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Featured Application: Natural interface to enhance human–robot interactions. The aim is to im-
prove robot perception skills.

Abstract: Robot perception skills contribute to natural interfaces that enhance human–robot interac-
tions. This can be notably improved by using convolutional neural networks. To train a convolutional
neural network, the labelling process is the crucial first stage, in which image objects are marked
with rectangles or masks. There are many image-labelling tools, but all require human interaction
to achieve good results. Manual image labelling with rectangles or masks is labor-intensive and
unappealing work, which can take months to complete, making the labelling task tedious and lengthy.
This paper proposes a fast method to create labelled images with minimal human intervention, which
is tested with a robot perception task. Images of objects taken with specific backgrounds are quickly
and accurately labelled with rectangles or masks. In a second step, detected objects can be synthesized
with different backgrounds to improve the training capabilities of the image set. Experimental results
show the effectiveness of this method with an example of human–robot interaction using hand
fingers. This labelling method generates a database to train convolutional networks to detect hand
fingers easily with minimal labelling work. This labelling method can be applied to new image sets
or used to add new samples to existing labelled image sets of any application. This proposed method
improves the labelling process noticeably and reduces the time required to start the training process
of a convolutional neural network model.

Keywords: human–robot interactions; image labelling; deep learning; image classification

1. Introduction

Robot perception skills have been significantly improved by the use of deep neural
networks in image classification, as well as object detection and segmentation [1–6]. As it is
the closest to human vision, segmentation is the most powerful of these and can be applied
to a wide range of tasks. Although these advancements are satisfying, they also present
many new challenges [7,8].

Object detection and image segmentation tasks use supervised learning methods
that require huge quantities of correctly labelled data to feed the training process. For
object detection, a rectangle defines the position of the object in the image. For object
segmentation, a set of pixels determines the object silhouette with a mask. To obtain this
amount of data, hundreds of hours of monotonous manual work is usually needed. For
example, the ImageNet challenge [9] has more than one million images classified into one
thousand different categories. Each image has to be labelled into its corresponding category
by a human. Moreover, if the classification of image objects is categorized semantically, the
effort required to label the objects exponentially increases and risks of bad labelling arise.

Object labelling tools include image-sharing options that help offset the tediousness
of the manual labelling process. This may enable the outsourcing of the labelling task,
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with labellers motivated by compensation or personal interest in the subject. Furthermore,
image sharing may aid the regulation of the labelling process, allowing further checks of
the accuracy of masks and the consistency of labels. It is very important to establish a
data quality control system to edit and review object images that have been skipped or
badly labelled. Online tools working from browsers help with this task. With an online
tool, images can be easily uploaded, and it is therefore easy for a team of people to work
on a labelling task. Offline tools require installation before use, and if conducting a team
labelling task, they also need cloud storage. Some online and offline labelling tools include
multi-user access as a feature for team and project management. This allows co-working
between an internal team of experts or managing staff that label the data. Other tools
allow the option to automatically track the staff consensus on labels. Many tools also offer
labelling metrics that monitor the time taken to label each object and the labelling activity
per labeller. This information helps to ascertain labelling costs.

To notably reduce the effort required to label the object, some manual object labelling
tools propose an objects region with algorithms that infer the boundary of the object to
separate the background and the foreground. They use 2D computer vision algorithms
for object detection that perform a silhouette analysis, which could help to identify object
pixels in the image [10]. However, as obtaining an object silhouette is not an easy task,
this method can only be applied in specific situations. Object colour features change
depending on where in the image the object is due to illumination. To perform a successful
object segmentation that creates a silhouette, it is necessary to control illumination and to
have a uniform background. In addition, object colour influences the silhouette detection
process as pixel intensity plays an important role in the threshold process. To resolve
this problem, some approaches convert images from RGB to HSV colour spaces where
object colour is easier to define. Furthermore, with an object contour or silhouette as a
region of interest (ROI), it is necessary to extract some scale and time invariant features to
decide if it represents an object of interest or not. For example, to detect objects in images,
convex defect detection measures the ratios between convex hull areas and object silhouette
areas [11].

To resolve the problems with illumination, object colour changes and controlled
backgrounds, techniques that focus on detection of edges have arisen. The starting point for
these techniques is the gradient of image intensity, which increases its robustness against
changes in lighting, object colour and uncontrolled backgrounds. The gradient of the image
highlights the edges in the image. Consequently, an edge analysis allows the extraction of
hard features that are dependent on the object shape and independent of the colour of the
pixels. For example, Chaudhary [12] used the histogram of oriented gradients technique
to extract features and classify the gestures of bare hands with different skin colours and
illumination. The orientation histogram is a technique developed by Liversidge [13] and
improved by Dalal and Triggs [14] in their work, which focused on human detection in
images and videos. Another technique that may help to detect objects in sequential frames
of video footage is the Kanade–Lucas–Tomasi algorithm [15]. These techniques can help
with the object labelling process but they are not able to perform an accurate labelling
process independently. With 2D computer vision algorithms, the accuracy is not as good as
required in images with generic backgrounds, and the approach to object pixels proposed
above is the starting point for manual labelling. Changes in backgrounds, foregrounds and
object occlusion in images make the automatic and reliable detection of objects in generic
images a very complex problem.

Labelling with transfer learning uses neural network models for initial annotations
of label-specific elements in an image. Some tools integrate third-party APIs, such as
ImgLab, which is integrated with face++ API; faces can therefore be labelled as faces
by marking the significant aspects of the image. Additionally, VIA [16,17] offers face
bounding box tracking with Faster RCNN [18]. Matlab Image Labeler App includes a
built-in automation algorithm to detect and label people and vehicles using a pre-trained
detector based on aggregate channel features. The Ground Truth Labeler of Automated
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driving tool implements the Kanade–Lucas–Tomasi [19–21] algorithm to track features in
successive frames of a video, labelling in bounding boxes only. Vicomtech [22] and Mask
Editor [23] classify object parts into super-pixels, grouping nested pixels of a similar colour
and considering that the borders of object parts have strong colour gradients. Afterwards,
a group of super-pixels defining object parts are labelled manually as a complete object.
If no shadows appear in the image, the accuracy in the borders with irregular shapes is
considered better than a human-setting polygon vertex.

Unfortunately, even after fine-tuning the parameters, the performance of automatic
detection algorithms is disappointing due to the great variation in the perspectives of
objects, as well as image conditions, backgrounds and foregrounds. Moreover, this strategy
fails if a pre-trained model does not exist or if the pre-trained model does not classify the
new image set with a good success rate. However, this transfer learning method could be a
good starting point from which to manually drag and adjust the suggested area, therefore
improving label accuracy. New images classified with a pre-trained model are the starting
point of manual labelling, consisting of revising all work completed by the transfer learning
process and fixing bad annotations if necessary.

In addition, several authors use image synthesis to reduce the effort of manual annota-
tions. Gupta et al. [24] localized text in natural images, synthetizing computer-generated
texts and natural real images. Su et al. [25] and Sun and Saenko [26] synthetized 3D
CAD object models with real background images. Castro et al. [27] generated synthetic
structural magnetic resonance images for learning schizophrenia. Segawa et al. [28] recog-
nized first-person reading activity by synthetizing computer-generated images and real
background images.

The aim of this paper is to propose a novel method for fast image objects labelling
with minimal human intervention to create new data sets easily that can then be used in
the training process of a neural network model. The proposed method can be used with a
new set of images or to improve existing image sets when introducing new samples. The
proposed fast image-labelling tool defines an image background conditions in detail to
help 2D vision algorithms to detect objects in images quickly and accurately. The results of
model training with fast-labelled images are similar to the results of model training with
manually labelled images. An analysis of the effects of image background in the model
training process demonstrates that the proposed method is valid. The contribution of this
paper is the reduction in the collection and annotation costs of deep learning datasets by
using simple object detection and image synthesis.

2. Materials and Methods

Automatic image labelling to train deep neural network models is a very arduous
computer vision task. The aim is to detect objects as group of pixels in the image, to teach a
model to identify similar objects in new images. Is it possible to perform fast object labelling
in images with no human intervention? The answer is yes, provided that some conditions
are controlled. Regarding objects in images with controlled background, 2D computer
vision algorithms are suitable for their quick detection. With a controlled background, it
is possible to perform object segmentation that accurately assesses object silhouettes. It
can also detect changing object colours, location or orientation in the image. Images with
objects in controlled backgrounds allow for fast object detection. A controlled background
is defined as a uniform colour that is different to the object colours. If the background is
controlled, object silhouettes can be generated using 2D computer vision algorithms.

Currently, the proposed technique requires images similar to those in Figure 1a, in
order to label new images quickly. These images have constant backgrounds and objects
that are significantly different to the background. With images similar to those in Figure 1a,
object segmentation is extremely easy to achieve using 2D computer vision techniques,
and this segmentation allows for the automatic labelling of new images. Pixel selection is
carried out by value easily, since object pixels are quite different from background pixels.
The process is shown in Figure 1. Suggested object regions for labelling purposes are
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definitive in 99.9% of cases and are, therefore, unlikely to need any manual modification.
In a few milliseconds, an image is labelled and ready to be used for training a model.

Figure 1. Fast image-labelling process. Original RGB image (a) is converted to HSV colour space
to increase differences between background and object pixels (b). Colour saturation layer is very
useful for selecting object pixels and creates a mask (c). Detected mask is adjusted to a rectangle or a
polygon if necessary (d). Outcome of the automatic image labelling process is a mask saved as a png
image, or a region of interest defined with a rectangle in an xml file or a polygon in a json format.

Moreover, it is possible to perform data augmentation and create new images easily,
as shown in Figure 2. Using 2D computer vision techniques, the proposed algorithm for
fast image-labelling is illustrated in Figures 1 and 2 as follows:

1. Define a controlled background with a constant colour. In addition, the background
colour has to be different from the colours of the objects. An example is shown in
Figure 1a.

2. Produce images with a controlled background. The viewfinder should be framed by
the controlled background and the objects clearly inside the viewfinder. If part of the
object is outside of the viewfinder, it can be considered an occluded object.

3. If necessary, exacerbate the differences between the object and background pixels. As
discussed, the aim is to obtain an image where background pixel colour is easy to
differentiate from the object pixels. If it is necessary to accentuate this difference, two
operations are proposed:

a. If necessary, perform an RGB to HSV conversion to highlight the object pixels in
the image. Some objects such as white skin tones are easier to detect if they are
in a colour space different from RGB. This operation is represented in Figure 1.

b. Image subtraction of the background without objects from the image with ob-
jects is represented in Figure 2 as f 1. In this case, an image of the background
without objects is necessary. This step will help to remove shadows and bright-
ness in the image background and will increase the difference between object
pixels and background pixels.

4. Remove the background pixels by carrying out pixel segmentation. With an image
similar to the one shown in Figure 1b, the contrast between object pixels and back-
ground pixels increases significantly and the detection of object pixels is easy. Pixel
selection is easily carried out by value, since object pixels are quite different from
background pixels. The result is a binary image where pixels that belong to object are
set to 1 and pixels that belong to background are set to 0.

5. Perform a combination of dilation and erosion algorithms to close holes and noise in
the segmented image.

6. Detect objects in images by grouping selected pixels in object masks.
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7. Perform data augmentation, overlapping objects on images that contain only the
background. This step is represented with function f 3 in Figure 2. Several objects can
be synthetized with the same background to perform data augmentation.

8. Save the masks defined by the silhouette.

a. A bounding box of the mask defines a rectangle. Rectangles are saved in an xml file.
b. Perform polygon approximation to obtain the polygon vertex of an object

silhouette to be saved in json format.
c. Masks are saved in a png image.

Figure 2. Proposed fast object detection algorithm with data augmentation. Images with controlled
background are labelled as is shown in Figure 1. Detected objects are overlapped with a texturized
background to create a standard image taken under uncontrolled conditions. Moreover, several
objects can be overlapped with the same background: f 1 represents an image subtraction to obtain
the object mask and f2 is a pixel selection from original image using a mask detected with f 1. With f 3

selected pixels are synthesized with real background images to improve the training capabilities of
the image set.

With this algorithm, image labelling is completed quickly and the results are saved
in several formats that can immediately be used in the training process. This technique
is suitable for projects that need to resolve a new problem without previous images and
work. For example, many scientific or industrial quality and process control applications,
need computer vision systems to make decisions. Additionally, chemical and biological
researching applications need to detect elements in a microscope image to define the results
of their experiments. To train these systems, a deep neural network model could be a means
of solving existing problems that remain unresolved by 2D computer vision algorithms,
such as the semantic segmentation of objects, even with adjoining or overlapping objects or
the recognition of heterogeneous textures (e.g., plants). In these applications, it is easy to
generate a set of images with controlled backgrounds.

Moreover, if it is necessary to add new images to an existing labelled image set, this
controlled background technique dramatically reduces the labelling time. In both cases, to
capture new images, it must be considered that controlled backgrounds are conducive to
accurate object labelling. This will reduce the object labelling time noticeably and ensures
accuracy of the labelling process.

This algorithm is tested in GPU Nvidia Geforce Titan XP.
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3. Results

Two experiments prove the proposed method. The first experiment demonstrates
the image background effects on the model training process. The second experiment tests
the performance of data augmentation techniques on a new data set used to resolve a
specific application.

3.1. Background Effects

The first experiment attempts to evaluate the influence of the image background
in the deep model training step with a publicly available image set that offers labelled
images with objects masks. This image set is ‘pets’ [29] and it has 200 images for each
class of pet: 37 classes. The images have large variations in scale, positioning and lighting,
since objects have different sizes, positions in the image and illumination. Masks are
available and they allow the easy separation of cats and dogs from image backgrounds by
using 2D computer vision algorithms. The aim is to train several deep learning models
under different frameworks to check if the performance varies depending on the image
background features. Several frameworks are tested. One framework uses cats and dogs
in images with original backgrounds. Another framework takes cats and dogs alone, in
images with a flat background, in the same position and orientation as the original image.
The third framework utilizes data augmentation capabilities by creating new images with
combinations of cats and dogs, including occlusions, varying positions and scale.

The experiment uses both flat and original backgrounds, as shown in the images in
Figure 3. The first and second rows show original data from the pet image set. The third
row shows objects on a flat background, created with a combination of images from the
first and second rows. The fourth row shows the results of a data augmentation technique:
several objects are in the image and occlusions exist. The fifth row is the resulting mask
with occlusions.

Appl. Sci. 2022, 12, 1557 6 of 14

3. Results

Two experiments prove the proposed method. The first experiment demonstrates
the image background effects on the model training process. The second experiment tests
the performance of data augmentation techniques on a new data set used to resolve a
specific application.

3.1. Background Effects

The first experiment attempts to evaluate the influence of the image background
in the deep model training step with a publicly available image set that offers labelled
images with objects masks. This image set is ‘pets’ [29] and it has 200 images for each
class of pet: 37 classes. The images have large variations in scale, positioning and lighting,
since objects have different sizes, positions in the image and illumination. Masks are
available and they allow the easy separation of cats and dogs from image backgrounds by
using 2D computer vision algorithms. The aim is to train several deep learning models
under different frameworks to check if the performance varies depending on the image
background features. Several frameworks are tested. One framework uses cats and dogs
in images with original backgrounds. Another framework takes cats and dogs alone, in
images with a flat background, in the same position and orientation as the original image.
The third framework utilizes data augmentation capabilities by creating new images with
combinations of cats and dogs, including occlusions, varying positions and scale.

The experiment uses both flat and original backgrounds, as shown in the images in
Figure 3. The first and second rows show original data from the pet image set. The third
row shows objects on a flat background, created with a combination of images from the
first and second rows. The fourth row shows the results of a data augmentation technique:
several objects are in the image and occlusions exist. The fifth row is the resulting mask
with occlusions.

Figure 3. Image set used to test background variations. First row shows images with original
backgrounds. Second row shows masks resulting from the labelling process. Third row shows images
with flat backgrounds. Fourth and fifth rows show results with data augmentation techniques with
resulting masks. All of these operations were carried out using 2D computer vision techniques.

Figure 3. Image set used to test background variations. First row shows images with original
backgrounds. Second row shows masks resulting from the labelling process. Third row shows images
with flat backgrounds. Fourth and fifth rows show results with data augmentation techniques with
resulting masks. All of these operations were carried out using 2D computer vision techniques.



Appl. Sci. 2022, 12, 1557 7 of 14

Training several models allows for the comparison of their results. From this compari-
son, conclusions can be drawn about how image background influences the training stage
of a deep neural network model. In this case, the selected models are SSD-MOBILENET,
SSD-RESNET, FASTER-RCNN-RESNET and FASTER-RCNN-INCEPTION. In general,
RCNN models offer better results but they are more time-consuming than SSD models. For
applications where time is crucial and accuracy is not so important, it is advisable to use
SSD models. Tensorflow library [30] is used and models are available in “detection model
zoo” [31]. Tensorflow provides models trained to work with the COCO image set. The
provided weights are the training pipeline for the pet detection model. In fine-tuning, the
final layer of the model is retrained only because the fine-tuning of deeper layers degrades
the performance. The parameters are optimized with the cross-entropy loss function using
the stochastic gradient descent (SGD) algorithm. In the optimization, mini batches of size
10 are used. Figure 4 shows how model losses decrease with the number of epochs and
training data. Variations in training time over the training data sets are not significant.
Training data changes with each experiment (original images, flat background, data aug-
mentation and data augmentation with flat background). Table 1 shows measures, such
as precision and recall, of performances of the models. Models are restored at epoch 2500
and then run with training and testing data. 180 images per class are used for training, and
20 images are used for testing purposes.

Figure 4. Models loss decreases with the number of epochs. Training data have no significant effects
on the evolution of the training process.
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Table 1. Detection rates (precision/recall) of deep neural network models 1 with different images
data sets of pets.

SSC FASTER RCNN
MOBILENET RESNET RESNET INCEPTION

training data

original images 0.81/0.88 0.80/0.74 0.85/0.81 0.84/0.86
flat background 0.82/0.85 0.81/0.73 0.86/0.89 0.82/0.83

data augmentation 0.77/0.87 0.78/0.75 0.80/0.89 0.83/0.84
data augmentation flat background 0.78/0.86 0.77/0.74 0.79/0.88 0.81/0.82

testing data

original images 0.41/0.47 0.40/0.44 0.45/0.51 0.44/0.56
flat background 0.42/0.45 0.41/0.43 0.46/0.49 0.42/0.53

data augmentation 0.47/0.47 0.48/0.45 0.40/0.49 0.43/0.54
data augmentation flat background 0.48/0.46 0.47/0.44 0.49/0.48 0.41/0.52

1 Model is restored at 2500 epochs trained with different set of images. Original images are images with textured
backgrounds. Flat background represents original images but with a removed background. Data augmentation
are images with combinations of cats and dogs with occlusions, changing positions and scale. Data augmentation
with flat backgrounds are the same images with data augmentation but with a removed background. Testing data
are a set of images not used in the training step with textured background. Since the pet data set has 37 classes, it
is impossible to show precision and recall for each class. Here, precision and recall are mean values of all classes.
Results are similar if model training step has images with textured backgrounds or flat backgrounds.

Images with original backgrounds are always used for testing data. The first set of
rows in Table 1 shows the detection rates from the training data, with different models in
columns and different sets of images arranged in rows. The second set of rows of Table 1
is equal to the first rows of Table 1 but with testing data included. As the pet data set has
37 classes, it is impossible to show the precision and recall for each class. Therefore, the
precision and recall are mean values of all classes.

Since the training data set is small and does not represent all pets in all positions,
locations and illuminations, the detection rate when using testing data is poor. However,
the differences between detection rates with training and testing images data sets depends
on whether the background is textured or flat. The differences in classification with models
trained with different datasets are irrelevant. This means that the effects of background
in the training process are not fully representative and images with flat backgrounds are
useful for training deep neural network models. In this paper, the aim is not to train a
model to detect pets in images with high detection rates. The aim is to compare the rates
of trained deep models and see the variations within different image data sets, in which
the objects are equal but have different backgrounds. Outside the scope of this paper, to
improve the detection rates of trained deep models, a representative data set of pets should
be chosen. These experiments focus on evaluating how the background of data set images
and data augmentation techniques can change the detection rate of a deep model.

Several conclusions arise from these results. First, pet detection is quite similar if
the background is the original or a black background. Model training with the same set
of objects and changing the image background does not represent significant changes in
detection rates. Training a model with background images could represent an improvement
of 3% or 4% in precision and recall. This fact validates the initial hypothesis that background
does not significantly influence the model training process. In addition, data augmentation
with a combination of objects does not considerably improve results.

3.2. Creating a New Data Set

The second experiment creates a new image set to train a deep learning model to detect
hands with fingers in images. This application is very useful for enhancing human–robot
interactions. Finger detection is an unresolved engineering application for which vision 2D
did not find a solution. Finger detection is an extremely difficult task due to the wide variety
of shapes they can display in an image. Fingers can be straight or curved, partially occluded,
grasping other things, or other hands, and seen from different viewpoints. Research in
this area is underway as the use of hands in robot interfaces is a very attractive method for
human–computer interaction [32,33].
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To train a hand detection model, a set of 20,000 images of human fingers are labelled
in a few minutes using the proposed fast image-labelling algorithm. Classes are “one
finger”, “two fingers” and so on. Figure 5 shows one sample for each class. The first
row shows images of hands with a controlled background for which the detection of the
hand silhouette was easy. The second row shows masks extracted using the algorithm
described in Section 3. The third row shows the resulting images of combining hands with
backgrounds to improve the training process. Twenty thousand images are processed with
the proposed algorithm for training and 2000 different images, similar to the image in
Figure 6, are tested. As before, the aim is to show how to easily create a new data set of
labelled images.

In this case, FASTER_RCNN_INCEPTION is the model chosen to perform the experi-
ment. Table 2 shows the precision and recall of the model’s performance with 2000 testing
images of each class. Columns depict the hand rate detection of different subsets. Objects
of the “one finger” class are classified as “one finger”, but also in the “two finger” class and
so on. There is similar occurrence with objects of the “two fingers” class and the successive
classes. A summary of this information is in the last two rows, which gives the precision
and recall of the model with each subset. Precision is tested with 400 images of each class.
Recall uses the total number of images that the model classifies under each class. As can be
seen, the least accurate results were those in the “three finger” class.

Regarding the background of the training images, the first set of rows in Table 2 shows
the results from the testing images using a model trained with flat backgrounds, and the
second set of rows in Table 2 are the results from a model trained with textured images that
are made by synthetizing objects and background images. Mixing objects with textured
backgrounds increases the object detection rate in 3% of the images, similar to the results
from the original pet images of the previous experiment. This demonstrates that images
with a controlled background are useful for the easy detection of objects and a combination
of detected objects with backgrounds increases the performance of the training process.

Figure 5. Labelled images using the proposed automatic image-labelling algorithm. First row shows
images of hands with a controlled background to easily detect hand silhouettes. Second row shows
masks extracted using algorithm described in Section 3. Third row show images where hands are
combined with backgrounds to improve the training process.
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Figure 6. Images to test deep model trained to detect hands with fingers.

Table 2. Detection rates (precision/recall) of deep model FASTER-RCNN-INCEPTION to detect
finger hands 1.

CLASSES
ONE TWO THREE FOUR FIVE

CLASSIFIED AS (%)
(Training data are flat
background images)

ONE 0.7000 0.1167 0.0100 0.0167 0.0033
TWO 0.1733 0.7333 0.1600 0.0233 0.0233

THREE 0.0767 0.1300 0.6667 0.1100 0.0300
FOUR 0.0333 0.0167 0.1400 0.6933 0.1333
FIVE 0.0167 0.0033 0.0233 0.1567 0.8100

Precision 0.8268 0.6587 0.6579 0.6820 0.8020
Recall 0.7000 0.7333 0.6667 0.6933 0.8100

CLASSIFIED AS (%)
(Training data are with texturized

background as combination of
objects and images

of backgrounds)

ONE 0.7033 0.1167 0.0100 0.0167 0.0033
TWO 0.1767 0.7400 0.1333 0.0300 0.0167

THREE 0.0633 0.1233 0.6833 0.1200 0.0267
FOUR 0.0400 0.0167 0.1500 0.7000 0.1300
FIVE 0.0167 0.0033 0.0233 0.1333 0.8233

Precision 0.8275 0.6748 0.6721 0.6752 0.8233
Recall 0.7033 0.7400 0.6833 0.7000 0.8233

1 Classes are “one finger”, “two fingers” and so on, which are classified as “one finger”, “two fingers”, etc.
Precision is computed with 300 testing images of each class, similar to Figure 5. Recall is computed with the total
amount of images that the model classifies under class “one finger”, “two fingers”, etc.
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4. Discussion

Authors should discuss the results and how they can be interpreted from the perspec-
tive of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

4.1. Background Effects

How do image backgrounds influence the model training process? Object labelling
is crucial since it defines, with rectangles or masks, object pixels that feed the training
process [2,18]. In a deep neural network model, object detection is performed in two
steps. First, deep models use convolutional neural networks (CNN) that perform feature
extraction based on edge detection. Second, fully connected layers, fed with edges from
CNN layers, classify sets of pixels. CNN weights are adjusted to classify edges similar to
the selected object edges that fed the training step. Selecting pixels through CNN layers
provides features to object detection. If object masks define selected image areas, only
areas with objects will train the model, and background pixels do not participate in the
training process.

If a background exists, it will provide edges, but these edges are useless because they
are not in the selected areas of the image provided by the object masks. Consequently, if
masks define objects, background pixels do not participate in the training process because
they are outside of the filter provided by the mask. Alternatively, if objects labels are
rectangles, background pixels in the rectangle area will participate in the training process.
However, the effect of the background pixels is not substantial because the ratio of object
pixels versus background pixels is insignificant in a rectangle. In conclusion, regardless of
the tool used for the identification of objects, the image background does not dramatically
influence training process. The results of the conducted experiments show that the training
process improves by 3 or 4% in precision and recall if images with backgrounds are used.
Considering that labelling images with a background noticeably delays the beginning of
the training process, working with images without a background is a valid option.

4.2. Data Augmentation

The proposed method allows for the creation of images with backgrounds. It is possible
to create new images with a combination of labelled objects and standard backgrounds.
Once masks define objects in images with controlled backgrounds, objects combined with
images with standard backgrounds will replicate standard images taken under normal
conditions for manual labelling. This process of data augmentation will easily add edges to
the background.

Furthermore, several objects combined in one image will increase the training capabil-
ities of the image data set. This combination includes occlusions and changes in positions
and orientation. This technique of data augmentation allows for the easy creation of a new
data set of labelled images in a few minutes. Figure 7 shows this process.

4.3. Real or Virtual Images

It could be argued that images with controlled backgrounds are closer to virtual
images than real-world images. This could mean that the proposed method is not a useful
method for labelling images to train a model to detect objects in real images. This is true if
images from the data set only show objects from one point of view or under similar lighting
conditions. A model will be able to detect objects under similar conditions to those under
which the training data set was created. To improve the quality of the training data set,
many perspectives of the objects in varied lighting conditions are necessary. Figure 7 shows
different types of images of a hand representing the number five under different lighting
conditions. Since images are intended to train a model for a specific task, this technique is
extremely useful because changing the appearance, light and point of view of the objects in
the image is relatively simple. However, with publicly available images, it is very difficult
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to obtain a data set of this richness with multiple perspectives of the same object. Instead, it
is necessary to search through thousands of images, and then to manually label all of them.
With the fast labelling process described in this paper, the images in Figure 7 can be created
and labelled easily and quickly.

Moreover, several authors used synthesized images to train deep learning model
successfully [24–28]. This fact demonstrates that image synthetization is a technique that
reduces the effort of manual annotations.

Figure 7. Different types of images of one hand representing number five under different lighting
conditions. To improve the training capabilities of the training dataset, many points of view and
lighting conditions of the object are necessary.

5. Conclusions

The proposed fast image-labelling algorithm represents a real alternative to manually
labelling objects in images that reduce the set-up of any deep learning application. The
basis of the proposed fast image labelling process is to capture images that have a controlled
flat background different from the object pixels. Using 2D computer vision techniques,
object detection is easy in images with this flat background with no textures. Rectangular
or mask regions defining the object silhouette are computed easily.

The human–robot interaction application using fingers is treated by easily creating a
newly labelled database from scratch. The detection rates of trained models using images
with flat backgrounds are very similar to models trained with normal, textured back-
grounds. Moreover, to improve the training capabilities of the image set, detected objects
synthetized with textured backgrounds generate images similar to standard images taken
under uncontrolled background conditions. In addition, data augmentation techniques
such as occlusions and scaling can increase the quality of the training data set. Considering
that manual object labelling is a tedious and time-consuming task, the proposed algorithm
can be used to efficiently label objects in images. This algorithm is therefore a step forward
in the field of image labelling that helps in any application where the training of deep
learning models is a crucial step.
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