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Abstract—MQTT, one of the most popular application layer
protocols for the IoT, works according to a publish/subscribe
paradigm where clients connect to a centralized broker. Some-
times (e.g., in high scalability and low latency applications), it
is required to depart from such a centralized approach and
move to a distributed one, where multiple MQTT brokers
cooperate together. Many MQTT brokers (both open-source
or commercially available) allows to create such a distributed
environment: however, it is challenging to select the right solution
due to the many available choices. This paper proposes therefore
BORDER (Benchmarking framewORk for DistributEd MQTT
bRokers), a framework for creating and evaluating distributed
architectures of MQTT brokers with realistic and customizable
network topologies. Based on isolated Docker containers and em-
ulated network components, the framework provides quantitative
metrics about the overall system performance, such as end-to-
end latency as well as network and physical resources consumed.
We use BORDER to compare five of the most popular MQTT
brokers that allow the creation of distributed architectures and
we release it as an open-source project to allow for reproducible
researches.

Index Terms—MQTT, benchmarking, distributed MQTT bro-
kers, MQTT clustering, MQTT bridging

I. INTRODUCTION

Boosted by applications needing a lightweight, reliable and
straightforward communication protocol, the Message Queu-
ing Telemetry Transport (MQTT) has become the standard
de-facto for Internet of Things (IoT) applications and M2M
(Machine-to-Machine) communications. As a matter of fact,
all major cloud platforms (e.g., Amazon AWS, Microsoft
Azure, IBM) expose their IoT services through MQTT, and
many enterprises provide MQTT-based data collection and
communication solutions.

Developed by IBM in 1999, MQTT aims to transport
messages between devices requiring a small code footprint and
with limited network bandwidth. A MQTT client is any device,
from a microcontroller up to a server, that connects to an
MQTT broker for exchanging messages. The communication
follows a topic-based publish/subscribe pattern with a broker
acting as messages dispatcher. The broker is a central entity in
charge of handling clients’ connections, clients’ subscriptions
and data publishing on specific topics. In this way, the broker
allows to decouple data generation and data consumption both
in space and time, removing direct communication between the
publisher of the data and the receiver (subscriber). This aspect,
combined with the protocol simplicity at the client-side and

the support for reliability and quality of service (QoS), makes
MQTT an ideal candidate for resource-constrained application.

However, the centralised fashion of MQTT also brings
drawbacks. First, the broker is typically the single point of
failure of the system: no MQTT communication is possible
if the broker is unavailable. Second, it does not scale well
considering the massive numbers of IoT devices forecasted in
the next future. Third, a network architecture with a single
central broker is partially at odds with the recent interest for
edge architectures such as the one envisioned by 5G cellular
technologies, in which cloud services (including any broker
instance) are moved to the edge, closer to the user devices to
support low-latency applications.

A possible solution foresees the cooperation of multiple
distributed MQTT brokers, acting as a single entity. In par-
ticular, distributed brokers are deployed on different machines
and connected together over a network. The result is a sin-
gle logical broker that ensures high scalability, replication,
elasticity and resiliency to failures. Specifically thought for
being located in cloud-based enterprises datacentres, many
commercial brokers (i.e., EMQX, HiveMQ and others) already
provide message distribution and clustering capabilities. Clus-
ters of brokers ensure publishes and subscriptions forward-
ing between the nodes as well as advanced features, such
as broker discovery or failure recovery. As a consequence,
the lightweight principle of MQTT goes lost, often making
communication overhead between the brokers non-negligible
or increasing latency. This is unfavourable in an IoT scenario
where deployments are often in constrained or frugal environ-
ments with brokers located at the edge of the network.

Other brokers, for instance the popular open-source
Mosquitto implementation, use a mechanism called bridging
to exchange publications among distributed brokers. Bridging
allows to interconnect brokers and distribute publications on
specific topics among them, directly exploiting MQTT primi-
tives. On the one hand, bridging makes the system simpler and
entirely MQTT based; however, it generally relies on a static
configurations that may not scale in complex environments or
cause message loops if not configured correctly.

Such fragmented approaches may lead to noticeably dif-
ferent system performance based on the environment char-
acteristics, i.e., underlying topology, network latency, clients
distribution, etc. Even if the scalability of MQTT brokers
connected in a cluster has already been demonstrated, it is
not clear how the network and hardware characteristics could

Page 1 of 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



affect the overall performance.
Therefore, in this work, we present BORDER (Benchmark-

ing framewORk for DistributEd MQTT bRokers), a framework
capable of creating and evaluating clusters of MQTT brokers
on an emulated realistic network that can be tuned according to
the user’s needs. Our contribution is twofold: first, we explain
in details the benchmarking framework, which is based on
the Containernet network emulator; second, we use BORDER
to compare four popular MQTT brokers that support native
clustering and two bridge-based brokers ensembles, including
MQTT-ST, a distribution protocol based on the Mosquitto
broker [1]. We evaluate the results using quantitative metrics
about the system latency as well as network and physical
resources consumed in the cluster. We release BORDER
as an open source framework at https://github.com/ANTLab-
polimi/BORDER.

The remainder of this paper is organised as follows: Section
II describes the related works; Section III provides an overview
of MQTT distributed scenarios as well as a detailed description
of the broker implementations tested in this work. Section V
describes the BORDER framework architecture as well as the
evaluation metrics; in Section VI the performed experiments
are described and performance among the different brokers are
compared. Finally, Section VII contains concluding remarks
and future research directions.

II. RELATED WORK

Comparisons studies of the performance of MQTT brokers
have been actively performed by researchers and companies.
Most works focus on the benchmarking methodologies and
KPIs to determine the operational performance of MQTT
brokers in an IoT scenario [2], [3].

Several authors have performed comparative analyses be-
tween protocols for the IoT, discussing the criteria for selecting
protocols such as MQTT, CoAP, AMQP, and HTTP [4]–
[7]. The main focus of such works is generally to study the
performance of the protocols in terms of end-to-end delay,
bandwidth consumption and supported devices. For instance,
Sommer et al. [8] leveraged a peer-to-peer communication
model to select which MOM (Message-Oriented-Middleware)
to use for industrial applications. They find out that AMQP,
KAFKA and ZeroMQ can achieve a throuhghput of more
than 1000 mps (messages per second) while MQTT (with
the Ecliplse Mosquitto implementation) cannot. In particular,
compared to the other candidates, Mosquitto has a lower
overhead but higher latency.

In [9], the authors analyse the performance of Mosquitto
and RabbitMQ in a Smart City environment. Utilizing cloud-
located brokers and Raspberry Pis as clients, authors compare
the two brokers with different configurations (payload size,
number of packets, bandwidth). Their results show that the
server hardware features and the bandwidth consumed signif-
icantly impact the message latency, suggesting RabbitMQ for
robust and low-latency applications, while Mosquitto for low
data-flow ones.

The work in [10] puts Mosquitto, BevyWiseMQTT, and
HiveMQ in a small-scale, single broker cloud scenario com-
paring their performance by subscription throughput using
mqtt-stresser1 and mqtt-bench2, two public available
tools for MQTT benchmarking. They find no significant differ-
ence in performance when MQTT brokers are applied to small
deployment scenarios. In [11], Bertrand et al. classify nine
different open-source brokers by the ISO/IEC 25010 normative
using a single machine testbed. From their evaluation, which
includes statistical metrics but also portability, usability and
maintainability, the authors recognise Mosquitto as the optimal
broker between the contenders. Simulated environments are
proposed in [12], where Thangavel et al. compare the traffic
generated and the average delay for MQTT and CoAP chang-
ing the network packet loss rate through a network emulator
(WANEM). In a withe paper, Scaleagent.com [13] benchmarks
single node MQTT brokers including Mosquitto, RabbitMQ,
ActiveMQ, JoramMQ to evaluate the client scalability in
a multi-publisher scenario, including up to 1000 publishers
and one subscriber. Similarly to our work, they evaluated
the CPU usage of the server, the end-to-end latency (called
message transmission latency) and the delivered throughput.
With 100.000 publishers producing 100.000 messages per
second, they discover that JoramMQ is the only one capable
of handling such a massive amount of traffic.

Similarly, the work in [14] demonstrates that a cluster of
HiveMQ brokers can handle 10 millions concurrent connec-
tions and up to 1.74 mln/sec messages in a cluster of MQTT
brokers. The scenario reflects a Fan-Out test case with 10
million clients subscribing and 40 publishing clients connected
to 40 HiveMQ nodes deployed on as many AWS c4.2xlarge
instances. The authors perform the test, providing also insights
on consumed RAM, CPU and bandwidth.

In order to solve throughput and latency problems, re-
searchers have made multiple brokers cooperating between
themselves, creating clusters of brokers [1], [15]–[22]. Table
I summarises the main research contributions and products
that provide such kind of distributed architectures. Distributed
MQTT brokers can find several applications, from high avail-
ability and scalability clusters for massive data handling to
low-latency applications developed at the edge of the network.
Even if efforts to create heterogeneous clusters have been
made, brokers are only supported to function for homoge-
neous clusters, i.e., only MQTT brokers from a single vendor
cooperating with each other. Typically, each broker runs on
a dedicated Virtual Machine located either on an on-premise
data centre or cloud infrastructures like Amazon Web Services
(AWS), Microsoft Azure or Google Cloud. Then, they are
connected to each other through the network for cluster
communication.

Benchmarking architectures with distributed brokers can be
found in [23]–[25]. Koziolek et al. [23] created a cluster
of two MQTT brokers in redundant edge gateway servers

1https://github.com/inovex/mqtt-stresser
2https://github.com/takanorig/mqtt-bench
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Table I
DISTRIBUTED FEATURES OF THE MOST POPULAR MQTT BROKERS.

Broker Cluster Bridge Purpose Language Ref.
ActiveMQ X X Product Java [27]
D-MQTT X Research C [17]
DM-MQTT Rendezvous system Research - [18]
Emitter X Product Go [28]
Emma Dynamic Research Java [19]
EMQX X X Product Erlang [29]
FogMQ Bridge-based Research - [20]
HiveMQ X X Product Java [30]
HbMQTT Project Python [31]
ILDM External Tool Research - [26]
Aedes X X Project Javascript [32]
Mosquitto X Product C [33]
Moquette-io Project Java [34]
MQTT-NEG External Tool Research Python [22]
MQTT-ST X Research C [1]
RabbitMQ X X Product Erlang [35]
Schmit et Al. Dynamic Research C [21]
VerneMQ X X Product Erlang [36]

running the open-source edge virtualization platform StarlingX
and orchestrated by Kubernetes (K8s). Tests with MZBench3

showed that, among HiveMQ, VerneMQ and EMQX, the latter
shows the highest throughput when the cluster is deployed
in an 8 CPU cores limited scenario. Koziolek included addi-
tional metrics for the brokers’ evaluation, such as availability,
resilience, security and extensibility. Finally, Banno [26] pro-
poses a mechanism called ILDM that enables heterogeneous
MQTT brokers to cooperate with each other. In a testbed with
five Mosquitto brokers, the system can improve the throughput
up to four times than a single Mosquitto instance.

Rather than focusing on MQTT absolute performance, as
done in the state of the art, this work offers BORDER, a bench-
marking framework dedicated explicitly to real development
applications for constrained/edge architectures for the IoT. To
this end, in our work, we provide customization for MQTT
brokers with interchangeable and isolated Docker containers
and a fully personalized configuration of the network topology.

III. DISTRIBUTED MQTT BROKERS

The MQTT brokers’ ecosystem provides a wide range
of choices, available in many different implementations and
programming models. According to MQTT.org4, about 30
broker implementations are available to date, indicating the
incredible success MQTT is experiencing in the last few years.
Most of these brokers support natively both MQTT v3.1.1 and
MQTT v5 (introduced by OASIS in 2019). In addition, other
popular message platforms not originally built for MQTT (e.g.,
RabbitMQ, Apache Kafka), support the protocol through the
addition of plug-ins to integrate the protocol functionalities.

Despite evolution and improvements, MQTT still remains
a centralised protocol, with the broker acting as a single
message dispatcher. This architecture may not fit well future
Internet of Things applications which require scalability, lo-
cation awareness, reliability and low latency. To circumvent

3https://github.com/satori-com/mzbench
4https://github.com/mqtt/mqtt.org/wiki/brokers
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Figure 1. Distributed MQTT brokers approaches

such a single point of failure in the systems, a distributed
ensemble of MQTT brokers may be created. Currently, the
MQTT standard does not define any specific procedure to
create such a distributed architecture; however, in the research
literature as well as in products available commercially, two
main design techniques are present (Figure 1): (i) clustering
and (ii) bridging.

1) Clustering: A cluster of MQTT brokers is a set of
brokers working together to create a single logical MQTT
broker. Each broker in the cluster is generally run on a
different virtual machine, usually on the cloud, and connected
through the network. Load balancers are often used together
with MQTT clusters to have a single entry point for all
the clients. This is useful when brokers are located in data
servers handling many clients with elevated message rates. As
regards message distribution inside the cluster, broker vendors
often use proprietary protocols and encrypted communication,
making the message exchange invisible to the user. As shown
in Figure 1.a, MQTT brokers clustering may also expose extra
features, such as broker discovery, failure detection, message
replication or other cluster status metadata. For these reasons,
the clustering approach is likely to consume high volume of
bandwidth and internal resources of the machine hosting the
broker.

2) Bridging: In addition to clustering, MQTT provides a
native (but non-standardized) mechanism to exchange mes-
sages among brokers. This mechanism is called bridging,
or bridge extension, and allows a broker to forward publish
messages directly to other brokers following the MQTT com-
munication pattern. Using configuration files, it is possible to
specify the IP addresses and ports of the brokers that are
going to be connected to the instance that is started with
that specific configuration. Once two or more brokers are
connected, they can communicate with each other, forwarding
publishes on specific topics. For example, a broker A, willing
to receive publishes from a broker B, can subscribe to a topic
(wildcard included) as a standard client. It is important to note
that bridging only covers message routing between brokers,
unlike clustering. Indeed, clients cannot resume their persistent
sessions on other broker instances and cannot receive queued
messages or unfinished QoS 1 and 2 message flows. Moreover,
beyond its static nature, this approach lacks in terms of effi-

https://github.com/mqtt/mqtt.org/wiki/brokers


ciency since bridging forwards the messages on each specified
connection, without the possibility of knowing a priori the
topic circulating among the nodes of the system. This can also
cause message loops among the brokers connected through the
bridging.

IV. EVALUATION TOOLS

For our evaluation, we select five, among the most popular,
MQTT brokers to create a multi-broker environment using
clustering or bridging. The candidates are implemented in
different programming languages, fully supporting MQTT
v3.1.1 and MQTT v5. All candidates brokers provide a free
version, in some cases open-source.

1) EMQX: EMQ X (Erlang/Enterprise/Elastic MQTT Bro-
ker) was launched in 2013 as an open-source project. It pro-
vides different products: an open-source broker, an enterprise-
ready broker, an IoT Cloud Hub. Moreover, it offers cus-
tomised extendible plug-ins and compatibility with other IoT
protocols such as MQTT-SN, CoAP, LwM2M. EMQX is
based on the Erlang/OTP (Open Telecom Platform) platform
that guarantees high availability, reliability and scalability
of the implementation. EMQX supports clustering exploiting
the Erlang Distribution Protocol (ErlDP) for the intra-broker
message exchange. Nodes communicate over TCP/IP on port
4370 (or adjacents), periodically checking the cluster health
with specific pings. Inside the cluster, brokers forward each
others clients connection/disconnection, subscription/unsub-
scriptions; as regards message publication, the the broker
forwards publishes only to the interested nodes in the cluster.
EMQX implements both MQTT V3.1/V3.1.1 and V5.0 pro-
tocol specifications, and the open-source implementations are
licensed under the Apache Version 2.0. EMQX products also
include a lightweight variant called EMQ X Edge for resource-
constrained edge devices, however, the edge variant does not
support clustering features.

2) VerneMQ: Developed at Octavo Labs AG in Zurich
(Switzerland) in 2015, VerneMQ is the successor company of
Erlio GmbH. It is an open-source project (Apache License
2.0) with no commercial versions, but the company offer
commercial support for enterprises; for example, among the
costumers there are Microsoft and Volkswagen. VerneMQ
supports clustering between MQTT brokers utilising a master-
less clustering approach. In particular, there are no special
nodes like masters or slaves to consider when the topology
changes or nodes are removed or added. VerneMQ offers two
ready Docker images based on Debian and Alpine, supporting
MQTT versions up to V5.0. Similarly to EMQX, it is devel-
oped in Erlang (Erlang/OTP 21.2) and uses the ErlDP for the
intra-broker message distribution over TCP/IP on the default
port 4369. Also VerneMQ nodes share with the others the
clients’ connection/disconnection, subscription/unsubscription
and other session metadata.

3) RabbitMQ: RabbitMQ is a multi-protocol messaging
broker developed from Rabbit Technologies Ltd since 2007.
It initially implemented only the AMQP protocol but, now,
it provides plug-ins to support STOMP and MQTT v3.1.1.

It is an open-source project and the code is released under
the Mozilla Public License. In addition to the broker module,
RabbitMQ includes several libraries for creating clients in
different programming languages (i.e., Python, Java, PHP, C#,
Go, etc.). It also provides Enterprise & Cloud Ready versions
for private and public clouds. For example, it is used by
the messaging platform of T-Mobile, Adidas Runtastic and
other several commercial customers. Similarly to VerneMQ
and EMQX, also the RabbitMQ server program is developed
with the Erlang programming language and is built on the OTP
framework for clustering and failover. RabbitMQ brokers are
equal peers with no special nodes, where data and clients states
are replicated across all the nodes in the cluster.

4) HiveMQ: HiveMQ is a Java-based MQTT broker that
supports MQTT 3.x and MQTT 5. The company, formerly
named dc-square, started in Germany in 2012 with a com-
mercial MQTT broker. It evolves to HiveMQ in 2018 releasing
the Community Edition, an open-source variant licensed under
Apache 2. At present, HiveMQ is available in three differ-
ent editions: HiveMQ Enterprise, HiveMQ Professional and
HiveMQ Community. With regards to commercial editions,
they are available for personal evaluation with a limited num-
ber of client connections. In addition, HiveMQ provides an
IoT cloud platform variant with hourly subscription fees and
a Java MQTT client. The company declare to have over 130
customers including BMW and Deutsche Telekom. HiveMQ
also provides a rich blog about MQTT use-cases, best practices
and tutorials. Although the company claims that HiveMQ can
also run on embedded devices, it has some minimum hardware
requirements to work adequately: at least 4GB of RAM, 4 or
more CPUs, 100GB or more free disk space. A key feature of
the HiveMQ broker is the possibility to use and create custom
extensions using a specific SDK. With the Cluster Discovery
extension is possible to create an MQTT broker cluster that
discovers automatically the components in the network. Also,
the HiveMQ DNS discovery plug-in uses DNS discovery to
add or remove brokers instances to the cluster at runtime. As
regards cluster messages transport, HiveMQ communicates by
default using TCP on port 8000 but also offers the selection
between UDP and secure TCP. In addition to the clustering,
HiveMQ supports bridging with a specific enterprise extension.

5) Mosquitto & MQTT-ST: Mosquitto is probably the most
popular open-source MQTT broker for the IoT. Eclipse Foun-
dation has recently released Mosquitto version 2.0, which
implements the MQTT protocol versions 5.0, 3.1.1 and 3.1.
Mosquitto is extremely lightweight and it is suitable both for
low power single board computers and full servers. The whole
broker is written in C language and the Mosquitto project also
provides a C library for implementing MQTT clients. More-
over, it offers command line MQTT clients, mosquittopub and
mosquittosub. Unlike the brokers above, Mosquitto does not
support broker clustering; nevertheless, bridging can be used
to interconnect multiple Mosquitto broker instances. In order
to handle dynamically different topology, we will use MQTT-
ST [1] to create a tree of brokers in a distributed fashion. In
particular, MQTT-ST is a distribution protocol able to create
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such a distributed architecture of brokers organised through a
spanning tree. The protocol uses in-band signalling (i.e., reuses
MQTT primitives for the control messages) and allows for
full message replication among brokers, as well as robustness
against failures. The tree of brokers is created automatically
by the brokers, taking into account parameters such as inter-
broker latency and computational/memory resources for the
optimal path computation. MQTT-ST reuses and integrates the
original Mosquitto source code, directly adding the additional
features for the message distribution in the broker’s logic. In
particular, to achieve such a distribution, MQTT-ST replaces
standard CONNECT and PINGREQ/PINGRESP messages
with custom ones. In a nutshell, a broker willing to create a
bridge with another one transmits a crafted MQTT CONNECT
message containing all the node information (e.g., IP address
and port); after the connection, to create and maintain the
broker tree MQTT-ST reuses PING messages as STP BPDUs.
Crafted PING messages are composed of IP address of the
root broker, the broker capability value, and a root path
cost. Once the tree is created, MQTT-ST message distribution
relies only on MQTT publish messages. In this way, the
ensemble creation, management and message dissemination
are entirely transparent from the clients’ and users’ points of
view.Moreover, the tree is robust to broker failures, and it can
reconfigure automatically upon malfunctions mimicking the
cluster behaviour.

V. BORDER FRAMEWORK SCENARIO

The proposed framework, called BORDER, provides an
easy way for creating distributed environments of MQTT
brokers for in deep performance evaluation and experiment-
ing with topologies. In order to allow extensibility as well
as isolation between the framework components, BORDER
orchestrates Docker Containers in a virtual network with real
end-code as well as real Linux kernel and network stack.
In a nutshell, a Docker container image is a lightweight,
standalone and executable package of software that includes
code, system tools, system libraries and settings. BORDER
nodes are MQTT brokers and clients that become contain-
ers running in the Docker Engine, bundling the image core
process with configuration files and environmental variables.
In such a way, Containers isolate the software from its
environment and ensure that BORDER works uniformly de-
spite hardware differences between development and staging.
Furthermore, BORDER Docker images are hosted on a ded-
icated DockerHub cloud repository (https://hub.docker.com/
repository/docker/antlabpolimi/BORDER) for easy manage-
ment and sharing of the components.

A. Containernet

The backbone of BORDER is Containernet [37], a fork
of the Mininet5 network emulator. Containernet inherits all
the Mininet characteristics, i.e., creating a network of virtual
hosts, switches, controllers, and links for custom topologies

5http://mininet.org

testing. Furthermore, it uses Docker containers as hosts in a
Mininet emulated network. In such a way, Containernet can
replicate real-world environments allowing to move testbeds to
real systems with minimal code changes. Using Containernet,
BORDER creates flexible MQTT clusters topologies, with
the possibility of adding, removing or replacing containers.
Moreover, Containernet allows replacing the docker image
of a specific node or pass to the container different custom
configuration files. This allows BORDER to support inter-
connections among MQTT brokers with different topologies
configurations. As regards hardware emulation, exploiting
the Docker API, the proposed framework provides resource
limitation to the machine, CPU control, as well as fine tuning
of the RAM and pyhisical memory of each node.

B. BORDER Architecture

The BORDER framework has been developed in Python
3.8 language exploiting the Containernet/Mininet API and the
Python Docker SDK for the creations and the management of
the framework components. It also uses the Containernet CLI
for runtime management and control of the environment.

The framework aims at reflecting as closely as possible the
network topology and the physical resources of a distributed
MQTT brokers deployment. For this reason, each MQTT
broker resides in a dedicated network, isolated from the others.
As shown in Figure 2, the architecture is composed of three
main items:

• Router: The router is in charge of forwarding data packets
between different broker networks. BORDER separates
the broker instances in different networks; thus, packets
forwarding occurs thanks to routers. Each broker has a
dedicated router that is in charge of the communication
with the external networks. Technically, a BORDER
router is a Linux node instance with IP forwarding
towards the other networks enabled. Routers use IPv4
notation; at boot time the framework assigns the IP
addresses following the pattern 10.R.0.0, with R the
sequential ID of the router.

• Switch: Real networks use switches for data packets
forwarding directly between devices. As one can see
from Fig. 2, in BORDER, the switch act as a network
dispatcher between upper layers (i.e., routers) and lower
layers (i.e., MQTT broker and clients). Moreover, the
switch allows to handle multiple brokers in the same
local network for advanced architectures (e.g., horizontal
clustering in the same network).

• Node: Nodes represent the server where the broker is
deployed. Here, Docker images run to become containers
with all the MQTT broker functionalities. BORDER
passes to the node the broker configuration file (according
to the instance deployed), the dedicated hostname, the IP
address, port bindings and environmental variables. Also
MQTT clients are deployed on dedicated nodes, separated
from the MQTT broker. In this case, the instance runs a
specific docker image containing the clients’ functional-
ities.
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Figure 2. Details of the proposed BORDER framework architecture.

Finally, the framework items are connected through a Tim-
ing Compensated High-Speed Optical Link (TCLink), with
adjustable link delay and link bandwidth parameters. In this
configuration, the brokers are isolated between each other
and connected only to their associated router. On top, routers
are connected between themselves with a TCLink for routing
between the lower layers.

C. BORDER broker images

We built BORDER docker images on top of the pre-existing
candidates’ ones, i.e. EMQX, VerneMQ, RabbitMQ, HiveMQ,
Mosquitto. Except for HiveMQ, which use a custom base
image, all Dockers parent images are based on Alpine Linux
version 3, a lightweight and resource-efficient Linux distribu-
tion. In order to keep the docker images as close as the original
ones, we only installed the networking packages needed for
fulfilling the Containernet requirements6 (i.e., iproute2,
iperf, tcpdump, etc.). In Table II, we summarise the main
characteristic of the Docker images used. As one can see, apart
from HiveMQ, the other candidates use the same base OS, thus
presenting minimal differences.

D. Framework Configuration

We designed the BORDER framework to allow for different
MQTT brokers hardware configurations as well as network
topologies. The Python program which orchestrates BORDER
generates multiple MQTT broker instances according to the
parameter passed via the CLI (e.g., number of brokers and
broker type). As regards network topologies, the program
automatically generates a fully meshed network of brokers,
where links have adjustable RTT and bandwidth. Table III

6https://github.com/containernet/containernet/wiki/
Container-Requirements-and-Compatibility

resumes the exact parameters accepted by the BORDER
framework. For the simulation, the user can also define,
among the others, number of publishers and subscribers
connected to the brokers, publishing message rate and
message number.

Taking as example the parameters used in the experiment
scenario (Section VI), the framework will:

1) Start the Linux Network Controller on the default port
(6654);

2) Define the IP address for the routers in the range
[10.100.0.0, 10.(100〈+brokers〉).0.0], and create the
corresponding routers;

3) Create switches, defining the network interface name
and IP addresses;

4) Start the MQTT brokers containers in the IP range
[10.0.0.0, 10.〈router〉.0.〈brokers〉]. RAM and CPU are
defined by the CLI parameters.

5) Create the router-router, router-switch and switch-broker
links with users’ input parameters;

6) Run the Docker entrypoint of the MQTT brokers image
and enable the node network interfaces;

7) After a fixed time interval, check brokers networking
with pings ensuring the cluster health;

8) Start the MQTT clients (100 subscribers and 1 publish-
ers) and link them to the respective switches;

9) Finally, start the messaging process logging metrics and
producing results as explained in Section VI.

E. Metrics

The metrics used for the evaluation of the distributed MQTT
brokers in an IoT scenario are the following:

a) End-to-End delay: End-to-End (E2E) delay refers to
the time in seconds that a MQTT message takes to be trans-
mitted from a publisher p to a subscriber s. In a distributed
scenario, this includes: (i) the time for a message to be received
by a broker, (ii) the broker queueing and processing time, (iii)
the intra-broker communication (if any), and (iv) the broker-
subscriber time. The delay is calculated taking the difference
between the publishing timestamp and receiving timestamp at
the subscriber side. Low E2E delay is fundamental in many
IoT applications, especially when the latency is a concern, like
edge applications where real-time actions are required (e.g.,
connected cars).

b) Physical Resources: Processing huge dataflows and
handling the cluster of MQTT brokers are expected to be
resource-intensive. This can affect the normal operation of
the system to the point of creating a performance bottleneck
if server resources are not dimensioned correctly. For this
purpose, we evaluate the average RAM and CPU consumption
of the cluster of MQTT brokers.

c) Overhead traffic: In addition to the MQTT traffic,
the cluster of brokers generates a high volume of additional
traffic for internal communication between the nodes of the
group. The overhead traffic is composed by multiple factors:
e.g. forwarding MQTT messages in the cluster, notifying new

https://github.com/containernet/containernet/wiki/Container-Requirements-and-Compatibility
https://github.com/containernet/containernet/wiki/Container-Requirements-and-Compatibility


Table II
DOCKER IMAGES OF THE MQTT BROKERS CANDIDATES.

EMQX VerneMQ RabbitMQ HiveMQ Mosquito
Parent Image erlang:21.3.6-alpine alpine:3.9 alpine:3.12 openjdk:11-jre-slim alpine:3.12
Image compressed size 56.67 MB 99.04MB 61.03 MB 222.67 MB 12.21MB
OS/arch linux/amd64 linux/amd64 linux/amd64 linux/amd64 linux/amd64

Table III
MOST RELEVANT BORDER PARAMETERS.

Parameter Value
Number of brokers 5
RTT delay router-router link 5, 50 ms
RTT delay switch-router link 0 ms
RTT delay broker-switch link 0 ms
Broker RAM upper limit 2 GB
Number of CPU per broker 2
Number of published messages 50
Number of subscribers 100
Number of publishers 1
MQTT broker port 1883
Message publishing rate 1 msg/s
Topics name dst/mqtt/
Message size 18 bytes
Number of simulations 10
Quality of Service (QoS) 0,1,2

clients connection, forwards client subscriptions or simply
checking the cluster health. An excessive volume of traffic
among the brokers may cause network saturation, increasing
packets queue and system overloading.

VI. EXPERIMENTAL RESULTS & DISCUSSION

A. Test Infrastructure

To evaluate the broker candidates, we set up the BORDER
framework on a single machine equipped with an Intel(R)
Xeon(R) CPU E5-1660 with 16 CPU @ 3.00GHz and 16GB
of RAM running Ubuntu 18.04. For what concern the testbed
environment, each framework component is isolated in a
dedicated Docker container. For each broker, we allow to use
two cores and we allocated 2GB of RAM and 1GB of swap
memory. As for clients (publisher and subscribers), they can
use all the remaining host machine resources. As explained in
Section V-C, brokers are built from their base Docker image
and then embedded in the framework. For what concerns
clients, the publishers are built on top of the open-source
mqtt-benchmark tool7 developed in golang language, whilst
the subscribers exploit the paho-mqtt 1.5.1 library for Python
3.8.

For each scenario, tests have been run for all the MQTT
QoS levels: (0,1,2) and repeated ten times to average the values
and exclude outliers. The execution works as follow. First, the
BORDER is started, then:

• A specific number of homogeneous MQTT brokers is
started. As explained in Section V-B, each one is con-
nected to its correspondent switch/router, and eventually,
the routers are connected to each other. The architecture

7https://github.com/krylovsk/mqtt-benchmark

broker-router-switch is connected through emulated link
creating a full mesh topology, i.e., each broker has
connections to all the others through routers. We vary
the RTT (Round-Trip-Time) between the routers in the
range {5, 50}ms and we set the number of brokers in the
cluster to 5. Subsequently, we wait a defined amount of
rest time to allow the brokers to connect correctly.

• Upon the timer expiration, a fixed number of MQTT
clients (i.e., publishers and subscribers) are connected to
their correspondent broker. Clients are organised accord-
ing to a fan-out configuration, with a single publisher and
100 subscribers. The topic used by clients is dst/mqtt/
corresponding to 9 bytes of overhead in the request
header.

• BORDER ensures the scenario correct behaviour. Each
component checks the connectivity with the others
through a PING request/response exchange. If all the
pings are correctly received the test-bed can start.

• A specific number of messages are published on the
topic mentioned above. The publisher sends a burst of 50
messages with a constant rate of 1msg/sec with a payload
of 18 bytes containing the message creation timestamp.
Finally, when the subscribers receive the publications,
results are logged for further evaluation and clients are
disconnected.

B. Clients’ localities

To evaluate different traffic scenarios, we consider three
different client configurations according to publishers and
subscribers location, as shown in Figure 3:

• Locality 100%: this is the maximum degree of locality,
meaning that all publishers and all subscribers are con-
nected to the same broker.

• Locality 0%: conversely, this case represents the scenario
with the minimum degree of locality, where all publishers
are connected to one broker and all subscribers are
connected to a different broker.

• Locality 50%: we also test an intermediate case, where
publishers and subscribers are randomly distributed
among the 5 brokers. In this case, we repeat the test 10
times changing each time the distribution of publishers
and subscribers and we show average results with their
standard deviation.

C. Results

1) End-to-end message delay: First, we analyse the End-
to-End (E2E) message delay that, as explained in Section V-E,
is the average time from the generation of the publish to
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Figure 3. Distributed MQTT brokers configurations. Clients positions represent different locality scenarios.

the arrival of the message at the subscribers. The End-to-End
delay is calculated at the subscriber side; when the publisher
generates the message, it incapsulates into the payload the
timestamp. Upon reception, the subscriber subtracts the current
timestamp with the received one, obtaining the total message
delay. (It is important to remember that, since all Docker
containers share the same host machine clock, brokers and
clients are synchronized in time). Figure 6 summarises the
end-to-end delay results for each broker. The average values
are shown with the 95%-confidence intervals as an indication
for variations across experiments. As one can see, the two
configurations, 5ms and 50ms RTT delay have a similar
pattern emphasising the differences when the delay between
the brokers become higher. As regards locality 100%, all the
different clusters show a very limited delay, especially when
the QoS is 0. RabbitMQ and VerneMQ clusters get almost
double E2E message delay in the cases when locality is 100%
and QoS increases to 1 and 2; however, they generally out-
perform the rivals in all the other scenarios. MQTT-ST, which
is the only broker using the bridging approach, has different
results. On the one side, when locality is high (100%), it can
deliver messages extremely efficiently, serving first the client
subscribers and then the other brokers connected. On the other
side, when subscribers are far away, the multi-step fashion
of the bridging fails, obtaining the worst average end-to-end
delay among the candidates. In particular, in cases when QoS
> 0, the total delay is even higher, due to the multiples ACKs
between the brokers. Indeed, it is important to remind that the
bridging approach re-uses the MQTT message standard, thus,
a broker has to wait for the internal MQTT ACKs between the
brokers (e.g. PUBACK for QoS 1, PUBREL and PUBCOMP
for QoS 2) before delivering the messages to the clients.

In our simulation scenario, HiveMQ brokers (cluster based
and bridging based) do not satisfy the suggested system
requirements explained in Section IV. This results in message
queue overload and eventually in significantly high end-to-
end message delay. Without penalising HiveMQ, we decided

to exclude it from the end-to-end delay comparison.
2) Traffic Overhead: In a distributed scenario, rather than

publisher/subscriber traffic which in our experiments is con-
stant, is important to take into account the traffic gener-
ated by the intra-broker communication. Our test shows that
distributed MQTT brokers can become extremely talkative
and this might cause network resource depletion. Brokers
in an MQTT cluster have to communicate continuously to
advertise their presence to the other counterparts, disseminate
clients connections and subscriptions. As explained in Section
III, intra-broker communication may be achieved in different
ways: clustering approach with or without master nodes, or
bridging brokers.

In order to deeply analyse the traffic in distributed brokers,
we split the analysis into three different broker phases:

• Control-communication: it corresponds to the overhead
traffic flowing after the ensemble formation process. In
this phase the brokers are still in an idle state, without
any clients connected, nor any messages exchanged.

• Subscriptions-forwarding: it is the traffic originated by
the subscribers connection and subscriptions; at this
moment, cluster-based brokers disseminate to the other
brokers clients connections and clients subscriptions con-
taining among the others topic, will message, keep alive,
retain message.

• Publish-exchange: it is the traffic generated by the dis-
semination of the publish messages inside the ensemble.

Traffic data is captured through the tcpdump tool, listening
on the routers inbound network interfaces, thus capturing only
the intra-brokers traffic. Moreover, to make the comparison
fair, the byte amount is normalized over the duration of the
simulation. As one can see from Figure 4, HiveMQ and
RabbitMQ8 result in the worst in terms of traffic overhead,
consuming roughly more than 10 times compared to EMQX

8RabbitMQ supports compression for inter-node traffic in the commercial
VMware Tanzu RabbitMQ version. RabbitMQ claims that bandwidth usage
might be reduced by 16 times.
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Figure 4. Traffic overhead: average bandwidth used by the brokers ensemble communication.

and VerneMQ in most of the configurations. In clustered
brokers, the control-communication consume a non negligible
amount of channel, around the 15% of the overall. Such
communication of control messages is mainly used for main-
taining the cluster active and inform nodes about each other’s
presence. Moreover, since each broker has to notify the others
for clients connection and clients subscription, most of the
traffic comes from the subscriptions-forwarding, while the
publish-exchange contributes only for the 7% of the total, on
average.

With regards to the bridging extension (MQTT-ST and
HiveMQ briding-version), we can notice an extremely reduced
traffic overhead compared to the native-cluster approach of the
other brokers. The main reason behind this lies in the naive
message exchange of the bridging. In this case, no clients
connection and subscriptions are notified to the others and, for
MQTT-ST, new brokers joining or leaving the ensemble are
advertised with a custom PING message with a minimal packet
overhead. Conversely, pure MQTT publish-exchange increase
considerably the traffic overhead in cases where multiple
ACKs are needed, e.g., QoS > 0.

3) Physical Resources: Other authors have already pro-
vided scalability tests with a high number of clients connected
to a single broker or a cluster of MQTT brokers, demonstrating
theoretical unlimited scalability [14], [23]. However, in scenar-
ios where server resources are a concern (e.g., edge gateways),
unlimited horizontal scalability over the cluster is not possible.

In our test, we focus on resources consumed by the broker
on the host machine, assigning limited resources to our cluster
(2 GB RAM, 2 CPU per node). Resources are logged using the

built-in docker stats tool obtaining the resource usage
statistics of the running MQTT brokers in a live stream
fashion. As for the traffic overhead, we split the analysis into
the same three different phases: (i) control-communication, (ii)
subscriptions-forwarding, (iii) publish-exchange.

Fig. 5 shows the CPU utilization (y-axis) over the RAM
utilization (x-axis), having the best candidate on the lower left
side of the graph. As one can see, just handling the cluster
is the most resource-consuming task, while the other two
phases only add a slight increase in the resources utilization.
As expected, MQTT-ST shows the best resource performance.
First, it is built on top of Mosquitto, fully developed in C lan-
guage, guaranteeing a lightweight code; second, it relies on the
bridging for the distribution and only on MQTT primitives for
the brokers’ ensemble creation, discarding advanced features
implemented by the other competitors. Similar results are also
visible for HiveMQ with the bridging extension. Erlang based
brokers (RabbitMQ, EMQX, VerneMQ) behave similarly hav-
ing a reasonable amount of resources consumed. The only
exception is EMQX with a high use of CPU compared to the
others two rivals. HiveMQ, which is the only one implemented
in Java, is reasonably resources eager when the clustering
comes into play, especially regarding RAM consumption. The
reason behind this may reflect the Java Garbage Collector
behaviour.

D. Discussion

From the analyses of the experimental results, it is clear
that cluster-based approaches and broker bridges have sig-
nificant differences. Such dissimilarities are mainly caused
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Figure 5. Physical resources: Average RAM and average CPU consumed by the ensemble of brokers.

by the distribution approach they provide: in-band MQTT
for the bridging and out-band for proper brokers’ clusters.
MQTT brokers bridging outperforms the clustering approach
in terms of traffic overhead and generally for machine re-
sources consumption. Thus, the bridge approach is suitable
for IoT-constrained and frugal environments, where network
traffic and broker resource/energy consumption are a concern.
However, the bridging fails in terms of robustness, for instance,
in scenarios needing extreme low latency with high message
Quality of Service (e.g., QoS = 2), high availability of the
node, and message replication between the nodes. Such use-
cases are ideal for an MQTT broker that provide clustering. In
our scenarios, among the analysed cluster-based brokers, we
found minimal differences: EMQX and VerneMQ showed a
minor network consumption, while RabbitMQ and VerneMQ
had a slightly lower end-to-end delay than the other candidates.

The Mosquitto broker (with the MQTT-ST enhancement)
shows adequate performances, especially in low resources
scenarios. Moreover, since the Mosquitto project is released as
an open-source license, it is suitable for innovative protocols
integration, testing, and starting point for future works. Sim-
ilarly, HiveMQ and EMQX provide bridge extension support
and additional customisable plug-ins.

VII. CONCLUSION

This paper proposed BORDER, a Python-based framework
for easily creating and benchmarking topologies of distributed
MQTT brokers. The framework exploits Docker containers
for the broker deployments and the Containernet tool for the
network emulation. We have tested five of the most popular
MQTT brokers that allow distribution in various scenarios,
in particular showing the differences between cluster-based
and bridging-based MQTT distribution approaches. Results
showed that the bridging approach might significantly reduce
the traffic overhead and resource consumption compared to

some popular MQTT clusters. However, MQTT bridging fails
when robustness and end-to-end delay are a concern. Future
work direction will target the analysis of more complex
MQTT broker architectures (e.g., multi-level trees) and the
introduction of new metrics, such as failure recovery time and
reliability. The BORDER project is available for download at
https://github.com/ANTLab-polimi/BORDER.
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Università degli Studi of Milan, Italy, in 1989,
and the Ph.D. degree in computer science from
the Politecnico di Milano, Italy, in 1995. Between
November 1992 and February 1993, he did an intern-
ship at Bellcore Laboratories, Red Bank, NJ, USA,
and between February 1994 and November 1994,
he was a Visiting Researcher with the International
Computer Science Institute (ICSI), Berkeley, CA,
USA. He is currently a Full Professor of computer

engineering with the Universitat Politècnica de València, Spain. He is a Co-
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