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Ezgi Erdoğan 1 and Enrique A. Sánchez Pérez 2,*

1 Department of Mathematics, Faculty of Art and Science, University of Marmara, Kadıköy,
Istanbul 34722, Turkey; ezgi.erdogan@marmara.edu.tr

2 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,
Camino de Vera s/n, 46022 Valencia, Spain

* Correspondence: easancpe@mat.upv.es

Abstract: A new stochastic approach for the approximation of (nonlinear) Lipschitz operators in
normed spaces by their eigenvectors is shown. Different ways of providing integral representations
for these approximations are proposed, depending on the properties of the operators themselves
whether they are locally constant, (almost) linear, or convex. We use the recently introduced notion of
eigenmeasure and focus attention on procedures for extending a function for which the eigenvectors
are known, to the whole space. We provide information on natural error bounds, thus giving some
tools to measure to what extent the map can be considered diagonal with few errors. In particular, we
show an approximate spectral theorem for Lipschitz operators that verify certain convexity properties.
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1. Introduction

Diagonalization of operators is deeply tied to the linear character of the operators
themselves. Indeed, interest in obtaining the eigenvectors of a given linear map implies
that we can use them, together with the corresponding eigenvalues, to obtain an easy repre-
sentation of the operator. If we think of the finite dimensional case, all symmetric operators
are diagonalizable, so that for all of them one can find, after a change of basis, a diagonal
form that gives the simplest representation of the map. Thus, a fruitful diagonalization
theory has to provide a way to compute the eigenvectors, as well as a structural rule to
extend the representation of the map (or at least an approximation) from the eigenvectors
to the whole space. This is the point of view from which we develop the research presented
in this paper: we consider the set of eigenvalues of a given map and use a given rule to
approximate the original map starting from them.

What is fundamental in the present work is that we do not assume linearity, at least
in its “full version”. Instead, we will use metric notions, approximating the value of the
original endomorphism T : E→ E in the Banach space E over complex field by using the
“diagonal behavior” of functions at other points. The proximity of any other vectors in
E to such points will then be used to find suitable approximate expressions. This is why
the Lipschitz character of the functions involved is required, since we have to perform the
extension/approximation formulas from the set of eigenvectors ev(T) of T to the whole
normed space E. On the other hand, to be Lipschitz continuous seems to be a natural
requirement for talking on the spectrum of a non-linear operator (see [1], Introduction, p. 3).
Much research has been done for finding results on the spectrum of a Lipschitz operator
that could be similar to those that hold in the linear case [1].

Of course, this topic is not new [1,2]. A lot of research has been done, from the
abstract and the applied points of view, to understand what diagonalization would be
for non-linear maps, and a lot of applied procedures to solve concrete issues appearing
in relation to this have also being published (which are normally centered on “almost”
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linear cases, as the ones that appear in linear processes with non-linear perturbations).
Recently, diagonalization of bilinear maps has been attracting attention [3,4], although it is
also a classical topic (see [5]). As in the classical works regarding these problems, we will
deal with the point spectrum of a given operator, that is, the set of values that satisfy the
equation T(x) = λ · x for a non-trivial x ∈ E. However, it must be said that the theoretical
investigation on this type of problem has focused the attention on the non-linear spectral
theory, which is, in general, richer than the study of the equation f (x) = λ · x. Although
the early works on the topic [6,7] were centered on the analysis of the pointwise eigenvalue
equation for non-linear maps, after the work of Kachurovskij [8], the theoretical research
has been directed to the abstract analysis of the different notions of spectrum that can
be formulated for non-linear maps, and concretely for Lipschitz continuous maps (the
Rhodius, Neuberger, and Kachurovskij spectra, among others [1] (Chapter 5), that is, the
general subject of the present paper. In this sense, in this paper we focus on the point
spectrum. We will restrict our attention to functions of real Banach spaces and only consider
real eigenvalues. This is an important restriction for the results we present since in many
cases we will not be able to obtain complete diagonal representations; of course, even in the
linear case complex eigenvalues could appear. The interested reader can find a complete
explanation of these subjects in [1] (see also [9]). Some relevant results connecting these
notions with the extensions of the concepts of numerical range/numerical index, to non-
linear operators, are also known, showing the interest in this relation even in the non-linear
case, for example, it is known that the Kachurovskij spectrum (5.9) of a Lipschitz continuous
operator is contained in the convex closure of the numerical range [10] (Theorem 2). A lot
of research is still been developed in this direction [11,12].

Additionally, non-linear eigenvalue problems are still attracting attention, mainly due
to the large class of applications that these results find in other mathematical fields (see, for
example, [1] (Chapter 12)). The proposed formalism can also be used as an analytic tool
for models in geometry and physics, mainly those in which vector-valued integrals allow
the description of mechanic properties of materials (moment of inertia, center of mass, . . . ).
A recent review on related topics and applications of non-linear diagonalization can be
found in [13].

So, due to these potential applications, in this paper we focus attention on low-
dimensional eigenvalue problems for non-linear operators. A lot of references of this kind
of research can be found in the scientific literature on this topic. For example, some proba-
bilistic methods for finding estimates of eigenvalues and eigenvectors have been developed.
This point of view is interesting for us since our interest lies in measure and integration
theory, which supports probabilistic interpretations. This line of research comes from
computational mathematics and physics. One relevant example is the so-called stochastic
diagonalization, which appeared at the end of the XX Century as a computational tool in
quantum mechanics, as explained in [14]. The main idea is to use Monte Carlo methods for
the computation of eigenvectors of the Hamiltonian of physical systems; under the label
probabilistic diagonalization, these ideas can be found in [15] (Section 4) and [16–18]. In gen-
eral, in real-world applications Monte Carlo sampling provides satisfactory computational
results, which allow one to develop sophisticate procedures in the application of quantum
mechanics, for example, in quantum chemistry (see, for example, [19–21]). In this paper,
we intend to provide some new theoretical ideas for finding approximate representations
of Lipschitz maps when some eigenvectors are known and to show some examples and
concrete situations for which these formulas can be explicitly given (we call the specific
methods for getting them “rules”); we show, for example, an approximate spectral theorem
for Lipschitz maps based on convexity in Section 5.

The present paper is divided in six sections. After this Introduction, we describe, in
Section 2, our goal: to write the linear case using our tools and some fundamental results
for Lipschiz operators. In Section 3, we show some general examples that, in a sense, intend
to illustrate the generality of different normal situations that we are considering. Section 4
is devoted to the case of a concrete extension procedure, which we call the “proximity
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rule”, and in Section 5 we explain what we call the “convexity rule”. We finish the paper
by providing some hints (Section 6) on how effective computations can be performed for
finding approximations to eigenvectors and eigenvalues of Lipschitz maps.

As a main theoretical framework, we adopt the usual mathematical context of the
non-linear spectral theory; we use [1] as reference book for this. Standard definitions and
arguments of measure and integration theory, as well as Banach spaces, will be used [22–24].
Our main reference on Lipschitz maps is [25]. For the aim of simplicity, we will consider
only the real case. If E is a Banach space with norm ‖ · ‖, we write E∗ for its dual space,
which in the (finite dimensional) Euclidean space and in the (real) Hilbert space can be
identified with E. We will write x for the vectors in E and x∗ for the elements of E∗. The
unit ball of the dual space BE∗ is a convex set that is compact with respect to the weak*
topology (Alaoglu’s Theorem; see, for example, [22]). Then, we can consider the space
M(BE∗) of regular Borel measures on BE∗ , which will play a relevant role in the present
paper. Let us recall that, for any x∗ ∈ E∗, the Dirac’s delta δx∗ belongs to this space. In the
same way, if E is a dual space or E is reflexive, we will write B(BE) for the corresponding
Borel sets. This notion can be extended to any norm bounded subset of E instead of BE by
including it in a larger ball. As usual, we denote by SE to the unit sphere of E.

2. Approximation Results for Linear and Non-Linear Maps and First Results for
Lipschitz Functions

The aim of this section is to explain the motivation of our investigation and to provide
the first general results. Let us start by presenting how we can rewrite the well-known
context of diagonalization or linear operators in terms of integral expressions, under the
formalism provided by the recently introduced eigenmeasures [26]. We expect to find the
best diagonal approximation to a given (linear and continuous) operator T : E→ E. Fol-
lowing the mentioned paper, we introduce first a measure on BE∗ . We start by considering
a (regular Borel) probability measure ν ∈ P(BE∗). Roughly speaking, this gives formal
support for those elements of the dual space that we want to keep “active”, i.e., those whose
actions on the elements of E we are interested in “keeping running”. In the linear case, this
set can actually be quite small; in the case of dual Banach spaces with unconditional basis
(or finite-dimensional spaces), we choose the simplest: take an unconditional normalized
basis {e∗k}

+∞
k=1 of the dual space and define ν as

ν(A) =
+∞

∑
k=1

1
2k δe∗k

, A ∈ B(BE∗) if E is infinite dimensional,

and

ν(A) =
1
n

n

∑
k=1

δe∗k
, A ∈ B(BE∗) if E has dimension n.

Since case E is a (real) separable Hilbert space or a finite dimensional Euclidean
space, we choose the same measures, but the basis are assumed to be also orthonormal.
In the general case, as will be shown later on, this formalism provides a useful tool for
choosing renormings for the Hilbert space that is considered by means of an inclusion
x 3 E 7→ 〈x, ·〉 ∈ L2(ν), and so every element x is identified with the function 〈x, ·〉 acting
on the elements of the unit ball of the dual space. It is clearly seen that this map is always
continuous: we also need it to be injective to obtain an alternate representation of the
original space. Throughout the paper, we will write ‖ · ‖ν for the norm induced on E by the
norm of L2(ν), that is, ‖x‖ν = (

∫
BE∗
|〈x, ·〉|2dν(·))1/2, x ∈ E.

Let us fix now the measure structure on the measurable space (BE,B(BE)) that is
needed to complete the integral diagonal representation of the approximation to the opera-
tor T. Let us recall the definition of weak eigenmeasure (Definition 2 in [26]), adapted for
the case of linear maps.
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Definition 1. Let E be a reflexive Banach space and let T : E → E be an operator. Fix a Borel
regular measure ν on BE∗ , and let µ be a Borel regular measure on a bounded subset of E. We
say that µ is a weak eigenmeasure for T if for each N ∈ B(BE∗) there is a µ-integrable function
x 7→ λN(x) such that∫

N
〈T(x), x∗〉 dν = λN(x)

∫
N
〈x, x∗〉 dν, µ-a.e. x ∈ BE,

and the functions λN(x) are uniformly bounded in N and x ∈ E.
In this paper, we will use a stronger version of this notion, which has been also introduced

in [26]. We say that a probability measure satisfying the requirement above is an eigenmeasure if
λN(x) does not depend on N, that is, it has a constant value once x is fixed. Note that the linearity
requirement for T is not necessary for this definition. The same notion can be defined in the same
way for the case of Lipschitz maps, and in general for any function that satisfies the conditions
necessary for all integrals to make sense.

It can be seen that the existence of an eigenmeasure µ implies a diagonal representation
µ-a.e. That is, for µ-a.e., all elements x ∈ BE, once the set N is fixed, we have a diagonal
representation of the operator. Indeed, consider the set ev(T) of all the vectors that satisfy
that there is a scalar value λ such that T(x) = λx : we have that, if µ is an eigenmeasure,
µ(A \ ev(T)) = 0 for every measurable set A ⊂ E. In this paper, we intend to show to what
extent this tool can be used to obtain quasi-diagonal representations of T for the case of
linear operators. We will tackle this question in the following subsection for the canonical
case, i.e., the Euclidean case in which v is given by the average of Dirac’s deltas of the
elements of an orthonormal basis.

2.1. Motivation: Minimization Procedure and Calculation of the Best Diagonal Approximation for
a Linear Operator in a Euclidean Space

In this section, we show the canonical case, which will allow us to explain the geometric
meaning of the diagonal approximation of an operator. Let us take the real n-dimensional
Euclidean space E. Its dual space can be identified with E, so we do not write the superscript
∗ for any space or any element of the orthonormal basis. Thus, for a given orthogonal basis
{e1, . . . , en} fix the measure

ν(A) :=
1
n

n

∑
k=1

δek , A ∈ B(BE∗).

Note that, for this case, we have that for every x ∈ E,

‖x‖ν =
( ∫

BE∗
|〈x, ·〉|2dν(·)

)1/2
=
( 1

n

n

∑
i=1
|xk|2

)1/2
=

√
1
n
‖x‖,

where xk, k = 1, . . . , n, are the coordinates of x in the fixed basis. Let us compute the
optimal value for every element x0 of the sphere SE, which is represented by the Dirac’s
measure x0 7→ δx0 . The stochastic eigenvalue equation is then written, for x0 ∈ SE and
every N ∈ B(BE), as

1
n ∑

ek∈N
〈T(x0), ek〉 =

∫
BE

( ∫
N
〈T(x), x∗〉 dν(x∗)

)
dδx0

=
∫

BE

(
λN(x)

∫
N
〈x, x∗〉 dν

)
dδx0 = λN(x0)

1
n ∑

ek∈N
〈x0, ek〉.

For example, for N = {ek}, k = 1, . . . , n, we obtain the equations

〈T(x0), ek〉 = λk · 〈x0, ek〉 for λk = λ{ek}(x0),
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what gives λk =
〈T(x0),ek〉
〈x0,ek〉

if 〈x0, ek〉 6= 0, and λk = 0 otherwise.
Let us show an estimate of the best λ for which the equation T(x) = λ(x) x holds for

a given x ∈ E in the integral setting that has been fixed above. In other words, we want to
minimize the error

ε(x) = ‖T(x)− λx‖2
ν =

∫
BE

∣∣∣〈T(x), x∗〉 − λ 〈x, x∗〉
∣∣∣2 dν(x∗).

The result has a clear geometric meaning: once the point x ∈ SE is fixed, the best diagonal
approximation to T(x) is the projection of T(x) on the subspace generated by x. It is given by a
direct minimization argument, summarized in the next result.

Proposition 1. Consider the measure ν fixed at the beginning of this section for the n-dimensional
Euclidean space. Let x ∈ E. Then, the following assertions hold.

(i) The best diagonal approximation to T in x is given by x 7→ λ(x) x, where

λ(x) =
〈T(x), x〉
‖x‖2 =

1
‖x‖2

n

∑
k=1
〈T(x), ek〉〈x, ek〉 =

1
‖x‖2

n

∑
k=1
〈T(x), ek〉 xk.

(ii) The minimal integral error ε(x) is given by

ε(x) =
1
n

(∥∥∥T(x)
∥∥∥2
− 〈T(x), x〉2

‖x‖2

)
.

Proof.

(i) Since the basis {ek}n
k=1 is orthonormal, we have that the error ε(x) can be written as

∫
BE

∣∣∣〈T(x), x∗〉−λ 〈x, x∗〉
∣∣∣2 dν(x∗) =

1
n

n

∑
k=1

∣∣∣〈T(x), ek〉−λ 〈x, ek〉
∣∣∣2 =

1
n

∥∥∥T(x)−λ x
∥∥∥2

.

Therefore, we can rewrite the error as

ε(x)(λ) =
1
n

(〈
T(x)− λ x, T(x)− λ x

〉)
=

1
n

(∥∥∥T(x)
∥∥∥2
− 2 λ〈T(x), x〉+ λ2〈x, x〉

)
,

which gives

ε(x)(λ) =
1
n

(∥∥∥T(x)
∥∥∥2
− 2 λ〈T(x), x〉+ λ2‖x‖2

)
.

Recall that the vector x is fixed. The critical points equation involving the derivative
with respect to λ are

dε(x)
dλ

= − 2
n
〈T(x), x〉+ 2

n
λ‖x‖2 = 0,

that is, λ = 〈T(x), x〉/‖x‖2. Since d2ε(x)
dλ2 = 2‖x‖2/n > 0, this value of λ gives a mini-

mum. Therefore, the best diagonal approximation for T(x) is x 7→ (〈T(x), x〉/‖x‖2) · x.
(ii) Just writing this value of λ in the expression of the error, we find that the minimal

value of the error at x is given by

ε(x) =
1
n

(∥∥∥T(x)
∥∥∥2
− 2
〈T(x), x〉〈T(x), x〉

‖x‖2 +
〈T(x), x〉2
‖x‖4 ‖x‖2

)
=

1
n

(∥∥∥T(x)
∥∥∥2
− 〈T(x), x〉2

‖x‖2

)
.
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The best approximation to a diagonal form for any vector x in the space given by
λ(x) provides a direct way of representation of an operator. Of course, the only vectors for
which the error ε equals 0 are the eigenvectors of the operator T; clearly, we have that a
linear operator T : E→ E is diagonalizable if and only if there is a basis {xk}n

k=1 such that
ε(xk) = 0 for all k = 1, . . . , n.

Let us remark that, under the assumption of the existence of an orthonormal basis
of eigenvectors for T, an integral representation formula is provided: take such a basis
{ek}n

k=1 and consider an associated eigenmeasure µ that coincides with the measure ν that
have been considered above. Then, for every x0 ∈ E we have that

T(x0) =
n

∑
k=1

λ(ek)〈x0, ek〉ek =
∫

BE

n 〈T(x), x〉〈x0, x〉 x dµ(x),

where µ(·) = 1
n ∑n

i=1 δek (·). Therefore, we can write a representation of a diagonalizable operator
T as a Bochner integral average associated with the diagonal function x 7→ λ(x) · x. This is the
linear version of the main idea that we use in the subsequent sections of the paper: even
for non-linear cases, an integral approximation to a function can be obtained as an integral
average, once a(n) (approximated) eigenmeasure is known.

2.2. General Finite Dimensional Case: Local Diagonal Approximation for Functions T : E→ E

In this section, we show the general equations for the finite dimensional case, with-
out linearity assumptions: no restriction is imposed on the function T, apart from some
weak measurability properties. For the sake of clarity, we revert to the notation E for the
original finite dimensional space and E∗ for its dual, which is isomorphic to it because it is
finite dimensional.

Let us fix again the measures for getting an integral representation of an equivalent
norm for E. Take regular Borel probability measures ν and µ on the spaces SE∗ and SE,
respectively. Suppose that the probability measure ν separates the points of SE, that is, it
satisfies that if x ∈ SE we have

∫
BE∗
|〈x, x∗〉|2dν(x∗) 6= 0. This requirement implies the injec-

tivity of the representation provided by the norm in L2(ν) that was explained at the begin-
ning of this section, and it is enough to get that the norm

∥∥x
∥∥

ν
=
( ∫

BE∗
|〈·, x∗〉|2 dν(x∗)

)1/2

gives an equivalent norm for the space (E, ‖ · ‖). Let us write (Eν, ‖ · ‖ν) for the resulting
normed space, which inherits a Hilbert space structure from the inclusion E ↪→ L2(ν) given
by x 7→ 〈x, ·〉. This is the key for the introduction of stochastic arguments for the estimate
of diagonal approximations. However, note that the dual space (and thus its unit ball)
that we consider in this section is endowed with the natural norm of (E, ‖ · ‖)∗, that is,
‖ · ‖E∗ = supx∈BE

|〈x, ·〉|.
Let us start as in the linear case, considering the diagonal error, that is, the measure

of how far the operator is at point x of being diagonal. Given a vector x ∈ SEν , the error
committed when T(x) is approximated as a line following the direction of x is

ε(x) =
∫

BE∗

∣∣∣〈T(x), x∗〉 − λ 〈x, x∗〉
∣∣∣2 dν(x∗).

This provides a simplified error formula, which generalizes the geometric idea based
on the projection on x of T(x) explained in the previous section. The computations that
give the proof are similar to the ones that prove Proposition 1 but consider the duality
relation in L2(ν) instead of that in the original space E.

Proposition 2. Let x ∈ E be fixed. Then, the error ε(x) attains its minimum value for

λ(x) =
1
‖x‖2

ν

∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)
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and has the minimum value for this λ(x) given by

ε(x) =
∫

BE∗
|〈T(x), x∗〉|2 dν(x∗)−

(
1
‖x‖2

ν

∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)

)2

=
∥∥T(x)

∥∥2
ν
−
(

1
‖x‖2

ν

∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)

)2
.

We are ready to give the local version of the diagonal approximation for T. Recall that
we are searching for an approximation provided by an integral average involving measures
on the Borel subsets of E, mainly eigenmeasures. This makes it relevant to obtain integral
formulas for subsets A that, in the next sections, will be neighborhoods of the point on
which we focus our attention.

Thus, given a measurable subset A ⊂ E, the error committed when the function T is
approximated as a diagonal integral average is given by

ε(A) =
∫

A

( ∫
BE∗

∣∣∣〈T(x), x∗〉 − λ 〈x, x∗〉
∣∣∣2 dν(x∗)

)
dµ.

The proof of the next result also follows the same arguments than the ones of
Propositions 1 and 2.

Proposition 3. Let A ⊆ E be a non-µ-null measurable set. Then, the minimal average error ε(A)
for the diagonal approximation is given by the formula

ε(A) =
∫

A

∥∥T(x)
∥∥2

ν
dµ(x)− 1∫

A ‖x‖2
ν dµ

(∫
A

(∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)

)
dµ(x)

)2
,

and it is attained for the value

λ(A) =
1∫

A ‖x‖2
ν dµ

∫
A

(∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)

)
dµ.

Note that, for A ⊂ S(E), this formula can be rewritten as an integral average, λ(A) =
1

µ(A)

∫
A

(∫
BE∗
〈T(x), x∗〉〈x, x∗〉 dν(x∗)

)
dµ. This expression suggests the arguments used in

the next sections.

2.3. Approximation Formulas Based on Eigenmeasures: Bochner Integration for Lipschitz Maps

Let us present the integral approximation procedure that can be constructed by adapt-
ing the previous framework for the case of Lipschitz functions. Thus, let us describe now
how to get an approximation based on eigenmeasures in this case. In [26], it is shown,
for the case of bilinear maps, how the calculus of eigenmeasures can be used to deal with
non-linear diagonalization. Here, we assume that such an eigenmeasure µ is given for a
certain non-linear map f : E→ E, where E is a (finite dimensional) Euclidean space, and we
show how we can use it to obtain an approximation to f . In order to do this, we change
the context of scalar integration used before, which has been useful for the computation of
the error and to obtain the best diagonal pointwise approximation for a given map, by the
vector-valued Bochner integration.

The idea is to consider f as a Bochner (locally) integrable function (see, for exam-
ple, [23], Chapter II). In order to do this, if f : E → E is a strongly measurable function
(see [23], Chapter II), we consider the vector-valued function A ⊂ E→ E given by x 7→ f (x)
as a Bochner integrable function with respect to the measure µ. Integration of such a func-
tion provides a (countably additive) vector measure, which assures convergence of the
limits of the integrals on sequences of disjoint sets (see [23,24]). In order to get the desired



Mathematics 2022, 10, 220 8 of 24

integral representation, we only need f to be bounded in the sets A, which will be a certain
class of neighborhoods of the points in the Euclidean space E.

Definition 2. Let f : E→ E be a Lipschitz function, and let µ be an eigenmeasure for f . We define
the eigenmeasure approximation of a strongly measurable Lipschitz function for a given ε > 0,
under the requirement µ(Bε(x0)) > 0, by the formula

f̂ε(x0) :=
1

µ(Bε(x0))

∫
Bε(x0)

f (x) dµ(x), x0 ∈ E.

Let us write λ f (·) and λ f̂ε
(·) for the best approximated eigenvalue fixed for the

functions f and f̂ε, respectively.
We need a previous lemma for the computation of the error committed when we

approximate the value of f (x) by its projection on the subspace defined by other vector x0.
It is similar to Proposition 2, but in this case we are considering two different points, x0
and x.

Lemma 1. Let x0, x ∈ E and f : E→ E satisfying all the requirements of integrability explained
above. The best value of λ that minimizes the error

εx0(x) =
∥∥ f (x)− λ x0

∥∥2
ν
=
∫

BE

∣∣〈 f (x)− λ x0, x∗〉
∣∣2 dν(x∗)

committed when we approximate f (x) by its projection on the subspace generated by x0 is given by

λx0(x) =
1
‖x0‖2

ν

∫
BE

〈x0, x∗〉 〈 f (x), x∗〉dν(x∗).

Proof. The computations are again similar to the ones that prove Proposition 1. We
have that

εx0(x) =
∫

BE

∣∣〈 f (x)− λ x0, x∗〉
∣∣2 dν(x∗)

=
∥∥ f (x)

∥∥2
ν
− 2 λ

∫
BE

〈x0, x∗〉〈 f (x), x∗〉dν(x∗) + λ2
∫

BE

〈x0, x∗〉2dν(x∗),

and so, by computing the value of the derivative with respect to λ to be equal to 0, we obtain

λx0(x) =
1
‖x0‖2

ν

∫
BE

〈x0, x∗〉 〈 f (x), x∗〉dν(x∗).

Remark 1. Lemma 1 allows one to introduce a new concept, in the line of the integral means that
the eigenmeasures formalism provides. If x0 ∈ E, we can consider the integral average λε

x0
of the

pointwise diagonal approximation to f , which is given by

λε
x0

=
1

µ(Bε(x0))

∫
Bε(x0)

λx0(x)dµ

=
1

‖x0‖2
ν µ(Bε(x0))

∫
Bε(x0)

∫
BE

〈x0, x∗〉 〈 f (x), x∗〉dν(x∗)dµ(x),

where the function λx0(x) is given in Lemma 1.

This value does not allow one to find a new eigenvector but provides the natural way
of controlling how far a given vector x0 is from being an eigenvector for the function f .
Next result covers the relevant information about the behavior of the eigenmeasure approx-
imation introduced in this section: expected error, both in the pointwise approximation to
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the function f and in the corresponding eigenvalues, and bounds for the distance among
the value of the approximating at a given point x0 and its optimal diagonal form. Note
that even for a linear and continuous operator, it may happen that the set of eigenvectors
is not sufficient to represent the operator by eigenmeasures: a rotation in R2 does not
have eigenvectors.

Theorem 1. Let ν be a regular Borel probability measure on (BE,B(BE∗)). Consider a Lipschitz
map f : E→ E with Lipschitz constant Lip( f ) and assume that ev( f ) is non-trivial. Consider an
eigenmeasure µ for f , and suppose that f is a strongly measurable function with respect to µ.

Fix a vector x0 ∈ E, and let ε > 0 such that µ(Bε(x0)) > 0. Then,

(1)
∥∥ f̂ε(x0)− f (x0)

∥∥
ν
≤ Lip( f ) · ε.

(2)
∣∣λ f (x0)− λ f̂ε

(x0)
∣∣ ≤ Lip( f )

‖x0‖
· ε.

(3) The distance with respect to the diagonal approximation to f ,
∥∥ f̂ε(x0)− λε

x0
x0
∥∥

ν
, is bounded

by 1
µ(Bε(x0))

( ∫
Bε(x0)

(
‖ f (x)‖2

ν − λ2
x0
(x) · ‖x0‖2)dµ(x)

)
.

Proof. Again a rewriting of the arguments around Theorem 1 gives the result. Let us show
them step by step.

(1) It is just a consequence of the integral domination provided by the Lipschitz inequality
for f . Indeed,∥∥∥ f̂ε(x0)− f (x0)

∥∥∥
ν
=
∥∥∥ 1

µ(Bε(x0))

∫
Bε(x0)

(
f (x)− f (x0)

)
dµ(x)

∥∥∥
≤ 1

µ(Bε(x0))
sup

x∈Bε(x0)

∥∥ f (x)− f (x0)
∥∥ µ(Bε(x0)) ≤ Lip( f ) · ε.

(2) Let us recall that for any function f , and at any point x0, the optimal value for λ

is λ f (x0) =
∫

BE
〈 f (x0), x∗〉〈x0, x∗〉dν(x∗)/‖x0‖2

ν. We have to use the property of the
Bochner integration that assures that, if φ is a Bochner integrable function with respect
to a measure η, 〈

∫
φdη, x∗〉 =

∫
〈φ, x∗〉dη (see, for example, [27] (Lemma 11.44), or [23]

(Chapter II)). Consequently,

λ f̂ε
(x0) =

1
‖x0‖2

ν

( ∫
BE

〈 1
µ(Bε(x0))

∫
Bε(x0)

f (x)dµ(x), x∗
〉
〈x0, x∗〉dν(x∗)

)
=

1
‖x0‖2

ν µ(Bε(x0))

∫
BE

∫
Bε(x0)

〈 f (x), x∗〉〈x0, x∗〉dµ(x)dν(x∗).

Therefore, using Fubini’s Theorem, we get

∣∣λ f (x0)− λ f̂ε
(x0)

∣∣ = ∣∣∣ 1
‖x0‖2 µ(Bε(x0))

( ∫
Bε(x0)

∫
BE

〈 f (x0), x∗〉〈x0, x∗〉dν(x∗) dµ(x)

−
∫

BE

∫
Bε(x0)

〈 f (x), x∗〉〈x0, x∗〉dµ(x)dν(x∗)
)∣∣∣ = 1

‖x0‖2 µ(Bε(x0))

×
∣∣∣ ∫

Bε(x0)

∫
BE

〈 f (x0)− f (x), x∗〉〈x0, x∗〉dν(x∗)dµ(x)
∣∣∣

≤ 1
‖x0‖2 sup

x∈Bε(x0)

( ∫
BE

|〈 f (x0)− f (x), x∗〉|2dν(x∗)
)1/2( ∫

BE

|〈x0, x∗〉|2dν(x∗)
)1/2

≤ 1
‖x0‖2 sup

x∈Bε(x0)

‖ f (x)− f (x0)‖ν · ‖x0‖ν ≤
1
‖x0‖

· Lip( f ) · ε.



Mathematics 2022, 10, 220 10 of 24

(3) Using Hölder inequality, we have that

∥∥ f̂ε(x0)−λε
x0

x0
∥∥

ν
=
∫

Bε(x0)

∣∣∣〈 1
µ(Bε(x0))

∫
Bε(x0)

f (x) dµ(x), x∗
〉
−λε

x0
〈x0, x∗〉

∣∣∣2dν(x∗)

=
∫

BE

∣∣∣ 1
µ(Bε(x0))

∫
Bε(x0)

〈 f (x), x∗〉dµ(x)− 1
µ(Bε(x0))

∫
Bε(x0)

〈λx0(x)x0, x∗〉dµ
∣∣∣2dν(x∗)

≤
∫

BE

1
µ(Bε(x0))

∫
Bε(x0)

∣∣〈 f (x)− λx0(x), x∗〉
∣∣2 dµ(x) dν(x∗).

Thus, applying the equation for the best approximation provided by Lemma 1 and
doing some standard calculations, we obtain that the minimal expression for this
bound is given by

∥∥ f̂ε(x0)− λε
x0
· x0
∥∥2

ν
≤ 1

µ(Bε(x))

( ∫
Bε(x0)

‖ f (x)‖2
νdµ−

∫
Bε(x0)

λ2
x0
(x)dµ(x) · ‖x0‖2

ν

)
.

Remark 2. The eigenmeasure approximation gives a direct formula to compute diagonal-based
representation of operators. Note that, the smaller ε is, the better the approximation, but ε cannot
in general converge to 0. Indeed, in this case it may happen that ev( f ) ∩ Bε(x0) is empty, and so
by the definition of eigenmeasure, µ(ev( f ) ∩ Bε(x0)) = 0, which implies that the integral formula
that gives f̂ε(x0) equals 0.

Notice that this provides a way to approximate a Lipschitz function f once the set of eigenvectors
of f is known, at least partially. Since we are thinking about computational applications supported
by these ideas, we also need a numerical way of finding an approximation to the set ev( f ). One
of the most straightforward methods would be the minimization of the functions | f (x)− λ(x)x|,
which can be performed by sampling methods and Monte Carlo approximations of the integrals
involved. Although explanations of these procedures and the algorithms involved are not part of the
content of this paper, some hints are given in the last section.

3. Diagonalizable Non-Linear Operators: Examples and Situations

Let E be a Banach space. Suppose that T : E→ E is a (non-necessarily linear) map such
that the set of its eigenvectors ev(T) is not empty. For every non-empty subset S ⊂ ev(T),
consider the restriction TS : S→ E. We will say that a procedure for extending the value
of the function T from ev(T) to the whole space E is an extension rule (ER) if for every
non-empty subset S ⊂ ev(T), (ER) produces a unique extension T̂S

ER : E→ E of TS (that is,
T̂S

ER
(x) is well-defined for all x ∈ E, and T̂S

ER |S = TS).
Thus, we can establish that a map T is ER-diagonalizable if there is an increasing

sequence of subsets (Sk)
+∞
k=1 of ev(T) such that for every x ∈ E,

lim
n

T̂S
ER
(x) = T(x).

Application of the usual linear extension rule for linear operators gives that such
equality can be achieved exactly. However, in general we cannot expect to find a complete
representation and only approximate expressions can be obtained. We will look for such
approximations in the subsequent sections, after showing some basic examples in the
present one.

3.1. Linear and Quasi-Linear Rules

Let us explain a general setting for using the usual framework of spectral representa-
tion of linear operators. In the finite dimensional case, diagonalization of a linear map is
essentially given by linearity, once a basis of eigenvectors is obtained. If the operator allows
a diagonal representation, the extension rule is then provided by the linear combination of
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eigenvectors, which define a basis of the space. Let us see how this can be extended to the
nonlinear case.

Let T : E→ E, where E is a Banach space with an unconditional (or finite) normalized
basis B := {b1, . . . , bk, . . . : k = 1, . . . , n}, where n ∈ N ∪ {+∞}. Assume that {τbk : τ ∈
R} ⊂ ev(T) for every k. Consider the projections Pbk

(v) = αk(v) bk, v ∈ E, and take a
probability measure as µ = ∑+∞

i=1 βkδbk
, for βk ≥ 0. Then, T is diagonalizable under a linear

rule conditioned to the basis B, if we can write by means of the integral formula

T(v) =
∫

SE

1
µ({x}) . T(Px(v)) dµ(x).

Note that µ({bk}) = βk, and this term does not appear in the integral if βk = 0. This
expression can be rewritten, for the finite dimensional case, as

T(v) =
n

∑
k=1

T(Pbk
(v)) =

n

∑
k=1

λ
(

Pbk
(v)
)
· Pbk

(v) =
n

∑
k=1

λ(αk(v) bk) · αk(v) · bk.

Example 1. Let us see a particular example. Take E = R2 and the canonical basis C = {b1, b2},
b1 = (1, 0), b2 = (0, 1). Take the function f : R2 → R2 given by

f (x1, x2) = (|x1|x1, |x2|x2), (x1, x2) ∈ R2.

If we write the eigenvalue equations

|x1|x1 = λx1, |x2|x2 = λx2,

we directly get that (x1, 0) and (0, x2) are eigenvectors for all x1, x2 ∈ R, and the corresponding
eigenvalues are |x1| and |x2|, respectively. That is, all the vectors in the subspaces {τb1 : τ ∈ R}
and {τb2 : τ ∈ R} are eigenvectors of T. Moreover, note that for

|x1| = |x2| = λ,

we obtain that the vectors as (x, x) and (x,−x) for x ∈ R are also eigenvectors with eigenvalues
|x|. Figure 1 provides a representation of the eigenvectors of T.

Figure 1. Eigenvectors in Example 1.

Consider the orthonormal projections Pbk
(v) = 〈v, bk〉bk, v ∈ E, k = 1, 2. Then, T is

diagonalizable under the linear rule since

T(v) =
2

∑
k=1

T(Pbk
(v)) =

2

∑
k=1

λ
(

Pbk
(v)
)
· Pbk

(v) = |x1|〈x1, b1〉b1 + |x2|〈x2, b2〉b2.

According to the given definition, this map is diagonalizable under a linear rule, the one given
by this equation. Let us note that there are other eigenvectors that are not used in the representation,
with which we could also define a basis of the space.
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Example 2. Linearization techniques for nonlinear operators are interesting tools used in many
applied contexts. A relevant example is given by the so-called Koopman nodes, which allow one
to treat nonlinear systems by means of linear procedures. This method is used to find spectral
representations of observables in dynamical systems (see, for example, [28]). In [29], Koopman
nodes are used to describe the behavior of complex nonlinear flows, in the context of fluid mechanics.

Let us briefly explain this procedure. Consider a dynamical system given by a function
f : E→ E, f (xk) = xk+1. The Koopman operator is a linear operator U that acts on the space of
all scalar functions F : X → R as U(ϕ)(x) = ϕ( f (x)). Since U is linear, we can consider its
diagonalization in order to obtain a set of eigenfunctions ϕj associated with eigenvalues λj ∈ C
belonging to a certain function space. Consider an observable g, that is, a function g : E→ Rp for
a given natural number p. If a countable number of eigenfunctions is sufficient to act as a basis of
the subspace to which the p coordinate functions of g belong, we can expand g as

g(x) =
∞

∑
j=1

ϕj(x)vj, x ∈ E,

where the p coordinates of the vectors vj are the corresponding coefficients of the representations
on the system {ϕj}∞

j=1 of each coordinate function of g. The functions ϕj are called Koopman
eigenfunctions, and the vectors vj the Koopman modes of the map f .

Our setting is similar in various aspects to the ones of the Koopman method, but we use
measures and integral representations to facilitate the further use of integral averages to get approxi-
mation formulas. Let us see what happens in the case where the function f is a symmetric linear
map f : E → E on the Euclidean space E. Take an orthonormal basis of eigenvectors v1, . . . , vn
for f with eigenvalues λ1, . . . , λn, and the dual basis w1, . . . , wn of functions of the dual space E∗.
Note that in this case the Koopman operator U : E∗ → E∗ is just the adjoint f ∗ of f since

U(x∗)(x) = 〈 f (x), x∗〉 = 〈x, f ∗(x∗)〉, x ∈ E, x∗ ∈ E∗.

Take now the identity map I : E→ E as g : the expansion formula is

x =
n

∑
j=1
〈x, wj〉 vj,

that is, the Koopman nodes are in this case the eigenvectors of f , and we get a representation of f as

f (x) =
n

∑
j=1

λj〈x, wj〉 vj.

Using our finite measure integration formalism, we can consider the measure ν = 1
n ∑n

j=1 δwj

and the eigenmeasure µ = 1
n ∑n

j=1 δvj to get an integral representation of f as the Bochner integral

f (x0) = n2
∫

BE

λ(x)
( ∫

BE∗
〈x0, x∗〉 〈x, x∗〉 dν(x∗)

)
x dµ(x), x0 ∈ E,

where λ(x) = λj for x = vj and 0 otherwise. This gives a result equivalent to that obtained by
the Koopman operator method. This procedure, which can also be applied in the nonlinear case by
following the same steps, shows another example of a linear rule; other examples of application of
Koopman nodes to nonlinear problems (and which could be rewritten in our terms) can be found
in [29] (see Section 2.2 for application to periodic solutions of dynamical systems).

Example 3 (Quasi-linear rules). More sophisticated adaptations of the linear rule could be nec-
essary to cover more complex applications to non-linear operators of interest in physics and other
sciences. For example, the moment of inertia is a fundamental magnitude that is used in mechanical
systems, and sometimes its time dependence has to be modelled, for example, in the description of the
vibratory motion [30]. Let us show a related operator here. Let us consider a 2-dimensional system
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and suppose that the time dependence of an moment of inertia is given by the operator T : R3 → R3

(the third coordinate for the variable time t), given by the formula

T(v) =

2t 1 0
1 2t 0
0 0 3

x
y
t

, v = (x, y, t),

where x and y are the usual Cartesian coordinates of the points in R2, and the third coordinate
represents a weighted counter of the time t. After a diagonalization process of T, the analyst can
get (time-dependent) information about the principal axis of inertia of the physical systems that are
represented by this operator. As in the linear case, a direct computation involving the characteristic
polynomial of the matrix above provides eigenvalues of T. Indeed, the (time-dependent) solutions of
the equation ∣∣∣∣∣∣

2t− λ 1 0
1 2t− λ 0
0 0 3− λ

∣∣∣∣∣∣ = 0, for λ ∈ R2,

are λ1(t) = 2t − 1, λ2(t) = 2t + 1, and λ3(t) = 3. Note that the system is not linear, so no
information about the general structure of the sets of eigenvectors is available. However, the vectors
(1,−1, 0), (1, 1, 0), and (0, 0, 1) provide a basis for R3 of eigenvectors of T associated with λ1,
λ2, and λ3, respectively. If we write x′, y′, and t′ for the coordinates of the vectors in R3 with
respect to this new basis, we get the change of variables are given by the equations x′ = (x− y)/2,
y′ = (x + y)/2 and t = t′. A straightforward calculation shows that it provides an “integral
representation” of T as

T(v) = (2t− 1)

(x− y)/2
(y− x)/2

0

+ (2t + 1)

(x + y)/2
(x + y)/2

0

+ 3

0
0
t


= λ1(t) x′ e1 + λ2(t) y′ e2 + λ3(t) t′ e3.

Thus, a quasi-linear “integral representation" as

T(v) = ∑
ei∈S⊂ev(T)

λi(v) Pei (v) ei

has been obtained, where λi(v) is the eigenvalue associated with ei depending on v, and where Pei (v)
gives the coordinate of v in the new basis.

3.2. Topological Rules

Although the approximation of a linear operator is essentially a topological question,
the usual methods and techniques are strongly influenced by linearity. Point approximation
can also be performed using sequences of locally constant functions, and, in fact, these
functions are primarily used for approximation in the context of vector-valued integrable
functions. These functions can usually be written as pointwise limits of simple functions,
provided they belong to any Köthe–Bochner function space under some weak requirements
of density or order continuity.

Let us recall the definition of (strong) eigenmeasure µ for an operator, applied to the
context of functions f : E → E, that will be useful in the present section. Although the
definition provided in [26] is rather abstract, for the aim of this paper we can use the
following version: let B(E0) be the sigma-algebra of Borel sets of a multiple E0 of the unit
ball of the Banach space E associated with the norm topology. A measure µ : B(E0)→ R+

is an eigenmeasure for a Bochner µ-integrable map f : E0 → E (that is, the restriction of
f : E→ E to E0) if it is a regular Borel probability measure such that

• ev( f ) ∈ B(E0), and
• for every A ∈ B(E0), µ(A) = 0 if µ

(
A ∩ ev( f )

)
= 0.
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Note that, in this case, the Bochner integral of f (x) can be used to reconstruct the
diagonal part of the function f by the integral equations∫

A
f (x) dµ(x) =

∫
A

λ(x) x dµ(x), A ∈ B(E0).

In the case that the set ev( f ) is finite, µ can always be defined as a proper convex
combination of Dirac’s deltas δxi , xi ∈ ev( f ). Let us use these integral equations for the
next construction.

Consider a function f : Rn → Rn, n ∈ N, which has a finite set of eigenvectors
ev( f ) = {x1, . . . , xm}. Define a probability measure µ : B(E0)→ R+ by

µ(A) =
m

∑
i=1

αi δxi (A),
m

∑
i=1

αi = 1, αi > 0 for every i, and A ∈ B(E0),

where E0 = maxi=1,...,m ‖xi‖ · BE.
Let us define the metric rule for the extension of such a function f0 : ev( f ) → R+ as

follows: for every point x ∈ E, we compute the (measurable) set

Mx :=
{

xi ∈ ev( f ) : min
k=1,...,m

‖xk − x‖ = ‖xi − x‖
}

.

Then, we define the extension f̂ by

f̂ (x) :=
1

µ(Mx)

∫
Mx

λ(y) y dµ(y).

Therefore, we say that a function f : E → E with a finite number of eigenvectors is
diagonalizable under a metric rule if there is an eigenmeasure µ such that

f (x) =
1

µ(Mx)

∫
Mx

λ(y) y dµ(y) for all x ∈ E.

Example 4. Consider the function φ : (R2, ‖ · ‖2)→ (R2, ‖ · ‖2) given by

φ
(
(x1, x2)

)
=


(0, 1) if x2 > max{x1,−x1}
(0,−1) if x2 < min{x1,−x1}
(−1, 0) if x1 < min{x2,−x2}
(1, 0) if x1 > max{x2,−x2}

and having in the diagonal lines the averages of the values of the adjacent sectors. Thus, it is a
constant function inside any of the regions defined by the diagonal lines in Figure 2, for which the
minimal distance to any of the reference points (1, 0), (−1, 0), (0, 1), and (0,−1) provides the
value of the constant image vector.

The description of the function φ is easy: if we divide R2 into four sectors by the diagonal lines
that intersect at (0, 0) that can be seen in Figure 2, we have that the function is constant in each of
them, and it is also constant in the diagonal lines themselves.

It can also be equivalently defined, as explained in the explanation of the metric rule above.
Consider the points e1 = (1, 0), e2 = (0, 1), e3 = (−1, 0) and e4 = (0,−1). It is clear that they
are eigenvectors for φ with eigenvalues equal to 1. Consider the eigenmeasure µ(·) = 1

4 ∑4
k=1 δek (·).

For each point x that is not in the diagonal lines, there is a point ek of these ones such that the set
Mx is given by Mx = {ek} since the distance to these points actually defines in which sector the
point x is (see Figure 2). Therefore, for every element x inside of a sector, we apply the linear rule

φ(x) =
1

µ(Mx)

∫
Mx

φ(x) dµ =
1

1/4
φ(ek) ·

1
4
= ek.
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Case x belongs to the diagonal lines, but it is not (0, 0); we have that there are two eigenvectors
ek and ej that are at the same distance to x, getting in this case Mx = {ek, ej}, and so

φ(x) =
1

µ(Mx)

∫
Mx

φ(x) dµ =
1

1/2

(
φ(ek) ·

1
4
+ φ(ej) ·

1
4

)
=

1
2
(ek + ej).

Finally, M(0,0) = {e1, e2, e3, e4} and then

φ
(
(0, 0)

)
=

1
µ(M(0,0))

∫
M(0,0)

φ(x) dµ =
( 4

∑
k=1

φ(ek) ·
1
4

)
= (0, 0).

Figure 2. Representation of the distances to the nearest points of the point (3/4, 1/4): according to
the definition, in this case the value of φ

(
(3/4, 1/4)

)
is (1, 0).

Example 5. This easy procedure can be adapted to other situations to approximate non-linear opera-
tors using the minimal distance criterion. The idea is to use the suitable inequalities appearing in the
description of the operator to control the error committed. For instance, in [31] the authors analyze
a nonlinear multiparameter eigenvalue problem arising in the theory of nonlinear multifrequency
electromagnetic wave propagation. Under certain conditions, the problem can be written as a system
of n nonlinear single parameter eigenvalue problems, with linear and non-linear components. It is
proved that the corresponding linear problems have a finite number of positive eigenvalues; however,
the nonlinear ones have infinite positive eigenvalues, which provide eigentuples of the original
multiparemeter problem not related to the solutions of the linear one-parameter problems. After
some transformation, an eigenvector equation appearing in the formalism is defined as

f ′′ + α f 3 + ε f = λ f

with f belonging to the space of functions with continuous second derivatives (see Equation (6)
in [31]; see also Equation (15) in [32]). We can then search for the eigenvectors of the operator
T( f ) = f ′′ + α f 3 + ε f . Once we get a set ev(T)0 of these eigenfunctions, we can find a naive
approximation to T( f ) the value T(u) for the function u ∈ ev(T)0 that minimizes a certain “error
function", using the inequality

‖T( f )− T(u)‖2 ≤ ‖ f ′′ − u′′‖2 + |α|‖ f 3 − u3‖2 + ε‖ f − u‖2,

where we consider for example the norm ‖ · ‖2 of function space L2. Suppose that we can assume
that map g 7→ g′′ is a Lipschitz map when considered from ev(T)0 ∪ { f } to L2 and that all these
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functions are pointwise uniformly bounded in their domains by a constant Q. Then, we can get a
Lipschitz type estimate for ‖T( f )− T(u)‖2 as

‖T( f )− T(u)‖2 ≤ K‖ f − u‖2 + |α|‖( f − u)( f 2 + f u + u2)‖2 + ε‖ f − u‖2 ≤ R‖ f − u‖2

for R =
(
K + |α|3Q2 + ε

)
. The best approximation by the metric rule would be given in this case

by f ≈ λu u, where u is the function in ev(T)0 for which the minimal L2 distance to f is attained.
A more precise calculation would lead to a domination by the norm of the Sobolev space W2,2.

There are a lot of nonlinear problems directly connected to differential operators
arising in physics, biology, economics, and other sciences. Just to mention some recent
developments, the papers [33,34] study the principal eigenvalue of p-biharmonic and
(p, q)-biharmonic operators, which is applied to various differential equation problems
appearing in physics. More specific results could be obtained by setting some requirements
on the functions involved beforehand. Deeper assumptions of the functional setting would
provide more possibilities to find more concrete applications, both in terms of how to
obtain the eigenvectors of the operators and the general metric structure of the function
spaces under consideration. For example, fixed-point results are often used in the search
for eigenvalues of nonlinear functions, and more general notions of distance and function
spaces can be used, including order-based tools [35–38].

3.3. The Lipschitz Case

Let us show now how a diagonalization procedure can be implemented in the context
of Lipschitz maps. Obviously, the essential requirement in this case is that the operators to
be diagonalized have to be Lipschitz; let usnote the example of application of a linear rule
proposed in Section 3.1 (Example 1 is not Lipschitz, so the method presented here is not an
extension of a linear-type rule). In fact, metric topology is used instead as it corresponds
to the use of Lipschitz operators, but an additional tool is available in this case, so this
situation is not an extension of the metric rule shown in Section 3.2: note that Example 4 is
not given by a Lipschitz map.

Let us show a non-trivial case of diagonalizable Lipschitz map.

Example 6. Let E be a Banach space, and consider the function T : E→ E given by

T(x) := min{1, ‖x‖}x, x ∈ E.

Let us show that T is a Lipschitz map. First, suppose that ‖y‖ ≤ 1. Then, we have that

‖T(x)− T(y)‖ =
∥∥min{1, ‖x‖}x− ‖y‖y

∥∥
=
∥∥min{1, ‖x‖}x−min{1, ‖x‖}y + min{1, ‖x‖}y− ‖y‖y

∥∥
≤ min{1, ‖x‖} ‖x− y‖+

∣∣∣min{1, ‖x‖} − ‖y‖
∣∣∣ ‖y‖

≤ ‖x− y‖+
∣∣‖x‖ − ‖y‖∣∣ ‖y‖ ≤ 2 ‖x− y‖.

Of course, the same computations give the same result in case ‖x‖ ≤ 1. Finally, if ‖x‖ > 1
and ‖y‖ > 1, we obtain

‖T(x)− T(y)‖ = ‖x− y‖ ≤ 2‖x− y‖,

which gives that T is Lipschitz with constant K ≤ 2.
The main property of the function T is that it is “absolutely" diagonalizable: indeed, all the

vectors in the space are eigenvectors, and for each of them the eigenvalue is given by min{1, ‖x‖}.
Similar examples could be obtained for special operators defined as T(x) = f (x) · x, with f being a
real bounded Lipschitz function.
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4. Approximation of Lipschitz Maps by the Proximity Rule

In case we have no more information than that provided by the fact that T is Lipschitz,
we have to apply direct algorithms for obtaining an approximation to T. Let us show two
methods to do it.

4.1. The Minimal Distance Extension of T|ev(T)

Take a strictly decreasing sequence of positive numbers (εi)
+∞
i=1 such that limi εi = 0,

and consider an eigenmeasure µ for T. We can get an approximation to T as follows. We
have to assume that norm-bounded subsets of ev(T) are relatively norm-compact, which is
obviously true if E is finite dimensional.

• Fix an element x ∈ E and define d0 = inf{‖x − y‖ : y ∈ ev(T)}. Consider the set
Mε1(x) = {y ∈ S : ‖x− y‖ ≤ d0 + ε1}.

• Choose an element y1 ∈ Mε1(x).
• We consider the value of the first extension of T as λy1 · y1, where λy1 is the eigenvalue

associated with y1.
• Repeat the procedure to get a sequence (yi)

n
i=1 in ev(T) with associated eigenvalues

(λyi )
+∞
i=1 . By the assumption on compactness, and taking into account that the sequence

of vectors is bounded, there is a subsequence that converges to an element y. Let us
write again (yi)

+∞
i=1 for the subsequence. Note that for each i ∈ N, we have

‖λyi · yi − T(y)‖ = ‖T(yi)− T(y)‖ ≤ Lip(T) · ‖yi − y‖,

and limi ‖yi − y‖ = 0.
This allows one to define the extension T̂ as T̂(x) = T(y) = limi λyi · yi.

• Note that, due to the Lipschitz inequality for T, we can write the following bound for
the error committed.

‖T(x)− T̂(x)‖ = ‖T(x)− T(y)‖ = ‖T(x)− lim
i

T(yi)‖ ≤ Lip(T) · lim
i
‖x− yi‖

= Lip(T) · inf{‖x− y‖ : y ∈ ev(T)} = Lip(T) · d0.

This gives a basic extension procedure, for which the only requirements are the
existence of a convenient set of eigenvectors and the Lipschitz inequality for T. Indeed,
in case we have no information about the map T other than it is Lipschitz; we have
to choose the point y in ev(T) that makes the bound infxi∈ev(T)

∥∥xi − x
∥∥ to be (at least

almost) attained. That is, if a point xi0 ∈ ev(T) attains this infimum, we approximate
T(x) by T(xi0).
However, this is not the best way of obtaining a good approximation for T(x) if we can
assume certain convexity properties for the map T. Essentially, we have to assume that
the map T is nearly convex, that is, we can approximate it by a convex combination of
eigenvectors as

T
(

∑
xi∈ev(T)

αixi

)
, by ∑

xi∈ev(T)
αiT(xi).

In case if we assume such property, we can find better error bounds, which suggests
other approximation methods instead of the one provided by the nearest point in
ev(T). Recall that for this point to exist and to be unique for the next definition makes
sense, we need some strict convexity conditions on X; we are assuming that the space
X is uniformly convex. This is explained in Section 5. Before doing it, let us present a
most elaborated version of the minimal distance extension just explained.

4.2. The Average Value Extension of T|ev(T)

As in the previous case, take a strictly decreasing sequence of positive numbers (εi)
+∞
i=1

such that limi εi = +∞ and consider an eigenmeasure µ for T. We can get an approximation
to T as follows.
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Fix an element x ∈ E, define d0 = inf{‖x − y‖ : y ∈ ev(T)}, and consider the sets
Mεi (x) = {y ∈ S : ‖x− y‖ ≤ d0 + εi} , i ∈ N.

Let us assume first that
lim

i
µ(Mεi (x)) > 0;

we will see after about what to do in the case limi µ(Mεi (x)) = 0.
Write M0(x) for the measurable set ∩+∞

i=1 Mεi (x). Note that, by the monotone conver-
gence theorem,

µ(M0(x)) = µ
(
∩+∞

i=1 Mεi (x)
)
= lim

i
µ(Mεi (x)) > 0

and so M0(x)) is non-null.

• Write T̂ε1(x) = 1
µ(Mε1 (x))

∫
Mε1 (x) λy · y · χ{y} dµ(y), and define T̂εi (x) in the same

way, as

T̂εi (x) =
1

µ(Mεi (x))

∫
Mεi (x)

λy · y · χ{y} dµ(y),

for all i ∈ N.
• The set {λy · y : y ∈ Mε1(x)} is norm bounded: indeed, we have that for every

y ∈ Mε1(x),

‖λy · y‖ ≤ ‖T(x)‖+ ‖T(x)− T(y)‖
≤ ‖T(x)‖+ ‖T(x)− λy · y‖ ≤ ‖T(x)‖+ d0 + ε1.

• Note that, if j < i,∥∥T̂εi (x)− T̂εj(x)
∥∥

≤
∥∥∥(µ(Mεj(x))− µ(Mεi (x))

µ(Mεi (x)) · µ(Mεj(x))

) ∫
Mεi (x)

λy · y · χ{y} dµ(y)
∥∥∥

+
∥∥∥ 1

µ(Mεj(x))

( ∫
Mεi (x)

λy · y · χ{y} dµ(y)−
∫

Mεj (x)
λy · y · χ{y} dµ(y)

)∥∥∥
≤
∥∥∥( µ(Mεj(x) \Mεi (x))

µ(Mεi (x)) · µ(Mεj(x))

) ∫
Mεi (x)

λy · y · χ{y} dµ(y)
∥∥∥

+
∥∥∥ 1

µ(Mεj(x))

( ∫
Mεj (x)\Mεi (x)

λy · y · χ{y} dµ(y)
)∥∥∥

≤
∣∣∣ µ(Mεj(x) \Mεi (x))
µ(Mεi (x)) · µ(Mεj(x))

∣∣∣ · (‖T(x)‖+ d0 + ε1) · µ(Mεi (x))

+
1

µ(Mεj(x))
· (‖T(x)‖+ d0 + ε1) · µ(Mεj(x) \Mεi (x))

≤ 2
µ(Mεj(x) \Mεi (x))

µ(Mεj(x))
· (‖T(x)‖+ d0 + ε1)

≤ 2
µ(Mεj(x))− µ(Mεi (x))

µ(M0(x))
· (‖T(x)‖+ d0 + ε1)

≤ 2

∣∣µ(Mεj(x))− µ(M0)
∣∣+ ∣∣µ(M0(x)− µ(Mεi (x)

∣∣
µ(M0(x))

· (‖T(x)‖+ d0 + ε1),
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that converges with i, j to 0. Consequently,
∥∥T̂εi (x)− T̂εj(x)

∥∥ →i,j 0, and so we can
define the approximation at x by

T̂0(x) := lim
i

T̂εi (x) = lim
i

1
µ(Mεi (x))

∫
Mεi (x)

λy · y · χ{y} dµ(y).

Finally, in case µ(M0(x)) = 0, we fix a small δ > 0 and change d0 in the definition of
the sets Mεi (x) by d0 = inf{‖x− y‖ : y ∈ ev(T)}+ δ to get a non-µ-null set M0(x).

5. Approximation of Lipschitz Maps by the Convexity Rule

In this section, we show how a Lipschitz map T can be approximated using the evalu-
ation of the function just in the set of eigenvectors, under some convexity assumptions on
T. Although the explanation we develop here is of theoretical nature, we are thinking in
effective algorithms to approximate functions by this method, so minimization of the errors
explained in Section 2 of the paper for getting eigenvectors or “almost” eigenvectors to pro-
vide a general method for extending the idea of average reconstruction of a Lipschitz map
by means of its eigenvectors. We assume here that the involved maps are “approximately
convex”, that is, the values of the maps at all the points are near to a convex combination of
the eigenvectors that are near them. This is the main difference with respect to the methods
explained in the previous section.

In order to obtain reasonable error bounds, we need the functions to satisfy some
requirements. The main idea is that we can perform approximations of the value of the
function at a given point using its metric properties, which are essentially determined by
the Lipschitz condition of the function if nothing else is assumed for the function. So, we
have to argue in topological terms, in the line of what explained in Section 3.2. We propose
to define the pointwise approximation to the Lipschitz map by convex combination of
eigenvector evaluations. Consequently, the formalism of eigenmeasure, as well as the
computation of nearest points to a given set in a Banach space endowed with a uniformly
convex norm, and the inequalities associated with the Lipschitz character of the function,
will be required.

Given a Lipschitz function T : X → X, we will reconstruct the function T by convex
combinations of eigenvectors. We have to assume that ev(T) is non-empty. In order to do
it, we need to find what is the convex hull of finite sets of eigenvectors that is as near as
possible to the point x. In case a given point x ∈ X belongs to any convex combination of
elements x1, . . . , xn of ev(T) with eigenvalues λ1, . . . , λn, we can approximate T(x) as the
convex combination

n

∑
i=1

αiT(xi) = α1λ1x1 + . . . + αnλnxn.

Since several convex combinations involving different elements of ev(T) can occur,
we have to choose one of them: the Lipschitz inequality for T gives the key of how to do it.
The idea is to divide the error in two terms, with the first one corresponding to the distance
of x to the convex hull of x1, . . . , xn and the other one measuring the error committed by
the approximation of T as a convex function.

If we write co(S) for the convex hull of any subset S of the Banach space X and co(S)
for its norm closure, we should write d(x, S) = infz∈S ‖x− z‖ for the distance from S to x.
Recall the following fundamental result on optimal approximations in Banach spaces: if X
is a uniformly convex Banach space, and x ∈ X and C ⊂ X are closed and convex, then
there is a unique y ∈ C such that ‖x− y‖ = infz∈C ‖x− z‖ = d(x, C). We say as usual that
y is the nearest point to x in C. A direct consequence of this general fact is the following.

Proposition 4. Let X be a uniformly convex Banach space, and let T : E→ E be a Lipschitz map
of norm Lip(T). Suppose that S = {x1, . . . , xn} ∈ ev(T). Then, there exists a convex combination
z = ∑n

i=1 α0
i xi ∈ co(S), α0

i ≥ 0, such that
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(i) The minimal distance inf
{∥∥∑n

i=1 αi λi xi − T(x)
∥∥ : ∑n

i=1 αi = 1, αi ≥ 0
}

is attained at
z, and

(ii) there is a bound for this minimal distance as

∥∥∥ n

∑
i=1

α0
i λi xi − T(x)

∥∥∥ ≤ Lip(T) · min
i=1,...,n

∥∥xi − x
∥∥.

Proof.

(i) Consider the convex hull of the points λ1x1, . . . , λnxn. By the quoted result, there is an
optimal point y in the convex hull in which the minimal distance to T(x) is attained
that is also an element of X; let us write it as the convex addition ∑n

i=1 α0
i λixi.

(ii) Then, since xi are eigenvectors, if we consider any other convex combination ∑n
i=1 αi λi xi

we obtain∥∥∥ n

∑
i=1

α0
i λi xi − T(x)

∥∥∥ ≤ ∥∥∥ n

∑
i=1

αi λi xi − T(x)
∥∥∥ =

∥∥∥ n

∑
i=1

αi λi xi −
n

∑
i=1

αi T(x)
∥∥∥

=
∥∥∥ n

∑
i=1

αi
(

T(xi)− T(x)
)∥∥∥ ≤ Lip(T) ·

( n

∑
i=1

αi‖xi − x‖
)

.

Thus, computing the infimum on the right hand side, we get∥∥∥ n

∑
i=1

α0
i λi xi − T(x)

∥∥∥ ≤ Lip(T) · inf
∑ αi=1

( n

∑
i=1

αi‖xi − x‖
)
= Lip(T) · min

i=1,...,n

∥∥xi − x
∥∥,

as we wanted to prove.

Remark 3. Proposition 4 provides an approximation tool for Lipschitz maps, which works best
whenever T behaves more or less like a convex function. Note that the nearest point provides
another way to produce an approximation of a Lipschitz map in terms of eigenmeasures, again as
an integral average. Let us show this in the simple case of a finite set of eigenvalues; the general
procedure is explained below, although we do not use the integral formalism in the subsequent
explanation for the sake of clarity. Suppose that we have a set S = {x1, . . . , xn} of eigenvectors
of a Lipschitz map T. Write NS(x) for the nearest point of co(S) to x, and P{y}

(
NS(x)

)
(where

y ∈ S), for the coefficient α0
i associated with y = xi of the convex combination that gives NS(x).

Note that, by the requirements on E, these coefficients are unique so the expression is well-defined.
Take an eigenmeasure µ associated with S, µ(·) = ∑n

i=1 µ({xi}) · δxi (·). Then, we have that the
best approximation T̂ is given by the spectral integral

T̂(x) :=
∫

E

1
µ({y}) λ(y) P{y}

(
NS(x)

)
y dµ(y).

Fixing T, and assuming that convexity is a good method for approximating it, we
can define two different errors that can be controlled using complementary arguments.
We have to point out that getting the exact value of T(x) just knowing the eigenvectors
of T is not possible in general: stronger requirements (such as linearity, for example) are
needed. However, we provide an approximate value of T(x) and fix small bounds for the
errors committed.

Definition 3. Let X be uniformly convex and consider a Lipschitz map T : X → X. For each set,
S = {x1, . . . , xn} ⊂ ev(T) and x ∈ X; if ∑n

i=1 α0
i xi is the nearest point of S to x, we define two

approximation errors as follows .
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(1) The convexity error εc, which measures how far the map T is from being convex, is given by

εc(T, S, x) :=
∥∥T(

n

∑
i=1

α0
i xi)−

n

∑
i=1

α0
i λi xi

∥∥.

(2) The distance error εd(T, S, x), which gives the distance of T(x) to the value of the map to the
nearest point in S, is given by

εd(T, S, x) :=
∥∥T(x)− T(

n

∑
i=1

α0
i xi)

∥∥.

Next result gives the main tool for the approximation of T; the way the error is
decomposed allows one to evaluate how far the image of the nearest point of S to x by
T could be a good approximation for T(x). On one hand, we have that the possibility of
writing x as a convex combination of eigenvectors makes the distance error equal to 0,
and so we only have to consider the convexity error, which measures how far the function
T fails to be convex. Indeed, if it is convex, we have that T(∑n

i=1 α0
i xi) = ∑n

i=1 α0
i T(xi), and

then εc(T, S, x) = 0.
On the other hand, in case T is convex, for getting an exact formula for T in terms of

its eigenvectors, we only need the set ev(T) of these eigenvectors to be big enough to cover
all the space as convex combinations of the elements of ev(T).

Let us write this explicitly in the next result, which can be considered as a basic form
of an approximated Spectral Theorem for Lipschitz operators.

Theorem 2. Let X be a uniformly convex Banach space. Let T : X → X be a Lipschitz map. Fix a
set S = {x1, . . . , xn} ⊂ ev(T) and x ∈ X. Then, there is a convex combination ∑n

i=1 α0
i xi ∈ co(S)

such that ∥∥∥T(x)−
n

∑
i=1

α0
i λi xi

∥∥∥ ≤ εc(T, S, x) + εd(T, S, x)

and both errors can be bounded as

εc(T, S, x) ≤ Lip(T) ·
( n

∑
i=1

α0
i ‖xi −

n

∑
j=1

α0
j xj‖

)
and εd(T, S, x) ≤ Lip(T) · d(x, S).

Proof. Again, the requirements on X and T allow one to ensure that there is a unique point
that attains the distance from co(S) to x (note that the convex hull of S is also closed, since
S is finite; otherwise, we would need to write a “limit version” of the present result, which
we prefer to show in this version for the aim of clarity). So, we fix the point ∑n

i=1 α0
i λi xi by

computing the nearest point ∑n
i=1 α0

i xi in S to x. Then,

∥∥∥ n

∑
i=1

α0
i λi xi − T(x)

∥∥∥ =
∥∥∥ n

∑
i=1

α0
i λi xi − T(

n

∑
i=1

α0
i xi) + T(

n

∑
i=1

α0
i xi)− T(x)

∥∥∥
≤
∥∥∥ n

∑
i=1

α0
i λi xi − T(

n

∑
i=1

α0
i xi)

∥∥∥+ ∥∥∥T(
n

∑
i=1

α0
i xi)− T(x)

∥∥∥
= εc(T, S, x) + εd(T, S, x).

On the other hand,

εc(T, S, x) =
∥∥ n

∑
i=1

α0
i T(xi)− T(

n

∑
i=1

α0
i xi)

∥∥ ≤ ∥∥ n

∑
i=1

α0
i · T(

n

∑
i=1

α0
i xi)−

n

∑
i=1

α0
i T(xi)

∥∥
≤ Lip(T) ·

( n

∑
i=1

α0
i ‖xi −

n

∑
j=1

α0
j xj‖

)
,
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and

εd(T, S, x) ≤
∥∥∥T(x)− T(

n

∑
i=1

α0
i xi)

∥∥∥ ≤ Lip(T) ·
∥∥∥x−

n

∑
i=1

α0
i xi

∥∥∥ = Lip(T) · d(x, S).

Note that the bound obtained above for the convexity error εc(T, S, x) does not allow
one to prove that it equals 0 in case T is convex: this has to be done directly by the
assumption of certain convexity properties for T, which have to be applied in a second
step. If we do not have such information, it could be better to approximate T(∑n

i=1 α0
i xi)

by λi0 xi0 , where xi0 is the nearest point in S to ∑n
i=1 α0

i xi, in the line of the minimal distance
approximation explained in Section 4.1.

Consequences of this result under reasonable assumptions can be directly obtained.
We can control both errors separately since each of them has different meaning.

To obatin the definition of the approximation to T, we try to find a compromise be-
tween the approximate convexity expected for T and the error control by using the distance
between points, taking into account that T is Lipschitz. We describe the construction of
through several steps; as we explained before, we are searching for an extension T̂ : E→ E
for the function T restricted to a subset S ⊆ ev(T), TS. For helping in the construction
process, we first fix an eigenmeasure µ for the set S.

Let us define our general technique under certain restrictions. For the aim of simplicity,
we choose a countable set S ⊆ ev(T) to start with, which has the property that for every
R > 0, S ∩ R · BE is finite. We will use metric tools through the entire process to obtain
a pointwise definition of the function T̂. Take also a positive strictly increasing sequence
(εi)

+∞
i=1 such that limi εi = +∞. The approximation obtained will depend both on the

elections of S and (εi)
+∞
i=1 . Fix also r > 1.

• Fix a point x ∈ X and define d0 = infy∈S ‖y− x‖. Our aim is to work with a finite
subset of S that is “around” the point x. To take it, consider the ratio r‖x‖ to get the
set S ∩ (d0 + r‖x‖) · B1(x). As we said, this ratio r is chosen at the beginning and has
to be fixed in order the function T̂ to be univocally defined.

• Take 0 < ε1 < r‖x‖, be sure that r is big enough for this to hold, and define the set
Mε1(x) = {y ∈ S : ‖x− y‖ ≤ d0 + ε1}. Let us write nε1 for the finite cardinal of this
set and write x1, . . . , xnε1

for the elements of Mε1(x). Compute the best approximation

in co(Mε1(x)) to x, which is written as ∑
nε1
i=1 αε1

i xi.
• We define the approximation T̂ε1 at the point x as T̂ε1(x) := ∑

nε1
i=1 αε1

i λi xi. We also
compute the associated bounds for the errors εc(T, Mε1 , x) and εd(T, Mε1 , x), given by
the product of Lip(T) and

vc(ε1) :=
nε1

∑
i=1

αε1
i ‖xi −

nε1

∑
i=j

αε1
j xj‖, and vd(ε1) := d(x, S) = ‖x−

nε1

∑
j=1

αε1
j xj‖

respectively.
• We have to balance these errors to choose the best value for the approximation.

In general, both bounds are independent, and since we want to obtain a decision rule,
we choose a parameter 0 ≤ τ ≤ 1 that will depend on the election of the decision
maker. So we will use the value of

V(εi) := τ1 · vc(εi) + (1− τ) · vd(εi)

for further comparison.
• Consider now ε2 and repeat the construction of the approximation obtained above for

ε2, which gives

T̂ε2(x) :=
nε2

∑
i=1

αε2
i λi xi.
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We compute also the associated bounds and the values of V(ε1) and V(ε2).
• After comparing V(ε1) and V(ε2), we consider the lower value as the better approximation.
• We follow the same procedure until the last approximation is computed; note that by

the construction, the number of steps needed to finish it is finite.

6. Some Hints for Practical Application: An Algorithm for Convex Approximation of
Lipschitz Maps in Euclidean Space

We have already fixed some general procedures for approximating a given map
by means of the properties that it satisfies. We have focused our attention firstly on
Lipschitz maps and secondly on those operators for which some convexity assumption can
be assumed.

We assume that we have already fixed a method for computing a significant subset of
eigenvectors; we have not developed this question in this paper, but we have suggested that
Monte Carlo integration together with our error formulas would help for the determination
of such a subset. The scientific literature provides a large source of procedures for doing this
(see, for example, [10,14]; see also [17,18,20] for concrete applications in quantum physics).

• For the aim of simplicity, fix E to be a (finite dimensional) Euclidean space; we center
the attention in this case because it is the standard case for applications. Once a Lips-
chitz map T : E→ E is fixed, the first step consists on computing an approximation to
the set ev(T). In order to do it, we use any optimization method.

• The most basic one is a Monte Carlo calculation: just fix a certain ε > 0 and define a set
evε(T) by taking vectors around the region we want, and satisfying that cos(x, T(x)) =
|
〈 x
‖x)‖ , T(x)

‖T(x)‖
〉
| > 1− ε. The idea is to minimize the diagonalization error provided in

the first section using the norm, ‖T(x)− λ · x‖.
• The corresponding eigenvalues can be fixed by using the approximate equation

‖T(x)‖ = |λ|‖x‖ and taking the sign of the scalar product for these points.
• Use the set evε(T) and any of the methods explained in Sections 4 and 5 to get an

approximation of the errors. The error bounds explained there can be adapted for this
case by including the error associated with the previously explained approximation to
the set ev(T), which is given by the numbers ‖T(x)− λ · x‖, x ∈ evε(x).
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33. Jiří, B.; Drábek, P. Estimates of the principal eigenvalue of the p-biharmonic operator. Nonlinear Anal. Theory Methods Appl. 2012,

75, 5374–5379.
34. Kong, L.; Nichols, R. On principal eigenvalues of biharmonic systems. Commun. Pure Appl. Math. 2021, 20, 1–15. [CrossRef]
35. Amann, H. Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces. SIAM Rev. 1976, 18, 620–709.

[CrossRef]
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38. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer: Cham, Switzerland, 2019.

http://dx.doi.org/10.1007/s43036-021-00149-y
http://dx.doi.org/10.1016/j.arcontrol.2020.10.002
http://dx.doi.org/10.1016/0370-1573(93)90015-6
http://dx.doi.org/10.1088/0953-8984/3/35/007
http://dx.doi.org/10.1016/S0370-2693(01)00197-6
http://dx.doi.org/10.1016/S0370-2693(01)00198-8
http://dx.doi.org/10.1142/S0129183197000333
http://dx.doi.org/10.1021/acs.jctc.8b01217
http://dx.doi.org/10.1002/mma.7085
http://dx.doi.org/10.1007/s11071-005-2824-x
http://dx.doi.org/10.1017/S0022112009992059
http://dx.doi.org/10.1016/j.jsv.2011.04.032
http://dx.doi.org/10.1016/j.cnsns.2019.03.020
http://dx.doi.org/10.1088/2040-8986/aa871b
http://dx.doi.org/10.3934/cpaa.2020254
http://dx.doi.org/10.1137/1018114
http://dx.doi.org/10.1016/j.camwa.2003.08.015

	Introduction
	Approximation Results for Linear and Non-Linear Maps and First Results for Lipschitz Functions
	Motivation: Minimization Procedure and Calculation of the Best Diagonal Approximation for a Linear Operator in a Euclidean Space
	General Finite Dimensional Case: Local Diagonal Approximation for Functions T:E E
	Approximation Formulas Based on Eigenmeasures: Bochner Integration for Lipschitz Maps

	Diagonalizable Non-Linear Operators: Examples and Situations
	Linear and Quasi-Linear Rules
	Topological Rules
	The Lipschitz Case

	Approximation of Lipschitz Maps by the Proximity Rule
	The Minimal Distance Extension of T|ev(T)
	The Average Value Extension of T|ev(T)

	 Approximation of Lipschitz Maps by the Convexity Rule
	Some Hints for Practical Application: An Algorithm for Convex Approximation of Lipschitz Maps in Euclidean Space
	References

