be fulfilled. The technique
must be specified in a standard language among technology providers, particularly SIEM
ones, as not all organizations use the same SIEM. In addition, this specification must be
exportable, to allow sharing, and most importantly, it must be machine readable to load it
automatically in security tools to detect the identified technique.

We have provided a practical example for the detection of a particular technique and
identified the fulfillment of all the key requirements we have proposed. Although we have
chosen a simple technique used by advanced threat actors, our findings can be applied to
all kind of techniques. If we consider more complex techniques coming up against large
organizations, the fulfilling of all the requirements is still mandatory.

6. Discussion

The most used types of indicators in CTI sharing are atomic and computed ones: in
particular, file hashes, IP addresses and network domains. However, as these indicators of
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compromise are easily changed by a threat actor, they can be evaded with little or no effort.
While they are definitely not the most useful ones, they are the most used and shared,
mainly because they can be expressed in machine-readable formats: this feature allows
these indicators to be automatically loaded into security devices, thereby providing an
immediate result for the customer. However, this situation represents a problem for security
analysts, as most of the shared intelligence is easily evaded by hostile actors, rendering
it useless. This problem must be addressed with the detection and sharing of behavioral
indicators of compromise. In this work we have identified the key requirements for both of
these activities and discussed them.

All but one of the key requirements we have identified in our work are today fulfilled
with most SIEM technologies. The main unfulfilled requirement is the definition of a
standard query language among providers. There are some efforts to fill this gap, which
are mainly aligned with MITRE ATT&CK and especially in SIEM technologies, the most
relevant being the SIGMA language. However, until now there is not a commonly-accepted
standard suitable for sharing behavioral signatures between analysts using different tech-
nologies. This motivates two problems: the inability to share, and thus the difficulty of
detecting; and the effort neededto translate TTP from natural language to specific vendor-
dependent formats.

These two main problems can only be addressed by the specification of a commonly
accepted standard that provides full behavioral detection capabilities to SIEM or to any
technologies and products focused on the detection of advanced threat actors. The def-
inition of such a standard will enable the use of these indicators among analysts using
different technologies, and as a direct consequence, this usage will enable information
sharing between analysts. As this standard becomes accepted and used, and behavioral
signatures can be shared and automatically loaded into security systems, the detection
capabilities of security teams will increase significantly.

Although there are many efforts to characterize threats among the CTI community,
including their behavior, little progress has been achieved toward define a machine-readable
format accepted as the standard. In this sense we have identified two main references to
be considered: STIX and SIGMA. STIX provides capabilities for defining TTP as SDO, but
it does not allow one to specify behavioral signatures; the specification of TTP is based
on atomic and computed indicators of compromise, so if an attacker changes them, the
particular TTP will not be detected. SIGMA language is the nearest thing to such a standard,
but it has to be improved to expand its capabilities. In addition, at the time of writing, it
is not natively supported by many SIEM technologies, so SIGMA queries must be turned
into specific SIEM signatures through a converter. This fact introduces two main problems:
complexity in the management of SIGMA queries among multiple SIEM providers and
dependency on the capabilities of those converters.

As we have stated before, from a technical point of view, the only unfulfilled require-
ment for detecting and sharing behavioral indicators of compromise is the definition of a
standard query language among providers. However, the existence of the means does not
mean that all defensive teams are able to perform this detection and sharing.

The complexity of our work relied on the identification of a structured methodology
suitable for the analysis of the lessons learned after an incident. We adopted the intelligence
cycle, as we believe this identification of hostile operations is a counter intelligence activity,
so it has to be structured and analyzed in this way. The highlighting of requirements and
their arrangement based on a consistent model provides a homogeneous framework to
identify gaps in the detection capabilities provided by CERT teams. The analysis of the
lessons learned to identify the mandatory requirements for the detection and sharing of
behavioral indicators of compromise has its own complexity. This kind of analysis after
an incident is not usually public, so we have partially based our research in our own
experience in incident handling.

We identify as a future line of research measuring the quality of indicators of com-
promise. Although behavioral indicators have longer lifetimes and provide more accurate
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detection, the analysis of the quality of IOC, in order to decay them, is an ongoing work.
We defend that, in general terms, a behavioral IOC is more useful than an atomic or a
computed one, but this generality has exceptions, and the quantification of this usefulness
must be analyzed in all cases.

Another relevant line of research is the use of behavioral indicators of compromise
in emerging or changing applications and technologies in which security is a especially
relevant issue. In this sense, we should mention research fields such as smart contracts [67],
smart cities [68], Internet of Things [69–71], 5G communications [72] and cryptocurren-
cies [73], as well as the combined applications for these topics. In all of them, the ap-
plications of all kinds of IOC, including behavioral, are a key issue for the detection of
security compromises.

7. Conclusions

A relevant problem in cyber threat intelligence is the sharing of behavioral indicators
of compromise, those that specify the tactics, techniques and procedures of hostile actors.
The fact that atomic and computed indicators of compromise are the most shared and
exploited ones reduces the detection capabilities for defensive teams: these indicators are
easy to evade, which leaves a window of opportunity for threat actors.

In this work we have analyzed this problem and identified the key requirements
for the detection and sharing of behavioral indicators of compromise. To structure our
requirements, we have followed the intelligence cycle, so we identified these requirements
in each of the stages of the cycle. This identification was based on the analysis of threat
actors and their campaigns, from which we extracted the main features of these hostile
operations. The detection of any type of IOC has to be performed through a SIEM, where
the information gathered from different sources is normalized and centralized. Nowadays,
most SIEM technologies provide the mandatory technical capabilities and fulfill all the
identified requirements. However, the main barrier to the detection and sharing of behav-
ioral indicators of compromise is the lack of a common machine-readable format to specify
behavioral signatures and share them among different SIEM providers.

This lack must be addressed in the short-term through the definition and acceptance
of such a standard, a common format to describe behavioral indicators of compromise.
While the security community does not define and accept this standard, these indicators
will not be massively used, so they will not be massively shared, and the ability to detect
the TTP of advanced actors will remain residual. In this sense, we identify SIGMA as the
main current effort, but its acceptance among technology providers has to be increased.

Once this common standard has been designed and accepted among the community,
the rest of the work will rely pm each particular team’s defensive capabilities, from ac-
quisition to dissemination. The identified key requirements are mandatory for effective
detection of behavioral IOC, but all of them can be fulfilled with current technologies. In
this sense, our proposal, structured in the form of intelligence cycle, can be used to measure
and compare the capabilities of different defensive teams.

Although the value of a behavioral indicator of compromise is usually higher than the
value of a computed or atomic one, in some cases a simple IOC can provide high quality
detection. Regarding the measurement and quantification of the quality of an indicator
of compromise, the type of IOC (atomic, computed or behavioral) is of course relevant,
but many other parameters must be considered, such as the source reliability or the last
time the IOC was seen. We identify this measurement as a relevant line of research for
future works.
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