
UNIVERSIDAD POLITÉCNICA DE VALENCIA

DEPARTAMENTO DE INFORMÁTICA DE SISTEMAS Y
COMPUTADORES

SPEEDING-UP MODEL-BASED FAULT
INJECTION OF DEEP-SUBMICRON CMOS

FAULT MODELS THROUGH DYNAMIC AND
PARTIALLY RECONFIGURABLE FPGAS

Mr. David de Andrés Martínez

Thesis directors
Prof. Pedro Joaquín Gil Vicente

Dr. Juan Carlos Ruiz García

Valencia, 2007

Resumen

Actualmente, las tecnologías CMOS submicrónicas son básicas para el desarrollo de
los modernos sistemas basados en computadores, cuyo uso simplifica enormemente
nuestra vida diaria en una gran variedad de entornos, como el gobierno, comercio y
banca electrónicos, y el transporte terrestre y aeroespacial. La continua reducción del
tamaño de los transistores ha permitido reducir su consumo y aumentar su frecuencia
de funcionamiento, obteniendo por ello un mayor rendimiento global. Sin embargo,
estas mismas características que mejoran el rendimiento del sistema, afectan negati-
vamente a su confiabilidad. El uso de transistores de tamaño reducido, bajo consumo
y alta velocidad, está incrementando la diversidad de fallos que pueden afectar al
sistema y su probabilidad de aparición. Por lo tanto, existe un gran interés en desar-
rollar nuevas y eficientes técnicas para evaluar la confiabilidad, en presencia de fallos,
de sistemas fabricados mediante tecnologías submicrónicas.

Este problema puede abordarse por medio de la introducción deliberada de fallos
en el sistema, técnica conocida como inyección de fallos. En este contexto, la inyección
basada en modelos resulta muy interesante, ya que permite evaluar la confiabilidad del
sistema en las primeras etapas de su ciclo de desarrollo, reduciendo por tanto el coste
asociado a la corrección de errores. Sin embargo, el tiempo de simulación de modelos
grandes y complejos imposibilita su aplicación en un gran número de ocasiones.

Esta tesis se centra en el uso de dispositivos lógicos programables de tipo FPGA
(Field-Programmable Gate Arrays) para acelerar los experimentos de inyección de
fallos basados en simulación por medio de su implementación en hardware reconfigu-
rable. Para ello, se extiende la investigación existente en inyección de fallos basada
en FPGA en dos direcciones distintas: i) se realiza un estudio de las tecnologías sub-
micrónicas existentes para obtener un conjunto representativo de modelos de fallos
transitorios y permanentes que deben ser tenidos en cuenta, y se analiza hasta que
punto estos modelos pueden emularse por medio de FPGA, y ii) para cada modelo
de fallo considerado, se describen diversos procedimientos alternativos para realizar
su emulación, evaluando la aceleración obtenida en cada caso.

FADES (FPGA-based Framework for the Assessment of the Dependability of
Embedded Systems) es el prototipo desarrollado para ilustrar la viabilidad de esta
metodología. Los experimentos realizados por medio de FADES se han centrado en
comprobar la validez de los resultados obtenidos y mostrar la aceleración alcanzable
por comparación con una herramienta de inyección de fallos reconocida. Finalmente,
se deducen las principales ventajas e inconvenientes de la aproximación propuesta, así
como su utilidad para la evaluación de la confiabilidad de sistemas empotrados.

i

Resum

En l’actualitat, les tecnologies CMOS submicròniques són bàsiques pel desenvolupa-
ment dels moderns sistemes basats en computadors, els quals simplifiquen enorme-
ment la nostra vida diària en una gran varietat d’entorns, com el govern, comerç i
banca electrònics, i el transport terrestre i aeroespacial. La contínua reducció del
tamany dels transistors ha permès reduir el seu consum i augmentar la seua freqüèn-
cia de funcionament, obtenint un millor rendiment global. No obstant açò, aquestes
característiques que milloren el rendiment del sistema, afecten negativament a la seua
confiabilitat. L’ús de transistors de tamany reduït, baix consum i alta velocitat,
incrementa la diversitat de fallades que poden afectar al sistema i la seua probabi-
litat d’aparició. Per tant, existeix un gran interés en desenvolupar noves i eficients
tècniques per avaluar la confiabilitat, en presència de fallades, de sistemes fabricats
mitjançant tecnologies submicròniques.

Aquest problema pot abordar-se mitjançant la introducció deliberada de fallades
en el sistema, tècnica coneguda com injecció de fallades. En aquest context, la injecció
basada en models és molt interesant, ja que permet avaluar la confiabilitat del sistema
en les primeres etapes del seu cicle de desenvolupament, reduint per tant el cost
associat a la correcció d’errors. Malgrat açò, el temps de simulació de models grans i
complexos impossibilita la seua aplicació en un gran nombre d’ocasions.

Aquesta tesi es centra en l’ús de dispositius lógics programables de tipus FPGA
(Field-Programmable Gate Arrays) per tal d’accelerar els experiments d’injecció de
fallades basats en simulació, mitjantçant la seua implementació en hardware reconfi-
gurable. La investigació existent en injecció de fallades basada en FPGA s’ha estés en
dues direccions diferents: i) s’ha realitzat un estudi de les tecnologies submicròniques
existents per tal d’obtindre un conjunt representatiu de models de fallades transitèries
i permanents que cal tenir en compte, i s’ha analitzat fins a quin punt aquests models
poden emular-se mitjançant una FPGA, i ii) per cada model de fallada considerat,
s’han descrit diversos procediments alternatius per realitzar la seua emulació, avaluant
l’acceleració obtinguda en cada cas.

FADES (FPGA-based Framework for the Assessment of the Dependability of
Embedded Systems) és el prototip desenvolupat per il·lustrar la viabilitat d’aquesta
metodologia. Els experiments realitzats mitjançant FADES s’han centrat en compro-
bar la validesa dels resultats obtinguts i mostrar l’acceleració assolible per comparació
amb una eina d’injecció de fallades reconeguda. Finalment, s’han deduit els princi-
pals avantatges i inconvenients de l’aproximació proposta, i la seua utilitat per tal
d’avaluar la confiabilitat de sistemes empotrats.

iii

Abstract

Nowadays, deep-submicron CMOS technologies are basic for the development of mo-
dern computer-based systems, whose use simplify our everyday life in a variety of
domains such as e-government, electronic commerce and banking and terrestrial and
aerospace transportation. The steady reduction of transistors size allows for less power
consumption and higher frequency rates, leading altogether to greater performance.
These same features that improve VLSI systems performance, negatively affect their
dependability. Low-power, high-speed, reduced-size transistors are highly increasing
the likelihood of occurrence and the diversity of faults affecting these systems. There-
fore, there exists a great interest in developing new and efficient techniques to assess
the dependability of deep-submicron manufactured systems in the presence of faults.

Fault injection, which consists in the deliberate introduction of faults into a sys-
tem, is a well-known approach for coping with this problem. In this context, model-
based fault injection has the interest of enabling the dependability assessment of the
system in the early stages of its development cycle, thus reducing the costs of fixing
any error. However, the long time required to simulate large and complex models
make it impractical in many cases.

This thesis focuses on the use of Field-Programmable Gate Arrays (FPGAs) to
accelerate model-based fault injection experiments by implementing the model of the
system under study on reconfigurable hardware. It improves existing research on
FPGA-based fault injection in two different directions: i) it studies existing semicon-
ductor technologies to determine a representative set of transient and permanent fault
models to cope with, and analyses to what extent such models, can be emulated by
means of FPGAs, and ii) it determines, for each considered fault model, alternative
procedures to carry out its emulation, evaluating the resulting speed-up.

FADES (FPGA-based Framework for the Assessment of the Dependability of
Embedded Systems) is the prototype that has been developed in order to illustrate
the feasibility of the approach. The experimentation deployed using FADES is mainly
focused on validating the correctness of the results provided by the proposed prototype
and showing the attainable speed-up of the solution when compared with a state
of the art simulation-based fault injection tool. Finally, a discussion reflecting the
main advantages and drawbacks of the proposed approach and its usefulness for the
dependability assessment of embedded systems is provided.

v

Endure. In enduring, I grow stronger.
Teachings of Zerthimon, Planescape Torment.

vii

Table of Contents

1 Introduction 1

2 Deep-Submicron CMOS Fault Models 5
2.1 Introduction . 5
2.2 Transient Faults . 7
2.3 Permanent Faults . 9
2.4 Conclusions . 12

3 FPGA-based Fault Injection 13
3.1 Introduction . 13
3.2 Basic FPGA architecture and design flow 17
3.3 Fault emulation . 21

3.3.1 Compile-time reconfiguration 22
3.3.2 Run-time reconfiguration 26
3.3.3 Discussion . 28

3.4 Generic FPGA architecture . 31
3.5 Conclusions . 38

4 New Approaches for Transient and Permanent Faults Emula-
tion 39
4.1 Introduction . 39
4.2 Emulation of bit-flips . 41

4.2.1 Injecting bit-flips into memory blocks 42
4.2.2 Injecting bit-flips into FFs 43

4.2.2.1 Using the Global Set Reset (GSRin) line . . . 43
4.2.2.2 Using the Local Set Reset (LSRin) line 45
4.2.2.3 Discussion . 48

4.2.3 Summary . 49
4.3 Emulation of stuck-ats . 50

4.3.1 Injecting stuck-ats into combinational logic 50
4.3.2 Injecting stuck-ats into sequential logic 53

ix

TABLE OF CONTENTS

4.3.2.1 Using the unused Local Set/Reset (LSRin) line 53
4.3.2.2 Using the unused LUT associated to the FF . . 55
4.3.2.3 Using the clock signal (CLKin) of the FF . . . 57
4.3.2.4 Discussion . 58

4.3.3 Summary . 59
4.4 Emulation of pulses . 59

4.4.1 Injecting pulses into combinational logic implemented as
a LUT . 61

4.4.2 Injecting pulses by using inverter multiplexers 62
4.4.3 Discussion . 63
4.4.4 Summary . 64

4.5 Emulation of stuck-opens . 64
4.5.1 Injecting stuck-opens into combinational logic 65
4.5.2 Injecting stuck-opens into sequential logic 67

4.5.2.1 Using the unused Local Set/Reset (LSRin) line 67
4.5.2.2 Using the unused LUT associated to the FF . . 68
4.5.2.3 Using the clock signal (CLKin) of the FF . . . 70
4.5.2.4 Discussion . 71

4.5.3 Summary . 72
4.6 Emulation of indeterminations 72

4.6.1 Injecting indeterminations into combinational logic . . . 73
4.6.2 Injecting indeterminations into sequential logic 75

4.6.2.1 Using the unused Local Set/Reset (LSRin) line 75
4.6.2.2 Using the unused LUT associated to the FF . . 76
4.6.2.3 Using the clock signal (CLKin) of the FF . . . 79
4.6.2.4 Discussion . 81

4.6.3 Summary . 82
4.7 Emulation of delays . 82

4.7.1 Increasing the delay of a line by adding pass transistors 84
4.7.1.1 Increasing the line’s length 84
4.7.1.2 Increasing the line’s fan-out 86
4.7.1.3 Discussion . 87

4.7.2 Increasing the delay of a line by adding a LUT 88
4.7.3 Increasing the delay of a line by adding a FF 91
4.7.4 Discussion . 94
4.7.5 Summary . 95

4.8 Emulation of shorts . 95
4.9 Emulation of open-lines . 98
4.10 Emulation of bridgings . 100
4.11 Conclusions . 102

x

TABLE OF CONTENTS

5 FADES: a Tool Supporting FPGA-Based Fault Injection 107
5.1 Introduction . 107
5.2 Architecture of FADES . 109
5.3 Experiments definition . 113

5.3.1 Model implementation and basic information 113
5.3.2 Injection into sequential logic 115
5.3.3 Injection into combinational logic 117
5.3.4 Monitoring . 118
5.3.5 Summary . 120

5.4 Experiment execution . 120
5.4.1 Initialisation . 120
5.4.2 Workload execution . 122
5.4.3 Observation points . 123
5.4.4 Fault injection . 124
5.4.5 Fault deletion . 127
5.4.6 Reset to initial state . 128

5.5 Analysis of results . 128
5.6 Conclusions . 130

6 Experimental Validation and Case Study 133
6.1 Introduction . 133
6.2 Correctness of experiments’ results 134

6.2.1 Experimental set-up . 134
6.2.2 Analysis of results . 135

6.3 Speeding-up experiments’ execution 138
6.4 Methodology and tool features 141

6.4.1 Execution time and scalability 141
6.4.2 Spatial intrusion . 145
6.4.3 Portability . 145
6.4.4 Independence from model description 146
6.4.5 Controllability and accessibility 146
6.4.6 Observability . 147

6.5 Case Study . 148
6.5.1 Cores under study . 149
6.5.2 Workload . 150
6.5.3 Faultload . 150
6.5.4 Measures . 151
6.5.5 Analysis of results . 152

6.5.5.1 Impact of transient faults on the sequential logic
of the system 154

xi

TABLE OF CONTENTS

6.5.5.2 Impact of permanent faults on the sequential
logic of the system 155

6.5.5.3 Impact of transient faults on the combinational
logic of the system 156

6.5.5.4 Impact of permanent faults on the combina-
tional logic of the system 157

6.5.5.5 Impact of faults targeting the combinational
logic of the system versus faults targeting its
sequential logic 158

6.5.5.6 Impact of transient versus permanent faults . . 159
6.5.5.7 Summary . 160

6.6 Conclusions . 161

7 Conclusions 165

A Detailed description of files and commands used by FADES 169
A.1 Bitstream file . 169
A.2 Logic Allocation file . 171
A.3 User Constraints file . 172
A.4 Workload file . 173
A.5 Readback command . 173
A.6 Trace file . 174
A.7 Results file . 175

Bibliography 176

xii

List of Figures

2.1 Fundamental chain of dependability threats. 6
2.2 Causes and mechanisms of transient fault models. 8
2.3 Causes and mechanisms of permanent fault models. 10
2.4 Bridging possibilities as the combination of a short and an open-

line. 11

3.1 Basic FPGA architecture. 17
3.2 Common FPGA design flow. 18
3.3 Dynamic fault injection methodology. 23
3.4 Implementing scan chain-based fault injectable circuits. 24
3.5 Model instrumentation by using the FIFA tool. 25
3.6 Instrumentation of a microprocessor’s core implemented as a SoC. 25
3.7 Example of dynamic allocation of resources to emulate the oc-

currence of faults setting the output of look-up tables and syn-
chronously inverting the contents of flip-flops. 27

3.8 Generic control flow of Compile- and Run-Time Reconfiguration
techniques applied to fault emulation. 29

3.9 Example of the global and local reconfiguration approaches. . . 30
3.10 Generic grid-based FPGA architecture. 32
3.11 Basic configurable block architecture of most important com-

mercial FPGA families: Xilinx’s Virtex (a) and Lattice’s Lat-
ticeSC (b). 33

3.12 Basic configurable block architecture of most important com-
mercial FPGA families: Altera’s Stratix (a) and Atmel’s AT40K
(b). 34

3.13 Structure of a generic configurable block. 35
3.14 Structure of a generic programmable matrix. 36

4.1 Example of the implementation of a sequential circuit by means
of an FPGA. 41

4.2 Emulating the occurrence of a bit-flip into a memory block. . . 42

xiii

LIST OF FIGURES

4.3 Emulating the occurrence of a bit-flip into a FF by using the
GSRin line. 44

4.4 Emulating the occurrence of a bit-flip into a FF by using the
LSRin line. 46

4.5 Cost in time units of injecting a bit-flip into a FF by using the
GSR and the LSR approaches. 48

4.6 Example of the implementation of a combinational logic func-
tion by means of a 4-input Look-Up Table. 50

4.7 Emulating the occurrence of a stuck-at-0 into combinational
logic implemented as a LUT. 52

4.8 Emulating the occurrence of a stuck-at-1 into sequential logic
by using the LSRin line. 54

4.9 Emulating the occurrence of a stuck-at-1 into sequential logic
by using the LUT associated to the affected FF. 56

4.10 Emulating the occurrence of a stuck-at-1 into sequential logic
by using the clock input signal associated to the targeted FF. . 57

4.11 Reconfiguration temporal cost in time units for injecting a stuck-
at into a FF by using the LSR, LUT and CLKin approaches. . 58

4.12 Emulating the occurrence of a pulse into combinational logic
implemented as a LUT. 61

4.13 Emulating the occurrence of a pulse into combinational logic by
using inverter multiplexers. 63

4.14 Comparison between the temporal cost of injecting a pulse into
combinational logic implemented as a LUT and using a multi-
plexer to invert a combinational line. 64

4.15 Emulating the occurrence of a stuck-open into combinational
logic implemented as a LUT. 66

4.16 Emulating the occurrence of a stuck-open into sequential logic
by using the LSRin line. 68

4.17 Emulating the occurrence of a stuck-open into sequential logic
by using the LUT associated to the affected FF. 69

4.18 Emulating the occurrence of a stuck-open into sequential logic
by using the clock input signal associated to the targeted FF. . 70

4.19 Cost in time units of injecting a stuck-open into a FF by using
the LSR, LUT and CLKin approaches. 71

4.20 Emulating the occurrence of an indetermination into combina-
tional logic implemented as a LUT. 74

4.21 Emulating the occurrence of an indetermination into sequential
logic by using the LSRin line. 75

4.22 Emulating the occurrence of an indetermination into sequential
logic by using the LUT associated to the affected FF. 77

xiv

LIST OF FIGURES

4.23 Emulating the occurrence of an indetermination into sequential
logic by using the clock input signal associated to the targeted
FF. 79

4.24 Reconfiguration temporal cost in time units for injecting a tran-
sient indetermination into a FF by using the LSR, LUT and
CLKin approaches. 81

4.25 Reconfiguration temporal cost in time units for injecting an in-
determination into a FF by using the LSR, LUT and CLKin
approaches when the state of the FF varies n times. 82

4.26 Emulating the occurrence of a delay by routing the targeted line
through more segments to increase its length. 85

4.27 Emulating the occurrence of a delay by increasing the line’s fan-
out. 87

4.28 Emulating the occurrence of a delay by adding a LUT to the
routing. 89

4.29 Emulating the occurrence of a delay by adding a FF to the routing. 92
4.30 Emulating the occurrence of a short between two lines of the

circuit. 97
4.31 Emulating the occurrence of an open-line in a line of the circuit. 99
4.32 Emulating the occurrence of a bridging between two lines of the

circuit. 101

5.1 JBits design flow. 111
5.2 Architecture of FADES. 112
5.3 FADES GUI: Form to retrieve basic information. 114
5.4 FADES GUI: Form to define the location and type of faults

affecting the sequential logic of the system. 116
5.5 FADES GUI: Form to define the location and type of faults

affecting the combinational logic of the system. 117
5.6 FADES GUI: Form to define the observation points to monitor

the execution of the system’s workload. 119
5.7 FADES GUI: Form to configure the analysis of the fault injection

experiments’ traces. 129
5.8 FADES: fault injection campaign control flow. 131

6.1 Mean time required to emulate logic-related faults (bit-flips, pul-
ses, stuck-ats, stuck-opens, and indeterminations). 143

6.2 Mean time required to emulate routing-related faults (shorts,
open-lines, bridgings, and delays) 143

6.3 Syndrome analysis of each core when executing a Gaussian smooth-
ing algorithm. 153

xv

LIST OF FIGURES

6.4 Impact of bit-flips onto the system’s behaviour when executing
a Gaussian smoothing algorithm. 154

6.5 Impact of permanent faults affecting the sequential logic of the
system while executing a Gaussian smoothing algorithm. 155

6.6 Impact of pulses onto the system’s behaviour when executing a
Gaussian smoothing algorithm. 156

6.7 Impact of permanent faults affecting the combinational logic of
the system while executing a Gaussian smoothing algorithm. . . 157

6.8 Impact of faults affecting the combinational and sequential logic
of the system while executing a Gaussian smoothing algorithm. 158

6.9 Impact of transient and permanent faults into the system’s be-
haviour while executing a Gaussian smoothing algorithm. . . . 159

6.10 Syndrome analysis when executing a bubblesort algorithm. . . . 161

xvi

List of Tables

2.1 Fault models considered representative of deep-submicron ma-
nufactured systems. 12

3.1 Basic operations on the configuration memory of the FPGA to
dynamically reallocate its configurable resources. 37

3.2 Auxiliary operations to manage the routing elements of the FPGA. 37

4.1 Pseudo-code for injecting a bit-flip into the system. 49
4.2 Pseudo-code for injecting a stuck-at into the system. 60
4.3 Pseudo-code for injecting and deleting a pulse into/from the

system. 65
4.4 Pseudo-code for injecting a stuck-open into the system. 72
4.5 Pseudo-code for injecting and deleting an indetermination into/from

the system. 83
4.6 Comparison among the proposed approaches for emulating a de-

lay in terms of the reconfiguration time (T) required to increase
one nanosecond (ns) the propagation delay of the affected line
when targeting a Virtex FPGA. 94

4.7 Pseudo-code for injecting and deleting a delay into/from the
system. 96

4.8 Pseudo-code for injecting a short into the system. 98
4.9 Pseudo-code for injecting an open-line into the system. 100
4.10 Pseudo-code for injecting a bridging into the system. 102
4.11 Proposed approaches for fault emulation. 105

5.1 Sample code for determining whether the LUTs G located in
slice 0 are being used and get their contents. 118

5.2 Sample code for initialising the prototyping board and configu-
ring the FPGA with a bitstream file. 121

xvii

LIST OF TABLES

5.3 Sample code for programming an external memory bank of the
prototyping board with the information contained in a workload
file. 121

5.4 Sample code for retrieving the current state of FF X from slice
0 located in row row and column column. 123

5.5 Sample code for injecting a stuck-at-0 fault into the output of
the LUT G of slice 0 located at the CB in row row and column
column. 124

5.6 Pseudo-code for deleting a permanent fault from the system at
the end of the experiment. 127

5.7 Sample code for deleting a stuck-at-0 fault injected into the
output of the LUT G of slice 0 located at the CB in row row
and column column. 128

5.8 Sample code for reseting the FPGA at the end of an experiment. 128

6.1 Percentage of experiments whose behaviour was severely af-
fected by transient faults injected by means of FADES and
VFIT. The duration of the faults was divided into three dif-
ferent ranges: less than one clock cycle, between one and ten
clock cycles, and between ten and twenty clock cycles. 136

6.2 Percentage of experiments whose behaviour was severely af-
fected by permanent faults injected by means of FADES and
VFIT. 136

6.3 Execution time (in seconds) required to inject 3000 faults by
means of FADES and VFIT. 139

6.4 Speed-up ratio attained by FADES with respect to VFIT. . . . 139
6.5 Complexity of systems in terms of number of FPGA’s internal

resources required for their implementation. 142
6.6 The EEMBC benchmark suite. 148
6.7 Number of experiments performed depending on the system’s

complexity. 151
6.8 Best core when executing a Gaussian smoothing algorithm. . . 160

A.1 Analysis of a bitstream file (.bit) format. 170
A.2 Sample Logic Allocation File (.ll). 171
A.3 Sample User Constraints File (.ucf). 172
A.4 Sample workload file for the prototyping board’s external memory.173
A.5 Analysis of a readback command. 173
A.6 Sample trace file of a Golden Run execution. 174
A.7 Sample trace file of a workload’s execution in presence of faults. 174
A.8 Sample results file. 175

xviii

List of Acronyms

ALU Arithmetic-Logic Unit

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BIST Built-In Self Test

CB Configurable Block

CISC Complex Instruction Set Computer

CMOS Complementary Metal-Oxide Semiconductor

COTS Components-Off-the-Shelf

DSP Digital Signal Processing

EEMBC Embedded Microprocessor Benchmark Consortium

FADES FPGA-based framework for the Assessment of the Dependability of
Embedded Systems

FF Flip-Flop

FPGA Field Programmable Gate Array

GSR Global Set Reset

GUI Graphical User Interface

HDL Hardware Description Language

HWIFI Hardware Implemented Fault Injection

ISE Integrated Software Environment

LSR Local Set Reset

xix

LIST OF TABLES

LUT Look-Up Table

MAC Multiply-and-Accumulate

PM Programmable Matrix

PT Pass Transistor

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SET Single Event Transient

SEU Single Event Upset

SoC System on a Chip

SRAM Static Random Access Memory

SWIFI Software Implemented Fault Injection

VHDL Very High Speed Integrated Circuits Hardware Description Language

VLSI Very Large Scale of Integration

XHWIF Xilinx standard Hardware Interface

xx

Chapter 1

Introduction

Continuous advances in semiconductor technologies have drawn computer-
based systems into everyday life and, nowadays, these systems are widely used
in almost any application domain. The design of most computer-based sys-
tems has been traditionally focused on increasing their performance to satisfy
the market needs. Besides increasing the functionality/area ratio, the steady
reduction of transistors size has also allowed for less power consumption and
higher frequency rates, leading to greater performance for a given function.

However, there exist a large number of computer-based systems, such as
airplanes, space probes, or nuclear power plants, that cannot be designed un-
der this same principle. A failure in these systems is totally unacceptable,
since people depend on them, often for their livelihood, sometimes for their
lives. Hence, the design of critical systems must be focused on improving its
dependability rather than its performance.

While critical systems raise obvious dependability concerns, due to the
widespread use of computer-based systems, unexpected or premature failures
in even non-critical applications, such as video game consoles and portable
video players, can greatly damage the reputation of the manufacturer and re-
duce the acceptability of new products. So, nowadays, achieving a certain
degree of dependability is also a must for non-critical application domains like
consumer electronics.

Although improving the performance of computer-based systems, low-po-
wer, high-speed, reduced-size transistors are also negatively impacting their
dependability. On one hand, the likelihood of faults occurrence is greatly in-
creasing in deep submicron manufactured systems. On the other hand, new
and more complex fault models are resulting from the fault causes and mecha-
nisms related to these emerging technologies.

1

Therefore it is not only necessary to study the functional behaviour of
semiconductor manufactured systems, but also their behaviour in the presence
of representative faults as ultimate cause of system’s failure, such as bit-flips,
pulses, stuck-ats, stuck-opens, indeterminations, delays, shorts, open-lines, and
bridgings.

Fault injection, which consists in the deliberate introduction of faults into
a system, has been largely recognised as a suitable approach to assess the
robustness and validate the dependability of computer-based systems.

Prototype-based fault injection techniques require a prototype to introduce
faults into the system. These techniques can only be applied in the last stages
of the development cycle, thus increasing the costs of fixing any error. Usually,
they are not very flexible and the set of available fault models is very restricted.

Model-based fault injection techniques introduce the faults into a model of
the system. This approach can be applied along the development cycle, thus
reducing the costs of fixing any error in the design. It is also very flexible,
allowing for the injection of a wide variety of faults. However, the simulation
of the model can take so long that it could result impracticable in many cases.

As the steady reduction of transistors size is leading to larger and more
complex systems, new fault injection techniques joining together the speed of
prototypes and the flexibility of models should be developed.

Field-Programmable Gate Arrays (FPGAs), which have been used for pro-
totyping over the years, offer a viable solution to solve that particular problem.
One of the main application domains of FPGA-based computing is determining
whether the current implementation of a logic circuit fulfills the requirements
specified at the design stage (logic validation).

Previous existing logic validation techniques included hardware-prototyping
and software simulation, which present the same benefits and drawbacks as
prototype-based and model-based fault injection techniques, respectively.

Logic emulation consists in the use of FPGAs to implement the model of
the system. It is emulated much faster than in the case of software simulation,
and it is also easier, cheaper and faster than building its prototype. All these
reasons make FPGAs well-suited devices for the logic validation of circuits.

It is to note the resemblance in the methodologies used in fault injection
and logic validation techniques. Hence, why not use FPGAs to implement the
model of the system and thus accelerate the execution of model-based fault in-
jection experiments? It should also be easier and faster than prototype-based
fault injection techniques. That technique, which presents the same basic cha-
racteristics as logic emulation for logic validation, is named fault emulation.

2

Chapter 1. Introduction

At present, two different methodologies for fault emulation have evolved
from the existing approaches for the design of reconfigurable applications:
Compile- and Run-Time Reconfiguration.

The former relies on the model instrumentation in order to inject faults
into the system and the latter dynamically reallocates hardware on the pro-
grammable device.

Both techniques present complementary advantages and drawbacks, but
they both have been mainly focused on injecting the well-known bit-flips and
stuck-ats. The emulation of the rest of fault models considered representative
of deep-submicron manufactured systems have not been addressed yet.

Taking all this aspects into account, the main goal of this thesis is analysing
to what extent fault models, derived from new semiconductor tech-
nologies, can be emulated by means of FPGAs to minimise the time
required to simulate the behaviour of the system in the presence of
that faults.

Although FPGAs could be used with fault injection purposes, it is neces-
sary to determine if they are flexible enough to deal with the whole set of
hardware fault models considered representative of deep submicron manufac-
tured systems. As the system’s model will be implemented on reconfigurable
hardware, that will accelerate its execution.

So, fault emulation methodologies will be thoroughly studied to determine
which is the most suitable methodology for the design of reconfigurable appli-
cations that could be applied for emulating the whole set of considered faults.

Then, a detailed study will report, for each one of these faults, i) the ele-
ments of the system’s model that can be targeted by the fault, ii) which recon-
figurable components of the FPGA these model’s elements map to, and iii) how
these FPGA’s components should be reconfigured to emulate the behaviour of
the system in the presence of that fault following the selected methodology.
Novel approaches for those fault models that were already addressed by fault
emulation, and different approaches for the injection of the rest of the faults
will also be detailed.

An account of the time required to reconfigure the FPGA when following
each of the proposed approaches is also mandatory. This account will enable
the comparison between the different approaches for injecting a particular fault
and the definition of guidelines for selecting which is the most suitable one for
accelerating the execution of the system’s model.

The achievement of this first goal poses the necessity of providing an
implementation of a tool that automates the proposed methodology

3

for assessing the dependability of computer-based systems in the
presence of representative faults.

Then, a second goal is developing a tool that implements the considered
methodology and all the proposed approaches for injecting the whole set of
hardware fault models by means of FPGAs. That tool should present a very
simple graphical user interface to enable its use by non-skilled users.

The first prototype of this tool will be named FADES (Framework for
the Assessment of the Dependability of Embedded Systems), and it will be
written in Java to assure its portability across platforms.

A case study will show the feasibility of using this tool to assess the depen-
dability of computer-based systems. The main advantages and drawbacks of
the current implementation of FADES, as well as the more relevant technical
problems encountered, will be also reported.

This thesis achieves the previously presented goals and describes all the
studies and work performed by following the ensuing structure:

Chapter 2 discusses the set of fault models considered representative of
deep submicron technologies, and that will be used throughout this work.

The aim of Chapter 3 is to analyse existing FPGA-based fault injection
methodologies to identify which is the most suitable technique coping with
our objectives. A brief overview of the FPGAs general architecture and com-
mon design flow is first introduced to better understand the advantages and
drawbacks of the analysed methodologies. Finally, a generic FPGA architec-
ture is defined to support the definition of new approaches for the injection of
significative faults according to the selected methodology.

Chapter 4 defines a general methodology for the emulation of transient and
permanent faults. Different approaches are proposed for emulating each par-
ticular transient (bit-flip, pulse, indetermination, and delay) and permanent
(stuck-at, stuck-open, indetermination, delay, short, open-line, and bridging)
fault, according to the FPGA generic architecture. The applicability and tem-
poral costs of each approach is also reported.

Then, Chapter 5 presents the architecture and control flow of a fault injec-
tion tool named FADES, which implements the proposed methodology and the
different approaches defined for injecting the whole set of studied fault models.

The first prototype of FADES is experimentally validated in Chapter 6,
where it is effectively used to evaluate the dependability of different micropro-
cessor-based systems. Results from this study demonstrate the feasibility of
the approach and show the benefits and drawbacks of its implementation.

Finally, Chapter 7 summarises the main conclusions of this thesis and iden-
tifies some open challenges for further research.

4

Chapter 2

Deep-Submicron CMOS Fault
Models

Not only the rate of faults occurrence in deep submicron manufactured sys-
tems is increasing, but also new and more complex fault models are required to
accurately assess the dependability of these kind of systems.

This Chapter presents a wide set of hardware fault models considered repre-
sentative of new semiconductor technologies that will be used along this thesis.

2.1 Introduction

The same features of deep submicron technologies that contribute to improve
the performance of computer-based systems, negatively affect their dependa-
bility.

Low-power, high-speed, reduced-size transistors are highly increasing the
likelihood of occurrence of transient faults in these systems [1]. Even though
improvements in the manufacturing process are somehow limiting the probabi-
lity of occurrence of permanent faults due to defects, the increasing number of
intermittent faults finally manifesting as permanent ones, and the acceleration
of the aging process, are also leading to an important increase of the occurrence
rate of permanent faults.

As technology evolves toward the nanoelectronics realm, the manufactu-
ring process cannot be so tightly controlled, which will lead to a larger defect
rate, and the even smaller device’s size will keep increasing the likelihood of
occurrence of transient faults.

Hence, studying the behaviour of systems in the presence of representative
hardware faults is very important nowadays and will become a must in the
near future.

5

2.1. Introduction

The activation of a fault, due to development, physical or interaction rea-
sons, causes an error. Any deviation of the delivered service from the correct
one, due to error propagation, is called a failure [2].

Hence, an error occurring in a component A may propagate to another com-
ponent B, receiving service from A, when the error reaches the service interface
of A. Component A fails to deliver its service correctly and, this failure of A,
appears as a fault to B, that propagates the error through its interface. These
mechanisms are depicted in Figure 2.1, which shows the causality relationship
among faults, errors, and failures.

fault error failure fault... ...
activation propagation causation

Figure 2.1: Fundamental chain of dependability threats.

Therefore it is not only necessary to study the functional behaviour of deep
submicron manufactured systems, but also their behaviour in the presence of
representative faults as ultimate cause of system’s failure.

Fault injection, which consists in the deliberate introduction of faults into
a system, has been largely recognised as a suitable approach for dependability
assessment.

Nevertheless, the characterisation of the behaviour of a computer-based sys-
tem in presence of faults, does not require that the injected faults be "close" to
the target (reference) faults [3]. As similar errors can be induced by different
types of faults, it is enough that these faults induce similar behaviours. For
instance, a modification of the contents of a register or memory cell may be
provoked by a heavy-ion or as the result of an error provoked by a software
fault. What really matters is not to establish an equivalence in the fault do-
main, but rather in the error domain.

Computer-based architectures are usually represented as consisting of diffe-
rent abstraction layers, from the application layer (at the top) to the hardware
layer (at the bottom). The hardware layer can be further divided into three
different levels: the Register Transfer (RT), logic, and physical device levels
(top to bottom).

The RT level defines the behaviour of synchronous digital circuits in terms
of the flow of information between hardware registers. The logic level, also
known as gate level, specifies the behaviour of the circuit by means of logic
equations or logic gates and their interconnections. The physical device or
transistor level defines the circuit according to the basic building blocks of

6

Chapter 2. Deep-Submicron CMOS Fault Models

the current technology, CMOS (Complementary Metal-Oxide Semiconductor)
transistors nowadays, and a netlist with their interconnection.

The main aim of this work is to study how FPGAs can be used for emulating
the occurrence of hardware faults considered representative of deep submicron
technologies. Hence, as a previous step to this study, it is necessary to define
accurate fault models for all the considered hardware faults.

The best option to increase the representativeness of the results of this
study should be to determine how these faults manifest at the physical de-
vice level, since it is the description level closest to the underlying technology.
However, although some work exists in this domain, FPGAs are not suitable
devices to implement systems described in a physical device level.

Hence, we will consider how these faults manifest at the logic and RT levels
instead, which better match the internal structure of FPGAs (as it will be seen
in Chapter 3). These levels are also part of the hardware layer and will keep
the representativeness of the study.

A representativeness study [4] from the Dependability Benchmarking pro-
ject1 analysed the physical causes and mechanisms of hardware faults in current
VLSI systems to determine how they manifest at the logic and RT levels. This
comprehensive study determines the set of fault models that are going to be
considered along this work.

Section 2.2 discusses those hardware fault models related to transient faults,
whereas Section 2.3 describes hardware fault models regarding permanent and
intermittent faults. The description and nature of all these hardware fault
models are summarised in Section 2.4.

2.2 Transient Faults

Transient faults appear during the normal operation of the circuit for a short
period of time after which they disappear again. They usually result from the
interference or interaction of the circuitry with its physical environment, such
as transients in power supply, crosstalk, electromagnetic interferences, tempe-
rature variation, α and cosmic radiation, etc.

Recent studies [1] [5] point out that advances in semiconductors technolo-
gies are greatly increasing the rate of occurrence of transients faults in deep-
submicron manufactured systems. Furthermore, new and more complex tran-
sient fault models have to be considered as the size of the transistors shrinks.

1http://www2.laas.fr/DBench/index.html

7

2.2. Transient Faults

Results from [4], summarised in Figure 2.2, settle the set of fault causes
and mechanisms that lead to the definition of transient fault models considered
representative of new deep-submicron technologies.

Interconnection
shrinking +

High frequency

Transients in
power line

Temperature
variation

� and cosmic
radiation

Electromagnetic
interferences

Variations in
capacitance

and resistance

Skin effect
Miller effect

Generation

of e -h pairs
- +

Crosstalk

Particles vs
crystal atoms
collisions

Voltage peaks

Inverse current
in PN unions

Short

�����, V at
logical level

Indetermination

Pulse
(combinational

logic)

Bit-flip
(storage)

Delay
Timing violations (t , t)setup hold

V < V < VL H

V VH L�

t , tsetup hold

Storage cells charge

n ei �
-Eg/2KT

Charge/discharge of parasitic capacitances

��� �l /((V /2))
2

n DD

Transistors output voltage

Physical (transistor) level Logic and RT levels

Figure 2.2: Causes and mechanisms of transient fault models.

The transient fault models that can be extracted from this study are:

• Bit-flip. This is one of the most used fault models. It models the
occurrence of a Single Event Upset (SEU) that reverses the current logic
state of a memory element, such as registers, latches and memory cells.

This is a particular transient fault, since it does not present an associated
duration. It remains in the system until the affected bit is rewritten by
the normal operation of the system.

• Pulse. It models the occurrence of a Single Event Transient (SET) in
the combinational logic of the circuit. The logic state of the combina-
tional element is reversed for a short period of time, resuming its proper
behaviour afterwards.

Although its effect is similar to that of bit-flips into sequential logic, as
dealing with combinational logic, the logic state induced by the fault is
usually reverted after the fault disappears from the system.

8

Chapter 2. Deep-Submicron CMOS Fault Models

• Indetermination. This model assumes that the affected element will
present an undetermined voltage value, between the high- and low-level
thresholds of a given technology, for the duration of the fault. This
results in that logic element holding an undetermined logic state.

• Delay. It models a modification, usually an increase, in the propagation
delay of the circuit. This may affect the fault-free behaviour of the system
by, for instance, causing violations of registers’ set-up and hold times or
delaying a signal beyond registers’ capture window.

Hence, although classical transient fault models, like bit-flip, are still valid,
they are not longer enough to evaluate the dependability of modern systems.

2.3 Permanent Faults

Permanent faults are due to irreversible physical defects in the circuit. They
usually appear as a result of the manufacturing process or the normal operation
of the system. In this latter case, sometimes they initially reveal as intermit-
tent faults until some long term wearout mechanisms cause the occurrence of
a permanent fault.

Late studies [1] call attention to the fact that new semiconductor technolo-
gies are not increasing the rate of occurrence of permanent faults as much as
that of transient ones. Improvements in the manufacturing process are limi-
ting the impact of the reduction of the transistors’ size on the likelihood of
occurrence of permanent faults.

However, the probability of occurrence of intermittent faults is increasing
in deep-submicron manufactured systems. Many of these faults will, in the
long term, manifest as permanent ones thus increasing the rate of occurrence
of permanent faults due to wearout mechanisms.

Results drawn from [4], shown in Figure 2.3, determine the set of fault
causes and mechanisms that support the definition of permanent fault models
considered representative of new deep-submicron technologies.

The considered permanent fault models are:

• Stuck-at. This is the most widely used permanent fault model. It
assumes that the output of the targeted logic element is bound to a
determined logic value regardless the evolution of its inputs.

That fault model presents two different forms named stuck-at-0 and
stuck-at-1, depending on the logic state the affected element is bound
to.

9

2.3. Permanent Faults

Electrical stress

Hot e trapping
Ionic

contamination

-

Electromigration

Thin-oxide
breakdown

Radiation

Over-voltage
Over-current

High current
in the oxide

Thermal heating

Carrier dispersion

Short in metal,
oxide, diffusion,

or polysilicon

Parasitic
capacitances

Open in metal,
oxide, diffusion,

or polysilicon

��� �l /((V /2))
2

n DD

Physical (transistor) level Logic and RT levels

Temperature
variation

Superficial
carrier dispersion

�V

Transistor stuck-on
T

Shift of metal atoms

�V

Transistor stuck-on,
stuck-off

T

Manufacturing
defects

Wearout during
operation

Transistor
dimmensions

Carrier mobility

Short V -I/O nodes

Short GND-I/O nodes
DD

Short/open in I/O
transistors and

interconnection lines

��� CL

Indetermination

Open-line

Short

Stuck-at

Stuck-open

Delay

Bridging

High impedance nodes

Figure 2.3: Causes and mechanisms of permanent fault models.

• Stuck-open. This is a special fault model related to floating high-
impedance nodes in CMOS technology. The affected element holds its
previous logic value and, after the output parasitic capacitances are dis-
charged by leakage currents (retention time), its state is bound to a
low-logic level (‘0’).

• Indetermination. As in the case of transient indeterminations, it mo-
dels an undetermined voltage value between the high- and low-level
thresholds that results in an undetermined logic value. The only dif-
ference is related to the duration of the fault.

• Delay. This is another fault model that is also found as a transient one.
It represents an increase in the propagation delay of the circuit.

• Short. It models a modification in the routing of the system that results
in the short-circuit (interconnection) of two different lines of the circuit.
This may affect the fault-free behaviour of the system depending on the
logic states driven into the targeted lines.

• Open-line. Open-lines result from problems in the routing of the circuit
that break up a line, which interconnected different logic elements, into
two separated segments. This may affect the behaviour of the system
since elements connected to the affected line are no longer being driven.

10

Chapter 2. Deep-Submicron CMOS Fault Models

• Bridging. Although bridging has been used along the years to refer
to a short-circuit between two lines of the circuit, that notion has been
labelled here as short. In this work, as stated in [6] and [7], bridging
models the occurrence of a special combination of short and open-line.

According to these works, there exists four different bridging cases that
can result from the combination of a short and an open-line affecting
two lines of the circuit. This combination can be modelled as follows:
one of the lines is affected by an open-line and then one of the resulting
segments is connected to the other line (short). The different scenarios
derived from the existing combinations are depicted in Figure 2.4.

(a)

A

B

A

B

(c)

A

B

open-lineA

B

(d)

A

B

B

B

(g)

A

B

A

A

(b)

shortAB

shortAB

shortAB

shortAB

(e)

open-lineA

shortAB
shortAB

shortAB

(f)

shortAB open-lineB

shortAB shortAB

Figure 2.4: Bridging possibilities as the combination of a short and an open-line.
Two connecting lines of a circuit (a) may be affected by a short (b) or an open-line
(c). The combination of these two fault models may lead to four different situations
(d) (e) (f) and (g), in which one of the lines is affected by the open-line and one of
the resulting segments is connected to the other considered line (short).

Although not significantly increasing the overall rate of occurrence of per-
manent faults, the number and kind of existing permanent fault models have
expanded beyond classical ones. Hence the importance of studying the depen-
dability of modern systems in the presence of new and more complex permanent
faults considered representative of modern semiconductor technologies.

11

2.4. Conclusions

2.4 Conclusions

The likelihood of occurrence of faults, specially transient ones, in deep submi-
cron manufactured systems is increasing as the size of the transistors shrink.
Although permanent faults due to the manufacturing process are less and less
important, permanent faults related to the wearout of components due to nor-
mal operation, and intermittent faults finally manifesting as permanent ones,
are also becoming a major concern in semiconductor technologies. On the
other hand, the advent of nanoelectronic devices will greatly increase the oc-
currence of defects in the near future. Hence the importance of studying the
behaviour of systems in the presence of representative hardware faults.

A representativeness study of how faults occurring at transistor level mani-
fest at logic and RT levels, have determined the set of fault models considered
representative of hardware faults in deep submicron technologies. These fault
models, which will be used along this thesis, are summarised in Table 2.1.

Table 2.1: Fault models considered representative of deep-submicron manufactured
systems.

Fault model Fault duration Description
Bit-flip Transient Reverses the logic state of a memory cell

Pulse Transient Reverses the logic state of a combinational
logic element for the duration of the fault

Indetermination Transient / Permanent Undetermined logic value between
the low- and high-level thresholds

Delay Transient / Permanent Increases the propagation delay of a line
Stuck-at Permanent Fixes the logic value of a logic element

Stuck-open Permanent Fixes the logic value of a logic element
for a retention time, and to ’0’ afterwards

Short Permanent Short-circuits two lines
Open-line Permanent Splits a line into two parts
Bridging Permanent Special combination of open-line and short

12

Chapter 3

FPGA-based Fault Injection

Although originally conceived with prototyping purposes, FPGAs have been
recently proposed as a means to efficiently accelerate dependability assessment
via model-based fault injection. This methodology, known as fault emulation,
achieves the goals of enabling the early, fast, and low cost evaluation of new
deep-submicron manufactured systems in the presence of faults.

This Chapter discusses the existing fault emulation approaches, based on
Compile- and Run-Time Reconfiguration techniques, with the purpose of identi-
fying their main benefits and drawbacks to determine which is the most suitable
approach for the injection of faults into large and complex systems. The need of
a generic FPGA architecture to sustain the development of new methodologies
for emulating the considered hardware fault models using the selected approach
is also addressed in this Chapter.

3.1 Introduction

When Field-Programmable Gate Arrays (FPGAs) reached the market they
were considered as one more of the many configurable devices available at that
time. They were destined to implement combinational logic and act as glue
logic for low volume systems due to their very limited speed and capacity, and
their high cost per unit. Along the years FPGAs have evolved into more com-
plex devices [8] which not only integrate a large amount of programmable logic
but also a number of embedded components such as memory blocks, multipli-
ers and microprocessors cores. Nowadays, they are used as targets for the final
implementation of systems as well as for prototyping purposes.

There exists a wide variety of FPGA’s technologies, such as antifuse- (no re-
programmability, but high speed), flash- (non-volatile), and Static Random Ac-

13

3.1. Introduction

cess Memory (SRAM)-based devices (fast reprogrammability, larger devices).
Currently, the market share is dominated by SRAM-based FPGAs due to their
in-circuit fast reprogrammability and their capacity to hold larger designs.
SRAM-based FPGAs consist of a grid of configurable logic elements that are
controlled by means of different SRAM cells. The configuration of these FPGAs
can be easily modified by programming and reprogramming their SRAM con-
figuration memory. This can be achieved in-circuit, i.e., without extracting the
device from the circuit it is integrated into. Therefore, SRAM-based FPGAs
offer a great flexibility and can be successfully used in reconfigurable compu-
ting applications.

One of the main application domains of FPGA-based computing is the
Application Specific Integrated Circuit (ASIC) logic emulation. The logic vali-
dation of an ASIC is a critical stage in its manufacturing process. It tries to
determine whether the current implementation of the logic circuit fulfills the
requirements specified at the design stage. Three different approaches [9] have
been developed to perform the logic validation of an ASIC:

• Hardware prototyping. It consists in obtaining a physical implemen-
tation (prototype) of the circuit to validate from which representative
results can be extracted. Experiments are rapidly executed since the
speed of the prototype is usually very close to that of the final system.
However, that prototype is only available in the last stages of the deve-
lopment cycle, when correcting any detected error causes vast costs.

• Software simulation. Instead of a prototype, this technique makes use
of a model of the functional and/or electrical behaviour of the implemen-
ted circuit which is simulated on a computer. In this way, the system
can be validated along all the stages of its development cycle, reducing
the cost of fixing any error. However, the time required to simulate very
complex models is so high that this technique lacks of applicability in
some cases.

• Logic emulation. It consists in the use of FPGAs to implement the
model of the system [10]. Logic emulators [11] are somewhere between
hardware prototypes and software simulators. The model of the system is
emulated much faster than in the case of software simulation, although
it cannot rival the speed of ASIC prototypes. Moreover, it is easier,
cheaper and faster to implement the model of the system on an FPGA
than building its prototype. They are also more flexible and easy to use.
All these reasons make FPGAs well-suited devices for the logic validation
of circuits.

14

Chapter 3. FPGA-based Fault Injection

Nevertheless, the high rate of faults occurrence in new semiconductor tech-
nologies makes these techniques insufficient for the validation of systems. It is
not only necessary to study the functional behaviour of the system, but also its
behaviour in the presence of representative faults as ultimate cause of system’s
failure.

The impossibility of observing systems on the field to get statistical data
makes fault injection [12] a very valuable methodology in the validation pro-
cess. Fault injection, which consists in the deliberate introduction of faults
into a system, can be used to assess its dependability, and possibly comple-
ment other approaches like modelling that lack both applicability and accuracy
when dealing with complex systems. Although there exists a wide range of dif-
ferent approaches, they are typically classified into two big families named
prototype- and model-based fault injection techniques.

• Prototype-based fault injection techniques. These methodologies,
which require a prototype to introduce the faults into the system, are
further divided into Hardware Implemented Fault Injection (HWIFI) and
Software Implemented Fault Injection (SWIFI) [13] [14].

HWIFI techniques use additional hardware to introduce physical faults
like short circuits or electro-magnetic interferences into the target sys-
tem. Several techniques and tools have been developed with this purpose:
MESSALINE [12], RIFLE [15] and AFIT1 [16] are representative tools
of pin-level fault injection techniques; [17] describes the use of electro-
magnetic interferences for fault injection; heavy-ion radiation was used
in [18] and by FIST [19]; FIMBUL [20] suggested the use of built-in
scan-chains; finally, [21] proposed the use of a laser beam for fault injec-
tion. The required extra hardware usually increases the cost of applying
HWIFI techniques and some of them may even damage or interfere with
the system under test.

SWIFI techniques are usually a low-cost alternative to HWIFI since they
do not require so expensive hardware and, furthermore, they can target
operating systems and applications. FERRARI [22], Xception [23] and
MAFALDA [24] are well-known tools that make use of SWIFI techniques.
INERTE1 [25], which makes use of the Nexus [26] standard debugging
interface to inject faults into the system, was built in the frame of the
Dependability Benchmarking project2 [27] to tackle with the dependabi-
lity benchmarking of engine control applications in automotive embedded

1This tool was developed by the Fault Tolerant Systems research Group (GSTF) of the
Universidad Politécnica de Valencia (UPV) in Spain

2http://www.laas.fr/DBench/

15

3.1. Introduction

systems. Although SWIFI is a flexible approach, it cannot target loca-
tions that are inaccessible to software, like hidden registers, and may
disturb the workload running on the system under test.

Even though the use of prototypes causes the experiments to be executed
very rapidly, these techniques can only be applied in the last stages of
the development cycle, thus increasing the cost of fixing any error in the
design.

• Model-based fault injection techniques. These techniques [28] par-
tially solved that particular problem by injecting faults into a model of
the system. Since only a model is required and not a final prototype,
these techniques allow for the early validation of the system, thus reduc-
ing the cost of fixing any error in the design. Tools like MEFISTO [29],
VERIFY [30] and VFIT1 [31] can be used to inject faults into VHDL
(Very High Speed Integrated Circuits Hardware Description Language)
models. These techniques clearly follow the same approach as software
simulation for logic validation and thus the simulation of complex models
required an enormous amount of time.

It is to note the resemblance in the methodologies used in fault injection
and logic validation techniques. Hence, why not use FPGAs to implement the
model of the system and thus accelerate the execution of model-based fault
injection experiments? It should also be easier and faster than prototype-
based fault injection techniques (HWIFI and SWIFI). That technique, which
presents the same basic characteristics than logic emulation for logic valida-
tion, is named fault emulation.

Understanding fault emulation requires some basic knowledge about how
FPGAs work. Section 3.2 defines the basic architecture of FPGAs and presents
the common design flow for configurable logic applications using programmable
devices. The two different existing approaches for fault emulation, Compile-
and Run-Time Reconfiguration, are discussed in Section 3.3 to determine the
best suitable approach for dealing with the emulation of hardware faults re-
presentative of new deep submicron manufacture systems. A generic FPGA
architecture is defined is Section 3.4 to enable the future definition, along this
thesis, of new generic methodologies for the emulation of the considered hard-
ware faults. Finally, Section 3.5 concludes the Chapter.

16

Chapter 3. FPGA-based Fault Injection

3.2 Basic FPGA architecture and design flow

SRAM-based FPGAs basically consist of a two-dimensional array of logic ele-
ments which can be programmed to implement the circuit logic. Those logic
elements are interconnected by means of some programmable routing. The
configuration memory of the FPGA controls the current configuration of each
of these elements, being responsible then for implementing the desired circuit.
This fairly simple architecture [32], depicted in Figure 3.1, has evolved along
the years, mainly by the addition of some more elements like RAM memory
blocks, multipliers or microcontroller cores into the fabric logic of the FPGA.

Programmable
logic element

Programmable
routing

Field Programmable Gate Array (FPGA)

FPGA’s configuration memory

Figure 3.1: Basic FPGA architecture.

The common design flow for implementing the model of a system into an
FPGA comprises a number of successive processes that must be fulfilled. Al-
though each FPGA manufacturer refers to the same processes with different
names, the whole design flow is very similar for all of them.

This flow, which is shown in Figure 3.2, consists in the following steps:

1. System design. When entirely designing a new system from scratch
or even when building a system from other components, it is necessary
to specify a functional model of that system. This model, commonly
specified by means of some Hardware Description Language (HDL) such
as Verilog [33], VHDL [34] or SystemC [35], is the starting point of any
FPGA design flow. System models may be described in different abstrac-
tion levels, but since the goal of these models is to be implemented on
an FPGA, their functional structure is usually described in the Register-
Transfer Level (RTL).

17

3.2. Basic FPGA architecture and design flow

Functional simulation

COUNT
up

D(3:0)

SLoad

CE

> C
CLR

Q(3:0)data(3:0)

load

ce

clk

rst

count(3:0)

Synthesis

HDL-based
system design

Logic mapping

Place and route

Timing simulation

Device verification

‘0’

‘1’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’‘0’

‘0’

‘0’

‘0’

‘0’

‘0’‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’

‘0’ ‘0’

‘0’

‘1’

‘1’

‘1’

‘1’‘1’

‘1’

‘1’

‘1’ ‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’‘1’

‘1’

‘1’

‘1’‘1’‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘1’

‘0’ ‘0’

‘0’

‘0’‘1’ ‘1’

‘1’

‘1’

‘1’‘1’

‘1’

‘1’

‘1’ ‘1’

‘1’

‘1’ ‘1’

‘1’

‘0’

‘0’‘0’

‘0’

‘0’

‘0’‘0’

‘0’

‘0’

‘0’

‘0’‘0’

‘0’

‘0’‘0’

‘0’‘0’

Figure 3.2: Common FPGA design flow.

2. Synthesis. The logic synthesis is a process in which the model of the
system is analysed to extract the logic elements that have been speci-
fied in the model and their interconnection. This is a critical step since
a bad synthesiser or a poorly described model may cause the inference
of a system completely different from the one intended. Although each
FPGA manufacturer provides its own synthesiser, other companies also
commercialise their own products such as Leonardo Spectrum from Men-
tor Graphics3 or Synplify from Synplicity4.

3http://www.mentor.com/
4http://www.synplicity.com/

18

Chapter 3. FPGA-based Fault Injection

3. Functional simulation. Once the model of the system has been syn-
thesised, it is very advisable to simulate the result of that synthesis to
determine whether it presents the desired functionality. Several different
simulators are available in the market, being ModelSim5 from Mentor
Graphics one of the most recognised. If any error is detected, it is ne-
cessary to modify the model of the system and iterate again through the
previous steps, in other case, the implementation phase begins.

Up to this step, unless the model of the system includes some constructs
for a specific FPGA family, the results of the synthesis process are de-
vice independent and, therefore, the system can be implemented in any
reconfigurable device. From this point and on, the results of each step
will be dependent on the selected FPGA architecture.

4. Logic mapping. The logic mapping process maps the generic logic
elements that have been extracted by the synthesis to the actual re-
sources of the selected FPGA that will be necessary to implement that
functionality. For instance, implementing a four-variable combinational
function will usually involve one function generator, while implementing
a four-bit register will require four flip-flops. Hence, this process provides
the total number of FPGA logic resources that will be necessary for the
implementation of the circuit and their relationship.

5. Place and route. This step comprises two different although highly
intertwined processes: placement and routing. A detailed description
and pseudo-code for these algorithms can be found in [32].

The placement process consists in selecting which of the free logic re-
sources of the FPGA will be used to implement the desired circuit. All
the resources that have been determined by the logic mapping must be
distributed throughout the FPGA, usually optimising either the area or
the speed of the system. This distribution is achieved by means of a
Simulated Annealing algorithm [36] [37]. Firstly, all the elements are
randomly distributed among the free resources of the FPGA. After that,
these elements randomly swap locations whether this change optimises a
given cost function or, with a certain probability, in case the change does
not optimise the cost function. As can be seen, this is not a deterministic
process and thus several executions could be needed to minimise as far
as possible the cost function.

5http://www.model.com/

19

3.2. Basic FPGA architecture and design flow

The routing process tries to perform the required interconnections among
all the already placed logic elements on the FPGA. Since FPGAs rout-
ing architecture is usually represented as a directed graph, the routing
process consists in finding a path between the nodes that represent the
pins of the blocks to be connected. Paths must be as short as possible,
use fast routing resources for critical connections and not use routing
resources required by other connections.

Those processes may fail as a result of great congestion on the FPGA
routing, for instance. Usually, these problems are solved by using a larger
device (with more programmable resources), or by optimising the model
for a better synthesis and, consequently, a better use and allocation of
the available resources.

Finally, this step provides a file that can be downloaded onto the FPGA
configuration memory to configure the programmable device to functio-
nally emulate the behaviour of the desired system.

6. Timing simulation. Before testing the implementation of the system’s
model on the real device, it is advisable to simulate the result of the
place and route process. This is not only a functional simulation, but it
also includes the timing and delays for all the logic and routing resources
of the FPGA that have been used in the implementation of the circuit.
Any problem regarding the delay at some specific routing lines or paths
must be corrected by placing and routing the design again under more
restrictive conditions. In case that no optimisation could be performed
at that level, an architectural change should be considered.

7. In-device verification. The last step is the verification of the imple-
mentation on the actual FPGA. A correct workload execution on the
prototype board will grant the success of the final implementation of the
system.

Once the basic architecture and common design flow of FPGAs have been
described, it is possible to tackle the origins and current state of the art of fault
emulation, identifying the most relevant approaches and how they influence the
presented design flow with fault injection purposes.

20

Chapter 3. FPGA-based Fault Injection

3.3 Fault emulation

Nowadays, there exists different commercial systems, such as the DN8000K10
from The Dini Group6 and ET5000K10M from Emulation Technology7, that
enable the rapid prototyping and logic validation of ASICs. These systems,
named logic emulators, usually consist of one or several motherboards which
hold a certain number of FPGAs depending on the complexity of the system to
be implemented. The use of logic emulation principles and tools to speed-up
model-based fault injection experiments is known as fault emulation8.

One of the first attempts to use logic emulators with fault-injection pur-
poses was proposed in [38] under the name of serial fault emulation. A software
tool for implementing system models onto FPGAs was used to generate the
configuration file of the fault-free circuit. This file could be used to debug the
circuit and obtain the expected values for the considered outputs. That same
tool generated a new configuration file for each fault to be injected into the
system. These files reconfigured the logic emulator to emulate the behaviour
of the system in the presence of the particular injected fault.

The fault injection process consisted in the following steps:

1. Execution of the fault-free circuit until the injection time was reached.

2. Reconfiguration of the logic emulator to inject the fault.

3. Registers initialisation to restore the previous state of the system before
the reconfiguration.

4. Emulation of the faulty circuit.

5. Reconfiguration of the logic emulator to remove the fault because of
either emulating transient faults or reaching the end of the experiment.

Thus, the serial fault emulation methodology involves synthesising and
implementing a different model for each fault being injected into the system,
and reconfiguring the FPGA to inject and delete each considered fault.

These first approaches were mainly aimed at obtaining the test coverage
(fault grading), which measures the efficiency of test vectors when detecting

6http://www.dinigroup.com/
7http://www.emulation.com/
8Some authors consider that SWIFI techniques emulate the occurrence of faults as they

inject software and hardware errors. Our view of fault emulation is the use of logic emulators
to emulate the manifestation of faults into the implemented circuit according to a given fault
model.

21

3.3. Fault emulation

defects in silicon-manufactured systems. It is usually represented as the per-
centage of faults that can be identified by that set of test vectors.

Although FPGAs accelerated the execution of the fault emulation process,
two were the main aspects that limited the attainable speed-up.

• Model synthesis and implementation. The time dedicated to the
implementation of medium- to high-complexity models ranges from few
minutes to some hours. As serial fault emulation requires a new imple-
mentation for each considered fault, it can lead to so long global imple-
mentation times that this methodology might result impracticable.

Hence, new techniques must be developed to minimise the number of
implementations required for the execution of fault injection campaigns.
In the best case, the minimum possible number of implementations is
just one, the fault-free circuit.

• Fault injection and deletion. The injection of each fault under the
serial fault emulation methodology involves the reconfiguration of the
logic emulator to perform the injection and to delete the fault later. The
time devoted to fully reconfigure a typical FPGA, when downloading the
reconfiguration file from a PC platform, is usually in the order of tens of
milliseconds. Taking into account that logic emulators commonly hold
several FPGAs, the global reconfiguration time may greatly exceed the
execution time of the experiments on the logic emulator.

Thus, the interest in developing new techniques to minimise both the
number of reconfigurations and the size of the reconfiguration files to be
downloaded onto the FPGAs.

At present, two different methodologies intended for the ease of these pro-
blems have evolved from the existing approaches for the design of reconfigura-
ble applications [39]. These methodologies, known as Compile- and Run-Time
Reconfiguration, their advantages and drawbacks, are described next.

3.3.1 Compile-time reconfiguration

Compile-Time Reconfiguration is the simplest and most widely used technique
for implementing applications with reconfigurable logic. All the different re-
quired functionalities of the systems are described in the same model and a
number of control signals are used to select the desired functionality. Once
implemented on an FPGA, the proper activation of the control signals will
cause the circuit to assume the requested functionality.

22

Chapter 3. FPGA-based Fault Injection

The first attempts to use that methodology with fault injection purposes
were proposed in [40] [41] under the name of dynamic fault injection. They
consisted in modifying the model of the system to include a global circular
shift register to control the fault activation signals. The look-up tables that
implement the combinational logic of the circuit are duplicated and, as shown
in Figure 3.3, to implement the fault-free and the faulty behaviour of the
circuit. A fault activation signal, which is shared by a set of look-up tables,
controls the multiplexer that selects between the two replicas. In that way,
faults are injected by changing the contents of the affected look-up table in
each set and recompilation is completely avoided.

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

CB

FF FF FF FF

Circular Shift Register

Circular-Shift
Register Clock

‘1’ ‘0’ ‘0’ ‘0’

Function
g(a, b, c, d)

Function
g(a, b, c, d)

MUX

a
b
c
d

Fault activation

z

Faulty
function

f(a, b, c, d)

Function
g(a, b, c, d)

MUX

a
b
c
d

Fault activation

z

Faulty
node

Fault-free
nodes

Figure 3.3: Dynamic fault injection methodology.

This technique was improved in [42] [43] by converting the original model
of the system into a fault injectable circuit. The required logic to inject all
the desired faults and to control the process is included in the model and
implemented into the FPGA. Hence, no reconfiguration is needed to inject any
fault, just activating the proper control signal.

Three kinds of fault injection elements were proposed for the injection of
faults into the circuit. These elements are inserted into the selected points of
the circuit, as shown in Figure 3.4, and their control signals are connected by
means of a fault injection scan chain. Faults can be easily injected into the
circuit by shifting the data in the scan chain.

In order to reduce the number of flip-flops required for the scan chain im-
plementation, and thus the size of the circuit, [43] suggests the implementation
of a decoder-based fault injectable circuit. This approach is further extended
in [44] by using row and column decoders to select the fault to inject.

23

3.3. Fault emulation

a
b

c
d

e

f

g

Original model

a
b

c
d

e

f

g

stuck-at-1/0

stuck-at-0

FF FF

FF

FF

Scan-Chain

stuck-at-1

T1 T2

T1 = 1, T2 = 0, stuck-at-1
T1 = 0, T2 = 1, stuck-at-0

T

T = 1, stuck-at-1

T

T = 1, stuck-at-0

Instrumentation

Figure 3.4: Implementing scan chain-based fault injectable circuits.

These techniques were combined in a fault injection tool named defin
(demultiplexer based fault injection) [45] that was developed at IST/INESC-
ID9 in Portugal. A hybrid shift register-demultiplexer approach was considered
to find a trade-off between the resources required to implement the demulti-
plexers and their easy use.

That methodology was also applied at TIMA10 (Techniques of Informat-
ics and Microelectronics for computer Architecture Laboratory) in France to
inject faults into a fuzzy microcontroller [46]. Each flip-flop of the circuit was
substituted by a custom flip-flop which could modify its value by activating an
external signal.

Probably, the most renown fault injection tool that follows the Compile-
Time Reconfiguration approach is FIFA (Fault Injection by means of FPGA),
developed by the Electronic CAD and Reliability Group11 of the Politecnico di
Torino in Italy. The gate-level model of the system is instrumented following
a scan chain-based approach [47] [48]. The control circuit, that can be seen in
Figure 3.5, consists in two different modules:

• Mask Chain. Each flip-flop of the circuit is associated to a bit of the
Mask Chain register, which can be initialised by means of the scan_in
signal. The activation of the inject signal will cause the injection of a
fault in those flip-flops whose associated bit holds a logic ‘1’. It is also
possible to load the value of the flip-flop and read the state of the system
via the scan_out signal.

9http://www.inesc-id.pt/
10http://tima.imag.fr/
11http://www.cad.polito.it/

24

Chapter 3. FPGA-based Fault Injection

• Masking logic. Combinational logic in charge of possibly inverting the
output of the combinational circuitry associated to the flip-flop.

Combinational
circuitry

FF

Mask
Chain

inject scan_in

scan_out

load

mode

PI PO

Masking
logic

DQ

>

CLR
DQ

>

CLR

masked_clr load
mode

clock

main_clr

to the circuit from the
circuit to the next cell

from the
previous cell

inject

Masking
logic

Figure 3.5: Model instrumentation by using the FIFA tool.

FIFA was optimised to enable the injection of faults into VLSI systems [49]
[50]. The analysis of the system’s behaviour in the presence of faults was also
optimised to reduce the execution time of the experiments. Several circuits
from the set of benchmarks ITC’99 [51] were used to validate this version of
the tool.

This methodology was later adapted [52] to assess the dependability of
microprocessor-based systems implemented as a System on a Chip (SoC). The
microprocessor’s core is instrumented, as shown in Figure 3.6, by means of a
number of new defined modules, such as Memory Stub logic, Bus Stub logic,
Masking logic and Fault Injection Bus.

External Bus

Fault Injection Bus

System on a Chip

Masking logic

Control registers Internal registers

Masking logic

Memory Stub logic

Bus Stub logic

Memory Stub logic

RAM SRAM

M
em

o
ry

S
tu

b
lo

g
ic

Register
file

Custom logic

Masking logic

Figure 3.6: Instrumentation of a microprocessor’s core implemented as a SoC.

25

3.3. Fault emulation

The Grupo de Microelectrónica12 of the Universidad Carlos III in Spain
proposed the use of an autonomous FPGA-based emulation system to further
improve the attainable speed-up [53]. The main idea is avoiding any com-
munication between the host and the prototyping platform, being the FPGA
responsible for applying the stimuli, injecting the faults and checking the out-
put values. The performance and area overhead analysis of several different
techniques that follow this approach was presented in [54].

Lately, the Dependable Systems Laboratory13 of the Sharif University of
Technology in Iran has been working on the implementation of a new hy-
brid fault injector. This tool, named FITSEC (Fault Injection Tool based
on Simulation and Emulation Co-operation), is aimed at obtaining the advan-
tages of software simulation and compile-time reconfiguration while minimising
their drawbacks [55]. The application of this methodology to inject faults at
transistor-level models was presented in [55] [56].

All those recent Compile-Time Reconfiguration techniques achieve the goal
of improving the original serial fault emulation approach.

3.3.2 Run-time reconfiguration

Run-Time Reconfiguration applications dynamically reallocate hardware du-
ring their execution on an FPGA. Each application comprises multiple con-
figurations per FPGA, with each configuration representing a fraction of the
application. The execution of the application on the FPGA consists in dy-
namically reconfiguring the programmable device to implement the required
functionality and release those resources that are not needed anymore.

The first attempts to apply this technique with fault injection purposes [57]
[58] were proposed by the Qualification of Circuits research group14 of TIMA in
France. The dynamic modification of function generators’ contents (see Figure
3.7) was proposed to emulate the occurrence of faults that force the output of
function generators and synchronously invert the contents of flip-flops.

A similar approach was presented in [59] to inject Single Event Upsets
(SEUs) or asynchronous bit-flips into the sequential logic of the circuit. The
dynamic modification of a flip-flop’s state involves determining its current state
and configuring the related logic to trigger its set or reset input, accordingly.

12http://www.uc3m.es/uc3m/dpto/IN/dpin08/dpin08d.html
13http://ce.sharif.edu/∼dsl/
14http://tima.imag.fr/qlf/

26

Chapter 3. FPGA-based Fault Injection

Look
Up

Table

Flip
Flop

Carry &
Control

Carry &
Control

G = (G1G2 + G3)G4

F = F1 + F3F4

G1
G2
G3
G4

F1
F2
F3
F4

X

Y

Carry &
Control

Carry &
Control

G = (G1G2 + G3)G4

F = 1

G1
G2
G3
G4

F1
F2
F3
F4 X

Y

Carry &
Control

Carry &
Control

G = INV (G1G2 + G3)G4()

F = F1 + F3F4

G1
G2
G3
G4

F1
F2
F3
F4

X

Y

a) b) c)

Look
Up

Table

Look
Up

Table

Look
Up

Table

Look
Up

Table

Look
Up

Table

Flip
Flop

Flip
Flop

Flip
Flop

Flip
Flop

Flip
Flop

Figure 3.7: Example of dynamic allocation of resources from the original configura-
tion (a), to set the output of a look-up table (b) and synchronously invert the contents
of a flip-flop (c).

A particular implementation of this methodology was presented at [60] [61],
where it appears as a novel and efficient methodology for the early fault injec-
tion and dependability analysis of systems. The theoretical study of the time
required to reconfigure the FPGA to emulate each one of the proposed fault
models is detailed in [62].

In this same line, the Departamento de Ingeniería Electrónica15 of the Uni-
versidad de Sevilla in Spain has been working during the last years in the
development of a tool named UNSHADES16 (UN iversity of Sevilla HArdware
DEbugging System). Although UNSHADES was firstly aimed at debugging
VLSI systems by observing its internal state, the last version of that tool,
FT-UNSHADES (Fault Tolerant-UNSHADES), makes use of the Run-Time
Reconfiguration approach to emulate the occurrence of SEUs in the registers
of a VLSI circuit to study its robustness [63].

The Run-Time Reconfiguration approach has also been successfully used
by the IST/INESC-ID17 in Portugal to evaluate the Built-In Self-Test (BIST)
effectiveness. A detailed explanation of the procedure to assess the BIST qua-
lity by means of FPGAs can be found at [64] [65] [66], where a core of the
ARM7 microprocessor is evaluated. This approach was implemented by a tool
named f2s (FPGA based f ault simulator), which was validated by injecting
faults into the set of benchmarks ISCAS’89 [67].

15http://www.dinel.us.es/
16http://woody.us.es/∼aguirre/Web_unshades/index.htm
17http://www.inesc-id.pt/

27

3.3. Fault emulation

Another application of Run-Time Reconfiguration is the evaluation and
test of FPGA-based systems. In that case, the FPGA is not only a means to
inject a fault into the model of the system, but it is also the platform where
the final system will be implemented on.

The Institut für Technische Informatik18 of Technische Universität Graz
in Austria has been working on the study of fault injection methodologies for
FPGA-based systems. Run-Time Reconfiguration is used in [68] to validate
self-stabilising systems, which converge to their expected behaviour although
they may have transited to a wrong state.

A methodology based on the dynamic reconfiguration capabilities of FPGA
is proposed in [69] to test FPGA interconnection resources.

The work presented in [70] describes different techniques to tolerate the
occurrence of SEUs in SRAM-based FPGAs. The proposed architectures were
evaluated by means of a fault injection tool developed at Los Alamos National
Laboratory19 for Xilinx. That tool individually inverts every single bit of the
FPGA configuration memory to emulate the occurrence of such faults.

All those approaches, although with different objectives in mind, success-
fully use the Run-Time Reconfiguration methodology to accelerate the original
serial fault emulation approach.

3.3.3 Discussion

Two different techniques, Compile- and Run-Time Reconfiguration, whose con-
trol flow can be seen in Figure 3.8, have evolved from the original serial fault
emulation to improve the execution time of fault injection experiments.

On one hand, the number of synthesis and implementation processes ne-
cessary to inject the whole set of desired faults is reduced. The original serial
fault emulation required to synthesise and implement a new model for each
fault to be injected. Currently, the model is instrumented by including several
fault injectors that enables the activation of faults in different locations of the
model. In that way, a single synthesis and implementation can accomplish the
mission of injecting several faults, thus reducing the time required to generate
the configuration file for all the desired faults.

On the other hand, the fault injection and deletion processes of recent
Compile-Time Reconfiguration techniques are greatly optimised by the instru-
mentation of the system’s model, which now includes the logic to emulate the

18http://www.iti.tu-graz.ac.at/
19http://www.lanl.gov/

28

Chapter 3. FPGA-based Fault Injection

Synthesis and implementation

FPGA configuration file

Download

FPGA reconfiguration with
fault injection purposes

Fault injection
time reached

Workload execution

FPGA reconfiguration with
fault deletion purposes

Fault duration
time expired

Experiment
end time

R
es

et
sy

st
em

to
in

it
ia

l
st

at
e

Workload execution

Workload execution

More experiments? Yes

No

Experiment
start time

HDL model

Model instrumentation

Instrumented HDL model

Download

Activation of fault
control signal

N
ew

ex
p
er

im
en

t

Workload execution

Deactivation of fault
control signal

R
es

et
sy

st
em

to
in

it
ia

l
st

at
e

Workload execution

Workload execution

More instrumentations
are required?

Yes

No

End of experimentation

Synthesis and implementation

FPGA configuration file

No

More experiments
using this instrumentation?

Yes

(a) (b)

(a) (b)

N
ew

ex
p
er

im
en

t

Figure 3.8: Generic control flow of Compile- (a) and Run-Time Reconfiguration (b)
techniques applied to fault emulation.

behaviour of the system in the presence of faults. Therefore, as no reconfigu-
ration is required to inject or delete the fault, the temporal overhead caused
by these processes is negligible.

Although these techniques effectively accelerate model-based fault injec-
tion experiments, the size attained by the instrumented model still represents
a problem. Complex models are usually difficult to fit into a particular FPGA
and, since their size increases after being instrumented, models can easily be-
come unroutable. The common solution to that problem is limiting the amount
of additional logic that can be added to a circuit to make it injectable. In this
way, it could be mandatory to perform several partial instrumentations of large
and complex models to cover the whole set of considered faults. As the syn-
thesis and implementation of large and complex models may last some hours,
this will obviously increase the overall experimentation time.

29

3.3. Fault emulation

Hence, Compile-Time Reconfiguration can be efficiently used to speed-up
model-based fault injection experiments as long as the instrumented model
fits the selected programmable device. Otherwise, it would be necessary to
divide the model’s instrumentation into several partial instrumentations, thus
increasing the overall experimentation time. Consequently, this approach is
not well-suited for the injection of faults into large and complex models.

The number of required synthesis and implementation processes regarding
Run-Time Reconfiguration approaches is reduced to a minimum. As faults are
injected and deleted by dynamically allocating the FPGA resources, only the
original fault-free implementation of the system is needed. Since synthesis and
implementation are the most time consuming processes, a great speed-up can
then be achieved due to the implementation of just one model.

Nevertheless, the injection and deletion of each fault involves the reconfi-
guration of the FPGA to reallocate the resources affected by the fault.

The time consumed in the reconfiguration process is dependent on the
reconfiguration capabilities of the selected FPGA [39]:

• Global reconfiguration. Every modification on the system’s functio-
nality implies the full reconfiguration of the device, regardless the size of
the required modification (see Figure 3.9a). This fact increases the time
devoted to reconfigure the circuit.

• Local (also known as partial) reconfiguration. As the programma-
ble device can be partially reconfigured (see Figure 3.9b), only that part
of the FPGA affected by the modification must be reconfigured. This
approach greatly reduces the fault injection and deletion times since only
a small fraction of the device is reconfigured.

Execute Execute Execute

Load
configuration

Load
configuration

Load
configuration

A

B

Load
configuration

C

A

Load
configuration

Execute Execute

a)

b)

A

B

C

Figure 3.9: Example of the global reconfiguration (a) and local reconfiguration (b)
approaches.

30

Chapter 3. FPGA-based Fault Injection

Currently, the time required to fully reconfigure an FPGA is in the range of
tens of milliseconds. Then, even considering the worst reconfiguration scenario,
the global reconfiguration approach, the time spent reconfiguring the program-
mable device is largely counterbalanced by the time saved by implementing the
system’s model just once.

Hence, Run-Time Reconfiguration can be successfully used to speed-up
model-based fault injection experiments specially for large and complex mo-
dels, when the synthesis and implementation processes could easily take several
hours. Consequently, this technique is very well-suited for the injection of faults
into complex models.

The main goal of this thesis is to accelerate model-based fault injection ex-
periments for a wide set of hardware fault models considered representative of
new deep-submicron manufactured systems. The models of these systems are
usually very large and complex, and the more detailed the description of the
system, the larger and more complex the model. Thus, Run-Time Reconfigu-
ration seems the best suited methodology in order to obtain the best speed-up
ratio when injecting faults into these kind of systems.

This fault injection technique is closely related to the architecture of the se-
lected programmable device. Therefore, the specification of new methodologies
for emulating the set of considered fault models by means of FPGAs requires
the definition of a generic FPGA architecture that will be used throughout the
present thesis. Those new approaches, which will be based on the proposed
generic architecture, could be easily adapted later to the particular architecture
of any FPGA.

3.4 Generic FPGA architecture

The use of FPGAs for fault emulation requires a more detailed definition of
logic elements structure than that presented at [32] and [71], whose concern
was limited to the study of FPGAs architectural issues and the definition of
FPGA-related fault models, respectively. This study should be based on the
different programmable devices currently available in the market.

There exist a large number of FPGA manufacturers such as Xilinx Corp.20,
Altera Corp.21, Lattice Semiconductor Corp.22 and Atmel Corp.23, among

20http://www.xilinx.com/
21http://www.altera.com/
22http://www.latticesemi.com/
23http://www.atmel.com/

31

3.4. Generic FPGA architecture

others. All these manufacturers present a wide variety of high-performance
programmable devices, such as the Virtex [72] family from Xilinx (Virtex-II
[73], Virtex-II Pro [74], Virtex-4 [75] and the new Virtex-5 [76]), the Stratix
[77] family from Altera (Stratix GX [78], Stratix II [79] and Stratix II GX
[80]), the LatticeSC (System Chip) [81] from Lattice, and the AT40K family
[82] from Atmel.

The generic FPGA architecture that can be extracted from the similarities
found among the studied families of FPGAs is based on a two-dimensional
matrix of configurable blocks (CBs).

All those configurable blocks are interconnected by means of a network
of vertical and horizontal routing segments. The connection among all these
segments is established by means of a grid of programmable matrices (PMs).

Also a number of RAM memory blocks are nowadays usually embedded
into the fabric logic of the FPGA to allow for the implementation of different
applications and systems.

This proposed generic FPGA architecture is presented in Figure 3.10.

CB CB CBPM

CB CB CBPM

CB CB CB

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM

PM PM

Memory
Block

(RAMB)

PM

PM PMPM PM

PM

Memory
Block

(RAMB)

Memory
Block

(RAMB)

Field-Programmable Gate Array (FPGA)

routing segmentsProgrammable Matrix (PM) Configurable Block (CB)

Memory
Block

(RAMB)

Figure 3.10: Generic grid-based FPGA architecture.

The CBs are probably the most important elements when determining the
functionality provided by an FPGA, since they are responsible for implemen-
ting the logic of the circuit. For that reason, an accurate modelling of a generic
CB requires an in-depth study of the architecture of current FPGA’s families.

As Figures 3.11 and 3.12 show, representative members of the previously
presented FPGA’s families essentially share a common structure for their logic
elements.

32

Chapter 3. FPGA-based Fault Injection

LUT

I3

I2

I1

I0 WE DI

O

G4

G3

G2

G1

COUT

D Q

EC

REV
>

INIT
YQ

Y

YB

BY

LUT

I3

I2

I1

I0

WE DI

O

CK

WE

A4

WSO

WSH

BY DG

BX DI
D Q

EC

REV
>

INIT
XQ

X

BX

F4

F3

F2

F1

CY

F5

F6

SR
CLK

CE

F5

XB
F5IN

CIN

CY

LUT4 &
CARRY

CI

CO

D1

C1

B1

A1

D
FF/

Latch

Q1

CE
CLK

LSR

LUT4 &
CARRY

CI

CO

D0

C0

B0

A0

M1

M0

To/From
Different Slice/FPU

D
FF/

Latch

F

F

OFX0

OFX1

F1

Q0

OFX0

F0

To/From
Different Slice/FPU

From
Routing

To
Routing

Control signals
selected and
inverted per
slice in routing

LUT
Expansion

Mux

a)

b)

Figure 3.11: Basic configurable block architecture of most important commercial
FPGA families: Xilinx’s Virtex (a) and Lattice’s LatticeSC (b).

33

3.4. Generic FPGA architecture

Look-Up
Table
(LUT)

data3

data2

data1

data4

Carry
Chain

addnsub Carry-In0

Carry-In1

LAB Carry-In

Synchronous
Load and

Clear Logic D Q

ADATA

CLRN

>

PRN/ALD

ENA

Asynchronous
Clear/Preset/
Load Logic

labclr1

labclr2
labpre/aload
Chip-Wide

Reset

Clock &
Clock Enable

Select

labclk1

labclk2

labclkena1

labclkena2

Register chain
routing from
previous LE LAB-Wide

Synchronous
Load

LAB-Wide
Synchronous

Clear

LUT chain
routing to next LE

Row, column
and direct link
routing

Row, column
and direct link
routing

Local routing

Register chain
output

Carry-Out0

Carry-Out1

LAB Carry-Out

OUT

8x1 LUT

D

Q

>

‘1’ NENW SWSE ‘1’ ‘1’ EN WS

W

OUT

8x1 LUT

X Y

FB

‘1’‘0’ ‘1’

Z
1 0

NENW SWSE EN WS

Z X W Y

V1

H1

V2

H2

V3

H3

V4

H4

V5

H5

OEH‘1’ OEV

a)

b)

Figure 3.12: Basic configurable block architecture of most important commercial
FPGA families: Altera’s Stratix (a) and Atmel’s AT40K (b).

34

Chapter 3. FPGA-based Fault Injection

From this study it is possible to conclude that a generic CB, which is
in charge of implementing the logic of the circuit, can be modelled as i) a
four-input Look-Up Table (LUT) providing the same functionality as a four-
variable function for combinational logic; ii) a D-type Flip-Flop (FF) that acts
as a storage element for sequential logic; and iii) a number of multiplexers that
can modify the functionality provided by the CB.

Each CB presents four different inputs for combinational logic and one
for sequential logic. Also, there exists the possibility of obtaining either a
sequential or combinational output from the block. The CLK input delivers
the clock signal to all the sequential elements of the FPGA. The Global Set
Reset (GSR) input can be used to trigger the set or reset of all the FFs in all the
CBs of the device. Likewise, the Local Set Reset (LSR) input can set or reset
the state of just the FF it feeds. The structure of the CB, its compounding
elements and their possible interconnection is shown in the Figure 3.13.

(LUT)

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

PRMux (MUX5)GSRin

CLKin

LSRin

CLRMux (MUX6)

FFin InvertFFinMux (MUX1)

InvertLSRMux (MUX3)

LUTorFFMux
(MUX2)

LSRMux (MUX4)‘0’

LOOK-UP TABLE

FLIP-FLOP
(FF)

0

1

0

1
0

1

0

1

0

1

0

1

CONFIGURABLE LOGIC BLOCK (CB)

Figure 3.13: Structure of a generic configurable block.

The whole set of CBs is interconnected by means of a grid of programmable
matrices (PMs). Although the studied FPGA’s architectures present different
possibilities in terms of interconnection resources, like pass transistors or tris-
tate buffers, and connectivity capabilities, generic PMs must be kept as simple
as possible since dissimilar architectures will simply lead to different routing
problems.

Then, a generic PM consists of a number of pass transistors that can be
turned on or off to establish a connection between the vertical and the hori-
zontal communication channels of the FPGA. Any line segment may connect
to segments in the four possible directions (north, south, east, and west) when
reaching an intersection at a PM. Figure 3.14 depicts this particular structure.

35

3.4. Generic FPGA architecture

PASS TRANSISTOR
(PT)

PROGRAMMABLE MATRIX (PM)

North

South

EastWest

Figure 3.14: Structure of a generic programmable matrix.

The configuration memory of the FPGA which, for simplicity, is not de-
picted in Figure 3.10, controls the behaviour of all the reconfigurable elements.

• Look-Up Tables. These elements, which usually describe a 4-input
combinational function, are implemented as a 16x1-bit memory. Since
their contents are directly represented by some bits in the configuration
memory of the FPGA, they can be read and written straightforwardly.

• Flip-Flops. The D-type FFs are 1-bit storage elements. The stored
information is mapped to 1 bit of the FPGA’s configuration memory
and, although it can be read, it cannot be directly modified. The only
way of changing the current state of a FF is by normal operation or by
triggering the set or reset signals of the precise FF.

• Multiplexers. The control bit of these elements enables the first input
(‘0’) or the second one (‘1’) to drive the output of the multiplexer in
question. This bit, which corresponds to another bit in the configuration
memory of the FPGA, can be directly read and written to change the
configuration of the multiplexer.

• Pass transistors. These elements are in charge of interconnecting the
routing segments of the FPGA. The control bit of a pass transistor can
be set to ‘1’ to turn it on, thus allowing the communication between two
routing segments, or to ‘0’ to turn it off, disabling then the connection.
This bit, which is mapped to a bit in the FPGA’s configuration memory,
can be read and written directly for each pass transistor.

• Memory blocks. These synchronous blocks store information arranged
in rows and columns. All this information is mapped to some bits of the
configuration memory of the FPGA and, in opposition to what happened
in the case of FFs, they can be read and written straightforwardly.

36

Chapter 3. FPGA-based Fault Injection

Therefore, the dynamic resources reallocation, on which Run-Time Recon-
figuration approaches rely, is performed by reading and writing the suitable
bits of the FPGA’s configuration memory.

A number of operations can be defined, according to the proposed archi-
tecture, to access (read and write) this configuration memory and, therefore,
obtain or modify the current configuration of the element associated to those
memory bits. The basic operations that are available to achieve this goal are
listed in Table 3.1.

Table 3.1: Basic operations on the configuration memory of the FPGA to dynami-
cally reallocate its configurable resources.

Element Read operation Write operation
Look-Up Table L (LUTl) LUTl() LUTl(new contents)
Flip-Flop F (FFf) FFf () -

Multiplexer M (MUX[1-6]i) MUX[1-6]i()
MUX[1-6]i(‘0’)
MUX[1-6]i(‘1’)

Pass transistor P (PTt) PTt() PTt(off), PTt(on)

Memory block M (RAMBb) RAMBb(word, bit) RAMBb(word, bit, ‘0’)
RAMBb(word, bit, ‘1’)

Three auxiliary operations (trace, neighbours and route), which ease the
task of dealing with the FPGA’s routing elements, are defined in Table 3.2.

Table 3.2: Auxiliary operations to manage the routing elements of the FPGA.

Operationa Description

trace(source) Provides the set of pass transistors
currently used by the line with origin source.

neighbours(source) Provides the set of pass transistors
that can connect source to adjacent segments.

trace(source, destination) Provides the set of pass transistors
currently used to route source to destination.

route(source, destination) Provides the set of pass transistors that
could be used to connect source with destination.

asource and destination refer to elements along a routing line, either CB in-
put/output pins or pass transistors.

These operations will be used throughout the present thesis to ease the task
of specifying how to manage the configuration memory of the FPGA to emulate

37

3.5. Conclusions

the behaviour of the system in the presence of the desired fault. Obviously,
the actual implementation of these operations will depend on the architecture
of the selected FPGA.

3.5 Conclusions

Model-based fault injection techniques can be applied in the first stages of the
development cycle, thus reducing the cost of fixing any error on the design.
However, the time required to simulate large and complex models restricts the
applicability of these techniques.

FPGAs have been proposed as a means to accelerate model-based fault
injection experiments by implementing the model of the system. The use
of FPGAs with fault injection purposes is known as fault emulation, and joins
the benefits of prototype- (fast execution) and model-based (early and low cost
validation) fault injection techniques. Two different techniques, Compile- and
Run-Time reconfiguration, have evolved from the original serial fault emulation
to improve the execution time of fault injection experiments.

Compile-Time Reconfiguration presents a negligible reconfiguration time,
although the model instrumentation may increase the size of the model beyond
the capabilities of the selected FPGA. In this case, several partial instrumen-
tations are mandatory to cover the whole set of desired fault experiments, thus
resulting in long synthesis and implementation processes.

Run-Time Reconfiguration only requires a single implementation of the
system’s model. Even though the programmable device must be reconfigured
several times per experiment, the temporal cost of the reconfiguration processes
is greatly counterbalanced by the time saved by implementing the model once.

Since one of the main goals of this thesis is to accelerate model-based
fault injection experiments for a wide set of hardware fault models conside-
red representative of new deep-submicron manufactured systems, Run-Time
Reconfiguration has been selected as the best suitable methodology in order
to obtain the better speed-up ratio when injecting faults into these kind of
systems.

That particular fault injection technique is closely related to the architec-
ture of the considered programmable device. Hence, to make this study as
comprehensive as possible, the generic FPGA architecture proposed in Section
3.4 will be used to develop new methodologies for the injection of all the con-
sidered hardware fault models. This generic approach could be easily adapted
later to the particular architecture of any available FPGA.

38

Chapter 4

New Approaches for Transient
and Permanent Faults
Emulation

Deep-submicron technologies have brought into scene new and more complex
fault models, such as pulse, stuck-opens, indeterminations, delays, shorts,
open-lines, and bridgings, apart from the classical bit-flips and stuck-ats.

Up to now FPGAs have been successfully used to emulate the occurrence of
the well-known bit-flips and stuck-ats, but the rest of faults considered repre-
sentative of new semiconductor technologies have not been address yet.

This Chapter describes novel approaches for emulating the occurrence of
the proposed fault models into the system’s model by using FPGAs. Since
it adopts a Run-Time Reconfiguration methodology, the reconfiguration time
devoted to the injection of each fault is reported. A comparison among the
different possibilities is also presented when several options are available.

4.1 Introduction

On the one hand, transient faults appear during the operation of the circuit for
a short period of time, usually as a result from the interference or interaction
of the circuitry with its physical environment. On the other hand, permanent
faults are due to irreversible physical defects in the circuit as a result of the
manufacturing process or the normal operation of the system.

Although FPGAs have been successfully used to emulate the occurrence
of bit-flips and stuck-ats, Sections 2.2 and 2.3 exposed the necessity of taking
into account new and more complex fault models at logic and RT levels when
assessing the dependability of deep submicron manufactured systems, like the

39

4.1. Introduction

transient pulses, indeterminations and delays, and the permanent stuck-opens,
indeterminations, delays, short, open-lines, and bridgings.

Systems described at the RT level account how data is transformed as it
passes from register to register. The generic configurable block presented in
Section 3.4, which consists in a LUT, implementing the combinational logic of
the circuit, that drives the associated FF, nicely match an RT level descrip-
tion. Hence, FPGAs are very well-suited for the implementation of systems
described in the logic and RT levels and, as a result, the emulation of faults
into these description levels by means of FPGAs seems quite promising.

Run-Time Reconfiguration, the selected approach for fault emulation, relies
in the dynamic reallocation of FPGA’s resources to emulate the occurrence of
faults into the system’s model. This is achieved by reconfiguring the FPGA, i.e.
by modifying the contents of its configuration memory to change the behaviour
of the configurable elements of the programmable device. Hence, operations
listed in Table 3.1 and Table 3.2 are considered to modify the configuration
memory of the FPGA and thus the behaviour of its configurable elements.

When dealing with transient faults the fault remains into the system until
its duration expires. After that, and according to the proposed approach, the
internal resources of the FPGA have to be dynamically reallocated again to
restore the previous fault-free configuration of the system. However, the state
of the system is kept untouched, as it could have been modified by the fault.

However, due to their nature, permanent faults do not expire and remain
in the system forever.

Therefore, the main goal of this Chapter is to detail the proposed metho-
dology for the injection of each considered transient [83] and permanent [84]
fault model following a Run-Time Reconfiguration approach. This study will
determine which are the logic elements affected by those faults, how they are
mapped to FPGAs resources, and how these resources can be reconfigured to
emulate the behaviour of the faulty system.

Although the considered methodology is flexible enough to offer a range of
different possibilities, like emulating transient shorts, this work has been fo-
cused on emulating the occurrence of the fault models considered representative
of deep-submicron technologies as defined by the representativeness study [4].

All the identified approaches are analysed in terms of their applicability
and the time devoted to the FPGA reconfiguration. The emulation of bit-
flips is presented in Section 4.2, and stuck-ats emulation appears in Section
4.3. Sections 4.4, 4.5, and 4.6, detail the emulation of pulses, stuck-opens, and
indeterminations, respectively, which are all based on the previously presented

40

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

approaches for the emulation of stuck-ats. After that, the injection of delays is
described in Section 4.7. The emulation of faults based on rerouting the circuit
implemented on the FPGA, like shorts, open-lines, and bridgings, is presented
in Sections 4.8, 4.9, and 4.10, respectively. Finally, Section 4.11 summarises
the results of this analysis and draws the main conclusions of this work.

4.2 Emulation of bit-flips

Bit-flip is one of the most used transient fault models which consists in in-
verting the current logic state of a memory cell. It has no associated duration
and, as a result, there is no need to delete the fault. The affected bit holds
the faulty logic value until it is rewritten by the normal operation of the system.

The occurrence of a bit-flip into a system’s model will affect those ports,
signals, and variables, that are used to implement the sequential logic (memory
elements) of the system. So, these are the injection points that are taken into
account when injecting bit-flips into the system’s model.

However, once the model is synthesised and implemented onto an FPGA,
it is necessary to locate the internal components those injection points have
been mapped to in order to inject the very same faults but using an FPGA.

Figure 4.1 depicts a hardware component with some sequential elements
described in VHDL, and how their mapping to an FPGA once synthesised.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity example is
Port (clk: in std_logic;

write_enable : in std_logic;
address : in std_logic_vector(3 downto 0);
data_in : in std_logic_vector(7 downto 0);
data_out: out std_logic_vector(7 downto 0));

end example;

architecture Behavioral of example is

type ram_type is array (0 to 15) of std_logic_vector(7 downto 0);
signal ram_memory: ram_type;
signal memory_out: std_logic_vector(7 downto 0);

begin

process(clk)
begin

if clk’event and clk = ‘1’ then
if write_enable = ‘1’ then

ram_memory(conv_integer(address)) <= data_in;
else

memory_out <= ram_memory(conv_integer(address));
end if;

end if;
end process;

process(clk)
begin

if clk’event and clk = ‘1’ then
data_out <= memory_out;

end if;
end process;

end Behavioral;

Synthesis

Technology
mapping

(a)

(b)

(c)

RAM 16x8

WEA

CLK

ADDR(3:0)

DIA(7:0)

DOA(7:0)

FD

D

C

Q

clk

data_in

data_out

address

write_enable

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

4
Address

DataOut

8

8
DataIn

WriteEnable

ChipEnable

>Clock

MEMORY
BLOCK

(2 x 8)
4

Figure 4.1: Example of the implementation of a sequential circuit by means of an
FPGA. The model of the sequential circuit (a) is synthesised to extract the described
logic (b). This logic is then mapped to the internal elements of the FPGA (c).

41

4.2. Emulation of bit-flips

According to Figure 4.1a, signals ram_memory and memory_out, describe
a 16x8 RAM memory and a 8-bit flip-flop respectively. So these are the ele-
ments that could be affected by bit-flips during the model’s simulation.

Considering the technology mapping shown in Figure 4.1c, the implementa-
tion of this model onto and FPGA will map these elements to a memory block
and a FF in a CB. Thus, these are the injection points that can be considered
when emulating the occurrence of bit-flips and, in general, any kind of faults
targeting the sequential logic of the system.

First of all, we will consider the occurrence of a bit-flip in a memory block,
since it is the simplest of the approaches and could exemplify the procedure to
be followed for the rest of the considered faults. After that, the emulation of
this kind of faults in FFs will be addressed.

4.2.1 Injecting bit-flips into memory blocks

This fault will affect one of the bits of the selected memory block.
Its emulation is as simple as obtaining the current logic state of the targeted

memory cell and writing the opposite one. The following steps, depicted in
Figure 4.2, detail that process.

RAMB (2, 3)b

m
Address DataOut

n

n
DataIn

WriteEnable

ChipEnable

>Clock

(2 x n)
m

words bits

11001010

00001100

00000011

00000000

.
.
.
.
.
.

00101000

m
Address DataOut

n

n
DataIn

WriteEnable

ChipEnable

>Clock

(2 x n)
m

words bits

11001010

0000 1000

00000011

00000000

.
.
.
.
.
.

00101000

not(’1’) = (’0’)

RAMB (2, 3, ‘0’)b

(a) (b)

Figure 4.2: Emulating the occurrence of a bit-flip into a memory block. The content
of the fault-free memory cell (a) is reversed by the fault (b).

a) The first step consists in reading the current value of that bit to determine
which is the logic state that must be induced in the memory cell. It can
be obtained by reading the proper bit from the configuration memory of
the FPGA (value = RAMBb(word, bit)).

b) The new expected logic value of the affected memory cell can be easily
drawn from this information (from ‘0’ to ‘1’ or vice versa). This new
value is then written into the configuration memory of the FPGA to
modify the contents of the memory block (RAMBb(word, bit, value)).

42

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

In that way, the system now behaves as if a bit-flip fault had occurred.

Considering that reading and writing a bit from the configuration memory
of the FPGA takes one time unit (T), the time required to reconfigure the
FPGA to inject a bit-flip into a memory block is computed by Equation 4.1.

(read the state of the memory cell) T+
(invert the state of the memory cell) T = (4.1)

(total) 2T

4.2.2 Injecting bit-flips into FFs

In general, the occurrence of faults is not synchronised with the execution of
the system. This causes that the only way to asynchronously change the state
of a FF is to trigger the signals that control its set and reset logic.

As can be seen in Figure 3.13, the set/reset logic of FFs is controlled by
the Global Set Reset (GSRin) line, which can be pulsed by sending the proper
command (represented by the function TriggerGSRLine()) to the FPGA.

Thus, the methodology proposed in [59] is based on the use of the GSRin
line. This common approach is next described to better understand this in-
jection process and show its main drawbacks. Afterwards, a new methodology
that improves the speed-up obtained by this technique is presented [85].

4.2.2.1 Using the Global Set Reset (GSRin) line

The GSRin line, as its name states, is a global line that drives the set/reset logic
of all the FFs of the FPGA. Hence, pulsing that line will cause the activation of
the set or reset (depending on the configuration of the associated multiplexers)
of all the FFs of the system.

The use of the GSRin line for emulating the occurrence of bit-flips into FFs
involves the following steps, which are also illustrated in Figure 4.3.

a) The state of all the FFs of the system must be read (FFf ()). This
information is not only necessary to invert the current logic value of the
FF affected by the fault, but also to keep the current logic value of the
rest of FFs.

b) According to this, the multiplexers that manage the set/reset of the FF
(MUX5 and MUX6, cf. Figure 3.13) must be properly reconfigured.

In case that a FF must hold its current low logic level, the suitable
operations for the GSRin line to drive the clear input of the FF are

43

4.2. Emulation of bit-flips

MUX5i(‘0’) and MUX6i(‘1’). If the FF must keep a high logic level,
its set input will be fed by the GSRin line by executing MUX5i(‘1’) and
MUX6i(‘0’).

When considering the inversion of the FF’s current low logic state, the
appropriate operations to connect the FF’s set input to the GSRin line
are MUX5i(‘1’) and MUX6i(‘0’). On the other hand, inverting a high
logic state requires the execution of MUX5i(‘0’) and MUX6i(‘1’) for
the GSRin line to drive the FF’s clear input.

c) Now, the GSRin line can be pulsed (TriggerGSRLine()) to reverse the
current state of the FF targeted by the fault.

d) Once the fault has been injected into the system, those multiplexers that
were reconfigured to allow for the fault injection must be restored to their
previous configuration (MUX5i(‘0’/‘1’) and MUX6i(‘0’/‘1’)).

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a)

not(‘1’)=(’0’)

FF ()i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

MUX5 (’0’)i

MUX6 (’1’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(d)

MUX5 (’1’)i

MUX6 (’0’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(c)

TriggerGSRLine()

Figure 4.3: Emulating the occurrence of a bit-flip into a FF by using the GSRin
line. The content of the fault-free FF is read (a) to determine how to configure the
multiplexers that control the set/reset logic of the FF (b). Pulsing the GSRin line (c)
flips the logic state of the FF and, after that, the multiplexers are reconfigured to their
previous state (d).

The main problem this common approach has to face is inherent to the use
of the GSRin line to activate the set/reset of the affected FF. This global line
drives all the FFs of the device, causing that the state of all the FFs must be
read and all the MUX5 and MUX6 multiplexers must be reconfigured twice
(to inject the fault and restore its previous configuration).

Let us assume that reading/writing a bit from/to the configuration memory
of the FPGA takes one time unit (T). According to this, and considering

44

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

the steps involved in applying the GSRin-based methodology, the FPGA’s
reconfiguration time when injecting a bit-flip into a system comprising n FFs
is computed by Equation 4.2.

(read the state of all the FFs) nT+
(configure all the multiplexers MUX5 and MUX6) 2nT+

(pulse the GSRin line) 0+ (4.2)
(restore the previous state of all the multiplexers) 2nT =

(total) 5nT

This is the worst case function, since it considers that all the multiplexers
have to be reconfigured to inject the fault into the system. Assuming that
m is the percentage of multiplexers that are already properly configured to
inject the fault, the time devoted to the FPGA reconfiguration is computed by
Equation 4.3.

(read the state of all the FFs) nT+

(configure m% of multiplexers) 2n
m

100
T+

(pulse the GSRin line) 0+ (4.3)

(restore the state of m% of multiplexers) 2n
m

100
T =

(total) (n + 4n
m

100
)T

4.2.2.2 Using the Local Set Reset (LSRin) line

As one of the main goals of this work is to accelerate, as much as possible, the
execution of model-based fault injection experiments, we have devised a novel
approach for injecting bit-flips into FFs that has the merit of reducing the time
devoted to the injection of the fault. This approach is also based on activating
the set/reset signals of the affected FF but, instead of using the GSRin line for
that purpose, the Local Set Reset line (LSRin) is proposed as an alternative.

As its name states, the LSRin line is local to the associated FF. This
means that the activation of that line only triggers the set or reset of the FF
it drives and the rest of the circuit remains unaffected. It is mainly used to
implement elements, such as counters or registers, that must be individually
set to a particular state at some moment (when reaching a certain count, for
example).

45

4.2. Emulation of bit-flips

The main problem with the LSRin line is that it cannot be directly pulsed
as in the case of the GSRin line. Therefore, as it must be pulsed by the normal
operation of the circuit, it has not been considered yet for the emulation of bit-
flips into FFs. Nevertheless, we have contrived a tricky use of FPGA’s internal
resources that enables the activation of the LSRin line by following the steps
depicted in Figure 4.4.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a)

not(’1’) = (’0’)

FF ()i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)/(’0’)?

(b)

MUX5 (’1’)i

MUX6 (’0’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(d)(c)

MUX4 (’1’)i

MUX3 (’1’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

MUX3 (’0’)i

MUX5 (’0’)i

MUX6 (’1’)i

MUX4 (’0’)i

Figure 4.4: Emulating the occurrence of a bit-flip into a FF by using the LSRin line.
The state of the fault-free FF is read (a) to determine how to configure the multiplexers
that control the set/reset logic of the FF (b). The LSRin line is also connected to the
set/reset logic. The LSRin line is pulsed (c) by inverting its incoming logic value to
flip the state of the FF and, after that, all the involved multiplexers are reconfigured
to their previous state (d).

a) The state of only the targeted FF must be read (FFf ()). This clearly
outperforms the GSRin-based approach that required reading the state
of all the FFs of the system.

b) According to this information, the multiplexers that control the set/reset
logic of the FF (MUX5 and MUX6) must be properly reconfigured.

If the current state of the FF must be changed to a low logic state,
MUX5i(‘1’) and MUX6i(‘0’) are the proper operations to be performed.
In case that the FF’s final state should be a high logic state, its set in-
put line will be fed by the LSRin line by executing MUX5i(‘0’) and
MUX6i(‘1’).

Again, this step only affects the multiplexers associated to the targeted
FF and not the rest of multiplexers of the system.

46

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

The multiplexer MUX4 must also be configured to make the LSRin line
drive the set/reset lines of the FF (MUX4i(‘1’)).

c) Now, the LSRin line must be pulsed to reverse the current state of the
selected FF. Even though that line cannot be externally pulsed, the pro-
cedure to achieve that goal follows.

Whether the LSRin line is being used or not in the system, it is not pos-
sible to ascertain the logic state that line is holding at the fault injection
time. If the line is in use, it can be driven by some combinational logic
and, therefore, its current state cannot be guessed. If the line is not used,
it is usually bound to a logic ‘1’ or logic ‘0’ depending on the particular
architecture of each FPGA.

Nonetheless, the multiplexer that is in charge of inverting the incoming
value of that signal (MUX3) can be used to cause a pulse in the line.
No matter what is the current logic state of the line, this multiplexer
can invert the incoming value of the LSRin line (MUX3i(‘0’)) and, after
that, it can be configured to drive the original logic value of the signal
(MUX3i(‘1’)). This sequence of operations will cause a pulse in the
LSRin line that will assure the activation of the set/reset logic of the FF
whatever the logic state of the LSRin line is.

d) In the last stage, all the multiplexers that have been used in this pro-
cess must be restored to their previous configuration (MUX3i(‘0’/‘1’),
MUX4i(‘0’/‘1’), MUX5i(‘0’/‘1’) and MUX6i(‘0’/‘1’)).

Equation 4.4 computes the FPGA’s reconfiguration time required to inject
a bit-flip using the LSRin line, assuming that reading/writing a bit from/to the
configuration memory of the FPGA takes one time unit (T), and that all the
multiplexers involved in the process must be reconfigured to inject the fault.

(read the state of one FF) T+
(configure the multiplexers MUX5 MUX6 and MUX4) 3T+

(pulse the LSRin line by reconfiguring MUX3) T+ (4.4)
(restore the previous state of the multiplexers involved) 4T =

(total) 9T

Equation 4.5 presents the reconfiguration time required to emulate that
fault in case that the m% of multiplexers are not properly configured yet.

47

4.2. Emulation of bit-flips

(read the state of one FF) T+

(configure m% of multiplexers) 3
m

100
T+

(pulse the LSRin line by reconfiguring MUX3) T+ (4.5)

(restore previous state of involved multiplexers) (1 + 3
m

100
)T =

(total) (3 + 6
m

100
)T

4.2.2.3 Discussion

As can be clearly seen from Equations 4.4 and 4.5, the LSRin-based approach
does not depend on the number of FFs of the considered system.

Figure 4.5 shows the temporal cost of the reconfiguration associated to the
use of these two approaches in terms of number of FFs (n) and the percentage
of multiplexers that have to be reconfigured (m).

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Flip-Flops (n)

T
im

e
u
n
it
s

(T
)

GSR

LSR

m = 100.0

m = 0.0

m = 100.0

m = 0.0

Figure 4.5: Cost in time units of injecting a bit-flip into a FF by using the GSR and
the LSR approaches. The cost of using the GSRin line, depending on the percentage of
multiplexers that must be reconfigured (m), appears in dark grey. The temporal cost
of using the LSR approach is depicted in light grey. The black coloured area indicates
the range where both approaches could be indistinctly used.

The common GSR approach may have some benefits when considering a
system comprising a maximum of 3 FFs, whereas the use of the LSRin line is
the best approach for any system with more than 9 FFs. Taking into account
Equations 4.4 and 4.5, and depending on the parameters n and m, the speed-
up ratio attainable by the conventional approach ranges between n

3 (m = 0%)
and 5n

9 (m = 100%).

Hence this novel approach greatly accelerates the injection of the bit-flip
faults into modern complex systems.

48

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

4.2.3 Summary

Bit-flips may affect any sequential element of the system, which are usually
implemented as either memory cells of flip-flops.

A novel methodology has been presented to emulate the occurrence of bit-
flips into the flip-flops of the system, which speeds-up the conventional ap-
proach that has been followed up to now.

The emulation of bit-flips by means of the different considered approaches
is summarised following a C-like pseudo-code in Table 4.1.

Table 4.1: Pseudo-code for injecting a bit-flip into the system.
Fault injection
switch (target) {

case MEMORY_BLOCK:
stateBit = RAMBj(word, bit);
RAMBj(word, bit, not stateBit);
break;

case FF:
stateFFj = FFj();
for (i = 3; i < 7; i++) stateMUX[i]j = MUX[i]j();
if (existsLSRin) {

MUX[5]j(stateFFj);
MUX[6]j(not stateFFj);
MUX[4]j(‘1’);
MUX[3]j(not stateMUX[3]j);
for (i = 3; i < 7; i++) MUX[i]j(stateMUX[i]j);

} else {
MUX[5]j(not stateFFj);
MUX[6]j(stateFFj);
MUX[4]j(‘0’);
for (i = 0; i < #FFS; i++) {

if (i != j) {
stateFFi = FFi();
for (k = 4; k < 7; k++) stateMUX[k]i = MUX[k]i();
MUX[5]i(stateFFi);
MUX[6]i(not stateFFi);
MUX[4]i(‘0’);

}
}
TriggerGSRLine();
for (k = 0; k < #FFS; k++)

for (i = 4; i < 7; i++) MUX[i]k(stateMUX[i]k);
}

}
break;

}

49

4.3. Emulation of stuck-ats

4.3 Emulation of stuck-ats

The stuck-at is one of the most popular used permanent fault models, in which
the logic state of the targeted element is bound to a low- (stuck-at-0) or high-
logic level (stuck-at-1) regardless the evolution of its inputs.

This fault may affect both the combinational and sequential logic of the
system’s model. Then, LUTs (combinational logic) and FFs (sequential logic)
are the FPGA’s internal resources that must be reconfigured when emulating
the occurrence of stuck-ats in the system.

The following Sections will deal with the emulation of stuck-ats affecting
these configurable elements.

4.3.1 Injecting stuck-ats into combinational logic

As no real combinational logic is usually available in the architecture of current
FPGAs, combinational functions are implemented by means of LUTs.

The synthesis process extracts the combinational logic described by the
system’s model, which is optimised to obtain a reduced combinational circuit
with the same functionally. This reduced circuit is divided into 4-variable
functions to fit the 4-input LUTs present in the generic FPGA architecture
described in Section 3.4. This whole process is shown in Figure 4.6.

{’0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’}

W

X

Y

Z

F
N26

N24

N18

N20

N30

N28

N22

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity example is
Port (w : in std_logic;

x : in std_logic;
y : in std_logic;
z : in std_logic;
f : out std_logic);

end example;

architecture Behavioral of example is

signal notW, notY, notZ, and1, and2, and3, or1: std_logic;

begin

notW <= not w;
notY <= not y;
notZ <= not z;

and1 <= x and notY and notZ;
and2 <= notW and z;
and3 <= w and y;

or1 <= and1 or and2 or and3;

f <= or1;

end Behavioral;

Synthesis

Where is the structure
of the logic function?

Where are the signals
declared in the model?

Technology
mapping

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(a)

(b)

(c)

Figure 4.6: Example of the implementation of a combinational logic function by
means of a 4-input LUT. The model that describes the combinational function (a)
is synthesised to obtain a structural representation of the circuit (b). This circuit is
divided into 4-variable functions which are mapped to the LUTs of the FPGA (c).

50

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

The occurrence of stuck-ats into the combinational logic of the system’s
model will affect those ports, signals, and variables, implementing that logic.
So, according to Figure 4.6a, ports w, x, y, z, and f, and signals notW, notY,
notZ, and1, and2, and3, and or1, are eligible for being targeted by these faults.

However, LUTs have been usually considered as black boxes that implement
the combinational logic of the system. For that reason, stuck-at faults were
only injected at the input and output ports of these black boxes (w, x, y, z,
and f in Figure 4.6b), which was known as Line Stuck-At (LSA).

Clearly, this approach poses a representativeness problem, since it does not
really cover all the possibilities for the realistic occurrence of these faults in the
logic structure. For instance, the insertion of stuck-at faults at the inputs and
output of the LUT depicted in Figure 4.6 will not consider stuck-at faults that
may occur into the logic structure of the combinational circuit it represents
(NOT gates N24, N20, and N18, and AND gates N30, N28, and N22).

To cope with this problem, a new fault model, named Combination Stuck-
At (CSA), was suggested in [86] [87]. It consists in extracting a structural
representation of the combinational circuit implemented by the LUT to con-
sider the possible occurrence of faults in the logic gates and lines of that circuit.

We have considered this approach, as shown in Figure 4.7, to cover the
occurrence of stuck-ats and, in general, of any kind of faults into the combina-
tional logic of the system implemented as a LUT.

a) The LUT contents represent the truth table of the combinational function
implemented by this element (LUTl()). A structural representation of
that circuit can be extracted from this information by using, for instance,
the Quine-McCluskey algorithm [88] [89].

b) The fault may affect any logic element, signal, input and output of the
extracted circuit. Once that the fault injection point has been selected,
the structural representation of the circuit is modified to take into ac-
count the occurrence of the fault. Since dealing with stuck-ats, they can
be emulated by considering that the affected line is now being driven a
low (stuck-at-0) or high (stuck-at-1) logic level.

The new truth table of the faulty circuit is then computed (faultyLUT
= new LUTl(fault location, stuck-at)).

c) Now, the LUT have to be reconfigured to emulate the behaviour of the
system in the presence of the fault. This is accomplished by modifying
the contents of the proper bits of the configuration memory to match the
new computed faulty truth table (LUTl(faultyLUT)).

51

4.3. Emulation of stuck-ats

(a)

{’0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’}

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT ()l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT (NAND3, ‘0’)l

(b)

(c)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT (faultyLUT)l

stuck-at-‘0’ LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

{’ ’, ‘1’, ‘ ’, ‘1’, ‘1’, ‘1’, ‘ ’, ‘1’, ‘ ’, ‘ ’, ‘1’, ‘1’, ‘1’, ‘ ’, ‘1’, ‘1’}1 1 1 1 1 1

Figure 4.7: Emulating the occurrence of a stuck-at-0 into combinational logic imple-
mented as a LUT. A structural representation of the combinational circuit is extracted
from the LUT’s contents (a). The output of the NAND3 gate is affected by the stuck-
at-0 (b) and the new truth table of the faulty circuit replaces LUT’s contents (c) to
emulate the occurrence of the fault.

This approach emulates the occurrence of stuck-ats in the system model
under study by modifying the contents of the LUT where the targeted com-
binational logic maps to. As LUTs are usually implemented as a 16x1 bit
memory, and considering that writing a bit into the configuration memory of
the FPGA takes one time unit (T), the time devoted to reconfigure the FPGA
can be computed by Equation 4.6.

(configure the LUT ′s contents to inject the fault) 16T = (4.6)
(total) 16T

This Equation assumes that all the bits of the LUT must be reconfigured.
Taking into account that usually this is not the case and only the k% of these
bits have to be reconfigured, the FPGA’s reconfiguration time is computed by
Equation 4.7.

52

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(configure the k% of LUT ′s bits to inject the fault) 16
k

100
T = (4.7)

(total) 16
k

100
T

4.3.2 Injecting stuck-ats into sequential logic

The sequential logic of the system is usually implemented by means of FFs.
The occurrence of a stuck-at may cause the FF’s current logic state to

change. However, as previously explained, the only way of asynchronously
modifying the state of a FF is via its set/reset signals. Consequently, the same
procedures presented in Section 4.2.2 to invert the current state of the FF can
be used now for the emulation of this fault.

In case that the FF already holds the desired final logic state, this step is
obviously needless.

As dealing with a permanent fault, once the FF presents the desired logic
state, it is necessary to keep it constant. Three different approaches to fix
the logic state of the FF, based on the use of the FF’s LSRin line, the LUT
associated to the FF, and the FF’s clock signal, are next described.

4.3.2.1 Using the unused Local Set/Reset (LSRin) line

One of the possibilities for keeping constant the current logic state of a FF
is causing a continuous set (stuck-at-1) or reset (stuck-at-0). Evidently, this
cannot be attained by using the GSRin signal, since it will cause all the FFs of
the system to set/reset uninterruptedly. The only sensible possibility is using
the LSRin signal to set or reset the affected FF.

As previously reported, unconnected CB’s inputs are usually bound to a
high- or low-logic level depending on the particular architecture of each FPGA.
Thus, a very similar approach than that presented at Section 4.2.2 may be used.

However, if the LSRin line is being currently used by the system, there is no
way to assure that it will continuously set/reset the FF. The normal operation
of the system may modify the current logic state of the line at anytime.

This approach, which Figure 4.8 exemplifies, is thus applicable only when
that particular LSRin line is not being used by the system.

a) Firstly, it is necessary to check whether the LSRin line is actually unused.

A simple possibility is checking the multiplexer that enables the LSRin
line to drive the set/reset logic of the FF (MUX4i()). If its control bit is
set to ‘0’ the LSRin line will surely be unused.

53

4.3. Emulation of stuck-ats

A thorough examination can check the pass transistor that connects the
routing logic to the LSRin line (PTLSRint). The LSRin line will also be
unused if this pass transistor is off.

In case that the line is being used, another procedure should be conside-
red for the injection of the fault.

b) In order to fix, and at the same time change, the current logic state of
the faulty FF, the multiplexers that control its set/reset logic (MUX5
and MUX6) must be properly reconfigured.

In case the FF must hold a low logic state, MUX5i(‘1’) and MUX6i(‘0’)
are the proper operations to be performed. If it must keep a high logic
state, the LSRin line will feed the FF’s set signal when MUX5i(‘0’) and
MUX6i(‘1’).

The multiplexer MUX4 must also be configured to make the LSRin line
drive the set/reset lines of the FF (MUX4i(‘1’)).

Now, the multiplexer that is in charge of inverting the incoming value of
the LSRin signal (MUX3) can be used to properly treat this value.

If the FPGA’s architecture provides a low logic level to the unused CB’s
inputs, this multiplexer can invert the incoming value of the LSRin line
(MUX3i(‘0’)) to activate the set/reset of the FF. Otherwise, it can be
configured to drive the high logic value of the signal (MUX3i(‘1’)).

In this way, the set/reset logic of the FF is continuously activated, keep-
ing its current logic state fixed to the desired value.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(a) stuck-at-’1’

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

MUX4 (’1’)i

MUX3 (’1’)i

MUX4 ()i

Unused LSRin line bound to ‘1’

Figure 4.8: Emulating the occurrence of a stuck-at-1 into sequential logic by using
the LSRin signal. The configuration of the system is checked to confirm that this
approach can be used (a). The multiplexers that control the set/reset logic of the FF
are reconfigured for the LSRin line to feed the reset signal of the affected FF (b) thus
emulating the occurrence of the fault.

The time units (T) required to reconfigure the FPGA to emulate the oc-
currence of a stuck-at that fixes the FF’s logic state by using this approach

54

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

can be determined by Equation 4.8. T stands for the the time required to read
or write one bit of the FPGA’s configuration memory, whereas m represents
the percentage of multiplexers that must be reconfigured to keep activated the
set/reset of the FF.

(configure the m% of multiplexers) (1 + 2
m

100
)T+

(reconfigure MUX3) T = (4.8)

(total) (2 + 2
m

100
)T

4.3.2.2 Using the unused LUT associated to the FF

Another possibility to fix the logic state of the affected FF is to continuously
feed it with the required value. In this way, the normal operation of the system
will rewrite the same value the FF holds.

This can be achieved, for instance, by configuring the LUT present at the
same CB as the FF to provide the desired logic value permanently.

Consequently, the approach next described can only be applied, as depicted
in Figure 4.9, when the required LUT is not being used by the system.

a) This first step consists in determining whether the LUT present at the
same CB as the FF affected by the fault can be used to inject the fault.
In case that the LUT is not being used at all or that it is already feeding
the affected FF and only that FF, this LUT is eligible to drive a constant
value to that FF.

A simple option is to check the pass transistor that connects the output of
the LUT to the rest of the circuit (PTLUToutt()). If that pass transistor is
off the LUT is isolated from the rest of the circuit or, at most, connected
to the input of the proper FF. If that LUT is already being used, it will
be necessary to consider a different approach for injecting the stuck-at.

b) The state of the targeted FF is read (FFf ()) to determine if it matches
the one caused by the fault.

If this is not the case, the very same approach presented in Section 4.2.2
must be followed to asynchronously invert the current state of the FF.

Now, that the FF already holds the desired final value, it is necessary to
continuously provide that same value to the FF’s input.

The connection between the LUT’s output and the FF’s input is per-
formed by reconfiguring the proper multiplexer (MUX2i(‘0’)).

55

4.3. Emulation of stuck-ats

Finally, the truth table of the circuit that provides a constant ‘0’ or
‘1’ (faultyLUT = new LUTl(LUT’s output, stuck-at)) is computed and
the contents of the LUT are reconfigured according to this information
(LUTl(faultyLUT)).

The normal operation of the system will not change the final logic state
induced by the fault.

{’1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’}

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(a)

stuck-at-’1’

PT ()LUTout

FF ()i

Invert FF’s state by using
the methodologybit-flip

LUT (faultyLUT)l

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

MUX2 (’0’)i

Figure 4.9: Emulating the occurrence of a stuck-at-1 into sequential logic by using
the LUT associated to the affected FF. The applicability of this approach is checked (a).
The FF’s current state must be changed by following the bit-flip emulation approach
to match the logic state caused by the fault. The LUT’s are reconfigured to provide
the suitable constant value and its output is connected to the FF’s input (b).

According to this approach, the time units (T) required to reconfigure the
FPGA to emulate the occurrence of this fault can be carried out by Equation
4.9. T stands for the time required read/write a bit from/to the FPGA’s
configuration memory, whereas m represents the percentage of multiplexers
that have to be reconfigured to invert the logic state of the FF, and k is the
percentage of bits that must be modified for the LUT to provide the desired
constant value. As some of the steps might not be taken, the minimum and
maximum reconfiguration times are computed.

(read the FF ′s current state) T+

(invert the FF ′s state, if needed) [0, (2 + 6
m

100
)T]+

(configure MUX2, if needed) [0, T]+ (4.9)

(reconfigure the LUT ′s contents) 16
k

100
T =

(minimum total) (1 + 16
k

100
)T

(maximum total) (4 + 6
m

100
+ 16

k
100

)T

56

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

4.3.2.3 Using the clock signal (CLKin) of the FF

The last of the proposed approaches to fix the logic state induced by the stuck-
at consists in neutralising the events that cause the FF to change its current
state.

As a synchronous element, a D-type FF changes its state by the one pro-
vided by its input line at each rising or falling clock edge. However, if no edge
is provided by the clock signal, the FF will keep its value indefinitely.

This goal could be attained by turning off the pass transistor that connects
the targeted FF to the clock network.

The following steps show how to achieve this aim (see Figure 4.10).

a) First of all, the current state of the affected FF is read (FFf ()).

If it do not match the final logic state caused by the stuck-at, the approach
presented in Section 4.2.2 has to be followed to asynchronously invert the
FF’s state.

b) Now, the pass transistor that routes the clock signal to the FF is turned
off to prevent any clock edge from arriving to the FF (PTCLKint(off)).

Hence, the FF will keep the final logic state of the fault.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(a)

stuck-at-’1’

FF ()i

Invert FF’s state by using
the methodologybit-flip

PT (off)CLKin

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

Figure 4.10: Emulating the occurrence of a stuck-at-1 into sequential logic by using
the clock input signal associated to the targeted FF. The FF’s current state is checked
to determine whether it must be reversed by following the bit-flip emulation approach
to match the logic state caused by the fault. The FF is disconnected from the clock net-
work by turning off the suitable pass transistor, thus preventing the FF from receiving
any clock edge (b).

Equation 4.10 computes the best and worst number of time units (T)
required to reconfigure the FPGA to apply this approach for the emulation of
a stuck-at. T is the time required to access the FPGA’s configuration memory
for reading or writing a bit, and m represents the percentage of multiplexers
that must be reconfigured to reverse the state of the FF.

57

4.3. Emulation of stuck-ats

(read the FF ′s current state) T+

(invert the FF ′s state, if needed) [0, (2 + 6
m

100
)T]+

(disconnect the FF from the clock network) T = (4.10)
(minimum total) 2T

(maximum total) (4 + 6
m

100
)T

4.3.2.4 Discussion

Three different approaches, using the LSRin line to continuously set/reset the
FF, using the LUT associated to the FF to continuously drive a constant value
to the FF’s input, and disconnecting the CLKin line from the clock network to
prevent the FF from receiving any clock edge, have been proposed to emulate
the occurrence of stuck-ats into sequential logic.

As can be seen in Figure 4.11 the use of the LUT to fix the state of the
FF results in the highest reconfiguration times. The best results are provided
by the LSRin-based and the CLKin disconnection approaches. The use of the
LSRin-based approach presents a linear distribution which is on average better
than the CLKin line disconnection.

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of bits to reconfigure (m, k)

T
im

e
u

n
it

s
(T

)

LUT

LSR

CLK

Figure 4.11: Reconfiguration temporal cost in time units for injecting a stuck-at
into a FF by using the LSR, LUT and CLKin approaches. The cost of using a LUT,
depending on the value of m (percentage of bits that must be reconfigured), appears
in dark grey. The temporal cost of disconnecting the CLKin line is depicted in light
grey. The dashed line indicates the temporal cost of using the LSRin signal to keep
fixed the FF’s faulty logic state.

58

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Hence, the best method consists in using the LSRin line, although the
CLKin one is the second option when the former is not available. The LUT-
related approach incurs a long reconfiguration time and thus should be avoided
whenever possible.

4.3.3 Summary

Stuck-ats are permanent faults that may affect both the sequential and com-
binational logic of the system.

The representativeness problem that can appear when considering the oc-
currence of faults into the combinational logic of the system, which is imple-
mented by means of LUTs, have been partially solved by following the approach
proposed in [86] under the name of Combination Stuck-At.

The occurrence of stuck-ats into sequential logic requires the use of the
previously presented approach for asynchronously changing the state of the
affected FF (see 4.2.2). Three different approaches have been proposed for
keeping the FF’s state constant afterwards.

The process for emulating the occurrence of stuck-ats by means of the
different considered approaches is summarised following a C-like pseudo-code
in Table 4.2.

4.4 Emulation of pulses

Pulses model the occurrence of Single Event Transients (SETs) into combina-
tional logic, causing the inversion of its logic state (from high to low and vice
versa) for the duration of the fault.

Although its effect is similar to that of the bit-flips into sequential logic, as
dealing with combinational logic, the logic state induced by the fault is usually
rewritten after the fault disappears from the system.

The combinational logic of the system model under study is implemented
by means of LUTs. Thus, these are the elements that must be taken into ac-
count for reconfiguration to emulate the occurrence of pulses.

In first place, the emulation of pulses via LUTs’ reconfiguration will be
addressed. After that, we will present another approach for injecting these
kind of faults in some particular cases.

59

4.4. Emulation of pulses

Table 4.2: Pseudo-code for injecting a stuck-at into the system.
Fault injection
if (fault == stuck-at-‘0’) finalValue = ‘0’;
else finalValue = ‘1’;
switch (target) {

case LUT:
stateLUTj = LUTj();
faultyLUT = LUTj(location, finalValue);
LUTj(faultyLUT);
break;

case FF:
switch (approach) {
case LSRin:

if ((MUX[4]j() == ‘0’) || (PTLSRinj() == off)) {
for (i = 3; i < 7; i++) stateMUX[i]j = MUX[i]j();
MUX[5]j(not finalValue);
MUX[6]j(finalValue);
MUX[4]j(‘1’);
MUX[3]j(‘1’);

}
break;

case LUT:
if (PTLUToutj() == off) {
if (FFj() != finalValue) injectBitFlip();
stateMUX[2]j = MUX[2]j();
stateLUTj = LUTj();
faultyLUT = LUTj(output, finalValue);
MUX[2]j(‘0’);
LUTj(faultyLUT);

}
break;

case CLKin:
if (FFj() != finalValue) injectBitFlip();
PTCLKinj (off);
break;

}
break;

}

60

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

4.4.1 Injecting pulses into combinational logic implemented as
a LUT

Section 4.3.1 described how to manage the LUT’s contents to fix the logic
value provided by an element of a combinational circuit. We have extended
this approach, as shown in Figure 4.12, to cover the occurrence of pulses into
combinational logic implemented as a LUT.

(a)

{’0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’}

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT ()l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

pulse LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

(b)

(c)

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4
LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

{’ ’, ‘1’, ‘ ’, ‘1’, ‘ ’, ‘1’, ‘ ’, ‘1’, ‘ ’, ‘1’, ‘1’, ‘1’, ‘ ’, ‘ ’, ‘1’, ‘1’}1 1 0 1 1 0 1

LUT (faultyLUT)l

LUT (NAND3,)l pulse

Figure 4.12: Emulating the occurrence of a pulse into combinational logic imple-
mented as a LUT. The LUT’s contents are read to obtain a structural representation
of the combinational circuit the LUT implements (a). The output of the NAND3 gate
is affected by the pulse (b) and the new truth table of the faulty circuit replaces the
contents of the LUT (c) to emulate the occurrence of the fault.

The main idea consists in modifying the structural representation of the
circuit implemented by the LUT to emulate the occurrence of that fault. So,
a not gate may be inserted at the injection point to achieve this goal.

61

4.4. Emulation of pulses

Since dealing with a transient fault, the system is again reconfigured after
the fault disappears to restore the original fault-free contents of the affected
LUT (LUTl(faultFreeLUT)). In that way, the fault is deleted from the system
but not its effects.

Assuming that only the k% of the LUT’s bits must be reconfigured, the
FPGA’s global reconfiguration time for injecting and deleting the fault is com-
puted by Equation 4.11.

(configure k% of LUT ′s bits to inject the fault) 16
k

100
T+

(restore the LUT ′s contents to delete the fault) 16
k

100
T = (4.11)

(total) 32
k

100
T

4.4.2 Injecting pulses by using inverter multiplexers

This is a particular approach that, although can only be applied to some special
cases, may accelerate the emulation of pulses with respect to the LUT-based
approach.

It takes benefit from those multiplexers that can invert the logic value of
some CBs’ inputs, such as the InvertFFinMux (see Figure 3.13). These multi-
plexers can be used to invert the logic value of LUTs’ output thus emulating
the occurrence of a pulse in these lines.

The steps this approach comprises, illustrated in Figure 4.13, are next
presented.

a) First of all, it is necessary to check whether the LUT’s output is driving
some CB’s input signal that can be inverted by using its associated mul-
tiplexer (trace(LUToutj , FFini) �= �). Otherwise, this approach cannot
be used.

b) The reconfiguration process just consists in changing the current state of
the control bit of the suitable multiplexer to invert the logic state of the
signal (MUX1i(‘0’/‘1’)).

62

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(a)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(b)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

MUX1 (’0’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

pulse

Figure 4.13: Emulating a pulse into combinational logic by using inverter multi-
plexers. A combinational signal is routed through the FFin input of a CB (a). MUX1
is properly configured to invert the logic state of that signal, emulating the occurrence
of a pulse in the output of the combinational circuit implemented by the LUT (b).

When the duration of the fault expires, the fault is deleted by restoring the
previous state of the multiplexer’s control bit (MUX1i(‘0’/‘1’)).

The time required to reconfigure the FPGA to inject and delete a fault when
following this approach can be carried out by using Equation 4.12, where the
time unit (T) represents the time spent reading/writing one bit from/to the
configuration memory of the FPGA.

(configure the multiplexer to inject the fault) 1T+
(restore the original configuration to delete the fault) 1T = (4.12)

(total) 2T

4.4.3 Discussion

Equation 4.12 clearly shows that the FPGA’s reconfiguration time of this novel
multiplexer-based approach is constant and does not depend on any parameter
of the system’s model.

Figure 4.14 depicts the reconfiguration temporal cost associated to these
two proposed approaches in terms of percentage of bits that have to be recon-
figured (k).

63

4.5. Emulation of stuck-opens

0

5

10

15

20

25

30

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of bits to reconfigure (k)

T
im

e
u

n
it

s
(T

)

LUT

MUX

Figure 4.14: Temporal cost of injecting a pulse by reconfiguring a LUT (dashed line)
and by using a multiplexer to invert the combinational line (solid line).

As can be seen in Figure 4.14 it should be advisable to use a multiplexer to
inject a pulse whenever possible to increase the attainable speed-up. However,
it cannot address pulses occurring within combinational logic implemented as
a LUT.

Hence, both approaches are useful in their different contexts.

4.4.4 Summary

Pulses are transient faults that affect the combinational logic of the system.
As this logic is implemented on an FPGA by means of LUTs, the previously

proposed approach for injecting stuck-at faults into the combinational logic of
the system may be also used, with some changes, to emulate the occurrence of
pulses.

A novel approach has also been proposed to further accelerate the insertion
of these faults under some specific conditions.

Table 4.3 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of pulses by means of the different considered approaches.

4.5 Emulation of stuck-opens

Logic elements affected by stuck-open faults hold their previous logic value for
a retention time and, after that, their state is bound to a low-logic level (‘0’).

This can be assimilated to two consecutive stuck-at faults. The first of
them keeps the current state of the element constant until the retention time
elapses. After that, a stuck-at-0 fixes the output of the logic element to a
low-logic level until the end of the experiment.

64

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Table 4.3: Pseudo-code for injecting and deleting a pulse into/from the system.
Fault injection Fault deletion
switch (target) { switch (target) {

case LUT: case LUT:
stateLUTj = LUTj(); LUTj(stateLUTj);
faultyLUT = LUTj(location, PULSE); break;
LUTj(faultyLUT);
break;

case FFIN_LINE: case FFIN_LINE:
connected = false; i = 0; MUX[1]i(stateMUX[1]i);
while (!connected && (i < #FFS)) { break;

segments = trace(LUToutj, FFini);
connected = (segments != null);
if (!connected) i++;

};
if (connected) {

stateMUX[1]i = MUX[1]i();
MUX[1]i(not stateMUX[1]i);

}
break;

} }

Hence, the emulation of stuck-opens uses these same procedures but taking
into account that the final logic value provided by the circuit depends on the
current state of the affected logic element (finalValue = FFf (), for instance)
instead of being determined by the type of stuck-at fault being considered (fi-
nalValue = (fault=stuck-at-0) ? ’0’ : ’1’).

These faults may affect both the combinational and sequential logic of the
system’s model. Then, LUTs and FFs are the FPGA’s configurable resources
that must be considered when emulating the occurrence of this kind of faults.

This Section describes how the previously presented approaches for the
emulation of stuck-ats may be used to inject stuck-opens into the circuit.

4.5.1 Injecting stuck-opens into combinational logic

The same procedure presented in Section 4.3.1 to fix the logic value provided
by an element of a combinational circuit, is applicable in this context under
the restrictions previously presented.

Figure 4.15 illustrates the use of this approach.

65

4.5. Emulation of stuck-opens

(a)

{’0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’}

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT ()l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT (NAND3, ‘1’)l

(b)

stuck-open
(current state = ‘1’) LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

(e)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT (faultyLUT)l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

{’ ’, ‘1’, ‘ ’, ‘1’, ‘1’, ‘1’, ‘ ’, ‘1’, ‘ ’, ‘ ’, ‘1’, ‘1’, ‘1’, ‘ ’, ‘1’, ‘1’}1 1 1 1 1 1

(c)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT (faultyLUT)l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

{’0’, ‘1’, ‘0’, ‘1’, ‘ ’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘ ’, ‘0’, ‘1’, ‘1’}0 0

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

LUT (NAND3, ‘0’)l

(d)

stuck-open
(current state = ‘0’) LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

AFTER THE RETENTION TIME ELAPSES

Figure 4.15: Emulating the occurrence of a stuck-open into combinational logic
implemented as a LUT. A structural representation of the combinational circuit is
extracted from the LUT’s contents (a). The output of the NAND3 gate is affected
by the stuck-open (b) and the new truth table of the faulty circuit replaces LUT’s
contents (c) to keep its current state fixed. After the retention time elapses, the state
of the affected element is bound to a low logic level (d) and the LUT’s contents are
reconfigured with the new faulty truth table (e).

66

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Equation 4.13 computes the time required to reconfigure the FPGA to
emulate the occurrence of a stuck-open in terms of the percentage of bits that
must be modified (k) and the time required to read and write a bit of the
FPGA’s configuration memory (T).

(change LUT to fix the current state) 16
k1

100
T+

(fix the current state to 0, if required) [0, 16
k2

100
T] = (4.13)

(minimum total) 16
k1

100
T

(maximum total) 16(
k1 + k2

100
)T

4.5.2 Injecting stuck-opens into sequential logic

The occurrence of stuck-opens into the sequential logic of the system may
be emulated by following any of the three different approaches presented in
Section 4.3.2. They asynchronously change the logic state of the targeted FF
and hold that logic state until the end of the experiment.

This Section details the use of these approaches for emulating stuck-opens.

4.5.2.1 Using the unused Local Set/Reset (LSRin) line

Section 4.3.2.1 demonstrated how the logic that controls the set/reset inputs
of the FF can be used to continuously activate the set/reset of the FF.

An example of the application of this procedure is shown in Figure 4.16.

The reconfiguration temporal cost of using this approach can be computed
by Equation 4.14. T represents the time required to read/write one bit from/to
the FPGA’s configuration memory and m is the percentage of multiplexers that
must be reconfigured to change and keep the state of the FF.

(read the FF ′s current state) T+

(configure multiplexers to keep the state) (1 + 2
m

100
)T+

(reconfigure MUX3) T+ (4.14)
(fix the state to 0, if required) [0, 2T] =

(minimum total) (3 + 2
m

100
)T

(maximum total) (5 + 2
m

100
)T

67

4.5. Emulation of stuck-opens

(a) stuck-open
(current state = ’1’)

MUX4 ()i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

MUX4 (’1’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

MUX3 (’1’)i

Unused LSRin line bound to ‘1’

(c)

MUX5 (’1’)i

MUX6 (’0’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

Unused LSRin line bound to ‘1’

AFTER THE RETENTION TIME ELAPSES

stuck-open
(current state = ‘0’)

FF ()i

Figure 4.16: Emulating the occurrence of a stuck-open into sequential logic by using
the LSRin signal. The applicability of the approach is checked and the current state
of the targeted FF is determined (a). The multiplexers that control the set/reset logic
of the FF are reconfigured for the LSRin line to trigger the set signal of the affected
FF (b) for a retention time. After that, the suitable multiplexers are reconfigured to
constantly activate the reset signal of the FF (c).

4.5.2.2 Using the unused LUT associated to the FF

The LUT that shares the CB with the targeted FF may be used to provide a
constant value to the FF’s input as described in Section 4.3.2.2.

This approach consists of the steps depicted in Figure 4.17.
The FPGA’s reconfiguration time required to follow this approach is com-

puted by Equation 4.15. m represents the percentage of multiplexers that must
be reconfigured to invert the FF’s state, whereas k indicates the percentage of
bits from the LUT’s contents that must be changed and T stands for the time
required to read/write one bit from/to the FPGA’s configuration memory.

68

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

{’1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’}

LUT (faultyLUT)l

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

MUX2 (’0’)i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a)

stuck-open
(current state = ‘1’)

PT ()LUTout

{’0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’}

LUT (faultyLUT)l

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(c)

Invert FF’s state by using
the methodologybit-flip

stuck-open
(current state = ‘0’)

AFTER THE RETENTION TIME ELAPSES

FF ()i

Figure 4.17: Emulating the occurrence of a stuck-open into sequential logic by using
the LUT associated to the affected FF. The applicability of this approach is checked
(a). The contents of the LUT are reconfigured to provide the suitable constant value
and its output is connected to the FF’s input (b). After the retention time, The FF’s
state must be changed to a low logic level and the LUT is reconfigured to constantly
provide that value (c).

(read the FF ′s current state) T+

(configure MUX2, if needed) [0, T]+

(reconfigure LUT ′s contents) 16
k

100
T+

(fix the state to 0, if required) [(4.15)

(invert the FF ′s state) (2 + 6
m

100
)T+

(reconfigure the LUT ′s contents) 16T

] =

(minimum total) (1 + 16
k

100
)T

(maximum total) (20 + 6
m

100
+ 16

k

100
)T

69

4.5. Emulation of stuck-opens

4.5.2.3 Using the clock signal (CLKin) of the FF

Another solution to prevent the FF from changing its state, presented in Sec-
tion 4.3.2.3, is to disconnect it from the clock network.

This methodology comprises the steps illustrated by Figure 4.18.

PT (off)CLKin

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a)

stuck-open
(current state = ’1’)

FF ()i

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(c)

AFTER THE RETENTION TIME ELAPSES

Invert FF’s state by using
the methodologybit-flip

Figure 4.18: Emulating the occurrence of a stuck-open into sequential logic by using
the clock input signal associated to the targeted FF. The FF’s current state is checked
to determine the logic state it must hold (a). The FF is disconnected from the clock
network by turning off the suitable pass transistor, thus preventing the FF from re-
ceiving any clock edge (b). After the retention time elapses, the state of the FF is
reversed to keep a low logic level (c).

Equation 4.16 can be use to compute the cost, in time units (T), of recon-
figuring the FPGA to emulate the occurrence of a stuck-open following this
approach. T is the time required to read/write one bit from/to the FPGA’s
configuration memory and m represents the percentage of multiplexers that
must be reconfigured to invert the FF’s current state.

70

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(reading the FF ′s current state) T+
(disconnecting the FF from the clock network) T+

(fix the FF ′s state to 0, if needed) [0, (2 + 6
m

100
)T]+ (4.16)

(minimum total) 2T

(maximum total) (4 + 6
m

100
)T

4.5.2.4 Discussion

Three procedures, all of them based on the already proposed approaches for
the emulation of stuck-ats, have been presented to emulate the occurrence of
stuck-opens into sequential logic.

Figure 4.19 shows that the use of a LUT-based approach causes the longest
reconfiguration times and, therefore, should be avoided whenever possible.

0

5

10

15

20

25

30

35

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of bits to reconfigure (m, k)

T
im

e
u

n
it

s
(T

)

LUT

CLK

LSR

Figure 4.19: Cost in time units of injecting a stuck-open into a FF by using the
LSR, LUT and CLKin approaches. The cost of using a LUT, depending on the value
of m (percentage of bits that must be reconfigured), appears in dark grey. The temporal
cost of disconnecting the CLKin line is depicted in light grey. The black area indicates
the temporal cost of using the LSRin signal to keep fixed the FF’s faulty logic state.

On the other hand, disconnecting the FF from the clock network presents
the lowest costs in time units (T). However, when increasing the percentage of
bits that must be reconfigured in order to emulate the occurrence of the fault,
there exists a wide area in which the use of the LSRin-based approach may be
also considered.

Hence, disconnecting the FF from the clock network is usually the best
option for injecting a stuck-open into sequential logic.

71

4.6. Emulation of indeterminations

4.5.3 Summary

Stuck-opens are permanent faults that can affect either the sequential or the
combinational logic of the circuit.

They have been modelled as two consecutive stuck-at faults. The first one
holds the current state of the affected element and, after a retention time, the
second one fixes its state to ‘0’. Therefore, the different approaches defined
for inserting stuck-ats into the logic of the system are also considered for the
emulation of stuck-opens.

Table 4.4 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of stuck-opens by means of the different considered ap-
proaches.

Table 4.4: Pseudo-code for injecting a stuck-open into the system.
Fault injection
if (target == LUT) currentState = lineState;
else currentState = FFj();
injectStuckAt(currentState);
wait(retentionTime);
if (currentState != ‘0’)

injectStuckAt(‘0’);

4.6 Emulation of indeterminations

Indeterminations represent that the voltage of a logic element is between the
low- and high-level thresholds for a given technology. This results in that logic
element holding an undetermined logic state.

The main problem when emulating this kind of fault is that no intermediate
voltage level may be induced in the configurable resources of the FPGA just
by acting on its configuration memory. Although it could be possible to cause
some internal short circuit or open line to obtain an indeterminate voltage
value, the resulting analogue value will lead to a well defined although uncertain
logic state (logic ‘0’ or logic ‘1’) when it goes through a buffer along the
routing or at the input of a CB. Thus, we propose to emulate the occurrence
of this fault by causing the affected logic element to hold the final logic state
resulting from the undetermined voltage value instead of trying to generate it.
As that final logic state depends on so many factors that it cannot properly be
determined beforehand, we suggest to randomly generate it (rand(‘0’, ‘1’)).

72

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Under these assumptions, any procedure capable of modifying the logic
state of the affected elements is eligible to emulate the occurrence of inde-
terminations into the system. Thus, the very same procedures proposed in
Section 4.3 to change and keep constant the logic value induced by stuck-ats
can be also used to emulate the indetermination fault.

There exists three main differences when applying the procedures described
in Section 4.3 in this context:

1. The final value provided by the circuit is randomly generated (finalValue
= rand(‘0’, ‘1’)), instead of being determined by the type of stuck-at
fault being considered (finalValue = (fault=stuck-at-0) ? ’0’ : ’1’).

2. The logic value induced by indeterminations may fluctuate throughout
the duration of the fault. Under this assumption, the proposed emulation
procedure should be followed more than once per injected fault.

3. Indeterminations may appear as transient or permanent faults, so the
deletion of the fault must also be considered.

As this fault may affect the combinational and sequential logic of the sys-
tem’s model, the reconfigurable elements of the FPGA that can used to emulate
the occurrence of indeterminations are LUTs and FFs, respectively .

Next sections summarise the previously proposed possibilities that are also
useful to emulate the occurrence of indeterminations.

4.6.1 Injecting indeterminations into combinational logic

The system’s combinational logic is implemented, as already explained, by
means of LUTs.

Section 4.3.1 detailed the procedure to be followed to inject a stuck-at
into combinational logic implemented via LUTs. This procedure can also be
adopted to emulate the occurrence of indeterminations. As shown in Figure
4.20, it is necessary to change the LUT’s contents for the targeted logic to
generate the randomly selected final state.

This approach assumes that the faulty final state of the logic element is
going to be kept constant for the duration of the fault. Otherwise, it is ne-
cessary to iterate through steps b) and c) every time the randomly generated
final logic state may change due to variations in the intermediate voltage of
the logic element caused, for instance, by crosstalk.

73

4.6. Emulation of indeterminations

In case of emulating a transient indetermination, it must be deleted from
the system by restoring the original contents of the LUT (LUTl(faultFreeLUT))
after its duration elapses.

(a)

{’0’, ‘1’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘0’, ‘1’, ‘1’}

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT ()l

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND3

NAND4

LUT (NAND3, ‘1’)l

(b)

(c)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

LUT (faultyLUT)l

rand(‘0’, ‘1’) = ‘1’
LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

LUT4in

LUT3in

LUT2in

LUT1in

LUTout

NAND1

NAND2

NAND4

{’0’, ‘1’, ‘0’, ‘1’, ‘ ’, ‘1’, ‘0’, ‘1’, ‘0’, ‘0’, ‘1’, ‘1’, ‘ ’, ‘0’, ‘1’, ‘1’}0 0

indetermination

Figure 4.20: Emulating the occurrence of an indetermination into combinational
logic implemented as a LUT. A structural representation of the combinational circuit
is extracted from the LUT’s contents (a). The output of the NAND3 gate is affected
by the indetermination (b) and the new truth table of the faulty circuit replaces LUT’s
contents (c) to emulate the occurrence of the fault.

When considering that the induced logic state is constant for the duration
of the fault, this approach is very similar to the one followed to inject stuck-ats
and hence the temporal cost of this process is computed by Equation 4.7.

However, in case that the induced state changes along the duration of the
fault, the FPGA’s reconfiguration time depends on the number of iterations
(n) throughout the emulation process and the percentage of LUT’s bits that
must be reconfigured in each iteration (m). Equation 4.17 computes this time
expressed in time units (T, time required to read/write one bit from/to the
configuration memory of the FPGA).

74

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(change k% of LUT ′s bits to inject the fault)
n∑

i=1

16
ki

100
T+

(restore LUT contents to delete the fault) 16
k

100
T = (4.17)

(transient total) 16(
k

100
+

n∑
i=1

ki

100
)T

(permanent total) 16
n∑

i=1

ki

100
T

4.6.2 Injecting indeterminations into sequential logic

The three different approaches presented in Section 4.3.2 for asynchronously
changing the logic state of a FF and holding that logic state until the end of the
experiment can also be used for emulating the occurrence of indeterminations.

These approaches are based on the use of the LSRin line, the use of the
LUT associated to the targeted FF, and disconnecting the CLKin signal from
the clock network, respectively.

4.6.2.1 Using the unused Local Set/Reset (LSRin) line

Section 4.3.2.1 demonstrated how the logic that controls the set/reset of the
targeted FF may be used to continuously set/reset it, thus preventing its state
from changing.

This approach is used in Figure 4.21 to inject an indetermination in a FF.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a) rand(’0’, ’1’) = ’0’

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(b)

MUX5 (’1’)i

MUX6 (’0’)i

MUX4 (’1’)i

MUX3 (’1’)i

MUX4 ()i

Unused LSRin line bound to ‘1’

Figure 4.21: Emulating the occurrence of an indetermination into sequential logic
by using the LSRin signal. The configuration of the system is checked to confirm that
this approach can be used (a). The multiplexers that control the set/reset logic of the
FF are reconfigured for the LSRin line to feed the reset signal of the affected FF (b)
thus emulating the occurrence of an indetermination resulting in a low-logic level.

75

4.6. Emulation of indeterminations

When considering that the logic state induced by the indetermination may
randomly fluctuate along the duration of the fault, it is only necessary to re-
configure the multiplexers that control the set/reset logic of the FF (MUX5
and MUX6) to invert its current logic state.

When dealing with transient indeterminations, the fault must be deleted
from the system after expiring its duration. The original configuration of
the multiplexers involved in the fault injection process has to be restored
(MUX3i(‘0’/‘1’), MUX4i(‘0’/‘1’), MUX5i(‘0’/‘1’) and MUX6i(‘0’/‘1’)).

Equation 4.18 computes the time required to reconfigured the FPGA to
inject an indetermination fault under this approach, being (T) the time re-
quired to read/write one bit from/to the FPGA’s configuration memory and
m the percentage of multiplexers reconfigured.

(configure the m% of multiplexers) (1 + 2
m

100
)T+

(reconfigure MUX3) T+ (4.18)

(restore m% of multiplexers to delete the fault) (2 + 2
m

100
)T =

(transient total) (4 + 4
m

100
)T

(permanent total) (2 + 2
m

100
)T

In case that the indetermination causes the logic state of the FF to change n
times, the reconfiguration of the FPGA will take the time units (T) computed
by Equation 4.19.

(configure the m% of multiplexers) (1 +
m

100
)T+

(reconfigure MUX3) T+
(reconfigure MUX5 and MUX6 n times) 2nT+ (4.19)

(restore m% of multiplexers) (2 + 2m)T =

(transient total) (4 + 4
m

100
+ 2n)T

(permanent total) (2 + 2
m

100
+ 2n)T

4.6.2.2 Using the unused LUT associated to the FF

In case that the LUT associated to the targeted FF is not currently being used,
it can be reconfigured to provide a constant logic value to the FF’s input as
described in Section 4.3.2.2.

76

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Figure 4.22 illustrates the use of this methodology to emulate the occur-
rence of an indetermination.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(a)

rand(’0’, ’1’) = ’0’

PT ()LUTout

FF ()i

Invert FF’s state by using
the methodologybit-flip

{’0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’}

LUT (faultyLUT)l

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(b)

MUX2 (’0’)i

Figure 4.22: Emulating the occurrence of an indetermination into sequential logic
by using the LUT associated to the affected FF. The applicability of this approach
is checked (a). The FF’s current state must be changed by following the bit-flip
emulation approach to match the logic state caused by the fault. The contents of the
LUT are reconfigured to provide the suitable constant value and its output is connected
to the FF’s input (b).

Taking into consideration that the logic state resulting from the indetermi-
nation may vary along the duration of the fault, it is then necessary to iterate
through the steps to asynchronously change the FF’s state and modify the
contents of the LUT to constantly feed the FF with this new value.

When dealing with transient indeterminations, the FPGA has to be re-
configured again when the fault disappears to restore the previous fault-free
configuration of the system.

The reconfiguration temporal cost of applying this approach is carried out
by Equation 4.20. It depends on the percentage of multiplexers that must be
reconfigured to invert the current state of the FF (m), on the percentage of
bits to be changed from the LUT (k), and on the time required to read/write
one bit from/to the FPGA’s configuration memory (T).

As some of the steps might not be taken, the minimum and maximum
reconfiguration times are computed.

77

4.6. Emulation of indeterminations

(read the F F
′
s current state) T+

(invert the F F
′
s state, if needed) [0, (2 + 6

m

100
)T]+

(configure multiplexer MUX2, if needed) [0, T]+

(reconfigure the LUT
′
s contents) 16

k

100
T+

(restore MUX2 to delete the fault) [0, T]+ (4.20)

(restore LUT
′
s contents to delete the fault) 16

k

100
T =

(transient minimum total) (1 + 32
k

100
)T

(permanent minimum total) (1 + 16
k

100
)T

(transient maximum total) (5 + 6
m

100
+ 32

k

100
)T

(permanent maximum total) (4 + 6
m

100
+ 16

k

100
)T

Equation 4.21 computes the time spent reconfiguring the FPGA when the
indetermination causes the state of the FF to change n times. The minimum
and maximum values for the reconfiguration time are also provided.

(read F F
′
s current state) T+

first change:

(invert state, if needed) [0, (2 + 6
m0

100
)T]+

(alter MUX2, if needed) [0, T]+

(change LUT
′
s contents) 16

k

100
T+

rest of (n-1) changes:
n−1X

i=1
(

(invert the F F
′
s state) (2 + 6

mi

100
)T+ (4.21)

(change LUT
′
s contents) 16T

) +

delete the fault:

(restore MUX2) [0, T]+

(restore LUT
′
s contents) 16

k

100
T =

(transient minimumtotal) (32
k

100
+ 18n − 17 +

n−1X

i=1

6
mi

100
)T

(permanent minimumtotal) (16
k

100
+ 18n − 17 +

n−1X

i=1

6
mi

100
)T

(transient maximumtotal) (6
m0

100
+ 32

k

100
+ 18n − 13 +

n−1X

i=1

6
mi

100
)T

(permanent maximumtotal) (6
m0

100
+ 16

k

100
+ 18n − 14 +

n−1X

i=1

6
mi

100
)T

78

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

4.6.2.3 Using the clock signal (CLKin) of the FF

This approach, presented in Section 4.3.2.3, deals with disconnecting the FF
from the clock network, thus preventing the FF to receive any clock edge.

The application of this methodology is depicted in Figure 4.23.

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’0’)

(a)

rand(’0’, ’1’) = ’1’

FF ()i

Invert FF’s state by using
the methodologybit-flip

PT (off)CLKin

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

(’1’)

(b)

Figure 4.23: Emulating the occurrence of an indetermination into sequential logic
by using the clock input signal associated to the targeted FF. The FF’s current state
is checked to determine whether it must be reversed by following the bit-flip emulation
approach to match the logic state caused by the fault. The FF is disconnected from
the clock network by turning off the suitable pass transistor, thus preventing the FF
from receiving any clock edge (b).

If the logic state induced by the indetermination is supposed to fluctuate
while the fault remains in the system, it is necessary to follow the procedure
described in Section 4.2.2 each time that the state of the FF must be reversed.

Deleting the fault from the system, in case of dealing with transient inde-
terminations, involves reconnecting the FF to the clock network by turning on
the suitable pass transistor (PTCLKint(on)).

Equation 4.22 computes the FPGA’s reconfiguration time required to emu-
late the occurrence of an indetermination following this approach. m represent
the percentage of multiplexers that must be reconfigured in case that the FF’s
state should be reversed and T stands for the time required to read/write one
bit from/to the FPGA’s configuration memory.

79

4.6. Emulation of indeterminations

(read the FF ′s current state) T+

(invert the FF ′s state, if needed) [0, (2 + 6
m

100
)T]+

(disconnect the FF from the clock network) T+ (4.22)
(reconnect the clock signal to delete the fault) T =

(transient minimum total) 3T

(permanent minimum total) 2T

(transient maximum total) (5 + 6
m

100
)T

(permanent maximum total) (4 + 6
m

100
)T

The reconfiguration time for the best and worst cases when considering
that the logic state induced by the indetermination varies n times is computed
by Equation 4.23.

(read the FF ′s current state) T+

(invert the FF ′s state, if needed) [0, (2 + 6
m0

100
)T]+

(disconnect the clock network) T+

(flip (n − 1) times the FF ′s state)
n−1∑
i=1

(2 + 6
mi

100
)T+ (4.23)

(connect CLK to delete the fault) T =

(transient minimum total) (1 + 2n +
n−1∑
i=1

6
mi

100
)T

(permanent minimum total) (2n +
n−1∑
i=1

6
mi

100
)T

(transient maximum total) (3 + 6m0 + 2n +
n−1∑
i=1

6
mi

100
)T

(permanent maximum total) (2 + 6m0 + 2n +
n−1∑
i=1

6
mi

100
)T

80

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

4.6.2.4 Discussion

Three different options have been proposed for emulating the occurrence of
indeterminations into the sequential logic of a circuit.

The temporal cost associated to inject transient indeterminations by fol-
lowing these approaches is shown in Figure 4.24. Conclusions drawn from this
Figure match those obtained from the study of how to emulate stuck-ats since
they share the same procedures. However, as transient indeterminations must
be deleted from the system, the CLKin-based approach is on average slightly
better than the LSRin-based methodology.

0

5

10

15

20

25

30

35

40

45

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of bits to reconfigure (m, k)

T
im

e
u

n
it

s
(T

)

LSR

LUT

CLK

Figure 4.24: Reconfiguration temporal cost in time units for injecting a transient
indetermination into a FF by using the LSR, LUT and CLKin approaches. The cost
of using a LUT appears in dark grey. The temporal cost of disconnecting the CLKin
line is depicted in light grey. The dashed line indicates the temporal cost of using the
LSRin signal to keep fixed the FF’s faulty logic state.

In case of considering that the indetermination can eventually modify the
state of the affected FF, Figure 4.25 depicts the reconfiguration time required
for each approach to change the FF’s state n times. Again, the LUT-based
method appears as the most time consuming method. However, the LSRin
approach presents the better results in this context. The time required for
the CLKin disconnection method greatly increases with n, whereas the LSRin
approach increases linearly and very close to the best case for the CLKin-based
method.

Hence, the best method consists in using the LSRin line, although the
CLKin one is the second option when the former is not available.

81

4.7. Emulation of delays

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

Number of times the FF changes its state (n)

T
im

e
u

n
it

s
(T

)

LSR

LUT

CLK

m=k=0.0

m=k=100.0

m=0.0

m=100.0

m=100.0

Figure 4.25: Reconfiguration temporal cost in time units for injecting an indeter-
mination into a FF by using the LSR, LUT and CLKin approaches when the state of
the FF varies n times. The temporal cost of using a LUT is coloured in dark grey.
The cost of disconnecting the CLKin line is depicted in light grey. The black area
indicates the temporal cost of using the LSRin approach.

4.6.3 Summary

Indeterminations are faults that can affect both the sequential and combina-
tional logic of a circuit and that can have a transient or permanent duration,
depending on the mechanisms that cause the occurrence of the fault.

Due to the difficulties found when trying to induce an undetermined voltage
level in any element of an FPGA, the proposed solution consists in randomly
determine the final logic value caused by the indetermination. So, all the
previously defined approaches for emulating the occurrence of stuck-ats may
also be used for injecting indeterminations but taking into account that: i) the
final logic value induced by the fault is randomly determined, ii) that value
may change along the duration of the fault due to fluctuations in the lines,
and iii) in case of dealing with transient faults they must be deleted from the
system after their duration expires.

Table 4.5 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of indeterminations by means of the different considered
approaches.

4.7 Emulation of delays

Delays model a modification, usually an increase, in the propagation delay of a
circuit which may affect its fault-free behaviour. They may appear as transient
or permanent faults.

82

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Table 4.5: Pseudo-code for injecting and deleting an indetermination into/from the
system.

Fault injection Fault deletion
finalValue = rand(‘0’, ‘1’);
switch (target) { switch (target) {

case LUT: case LUT:
stateLUTj = LUTj(); LUTj(stateLUTj);
faultyLUT = break;
LUTj(location, finalValue);

LUTj(faultyLUT);
break;

case FF: case FF:
switch (approach) { switch (approach) {
case LSRin: case LSRin:

if ((MUX[4]j() == ‘0’) || for (i = 3; i < 7; i++)
(PTLSRinj() == off)) { MUX[i]j(stateMUX[i]j);
for (i = 3; i < 7; i++) break;

stateMUX[i]j = MUX[i]j();
MUX[5]j(not finalValue);
MUX[6]j(finalValue);
MUX[4]j(‘1’);
MUX[3]j(‘1’);

}
break;

case LUT: case LUT:
if (PTLUToutj() == off) { MUX[2]j(stateMUX[2]j);
if (FFj() != finalValue) LUTj(stateLUTj);

injectBitFlip(); break;
stateMUX[2]j = MUX[2]j();
stateLUTj = LUTj();
faultyLUT =

LUTj(output, finalValue);
MUX[2]j(‘0’);
LUTj(faultyLUT);

}
break;

case CLKin: case CLKin:
if (FFj() != finalValue) PTCLKinj (on);
injectBitFlip(); break;

PTCLKinj (off);
break;

} }
break; break;

} }

83

4.7. Emulation of delays

This fault affects the lines of the system’s model and, thus, the configurable
elements that must be taken into account to emulate the occurrence of a delay
are those in charge of controlling the FPGA’s routing. The Programmable
Matrices (PMs) and, particularly the pass transistors (PT) that enable the
interconnection among the routing segments and the CB’s, are the elements
that will be specially targeted.

As each logic element a line is routed through increases the delay of that
line, this section presents different approaches to increase the circuit’s propa-
gation delay by adding more resources to the routing of a line.

4.7.1 Increasing the delay of a line by adding pass transistors

Most of the routing of any system implemented by means of an FPGA is done
by the pass transistors that interconnect the FPGA’s vertical and horizontal
routing segments.

These are the most abundant configurable resources of the FPGA and,
hence, it is very likely to find some unused routing segment to be added to the
line affected by the fault.

Two different approaches can be distinguished when adding more routing
segments (pass transistors) to the targeted line: increasing the length of the
line or increasing its fan-out.

4.7.1.1 Increasing the line’s length

This approach consists in adding more pass transistors along the line to increase
its delay. A new segment is inserted between two consecutive segments along
the current routing.

The methodology to achieve this goal, presented in Figure 4.26, can be
condensed into the next steps.

a) The target line may be the output of a combinational (originPin =
LUToutl) or sequential (originPin = FFoutl) circuit.

First of all, it is necessary to obtain the list of pass transistors the affected
line is routed through (segmentsSet = trace(originPin)).

b) Two consecutive pass transistors along the routed line (source and desti-
nation) are selected as the insertion point for the new routing segment.

These two points must be disconnected (PTsource(off)) to allow for the
insertion of the new segment.

84

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

c) Now, it is necessary to find one or more unused segments (PTi() = ‘0’)
that can be used to connect the previously disconnected points.

These pass transistors must be reconfigured (PTi(on)) to establish the
desired connection.

In that way, one or more pass transistors (routing segments) have been
added to the line, thus increasing its length and delay. The delay intro-
duced by these methodology and its relationship with the temporal cost
associated to this process will be discussed in Sections 4.7.1.3 and 4.7.4.

It could be necessary to iterate through steps b) and c) until the required
propagation delay is reached.

In case of dealing with transient delays, all the previous reconfigurations
must be reversed when the fault disappears from the system. The new segments
are unrouted (PTi(off)) and the original routing is restored (PTsource(on)).

(b)

PT (off)source

(a)

trace(originPin)

destination
source

(c) route(source, destination)

PT (on)j

PT (on)k

Figure 4.26: Emulating the occurrence of a delay by routing the targeted line through
more segments to increase its length. The two points of that line that are selected as
the insertion points for the new segments (a) are unrouted (b) and the line is now
routed through the new selected segments (c).

Equation 4.24 computes the reconfiguration time, expressed in time units
(T), required to apply this approach for the emulation of a delay. It assumes
that the time required to read and write one bit from/to the FPGA’s configu-
ration memory is one time unit, whereas r represents the number of segments
routed between the insertion points to increase the length of the line, and n
indicates the number of iterations required to achieve the desired propagation
delay.

85

4.7. Emulation of delays

n times:
n∑

i=1

(

(unroute the source point) T+
(route the ri segments) riT

) +

n times:
n∑

i=1

((4.24)

(unroute the ri segments to delete the fault) riT+
(reroute the source point to delete the fault) T

) =

(transient total) 2
n∑

i=1

(1 + ri)T

(permanent total)
n∑

i=1

(1 + ri)T

4.7.1.2 Increasing the line’s fan-out

The propagation delay of a line is proportional to its capacitance, which de-
pends on the fan-out of the line. A new segment, leading nowhere, can be
connected to the targeted line to increase its fan-out and consequently its pro-
pagation delay.

Considering the usually large amount of unused segments in an FPGA, this
approach could applied very likely (see Figure 4.27).

a) The target line may be driven by combinational (originPin = LUToutl)
or sequential (originPin = FFoutl) circuit.

It consists of a series of routing segments that connect its source (origin-
Pin) to another reconfigurable element (segmentsSet = trace(originPin)).

b) Once the injection point has been selected (PTt), it is necessary to find a
segment that can be connected to that point (route(PTt, PTs) and that
is not currently driving any FPGA resource (PTs() = ‘0’).

The segment is routed then by turning its pass transistor on (PTs(on)).

This operation increases the fan-out, and therefore the load capacitance
and propagation delay, of the line without modifying its functionality.
Sections 4.7.1.3 and 4.7.4 details the achieved delay in relation with the
FPGA’s reconfiguration time.

86

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(b)

PT (on)s

(a)

trace(originPin)

PTt

route(PT)sPT ,t

Figure 4.27: Emulating the occurrence of a delay by increasing the fan-out of the
line. A point of the target line (a) is connected to a new routing segment, driving no
element, to increase the fan-out of the line (b).

To further increase the propagation delay of the line, more segments can
be added to augment the line’s fan-out by iterating over step b).

The fault deletion process, in case of transient delays, consists in discon-
necting all the routing segments (PTt(off)) that have been added to restore
the previous routing of the system.

The time required to reconfigure the FPGA to inject and delete a delay fault
by using this approach is computed by Equation 4.25, where T represents the
time it takes to read or write one bit of the FPGA’s configuration memory.

(connecting the new n segments) nT+
(disconnecting the n segments to delete the fault) nT = (4.25)

(transient total) 2nT

(permanent total) nT

4.7.1.3 Discussion

Equations 4.24 and 4.25 show that increasing the fan-out of the line takes at
most half of the time the other approach requires to obtain the same delay.
Hence, this approach is best suited to speed-up model-based fault injection.

87

4.7. Emulation of delays

Taking into account that, when using a Virtex FPGA [90] for instance, a
pass transistor may increase the propagation delay of a line between 0.001 and
0.018 nanoseconds, this approach is intended for injecting small propagation
delays into the lines of the circuit. When dealing with large delays it could be
advisable to use the following proposed approaches.

4.7.2 Increasing the delay of a line by adding a LUT

A usual technique used by place and route tools when no more segments are
available is to route the line through unused LUTs. This obviously, increases
the delay of the line, but helps to decongestion the routing of the system.

This same approach, depicted in Figure 4.28, can be used with the sole
purpose of increasing the propagation delay of the line.

a) The delay may affect a line driven by combinational (originPin = LUToutj)
or sequential (originPin = FFoutj) logic.

The LUT will be inserted between two different points from this line
(source and destination) which have to be selected among the routing
segments traversed by the line (segmentsSet = trace(originPin)).

The selected LUT cannot be currently in use, otherwise another LUT
should be selected. This can be guaranteed by checking that i) the LUT’s
output is not routed to the rest of the FPGA (PTLUToutl = off) and ii)
the LUT does not drive the associated FF (MUX2l() �= ‘1’).

b) The pass transistors of the routing segments located between the injec-
tion points (trace(source, destination)) must be turned off (PTt(off)) to
unroute them and allow for the insertion of the LUT.

c) The system has to be reconfigured to insert the chosen LUT into the line.

The source point have to be routed to any of the LUT’s input (input
= rand(LUT1inl, LUT2inl, LUT3inl, LUT4inl)) and the LUT’s output
must be routed to the destination point. All the pass transistors along
the new routing (route(source, input) and route(LUToutl , destination))
must be turned on (PTt(on)) to perform the connection.

Also, the contents of the LUT have to be changed to drive the logic value
of the incoming input line to its output (LUTl(new LUTl(input, delay))).

It is possible to further increase the delay of the line by iterating through-
out that process to add more LUTs to the line’s routing. Section 4.7.4 discusses
the attainable delay with respect to the required reconfiguration time.

88

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

(a)

trace(originPin)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

destination

source
PT ()LUTout

MUX2 ()t

(b)

trace(source, destination)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

PT (off)t

(c)

route(source, LUT4in)t

LUT

LUT4in

LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

PT (on)t

route(LUTout)t, destination

PT (on)t{’0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’, ‘1’}

LUT (faultyLUT)l

Figure 4.28: Emulating the occurrence of a delay by adding a LUT to the routing.
An unused LUT is selected to be inserted between two points along the routing of the
line (a). These points are unrouted to allow for the LUT’s insertion (b). The LUT
is routed and reconfigured to drive the incoming input directly to its output (c) thus
increasing the delay of the affected line.

89

4.7. Emulation of delays

When dealing with transient delays, restoring the fault-free behaviour of the
system when the fault disappears involves reconfiguring the original contents
of the LUT (LUTl(originalLUT)), unrouting the LUT (trace(source, input)
and trace(LUToutl , destination)) by turning off all the required pass transis-
tors (PTt(off)), and rerouting the line as it was before the fault occurrence
(route(source, destination) and PTt(on)).

Equation 4.26 computes the time units (T) required to reconfigure the
FPGA to emulate the occurrence of a delay in the system’s model. This time
depends on the number of LUTs to add (n), the percentage of bits reconfigured
to change the contents of the LUT (k), the number of segments routed between
the insertion points (r) and the segments needed to route the LUT to these
insertion points (s and t). T represents the time needed to read or write a bit
to/from the configuration memory of the FPGA.

n times (to inject the fault):
n∑

i=1

(

(unroute the insertion points) riT+
(route source to LUT ′s input) siT+

(route LUT ′s output to destination) tiT+

(reconfigure LUT ′s contents) 16
ki

100
T

) +

n times (to delete the fault):
n∑

i=1

((4.26)

(reconfigure LUT ′s contents) 16
ki

100
T+

(unroute LUT from destination) tiT+
(unroute source from LUT) siT+

(reroute the insertion points) riT

) =

(transient total) 2
n∑

i=1

(ri + si + ti + 16
ki

100
)T

(permanent total)
n∑

i=1

(ri + si + ti + 16
ki

100
)T

90

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

This approach may increase the propagation delay of a line beyond what
can be achieved by adding some pass transistors to its routing. For example,
a Virtex’s LUT [90] introduces between 0.29 and 0.8 nanoseconds of delay.

Hence, this is an effective methodology to moderately increase the propa-
gation delay of a line. Some other techniques may be used to inject longer
delays into the circuit.

4.7.3 Increasing the delay of a line by adding a FF

FFs are not usually used as routing resources as they modify the behaviour of
the line making it synchronous.

Nevertheless, we propose applying a similar approach to that presented in
the previous Section to insert a FF into the routing of the targeted line. In
that way, the line will be delayed by a whole clock cycle. It may allow for the
injection of longer propagations delays (n clock cycles) by inserting a n-bits
shift register into the line.

This approach, illustrated by Figure 4.29, can be applied by following the
steps next presented.

a) First of all, the points (source and destination) where the FF is going to
be inserted, are selected among those the targeted line is routed through
(segmentsSet = trace(originPin)). The line may originate from combina-
tional (originPin = LUToutj) or sequential (originPin = FFoutj) logic.

Obviously, it is necessary to assure that the selected FF is not being used
at all by the implemented circuit. The pass transistor that connect the
FF’s output to the routing of the FPGA can be checked to determine
whether the it can be used to increase the delay of the line (PTLUToutt()
= ‘0’) or another FF should be found.

b) All the segments that connect the insertion points (trace(source, destina-
tion)) must be turned off (PTt(off)) to unroute these points and enable
the insertion of the FF.

c) Now, the system is reconfigured to add the FF to the line’s routing.

On one hand, all the required PTs must be turned on (PTt(on)) to route
the source point to the FF’s input (route(source, FFinf) and to route
the FF’s output to the destination point (route(FFoutf , destination)).

On the other hand, the multiplexers (MUX1 and MUX2) of the CB’s that
holds the FF must be reconfigured for the FF to be properly inserted
into the line (MUX1f (‘1’) and MUX2f (‘1’)). The FF must also be
connected to the clock network (PTCLKinf

(on)) to work properly.

91

4.7. Emulation of delays

(b)

trace(source, destination)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

PT (off)t

(a)

trace(originPin)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

destination

source

PT ()FFout

(c)

route(source, FFin)f

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

PT (on)t

route(FFout)f, destination

PT (on)t

PT (on)CLKin

MUX2 (’1’)fMUX1 (’1’)f

(d)

LUT

LUT4in
LUT3in
LUT2in
LUT1in

D Q

CLR

>

PR

FFout

LUTout

MUX5GSRin

CLKin

LSRin

MUX6

FFin MUX1

MUX3

MUX2

MUX4‘0’

FF

0

1

0

1
0

1

0

1

0

1

0

1

follow approach if nedeedbit-flipFF ()f

Figure 4.29: Emulating the occurrence of a delay by adding a FF to the routing.
The FF will be added between two points along the line’s routing (a). These points are
unrouted (b), and the FF is then routed to them and connected to the clock network
(c). In case that the FF’s state does not match that of the affected line at the injection
time, the bit-flip approach should be followed (d).

92

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

d) Finally, the current logic state of the FF must be obtained (FFf ()) to
determine whether it holds the same value as the line it is now driving.

Otherwise, the approach presented at Section 4.2.2 should be followed to
reverse the current state of the FF.

This methodology could be repeatedly applied to increase the propagation
delay of the line beyond one clock cycle by creating a kind of shift register.

All these changes should be undone when the transient delay expires.

The total reconfiguration time, expressed in time units (T), for injecting
a delay in the system’s model by following this approach can be computed by
Equation 4.27. Each time unit T represents the time required to read/write a
bit from/to the FPGA’s configuration memory, n denotes the number of FFs
to be added, r indicates the number of segments routed between the insertion
points, and s and t represent the segments needed to route the FF to these
insertion points. In case that the FF’s state should be reversed, m represents
the percentage of multiplexers that must be reconfigured.

n times (to inject the fault):
nX

i=1
(

(unroute the insertion points) riT+

(route source to F F
′
s input) siT+

(route F F output to destination) tiT+

(configure MUX1 & MUX2) 2T+

(connect F F to clock network) T+

(reverse F F
′
s state if needed) [0, (3 + 6

mi

100
)T]

) + (4.27)

n times (to delete the fault):
nX

i=1
(

(unroute clock network) T+

(configure MUX1 & MUX2) 2T+

(unroute F F fromdestination) tiT+

(unroute source from F F) siT+

(reroute the insertion points) riT

) =

(transient minimum total)

nX

i=1

(6 + 2ri + 2si + 2ti)T

(permanent minimum total)
nX

i=1

(3 + ri + si + ti)T

(transient maximum total)
nX

i=1

(9 + 2ri + 2si + 2ti + 6
mi

100
)T

(permanent maximum total)

nX

i=1

(6 + ri + si + ti + 6
mi

100
)T

93

4.7. Emulation of delays

Traversing a FF in a Virtex FPGA [90], for instance, delays a signal between
0.54 and 1.4 nanoseconds. Moreover, the signal will not change until the next
clock cycle, thus increasing the actual propagation delay of the line.

Hence, this technique can be exploited to inject very long propagation
delays into the targeted signal.

4.7.4 Discussion

Three different approaches, mainly aimed at increasing the number of logic ele-
ments the line is routed through, have been proposed to emulate the occurrence
of a delay in a circuit.

Table 4.6 shows the ratio between the reconfiguration time required to
inject a transient delay and the attainable increase in the propagation delay
of a line when considering a Virtex FPGA.

Table 4.6: Comparison among the proposed approaches for emulating a delay in
terms of the reconfiguration time (T) required to increase one nanosecond (ns) the
propagation delay of the affected line when targeting a Virtex FPGA.

Proposed approach Propagation Temporal Cost/delay
delay cost ratio

Add pass transistors:
increasing the line’s lengtha 0.03 ns 8T 266.66 T/ns
increasing the line’s fan-outb 0.01 ns 2T 200 T/ns
Add LUTs to the line’s routingc 0.7 ns 34T 48.57 T/ns
Add FFs to the line’s routingd

Minimum 1.2 ns 24T 20 T/ns
Maximum 1.2 ns 30T 25 T/ns

a3 pass transistors (m = 3) are added to the line’s routing per iteration on average.
bOne (1) pass transistor is added in each iteration
cOn average, 3 pass transistors (r = s = t = 3) are routed/unrouted, and half the

contents of the LUT (k = 8) are reconfigured in each iteration.
dOn average, 3 pass transistors (r = s = t = 3) are routed/unrouted, and half the

multiplexers (m = 0.5) are reconfigured in each iteration.

As can be seen in Table 4.6, the insertion of FFs obtains the best cost/delay
ratio. This means that this approach can inject the longest delays with the
minimum reconfiguration time.

However, it is not a suitable approach for injecting small delays. It causes a
minimum delay of 1.2 ns, without considering that the line is now synchronised
with the clock signal, thus further delaying the signal’s propagation.

94

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

LUTs can be used to inject no so long delays at a reasonable cost.
Although the use of pass transistors presents a very bad cost/delay ratio,

it is the only effective way of introducing very small propagation delays into a
line. In fact, it is a very affordable approach for injecting delays in the range
of cents of nanoseconds.

Hence, all the proposed approaches have their own application field and
must be taken into account when injecting delays into the system.

4.7.5 Summary

Delays represent a transient or permanent increase of the propagation delay
of a line of circuit.

Three different approaches have been considered for the emulation of these
fault. Basically, all the segments between the insertion points are unrouted to
allow for the inclusion of the new logic element.

• Pass transistors. These elements can be added along the routing line to
increase its length, or creating new branches leading nowhere to increase
its fan-out. They can inject very small delays.

• Look-Up Tables. LUTs are also used as routing elements when no more
possibilities are available for the place and route tool. They can be used
to moderately increase the propagation delay of the line.

• Flip-Flops. They may cause the longest delays, reaching up to a clock
cycle for each inserted FF following a shift register pattern.

Table 4.7 summarises, following a C-like pseudo-code,the process for emula-
ting the occurrence of delays by means of the different considered approaches.

4.8 Emulation of shorts

The short models a modification in the routing of the system that results in
the interconnection of two different lines of the circuit.

As this fault affects the routing of the system’s model, the configurable ele-
ments that must be considered for emulating the occurrence of shorts are those
that control the routing of the FPGA. Pass transistors (PT), which enable the
interconnection among the routing segments and the CBs, are the elements
that may be reconfigured to inject and delete this kind of fault.

95

4.8. Emulation of shorts

Table 4.7: Pseudo-code for injecting and deleting a delay into/from the system.
Fault injection Fault deletion

if (origin == LUT) originPin = LUToutj ;
else originPin = FFoutj ;
segmentsSet = trace(originPin);
source = rand(segmentsSet);
destination = rand(segmentsSet);
switch (target) { switch (target) {

case PT: case PT:
neighSet = neighbours(source);
found = false; i = 0;
while (!found && (i < neighSet.length)) {

destination = (PT) neighSet[i];
if (approach == LENGTH)

found = ((destination() == on) &&
(destination in segmentsSet));

else
found = ((destination() == off) &&

!(destination in segmentsSet));
if (!found) i++;

}
if (found) {

switch (approach) { switch (approach) {
case LENGTH: case LENGTH:

newRouting = route(source, destination); for (i = 0; i < newRouting.length; i++)
if (newRouting != null) { ((PT) newRouting[i])(off);

destination(off); destination(on);
for (i = 0; i < newRouting.length; i++) break;

((PT) newRouting[i])(on);
}
break;

case FANOUT: case FANOUT:
destination(on); destination(off);
break; break;

}
} }
break; break;

case LUT: case LUT:
case FF: case FF:

found = false; i = 0; for (k = 0; k < srcRouting.length; k++)
size = (target == LUT) ? #LUTS : #FFs; ((PT) srcRouting[k])(off);
while (!found && (i < size)) { for (k = 0; k < dstRouting.length; k++)

if (target == LUT) { ((PT) dstRouting[k])(off);
if ((PTLUT outi

() == off) && (MUX[2]i() == ‘0’)) { for (k = 0; k < oldRouting.length; k++)
inPin = rand(LUT1ini , LUT2ini, LUT3ini, LUT4ini); ((PT) oldRouting[k])(on);
srcRouting = route(source, inPin); if (target == LUT)
dstRouting = route(LUTouti , destination); LUTi(stateLUTi);

} else {
} else { MUX[1]i(stateMUX[1]i);

if (PTF F outi
() == off) { MUX[2]i(stateMUX[2]i);

srcRouting = route(source, FFini); PTCLKini
(off);

dstRouting = route(FFouti , destination); }
} break;

}
if ((srcRouting != null) && (dstRouting != null))

found = true;
else i++;

}
if (found) {

oldRouting = trace(source, destination);
for (k = 0; k < oldRouting.length; k++)

((PT) oldRouting[k])(off);
for (k = 0; k < srcRouting.length; k++)

((PT) srcRouting[k])(on);
for (k = 0; k < dstRouting.length; k++)

((PT) dstRouting[k])(off);
if (target == LUT) {

stateLUTi = LUTi();
faultyLUT = LUTi(inPin, delay);
LUTi(faultyLUT);

} else {
stateMUX[1]i = MUX[1]i(); stateMUX[2]i = MUX[2]i();
MUX[1]i(‘1’); MUX[2]i(‘1’); PTCLKini

(on);
if (FFi() != lineState) injectBitFlip();

}
}
break;

} }

96

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

The occurrence of a short causes an increase in the current flow that may
damage the affected circuit.

As reported by [91] after extensive experiments, FPGAs will not suffer
any damage as a result of a short-circuit between two of their routed lines.
Fortunately, the impedance of the routing switches used to interconnect the
targeted lines limits the increase of the current due to the short-circuit.

However, the occurrence of multiple simultaneous shorts may increase the
current beyond the limit supported by the device, resulting in its possible
destruction. The number of simultaneous faults that will eventually damage
the programmable device was determined by [92] and set at about fifty.

Therefore, there exists no real risk when short-circuiting only two lines of
an FPGA to emulate the occurrence of one short into the system.

This can be achieved by following the steps depicted in Figure 4.30.

a) The targeted lines may be driven by combinational (originPin = LUToutl)
or sequential elements (originPin = FFoutf).
First of all, the list of pass transistors that each line is routed through
must be obtained (segmentsSet = trace(originPin)).

b) Two points from that lists are selected as the segments (source and des-
tination) that will be connected to inject the fault.
In case that a possible routing between these two points exists it is ne-
cessary to turn on (PTt(on)) all the pass transistors along that path
(route(source, destination)) to perform the connection.
Now, the system behaves as if a short has affected these two lines. Hence
the emulation of shorts is basically reduced to a routing problem.

(a) (b)

trace(originPin)A

A

A

B

B

A

A

B

B

trace(originPin)B

source

destination

route(source, destination)

PT (on)s

Figure 4.30: Emulating the occurrence of a short between two lines of the circuit.
A point from each targeted line is selected as an interconnection point (a). These two
points are routed thus short-circuiting the lines together (b).

97

4.9. Emulation of open-lines

The time devoted to reconfigure the FPGA to emulate a short, computed
by Equation 4.28, depends on the number of pass transistors (m) needed to
interconnect the targeted lines and the time (T) required to read/write one
bit from/to the FPGA’s configuration memory.

(routing m segments) mT = (4.28)
(total) mT

Table 4.8 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of shorts by means of the proposed approach.

Table 4.8: Pseudo-code for injecting a short into the system.
Fault injection
if (originj == LUT) originPinj = LUToutj;
else originPinj = FFoutj;
if (origink == LUT) originPink = LUToutk;
else originPink = FFoutk;
segmentsSetj = trace(originPinj);
segmentsSetk = trace(originPink);
source = rand(segmentsSetj);
destination = rand(segmentsSetk);
newRouting = route(source, destination);
if (newRouting != null) {

for (i = 0; i < newRouting.length; i++)
((PT) newRouting[i])(on);

}

4.9 Emulation of open-lines

Open-lines result from problems in the routing of the circuit that break up a
line interconnecting different logic elements into two separated segments.

This fault deals with the routing of the system’s model and, therefore,
the reconfigurable elements of the FPGA that can be used for emulating the
occurrence of an open-line are those that perform the interconnection among
the different logic elements. Hence, any pass transistor (PT) along the routing
of the selected line can be used to split it up into two isolated segments.

The next points describe the proposed procedure to emulate the occurrence
of an open-line into the system.

98

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

a) The targeted line may be driven by combinational (originPin = LUToutl)
or sequential logic elements (originPin = FFoutf). The first step consists
in obtaining the set of pass transistors the targeted line passes through
(trace(originPin)).
One of these segments is selected as the injection point for the open-line.

b) The control bit of the targeted pass transistor must be reconfigured to
turn the transistor off (PTt(off)).
In that way, the line is divided into two segments, thus emulating the
occurrence of an open-line.
It is to note that the effects of that fault on the system will greatly depend
on the targeted pass transistor, since the logic elements that will not be
driven anymore may vary according to the selected pass transistor.

This approach is depicted in Figure 4.31 where three possible injection
points are located, resulting in different open-lines.

(a)

trace(originPin)A

A

A1

target1

PT (off)1

A3

A2

target2

target3

(b1)

A

A1

A3

A2

(b2)

A

A1

A3

A2

(b3)

A

A1

A3

A2

PT (off)2

PT (off)3

Figure 4.31: Emulating the occurrence of an open-line in a line of the circuit. One
segment of the line is selected as the point where the line will break up. Three different
points of interest have been considered in this example (a). The first of the selected
pass transistors is turned off resulting in an open-line affecting the line segment A1

(b1). In this case, both the segments A2 and A3 are affected by the disconnection of
the second pass transistor (b2). Finally, the three segments the line A drives can be
affected by the fault by turning off the third of the considered pass transistors (b3).

99

4.10. Emulation of bridgings

Equation 4.29 determines the time needed to reconfigure the FPGA to
emulate the occurrence of open-lines, which only depends on the time (T)
required to read/write one bit from the FPGA’s configuration memory.

(unrouting the targeted segment) T = (4.29)
(total) T

Table 4.9 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of open-lines by means of the proposed approach.

Table 4.9: Pseudo-code for injecting an open-line into the system.
Fault injection
if (origin == LUT) originPin = LUToutj;
else originPin = FFoutj;
segmentsSet = trace(originPin);
target = rand(segmentsSet);
target(off);

4.10 Emulation of bridgings

Bridging models the occurrence of a special combination of short and open-line:
one of the lines is affected by an open-line and one of the resulting segments
is connected to the other line (short).

As a combination of shorts and open-lines, the bridging is a fault model
affecting the routing of the system’s model. Hence, the reconfigurable elements
of the FPGA that must be taken into account for its emulation are the pass
transistors (PT) that are in charge of interconnecting the routing segments.

Emulating the occurrence of a bridging, as shown in Figure 4.32, comprises
the execution of the following steps.

a) The lines that are going to be affected by the fault may be driven by
combinational (originPin = LUToutl) or sequential logic (originPin =
FFoutf) indistinctly. The first step consists in determining the set of pass
transistors each of the targeted lines is routed through (trace(originPin)).

This is all the information required to decide at which point of one of the
lines an open-line occurs (targetopen), and which are the points (source
and destination) that will be connected by the short.

100

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

b) As previously explained in Section 4.9, the occurrence of an open-line
may be emulated by turning off one of the pass transistors the line is
routed through.

Thus, modifying the configuration of the control bit of the targeted tran-
sistor (PTtargetopen(off)) will result in the line being divided into two
different segments.

c) Now, the source and destination points must be routed to emulate the
occurrence of a short as presented in Section 4.8.

Once a possible route between these two points is found (route(source,
destination)), all the pass transistors along that path must be turned on
(PTt(on)) to perform the connection between these points.

The effect of this bridging on the system will depend on the particular
points and lines selected for injecting the open-line and the short.

(a)

trace(originPin)A

A

A

B

B

trace(originPin)B

targetopen

destination

source

(b)

A1

A2

B

B

PT (off)targetopen

(c)

A1

A2

B

B

route(source, destination)

PT (on)s

Figure 4.32: Emulating the occurrence of a bridging between two lines of the cir-
cuit. One point from each targeted line is selected as an interconnection point, and
another segment is selected as the point where line A will break up (a). The selected
pass transistors is turned off resulting in an open-line affecting the line A (b). The
interconnection points are routed thus short-circuiting line B and the segment A1 (c).

The time this reconfiguration takes, which depends on the number (m) of
pass transistors that must be reconfigured to interconnect the targeted lines
and the time (T) required to read/write on bit from/to the FPGA’s configu-
ration memory, can be computed by Equation 4.30.

(unrouting the targeted segment) T

(routing m segments to connect both lines) mT = (4.30)
(total) (1 + m)T

101

4.11. Conclusions

Table 4.10 summarises, following a C-like pseudo-code,the process for emu-
lating the occurrence of bridgings by means of the proposed approach.

Table 4.10: Pseudo-code for injecting a bridging into the system.
Fault injection
if (originj == LUT) originPinj = LUToutj;
else originPinj = FFoutj;
if (origink == LUT) originPink = LUToutk;
else originPink = FFoutk;
segmentsSetj = trace(originPinj);
segmentsSetk = trace(originPink);
target = rand(segmentsSetj);
neighSet = neighbours(target);
sourceSet = emptySet(); i = 0;
while (i < neighSet.length) {

source = (PT) neighSet[i];
if ((source() == on) &&
(source in segmentsSetj));
addElement(source, sourceSet);

i++;
}
if (sourceSet != null) {

source = rand(sourceSet);
destination = rand(segmentsSetk);
newRouting = route(source, destination);
if (newRouting != null) {
target(off);
for (i = 0; i < newRouting.length; i++)
((PT) newRouting[i])(on);

}
}

4.11 Conclusions

Advances in semiconductor technologies are not only increasing the likelihood
of occurrence of transient faults, but are also extending the spectrum of tran-
sient and permanent fault models that have to be considered when assessing
the dependability of deep-submicron manufactured systems beyond the classi-
cal bit-flip and stuck-at.

102

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

• Bit-flip. It models an inversion in the logic state held by a memory cell.
This faulty state remains there until the cell is rewritten.

• Stuck-at. A logic element keeps constant the current value of its output
regardless its inputs.

• Pulse. A combinational element targeted by this fault momentarily
inverts its current logic state for the duration of the fault modelling a
Single Event Transient (SET).

• Stuck-open. The affected element holds its current logic level for a
retention time, which is bound to ‘0’ afterwards.

• Indetermination. It represents an undetermined voltage value between
the high- and low-level threshold for a given technology. It results in an
unknown logic state.

• Delay. It models an increase in the propagation delay of a line which
may affect the behaviour of the system.

• Short. It models a short-circuit between two of the lines of the circuit.

• Open-line. It assumes that a line of the circuit breaks up, being divided
into two different segments.

• Bridging. This is a special combination of short and open-line. Four
different cases have been identified.

The main difference between the proposed methodologies for the injection
of permanent and transient faults is that permanent faults remain into the sys-
tem. Although transient faults disappear from the system after a short period
of time their effects may remain there longer.

As following a Run-Time Reconfiguration approach, the injection of faults
into the system is closely related to the architecture of the underlying FPGA.
Therefore, the fault injection process for each fault model have been described
using the generic FPGA architecture presented in Section 3.4.

Different approaches have been proposed for injecting each considered fault
into the system’s model. All of them have been described in terms of which
elements of the system’s model can be targeted by the fault, which reconfigu-
rable elements of the FPGA they map to, and how the configuration memory
of the FPGA should be modified to reconfigure all these elements to emulate
the behaviour of the system in the presence of that particular fault.

103

4.11. Conclusions

Although this methodology is generic and flexible enough to emulate a wide
range of different possibilities, only those faults previously described have been
considered for emulation. For instance, transient versions of the studied per-
manent faults could be easily emulated by following the proposed approaches.

The time required to reconfigure the FPGA to inject the fault, and delete
it after its duration elapses in case of transient faults, has also been calculated
to enable the comparison among the different proposed approaches.

Table 4.11 summarises all the different approaches that have been proposed
for emulating the occurrence of these faults.

This study shows how FPGAs can be used to emulate a wide range of
fault models considered representative of new deep-submicron technologies.
Moreover, the different proposed approaches are expected to accelerate model-
based transient fault injection experiments according to their strengths and
weaknesses.

It must be noted that these generic proposals should be adapted afterwards
to the particular architecture of each FPGA family, as Section 5.4.4 shows for
the Virtex family. More insights regarding the attainable speed-up are provided
in Chapter 5.

104

Chapter 4. New Approaches for Transient and Permanent Faults Emulation

Table 4.11: Proposed approaches for fault emulation.

Fault model Target Description Cost functiona

Bit-flip

Memory cells Invert the BRAM’s bit 2T

Registers

Invert the FF’s state
(n + 4n m

100)T
by using the GSRin line
Invert the FF’s state

(3 + 6 m
100)T

by using the LSRin line

Stuck-at

Comb. logic Recompute the truth table of
16 k

100 Tthe LUT-implemented circuit

Registers

Fix the FF’s state
(2 + 2 m

100)T
by using the LSRin line
Fix the FF’s state

[(1 + 16 k
100)T, (4 + 6 m

100 + 16 k
100)T]by using the free LUT

Fix the FF’s state
[2T, (4 + 6 m

100)T]
by using the CLKin line

Pulse Comb. logic
stuck-at LUT-based approach 32 k

100 T
Invert LUT’s output by using

2Ta multiplexer at a CB’s input

Stuck-open

Comb. logic stuck-at LUT-based approach [16
k1
100 T, 16(

k1+k2
100)T]

Registers
stuck-at LSRin-based approach [(3 + 2 m

100)T, (5 + 2 m
100)T]

stuck-at LUT-based approach [(1 + 16 k
100)T, (20 + 6 m

100 + 16 k
100)T]

stuck-at CLKin-based approach [2T, (4 + 6 m
100)T]

Indetermination

Comb. logic stuck-at LUT-based approach TR = 16(k
100 +

nP
i=1

ki
100)T

P = 16
nP

i=1

ki
100 T

Registers

stuck-at LSRin-based approach TR = (4 + 4 m
100 + 2n)T

P = (2 + 2 m
100 + 2n)T

stuck-at LUT-based approach

TR = [(32 k
100 + 18n − 17 +

n−1P
i=1

6
mi
100)T,

(6
m0
100 + 16 k

100 + 18n − 14 +
n−1P
i=1

6
mi
100)T]

P = [(16 k
100 + 18n − 17 +

n−1P
i=1

6
mi
100)T,

(6
m0
100 + 16 k

100 + 18n − 14 +
n−1P
i=1

6
mi
100)T]

stuck-at CLKin-based approach

TR = [(1 + 2n +
n−1P
i=1

6
mi
100)T ,

3 + 6m0 + 2n +
n−1P
i=1

6
mi
100)T]

P = [(2n +
n−1P
i=1

6
mi
100)T ,

(2 + 6m0 + 2n +
n−1P
i=1

6
mi
100)T]

Delay Routing logic

Increase PTs along the line TR = 2
nP

i=1
(1 + ri)T

Cost/Delay ratio = 266.66 T/ns P =
nP

i=1
(1 + ri)T

Increase line’s fan-out TR = 2nT
Cost/Delay ratio = 200 T/ns P = nT

Reroute to pass through LUTs TR = 2
nP

i=1
(ri + si + ti + 16

ki
100)T,

Cost/Delay ratio = 48.57 T/ns P =
nP

i=1
(ri + si + ti + 16

ki
100)T

Reroute to pass through FFs

TR = [
nP

i=1
(6 + 2ri + 2si + 2ti)T,

Cost/Delay ratio = [20, 25] T/ns
nP

i=1
(9 + 2ri + 2si + 2ti + 6

mi
100)T]

P = [
nP

i=1
(3 + ri + si + ti)T,

nP
i=1

(6 + ri + si + ti + 6
mi
100)T]

Short Routing logic Connect lines using PTs mT

Open-line Routing logic Break line turning off PTs T

Bridging Routing logic short and open-line (1 + m)T

aTR = transient fault, P = permanent fault

105

Chapter 5

FADES: a Tool Supporting
FPGA-Based Fault Injection

In the previous Chapter, different approaches have been proposed for emulating
the occurrence of transient (bit-flip, pulse, indetermination, and delay) and
permanent (stuck-at, stuck-open, indetermination, delay, short, open-line,
and bridging) hardware faults considered representative of deep-submicron ma-
nufactured systems. These approaches have been defined in terms of a generic
FPGA architecture and, thus, should be adapted to the particular architecture
of each family of FPGAs.

This Chapter presents the first prototype of an FPGA-based fault injection
tool that follows a Run-Time Reconfiguration approach to emulate the behaviour
of the system in the presence of the studied faults. The JBits package, provided
by Xilinx, is used to fit the whole set of considered fault models into the Xilinx’s
Virtex architecture. The architecture of this tool is described along with the
different processes required to conduct a fault injection campaign.

5.1 Introduction

FPGA-based fault injection tools consist of two basic elements identified as i)
the FPGA in charge of implementing the model of the system under study, and
ii) the software tool that manages the execution of fault injection experiments.

Run-Time reconfiguration techniques are closely related to the architecture
of the FPGAs family selected to implement the model of the system. Having
this in mind, Chapter 4 has described how to emulate the whole set of fault
models considered representative of new deep-submicron technologies using the
generic FPGA architecture presented in Section 3.4.

107

5.1. Introduction

The different proposed approaches for emulating each one of the conside-
red fault models must be adapted for its implementation onto the particular
architecture of the selected FPGA. Moreover, it is necessary to take into ac-
count the support and tools the device manufacturer provides for managing
the reconfiguration memory of that particular family of FPGAs.

Therefore, choosing a particular FPGAs family could be very important
for properly implementing all the proposed approaches.

The application that manages the experimentation should implement the
proposed methodology for injecting the whole set of considered hardware fault
models. Three different process have been identified for the emulation of both
transient and permanent faults: i) the definition process consists in obtain-
ing all the required parameters to specify the fault injection experiments to
be performed; ii) the execution process must perform all the requested fault
injection experiments while monitoring the system’s execution; and iii) the
analysis process tries to determine the impact of these faults into the system’s
behaviour.

The selection of the FPGAs family will also influence the way this applica-
tion should obtain all the information required to emulate the faults, modify
the configuration memory of the FPGA to inject and delete them, and collect
data to draw conclusions from the available results.

This Chapter presents a fault emulation tool named FADES (FPGA-based
Framework for the Assessment of the Dependability of Embedded Systems).
The main goals this tool tries to achieve are i) coping with the three key
processes that have been identified for the management of fault emulation ex-
periments, ii) implementing the different possibilities previously described to
emulate all the considered fault models onto a particular family of FPGAs
following a Run-Time Reconfiguration approach, and iii) keeping this tool as
simple as possible for non-skilled users to be able to use it.

The architecture of FADES is described in Section 5.2 along with the se-
lection process that lead us to choose the Virtex FPGA family from Xilinx as
the most suitable architecture for implementing the model of the system under
study. The experiments definition process is presented in Section 5.3. After
that, Section 5.4 details the control flow for the execution of experiments and
the particularities of the implementation of the fault injection and deletion
approaches for each of the considered fault models. How these results can be
analysed to assess the dependability of the modelled system is presented in
Section 5.5. Finally, Section 5.6 summarises the basic features of this tool and
depicts its control flow in great detail.

108

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

5.2 Architecture of FADES

The architecture of FADES [93] can be divided into hardware and software
components. The hardware component mainly consists of an FPGA that is
used to implement the system’s model. The software module manages fault
emulation experiments to assess the dependability of the system under study.

The selection of the most suitable FPGAs family could be critical for ob-
taining a flexible and high-performance fault emulation tool.

Any of the FPGAs families previously presented in Section 3.4 could be
a good choice for implementing the system’s model. This selection must be
guided by performance issues related to Run-Time Reconfiguration approaches.

This methodology causes that, for each fault to be injected into the system,
the FPGA must be reconfigured once to inject the fault and, when dealing
with transient ones, once more to delete it some time later. The transfer of
information to and from the programmable device to modify its configuration
memory takes some time which may delay the execution of the workload on the
system. This time evaluation was carried out in Chapter 4 for each proposed
transient and permanent fault model. It must be minimised to improve the
speed-up the fault emulation process may attain with respect to simulation-
based fault injection techniques. Having this in mind, the reconfiguration
capabilities of the selected FPGAs families (see Section 3.3.2) will determine
the global temporal cost of emulating a fault.

If the family of FPGAs only supports a global reconfiguration approach
then the whole FPGA’s configuration memory must be rewritten each time
the system must be reconfigured. In this case, the delay the reconfiguration
process introduces only depends on the size of the selected device rather than
on the injected fault model.

When the FPGAs family features local reconfiguration capabilities, only a
fraction of the FPGA’s configuration memory must be modified. That portion
of the configuration memory is in charge of changing the functionality of the
system according to the occurrence of the desired fault. In this case, the delay
introduced by the reconfiguration process matches that presented in previous
chapters and is, obviously, smaller than the caused by the full reconfiguration
of the programmable device.

Therefore, in order to improve the achievable speed-up with respect to
simulation-based fault injection experiments, a family of FPGAs featuring
local (also known as partial) reconfiguration capabilities should be chosen.
Currently, partial reconfiguration is supported by two of the main families
of FPGAs presented in Section 3.4, the Xilinx’s Virtex [72] and the Atmel’s
AT40K [82] families.

109

5.2. Architecture of FADES

The AT40KAL family is aimed at high-speed (DSP/processor-based) de-
signs and can implement a variety of computation intensive, arithmetic func-
tions. This family allows for the partial reconfiguration of FPGAs by following
a windowing mechanism [94]. This a very flexible approach since small portions
of the configuration memory can be modified to alter the functional behaviour
of the system.

The Atmel’s Integrated Development System (IDS) [95] supports the design
of partial reconfigurable applications. As shown in [96] this tool allows the user
to implement two different designs (A and B) and generate a reconfiguration
file containing the differences between them. This file can be used to modify
the contents of the FPGA’s configuration memory to alter the behaviour of
the system from A to B.

The main problem with this approach is that the user must implement,
by means of a graphical place and route tool, all the different functionalities
required by the system. In some cases, the structure of the new (faulty) design
may be known beforehand such as, for example, when opening a line of the
circuit. However, the manual implementation of all the possible open-line cases
could be a very long and tiring process. Most of the time, the structure of the
new system is unknown and depends on the current state of the system and
not on its structure, such as when inverting the current logic value of a FF.

Hence, this approach could be useful in the development of partial reconfi-
gurable applications but it is not very well-suited for emulating the occurrence
of faults into the system.

The Virtex family delivers high-performance, high-capacity programmable
logic solutions. The partial reconfiguration of this family of FPGAs is per-
formed via its SelectMAP interface [97] on a column basis. Bits of the FPGA’s
configuration memory are grouped into one-bit wide vertical frames that ex-
pand across the whole device [98]. Those frames are the smallest portions
of the configuration memory that can be read or write and hence, although
flexible enough, somehow limit the attainable speed-up by the use of a partial
reconfiguration approach.

The design of reconfigurable applications is supported, on one hand, by
the Xilinx’s Integrated Software Environment (ISE) [99] and PlanAhead [100]
tools. This design methodology presents the same drawbacks as the Atmel’s
one, the user must know beforehand the structure of the system to imple-
ment, usually tediously, the desired functionalities of the system and obtain
the reconfiguration files that will modify its behaviour. Although it has been
successfully used for the design of partial reconfigurable applications, it is not
qualified for fault emulation.

110

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

On the other hand, Xilinx also provides a Java package, named JBits, which
conforms an Application Programming Interface (API) to access and manage
the configuration file of Virtex FPGAs. The origin of this API was JERC
(Java Environment for Reconfigurable Computing) [101], a set of Java classes
that allows the user to specify the structure of the desired circuit as if deve-
loping an application using the Java programming language. The compilation
of this program generates the configuration file (bitstream or .bit in Xilinx’s
terminology) to be downloaded to the configuration memory of the FPGA.
JBits extended this approach to give access to all the configurable features of
Virtex FPGAs [102]. As shown in Figure 5.1 the user’s program can supply
and retrieve configuration control and data information to and from the recon-
figurable logic. The interface to the hardware is provided by XHWIF (Xilinx
standard HardWare InterFace).

FPGAReconfigurable
Hardware

XHWIF

User Java
Application

Core
Library

Configuration
File

Bit-level
Interface

JBits

.bit
Files

Figure 5.1: JBits design flow.

Another extension that was later integrated into JBits was JRTR [103], a
Java package that provided the means to manage and generate configuration
files for the partial reconfiguration of Virtex FPGAs. Nowadays, JBits is a
faster approach than existing development tools for partial reconfigurable ap-
plications, although a deep knowledge of the internal architecture of the FPGA
is required to use it.

JBits seems then a suitable tool for implementing a fault emulation tool
based on Run-Time Reconfiguration techniques. The program developed by
means of the JBits API may monitor the FPGA execution and, when necessary,
can generate a new configuration files depending on the current state and struc-
ture of the FPGA. This file can be downloaded onto the configuration memory
of the programmable device by using its partial configuration capabilities, thus
minimising the number of bits to be transferred. That approach can be used to
inject and delete a fault to and from the system when emulating its occurrence.

111

5.2. Architecture of FADES

Hence, the family of FPGAs that has been selected to implement the first
prototype of the fault emulation tool (FADES) is the Xilinx’s Virtex. Despite
that the minimum reconfiguration unit (frame) is larger than the windowing
scheme from Atmel, Virtex FPGAs are larger than AT40K devices (hold a
greater number of internal resources) and thus may implement more complex
designs. Moreover, the JBits Java package is more flexible than Atmel’s tools
and can be efficiently used for dynamically generate partial reconfiguration
files. JBits complexity will be hidden from the final user, who will only work
with a Graphical User Interface (GUI) acting as an interface to the application
developed using JBits.

According to this study, the final architecture of FADES can be seen in
Figure 5.2.

XHWIF

Write
configuration memory

Readback
configuration memory

Java Virtual Machine

JBits package

FADES
Virtex
FPGA

GUI

Experiments
Execution
Manager

Results
Analyser

External
memory

Figure 5.2: Architecture of FADES.

Any prototyping board holding a Virtex FPGA and featuring a XHWIF to
communicate with a host can be used to implement the model of the system
under study. In case that a XHWIF has not been specified for that particular
board, it is possible to develop a custom one as explained in the XHWIF
Porting Guide [104].

A host machine is needed to run the software components of FADES. These
software modules have been entirely written in Java and, therefore, any plat-
form with an available Java Virtual Machine is eligible for executing these
applications. They make use of the JBits package to access the configuration
memory of the FPGA to obtain information about the current state of the
system, generate new configuration files containing the modifications required
to change the behaviour of the system according to the fault injected, and
download these new files onto the configuration memory of the programmable
device. This application comprises several Java classes managing each one of
the three identified key processes a fault emulation tool should consists of.

This software module comprises three different processes that manage the
whole experimentation process.

112

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

• Experiments definition. A GUI supports the definition of fault injec-
tion experiments by selecting the bitstream file, the kind of faults to be
injected, and the injection and observation points, among other things.

• Experiments execution. Once all the parameters have been defined,
FADES takes control of the system to perform all the requested fault in-
jection experiments. JBits methods are used to modify the contents
of the configuration memory of the FPGA to inject/delete the fault
into/from the system. The whole set of hardware fault models previously
described in Chapter 4 has been implemented according to the Virtex
architecture. The state of the system is recorded during the workload
execution for each one of the experiments.

• Analysis of results. Faulty trace files are compared to a fault free
execution (Golden Run) trace to determine the behaviour of the system
in the presence of the injected faults.

Next sections describe how FADES manages and implements each one of
these processes.

5.3 Experiments definition

This process tries to gather together all the necessary information to perform
the desired fault emulation experiments to assess the dependability of the sys-
tem under study. As shown in Figure 5.8, this information is mainly collected
from user inputs and from the system’s model and its implementation.

5.3.1 Model implementation and basic information

FADES requires some data regarding the structure of the system under study
and general aspects of the experiments, to be able to help the user to comforta-
bly define fault emulation experiments. The user must provide this information
by means of the graphical user interface (GUI) shown in Figure 5.3.

Most of these data are provided by means of a number of files:

a) Bitstream file. This is the result of synthesising and implementing the
model of the system onto the selected FPGA (from the Virtex family, in
this case) following the common design flow described in Section 3.2.

Although any commercial synthesiser can be used to extract from the
model the basic described components and their interconnection, the
place and route tools are constrained to those provided by the FPGA

113

5.3. Experiments definition

(a)
(b)

(c)

(d)

(e)

(f)

(g)
(h)

(i)

(j) (k)

Figure 5.3: FADES GUI: Form to retrieve basic information.

manufacturer. In this case, the Xilinx’s ISE tool must be used to dis-
tribute the components among the unused FPGA’s internal resources
and generate the bitstream file.

This is the file that will be downloaded onto the FPGA’s configuration
memory to emulate the fault-free behaviour of the system. As it contains
all the information related to the structure of the implemented system,
it can be analysed by means of JBits to extract such information. The
structure of this file is detailed in Appendix A.1.

b) Logic Allocation file. The Logic Allocation file (.ll), which can be
generated by properly instructing the ISE tool, exposes in a proprietary
format the position of all the sequential elements (flip-flops and memory
bits) used to implement the system’s model in the FPGA’s array of
configurable blocks. Each sequential element is also related to its name
in the original model of the system. Appendix A.2 details the structure
of this file.

This information can be extracted later by parsing the file to obtain
the location of all these elements, which will be useful to determine the
sequential injection points and/or the observation points.

c) User Constraints file. The User Constraints File (.ucf) contains, in a
proprietary format, information destined to guide the implementation of
the system’s model, such as temporal or allocation constraints.

However, the Floorplanner tool of the ISE framework may be used to
generate a User Constraints File (.ucf) containing the final position of
all the logic elements of the system. The structure of this file is shown
in Appendix A.3.

Information extracted from this file may be of use to determine the avai-
lable combinational injection points.

114

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

d) Workload file. A simply way of providing the workload to the im-
plemented system is via the FPGA’s internal memory or the external
memory of the prototyping board.

FADES may obtain this information by parsing the specified workload
file. The custom format of this file is presented in Appendix A.4.

e) Trace output directory. Files containing the trace of the workload
execution will be stored in this directory after the experiment’s conclu-
sion.

The rest of parameters are grouped in the form shown in Figure 5.3.

f) Fault’s duration. Permanent faults will remain in the system until the
end of the experiment, whereas transient ones will disappear after the
fault duration. Currently, the duration of each transient fault (in clock
cycles) is uniformly distributed between the lower and upper thresholds
defined by the user.

g) Experiment’s duration. The length of the experiments is defined in
terms of clock cycles, which makes it independent of the clock frequency.

h) Fault injection interval. It defines the temporal upper and lower
thresholds in which faults may occur. The injection time for each expe-
riment is uniformly distributed between these limits.

i) Number of experiments. At present FADES only supports the injec-
tion of single faults, and then the number of experiments also defines the
number of faults to be injected.

j) Board selection. It allows the selection of the prototyping board hold-
ing the FPGA that will implement the model of the system. Currently,
FADES natively supports the use of the RC1000 board [105] from Celox-
ica1 and the XSV800 board from Xess2.

k) Proceed to experiments execution. This button will trigger the
experiments execution process.

5.3.2 Injection into sequential logic

The definition of where to inject faults into the sequential logic of the system’s
model, and which kind of faults must be considered, is assisted by the GUI
depicted in Figure 5.4.

1http://www.celoxica.com/
2http://www.xess.com/

115

5.3. Experiments definition

(a) (b)

Figure 5.4: FADES GUI: Form to define the location and type of faults affecting the
sequential logic of the system.

The most efficient way of obtaining the location of the whole sequential
elements implemented in the FPGA is by parsing the Logic Allocation file
generated by the ISE framework.

In case this file is not provided, it is also possible to search the bitstream
file for FFs whose output is connected to some other elements. Although this
can be done by using the JBits package, it is quite difficult to correlate the
sequential elements found with its original name in the system’s model. So,
the use of the Logic Allocation file is greatly encouraged.

The window form shown in Figure 5.4a provides the information extracted
from this analysis for the user to select the locations that might be affected by
the occurrence of a fault. Faults will be uniformly distributed among them.

A very simple form, shown in Figure 5.4b, allows the user to select all
the fault models that will be injected during the experimentation (one fault
per experiment). It includes permanent and transient fault models affecting
the sequential logic of the system, such as stuck-ats, bit-flips, stuck-opens,
indeterminations, open-lines, shorts, bridgings, and delays. Different options
for some of the faults may also be selected, such as the approach to be followed
to inject the fault.

116

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

5.3.3 Injection into combinational logic

A similar GUI, illustrated in Figure 5.5, is used to specify the location of faults
affecting the combinational logic of the system’s model, and the kind of faults
to be considered.

(a)

(b)

Figure 5.5: FADES GUI: Form to define the location and type of faults affecting the
combinational logic of the system.

Although information related to the sequential elements of the implemen-
ted system may be obtained quite straightforwardly, information about the
combinational elements of the system is more complex to get.

JBits classes and methods can be used to determine whether each LUT
in the FPGA has been used to implement combinational logic of the system’s
model or not.

This can be done by scanning the bitstream file to check whether a parti-
cular LUT is driving any of the possible CB outputs and whether this output
is driving any other element of the system. If this is the case, the contents of
the LUT are retrieved for later use. Table 5.1 describes a simplified version
of the function implemented to discover all the LUTs used in an implemented
system’s model.

This procedure is very useful to determine the contents and location all the
LUTs used in the final implementation, but it does not provide any information
regarding the relation between these LUTs and the related combinational logic
of the system’s model.

This problem can be solved by matching the LUTs location with informa-

117

5.3. Experiments definition

Table 5.1: Sample code for determining whether the LUTs G located in slice 0 are
being used and get their contents.

// Check all the LUTs of the FPGA
for (int row = 0; row < clbRows; row++) {

for (int col = 0; col < clbColumns; col++) {
outBUsed = false; outQUsed = false; outUsed = false;

// Check whether the LUT and outB are in use
// Check whether the LUT controls the S0Control.YCarrySelect.YCarrySelect multiplexer
control = jbits.get(row, col, S0Control.YCarrySelect.YCarrySelect);
if (control == S0Control.YCarrySelect.LUT_CONTROL) {
// Obtain the routing tree starting from outB (YB)
source = new Pin(Pin.CLB, row, col, CenterWires.S0_YB);
rtree = new RouteTree(source);
tracer.trace(rtree);
//outB drives some element if its routing tree has some children
if (rtree.numChildren() > 0) used = true;

}

// Check whether the LUT and outQ are in use
// Check whether the LUT drives the S0Control.YDin.YDin multiplexer
control = jbits.get(row, col, S0Control.YDin.YDin);
if (control == S0Control.YDin.Y) {
// Obtain the routing tree starting from outQ (YQ)
source = new Pin(Pin.CLB, row, col, CenterWires.S0_YQ);
rtree = new RouteTree(source);
tracer.trace(rtree);
//outQ drives some element if its routing tree has some children
if (rtree.numChildren() > 0) used = true;

}

// Check whether the LUT and out are in use
// Obtain the routing tree starting from out (Y)
source = new Pin(Pin.CLB, row, col, CenterWires.S0_Y);
rtree = new RouteTree(source);
tracer.trace(rtree);
//out drives some element if its routing tree has some children
if (rtree.numChildren() > 0) used = true;

if (outBUsed || outQUsed || outUsed) luts[row][column][0][0] = jbits.get(row, col, LUT.SLICE0_G);
}

}

tion extracted from the User Constraints file.
Finally, LUTs are grouped (see Figure 5.5a) according to the system’s com-

ponents they belong to. The user can then select those locations that will be
affected by faults occurring in the combinational logic of the system’s model.

The kind of faults that will be considered for experimentation is selected
by using the form shown in Figure 5.5b. Available faults include stuck-ats,
pulses, stuck-opens, indeterminations, open-lines, shorts, bridgings, and delays.
Several options, such as the approach to be followed to inject the fault, can be
also selected for some of them.

5.3.4 Monitoring

The system’s workload execution in the presence of faults must be monitored
to determine the effects of faults on the system’s behaviour.

118

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

As previously explained FPGAs are synchronous devices destined to im-
plement synchronous systems. There is not a straightforward way of obtaining
the current state of a combinational signal at a particular time. However, ac-
cessing the configuration memory of the device allows for retrieving both the
system’s structure and the state of all the synchronous elements of the FPGA.

Thus, only sequential elements may be monitored.

Figure 5.6 depicts the GUI that is used to specify those elements of the
system (observation points) that must be monitored.

(a)

(c)

(b)

Figure 5.6: FADES GUI: Form to define the observation points to monitor the
execution of the system’s workload.

The location of all the sequential elements of the system’s model after its
implementation can be extracted, as previously explained, by parsing the Logic
Allocation file. This information is exposed (see Figure 5.6a) for the user to
easily select those elements that will be monitored. The external memory of
the prototyping board (cf. Figure 5.6b) may also be considered for observation.

Finally, the user can select among different monitoring policies (through
the form shown in Figure 5.6c). According to it, the system will be monitored i)
every number of clock cycles, ii) until a difference with the fault-free execution
of the system (Golden Run) is found, iii) only at the end of each experiment,
or iv) never at all. Each of these policies is intended to be useful for different
purposes.

119

5.4. Experiment execution

5.3.5 Summary

FADES’ GUI can be used to collect all the files and user inputs required to
define the experiments to be carried out in a fault injection campaign.

Information related to the implementation of the system’s model is pre-
sented to the user in a friendly manner to support the definition of the expe-
riments. Apart from generic information regarding the experiments, the user
must provide the selected fault injection points and observation points.

Once all these parameters are defined, FADES assumes the control of the
system for experimentation.

5.4 Experiment execution

This process is in charge of controlling the entire experimentation flow. Figure
5.8 depicts all the procedures this flow involves, including the initialisation of
the prototyping system, the execution of the workload, the observation of the
system’s behaviour, the injection and deletion of faults, and the reset of the
system to its initial state.

All these procedures, which make use of the JBits package to easily access
the configuration memory of the programmable device, are next detailed.

5.4.1 Initialisation

Before executing any experiment, the FPGA must be programmed with the
bitstream file obtained in the experiment’s definition phase. The configura-
tion data of the bitstream is downloaded into the configuration memory of
the FPGA, changing its functional behaviour as defined by the model of the
system. A simplified version of this initialisation code is described in Table 5.2.

This initialisation step may also program the board’s and/or FPGA’s me-
mory blocks with the required workload. Data from the workload file, which
is firstly parsed to translate it into a JBits compatible format, is downloaded
into the selected memory blocks. This procedure is detailed in Table 5.3.

Now that the system is completely initialised FADES may successively
launch each one of the defined fault injection experiments.

120

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

Table 5.2: Sample code for initialising the prototyping board and configuring the
FPGA with a bitstream file.

// Get a XHWIF interface to the board (rc1000pp in this case)
board = XHWIF.Get(boardName);
// Get a remote host name to access the board from the network
remoteHostName = XHWIF.GetRemoteHostName(boardName);
// Get a remote port number, if any
port = XHWIF.GetPort(boardName);

// Establish a connection to the board
board.connect(remoteHostName, port);
// Reset the board
board.reset();
// Stop the clock
board.clockOff();
// Get the devices available on the board (a XCV1000 FPGA)
deviceType = board.getDeviceType();

// Create a JBits object from the first/only device on the board
jbits = new JBits(deviceType[0]);
// Read in the bitstream file
jbits.readPartial(inBitFileName);
// Get the data to be downloaded onto the FPGA
partial = jbits.getPartial();

// Trigger the GlobalSetReset (GSR) after each reconfiguration
jbits.enableSoftReset(true);
// Download the configuration data to the FPGA (device 0)
board.setConfiguration(0, partial);
// Do not trigger the GSR after each reconfiguration
jbits.enableSoftReset(false);

Table 5.3: Sample code for programming an external memory bank of the prototyping
board with the information contained in a workload file.

// Get a new WorkloadParser object for the workload file
workloadParser = new WorkloadParser(workloadName);
// Parse the file and extract the contents of the memory block
rom = workloadParser.getMemoryContent();

/* JBITS FUNCTION */
// Write the data into the board’s memory bank 1 (address 0x200000)
board.setRAM(address, rom);

121

5.4. Experiment execution

5.4.2 Workload execution

The first problem that arises when trying to carry out the experiments is
related to the temporal management of the experiments.

Faults must be injected at a particular time, they may be deleted some
time afterwards, and even experiments last a certain amount of time. As the
board’s clock continuously generates pulses at a defined frequency, there is
no way to control in which moment a particular event should happen in the
system. However, the JBits XHWIF interface, provides some methods for
managing that clock.

The method clockOff(), already presented in Table 5.2, may be used to
turn off the board’s clock, thus preventing the clock line to be continuously
pulsed. Now that the board’s clock is ignored, FADES can generate any desired
number of clock pulses by calling the software method clockStep(int count).

In this simple way, the system’s workload may be executed any number
of clock cycles, from a single one to the whole experiment’s length. Hence, it
allows for holding the current state of the system, performing the desired re-
configurations, and resuming the system’s execution afterwards. Furthermore,
this procedure will support the fault injection into systems were on-the-fly re-
configuration is not available, or when the reconfiguration time exceeds the
system’s clock period.

So, as Figure 5.8 shows, the system’s clock is first stepped a number of
cycles equal to the experiment’s injection time. At this point in time, the
selected fault must be injected at the specified location.

After that, the system’s clock is stepped until either the fault disappears
from the system (transient fault), or the experiment’s end is reached (perma-
nent fault). In any case, the fault must be deleted from the system, either to
continue the execution of the workload until the end of the experiment (tran-
sient fault), or to allow for the execution of a new experiment with a fault-free
configuration (permanent fault).

When dealing with transient faults, the system’s clock must be stepped
again the number of clock cycles required to reach the end of the experiment.

It is to note that any fault injection campaign must performed, at least, one
fault-free execution of the system’s workload, named Golden Run. The Golden
Run’s execution is monitored for an oracle to later determine the effects of the
injected faults on the system’s behaviour.

122

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

5.4.3 Observation points

The system must be monitored during the execution of the experiments to
later analyse the effects of the injected faults on the system.

According to Section 5.3.4, the points of interest to be observed (obser-
vation points) must be selected among the sequential elements of the system
under study (FFs and memories). The current state of all these elements is
stored in the related bits of the configuration memory of the FPGA.

The observation rate defined by the user determines when the state of these
observation points must be retrieved from the FPGA’s configuration memory.

The JBits package is again very helpful to monitor the observation points of
the system, i.e. obtaining the current state of the selected sequential elements.
The ReadbackCommand class provides methods for getting data back from
the FPGA through a readback command. The structure of this command is
detailed in Appendix A.5. Table 5.4 describes in a simplified way the procedure
to be followed to obtain the current state of a certain FF.

The information extracted in this way is stored in a trace file for later
analysis. The particular structure of this file is described in Appendix A.6.

Table 5.4: Sample code for retrieving the current state of FF X from slice 0 located
in row row and column column.
// Create a state readback interface to JBits
state = new State(1);
// Assign a bit in the state vector to the observation point
state.setBitEntry(0, row, column, CLB.SLICE0_XQ);

// Generate the readback command
readCommand = ReadbackCommand.getClbRegs(deviceType[0], column,

ReadbackCommand.SLICE0_XQ);
// Get the readback data’s length in bytes
readbackBytes = (ReadbackCommand.getReadLength() * 4);

// Send the readback command
result = board.setConfiguration(0, readCommand);

// Readback the expected data
data = board.getConfiguration(0, readbackBytes);
// Parse the retrieved data
jbits.parsePartial(readCommand, data);
// Retrieve the current bit value of the observation point
currentState = (state.getIntArray(jbits))[0];

123

5.4. Experiment execution

5.4.4 Fault injection

The fault injection procedure involves processing all the available information
extracted from the bitstream, and possibly request some information from the
FPGA like the current state of some FFs, to compute the reconfigurable file
that emulates the behaviour of the system in the presence of the desired fault.

JBits features a class, also called JBits, which defines a programming inter-
face to access all the internal resources of Xilinx’s Virtex devices. The get(int
clbRow, int clbColumn, int[][] bits) method can be used to get the current con-
figuration of a particular component, determined by the bits parameter, and
located at the CB in row clbRow and column clbColumn. Likewise, the set(int
clbRow, int clbColumn, int[][] bits, int[] val) method allows for modifying the
current configuration of the selected component to the one specified by the val
parameter. These two methods operate on the JBits object only, and do not
update the current FPGA’s configuration.

To do so, the data of this new configuration must be downloaded onto the
FPGA’s configuration memory. In order to reduce the amount of data to be
transferred, and thus the temporal overhead of the reconfiguration process, it
is possible to take advantage of the local (partial) reconfiguration capabilities
of Virtex FPGAs. The getPartial() method returns a partial configuration
bitstream containing only those bits (actually those frames) the current confi-
guration of the FPGA differs from the JBits object.

The transfer of this bitstream causes the FPGA to modify the configuration
of its programmable components to behave as the system in the presence of
the desired fault. Table 5.5 describes a simplified version of this algorithm.

Table 5.5: Sample code for injecting a stuck-at-0 fault into the output of the LUT
G of slice 0 located at the CB in row row and column column.

// Step the clock until the injection time is reached
board.clockStep(injectionTime);
// Get the contents of the targeted LUT before injecting the fault
faultFreeLUT = jbits.get(row, column, LUT.SLICE0_G);

/* FAULT INJECTION*/
// Get the truth table of the faulty LUT
faultyLUT = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Modify the JBits object to reflect the desired changes
jbits.set(row, column, LUT.SLICE0_G, Util.InvertIntArray(faultyLUT));
// Generate the partial configuration file containing these changes
partialBitstream = jbits.getPartial();
// Download the partial bitstream to device 0
board.setConfiguration(0, partialBitstream);

124

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

As reported in Chapter 4, different approaches should be followed for injec-
ting each one of the considered hardware faults. These approaches, that have
been defined for a generic FPGA architecture, must be now adapted for the
particular architecture of Virtex FPGAs. JBits classes and methods will be
used, as previously explained, for this purpose.

For simplicity, just a summary of those differences that are worth mentio-
ning follows.

• Bit-flip. The main issue in this fault model is related to the use of the
LocalSetReset (LSR) signal approach.

Virtex CBs consists of two slices that hold two FFs each. Both FFs share
the lines that control their set/reset logic. Therefore, pulsing the LSR
line will cause both FFs to be set or reset according to the configuration
of the related logic.

Hence, the injection of a bit-flip in one of the FFs will involve i) reading
the current state of both FFs, ii) configuring the control logic to invert
the current value of the targeted FF and keep the state of the other, and
iii) pulsing the LSRin line as explained in Section 4.2.2.

• Stuck-at. As in the case of bit-flips, the use of the LSRin line to change
and keep the state of a targeted FF will also affect the other FF that is
sharing that line. Therefore, this approach may only be applied when
only one of the FFs of a CB is being used for implementing the system’s
model.

The same problem appears when using the CLKin-based approach, since
FFs within the same CB also share the clock line.

Hence, although as shown in Section 4.6, the injection of indetermina-
tions into sequential logic by using the LUT-based approach incurs the
highest temporal overhead, it could be the only available possibility in
some cases.

• Pulse. The implementation of this fault model is quite straightforward
with the aid of the JBits package and do not present many problems.
However, problems arise when the duration of pulses injected into a LUT
extends beyond the next clock cycle.

Virtex FPGAs do not provide any means to obtain the current state of
combinational lines. The proposed approach, which consists in inverting
the current state of the targeted logic by including a NOT gate into the
circuit, works well for faults that disappear after the next clock cycle.
The problem of further extending the duration of the fault is that the

125

5.4. Experiment execution

pulse must invert and maintain the state of the logic element for the
duration of the fault, which may not be achieved by just a NOT gate.

The only way of solving that particular problem consists in executing
two different experiments: one considering that the pulse must keep a
‘0’ and the other a ‘1’. This can be modelled as a transient stuck-at 0
and a transient stuck-at 1. FADES will be able to determine the result of
the pulse fault by comparing the results of both transient stuck-at faults.

Hence, this approach will double the temporal cost estimation for injec-
ting a pulse.

• Stuck-open. As in the case of pulses, the main issue when dealing with
stuck-opens in combinational logic is that the current state of the targeted
combinational element cannot be obtained. Hence, it is not possible to
keep the current state of the logic since it is unknown.

To solve this problem, two experiments are performed, assuming that
the element holds a low- and a high-logic level respectively. Results from
both experiments are compared to determine the result of the stuck-open
fault. Of course, this will double the expected temporal cost of injecting
this fault.

Another problem is keeping constant the state of a targeted FF. Depen-
ding on the system some of the faster approaches may not be used, as in
the case of indeterminations and stuck-ats.

• Indetermination. The implementation of this particular fault presents
the same problems already discussed for stuck-ats.

• Delay. The main problem with this fault model is not its implementation
but the JBits routing algorithms from the JRoute2 class [106].

On one hand, the memory requirements for using the provided methods
are huge. On the other hand, the routing algorithms, although very
helpful for testing purposes, present serious problems when dealing with
congested designs.

As the purpose of this work is not designing new and complex routing
techniques for FPGAs, we have decided to make use of JRoute2 as it is.
This means that, depending on the design, it could not be possible to
inject a delay with the desired propagation delay but a smaller one.

• Short, Open-line, and Bridging. The implementation of all these
faults does not present very complex problems. As they are mainly rout-
ing related tasks, the use of JBits routing facilities greatly eases the
process of modifying the routing of the system.

126

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

5.4.5 Fault deletion

Transient faults have a duration after which they must be deleted from the
system by following the steps presented in Section 4.11.

Permanent faults remain into the system and, thus, their duration is li-
mited by the duration of the experiment. At the end of the experiments the
permanent fault must be deleted to allow for the execution of new experiments
with a fault-free implementation of the system. Therefore, the operations des-
cribed in Tables 3.1 and 3.2 may be used again to restore the original fault-free
configuration of the system. As this approach takes benefit of the partial re-
configuration capabilities of Virtex FPGAs, it is faster than downloading the
whole original bitstream file to remove the fault.

The fault deletion process for each particular permanent fault is next sum-
marised in Table 5.6 following a C-like pseudo-code. This process complements
the one described in Tables 4.4, 4.8, 4.9, and 4.10, for emulating the occurrence
of permanent faults.

Table 5.6: Pseudo-code for deleting a permanent fault from the system at the end of
the experiment.

Fault model Fault deletion
Stuck-at deleteTransientIndetermination();
Stuck-open deleteStuckAt(‘0’);
Indetermination deleteTransientIndetermination();
Delay deleteTransientDelay();

Short
for (i = 0; i < newRouting.length; i++)

((PT) newRouting[i])(off);
Open-line target(on);

Bridging
target(on);
for (i = 0; i < newRouting.length; i++)

((PT) newRouting[i])(off);

FADES makes use again of JBits methods to generate the configuration file
required to restore the fault-free configuration of the system. The same flow
previously presented for injecting the fault is now used to delete it.

A simplified sample code for deleting a previously injected stuck-at-0 fault
is described in Table 5.7.

In case of dealing with permanent faults the end of the experiment has
already been reached. Otherwise, the system’s clock must be stepped the
remaining number of clock cycles.

127

5.5. Analysis of results

Table 5.7: Sample code for deleting a stuck-at-0 fault injected into the output of the
LUT G of slice 0 located at the CB in row row and column column.

// Step the clock until the fault elapses
board.clockStep(faultDuration);

/* FAULT DELETION */
// Modify the JBits object to reflect the desired changes
jbits.set(row, column, LUT.SLICE0_G, Util.InvertIntArray(faultFreeLUT));
// Generate the partial configuration file containing these changes
partialBitstream = jbits.getPartial();
// Download the partial bitstream to device 0
board.setConfiguration(0, partialBitstream);

5.4.6 Reset to initial state

Once the experiment ends, the system is reset to its initial state, as shown in
Table 5.8, to allow for the execution of another experiment from scratch.

Table 5.8: Sample code for reseting the FPGA at the end of an experiment.
// Step the clock until the end of the experiment is reached
if (transientFault) jbits.stepClock(remainingTime);

/* RESET TO INITIAL STATE */
// Trigger the GlobalSetReset (GSR) after each reconfiguration
jbits.enableSoftReset(true);
// Download the configuration data to the FPGA, resetting the device
board.setConfiguration(0, null);
// Do not trigger the GSR after each reconfiguration
jbits.enableSoftReset(false);

5.5 Analysis of results

Measurements performed during the workload’s execution, i.e., the state of the
observation points at that particular time (see Table A.7), are stored in a trace
file for each experiment carried out. At the end of the experimentation, those
traces must be analysed to determine the effects of faults on the system. The
GUI depicted in Figure 5.7 helps the user to configure this analysis.

First of all, the user must indicate the directory where all the traces are
located by means of the form shown in Figure 5.7a.

128

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

(a)

(b)

(c)

Figure 5.7: FADES GUI: Form to configure the analysis of the fault injection expe-
riments’ traces.

This information is parsed and provided to the user, so he can determine
those observation points considered more significant for the analysis of the
system’s behaviour (cf. Figure 5.7b). In this way, for instance, it is possible
to monitor all those observation points that constitute the state of the system,
and select as key points those related to system outputs.

It is also possible to configure the analyser to extract information related
to some particular injected faults (see Figure 5.7c).

The Golden Run and the faulty traces files are parsed, and the state of
the observation points is compared to determine whether the fault affected the
normal execution of the workload.

This comparison provides three kind of measures for each observation point.

• In first place, it obtains the number of experiments in which the traces of
the Golden Run and the faulty experiment are identical. This obviously
means that the system has, somehow, tolerated the fault.

• Next, it presents the number of experiments in which observations from
the faulty trace do not match those of the Golden Run, but they are not

129

5.6. Conclusions

included in the range of observation points selected as most significant.
The system is moderately affected by the fault occurrence.

• Finally, it computes the number of experiments in which observations
considered as most significant do not match those of the Golden Run.
The system is severely affected by the occurrence of the fault.

Results are not only provided as absolute numbers but also as percentage of
experiments. Global numbers for the whole experimentation are also included.

All this information is stored in a text file, whose structure is described in
Appendix A.7.

5.6 Conclusions

FADES (FPGA-based Framework for the Assessment of the Dependability of
Embedded Systems) is the first prototype of an FPGA-based fault injection
tool that follows a Run-Time Reconfiguration approach for the fast and early
emulation of the behaviour of a system in the presence of faults.

The tool’s hardware module features a Xilinx’s Virtex FPGA, which ena-
bles the partial reconfiguration of the programmable device and allows for the
use of the JBits package. This Java package provides some useful classes and
methods for retrieving information from a Virtex FPGA and generating new
configuration files that can be downloaded onto the FPGA’s configuration me-
mory. The communication to and from the FPGA is controlled by means of a
host platform that also is in charge of running the software module.

The global control flow of FADES is depicted in Figure 5.8.

FADES copes with all the previously identified goals for this tool: i) it
allows for the early and fast dependability assessment of system’s models fol-
lowing a Run-Time reconfiguration approach, ii) it implements the whole set
of hardware fault models considered representative of deep-submicron manu-
factured systems, and iii) it presents a very simple GUI that any non-skilled
user may employ for evaluating the dependability of his systems.

This shows the feasibility of all the proposed approaches for the injection
of faults by means of FPGAs. It only rest to determine the advantages and
limitations of this first prototype by means of experimentation.

130

Chapter 5. FADES: a Tool Supporting FPGA-Based Fault Injection

HDL model

Synthesis and implementation

Analysis of results

Target
location

Fault injection
time reached

Trace file

New experiment

Workload execution

Trace file

Experiment
end time

R
es

et
sy

st
em

to
in

it
ia

l
st

a
te

On-the-fly
reconfiguration?

Stop system’s
execution

Yes

No

Permanent
fault?

Yes

No

More
experiments?

Yes No

Experiment
start time

User inputs

Golden Run
trace file

FPGA reconfiguration with
fault injection purposes

FPGA configuration file

Logic Allocation file

User Constraint file

Workload file
[[+

(Download)Initialisation

F
a
u

lt
in

jectio
n

Workload execution

Workload execution

Fault duration
time expired

On-the-fly
reconfiguration?

Stop system’s
execution

Yes

No

FPGA reconfiguration with
fault deletion purposes

F
a
u

lt
d

eletio
n

EXPERIMENTS
DEFINITION

Observation

A
N

A
L

Y
S

IS
O

F
R

E
S

U
L

T
S

EXPERIMENTS
EXECUTION

Observation

Golden Run?

No

Yes

Figure 5.8: FADES: fault injection campaign control flow.

131

Chapter 6

Experimental Validation and
Case Study

FADES implements the proposed methodology for emulating a wide range of
hardware faults following a Run-Time Reconfiguration approach. That tool is
intended to accelerate simulation-based fault injection experiments while cor-
rectly emulating the behaviour of the system in the presence of faults.

This Chapter presents the experimental procedure followed to validate the
correctness of the results provided by FADES and the attainable speed-up when
comparing the experimentation time with that provided by a state of the art
simulation-based fault injection tool. The advantages and drawbacks of this
implementation are also discussed along with a case study that shows the use-
fulness of this tool for the dependability assessment of embedded systems.

6.1 Introduction

Although the aim of FADES is speeding-up simulation-based fault injection
experiments, it is very important to keep the focus on correctly emulating
the system’s behaviour in the presence of faults. Hence, the main goals of
this Chapter are i) validating the proper behaviour of emulation experiments
conducted by means of FADES and, ii) determining the attainable acceleration
achieved by using this tool instead of simulation-based techniques. Different
experiments have been performed to obtain significant results that can be use
to determine whether these goals have been achieved.

Furthermore, these results also allow for the discussion of other interesting
points, like iii) the advantages and drawbacks derived from the current imple-
mentation of this tool, and iv) the possible application of FADES as a tool for
assisting the dependability evaluation of systems.

133

6.2. Correctness of experiments’ results

Similar experiments have been carried out by FADES and VFIT (VHDL-
based Fault Injection Tool) [107], a state-of-the-art simulation-based fault in-
jection tool. Section 6.2 presents the validation of FADES’ results by com-
parison with those provided by VFIT. The execution speed-up that FADES
achieves with respect to VFIT is reported in Section 6.3. Section 6.4 dis-
cusses different applicability-related features of this tool, while Section 6.5
presents different examples of the use of FADES to assess the dependability
of microprocessor-based systems. Section 6.6 summarises the results of this
study and draws the main conclusions of this work.

6.2 Correctness of experiments’ results

Results provided by FADES consist in the percentage of experiments that
affected the behaviour of system under study in three different degrees (not
affected, moderately affected, severely affected), as defined in Section 5.5.

Determining the correctness of these results is not an easy task. It should
be necessary to exactly know the behaviour of the system in the presence of
that fault beforehand and trace the execution of the workload after the inser-
tion of the fault, for an oracle to assure that the expected faulty behaviour is
being accomplished. Obviously, making this study while taking into account
the whole set of considered fault models and eligible injection points, even for
a small system, is an unfeasible task.

The approach proposed here for estimating the correctness of the results
provided by FADES, relies on comparing its results with those provided by a
state-of-the-art simulation-based fault injection tool. This tool, named VFIT,
makes use of the commercial ModelSim1 simulator to introduce the faults into
the model of the system. Faults can be injected during the execution of the
system’s workload, following a simulator commands approach [29], by mod-
ifying the current logical value of signals and variables of the model. The
faults that can be injected by this technique include bit-flips, pulses, stuck-ats,
stuck-opens, indeterminations, and open-lines.

6.2.1 Experimental set-up

A model of the Intel 8051 microcontroller provided by Oregano Systems [108]
was selected for experimentation. This is not a large size model, which allows
for following the trace of the system’s execution relatively easily. In this way,

1http://www.model.com/

134

Chapter 6. Experimental Validation and Case Study

it could be possible to detect and correct any problem related to the current
implementation of FADES.

A bubblesort algorithm, commonly used in the validation of other model-
based fault injection tools, was selected as the workload of the system.

The aim of these experiments was to validate the correctness of the re-
sults provided by FADES and the current implementation of all the considered
hardware faults. Some preliminary experiments were performed to determine
those points of the system’s model in which the occurrence of a fault most
likely affect the proper behaviour of the system. This information was used
for the selection of fault injection points to increase the effectiveness of the
injected faults. In this way, it could be easier to compare results from both
tools as a significant number of experiments will result in a wrong behaviour,
which could not be ascertained otherwise.

This exploratory operation consisted in 3000 single bit-flip and pulse in-
jected into the sequential and combinational logic of the system using FADES.
These faults were uniformly distributed along the duration of the workload
and the eligible injection points.

As a result, the registers to be targeted by faults affecting the sequential
logic of the system were the datax_o, psw (control unit), pc, s_preadr_2,
psw (memory unit), state, s_r1_b0, s_r0_b0, s_intpre2, s_ir, sram_addr,
s_ram_data_out, Mtrien_sram_data, s_rom_data. Regarding the faults af-
fecting the combinational logic of the system, the eligible injection points of
the Arithmetic-Logic Unit were selected.

According to this information, a new fault injection campaign was set-up
to execute 3000 experiments for each one of the considered hardware fault
models targeting the combinational and sequential logic of the system. Single
faults were again uniformly distributed along space and time. The duration
of transient faults was also uniformly distributed into three different ranges:
faults with a duration less than 1 clock cycle, those lasting between 1 and 10
clock cycles (transient faults with an unusual long duration), and faults during
between 10 and 20 clock cycles (very long duration, with results tending to
those of permanent faults). These intervals were selected according to the
common use of VFIT in some other case studies [109] [110] [111] to ensure the
propagation of the faults.

6.2.2 Analysis of results

The results of all these experiments, carried out by both FADES and VFIT,
are presented in Table 6.1 (transient faults) and Table 6.2 (permanent faults).

135

6.2. Correctness of experiments’ results

As the system under study did not feature any fault detection or fault tole-
rance mechanisms, only results related to experiments severely affecting the
behaviour of the system under study are reported on these tables.

Table 6.1: Percentage of experiments whose behaviour was severely affected by tran-
sient faults injected by means of FADES and VFIT. The duration of the faults was
divided into three different ranges: less than one clock cycle, between one and ten
clock cycles, and between ten and twenty clock cycles.

Transient fault Targeted logic
FADES VFIT

Fault duration in clock cycles
< 1 1-10 10-20 < 1 1-10 10-20

Bit-flip Sequential 43.86 43.70
Pulse Combinational 0.06 3.13 8.86 1.36 3.53 7.43

Indetermination Sequential 29.73 50.86 73.3 18.87 35.90 52.47
Combinational 0.33 2.2 5.4 1.30 3.03 8.23

Delay Sequential 2.53 14.36 24.4 - - -
Combinational 0.43 1.72 3.23 - - -

Table 6.2: Percentage of experiments whose behaviour was severely affected by per-
manent faults injected by means of FADES and VFIT.

Permanent fault
FADES VFIT

Targeted logic
Sequential Combinational Sequential Combinational

Stuck-at-0 56.36 10.56 43.30 16.37
Stuck-at-1 84.8 12.83 72.03 24.80
Stuck-open 68.53 9.63 - -

Indetermination 71.26 12.33 68.33 25.23
Delay 36.2 5.66 - -
Short 20.95 15.52 - -

Open-line 45.8 19.33 68.47 25.20
Bridging 25.8 14.06 - -

At first glance, the results provided by both tools are consistent with the
expected impact of permanent and transient faults into the sequential and
combinational logic of a system.

On one hand, as permanent faults remain into the system, they lead to a
higher rate of affected experiments than transient faults. The percentage of
experiments whose behaviour is affected by transient faults increases with the
duration of the fault.

136

Chapter 6. Experimental Validation and Case Study

On the other hand, faults affecting sequential elements have a greater im-
pact in the system’s behaviour than faults targeting combinational logic. Faults
affecting combinational logic may not manifest as an error in the system be-
cause the affected combinational signal either i) traverses logic gates with other
inputs in their controlling state (logical masking), or ii) is outside the latching
windows of all the FFs in the path (temporal masking), or iii) is attenuated by
the limited bandwidth of the technology (electrical masking) [112].

FADES and VFIT obtained very similar results when dealing with bit-
flips and pulses. However, the different approaches used to inject stuck-ats,
indeterminations, and open-lines cause their results not to be so close.

Differences related to stuck-at faults are mainly due to the consideration
of what an injection point is. For instance, FADES considers every single FF
as an eligible injection point for faults affecting the sequential logic of the sys-
tem’s model. However, VFIT determines these same injection points according
to the signals and variables of the model. For instance, an 8-bit register is con-
sidered as a single injection point for VFIT and as 8 different injection points
in FADES. As faults have been injected uniformly among all the selected in-
jection points, this leads to 14 sequential injection points (registers) for VFIT
and 81 sequential injection points (FFs) for FADES. This different distribution
causes the disparity in the results.

When dealing with indeterminations, VFIT changes the logical value of
the affected element by ‘X’ (unknown value). FADES is unable to modify
the voltage level of an element to somewhere in between the high- or low-
level thresholds of the technology (see Section 4.6). Then, FADES randomly
determines the final logic value (‘0’ or ‘1’) caused by the fault and forces
the state of the affected element to that value. That different assumption, also
contributes to the difference in the results.

In case of injecting open-lines, VFIT has opted to modify the logical value
of the targeted element by ‘Z’ (floating value). This methodology disconnects
all the elements along the path. The approach followed by FADES consists in
physically opening the line to inject the fault into the system. Depending on
the selected injection point, one, several, or all the logic elements connected
to the affected path may get undriven. This is the main reason why FADES
presents a lower rate of affected experiments by open-line faults.

It is also remarkable that FADES always obtains a lower percentage of
failures when dealing with faults affecting the system’s combinational logic.

VFIT selects the possible injection points among the signals and variables
of the model representing combinational logic. These points, once implemented
onto an FPGA, correspond to a number of LUTs representing the structure of

137

6.3. Speeding-up experiments’ execution

the combinational circuit. For instance, sum <= in1 + in2;, which represents
a combinational adder, could be affected by faults at sum, in1, and in2, when
using VFIT. However, assuming that this code is implemented as a half adder,
FADES can also target the XOR and AND logic gates apart from the input
and output signals. In this case study, this leads to a total of 131 combina-
tional injection points (signals and variables) for VFIT and 5283 combinational
injection points (LUTs’ inputs, outputs, and internal structure) for FADES.

Moreover, faults affecting this logic can be nearly only masked by logic
when using VFIT. On the other hand, as FADES provides a physical imple-
mentation of a prototype, logic, temporal and electrical masking may attenuate
the injected faults.

It explains the higher rate of affected experiments that VFIT achieves when
dealing with faults targeting the combinational logic of the system.

FADES’ results, although somewhat different than the ones provided by
VFIT, follow the same trend and seem to be coherent with the common know-
ledge about faults and their manifestation. This establishes the correctness of
the implementation of this first prototype and all the proposed approaches for
injecting hardware faults by means of FPGAs.

6.3 Speeding-up experiments’ execution

The main goal of the implemented methodology is to accelerate the execution
of simulation-based fault injection experiments for a wide set of hardware fault
models. Therefore, it is still necessary to ascertain whether this primary goal
has also been achieved.

In order to estimate the attainable speed-up for each of the considered
hardware faults, the execution time of the fault injection experiments presented
in the previous Section 6.2 was measured. Table 6.3 lists the execution time,
in seconds, of the experiments carried out by FADES and VFIT.

Results from VFIT show that the execution time of experiments injected
by using the simulator commands technique is constant and equal to 21600
seconds. This technique simply makes use of the commands supplied by the
simulator to change the logic value of the targeted signal, which has a constant
temporal cost regardless the fault being injected.

However, the execution time of fault injection experiments using FADES
is dependent on the fault model being considered. As presented in Chapter
4, the emulation time depends on the information that must be transferred to
and from the FPGA to change its configuration memory.

138

Chapter 6. Experimental Validation and Case Study

Table 6.3: Execution time (in seconds) required to inject 3000 faults by means of
FADES and VFIT.

Fault model

FADES

VFITTransient faults Permanent faults
Sequential Combinational Sequential Combinational

logic logic logic logic
Bit-flip 916 - - - 21600
Pulse - 755/1520 - - 21600

Indetermination 1065 805 1043 625 21600
Delay 2487 2778 2076 2267 21600

Stuck-at - - 912 641 21600
Stuck-open - - 1322 1585 43200

Short - - 2099 2497 43200
Open-line - - 2032 2165 21600
Bridging - - 2158 2317 43200

The attainable speed-up according to the injected fault, its duration, and
the logic element targeted is summarised in Table 6.4.

Table 6.4: Speed-up ratio attained by FADES with respect to VFIT.

Fault model
Transient faults Permanent faults

Sequential Combinational Sequential Combinational
logic logic logic logic

Bit-flip 23.58 - - -
Pulse - 28.60/14.21 - -

Indetermination 20.28 26.83 20.70 34.56
Delay 8.68 7.77 10.40 9.52

Stuck-at - - 23.68 33.69
Stuck-open - - 32.67 27.25

Short - - 20.58 17.30
Open-line - - 10.62 9.97
Bridging - - 20.01 18.64

As can be seen in Table 6.4, FADES achieves a better speed-up ratio for
experiments targeting the logic of the system (bit-flip, pulse, stuck-at, stuck-
open, and indetermination) than when targeting the routing of the system
(short, open-line, bridging, and delay). Logic-related faults attain a global
speed-up ratio of 26.80 whereas routing-related ones achieve a global 9.45 ratio.

That great difference in the experiments’ execution time is caused by the
current implementation of the prototype. Logic-related faults follow the pro-
posed methodology for fault emulation, which can be briefly described as i)
reading some information from the FPGA (if any), ii) generating and down-
loading a new reconfiguration file for injecting the fault, and finally iii) gene-

139

6.3. Speeding-up experiments’ execution

rating and downloading another reconfiguration file to restore the fault-free
configuration of the system to remove the fault.

However, we have detected a problem when modifying the routing of the
system implemented on the prototyping board. Once the FPGA has been
reconfigured to restore the fault-free configuration of the system, its configura-
tion memory states that the internal connections have been correctly changed.
But, somehow, the routing segments or the interconnecting pass transistors
seem to keep some capacity charge and, hence, the system is not properly be-
having anymore. The only way of bypassing this problem has been resetting
the prototyping board to turn off and discharge the programmable device.

Hence, routing-related faults follow this other approach for injecting a fault:
i) reading the whole current state of all the sequential elements of the system,
ii) resetting the prototyping board, iii) generating and downloading a new full
reconfiguration file to inject the fault, iii) restoring the previous state of all
those sequential elements by using a stuck-at-like approach, and at last iv)
resetting the board and downloading the original configuration file to remove
the fault from the system. This obviously involves transferring much more
information than in the case of logic-related faults. Thus, it increases the exe-
cution time and reduces the attainable speed-up.

Another technical problem with our prototyping board is the cause of not
so good (one order of magnitude) speed-up ratio. After downloading a partial
reconfiguration file onto the available FPGA, the contents of its configuration
memory do not match the contents specified by the reconfiguration file. In some
situations, modifying part of the logic of the programmable device causes some
unrelated logic to change too, leading to an undesired behaviour.

This problem has been bypassed by including an option in FADES that
allows the user to select whether to generate and use partial or full reconfigu-
ration files. All these experiments were carried out using a full reconfiguration
approach. This greatly increases the amount of information transferred to
and from the FPGA, thus slowing down the execution of the experiments and
reducing the attainable acceleration.

Nevertheless, there is plenty of room for including different optimisations
that have been successfully used for simulation-based fault injection and also
for fault emulation by means of Compile-Time Reconfiguration [54], such as
restoring the system’s state before the last injection instead of running again
till that point, or ending the emulation once the fault has been positively
classified. We expect to increase the attainable acceleration well beyond two
orders of magnitude by implementing some of these optimisations, by following
a partial reconfiguration approach and solving some other technical problems
caused by the current implementation of this first prototype.

140

Chapter 6. Experimental Validation and Case Study

FADES’ results encourage the idea of using FPGAs to accelerate simulation-
based fault injection experiments for a wide set of representative hardware
faults. Even following the worst case full reconfiguration approach, FADES is
able to speed-up experiments’ execution time by at least one order of magni-
tude. This shows the feasibility of the proposed methodology and the different
approaches for injecting each one the considered faults.

6.4 Methodology and tool features

As the main goals of the tool has been achieved, it could be interesting to
evaluate some other attributes of the implemented methodology and tool [93].
The following subsections describe different properties of the proposed metho-
dology and its implementation, such as execution time and its scalability, spa-
tial intrusion, portability, independence from model description, controllability,
accessibility, and observability, pointing out their advantages and drawbacks.

6.4.1 Execution time and scalability

Section 6.3 has already discussed the time required to execute fault injec-
tion experiments using FADES for each one of the considered hardware fault
models. All these experiments targeted the same system and, therefore, the
question of whether the obtained results will be of applicability to any system
under study has not been answered yet.

This section deals with this issue, assessing how the time required to emu-
late a fault using FADES scales depending on the complexity of the system
under study.

Although complexity is in some sense an intuitive concept, there is no
general definition or single accepted definition of complexity when applied to
a model [113]. Parameters such as the number of signals, variables, or code
lines, could be representative of the model’s complexity, but they are not really
representative of the complexity of the modelled system.

However, once the model has been implemented on an FPGA, it is possible
to obtain very detailed information regarding the number of internal resources
required for its implementation. This information can be used to easily classify
the systems according to the area they take into the device.

This is the key idea that has been used to evaluate the execution time of a
number of fault injection experiments carried out into three different systems.
These three systems were a model of a PIC microcontroller (PIC) [114], the

141

6.4. Methodology and tool features

already presented model of an 8051 microcontroller (8051) [108], and a custom
set of 24 interconnected PICs (PICNET), which was designed just to increase
the complexity of the system. Table 6.5 shows the number of resources required
to implement each one of these systems.

Table 6.5: Complexity of systems in terms of number of FPGA’s internal resources
required for their implementation.

System’s model #FFs (%FFs) #LUTs (%LUTs) #Slices (%Slices)
PIC 335 (1.36%) 277 (1.12%) 305 (2.48%)
8051 635 (2.58%) 5310 (21.60%) 2882 (23.45%)

PICNET 8155 (33.18%) 7071 (28.77%) 7466 (60.75%)

The systems are classified according to the three different kinds of FPGA’s
internal resources considered: i) the number of FFs, which represents the com-
plexity of the sequential logic of the system, ii) the number of LUTs, which
estimates the complexity of the system in terms of its combinational logic, and
iii) the number of slices, which assesses the global complexity of the system,
as slices consists of FFs and LUTs either used for implementing logic or rout-
ing the system. As can be seen in Table 6.5, and according to the number of
resource used for their implementation, the PIC is the least complex system,
followed by the 8051 model and, finally, the PICNET system is the most com-
plex one.

A fault injection campaign was carried out for each one of these systems.
It consisted in 3000 experiments for each one of the considered hardware fault
models affecting the sequential and combinational logic of the system. Faults
were uniformly injected along the space and time.

During the execution of these experiments, the time required to perform
a number of processes was measured: i) the time devoted to read some in-
formation from the FPGA required to emulate the fault (readback), ii) the
time spent reconfiguring the FPGA to inject the fault (injection), iii) the time
required to reconfigure the FPGA to restored the fault-free configuration of
the system (deletion), iv) the time consumed while monitoring the state of
the system (observation), and v) the time spent just controlling and managing
the whole fault injection process (management). The total execution time of
a fault injection experiment consists in the sum of all these partial times.

Figures 6.1 and 6.2 depict the mean time devoted to execute the defined
processes for each of the considered systems. As logic-related faults present
better execution times than routing-related ones (see Section 6.3), they have
been respectively presented in Figures 6.1 and 6.2.

142

Chapter 6. Experimental Validation and Case Study

0 100 200 300 400 500

PIC

8051

PICNET

milliseconds

Readback Injection Deletion Observation Management

Figure 6.1: Mean time required to emulate logic-related faults (bit-flips, pulses,
stuck-ats, stuck-opens, and indeterminations).

0 200 400 600 800 1000 1200

PIC

8051

PICNET

Readback Injection Deletion Observation Management

milliseconds

Figure 6.2: Mean time required to emulate routing-related faults (shorts, open-lines,
bridgings, and delays)

Regarding faults affecting the logic of the system, it can be seen in Figure
6.1 that neither the readback, injection nor deletion times depend on the com-
plexity of the system. These times obviously depend on the kinds of faults
being injected but, on average, they keep nearly constant and are not really
affected by the system’s complexity.

On the other hand, the observation time increases with the system’s com-
plexity. The observation process obtains the current state of the system, which
can be defined as the logic value of all the registers (FFs) of the system. Ac-
cording to this, it will be necessary to transfer a higher amount of information
for system comprising a higher number of FFs. Therefore, the observation time
scales with the number of FFs in the system.

The management time slightly increases with the complexity of the system.
Eligible fault injection points are selected among the system’s FFs and LUTs.
More complex systems have more injection points which slightly lengthen the
overall management process.

143

6.4. Methodology and tool features

Hence, it can be concluded that the time FADES requires to perform fault
injection experiments targeting the logic of the system’s model, scales with the
number of FFs used for its implementation.

As can be seen in Figure 6.2, all the considered partial times (readback, in-
jection, deletion, observation, and management) for routing-related fault emu-
lation seem to increase with the complexity of the system.

Routing-related fault injection experiments require longer executing times
than logic-related ones, due to the particular problems the current implemen-
tation of FADES tries to solve (see Section 6.3).

First of all, the whole state of the system (the current state of all the FFs
used in the system’s implementation) must be retrieved before injecting the
desired fault. So the readback time increases with the system’s complexity in
terms of number of FFs.

Both the injection and deletion processes must reset the prototyping board,
download a full reconfiguration file and, after that, restore the previous state
of the system. Restoring this state depends again on the number of registers
the system consists of. Therefore, the injection and deletion times scale with
number of FFs used in the system’s implementation.

The observation and management times follow the same trend already ex-
plained for logic-related faults. Hence, they also depend on the number of FFs
required to implement the system’s model.

Then, the time FADES requires to execute fault injection experiments tar-
geting the routing of the system’s model scales with the complexity of that
system in terms of the number of FFs used for its implementation.

Taking all this information into account, it can be concluded that the execu-
tion time of fault injection experiments, using FADES, mainly scales with the
complexity of the system under study in terms of the number of FFs required
for its implementation.

It is to note that Virtex FPGAs present coarse-grain partial reconfiguration
capabilities and, hence, the minimum readback unit is not a single FF but a
whole column of FFs (frame). Then, it is not really the number of FFs but
the number of frames what determines the execution time of fault injection
experiments in this prototype. The final allocation of sequential elements on
the FPGA may cause that systems with similar number of FFs present different
number of used frames and, thus, different experimentation time. This is
an important issue that can guide the implementation of the system onto
the FPGA to reduce the execution time of fault injection experiments and,
therefore, increase the attainable speed-up.

144

Chapter 6. Experimental Validation and Case Study

On the other hand, one quarter to half of the total execution time is de-
voted to controlling and managing the whole process. This clearly states that
the current implementation of FADES has wide room for data structures and
algorithms optimisation, thus reducing even more the overall execution time.

6.4.2 Spatial intrusion

Spatial intrusion makes reference to what extent a system must be modified
to allow for the injection of faults.

As the proposed methodology works with the final implementation of the
system’s model, it is not modified at all. However, this implementation has to
be somewhat modified to be able to inject some of the considered hardware
faults.

The injection of bit-flip faults presents no spatial intrusion into the system.
Although some of the resources of the FPGA are used to inject the fault, all
of them remain as in the original implementation once the current state of the
sequential element has been flipped.

Faults like pulses, or stuck-ats, stuck-opens, and indeterminations into com-
binational logic, also present no actual spatial intrusion. The injection of these
faults is based on modifying the contents of already used LUTs, and no addi-
tional resources are required.

The injection of stuck-ats, stuck-opens, and indeterminations into sequen-
tial logic introduces a very low spatial intrusion. Free resources, such as a LUT
or LSRin line, must be used to hold the current state of the targeted FF.

All the routing-related faults, but the open-line, present a higher spatial
intrusion than the rest of faults. Some different unused elements such as FFs,
LUTs, and pass transistors, are required to modify the routing of the system
to emulate its behaviour in the presence of the desired fault.

On the whole, the current implementation of the proposed methodology
introduces a low spatial intrusion, if any, on the implementation of the system
on the FPGA, but none in the original model. This intrusion depends on the
kind of fault being considered.

6.4.3 Portability

The portability of FADES can be studied from two different perspectives re-
lated to its hardware and software components.

145

6.4. Methodology and tool features

FADES currently supports the RC1000 board [105] from Celoxica2 and the
XSV800 board from Xess3. It can easily support any other prototyping board
holding an FPGA from the Virtex family by developing the required XHWIF
interface to access all the resources of the board by means of the JBits package.

The use of other families of FPGAs will require the development of a pack-
age analog to JBits to enable the easy access and configuration of the internal
resources of the selected FPGAs family.

On the other hand, the software modules of FADES have been entirely
written in the Java programming language. This ensures its portability to any
platform with an available Java Virtual Machine.

Moreover, FADES can be easily extended to provide remote access to any
available prototyping board. This feature, supported by the XHWIF interface,
enables researchers to share not so cheap prototyping boards in an effective way.

Therefore, the portability of FADES counts as a strong point in its favour.

6.4.4 Independence from model description

Most model-based fault injection tools require the use of certain HDL languages
or description levels to model the system under study. For instance, FIFA [50]
uses gate-level models, whereas VFIT [31] only supports VHDL models.

The use of a Run-Time Reconfiguration approach for the injection of faults
results in the proposed technique to be independent from the HDL language
and description level used to model the system under study. Any language,
such as VHDL, Verilog, SystemC, and even schematic or finite state machine
diagrams, can be used to specify the system under study. The only actual
requirement is that the system’s model must be synthesisable. This allows
the use of a wide variety of already existing models, mixing languages and
description levels to use the best suitable for the component being modelled.

FADES can also manage IP (Intellectual Property) cores, which usually
provide a relocatable placed and routed component but not its source code.

6.4.5 Controllability and accessibility

Simulation-based fault injection techniques usually present very high controlla-
bility and accessibility, since commercial simulators grant access to every single
aspect of the model (signals and variables). FPGA-based fault injection tools
present a somehow more restricted controllability and accessibility.

2http://www.celoxica.com/
3http://www.xess.com/

146

Chapter 6. Experimental Validation and Case Study

As previously explained, FADES controls the clock signal of the system,
being able to stop the system’s execution and resume it later. This is the
easiest solution to asynchronously inject faults using inherently synchronous
FPGAs. Although this approach has a very coarse grain temporal precision,
just somewhere between two clock cycles, the fault is virtually injected at the
precise time it was supposed to occur.

This also grants the repeatability of experiments, since the state of the
system can be stored and later recovered to resume an experiment.

The accessibility is limited to those configurable elements that can be di-
rectly accessed through the FPGA’s configuration memory. This is usually
enough to manage most of the FPGA’s internal resources, like LUTs, memo-
ries, multiplexers, and pass transistors. However, the state of elements such as
FFs cannot be directly changed, and some procedures like the proposed for the
injection of bit-flips (see Section 4.2) must be followed to achieve that goal.
Some other elements of modern FPGAs, such as multipliers or microprocessor
cores, also present difficulties when trying to access all their internal elements.

The injection of some faults, such as indeterminations are also problematic,
since working with digital systems that only allow to induce a well-defined ‘0’
and ‘1’ in an element or line.

On the other hand, FADES achieves higher degrees of controllability and
accessibility than classical prototype-based fault injection techniques, like pin-
level and heavy-ion radiation.

The controllability and accessibility of FADES is, then, also satisfactory.

6.4.6 Observability

According to its synchronous nature, Virtex FPGAs can provide the current
state of their synchronous elements and the configuration of the whole system.
Despite FADES can only monitor the system’s synchronous elements, as nearly
all modern systems are synchronous, this is not really a problem.

As detailed in Section 6.4.1, the main drawback of this approach is the
temporal overhead caused by the readback process. Reducing the number of
observation points and/or decreasing the monitoring rate will result in a better
speed-up ratio at the cost of decreasing the observability of the system.

The different trace schemes implemented by FADES can be used to adjust
the monitoring rate and observation points to suit any needs.

147

6.5. Case Study

Hence, in general, FADES achieves a high observability although it directly
affects the temporal intrusion introduced in the execution of the experiments.

6.5 Case Study

Once the feasibility of the proposed approach has been shown, and the main
features of the current implementation has been presented, it could be desira-
ble to show some examples of the possible application of this methodology to
support the dependability assessment of embedded digital systems [115].

The use of Components-Off-the-Shelf (COTS) in the design of embedded
systems is currently a hot topic. It offers reduced time-to-market costs and
rapid integration of technology innovations in embedded solutions.

The best standardised set of benchmarks for embedded systems is defined
by the Embedded Microprocessor Benchmark Consortium4 (EEMBC). It copes
with a wide range of embedded applications and performance requirements,
targeting automotive/industrial, consumer, networking, office automation, and
telecommunication domains. Table 6.6 lists the set of benchmarks defined for
each one of these application domains.

Table 6.6: The EEMBC benchmark suite.

Application Considered benchmarksdomain
6 microbenchmarks (arithmetic operations, pointer chasing memory

Automotive/ performance, matrix arithmetic, table lookup, and bit manipulation),
Industrial 5 automobile control benchmarks, and 5 Fast Fourier

Transformation (FFT) filtering benchmarks

Networking 5 multimedia benchmarks (JPEG compress/decompress,
filtering, and RGB conversions)

Consumer Shortest path, IP routing, and packet flow operations
Office Graphics (Bézier curve calculation, dithering, and image rotation)

automation and text processing benchmarks

Telecommunication Filtering and DSP benchmarks
(autocorrelation, FFT, decoder, and encoder)

This set of benchmarks can be used to determine which is the most suitable
microprocessor, from a given set, to be integrated into a system in a certain
application domain. This decision is only based on the performance evaluation
of the selected microprocessors.

4http://www.eembc.org/

148

Chapter 6. Experimental Validation and Case Study

However, when dealing with critical embedded systems, not only the per-
formance but also the dependability attributes of those microprocessors should
be estimated. In this context, FADES could be used to assess the dependa-
bility of these microprocessors and allow for their comparison in terms of the
obtained results.

This Section presents the results obtained by FADES when assessing the
dependability of three different processing cores for a particular application
domain. These results are interpreted to determine which is the most suita-
ble core depending on several different factors, such as the kind of system
under study, the probability of occurrence of faults, or the ratio between the
combinational and sequential logic of the considered cores.

6.5.1 Cores under study

The dependability of three processing cores, featuring a very different archi-
tecture, has been analysed to determine the suitability of their integration into
an embedded system to perform the Gaussian smoothing operation.

The model of the PIC microcontroller [114] presents a RISC (Reduced
Instruction Set Computer) architecture that takes between 1 and 4 clock cycles
to process each instruction. It embeds an integer Arithmetic-Logic Unit (ALU)
and an 8-bit width data path.

The previously used model of the 8051 microcontroller [108] has also been
analysed. It features a CISC (Complex Instruction Set Computer) architecture
that can execute branch instructions in 8 clock cycles and the rest of instruc-
tions in only 4 clock cycles. As the PIC microcontroller, it also embeds an
integer ALU with and 8-bit data path.

The third core is a custom implementation of a specific-purpose DSP-like
architecture. It is able to process up to three MAC (Multiply-and-ACcumulate)
fixed-points operations in parallel, and presents a 16-bit wide data path.

The integration of these cores into a system was performed by using dual-
port memories, a very common approach to most embedded systems. These
memories act as interfaces were the microprocessors and other components of
the system can store and read data for their communication. Hence, the image
acquired by the system is stored into a dual-port memory where the core under
study can retrieve it. The output of the image processing algorithm will be
stored into another dual-port memory allowing other components of the system
to access this information.

149

6.5. Case Study

6.5.2 Workload

As can be seen in Table 6.6, signal filtering operations are considered for bench-
marking in four out of the five domains defined by the EEMBC benchmark
suite. Typically, these operations include a 2D convolution operator.

If an image I consists in M rows and N columns of pixels, and a kernel
K consists in m rows and n columns of coefficients, then a 2D convolution
operator may be described as shown in Equation 6.1, where i runs from 1 to
M-m+1 and j runs from 1 to N-n+1.

O(i, j) =
M∑

k=1

N∑
l=1

I(i + k − 1, j + 1 − 1)K(k, l) (6.1)

A 2D convolution operator named Gaussian smoothing, which is commonly
used to reduce the noise of incoming signals, has been selected as a representa-
tive workload for embedded systems. This operator applies a 3x3 pixels kernel
K (see Equation 6.2) to an incoming image I to remove detail and noise.

K =
1
16

⎛
⎝ 1 2 1

2 4 2
1 2 1

⎞
⎠ (6.2)

An example of the application of this operator to an incoming image is
shown in Equation 6.3.

Gaussian

⎛
⎜⎜⎝

2 4 6 8
3 6 9 12
5 10 15 20
7 14 21 28

⎞
⎟⎟⎠ =

(
6.5 9.75
10 15

)
(6.3)

6.5.3 Faultload

As faults were uniformly distributed across space, the number N of experiments
targeting the logic of the system for each of the considered hardware faults
was computed according to Equation 6.4. In that expression P represents the
probability of activating one of the injection points with the lowest probability
of activation. Hence, Equation 6.4 assures that each possible injection point
will be statistically targeted at least once with a probability Q.

N =
ln(1 − Q)
ln(1 − P)

(6.4)

150

Chapter 6. Experimental Validation and Case Study

Taking into account that bit-flips and pulses can only target sequential
and combinational elements, respectively, and that routing-related faults may
affect any kind of logic, there are 10 different kind of faults that can target
each kind of logic.

According to this, and assuming that all the eligible injection points can be
targeted with the same probability, the number of experiments performed to
ensure that each injection point will be targeted at least once with a probability
of 0.99 is shown in Table 6.7.

For instance, the PIC requires 721 FFs and 2116 LUTs to be implemented
onto the Virtex FPGA, so the probability of the fault targeting one of these
elements is 0.00138 (P = 1

721) and 0.0004725 (P = 1
2116), respectively. So,

after applying Equation 6.4, it leads to 3319 experiments for each kind of fault
targeting the sequential logic of the system and 9743 for faults targeting the
combinational logic of the system. In the end, a total of 130620 experiments
were performed on this system.

Table 6.7: Number of experiments performed depending on the system’s complexity.

Core’s #FFs #LUTs #considered #experiments per HW fault Total
model HW faults Sequential Combinational #experiments
PIC 721 2116 10 3319 9743 130620
8051 641 4208 10 2950 19377 223270
DSP 1105 2649 10 5087 12197 172840

All these faults were also injected following a uniform distribution along
the experiment duration.

6.5.4 Measures

All the sequential elements of the system’s model (FFs and memories) were
monitored at the end of each fault injection experiment to obtain the state of
the system at that particular point in time.

From this whole set of observation points, those related to the output of the
Gaussian smoothing operation (stored in a dual-port memory) where conside-
red as the most significant ones for determining the behaviour of the system
in the presence of faults.

Different works already defined convenient failure modes classifications,
such as the CRASH scale [116] (Catastrophic, Restart, Abort, S ilent, and
H indering failures) or the MAFALDA [24] classification (according to three
distinct observation levels). Nevertheless, neither of them can be easily applied
in the context of the proposed case study.

151

6.5. Case Study

On the one hand, the selected workload (Gaussian filtering) is not sup-
ported by a proper operating system, but is directly executed by the conside-
red microprocessor. On the other, the models of the cores under study do not
implement any kind of error detection mechanisms.

Hence, according to the measures provided by FADES (see Section 5.5), re-
sults can be divided into the following custom failure modes, which are generic
enough to be applied to any system under analysis.

• Failure. The output of the faulty system is not equal to that of the
Golden Run and, hence, the system is not providing the expected service
to the user. This is assimilated to those experiments with a severe impact
on the behaviour of the system.

• Latent. In this case, although the system is providing its expected
service correctly, the internal state of the system is not correct. This can
lead to a failure in an undetermined amount of time. It can be assimilated
to experiments with a moderate impact on the system’s behaviour.

• Masked. The outputs and the state of the system are correct and so,
the system has tolerated the fault. It is obviously related to experiments
in which faults have no effect, probably due to being somehow masked.

The percentage of experiments falling into each of these three failure modes
will be reported to the user, for each type of fault, according to the kind of
logic targeted by the faults and the nature of the faults.

6.5.5 Analysis of results

The results of all these experiments were analysed by FADES to determine
the percentage of experiments leading to the different defined failure modes
for each considered hardware fault.

Figure 6.3 depicts this information for the PIC, 8051 and DSP cores. It
is to note that, although transient faults were injected with a duration of less
than one clock cycle, and ranging from one and ten clock cycles, and from
ten and twenty clock cycles, the results reported in Figure 6.3 are carried
out considering the whole set of performed experiments for each particular
transient fault.

These results could be interpreted in many different ways depending on the
purpose of the designed system.

152

Chapter 6. Experimental Validation and Case Study

Bit-flip

Indetermination

Delay

Stuck-at 0

Stuck-at 1

Stuck-open

Indetermination

Delay

Short

Open-line

Bridging

Pulse

Indetermination

Delay

Stuck-at 0

Stuck-at 1

Stuck-open

Indetermination

Delay

Short

Open-line

Bridging

T
ra

n
s
ie

n
t

P
e

rm
a

n
e

n
t

T
ra

n
s
ie

n
t

P
e

rm
a

n
e

n
t

S
e

q
u

e
n

ti
a

l
C

o
m

b
in

a
ti
o

n
a

l

Masked Latent Failure

PIC 8051

0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%0% 20% 40% 60% 80% 100%

DSP

Figure 6.3: Syndrome analysis of each core when executing a Gaussian smoothing
algorithm.

For instance, mission critical systems usually operate in hostile environ-
ments. There, availability may be defined as the fraction of time that the
system spends performing useful work, where useful work is time spent per-
forming computation on the application that will never be redone due to a
failure. So, availability is the major concern for this type of systems. Accor-
ding to the previously defined failure modes, experiments leading to a failure
have a negative impact on the availability, but latent and masked experiments
provide the correct service and thus the system’s availability is not affected.

On the other hand, safety critical systems are computer-based systems in
which the occurrence of faults may endanger human lives or the environment.
For these systems safety is a dependability attribute of prime importance.
Latent experiments, which may cause a failure after some time, and failure
experiments may hypothetically lead to catastrophic consequences. Although
it is not possible to determine, from the information available, the effect of
those failure modes on the system’s environment, it is clear that they put the
system into unsafe states that must be entirely avoided. Masked experiments
do not affect the safety of the system, since it has tolerated the fault.

These two different points of view have been adopted to study the results
provided by FADES (they must not be taken for availability and safety as
defined in [2]). This study will assist the user in determining the best suitable
core to be integrated into a system depending on its particular purpose.

153

6.5. Case Study

The first thing that can be seen from Figure 6.3 is that the study of
each particular case (a certain permanent/transient fault affecting the sequen-
tial/combinational logic of the system) provides so much information that it
could be very difficult to manage. Unless a very specific case has to be conside-
red it seems more natural to group the results according to the faults duration
and/or the logic affected by the faults. This limits the variables the user has
to deal with to obtain meaningful, concise and precise information to evaluate
and compare the cores under study.

The analysis of the impact of faults into the system is next presented,
beginning with particular cases and going to more general ones at the end.

6.5.5.1 Impact of transient faults on the sequential logic of the sys-
tem

As shown in Figure 6.3 bit-flips are the transient faults with a deeper impact
into the sequential logic of the system. Hence, they have been considered as
the most representative faults falling into this category, and their effects on
the system’s behaviour are detailed in Figure 6.4.

0% 20% 40% 60% 80% 100%

PIC

8051

DSP

Masked

Latent

Failure

Figure 6.4: Impact of bit-flips onto the system’s behaviour when executing a Gaus-
sian smoothing algorithm.

The analysis of this kind of faults is very interesting specially in space
applications where they appear due to cosmic radiation (high energy neutrons
and protons) causing Single Event Upsets (SEUs) in memory cells.

In case of manned missions, safety is a major concern and, thus, masked
experiments are related to safe behaviours. Figure 6.4 shows that the DSP
core is the safest by far (66.5%), while the PIC (26.9%) and 8051 (24.7%), in
this order, fall way behind.

In unmanned missions, like space probes or satellites, the availability of
the system should be maximised. So, the system featuring the lowest failure
rate (the highest masked plus latent behaviour) could be considered as the
best choice. The most suitable core is the PIC (81.3%), followed by the DSP
(78.0%) and 8051 (70.6%).

154

Chapter 6. Experimental Validation and Case Study

In the case of the PIC the large percentage of latent experiments (54.3%)
compensates the low rate of masked ones (26.9%). This is related to the general
purpose architecture of the microcontroller and the selected workload. A large
number of registers, mainly from the bank register and some output ports,
accounting for the 51% of the FFs of the microcontroller are not used during
the workload execution. Hence, bit-flips targeting these registers do not really
affect the outcome of the computation although the induced logic value will
remain there until the end of the experiment (assuming a system’s reset). The
8051 presents a similar behaviour.

However, the DSP-like core has been customised to perform up to 3 MAC
operations in parallel and the workload really fits this specific architecture.
Most of the registers are updated every single clock cycle and, hence, the
low rate of latent experiments (11.5%). A bit-flip targeting these registers is
very likely to be masked, because the induced value is rewritten due to the
dynamics of the system before being really used, or result in a failure due to
data corruption with lower probability (22.0%).

6.5.5.2 Impact of permanent faults on the sequential logic of the
system

According to Figure 6.3, no permanent fault affecting the sequential logic of
the system has a greater impact on the system’s behaviour than other. Hence,
the average impact of all these faults has been depicted in Figure 6.5 to allow
for its easier analysis.

0% 20% 40% 60% 80% 100%

PIC

8051

DSP

Masked

Latent

Failure

Figure 6.5: Impact of permanent faults affecting the sequential logic of the system
while executing a Gaussian smoothing algorithm.

Permanent faults can be related to manufacturing defects and wearout
mechanisms during system’s normal operation. Electromigration, over-voltage,
and over-current are typical mechanisms found in industrial environments with
a high noise level. The steady exposition to high energy radiation may also
cause permanent faults in space applications.

Under these assumptions, the 8051 core presents the lowest failure rate
(21.3%), with the PIC close behind (23.1%), and it should be considered as
the best option when improving the availability of the system is a must.

155

6.5. Case Study

The analysed cores present close rates of masked experiments (PIC - 56.7%,
8051 - 55.1%, DSP - 53.4%). The PIC, which is slightly ahead, minimises the
probability of reaching an unsafe state.

It is to note the difference in the system’s behaviour that can be observed
when considering the occurrence of stuck-at-0s and stuck-at-1s. This is, once
again, mainly due to the considered workload and the cores architecture.

A large number of register’s bits hold a low logic level along the workload
(PIC - 78%, 8051 - 69%, DSP - 70%), so the high rate of masked stuck-at-
0 faults. However, the occurrence of stuck-at-1s is more harmful, especially
for the DSP, since most of the registers are used to compute the workload.
In the case of the PIC and 8051 this is reflected by a higher rate of latent
experiments. It is also remarkable the relatively high rate of masked stuck-
at-1s for the 8051, since the 3% of the register hold a high logic level for the
duration of the workload.

Thus, the great importance of properly choosing a representative workload
for the considered application domain.

6.5.5.3 Impact of transient faults on the combinational logic of the
system

Transient faults targeting combinational logic have a very low impact on the
system’s behaviour (see Figure 6.3). This effect is related to three different
intrinsic masking mechanisms [112] previously explained in Section 6.2.2.

Pulses seem to be of increasing importance in deep-submicron manufac-
tured systems [117]. Hence, this study focuses on this kind of faults and its
results are shown in Figure 6.6.

Masked

Latent

Failure

0% 20% 40% 60% 80% 100%

PIC

8051

DSP

Figure 6.6: Impact of pulses onto the system’s behaviour when executing a Gaussian
smoothing algorithm.

Pulses, which model transient modifications of the logic level of combina-
tional elements (SET - Single Event Transients), may occur due to radiation
in space applications or electromagnetic noise (crosstalk and power spikes) in
industrial environments.

156

Chapter 6. Experimental Validation and Case Study

The 8051 core barely presents any failure experiments, offering the best
results from an availability perspective.

Regarding the system’s safety, both the 8051 and PIC cores achieved very
similar masked rates (95.3% and 94.6%) and therefore they could be indis-
tinctly selected.

It is remarkable that the DSP exhibits the lowest masked rate (89%). This
could be related to the architecture of these cores. Most of the DSP registers
are updated every single clock cycle, whereas registers in the PIC and 8051
only refresh their contents when allowed by the control unit. That increases
the chances of masking the fault due to temporal masking.

6.5.5.4 Impact of permanent faults on the combinational logic of
the system

Figure 6.3 shows that different permanent faults affecting combinational logic,
such as stuck-at, indetermination, short, and open-line, could be considered as
the most dangerous one depending on the considered system and the attribute
(availability/safety) to be improved. This dispersion leads us to obtain a single
value, depicted in Figure 6.7, consisting in the average result for all these faults.

Masked

Latent

Failure

0% 20% 40% 60% 80% 100%

PIC

8051

DSP

Figure 6.7: Impact of permanent faults affecting the combinational logic of the sys-
tem while executing a Gaussian smoothing algorithm.

The 8051 presents the lowest failure rate (23%) and thus is the best candi-
date for its integration in a high-availability system. The DSP and PIC cores,
with similar results (26.3% and 26.5%), are a second option.

However, when dealing with the system’s safety, the PIC core presents the
lowest probability of reaching an unsafe state (71.9%). In this case, the DSP
core ranks in second place (67.9%).

It must be noted that, since dealing with permanent faults, the DSP is not
handicapped by its lower probability of temporally masking the faults.

157

6.5. Case Study

6.5.5.5 Impact of faults targeting the combinational logic of the
system versus faults targeting its sequential logic

As shown in Figure 6.8, and as can be expected, faults affecting the sequential
logic of the system have a deeper impact in the behaviour of the system than
faults affecting its combinational logic.

Masked

Latent

Failure

0% 20% 40% 60% 80% 100%

Sequential logic

Combinational logic

P
IC

8
0
5
1

D
S

P

Combinational logic

Combinational logic

Sequential logic

Sequential logic

Figure 6.8: Impact of faults affecting the combinational and sequential logic of the
system while executing a Gaussian smoothing algorithm.

On one hand, faults targeting combinational logic may be masked by any
of the three masking mechanism previously presented [112] thus reducing their
failure rate. On the other hand, registers may memorise errors that could
manifest later as failures which obviously increases their latent or failure rate.

When considering the occurrence of faults into sequential logic, the 8051
and PIC exhibit the best behaviour from an availability perspective (81.4%
and 80.2%). However, the DSP core obtains the lowest failure rate (39.7%)
and is the best option when focusing on the safety of the system.

When dealing with faults targeting the combinational logic of the system,
the PIC core presents the highest masked rate (80%) and the 8051 the lowest
failure rate (16.7%). Therefore, they are best option for respectively improving
the system’s safety and availability.

It is to note that when considering a uniform spatial distribution of faults,
their effect on the system’s behaviour will depend on the ratio between its
combinational and sequential logic. According to Table 6.7, this ratio is 2.93
for the PIC core, 6.56 for the 8051 core, and 2.39 for the DSP core.

Hence, although faults affecting the sequential logic of the system have a
greater impact on its behaviour, there is a higher probability of targeting a
combinational element and it should be taken into account when analysing the
dependability of the systems under study.

158

Chapter 6. Experimental Validation and Case Study

6.5.5.6 Impact of transient versus permanent faults

As Figure 6.9 shows, permanent faults have a greater impact into the behaviour
of the affected system than transient ones.

It seems reasonable that permanent faults, which do not disappear from the
system, present the highest failure rate. On the other hand, transient faults
achieve a higher rate of latent experiments due to the contribution of bit-flips,
which invert the current state of a sequential element.

Masked

Latent

Failure

0% 20% 40% 60% 80% 100%

Transient faults

Permanent faults

P
IC

8
0
5
1

D
S

P

Permanent faults

Permanent faults

Transient faults

Transient faults

Figure 6.9: Impact of transient and permanent faults into the system’s behaviour
while executing a Gaussian smoothing algorithm.

The 8051 core presents the best failure rate when dealing with transient
faults and, hence, it should be designated as the best candidate for improving
the availability of the system. This is mainly due to its superior behaviour
when affected by transient faults in its combinational logic. On the other
hand, the lowest probability of reaching an unsafe state is attained by the
DSP core, followed by the 8051 core.

When considering the occurrence of permanent faults, the PIC core is
slightly ahead of the DSP core in terms of masked, but slightly behind the
8051 in terms of failure rates. Hence, the PIC core is the best option for im-
proving the safety of the system and the 8051 for improving its availability.

It must be remarked that these experiments have followed a uniform distri-
bution, but in normal component operation transient faults are more frequent
than permanent ones. Likewise, permanent faults are more frequent, as shown
by the bath-tube curve [118], during the initial phase (manufacturing defects)
and the last phase (components wearout) of the component life cycle.

Thus, although permanent faults have a greater impact into the system’s
behaviour, transient ones are more frequent during its normal operation. This
should also be considered to determine the effect of any fault on the system.

159

6.5. Case Study

6.5.5.7 Summary

This section has presented an example of the applicability of the proposed me-
thodology for assessing the dependability of a number of microprocessors cores.
Measures related to availability and safety attributes have been compared to
determine the best suitable core to be integrated into a system to execute a
Gaussian smoothing operation.

A summary of the best core according to the duration of the injected fault,
the targeted logic and the dependability attribute estimated through experi-
mentation is listed in Table 6.8.

Table 6.8: Best core when executing a Gaussian smoothing algorithm.

Fault duration Targeted logic Best core in terms of
Availability Safety

Transient Sequential PIC DSP
Permanent Sequential 8051 PIC
Transient Combinational 8051 PIC
Permanent Combinational 8051 PIC

Any Sequential 8051 DSP
Any Combinational 8051 PIC

Transient Any 8051 DSP
Permanent Any 8051 PIC

Table 6.8 shows that, in general, the 8051 core exhibits the best behaviour
in the presence of faults when considering the correctness of the service pro-
vided.

On the other hand, the award as the best core to minimise the probability
of reaching an unsafe state is shared between the PIC and the DSP cores. The
optimal results of the DSP core when dealing with transient faults affecting the
sequential logic of the system compensates the not so good results in the rest
of cases and may rise this core to the first position in this particular ranking.

It is necessary to remark that these results have been obtained while exe-
cuting a Gaussian smoothing algorithm. The use of a different workload could,
and effectively does, change the outcome of these experiments.

For instance, these same experiments have been carried out while executing
a bubblesort algorithm as workload. The DSP core was not considered, as its
specific-purpose architecture can only handle MAC operations.

The results from these experiments are depicted in Figure 6.10.

160

Chapter 6. Experimental Validation and Case Study

Masked Latent Failure

0% 20% 40% 60% 80% 100%

Bit-flip

Indetermination

Delay

Stuck-at 0

Stuck-at 1

Stuck-open

Indetermination

Delay

Short

Open-line

Bridging

Pulse

Indetermination

Delay

Stuck-at 0

Stuck-at 1

Stuck-open

Indetermination

Delay

Short

Open-line

Bridging

T
ra

n
s
ie

n
t

fa
u
lt

P
e
rm

a
n
e
n
t
fa

u
lt

S
e
q
u
e
n
ti
a
l
lo

g
ic

C
o
m

b
in

a
ti
o
n
a
l
lo

g
ic

PIC

0% 20% 40% 60% 80% 100 %

8051

T
ra

n
s
ie

n
t

fa
u
lt

P
e
rm

a
n
e
n
t
fa

u
lt

Figure 6.10: Syndrome analysis when executing a bubblesort algorithm.

As can be seen, the 8051 core surpasses the PIC core in every single case,
either in terms of availability or safety. This is very interesting, as the PIC
core was the best core, in terms of masked rate, when executing the Gaussian
smoothing algorithm but cannot compete with the 8051 core when sorting
integer numbers.

Hence, it is very important to correctly determine the workload to be exe-
cuted while assessing the dependability of the systems under study. The se-
lection of a workload that does not correctly represent the normal operation
of the system in its working environment may lead to erroneous results and
conclusions.

6.6 Conclusions

FADES is the first prototype of a fault injection tool that implements the pro-
posed methodology for emulating a wide range of hardware faults by means of
the Run-Time Reconfiguration capabilities of FPGAs.

161

6.6. Conclusions

Although the main goal of this tool is accelerate simulation-based fault
injection experiments, it is necessary to keep in mind the correctness of the
results provided by the tool. Therefore, FADES and VFIT, a state-of-the-art
VHDL-based fault injection tool, executed the same set of experiments to allow
for the comparison of their results.

Most of the results provided by both tools were very close. The main dif-
ferences were related to the different characterisation of what a fault injection
point is, and the different approach followed to inject faults such as indetermi-
nations or open-lines due to technical reasons.

Then, assuming that the results obtained by VFIT are correct, these expe-
riments validate the correctness of the proposed approaches for the injection
of hardware faults and their current implementation.

Once FADES has been proved to provide confident results, it is time to
determine whether it achieves the aim of speeding-up simulation-based fault
injection experiments. For that reason, the time required to execute fault
injection experiments by means of FADES and VFIT was also measured.

Results reflected that, on the whole, FADES achieves one order of magni-
tude of acceleration with respect to VFIT. Due to the different implementation
of each kind of hardware fault, this speed-up ratio varies from 34.56 to 7.77. It
is to note that technical difficulties, such as problems with system’s rerouting
or partial reconfiguration, limited the theoretically attainable speed-up.

In spite of these technical issues, results show the feasibility of the proposed
approach for accelerating the execution of simulation-based fault injection ex-
periments. There is still plenty of room for including different optimisations
that have been successfully used for simulation-based fault injection and also
for fault emulation by means of Compile-Time Reconfiguration. We expect to
increase the attainable acceleration well beyond two orders of magnitude by
implementing some of these optimisations, by following a partial reconfigura-
tion approach and solving some other technical problems caused by the current
implementation of this first prototype.

A number of different features related to the proposed methodology and its
current implementation have also been discussed. Among them, it is to note
that the experiments execution time scales with the complexity of the system
in terms of the number of FFs required for its implementation onto the FPGA,
it presents a very low spatial intrusion, it is highly portable, it can be applied
to any system’s model regardless the language and description level used in its
specification, and it provides a good accessibility, controllability, and observa-
bility.

162

Chapter 6. Experimental Validation and Case Study

As an example of the applicability of FADES, the dependability attributes
of three different cores have been assessed to determine which is the best one
to be integrated into a system to execute a common signal filtering algorithm.

These cores were compared in terms of the highest probability of providing
the correct service, which can be assimilated to availability, and the lowest
probability of reaching an unsafe state, which can be assimilated to safety.

This study exposed a number of factors that should be taken into account
when assessing the dependability of any system.

Faults appear with different probability depending on the working environ-
ment of the system under study. This should be considered to assign a different
weight to the results obtained when injecting a particular kind of fault, or to
avoid injecting some specific faults.

The impact of faults into the behaviour of the system greatly depends on
whether combinational or sequential logic is affected by the fault. Hence, the
probability of targeting a particular kind of logic, represented by the ratio
between the combinational and sequential logic of the system, should also be
taken into account to determine the overall effect of any fault occurring on the
system.

Transient faults are more frequent during the normal operation of the sys-
tem, whereas permanent ones occur more frequently during the first and last
stages of the system’s life cycle. This fact could be borne in mind to determine
the kind of faults to be injected or to assign a different weight to each of these
faults depending on the considered system’s life cycle.

The selection of the workload is also a critical factor, because the results
obtained will be totally dependent on the workload executed. Hence, the
workload should be as representative as possible of the normal load of the
system in the absence of faults.

Finally, the analysis of very specific cases, although interesting in some
particular situations, may be of little interest to a common user. It should
be advisable to group those results according to different criteria, such as the
faults duration or the kind of logic targeted, to provide the user with concise
and meaningful information that could be easily interpreted.

163

Chapter 7

Conclusions

There exists a great interest in developing new and efficient techniques and
tools to assess the dependability of deep-submicron manufactured systems as
advances in semiconductor technologies are greatly increasing the likelihood of
occurrence of hardware faults.

This work has focused on the use of the Run-Time Reconfiguration capa-
bilities of FPGAs for the early and fast dependability assessment of computer-
based systems by means of fault injection.

On one hand, as following a model-based fault injection methodology, it
can be applied on the first stages of the development cycle, thus reducing the
costs of fixing any error in the design. It outperforms simulation-based fault
injection techniques as the model of the system is run on a prototype platform
rather than being executed by a software simulator.

On the other hand, other FPGA-based fault injection methodologies, like
Compile-Time Reconfiguration, may achieve a better speed-up on the exe-
cution of fault injection experiments. However, they require the model of the
system to be instrumented, leading to several and usually very time consuming
implementations of the instrumented model onto the selected FPGA. Although
the proposed methodology introduces some temporal overhead in the experi-
ments execution, it does not require to instrument the model and, therefore,
it must only be implemented once. Thus, Run-Time Reconfiguration appears
as a valuable methodology for dealing with large and complex models.

Not only the probability of occurrence of hardware faults is increasing with
new technologies, but also new and more complex fault models have to be
considered. Currently, the evaluation of the dependability of critical system
in the presence of bit-flip, pulse, indetermination, delay, stuck-at, stuck-open,
short, open-line, and bridging faults is a must.

165

Nevertheless, current fault emulation methodologies mainly deal with the
injection of the classical bit-flip and stuck-at fault models.

The primary goal of this thesis has been attained by defining a number
of novel approaches for reconfiguring a generic FPGA architecture to emulate
the behaviour of a system in the presence of a wide range of hardware faults
considered representative of new deep-submicron technologies.

Several options have been considered for each hardware fault, taking into
account the number of resources required to inject the fault, the time devoted
to the FPGA’s reconfiguration, and the applicability of such an approach.

The proposed methodology for the emulation of each fault has been detailed
by using a C-like pseudo-code in Tables 4.1 (bit-flip), 4.2 (stuck-at), 4.3 (pulse),
4.4 (stuck-open), 4.5 (indetermination), 4.7 (delay), 4.8 (short), 4.9 (open-
line), and 4.10 (bridging).

Table 4.11 summarises the different approaches that have been defined as
well as the function computing the temporal cost of following each one.

The secondary goal of this thesis has been also fulfilled by developing a tool
that implements the considered methodology and all the proposed approaches
for injecting the whole set of hardware fault models by means of FPGAs.

FADES (FPGA-based Framework for the Assessment of the Dependability
of Embedded Systems), which is the first prototype of that tool, has been
validated by means of experimentation.

First of all, the results provided by FADES were compared with the ones
provided by a state-of-the-art simulation-based fault injection tool. Results
obtained from both tools were very similar, having in mind the different ap-
proaches followed to inject some faults. This establishes the correctness of the
fault injection methodology and results analysis. Hence, the defined metho-
dology can be confidently used to assess the dependability of computer-based
systems.

Even in the presence of some technical problems that restricted the attain-
able acceleration, FADES obtained a speed-up ratio of one order of magnitude
with respect to the experimentation time required by the simulation-based fault
injection tool. This shows that the proposed approaches can be effectively used
to accelerate simulation-based fault injection experiments and, after working
out the technical issues of the current implementation, and including some
optimising that have been successfully used in other methodologies, it could
be possible to improve the achievable speed-up ratio well beyond two orders of
magnitude.

Among its remarkable features it is to note the good portability, controlla-
bility, accessibility, and observability it provides.

166

Chapter 7. Conclusions

One possible perspective of future research is the dependability benchmark-
ing of VLSI systems.

The benchmarking process can be understood as the continuous measure-
ment of a system to obtain some meaningful measures that can be used for its
comparison with other systems. Traditionally the benchmarking of VLSI sys-
tems has been focused on their performance in terms of number of operations
per second or another similar measure. Currently, there exists a great interest
in the development of systems with very low power consumption due to very
restrictive requirements in embedded systems. The increasing occurrence of
faults into deep-submicron manufactured systems also claims for the develop-
ment of benchmarks for the dependability assessment of critical systems.

This work has presented a study that experimentally estimates the pro-
bability of providing the correct service and reaching a safe state of different
microprocessor-based embedded systems to allow for their comparison in these
terms. In this sense, this constitutes a first step toward VLSI dependability
benchmarking. However, an estimation of other dependability attributes such
as availability, safety, reliability, integrity, and maintainability, as defined in
[2], still need further research.

From all these facts arises the idea of the benchmarking of VLSI systems
encompassing performance, power consumption and dependability properties.
The measurement of these properties could be of great interest to determine
interdependencies and finding tradeoffs among the desired level of dependabi-
lity, required power consumption and minimum acceptable performance. This
comparison will serve designers to improve their implementations, system in-
tegrators to select the most suitable component for a particular system, and
final users to assess the capabilities of their systems.

Another perspective of the methodology is the integration of simulation-
based and FPGA-based fault injection techniques into a single co-validation
framework.

This research should determine when to use fault simulation or fault emu-
lation depending on the characteristics of the available model, such as the
language used to model the system and at which level it has been described,
the type and nature of the faults to be considered, the selected locations to be
affected by the faults, or the desired level of controllability, accessibility, and
observability.

A step further will consist in considering the simultaneous application of
both techniques to a single model. This study will encompass the model par-
titioning and definition of the interfaces between each part, the communica-
tion between the simulator and the FPGA, the synchronisation of the model’s

167

execution during the fault injection process, the system monitoring and the
correlation of the obtained measurements, among many others.

All these questions, once answered, may lead to the definition of very in-
teresting design for validation rules and guidelines. This issue could nicely
complement the benchmarking of VLSI systems as they will have been de-
signed to be effectively validated in the presence of faults in an optimal way.

Finally, another possibility consists in considering the use of the Run-Time
Reconfiguration methodology for the dependability assessment of FPGA-based
systems. An increasing number of systems are being implemented by means
of FPGAs, mainly due to the reconfigurable capabilities they offer, and the
large number of IP cores that are available from third parties to develop new
systems by integration of these cores.

In that case, FPGAs are not just prototyping tools to implement the model
of the system and emulate the occurrence of faults, but are also the final target
on which the final system will be implemented.

The analysis and definition of FPGA-related fault models will be required
as a first step to the development of new approaches for emulating the oc-
currence of these faults into the programmable device. Surely, the knowledge
we have already obtained in defining approaches for emulating different fault
models will be very valuable for this research.

168

Appendix A

Detailed description of files and
commands used by FADES

A.1 Bitstream file

The bitstream file consists in a series of 32-bit word command and data packets
[97]. Command packets target the Virtex FPGA’s control logic for managing
the reconfiguration process, whereas data packets are destined to modify the
FPGA’s reconfigurable logic.

Table A.1 details the format of a sample configuration file for a full FPGA
reconfiguration.

First of all, a header is used to synchronise the transmission between the
host and the configuration logic of the FPGA. This header also contains dif-
ferent parameters to manage the reconfiguration process, such as the position
in the configuration memory of the FPGA where the transferred information
must be placed into.

For instance, as this is a full reconfiguration file, the configuration data
must be placed beginning at the position related to the first CB (located in
row 0 and column 0 of the FPGA). A total of 142902 data words will be
transferred to fully reconfigure all the logic elements of the device.

After that, the contents of the internal memory blocks of the FPGA are
also programmed. Two blocks of 2210 and 2176 data words, respectively, are
downloaded into these memory blocks.

Finally, a Cyclic Redundancy Check is performed to ensure the information
has been properly received, and the start-up sequence of the FPGA is initiated.

169

A.1. Bitstream file

Table A.1: Analysis of a bitstream file (.bit) format.
Bitstream data Section Description

FFFFFFFF Dummy Word
FFFFFFFF Dummy Word
AA995566 Synchronisation word
30008001 Packet Header: Write to CMD (CoMmanD) register
00000007 Packet Data: RCRC (Reset CRC register)
30016001 Packet Header: Write to FLR (Frame Length Register)
00000021 Packet Data: Frame Length (33)
30012001 Packet Header: Write to COR (Configuration Option Register)
00803F2D HEADER AND Packet Data: Configuration options
3000C001 CONFIGURATION Packet Header: Write to MASK (MASK register)
000001C6 OPTIONS Packet Data: CTL (ConTroL Register) mask
3000A001 Packet Header: Write to CTL (ConTroL Register)
00000040 Packet Data: Security and Port persistence
30008001 Packet Header: Write to CMD (CoMmanD) register
00000009 Packet Data: SWITCH (change CCLK (Configuration CLocK) frequency)
30008001 Packet Header: Write to CMD (CoMmanD) register
00000001 Packet Data: WCFG (Write ConFiGuration data)
30002001 Packet Header: Write to FAR (Frame Address Register)
00000000 Packet Data: Frame Address (CLB, 0, 0)
30004000 Packet Header: Write to FDRI (Frame Data Register Input)
50022E36 Packet Header Type 2: Data words (142902 words)
00123018 Packet Data: 1st Configuration word

.... Packet Data: nth Configuration word
00000000 Packet Data: 142902nd Configuration word
30002001 Packet Header: Write to FAR (Frame Address Register)
02000000 Packet Data: Next frame address (BRAM, 0, 0)
30004000 Packet Header: Write to FDRI (Frame Data Register Input)
500008A2 Packet Header Type 2: Data words (2210 words)
00000000 Packet Data: 1st Configuration word

.... Packet Data: nth Configuration word
00000000 Packet Data: 2210thConfiguration word
30002001 DATA FRAMES Packet Header: Write to FAR (Frame Address Register)
02020000 AND CRC Packet Data: Next frame address (BRAM, 1, 0)
30004000 Packet Header: Write to (Frame Data Register Input)
50000880 Packet Header Type 2: Data words (2176 words)
00000000 Packet Data: 1st Configuration word

.... Packet Data: nth Configuration word
00000000 Packet Data: 2176th Configuration word
30008001 Packet Header: Write to CMD (CoMmanD) register
00000007 Packet Data: RCRC (Reset CRC register)
30008001 Packet Header: Write to CMD (CoMmanD) register
00000003 Packet Data: LFRM (Last FRaMe write)
30004022 Packet Header: Write to FDRI (Frame Data Register Input) (34)
00000000 Packet Data: 1st Configuration word

.... Packet Data: nth Configuration word
00000000 Packet Data: 34th Configuration word
30008001 Packet Header: Write to CMD (CoMmanD) register
00000005 Packet START (begin START-up sequence)
30008001 Packet Header: Write to CMD (CoMmanD) register
00000007 FINAL CRC Packet Data: RCRC (Reset CRC register)
00000000 AND START-UP Dummy word
00000000 Dummy word
00000000 Dummy word
00000000 Dummy word

170

Chapter A. Detailed description of files and commands used by FADES

A.2 Logic Allocation file

The Logic Allocation file shows, in a proprietary format, the location of all the
sequential elements (FFs and memory blocks) that have been used to imple-
ment a particular system’s model on a Virtex FPGA.

Table A.2 shows a sample Logic Allocation file for a Virtex FPGA.

The first part of the file consists in a series of comments (lines beginning
with ’;’) that explain the format used to specify the location of the sequential
elements on the FPGA.

Next, lines beginning with the keyword ’Info’ show information related
to the options used to generate the bistream file this Logic Allocation file is
related to.

The rest of the lines, beginning with the keyword ’Bit’, locate each one of
the stated sequential elements.

Table A.2: Sample Logic Allocation File (.ll).
Revision 3
; Created by bitgen G.31a at Wed Sep 28 12:36:02 2005
; Bit lines have the following form:
; <offset> <frame address> <frame offset> <information>
; <information> may be zero or more <kw>=<value> pairs
; Block=<blockname specifies the block associated with this memory cell.
; Latch=<name> specifies the latch associated with this memory cell.
; Net=<netname> specifies the user net associated with this memory cell.
; COMPARE=[YES | NO] specifies whether or not it is appropriate to compare this bit position between a
; "program" and a "readback" bitstream. If not present the default is NO.
; Ram=<ram id>:<bit> This is used in cases where a CLB function
; Rom=<ram id>:<bit> generator is used as RAM (or ROM). <Ram id> will be either ’F’, ’G’, or ’M’, indicating
; that it is part of a single F or G function generator used as RAM, or as a single RAM
; (or ROM) built from both F and G. <Bit> is a decimal number.
; Info lines have the following form:
; Info <name>=<value> specifies a bit associated with the LCA configuration options, and the value of
; that bit. The names of these bits may have special meaning to software reading the .ll file.
Info STARTSEL0=1
Info Persist=1
Info Readback=Used
Bit 60819 0x00024e00 883 Block=CLB_R49C49.S0 Latch=YQ Net=register_file/r25<6>
Bit 60909 0x00024e00 973 Block=CLB_R54C49.S0 Latch=YQ Net=register_file/r16<4>
Bit 68307 0x00025a00 883 Block=CLB_R49C49.S0 Latch=XQ Net=register_file/r25<7>
Bit 68397 0x00025a00 973 Block=CLB_R54C49.S0 Latch=XQ Net=register_file/r16<5>
Bit 68415 0x00025a00 991 Block=CLB_R55C49.S0 Latch=XQ Net=register_file/r25<5>
Bit 68433 0x00025a00 1009 Block=CLB_R56C49.S0 Latch=XQ Net=register_file/r16<3>
Bit 82089 0x00041000 937 Block=CLB_R52C48.S1 Latch=YQ Net=status_register/value<1>
Bit 120723 0x00044e00 883 Block=CLB_R49C48.S0 Latch=YQ Net=register_file/r16<6>
Bit 120777 0x00044e00 937 Block=CLB_R52C48.S0 Latch=YQ Net=register_file/r16<0>
...
Bit 5892618 0x00c46400 778 Block=AA32 Latch=I Net=port_a_reg/N24840
Bit 5892647 0x00c46400 807 Block=AA30 Latch=I Net=port_b_reg/N24818
Bit 5892654 0x00c46400 814 Block=AA29 Latch=I Net=port_c_reg/N24856
Bit 5892655 0x00c46400 815 Block=AB31 Latch=I Net=instruction_register/inst_in<11>
Bit 5892683 0x00c46400 843 Block=AB30 Latch=I Net=instruction_register/inst_in<10>
...
Bit 6044186 0x02020000 90 Block=RAMB4_R1C1 Ram=B:BIT63
Bit 6044187 0x02020000 91 Block=RAMB4_R1C1 Ram=B:BIT31
Bit 6044188 0x02020000 92 Block=RAMB4_R1C1 Ram=B:BIT30
Bit 6044191 0x02020000 95 Block=RAMB4_R1C1 Ram=B:BIT22
...

171

A.3. User Constraints file

A.3 User Constraints file

The User Constraints file [119] is usually required to specify different cons-
traints in the implementation of the design. They include temporal cons-
traints, like the maximum acceptable delay of a certain path, and allocation
constraints, like the mapping of a number of model signals to certain pins of
the FPGA.

Table A.3 shows a sample User Constraints file for a Virtex FPGA.
Comments begin with ’#’. For our purposes, lines beginning with the key-

word ’NET’ can also be ignored. They indicate the pin that must be associated
to a particular signal of the model. For instance, the signal ’sram0_we’ must
drive the pin ’AJ25’ of the FPGA, which connects to the write enable pin of
the memory bank 0 of the prototyping board.

Lines beginning with the keyword ’INST’ locate resources associated to
model signals. This information is later compared with the LUTs used to
implement the system’s model in order to determine the location and name of
each particular signal driven by a LUT.

Table A.3: Sample User Constraints File (.ucf).
Start of Constraints extracted by Floorplanner from the Design
INST "clkg" LOC = "GCLKBUF3" ;
NET "sram0_we" LOC = "AJ25" ;
NET "sram0_oe" LOC = "AK26" ;
NET "sram0_cs0" LOC = "AN31" ;
NET "sram0_addr<19>" LOC = "AM31" ;
NET "sram0_addr<18>" LOC = "AD29" ;
...
INST "status_register/I8_0" LOC = "TBUF_R42C44.0" ;
INST "status_register/I8_1" LOC = "TBUF_R43C40.0" ;
INST "status_register/I8_2" LOC = "TBUF_R44C37.0" ;
...
INST "controller/Ker355651" LOC = "CLB_R44C35.S0" ;
INST "controller/Ker355581" LOC = "CLB_R42C35.S1" ;
INST "program_counter/_n003740" LOC = "CLB_R51C30.S0" ;
INST "program_counter/_n003640" LOC = "CLB_R52C34.S1" ;
INST "program_counter/_n003540" LOC = "CLB_R51C24.S1" ;
INST "register_file/Mmux__n0069_Result<3>1" LOC = "CLB_R55C75.S1" ;
INST "register_file/Mmux__n0069_Result<2>1" LOC = "CLB_R55C75.S1" ;
...

172

Chapter A. Detailed description of files and commands used by FADES

A.4 Workload file

The workload file specifies, in a custom format, the contents of the memory
blocks of either the FPGA or the prototyping board. These memories will be
used to provide the implemented system with the workload it must execute
during the experimentation.

Table A.4 details the structure of a sample workload file.
In this example, the workload is going to be downloaded into the prototy-

ping board memory blocks. Data must be stored as 32-bits words in big endian
format. After the actual data, a comment (beginning with ’//’) can be added
for explanation.

Table A.4: Sample workload file for the prototyping board’s external memory.
0x0A 0x0C 0x00 0x00 // 0000: movlw 0x0A
0x28 0x00 0x00 0x00 // 0001: movwf R8
0x00 0x0C 0x00 0x00 // 0002: movlw 0x00
0xC8 0x01 0x00 0x00 // 0003: addwf R8,w
0xE8 0x02 0x00 0x00 // 0004: decfsz R8
0x03 0x0A 0x00 0x00 // 0005: goto 0x03
...

A.5 Readback command

A readback command is a particular bistream file that retrieves some infor-
mation from the FPGA’s configuration memory. A number of words from a
particular position of the device’s configuration memory are sent to the host.

An example of a readback command is shown in Table A.5.
In this case 142902 words are sent, starting from the memory position

associated to the first CB (located in row 0 and column 0).

Table A.5: Analysis of a readback command.
Bitstream data Description

AA995566 Synchronisation word
30002001 Packet Header: Write to FAR (Frame Address Register)
00000000 Packet Data: Frame Address (CLB, 0, 0)
30008001 Packet Header: Write to CMD (CoMmanD) register
00000004 Packet Data: RCFG (Read ConFiGuration data)
28006000 Packet Header: Write to FDRO (Frame Data Register Output)
48022E36 Packet Header Type 2: Data words (142902 words)
00000000 Dummy word

173

A.6. Trace file

A.6 Trace file

Trace files store the observations perform during the experiments execution in
a custom format.

An example of a fault-free execution (Golden Run) trace file is presented
in Table A.6.

The Golden Run trace file presents a series of lines, beginning with ’%’,
that specify the whole set of observation points that have been monitored.

The rest of the lines show, in hexadecimal format, the current state of
these sequential elements at the time the observation was performed. This
time, expressed in clock cycles, is stated at the beginning of the line. The
contents of memory banks, preceded by the keyword ’Bank’, follow the same
format.

Table A.6: Sample trace file of a Golden Run execution.
% rom_data[7,6,5,4,3,2,1,0]
% U_CTR/alu_src_0[2]
% U_RAM/dout[7,6,5,4,3,2,1,0]
...
% alu_op_code[3,2,1,0]
% MemoryBank 1 60 words
...
13120 : 0 0 1 0 ff 0 1 1 ...
Bank 1 : 00030 0000 0001 ...
...

An example of the trace file of a fault injection experiment is presented in
Table A.7.

In this case, the specification of the observation points is not included, since
it is the same as in the Golden Run. Instead, some information regarding the
injected fault is included (preceded by ’--’).

Observations follow the same format as in the Golden Run.

Table A.7: Sample trace file of a workload’s execution in presence of faults.
-- CLB(23,49).S0_YQ U_RAM/dout(1)
...
13120 : 0 0 10 0 1 0 ff ...
Bank 1 : 00030 0000 0001 ...
...

174

Chapter A. Detailed description of files and commands used by FADES

A.7 Results file

An example of the file that stores the measures obtained from the analysis of
the trace files of a fault injection experiment is presented in Table A.8.

Each line of this file states the considered observation point, the number
and percentage of experiments with a trace equal to the Golden Run trace
(system not affected by the fault), the number and percentage of experiments
in which differences with the Golden Run trace do not involve those observa-
tion points selected as most significative (system moderately affected by the
fault), and finally, the number and percentage of experiments with differen-
ces in significative observation points with respect to the Golden Run trace
(system severely affected by the fault).

The last line shows the global results for the whole set of experiments.

Table A.8: Sample results file.
U_CTR/reg_pc_7_0 14 29.78 6 12.76 27 57.44
alu_op_code 19 82.60 0 0.0 4 17.39
U_RAM/sfr_psw 19 42.22 17 37.77 9 20.0
...
U_CTR/reg_f0 4 80.0 1 20.0 0 0.0
TOTAL 909 50.66 738 41.13 147 8.19

175

Bibliography

[1] C. Constantinescu, “Impact of Deep Submicron Technology on Dependa-
bility of VLSI Circuits,” in IEEE International Conference on Dependable
Systems and Networks (DSN’02), (Bethesda, USA), pp. 205–209, 2002.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts
and Taxonomy of Dependable and Secure Computing,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33,
2004.

[3] J. Arlat and Y. Crouzet, “Faultload Representativeness for Dependability
Benchmarking,” in IEEE International Symposium on Dependable Sys-
tems and Networks (DSN) - Workshop on Dependability Benchmarking,
(Washington, USA), pp. F29–F30, 2002.

[4] P. Gil, J. Arlat, H. Madeira, Y. Crouzet, T. Jarboui, K. Kanoun,
T. Marteau, J. Durães, M. Vieira, D. Gil, J. C. Baraza, and J. Gracia,
“Fault Representativeness,” tech. rep., Deliverable ETIE2, Report from
the "Dependability Benchmarking" Project (IST-2000-25425), 2002.

[5] T. Karnik, P. Hazucha, and J. Patel, “Characterization of Soft Errors
Caused by Single Event Upsets in CMOS Processes,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 2, pp. 128–143, 2004.

[6] E. Jenn, Sur la validation des systèmes tolérant les fautes: injection de
fautes dans des modèles de simulation VHDL. PhD thesis, Laboratoire
d’Analyse et d’Architecture des Systèmes du CNRS, France, 1994.

[7] D. Gil, Validación de sistemas tolerantes a fallos mediante inyección de
fallos en modelos VHDL. PhD thesis, Universidad Politécnica de Valen-
cia, Spain, 1999.

[8] K. Compton, “Reconfigurable Computing: A Survey of Systems and
Software,” ACM Computing Surveys, vol. 34, no. 2, pp. 171–210, 2002.

177

BIBLIOGRAPHY

[9] S. Hauck, Multi-FPGA Systems. PhD thesis, University of Washington,
USA, 1995.

[10] S. Hauck, “The Roles of FPGAs in Reprogrammable Systems,” Proceed-
ings of the IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[11] U. R. Khan, H. L. Owen, and J. L. A. Hughes, “FPGA Architectures for
ASIC Hardware Emulators,” in Sixth Annual IEEE International ASIC
Conference, (New York, USA), pp. 336–340, 1993.

[12] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, E. Martins, D. Powell, J.-C.
Fabre, and J.-C. Laprie, “Fault Injection for Dependability Validation: A
Methodology and Some Applications,” IEEE Transactions on Software
Engineering, vol. 16, no. 2, pp. 166–182, 1990.

[13] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault Injection Techniques
and Tools,” IEEE Computer, vol. 30, no. 4, pp. 75–82, 1997.

[14] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. H.
Leber, “Comparison of Physical and Software-Implemented Fault In-
jection Techniques,” IEEE Transactions on Computers, vol. 52, no. 9,
pp. 1115–1133, 2003.

[15] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, “RIFLE: A General
Purpose Pin-level Fault Injector,” in First European Dependable Compu-
ting Conference (EDCC-1) (K. Echtle, D. Hammer, and D. Powell, eds.),
(Budapest, Hungary), pp. 199–216, Springer-Verlag, 1994.

[16] R. J. Martínez, P. J. Gil, G. Martín, C. Pérez, and J. J. Serrano, “Experi-
mental Validation of High-Speed Fault-Tolerant Systems Using Physical
Fault Injection,” in Seventh IFIP International Working Conference on
Dependable Computing for Critical Applications (DCCA-7), (San José,
USA), pp. 249–265, 1999.

[17] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, and G. Leber, Integra-
tion and Comparison of Three Physical Fault Injection Techniques, ch. 5,
pp. 309–329. Springer Verlag, 1995.

[18] J. Gaisler, “A Portable and Fault-Tolerant Microprocessor Based on the
SPARC V8 Architecture,” in International Conference on Dependable
Systems and Networks (DSN2002), (Washington, USA), pp. 409–415,
2002.

[19] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of Error Detec-
tion Schemes Using Fault Injection by Heavy-Ion Radiation,” in 19th

178

BIBLIOGRAPHY

IEEE International Symposium on Fault Tolerant Computing (FTCS-
19), (Chicago, USA), pp. 340–347, 1989.

[20] P. Folkesson, S. Svensson, and J. Karlsson, “A Comparison of Simulation
Based and Scan Chain Implemented Fault Injection,” in International
Symposium on Fault-Tolerant Computing (FTCS), (Munich, Germany),
pp. 284–293, 1998.

[21] R. Velazco, C. Bellon, and B. Martinet, “Failure coverage of functional
test methods: a comparative experimental evaluation,” in IEEE Interna-
tional Test Conference (ITC), (Washington, USA), pp. 1012–1017, 1990.

[22] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI: A
Flexible Software-Based Fault and Error Injection System,” IEEE Trans-
actions on Computers, vol. 44, no. 2, pp. 248–260, 1995.

[23] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A Technique for
the Experimental Evaluation of Dependability in Modern Computers,”
IEEE Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136,
1998.

[24] J. Arlat, J.-C. Fabre, M. Rodríguez, and F. Salles, “Dependability of
COTS Microkernel-Based Systems,” IEEE Transactions on Computers,
vol. 51, no. 2, pp. 138–163, 2002.

[25] P. Yuste, J. Ruiz, L. Lemus, and P. Gil, “Non-intrusive Software Imple-
mented Fault Injection in Embedded Systems,” in 1st Latin-American
Symposium on Dependable Computing (LADC) (R. de Lemos and T.
S. Weber and J. B. Camargo Jr., ed.), (Sao Paulo, Brazil), pp. 23–38,
Springer-Verlag Berlin Heidelberg, 2003.

[26] IEEE-ISTO 5001-1999, The Nexus 5001 ForumTMStandard for a Global
Embedded Processor Debug Interface., 1999.

[27] Dependability Benchmarking. http://www2.laas.fr/DBench/index.html.
European Commission, IST-2000-25425, 2003.

[28] J. C. Baraza, Contribución a la validación de sistemas complejos tole-
rantes a fallos en la fase de diseño. Nuevos modelos de fallos y técnicas
de inyección de fallos. PhD thesis, Universidad Politécnica de Valencia,
Spain, 2003.

[29] E. Jenn, J. Arlat, M. Rimén, J. Ohlsson, and J. Karlsson, “Fault In-
jection into VHDL Models: The MEFISTO Tool,” in 24th International

179

BIBLIOGRAPHY

Symposium on Fault-Tolerant Computing (FTCS-24), (Austin, USA),
pp. 66–75, 1994.

[30] V. Sieh, O. Tschäche, and F. Balbach, “VERIFY: Evaluation of Re-
liability Using VHDL-Models with Embedded Fault Descriptions,” in
27th International Symposium on Fault Tolerant Computing (FTCS-27),
(Seattle, USA), pp. 32–36, 1997.

[31] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “A prototype of a VHDL-
based fault injection tool: description and application,” Journal of Sys-
tems Architecture: the EUROMICRO Journal, vol. 47, no. 10, pp. 847–
867, 2002.

[32] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

[33] IEEE, Verilog Hardware Description Language, 2005. IEEE Standard
No. 1364-2005.

[34] IEEE, Behavioural languages–Part 1: VHDL language reference manual,
2004. IEEE Standard No. 61691-1-1: 2004.

[35] IEEE, SystemC Language Reference Manual, 2005. IEEE Standard No.
1666-2005.

[36] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simu-
lated Annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[37] R. A. Rutenbar, “Simulated Annealing Algorithms: An Overview,” IEEE
Circuits and Devices Magazine, vol. 5, no. 1, pp. 19–26, 1989.

[38] L. Burgun, F. Reblewski, G. Fenelon, J. Barbier, and O. Lepape, “Serial
Fault Emulation,” in Design Automation Conference (DAC), (Las Vegas,
USA), pp. 801–806, 1996.

[39] B. L. Hutchings and M. J. Wirthlin, “Implementation Approaches for
Reconfigurable Logic Applications,” in International Workshop on Field
Programmable Logic and Applications (FPL), (Oxford, UK), pp. 293–
302, 1995.

[40] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault Emulation: A New
Approach to Fault Grading,” in International Conference on Computer-
Aided Design (ICCAD), (San José, USA), pp. 681–686, 1995.

180

BIBLIOGRAPHY

[41] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault Emulation: A New
Methodology for Fault Grading,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (CADICS), vol. 18, no. 10,
pp. 1487–1495, 1999.

[42] J.-H. Hong, S.-A. Hwang, and C.-W. Wu, “An FPGA-based Hardware
Emulator for Fast Fault Emulation,” in IEEE 39th Midwest Symposium
on Circuits and Systems, vol. 1, (Ames, USA), pp. 345–348, 1996.

[43] S.-A. Hwang, J.-H. Hong, and C.-W. Wu, “Sequential Circuit Fault Simu-
lation Using Logic Emulation,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (CADICS), vol. 17, no. 8,
pp. 724–736, 1998.

[44] R. Sedaghat-Maman, Fault Emulation: Reconfigurable Hardware-Based
Fault Simulation Using Logic Emulation Systems with Optimized Map-
ping. PhD thesis, Universität Hannover, Germany, 1999.

[45] M. B. Santos, I. M. Teixeira, and J. P. Teixeira, “Dynamic Fault Injection
Optimization for FPGA-Based Hardware Fault Simulation,” in IEEE
International Workshop on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), (Brno, Czech Republic), pp. 370–373, 2002.

[46] R. Velazco, R. Leveugle, and O. Calvo, “Upset-like Fault Injection in
VHDL Descriptions: A method and Preliminary Results,” tech. rep.,
Techniques of Informatics and Microelectronics for computer Architeture
(TIMA) Laboratory, 2001.

[47] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vio-
lante, “Exploiting Circuit Emulation for Fast Hardness Evaluation,”
IEEE Transactions on Nuclear Science (CADICS), vol. 48, no. 6,
pp. 2210–2216, 2001.

[48] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vio-
lante, “FPGA-based Fault Injection for Microprocessor Systems,” in 10th
Asian Test Symposium (ATS), (Kyoto, Japan), pp. 304–309, 2001.

[49] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vio-
lante, “Exploiting FPGA-based Techniques for Fault Injection Cam-
paigns on VLSI Circuits,” in IEEE International Symposium on Defect
and Fault Tolerance in VLSI Systems (DFT), (San Francisco, USA),
pp. 250–258, 2001.

181

BIBLIOGRAPHY

[50] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vio-
lante, “An FPGA-Based Approach for Speeding-Up Fault Injection Cam-
paigns on Safety-Critical Circuits,” Journal of Electronic Testing: Theory
and Applications, no. 18, pp. 261–271, 2002.

[51] F. Corno, M. S. Reorda, and G. Squillero, “RT-Level ITC 99 Benchmarks
and First ATPG Results,” IEEE Design and Test of Computers, vol. 17,
no. 3, pp. 44–53, 2000.

[52] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M. Vio-
lante, “New Techniques for efficiently assessing reliability of SOCs,” Mi-
croelectronics Journal, vol. 34, no. 1, pp. 53–61, 2003.

[53] C. López-Ongil, M. García-Valderas, M. Portela-García, and L. Entrena,
“An autonomous FPGA-based emulation system for fast fault tolerant
evaluation,” in International Conference on Field-Programmable Logic
and Applications (FPL), (Tampere, Finland), pp. 397–402, 2005.

[54] C. López-Ongil, M. García-Valderas, M. Portela-García, and L. Entrena,
“Autonomous Fault Emulation: A New FPGA-Based Acceleration Sys-
tem for Hardness Evaluation,” IEEE Transactions on Nuclear Science,
vol. 54, no. 1, pp. 252–261, 2007.

[55] A. Ejlali, S. G. Miremadi, H. Zarandi, G. Asadi, and S. B. Sarmadi, “A
Hybrid Fault Injection Approach Based on Simulation and Emulation
Co-operation,” in International Conference on Dependable Systems and
Networks (DSN), (San Francisco, USA), pp. 479–488, 2003.

[56] A. Ejlali and S. G. Miremadi, “FPGA-Based Fault Injection into Switch-
Level Models,” Microprocessors and Microsystems, vol. 28, no. 5–6,
pp. 317–327, 2004.

[57] L. Antoni, R. Leveugle, and B. Fehér, “Using run-time reconfiguration for
fault injection applications,” in IEEE Instrumentation and Measurement
Technology Conference (IMTC), (Budapest, Hungary), pp. 1773–1777,
2001.

[58] L. Antoni, R. Leveugle, and B. Fehér, “Using Run-Time Reconfigura-
tion for Fault Injection in Hardware Prototypes,” in IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems (DFT), (San
Francisco, USA), pp. 403–413, 2001.

[59] L. Antoni, R. Leveugle, and B. Fehér, “Using Run-Time Reconfiguration
for Fault Injection in Hardware Prototypes,” in IEEE International Sym-

182

BIBLIOGRAPHY

posium on Defect and Fault Tolerance in VLSI Systems (DFT), (Vancou-
ver, Canada), pp. 245–253, 2002.

[60] L. Antoni, R. Leveugle, and B. Fehér, “Using Run-Time Reconfiguration
for Fault Injection Applications,” IEEE Transactions on Instrumentation
and Measurement, vol. 52, no. 5, pp. 1468–1473, 2003.

[61] R. Leveugle and L. Antoni, “Dependability Analisys: a New Application
for Run-Time Reconfiguration,” in International Parallel and Distributed
Processing Symposium (IPDPS), (Nice, France), pp. 173–179, 2003.

[62] L. Antoni, Injection de Fautes par Reconfiguration Dynamique de
Réseaux Programmables. PhD thesis, Institut National Polytechnique
de Grenoble, France, 2003.

[63] M. Aguirre, J. N. Tombs, F. Muñoz, V. Baena, A. Torralba,
A. Fernández-León, F. Tortosa, and D. González-Gutiérrez, “An FPGA
based hardware emulator for the insertion and analysis of Single Event
Upsets in VLSI Designs,” in Radiation Effects on Components and Sys-
tems Workshop (RADECS), (Madrid, Spain), pp. 1–5, 2004.

[64] A. Parreira, J. P. Teixeira, and M. B. Santos, “Built-In Self-Test Prepa-
ration in FPGAs,” in 7th IEEE International Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), (Tatrmaská
Lomnica, Slovakia), p. 8, 2004.

[65] A. Parreira, J. P. Teixeira, and M. B. Santos, “FPGAs BIST Evalua-
tion,” in International Conference on Field-Programmable Logic and its
Applications (FPL), (Antwerp, Belgium), p. 10, 2004.

[66] A. Parreira, J. P. Teixeira, and M. B. Santos, “Built-In Self-Test Quality
Assessment Using Hardware Fault Emulation In FPGAs,” Computing
and Informatics, vol. 23, no. 5-6, pp. 1001–1020, 2004.

[67] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profile of Se-
quential Benchmark Circuits,” in International Symposium on Circuits
and Systems (ISCAS), (Portland, USA), pp. 1229–1234, 1989.

[68] M. Böhnel and R. Weiss, “Self-Stabilization of LUT-Based FPGA De-
signs by Fault Injection,” in 7th IEEE International On-Line Testing
Workshop (IOLTW), (Taormina, Italy), p. 139, 2001.

[69] M. B. Tahoori and S. Mitra, “Techniques and Algorithms for Fault Gra-
ding of FPGA Interconnect Test Configurations,” IEEE Transaction on

183

BIBLIOGRAPHY

Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2,
pp. 261–272, 2004.

[70] F. G. de Lima, Designing Single Event Upset Mitigation Techniques for
Large SRAM-Based FPGA Components. PhD thesis, Universidade Fed-
eral do Rio Grande do Sul, Brazil, 2003.

[71] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new functional model
for FPGA Application-Oriented testing,” in IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI Systems (DFT), (Vancouver,
Canada), pp. 372–380, 2002.

[72] Xilinx Inc, VirtexTM2.5 V Field Programmable Gate Arrays: Functional
Description, 2002. DS003-2 (v2.8.1).

[73] Xilinx Inc, Virtex-II Platform FPGAs: Complete Data Sheet, 2004.
DS031 (v3.3).

[74] Xilinx Inc, Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Com-
plete Data Sheet, 2005. DS083 (v4.5).

[75] Xilinx Inc, Virtex-4 Family Overview, 2006. DS112 (v1.5).

[76] Xilinx Inc, Virtex-5 LX Platform Overview, 2006. DS100 (v1.1).

[77] Altera Corp, Stratix Device Family Data Sheet, Volume 1, 2006. ver 3.4.

[78] Altera Corp, Stratix GX Device Family Data Sheet, Volume 1, 2006. ver
1.2.

[79] Altera Corp, Stratix II Device Family Data Sheet, Volume 1, 2006. ver
4.1.

[80] Altera Corp, Stratix II GX Device Family Data Sheet, Volume 1, 2006.
ver 3.0.

[81] Lattice Semiconductor Corporation, LatticeSC Family Data Sheet, 2006.
Version 01.0.

[82] Atmel Corp, AT40KAL Series FPGA, 2004. 2818E-FPGA-1/04.

[83] D. de Andrés, J. C. Ruiz, D. Gil, and P. Gil, “Run-Time Reconfigura-
tion for Emulating Transient Faults in VLSI Systems,” in International
Conference on Dependable Systems and Networks (DSN), (Philadelphia,
USA), pp. 291–300, 2006.

184

BIBLIOGRAPHY

[84] D. de Andrés, J. C. Ruiz, D. Gil, and P. Gil, “Fast Emulation of Per-
manent Faults in VLSI Systems,” in International Conference on Field
Programmable Logic and Applications (FPL), (Madrid, Spain), pp. 247–
252, 2006.

[85] D. de Andrés, J. Albaladejo, L. Lemus, and P. Gil, “Fast Run-Time
Reconfiguration for SEU Injection,” in Fifth European Dependable Com-
puting Conference (EDCC-5) (M. Cin, M. Kaâniche, and A. Pataricza,
eds.), (Budapest, Hungary), pp. 230–245, Springer-Verlag Berlin Heidel-
berg, 2005.

[86] A. Parreira, J. P. Teixeira, A. Pantelimon, M. B. Santos, and J. T.
de Sousa, “Fault Simulation using Partially Reconfigurable Hardware,”
in International Conference on Field-Programmable Logic and its Appli-
cations (FPL), (Lisboa, Portugal), pp. 839–848, 2003.

[87] A. Parreira, J. P. Teixeira, and M. Santos, “A Novel Approach to FPGA-
Based Hardware Fault Modeling and Simulation,” in 6th IEEE Interna-
tional Workshop on Design and Diagnostics of Electronic Circuits and
Systems (DDECS), (Poznan, Poland), pp. 17–24, 2003.

[88] W. Quine, “A way to simplify truth functions,” American Mathematical
Monthly, vol. 62, pp. 627–631, 1955.

[89] E. J. McCluskey, “Minimization of Boolean Functions,” Bell Systems
Technical Journal, vol. 35, pp. 1417–1444, 1956.

[90] Xilinx Inc, VirtexTM2.5 V FPGA DC and Switching Characteristics,
2002. DS003-3 (v3.2).

[91] M. G. Gericota, G. R. Alves, M. L. Silva, and J. M. Ferreira, “On-line
Testing of FPGA Logic Blocks Using Active Replication,” in Proceedings
of the Norsk Informatikkonferanse (NIK’2002), (Kongsberg, Norway),
pp. 167–178, 2002.

[92] I. Hadzic, S. Udani, and J. M. Smith, “Fpga viruses,” in FPL ’99: Pro-
ceedings of the 9th International Workshop on Field-Programmable Logic
and Applications, (London, UK), pp. 291–300, Springer-Verlag, 1999.

[93] D. de Andrés, J. C. Ruiz, D. Gil, and P. Gil, “FADES: a Fault Emulation
Tool for Fast Dependability Assessment,” in International Conference on
Field Programmable Technology (FPT), (Bangkok, Thailand), pp. 221–
228, 2006.

[94] Atmel Corp, AT40K Series Configuration, 2002. 1009B-FPGA-03/02.

185

BIBLIOGRAPHY

[95] Atmel Corp, Atmel FPGA Integrated Development System (IDS), 2001.
1421D-06/01.

[96] Atmel Corp, FPSLIC on-chip Partial Reconfiguration of the Embedded
AT40K FPGA, 2002. 3013A-FPSLI-01/02.

[97] Xilinx Inc, Virtex FPGA Series Configuration and Readback, 2002.
XAPP138 (v2.7).

[98] Xilinx Inc, Virtex Series Configuration Architecture User Guide, 2003.
XAPP151 (v1.6).

[99] Xilinx Inc, Xilinx ISE 8 Software Manuals and Help - PDF Collection,
2006.

[100] Xilinx Inc, PlanAhead User Guide, 2006. Release 8.2.

[101] E. Lechner and S. A. Guccione, “The Java Environment for Reconfi-
gurable Computing,” in International Workshop on Field-Programmable
Logic and Applications (FPL), (Londres, UK), pp. 284–293, 1997.

[102] S. A. Guccione, D. Levi, and P. Sundararajan, “JBits: A Java-based
Interface for Reconfigurable Computing,” in 2nd Annual Military and
Aerospace Applications of Programmable Devices and Technologies Con-
ference (MAPLD), 1999.

[103] S. McMillan and S. A. Guccione, “Partial Run-Time Reconfiguration
Using JRTR,” in International Workshop on Field-Programmable Logic
and Applications (FPL), (Villach, Austria), pp. 352–360, 2000.

[104] Xilinx Inc, The JBits 2.8 SDK for Virtex, 2001.

[105] Celoxica Inc, RC1000 Functional Reference Manual, 2001. RM-1140-0.

[106] E. Keller, “JRoute: A Run-Time Routing API for FPGA Hardware,”
in IPDPS Workshops on Parallel and Distributed Processing (J. D. P.
Rolim, ed.), vol. 1800, (Cancun, Mexico), pp. 874–881, 2000.

[107] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for Em-
bedded Systems Reliability Evaluation. Kluwer Academic Publishers,
2003.

[108] Oregano Systems, “MC8051 IP Core.”
http://www.oregano.at/en/ip/index.htm, 2006. version 1.5.

186

BIBLIOGRAPHY

[109] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “Study, comparison and ap-
plication of different VHDL-based fault injection techniques for the expe-
rimental validation of a fault-tolerant system,” Microelectronics Journal,
vol. 34, no. 1, pp. 41–51, 2003.

[110] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “Analysis of the influence of
processor hidden registers on the accuracy of fault injection techniques,”
in 9th IEEE International High-Level Design Validation and Test Work-
shop, (California, USA), pp. 173–178, 2004.

[111] D. Gil, J. Gracia, J. C. Baraza, and P. J. Gil, “Impact of Faults in
Combinational Logic of Commercial Microcontrollers,” Lecture Notes in
Computer Science, pp. 379–390, 2005.

[112] P. Lidén, P. Dahlgren, R. Johansson, and J. Karlsson, “On Latching
Probability of Particle Induced Transients in Combinational Networks,”
in International Symposium on Fault-Tolerant Computing (FTCS-24),
(Austin, USA), pp. 340–349, 1994.

[113] L. Chwif, M. R. P. Barretto, and R. J. Paul, “On Simulation Model
Complexity,” in Proceedings of the 2000 Winter Simulation Conference,
(Orlando, USA), pp. 449–455, 2000.

[114] E. Romani, “Structural PIC165X microcontroller.” Hamburg VHDL
Archive, http://tams-www.informatik.uni-hamburg.de/vhdl/, 1998.

[115] D. de Andrés, J. C. Ruiz, D. Gil, and P. Gil, “Fault Emulation for De-
pendability Evaluation of VLSI Systems,” IEEE Transactions on Very
Large Scale Integration Systems, to be published, fourth quarter 2007.

[116] N. Kropp, P. Koopman, and D. Siewiorek, “Automated Robustness Test-
ing of Off the Shelf Software Components,” in 28th Fault Tolerant Com-
puting Symposium (FTCS), (Munich, Germany), pp. 23–25, 1998.

[117] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, 2003.

[118] D. P. Siewiorek and R. S. Swarz, Reliable Computer System - Design and
Evaluation. Digital Press, 1992.

[119] Xilinx Inc, Constraints Guide, 2007. 9.1i.

187

