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A precise, general, non-invasive and automatic
speed estimation method for MCSA diagnosis and

efficiency estimation of induction motors
Jorge Bonet-Jara, and Joan Pons-Llinares, Member, IEEE,

Abstract—Efficiency estimation and diagnosis via MCSA re-
quire precise knowledge of speed. In an industrial environment,
speed must be obtained with a non-invasive, automatic and
general method. Recent studies have shown that Sensorless Speed
Estimation techniques based on detecting Rotational Frequency
Sideband Harmonics (RFSHs) or Rotor Slot Harmonics (RSHs)
are best suited to these purposes. RFSHs-based methods are
easier to apply as they only depend on the number of poles. RSHs-
based are much more accurate due to their wider bandwidth.
Yet, their use is not trivial as they require to identify the RSHs
family, assign to each RSH its order of the current harmonic (ν)
and determine the number of rotor slots (R), a rarely known
parameter. This paper ends with this trade-off between accuracy
and applicability by proposing a novel RSHs-based technique
that, for the first time in technical literature, eliminates the need
to estimate the number of rotor slots and provides a reliable and
automatic procedure to locate the RSHs family and determine
their ν indices. Finally, the method is validated under all types
of conditions and motor designs, by simulations, lab tests and
with 105 industrial motors, highlighting its high accuracy (errors
below 0.05 rpm), and applicability.

Index Terms—Diagnosis, Induction Motors, MCSA, Sensorless
Speed Estimation, Efficiency Estimation

I. INTRODUCTION

THERE are two key points when operating induction
motors (IM) in industry: maintenance (to avoid untimely

outages) and efficiency estimation (to minimize energy con-
sumption). In order to estimate the efficiency it is necessary
to measure voltages and currents [1]. Thus, a natural step
is to use the same current sensor to diagnose the motor
via MCSA (Motor Current Signature Analysis); compared
with others, this technique is best suited to this industry
context due to its non-invasiveness and remote measurement
capability [2]. Moreover, both processes need very accurate
speed information [3], [4]. To facilitate the industrial use, the
speed must be obtained with a non-invasive and automatic
(no-human intervention) method, valid for any IM.

Determining efficiency with good accuracy requires precise
operating speed information (e.g., AGT or ORMEL96 [5]).
In turn, speed is also vital to localize fault harmonics in the
current spectrum, since they are speed-dependent [6]. In fact,
speed estimation is the bottleneck of the diagnostic process:
a reliable diagnosis requires a previous correct fault harmonic
positioning. Some authors propose locating the fault harmonics
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without knowing the operating speed by calculating the max-
imum of the spectrum in the harmonic operating bandwidth
(determined by the slip varying from 0 to its rated value) [7],
[8] . Nevertheless, constructional characteristics, supply, load-
oscillations, etc. might generate significant harmonics in these
search bands, and produce false positives [9]. Moreover, the
fault harmonic might be outside the search band due to an
error in the name-plate rated slip, generating a false negative.
Concluding, accurate speed knowledge is essential to avoid
both false positives and negatives, and therefore, to conduct a
reliable diagnosis via MCSA [6], [9].

A physical speed sensor (e.g., encoder) requires a precise
and careful assembly and has a cost proportional to its accu-
racy. In addition, it is sensitive to the operation and location
conditions (temperature, cable length, etc.). Finally, manual
measurements with hand-held sensors (e.g. tachometers), apart
from not being sufficiently accurate, require the shaft to be ac-
cessible, which is not always the case. Therefore, giving these
limitations, a Sensorless Speed Estimation (SSE) becomes a
better option. These techniques (traditionally developed for
electric motor control [10]), can be classified into two major
families: Fundamental Model Based [11]–[13] and Magnetic
Anisotropy Based. The latter can be subdivided into: Signal In-
jection Based [14]–[16] and Slotting and Rotational Frequency
Sideband Harmonics Based (SRFSHB) [17]–[36].

SRFSHB methods are the most suitable for in-service IM
efficiency estimation [3] and IM diagnosis via MCSA [4], as
they only need to measure one current, do not depend on time-
varying parameters (as fundamental model methods do) and
do not need the machine to be excited with a source other
than its normal power supply (as signal injection methods do).
These methods consist of processing the line current in order
to determine the frequency of one or more speed-dependent
harmonics, and then, using the formulas that predict their
frequencies, calculate slip [37]. Rotational Frequency Side-
band Harmonics (RFSHs) and Rotor Slot Harmonics (RSHs)
are commonly used in these techniques, although sometimes
Broken Bar Harmonics (BBHs) may be a complement.

Since they only require the number of pole pairs (available
on the nameplate), RFSHs-based methods are preferred by
industry, being frequently used in online condition monitoring
[20], in-situ efficiency estimation [17]–[19], and commercial
diagnostic devices (MCEMAX [21], EXP4000 [22]). However,
their frequencies only vary a few fractions of hertz from no
to full load [38]. Therefore, a small error in their frequencies
estimation implies a large error in the speed estimation. More-
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over, they usually encounter detectability problems, especially
in 2-pole machines [4].

RSHs-based methods are much more accurate due to their
wider operating bandwidth [3], [4]. Yet, using these harmonics
is not trivial. The first problem is to identify which harmonics
in the spectrum constitute a RSHs family. Then, even assuming
that they have been correctly identified, they must be assigned
a ν index; there is an erroneous trend to assign +1 or −1
to the RSH with the highest amplitude. Finally, to estimate
speed, the number of rotor bars (R) must be known. This is a
problem, as motor owners are rarely aware of this parameter.
Therefore, the applicability of this technique as a non-invasive
method is dramatically reduced outside laboratory.

No method has yet solved the problems of this technique
in a robust and reliable way. Most of the papers assume R,
the position of the RSH in the spectrum and their ν values as
known information [23]–[29]. To solve this lack of data, others
propose non-automatic/invasive methods that require visual
inspection and/or subject the motor to different operating
conditions [30]–[33]. Finally, only three papers propose self-
commission methods to ascertain this set [34]–[36]:

The method presented in [34], which relies on a prelim-
inary slip estimation from RFSHs, has three disadvantages.
First, R is constrained from 30 to 54, which leaves quite
a few machines out below 30 (2-pole and small-medium 4-
pole machines) and above 54 (medium-large 4-pole and 6-
pole machines). Second, RFSHs are an unreliable source of
information since small errors in frequency estimation mean
big errors in speed. Finally, RFSHs do not often manifest
themselves with sufficient intensity to be distinguished from
the noise level (especially in 2-pole machines). When this
happens, the paper proposes to perform a no-load test to
determine the main RSH and asks the user to introduce R
(increasing invasiveness and decreasing automaticity).

In [35], the method searches a RFSH and the RSH with
ν = 1 (not specifying how the bands are defined). Then,
using these two harmonics and the value of the fundamental
frequency, R is calculated. If the decimal of R is lower than
0.1 or higher than 0.9, the number is rounded and the process
ends; otherwise, the process is repeated (it is not specified
how the band for the RSH is re-defined). The drawbacks of
this method are the same as in [34] with respect to RFSHs,
with the added disadvantage of assuming that RSH (ν = 1)
may always be identified automatically .

In [36], the method, which relies on a preliminary speed
estimation based on nameplate data, has three disadvantages.
First, as stated before, constraining the number of R to test
may leave some motors out of the algorithm’s scope. Although
in this case the range is wider than in [34], large motors could
still be left out. Another problem with this methodology, is that
it uses a fixed band to localize RSHs (8.609 Hz), which could
left some of them out of the window. Finally, the main problem
is that the convergence criteria is based on a preliminary
speed estimation from nameplate. This estimation can be quite
unreliable because nameplate data, apart from being subjected
to wide tolerances (especially rated slip), can change through
time due to degradation.

Summarizing, RSHs-based methods are preferable due to

their high accuracy. Nevertheless, no existing method has
solved their low applicability: number of rotor slots needed
is unknown, as well as the RSHs position in the spectrum,
together with their ν indices. Trying to solve this lack of
information, previous methods have proposed problematic
solutions. Moreover, reliability is low for existing methods,
since among all the RSHs, they only use the so called Principal
Slot Harmonics (PSHs), which have low amplitudes for certain
motor designs [38]. Finally, SSE methods presented have
a poor validation: few laboratory motors (one to four with
similar characteristics), and none industrial cases, not ensuring
a high reliability.

Concluding, a new SSE method is needed, solving the
RSHs-based methods drawbacks, to profit their accuracy nec-
essary in diagnosis and efficiency estimation applications.
This is the first SSE method which achieves to automatically
localize the family of RSHs, properly assigning their ν indices,
without knowing the number of rotor slots, without introducing
errors as a preliminary estimate based on rated slip or use
of RFSHs, without using invasive tests (e.g., no-load test),
not restricting to PSHs, and not wrongly assuming that the
highest amplitude corresponds to ν = 1. To this end, a new
formula for the RSHs frequencies is deducted, and a smart
RSH search method is presented, to localize and characterize
the RSHs family (Sections II, III and IV). The algorithm has
been extensively tested, not only through simulations (Section
V), lab tests under different load conditions and power supply
(Section VI), but also through 105 field cases (covering all
ranges of rated magnitudes), highlighting the high applicability
of the proposed methodology (Section VII). The algorithm
provides a SSE easy to be implemented in an industrial
environment for IM steady state diagnosis via MCSA and
in-situ efficiency estimation, which ends with the trade-off
between accuracy, applicability and reliability of previous
techniques.

II. DETERMINING RSHS PARAMETERS

The discrete nature of the squirrel cage bars causes the rotor
to generate magnetomotive force spatial harmonics as well as
a periodic variation of the air-gap permeance. By interacting,
they produce air-gap flux components which induce in the
stator currents a set of speed-dependent harmonics called
Rotor Slot Harmonics (RSHs). The relationship between the
frequencies of these harmonics and the machine characteristics
has been extensively studied [37], [38] and can be given by:

fRSH =

[
k
R

p
(1− s)± ν

]
f0 (1)

where k is a natural number 1, 2 . . . , p the number of pole
pairs, s the slip, ν the orders of the time harmonics present
in the stator current 1, 3, 5 . . . , f0 the fundamental supply
frequency and R the number of rotor slots.

Formula (1) depends on the slip, which is directly related
with rotor speed. Therefore, once a RSH is localized, if the
other parameters in (1) are known, speed can be calculated.
The number of pole pairs p and the fundamental frequency
f0 are obtained respectively from the nameplate and a FFT
analysis (as f0 is the highest peak in the spectrum). On the
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contrary, the number of rotor bars is an a priori unknown
parameter: it is not listed on the nameplate or in the data sheet,
nor can it be easily obtained from the manufacturer. Thus, to
obtain an automatic, non-invasive, general and precise speed
estimation algorithm, it is necessary to eliminate this parameter
from the equation. To this end, let us first eliminate ± sign
in (1), so now ν = . . . ,−3,−1, 1, 3, . . . , and rewrite it as
follows:

fRSH =

[
k
R

p
+ ν

]
f0 − k

R

p
sf0 (2)

Next, consider the case of ideal no-load (s = 0):

fRSH |s=0 =

[
k
R

p
+ ν

]
f0 (3)

Then, let us define Oν , (where the subscript refers to the value
of ν taken), as the quotient between the frequency of the RSH
at zero slip and the frequency of the fundamental component:

Oν =
fRSH |s=0

f0
=

[
k
R

p
+ ν

]
(4)

Combining (2) and (4) we obtain:

fRSH = Oνf0 − [Oν − ν] sf0 (5)

Therefore, we can finally calculate the slip as:

s =
Oνf0 − fRSH
[Oν − ν] f0

(6)

RSHs only exhibit high amplitude in the stator current
spectrum when the product kR/p is even [38]. If an odd
number (ν) is added to or subtracted from this product, the
result (Oν = kR/p+ ν) is always an odd number. Therefore,
according to (5), the following rule can be established: in ideal
no-load (s = 0) the most detectable RSHs are placed over an
odd multiple of the fundamental frequency (Oνf0), while in
load, to its left (motor mode, s > 0), or to its right (generator
mode, s < 0).

Taking into account the above rule, once a RSH has been
localized in the spectrum, the odd multiple of the fundamental
frequency closest to its right (motor mode) is Oνf0: knowing
f0, Oν can be calculated. Therefore, as the number of rotor
bars has been eliminated in (6), it only remains to obtain ν for
each RSH localized. Next, a novel method based on the steady-
state current is proposed to localize the RSHs and determine
their related ν.

A. Localizing the RSHs

According to (2) and (5), the distance of a RSH with respect
to Oνf0 is ksf0R/p. R/p is constant and sf0 (slip frequency)
is the same for all RSHs. Therefore, if a set of RSHs are
linked to the same k, all remain at the same distance (in
Hz) from their respective Oνf0. Let us define such set as a
family of RSHs. Figure 1 shows three fragments of the stator
current spectrum from a 248 kW IM where three RSHs are
shown at the same distance (31.10 Hz) from the first odd
multiple of f0 at their right, thereby belonging to the same
RSHs family. Considering this rule, the following Track &
Find algorithm has been developed to localize a RSHs family
(small clarifications in the next paragraph):

Fig. 1. Distance between the RSHs of a same family (red circles) and their
nearest odd multiple of f0 (green circles) in the steady-state current of a 248
kW IM. From left to right: RSH(-3), RSH(-1) and RSH(+1).

• Step 1: The FFT spectrum of the line current is subdi-
vided in windows of width [f0 · (2n− 1), f0 · (2n+ 1)]
Hz (starting at n = 4, until it is entirely covered).

• Step 2: The widths of the windows are slightly reduced
by subtracting 1.3 Hz to the upper limit and by adding
0.26 · f0 to the lower.

• Step 3: The frequency of the highest peak within each
window is recorded as a RSH candidate.

• Step 4: The RSH candidates are classified by families.
Two candidates belong to the same family if they are
at the same distance (with a tolerance of 0.5 Hz) from
the upper limit (lower if generator mode) of their search
window (the correspondent Oνf0).

• Step 5: The family with the highest number of candidates
is selected as a possible RSHs family. In case of a tie,
all the tied families are selected.

In Step 1, n starts at 4 since RSHs are not expected to be
found in windows with n < 4, given that a motor is normally
made with R/p > 10. In Step 2, windows are reduced in
order to avoid capturing odd multiples of f0, as well as other
harmonics that appear near them (e.g, Dynamic Eccentricity
Harmonics (DEH)). The reduction parameters are determined
experimentally and verified through a motor database of 105
IMs of different rated powers (see Section VII). Finally, in Step
4, the tolerance is also established empirically and accounts
for slight speed variations during the signal capture.

B. Determining the parameter ν
Once the candidates RSHs families have been detected,

it is necessary to determine the parameter ν of each RSH
candidate. Here, an iterative method is proposed, whose con-
vergence criteria is based on the information provided by 16
different speed-dependent harmonics (frequency formulas in
Appendix A): BBHs first (k = 1 and k = 2) and second
family (k/p = 5 and k/p = 7), RFSHs (k = 1 and k = 2)
and DEHs (nD = 1). To improve the effectiveness in low-slip
motors, the BBHs (k = 1 and k = 2) present in the spectrum
of the current Hilbert modulus are also included [39].

Next, the method for determining ν is described. This
process is repeated for each RSH candidate of each family:
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• Step 1: Oν is calculated as explained in Section II.
• Step 2: A value for ν is selected, beginning in −27 and

ending in Oν − 10, and the following process is applied
for each of these values:

– Step 2.1: s is obtained from (6), using the calculated
Oν , the selected ν and the RSH candidate frequency.

- Step 2.2: A frequency window is calculated for
each harmonic considered in Appendix A using
[0.75s, 1.25s].

- Step 2.3: The frequency of the highest peak within
each window is recorded.

- Step 2.4: If the distance between the highest peak
and the centre of the window is less than 7% of
the window amplitude, the tested value for ν is
considered to correctly locate the correspondent fault
harmonic.

• Step 3: The ν finally assigned to a given RSH candidate
is the one that has correctly located (according to Step 2.4
criteria) the largest number of fault harmonics (in case of
a tie, the lowest ν is chosen).

Up to this point, each RSH candidate of each family
has been assigned a pair [Oν , ν]. Two RSH candidates are
consistent if when applying kR/p = Oν−ν they give the same
result. The most repeated kR/p in a candidate RSHs family is
obtained, and the percentage of RSH leading to that value is
called the consistency ratio of that family. This concept is used
in the following validation process to discard the candidate
families that are unlikely to be the RSHs family:

• Step 4: If one of the RSHs in a family fails to predict the
position of all the fault harmonics for all ν, the whole
family is discarded.

• Step 5: Consistency ratio is calculated as previously
defined: if it is less than 50%, the whole family is
discarded.

• Step 6: Finally, the family with the highest consistency
ratio is selected as the definitive RSHs family; its incon-
sistent RSHs are discarded and the consistent stored.

In Step 2, the set of values for ν is empirically determined
using the 105 IM database (see Section VII): it has never been
found a ν index lower than −27 or greater than Oν − 10 (this
would mean a motor with less than 10 R/p). In Step 2.4, the
7% margin accounts for speed variations during recording as
well as for the frequency resolution error. In Hz, this margin
is very small: e.g., between 0.01 and 0.05 Hz for the LSH of
a motor with R/p = 28).

Among other important advantages, summarized in the
conclusions section, at this point it can already be seen how
the algorithm manages to perform a SSE without knowing
the rotor slots, automatically localizing the RSHs family in
the spectrum, and assigning their related Oν and ν indices.
It works without any restriction (general solution), even for
motors not Principal Slot Harmonics (PSH) producers (RSHs
with k = 1, [38]), since it also accounts for k > 1 in (1),
and without using invasive procedures (just a steady state
current). The algorithm result assures a perfect match between
the slip information of the speed-dependent harmonics present
in the current spectrum (RSHs and fault harmonics, which

TABLE I
ORDERS k OF RSHS FOR EACH COMBINATION OF R AND p

p = 1 p = 2 p = 3

R even ∀k ∈ N
∀k ∈ N if R/4 ∈ N ∀k ∈ N if R/6 ∈ N
k even if R/4 /∈ N k/3 ∈ N if R/6 /∈ N

R odd k even k/4 ∈ N k even if R/3 ∈ N
k/6 ∈ N if R/3 /∈ N

also appear in healthy conditions, as all motors have a certain
level of electrical and constructive asymmetry). In other words,
thanks to the novel criterion introduced, it is verified that the
slip predicted by the RSHs agrees with the position of the
remaining speed-dependent harmonics.

III. ON THE ORDER k OF THE RSHS

The order k of the RSHs present in the spectrum depends
on the number of rotor slots R and pole pairs p: kR/p must
be even for a RSH of order k to appear. This condition leads
to Table I, which shows the orders k that appear for each
combination of R and p (where R/a ∈ N means R can be
divided by a, giving as a result an integer).

The most critical cases for the algorithm are those combina-
tions which produce RSHs families whose minimum order k
is a high number, since these harmonics tend to have a lower
amplitude. Looking at the table, those cases are motors with
p = 2 and R odd (kmin = 4) and motors with p = 3 and R
odd number non-multiple of 3 (kmin = 6). Yet, manufacturers
usually avoid odd numbers for R (especially if kR/p /∈ N as
in these cases), due to the appearance of unbalanced magnetic
pull [40]. In fact, when analyzing the database contained in
[41] with data about R and p of 3474 motors with p = 1, 2
and 3, these two cases account only for the 5.33% and 3.2%
respectively.

Nevertheless, even if analyzing a motor without RSHs of
orders k = 1, 2, and 3 is an uncommon case, in Section
V it can be seen how the algorithm successfully detects the
RSHs in a motor whose first appearing order is k = 4. As
previously stated, every RSH operates at the left of some odd
multiple of the fundamental component. According to (3), the
frequency of this multiple increases with the order k of the
RSH. However, this makes no difference for the algorithm,
since it searches in a bandwidth to the left of every odd
multiple of f0, no matter if they are at low or high frequencies.
Therefore, if the minimum RSH order k present in the motor
is for instance 4, it means that the first RSHs will be found
at higher frequencies than those of k = 1 if they were also
present, but the behavior of the algorithm is exactly the same.
Although for higher k the amplitudes are lower, it is also
true that they appear at higher frequencies, where there are
less components with which they can be confused. Hence, the
algorithm can also work well in these conditions.

Finally, it is also interesting to analyze what would happen
if the frequency operation bandwidth of two RSHs of different
order k overlap. To this end, let us consider two RSHs defined
by [k1, ν1] and [k1, ν1], both operating at the left of: [kR/p+
ν]f0. Therefore, the overlapping condition is k1R/p + ν1 =
k2R/p + ν2. If k1 = 1 and k2 = 2, then ν1 − ν2 = R/p. In
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Fig. 2. Flux diagram of the proposed algorithm.

the database of [41], it is found that the minimum R/p is 9,
that only 3.2% of the motors have R/p < 14, and that 68%
of them have R/p > 20 (for powers greater than 100 HP, all
R/p > 15). Therefore, the absolute value of ν1 and ν2 will
unlikely be simultaneously small, since their difference (R/p)
is usually high (most of the cases higher than 14). Since high
RSHs amplitudes are usually related to low absolute values of
ν, it is unlikely that two RSHs whose bandwidths overlap have
simultaneously high amplitudes (one of them will probably be
negligible).

Nevertheless, if both RSHs are not negligible, the algorithm
will choose the one with the highest amplitude, determine its
distance to the nearest odd multiple of f0 and put it into the
family associated to that distance. The second RSH will be
discarded, and its family will lose a member, decreasing its
chances to be chosen to determine the speed. Concluding, if
two valid families of RSHs coexist in the spectrum, both can
be used to determine the speed (algorithm picks the one with
the highest number of RSHs), and makes no difference if the
algorithm discards one RSH in a bandwidth in which two
RSHs of different families can be found.

IV. ALGORITHM

Figure 2 depicts the flux diagram of the proposed tech-
nique. As can be seen, the methodology is characterized by
three different blocks: Filtering and pre-treatment (Block A),
Determination of RSHs parameters (Block B) and Slip/Speed
Estimation (Block C). For the sake of simplicity, Block B has
been represented for the case in which only one RSHs family
is proposed as a candidate at the end of Section II-A. The
SSE algorithm has been implemented using MATLAB in a
PC with an Intel Core i7-8700 processor. The processing time
is 2 s (A+B+C, new motor) or 1.8 s (A+C, already analyzed
motor) for a 200 s signal at 10 kHz. Next, the three blocks
are described.

A. Block A: Filtering and pre-treatment process
First, the algorithm requires the user to enter whether the

motor is powered with a frequency converter or not. Then,
the FFT is applied to the current, and to its Hilbert modulus,
previously applying Hann window and zero-padding (x10).
Next, a pre-treatment and filtering process is applied to the
resultant current spectrum (later used to localize the RSHs):

• Estimate the noise level: mean value of the current
spectral density multiplied by an experimental factor.

• Suppress harmonics below the estimated noise level.
• Suppress even harmonics of the fundamental frequency.
• If the motor is fed with a frequency converter, suppress

the PWM harmonics.

B. Block B: Determination of RSHs parameters

If it is the first time that the motor is analyzed, family
of RSHs must be localized, and its pairs [Oν , ν] must be
ascertained. For this purpose, it is required to capture a
signal of 50 to 200 s (frequency resolution between 0.02 Hz
and 0.005 Hz to increase precision) at 200f0 Hz (maximum
frequency 100f0 Hz to ensure RSHs detection). The number
of pole pairs and the rated slip must be entered as input data.
Then, the pairs [Oν , ν] are determined as described in Section
II, and finally stored in a database, together with the rated slip
and number of pole pairs of the motor.

C. Block C: Slip/Speed estimation

If the motor has already been analyzed (minutes, days or
months before), Block B has already been applied with a
different current, determining the RSHs family, and their pairs
[Oν , ν]. In a new measurement, exact position of the RSHs
might have changed, since the operating conditions might be
different, but their pairs [Oν , ν] are the same. Therefore, using
the Block B output contained in the database, a search window
is defined for each RSH (see (5)):

fRSH,min = Oνf0 − (Oν − ν) k1sNf0
fRSH,max = Oνf0 − k2

(7)

where k1 and k2 are experimental factors to compensate the
tolerance in the rated slip (min) and to avoid detecting an odd
multiple of the fundamental (max).

Then, using the frequency of the highest peak in each of
these windows and applying (6), slip and speed are estimated.
Some of these peaks might not be RSHs, as the feeding and
loading conditions might be different from the time when the
pairs [Oν , ν] were determined, and therefore, it might happen
that some of the RSHs are no longer the highest peak in
its search band. Peaks not being RSHs must be detected and
discarded. To this end, the algorithm uses a classic criterion for
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outlier detection: peaks whose slip/speed estimation are more
than three scaled median absolute deviations away from the
median of all the slip/speed estimated. Once the outliers are
discarded, the slip/speed output is computed using the RSH of
the lowest ν, as it provides the lowest error. Furthermore, this
Block only requires a current captured at 200f0 (to ensure
RSHs detection), while duration depends on the precision
needed. Finally, it must be remarked that, up to date, the
algorithm has been tested for steady state applications; further
research will be conducted to prove its use under load oscil-
lations, where a high frequency speed estimation is needed.

V. SIMULATION

This section proves through simulations the capability of
the algorithm to precisely estimate the speed for an arbitrary
number of R/p, load level or skewing angle. As stated
in Section II, the algorithm is designed to track any RSH
predicted by (1). Therefore, even in an IM with an odd or non-
integer number of R/p, where RSHs associated to k = 1 in
(1) are not expected to appear, the algorithm could track those
of higher order (k = 2, 3, 4 . . . ). Nevertheless, the amplitude
of these harmonics, and therefore their detectability, decreases
with k, apart from being also affected by the load level and
the skewing angle of the rotor bars. Therefore, it is important
to test the ability of the algorithm to correctly determine the
parameters associated with each RSH taking into account all
these factors. To do so, the algorithm is input with simulated
signals (100 s, 10 kHz) from a model of a 4-pole 4 kW IM
(model information can be found in [42]). The rotor of the
simulated motor is configured under three different number of
bars: 26 (odd R/p), 27 (non-integer R/p) and 28 (even R/p).
Then, each configuration is tested under 85% and 55% of the
rated load (industrial motors are usually oversized, working
usually around 85%, and rarely under 55%). Four typical
skewing angles are used: 0◦ (straight bars), 180◦/R (half rotor
slot pitch), 360◦/Nest (one stator slot pitch; Nest: stator slots)
and 360◦/R (one rotor slot pitch).

In order to get the simulations as realistic as possible, the
model is fed with a real three-phase voltage system measured
in an industry. In addition, a white Gaussian noise is added to
the resulting simulated currents to have a noise floor similar
to reality. Finally, a slight electrical asymmetry is introduced
in the rotor (common in industry, as seen in the results of
the 105 IM analyzed in Section VII), through increasing the
impedance of one of the bars by 10% (this motor needs a 900%
increment to obtain a Lower Sideband Harmonic (LSH) with
a -37 dB amplitude, which is considered as a broken bar).

The algorithm results are shown in Fig. 3, plotting the
number of RSHs detected, for 85% (up) and 55% (down) of
the rated load, for different number of bars (26, 27 and 28)
and different skewing angles. The algorithm succeeds in 23
out of 24 cases. As explained further below, it fails (no RSH
detected) in the case with low load, 26 bars and one rotor
slot pitch skewed. In the successful cases (all the rest), the
algorithm detects from 2 to 9 RSHs, even under nearly no
load situation. The number of RSHs detected decreases when
the bars are skewed, being the most severe cases when the
bars are skewed one rotor slot pitch.

Fig. 3. Number of RSHs detected by the algorithm for different number of
rotor bars and skewing angles at two loads: 85% (a) and 55% (b).

Fig. 4. Detectable RSHs in the configuration of 26 bars at 55% of load with
unskewed bars (a) and one rotor slot pitch skewed bars (b).

With 27 and 28 bars, the algorithm detects the RSHs
associated with k = 4 and k = 1 respectively. This is in
accordance with theory as k = 4 and k = 1 are the lowest k
for which kR/p is even, for 27 and 28 bars respectively (see
Section II).

Similar results are obtained for 26 bars (where the RSHs
detected are the ones for k = 2), except under 55% of the
load, with the bars skewed one rotor slot pitch. This is the only
case in which the algorithm fails to detect the RSHs family.
Error appears since only one RSH is the highest in its search
window, and there are two speed-independent grid harmonics
in the spectrum that also satisfy the rule set in Section II-A to
be considered a RSHs family. This is caused by the skewing
of the bars, which significantly reduces the RSHs amplitude:
Fig. 4a (unskewed bars, 4 RSHs detected), Fig. 4b (one rotor
slot pitch skewed bars, only 1 RSH detectable). Nevertheless,
although skewing of the bars is a common practice in small
motors, it is not in large ones, due to the difficulty in the
manufacturing process and the increase in the iron losses,
which are the most significant in this type of motors [43].
Moreover, in the only case in which the algorithm has failed,
the motor works at an extremely low load level, nearly never
found in an industrial environment.

Finally, it should be noted that, due to the ideal characteristic
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of the model, the number of detectable RSHs is inferior to real
motors: the inherent asymmetries, as well as the non-linearity
of the iron core, intensify some of the RSHs that are below
noise level in the spectrum obtained through the model. In
Section VII, it will be shown how the number of detectable
RSHs in a database of 105 industrial IM is even superior to
the results shown here.

VI. LAB TEST

In this section, the algorithm performance is evaluated,
using signals from a 2.2 kW IM (28 bars skewed 1/2 rotor slot
pitch, 1420 rpm, 230V ∆), which can be supplied from the
grid or from a frequency converter. An identical IM is coupled
to its shaft and fed with a second frequency converter, to act
as a load. Speed is measured using a 1000-line incremental
encoder installed on the shaft end, while current is mea-
sured using a current probe (PicoTech TA189). Both signals
are simultaneously recorded using an oscilloscope (PicoTech
4262). In order to assess the capabilities of the algorithm in
localizing the RSHs, determining their pairs [Oν , ν] (Block B)
and obtaining the speed/slip (Block C), three different supply
frequencies are used (20 Hz, 35 Hz and 50 Hz-line-fed), with
three different slips at each of these frequencies (0.046, 0.02
and 0.0067). For testing Block B, signals of 200 s are used,
while for testing Block C, 50 signals of 50 s per case are taken
to obtain the average errors in speed and slip. A duration of 50
s is used because it provides the sufficient frequency resolution
for a MCSA diagnostic application.

Figure 5a shows, for each of the cases analyzed (20, 35
and 50 Hz-Line-Fed, and three slips at each frequency), the
number of RSHs detected: it varies from 5 to 7, which is in
accordance with the results shown in the previous section for
a motor with bars skewed 1/2 rotor slot pitch. In this IM,
R/p = 14 and the pairs [Oν , ν] assigned by the algorithm to
the RSHs detected give kR/p = Oν − ν = 14. Therefore, the
algorithm perfectly detects the RSHs (using those associated
to k = 1), and their related parameters [Oν , ν]. Moreover,
the RSHs help to detect from 5 up to 8 fault harmonics (Fig.
5b: number of fault harmonics localized). It is logic to expect
a variation in this value depending on the supply frequency
and the slip, as fault harmonics can be affected by them.
Nevertheless, the value is still high in all cases, showing a
good consistency between the slip estimation through RSHs,
and the slip-dependent information contained in the spectrum
through fault harmonics.

Concluding, the algorithm precisely identifies the RSHs
family, and determines its parameters [Oν , ν], even under the
most unfavorable conditions, which are a low supply frequency
and a low slip. In this situation, some of the harmonics used in
the algorithm can appear very near to other relevant harmonics
and be masked by them (e.g., BBH near the fundamental
frequency or RSHs near winding harmonics). Nevertheless,
the fact of using an analysis based on the consistency of the
speed information between the RSHs detected and up to 16
different fault harmonics makes it possible for the algorithm
to identify the RSHs and resolve the correct values for the
pairs [Oν , ν], which perfectly match with the exact number of
kR/p = Oν − ν = 14 present in the IM.

Fig. 5. Number of RSHs (a) and fault harmonics detected (b) for three
different supply frequencies (20 Hz, 35 Hz and 50 Hz-Line-Fed) and slips
(0.046, 0.02 and 0.0067).

Fig. 6. Absolute speed error (a) and relative slip error (b) for three different
supply frequencies (20 Hz, 35Hz and 50 Hz-Line-Fed) and slips (0.046, 0.02
and 0.0067)

Figure 6 shows the absolute speed error (Fig. 6a) and the
relative slip error (Fig. 6b) between the 1000-line encoder
and the algorithm. Errors are obtained for the three supply
frequencies, and for the three slips at each supply frequency.
Errors are extremely low in all cases: below 0.05 rpm and
0.5% (if the slip is 1% and the slip relative error is 0.5%,
the measured slip is either 1.005% or 0.995%). It should be
noted that, as the frequency converter is able to maintain a
more stable supply frequency than the grid, the errors are
much smaller (espeed < 0.01 rpm and eslip < 0.2%) . Finally,
errors are especially low under high load, since the load level
is influencing the speed stability in this motor, causing the
error to increase as the load decreases. The error shown in
each case is the average error of 50 signals captured under the
same operating conditions. Therefore, the algorithm is highly
reliable.

VII. FIELD TEST

In this section, the algorithm is validated using real mea-
surements of 105 industrial IM. All signals have been obtained
using an oscilloscope (PicoTech 4824) and a current probe
(PicoTech TA167), except for ten motors that were measured
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using a device with a limited sampling frequency of 2.6 kHz.
Most of the 105 motors have been monitored two or three
times, while some of them have been diagnosed every six
hours during nearly a year, using this algorithm in the process
(results of failure cases presented in [42]).

Figure 7 shows the number of motors in the database for
each of the ranges of rated power, slip, voltage and number
of pole pairs. As can be seen, the database covers a wide
range of different types of motors: from a few kW to 2 MW,
0.67% to 8% slip, 400 V to 6.6 kV and from 1 to 5 pole-
pairs. Figure 8 shows the rated slip (y-axis) and the supply
frequency (x-axis) for all the motors supplied by the grid
(blue circles) and by frequency converters (red circles). In
this regard, it should be noted that the algorithm has been
tested with a considerable amount of motors with low rated-
slips (21 motors with slip lower than 1%), and converter-fed
at low frequencies, which are the most challenging conditions
for algorithms based on harmonic detection. Therefore, this
database is a great tool to validate and demonstrate the high
applicability of the proposed method. As for the validation
methodology, the following strategy has been followed:

Whenever possible, the speed has been measured and a
direct comparison with the speed estimated by the algorithm
has been made. Otherwise (e.g, shaft not accessible), a visual
inspection of the spectrum has been performed through three
steps. First, the RSHs family localized by the algorithm has
been identified in the spectrum. Second, it has been checked
if there is another significant harmonic family, not detected
by the algorithm, that satisfies the rules of Section II for
being a RSHs family: harmonics at the same distance of their
respective multiple of f0. Third, a manual determination of
parameters Oν and ν has been conducted for all families
accomplishing that rule, verifying that the family and its
respective indices Oν and ν selected by the algorithm are the
ones that perfectly match with the rest of speed-dependent
harmonics present in the spectrum.

In this regard, after applying the algorithm to the 105 IMs,
there are only five of them where it has not been possible to
assess whether the results are correct or not. This has been
due to the fact that these measures were taken in conditions
for which the algorithm is not designed for: high noise-floor
(two IMs with -67 dB, while in the rest of motors the value
is around -90 to -100 dB), very low load (one IM running at
37% of the rated current) and transient operation (two IMs
with significant load variations).

A. Results: three critical examples.

The three figures depicted in this subsection show the
RSHs and fault harmonics localized by the algorithm for three
different IMs. Subfigures (a) represent the spectrum with the
number of RSHs detected (red circles) and the RSH used to
estimate speed (black circle), while the rest of subfigures show
the estimated position of the most relevant speed-dependent
harmonics: the LRFSH (b), the URFSH (c), the first family of
BBHs (d) and the second family of BBHs (e), (f).

Figure 9 shows the results for a four-pole, 90 kW IM
running with a slip of 0.3% and a supply frequency of 20

Fig. 7. Summary of the rated characteristics of the motor database.

Fig. 8. Rated slip and supply frequency of each motor of the database.

Hz. This is one of the most challenging conditions for the
algorithm since the spectrum is highly polluted (affecting the
RSHs localization) and the speed-dependent harmonics appear
very close to multiples of the fundamental frequency (affecting
the estimation of ν). However, the algorithm precisely detects
6 RSHs and 6 fault harmonics localized through them (2 of
them shown in Figs. 9b and 9c, 2 in 9d and 1 in 9e).

Figure 10 shows the results for a two-pole, 112 kW, line-fed
IM running with a slip of 2.9%. In this case, the algorithm has
detected 17 RSHs, which enable to localize 11 fault harmonics
(9 of them shown in Figs. 10c, 10d, 10e and 10f). It is
worth to remark that, an algorithm based on detecting RFSHs
would have failed, since there are two harmonics with a higher
amplitude next to them, as shown in Fig. 10 (b) and (c).

Figure 11 shows the results for a two-pole, 172 kW IM
running with a slip of 1.5% and a supply frequency of 43.97
Hz. In this case, the spectrum is less polluted than in Fig. 9, so
the number of detected RSHs increases to 10, and the number
of fault harmonics localized is 8 (all of them shown in Figs.
11d, 11e and 11f). As in the previous case, an algorithm based
on detecting RFSHs would have failed, since they are below
noise level, as shown in Fig. 11 (b) and (c).

B. Statistical analysis
Figure 12a represents the number of RSHs detected by

the algorithm in each of the motors analyzed along with the
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Fig. 9. Algorithm performance in a four-pole 90 kW IM fed at 20 Hz: detected
RSHs (a) and location of LRFSH (b), URFSH (c), first family of BBHs (D)
and second family of BBHs (e) and (f).

Fig. 10. Algorithm performance in a two-pole 112 kW IM line-fed: detected
RSHs (a) and location of LRFSH (b), URFSH (c), first family of BBHs (D)
and second family of BBHs (e) and (f).

Fig. 11. Algorithm performance in a two-pole 172 kW IM fed at 43.97 Hz:
detected RSHs (a) and location of LRFSH (b), URFSH (c), first family of
BBHs (D) and second family of BBHs (e) and (f).

final mean and boxplot. According to it, the mean value of
detections is 7.3, while the median is 6. It is also worth to
remark that in 75% of the cases the number of RSHs detected
is more than 4, and that in some cases it can reach values up
to 24. Finally, there are 14 cases where the number of detected

Fig. 12. For each motor of the database: number of RSHs detected (a) and
number of fault harmonics properly localized through the RSHs (b).

RSHs is equal to 2. However, 10 of them were measured with
a 2.6 kHz sampling frequency. Therefore, it is highly likely
that more harmonics would have been detected if the sampling
frequency had been 200f0, as in the rest of signals.

Figure 12b represents, for each of the motors analyzed,
the number of fault harmonics properly localized through the
detected RSHs family. According to it, the mean value for the
database is 7.6, the median 8 and the first quartile 6. This
gives us a measure on how robust the determination of Oν
and ν has been for all RSHs of the family, since it depicts
the degree of coherency between the slip estimated through
each RSH using the pair Oν and ν obtained, and the rest of
speed-dependent harmonics considered (fault harmonics).

Concluding, the algorithm has been tested with an extensive
and varied database giving a mean value of: 7.3 RSHs detected
per motor, and 7.6 average number of fault harmonics local-
ized. These results demonstrate the robustness of the method,
since the slips estimated through the RSHs localized and
their assigned pairs [Oν , ν] allow locating a high number of
speed-dependent fault harmonics, thus verifying the coherence
between the estimated Oν and ν and the information available
in the spectrum. Finally, it is also shown that the method
is more robust in two-pole machines than those based on
detecting RFSHs, as it was confirmed in more detail in [4].

VIII. CONCLUSIONS

A new SSE algorithm based on RSHs detection has been
proposed, overcoming the main drawback of these techniques,
i.e., need of knowing: the number of rotor slots R, the position
of the RSHs in the spectrum, and their assigned ν index. The
algorithm does not use as starting point the RFSHs (avoiding
their low accuracy and low detectability for p = 1), neither
assumes a certain interval for R or erroneously assigns ν = 1
to the highest amplitude RSH, nor uses invasive solutions as
no-load test, or inaccurate information, as the rated slip in the
nameplate (as previous methods do).

This is the first SSE algorithm that automatically localizes
the RSHs family, tracking several RSHs at the same time with
one steady state current. It is completely general: works with
different skewing angles, and with odd, even or not integer
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R/p (since it also detects RSHs with k > 1, even if for higher
k, the RSHs amplitudes are lower). It precisely estimates the
speed with high or low load, grid or frequency converter-fed
(high or low fundamental frequency), and high or low slip
(specifically tested under the most challenging conditions: low
fundamental frequency and low slip).

This is achieved through a new RSHs frequency formula,
used by a novel smart search method, which enables to
automatically localize and characterize the RSHs (fixing its
parameters Oν and ν), converging when the slip information
of the speed-dependent harmonics present in the spectrum
(RSHs and up to 16 fault harmonics) matches, thus assuring
the accuracy and reliability of the SSE.

The extensive experimental test demonstrates that the SSE
algorithm can replace a 1000-line encoder, thanks to its high
accuracy: absolute speed error is always below 0.05 rpm and
the relative slip error is below 0.5% (0.01 rpm and 0.2% with
a frequency converter; error obtained as the average error of
50 tests for each case analyzed). Finally, the field tests show
the robustness of the method, since it is proved to work in 100
industrial motors covering all types of rated powers, voltages,
speeds, poles pairs, and different operating conditions (21
motors with slips lower than 1%).

Concluding, it is an automatic, non-invasive, accurate, gen-
erally applicable and robust speed estimation method for in-
duction motors, which, in addition, can be easily implemented
in field monitoring systems due to its low computational
burden and simple signal processing. This makes the algorithm
a great candidate for use in continuous monitoring systems of
motor health and efficiency in industrial environments.

APPENDIX A
Harmonics considered in Section II-B:

fBBH1
= (1± k2s) f0 fBBH,2 =

[
k
p (1− s)± s

]
f0

fBBHHilb = k2sf0 fRFSH =
[
1± k (1−s)

p

]
f0

fDEH =
[
p(Oν−ν)±nD

p (1− s) + ν
]
f0
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