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A B S T R A C T   

Background: Unexpected variability across healthcare datasets may indicate data quality issues and thereby affect 
the credibility of these data for reutilization. No gold-standard reference dataset or methods for variability 
assessment are usually available for these datasets. In this study, we aim to describe the process of discovering 
data quality implications by applying a set of methods for assessing variability between sources and over time in 
a large hospital database. 
Methods: We described and applied a set of multisource and temporal variability assessment methods in a large 
Portuguese hospitalization database, in which variation in condition-specific hospitalization ratios derived from 
clinically coded data were assessed between hospitals (sources) and over time. We identified condition-specific 
admissions using the Clinical Classification Software (CCS), developed by the Agency of Health Care Research 
and Quality. A Statistical Process Control (SPC) approach based on funnel plots of condition-specific standardized 
hospitalization ratios (SHR) was used to assess multisource variability, whereas temporal heat maps and 
Information-Geometric Temporal (IGT) plots were used to assess temporal variability by displaying temporal 
abrupt changes in data distributions. Results were presented for the 15 most common inpatient conditions (CCS) 
in Portugal. 
Main findings: Funnel plot assessment allowed the detection of several outlying hospitals whose SHRs were much 
lower or higher than expected. Adjusting SHR for hospital characteristics, beyond age and sex, considerably 
affected the degree of multisource variability for most diseases. Overall, probability distributions changed over 
time for most diseases, although heterogeneously. Abrupt temporal changes in data distributions for acute 
myocardial infarction and congestive heart failure coincided with the periods comprising the transition to the 
International Classification of Diseases, 10th revision, Clinical Modification, whereas changes in the Diagnosis- 
Related Groups software seem to have driven changes in data distributions for both acute myocardial infarction 
and liveborn admissions. The analysis of heat maps also allowed the detection of several discontinuities at 
hospital level over time, in some cases also coinciding with the aforementioned factors. 
Conclusions: This paper described the successful application of a set of reproducible, generalizable and systematic 
methods for variability assessment, including visualization tools that can be useful for detecting abnormal 
patterns in healthcare data, also addressing some limitations of common approaches. The presented method for 
multisource variability assessment is based on SPC, which is an advantage considering the lack of gold standard 
for such process. Properly controlling for hospital characteristics and differences in case-mix for estimating SHR 
is critical for isolating data quality-related variability among data sources. The use of IGT plots provides an 
advantage over common methods for temporal variability assessment due its suitability for multitype and 
multimodal data, which are common characteristics of healthcare data. The novelty of this work is the use of a 
set of methods to discover new data quality insights in healthcare data.  
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1. Introduction 

Healthcare administrative data are routinely collected during patient 
encounters in several settings, ranging from primary care and medical 
prescription to inpatient care [1]. This type of data is a major source for 
estimating indicators and outcomes for the assessment of the quality of 
care, also being reused for financing, research, epidemiological esti-
mates and policy making. However, several data quality (DQ) issues 
have been reported within healthcare administrative datasets [2]. These 
datasets typically present a large among of coded information, for 
example based on the International Classification of Diseases (ICD), and 
the process of deriving clinical codes itself from health records is a very 
complex and naturally prone to errors task, often resulting in DQ issues. 

Data variability among multiple sources (e.g., hospitals) may occur 
under natural circumstances and it is expectable at some degree, but it 
can also indicate DQ issues affecting data credibility. Variability in data 
distributions not only occur between different sources, but also over 
time, which in turn may lead to inaccurate, irreproducible or invalid 
conclusions if the data is used for research or decision-making [3–6]. 
Variability not related to natural circumstances may be attributed to 
several existing barriers, which are either systematic, such as lack or 
nonadherence to guidelines or data definitions, lack of standards in 
health care information systems and electronic health records (EHR), or 
due to random circumstances, -such as typing or transcription errors [7], 
or failures in coding diseases linked to the level of quality of inpatient 
documentation [8]. Thus, properly assessing and monitoring the sta-
bility of sources is essential for users to understand the data, to identify 
problems and biased sources, to discover patterns and to make decisions 
during the reutilization process [5]. 

Several studies have monitored variability in healthcare data, being 
generally performed using classical statistical methods [9–11], 
comparing populations’ statistics [4,12], describing the distributions of 
individual variables [13] or using reference datasets [14]. The use of 
measurements such as the coefficient of variation, or other non- 
parametric equivalents, such as the quartile coefficient of dispersion, 
is also common in multisource variability assessment. However, such 
methods have some limitations, especially related to the loss of infor-
mation as a consequence of summarizing data distributions into single 
scalar metrics, thereby affecting the capability of producing better in-
sights. The coefficient of variation can be affected by the type or scale of 
the variables, whereas the quartile coefficient of dispersion may not 
reflect the shape of the variables’ probability distribution function. 
Classical statistical tests are also used to detect differences among uni-
variate data samples, but these may not be suited for multivariate, multi- 
modal or multitype data, where other non-parametric information 
theory-based methods might be used instead [5]. 

Temporal variability can also manifest DQ issues that poses further 
challenges for the secondary use of data, particularly for research and 
machine learning [15–20]. For example, changes in coding systems, 
such as ICD, or modifications of protocols and clinical guidelines, often 
result in variable data representations across multiple diseases over time 
[21]. To monitor the aforementioned issues, authors have traditionally 
relied on statistical process control methods aimed at detecting the time- 
points at which changes occur. Common approaches for temporal vari-
ability assessment are also based on classical statistical methods, 
including Shewart charts, Levey–Jennings charts and Westgard rules 
[22,23]. Apart from not being suitable for multitype and multimodal 
data, these methods may not be adequate in the context of big data 
[24–26]. Autocorrelation or time series–based approaches have been 
applied to detect changes and periodicity within summary statistics 
obtained from longitudinal batches of data [4,9,12,27], but these 
methods tend to incur loss of information, especially when using coded 
data, namely categorical variables with a high number of labels (e.g., 
ICD-9-CM codes), or among multimodal distributions, which is common 
in biomedical data [21]. Finally, visual techniques or gold-standard 
methods for variability assessment are not usually provided. In the 

same line, typically gold-standard reference datasets are usually not 
available [17]. 

These limitations would represent a relevant drawback in settings 
using clinical and biomedical data, which is characterized by high het-
erogeneity in terms of sources, data types and distributions. Also, these 
methods are not suitable to deal with Big Data, which has been a reality 
in several healthcare organizations due to the various sources for big 
data, including hospital records, results of diagnostic examinations, 
procedures and treatments performed, nursing reports, discharge notes, 
Internet of Things (IoT) devices, as well as evidence produced by 
biomedical and public health research [28]. 

Guided by this motivation, in this paper we describe the process of 
detecting DQ implications in healthcare data from its multisource and 
temporal variability by applying two sets of existing methods: a Statis-
tical Process Control (SPC) based on Funnel Plots and a previously 
validated probabilistic temporal data quality control approach. These 
sets of methods are suggested to constitute a data quality assessment 
framework, applicable to any multisource and temporal data in the 
health domain, addressing the limitations of the more common ap-
proaches, namely: (i) methods that are suitable for data with multiple 
health data domains, sources, types and distributions; (ii) add resources 
to assess current multisource variability beyond classical metrics (e.g., 
coefficient of variation and quartile coefficients of dispersion); (iii) and 
provide methods for temporal variability assessment suited to multi-
modal data, allowing a straightforward detection of temporal in-
consistencies in the data. For the sake of demonstration, the methods 
were systematically applied to a large multisite data source, the Portu-
guese National Hospital Morbidity Database, to detect and assess 
abnormal variability regarding coding diseases between hospitals and 
over time. 

2. Materials and methods 

2.1. Data source 

Data assessed in this study was extracted from CSV files exported 
from the National Hospital Morbidity Database, which holds data on 
inpatient and outpatient episodes occurred in all mainland hospitals 
within the Portuguese NHS [29]. Clinically coded data from all inpatient 
episodes with a discharge date between January 1st 2011 and December 
31st 2017 were considered. Only inpatient episodes labelled in the 
database as statistically valid were included, that is, with a hospital stay 
of at least 24 h, or shorter than 24 h for patients who died, left against 
medical advice, or were transferred to another institution. Hospitals 
with missing data for an entire year were immediately excluded. 

Variables at patient level that were considered relevant for assessing 
coding variability included age, sex, hospital, admission and discharge 
dates, as well as principal diagnosis (e.g., disease representing the cause 
of hospital admission) according to both ICD-9-CM, used until 2016 in 
Portuguese hospitals, and ICD-10-CM, used afterwards [30]. Further-
more, variables representing hospital characteristics, namely 
geographic region, hospital complexity category provided by the Central 
Authority for Health Services (ACSS, Administração Central do Sistema de 
Saúde) and teaching status were later added in order to account the ef-
fect of institutional characteristics on data variability. Hospitals that are 
not categorized according to the ACSS complexity category were also 
excluded from analysis. More detailed explanations on institutional 
characteristics variables are provided in section 2.4. 

The data does not contain patient’s identification as was previously 
anonymized, not requiring a complete review by the ethics council. 
Confirmation that the data is indeed anonymous is given by the Portu-
guese Central Authority for Health Services at the time of their 
assignment. 
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2.2. Outcomes for data variability assessment 

Multisource variability was assessed based upon condition-specific 
Standardized Hospitalization Ratios (SHR), which is explained in more 
details below, whereas the primary outcomes to assess temporal vari-
ability were monthly relative frequencies of condition-specific hospi-
talizations. The Agency for Healthcare Research and Quality (AHRQ) 
Clinical Classification Software (CCS) was used to group each episode 
(hospital admission) into meaningful and mutually exclusive groups 
representing specific diseases or clinical conditions (e.g., liveborn), and 
thereby SHR were calculated by each condition available in the CCS. The 
CCS classification encompasses a set of 275 clinical condition categories, 
and the definitions to assign each episode into a CCS group according to 
ICD-9-CM or ICD-10-CM principal diagnosis codes are publicly available 
[31]. In this paper, we presented the analysis for the top 15 most 
commonly hospitalization conditions in Portugal to ensure that each 
hospital presented enough episodes to allow more robust statistical 
comparisons. 

2.2.1. Standardized hospitalization ratio (SHR) 
The SHR was calculated using the indirect standardization method, 

which provides individual rates by comparing a hospital with the 
reference population, which consists in the sum of all hospitals in the 
database. A logistic regression model including the patient’s age group, 
sex and interaction between age and sex, and variables representing 
hospital characteristics was used to estimate the probability of hospi-
talization due to a specific condition (CCS). These models were esti-
mated using the function glm of the R base package “stats” [32]. Subsets 
were created for each one of the 275 conditions, and a dummy (binary) 
variable indicating the occurrence of hospitalization due to a specific 
CCS, was included, which in turn was used as dependent variable for the 
hierarchical models. Stratified sampling preserving the same distribu-
tion of hospitals, years and outcome occurrences was performed for each 
condition subset to produce the logistic regression models. Individual 
probabilities were summed over the set of patients being admitted in a 
hospital to derive the expected number of hospitalizations in that hos-
pital for that specific condition. The standardized hospitalization ratio 
was calculated as the ratio between the observed and the expected 
number of hospitalizations by a given condition, which in turn is 
multiplied by the overall standardized event (hospitalization) rate of the 
entire population (considering all hospitals) to obtain the SHR. We 
computed goodness-of-fit statistics for the logistic regression models, 
which included the Brier’s score to measure the overall models’ per-
formance and C-statistics to assess model discrimination. 

Since standardize hospital rate and standardized hospital ratio are 
inter-related measurements differentiated by factor, hence we used the 
term SHR interchangeably. 

2.3. Multisource variability assessment 

Multisource variability assessment was performed by constructing 
funnel plots of SHR according to the Spiegelhalter’s method [33]. This 
method assumes that variation can be expected in any context and can 
be divided into two types: (1) common cause variation, when refers to an 
expected and stable level of variation; and (2) special cause variation, 
which refers to the unexpected variation, which is linked to systematic 
deviations and reflects out-of-control institutions. The SPC concept 
employed in the funnel plot assessments defines statistical boundaries to 
separate common-cause variation from special-cause variation. 

The funnel plot is usually used to plot a given quality indicator 
against a measure of its precision (e.g., sample size), along with a hor-
izontal line representing an internal summary (benchmark), such as the 
average across healthcare institutions, and control limits at 95 % 
(approximately-two standard deviations) and 99.8 % levels (approxi-
mately-three standard deviations) are also drawn. The control limits 
specify a range in which the values of the indicator would be statistically 

placed given the data distribution. If a given institution falls outside the 
control limits, its performance is said to be out of the expected, 
considering the benchmark value [33–36]. 

For multisource variability assessment, we assumed that funnel plots 
of condition-specific SHR would be useful tools to identify outlying data 
patterns that are potentially related to DQ issues, as these rates do not 
directly reflect performance and allow to adjust the event rate according 
to the hospitals’ patient population and other contextual biases. As 
standardized ratios are usually computed as the ratio between the 
observed and expected number of events (i.e., number of hospitaliza-
tions due to a specific disease), the observed number of events is 
assumed to be an observation from a Poisson distribution [37]. Thus, in 
this paper, we constructed funnel plots using condition-specific SHR 
according to the definitions stated above, assuming a Poisson distribu-
tion to characterize the SHR distribution across the hospitals. The exact 
formula to draw Poisson control limits was used to minimize loss of 
robustness due to reduced sample size [33]. 

When assessing multisource variability, it is important to address 
overdispersion, a common phenomenon in health data which can be 
clearly displayed when using funnel plots [38]. In the context of this 
work, overdispersion occurs when there is true heterogeneity between 
hospitals and the mix of patients they treat, resulting in a variance that 
goes beyond that expected due to sampling variation [39]. There are 
several reasons for the occurrence of overdispersion, namely: (i) in-
dicators estimated from a large number of cases, resulting in statistically 
significant differences with no practical importance; (ii) indicators that 
essentially determined by policy choices; and (iii) when hospitals admit 
patients with distinct characteristics for which the logistic regression 
model does not sufficiently corrects [40]. Furthermore, apparent over-
dispersion can occur if there are genuine major differences in DQ [40]. 
In this work, it was important to account for overdispersion attributable 
to poor risk adjustment (different between hospitals and case-mix). 
Thus, we considered method described by Spiegelhalter (2012) [40], 
which estimates a hierarchical model to draw overdispersed control 
limits in order to account for overdispersion. In this approach, it is 
assumed that each hospital has its own true underlying rate (the 
“random effects”), which themselves are distributed around the overall 
average with a “between” standard deviation that is added to the’wi-
thin’ standard deviation for the construction of overdispersed control 
limits [41].The R package “FunnelPlotR” [42], which implements the 
methods described by Spiegelhalter (2005) [33], was used to compute 
condition-specific SHR using the indirect method and considering the 
individual predicted probabilities obtained from the Logistic models, as 
well as to display the funnel plots with both the Poisson and the over-
dispersed control limits. 

Adjustment for hospital characteristics in multisource vari-
ability assessment: Although some case-mix adjustment was addressed 
by using a logistic regression model accounting for age and sex, the 
initial models did not include hospital characteristics that could even-
tually explain data variability beyond DQ issues. Thus, to further 
minimize the bias introduced by hospital heterogeneity, we tested the 
association of condition-specific SHR with the following hospital 
characteristics:  

(i) Hospital group: a discrete variable representing the cluster a 
hospital belongs according to an official categorization proposed 
by the ACSS for Portuguese NHS hospitals, which was based upon 
a clustering of institutions into five groups (Groups B, C, D, E and 
F) according to a hierarchical clustering method following the 
standardization of variables explaining hospital costs, thereby 
related to the case-mix and complexity of the institutions [43].  

(ii) Geographic region: a discrete variable representing which 
geographic region the hospital is located on, as these regions may 
present relevant differences in terms of population density, in-
come, and available resources, thereby influencing condition- 
specific hospitalization ratios. We considered the NUTS II 
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categorization developed by Eurostat, which defined five regions 
for mainland Portugal: Norte, Centro, Lisbon and Vale do Tejo, 
Alentejo and Algarve [44].  

(iii) Teaching status: a discrete variable indicating whether the 
hospital provides medical education and training to future and 
current health care professionals. This variable is important in a 
sense that teaching hospitals tend to treat patients with more 
severe and complex diseases, thereby this status may influence 
higher SHR for some illnesses [45]. 

The Kruskal–Wallis test was used to examine associations between 
the SHR and the variables mentioned above. If a significant association 
between the indicator and hospital characteristics is found, it is advised 
to reconsider the funnel plot construction and perform case-mix 
correction improvement [39]. 

Descriptive analysis for multisource variability in condition- 
specificSHR: Apart from constructing and displaying funnel plots of 
condition-specific SHR, we reported the hospitalization ratio ratio of 
variance to mean for each condition-specific SHR in order to obtain a 
normalized measure of dispersion, assuming that SHRs follow a Poisson 
distribution. 

2.4. Temporal variability assessment 

To assess temporal variability, we compared probability distribu-
tions of relative frequencies in condition-specific hospitalizations over 
different periods of time using the temporal data quality control 
approach proposed by Sáez et al [6,21]. This approach makes use of the 
Jensen-Shannon distance (JSD) to measure similarity between two 

probability distributions. In databases with low variability, JSDs among 
distributions would be small, whereas different or anomalous data dis-
tributions would mean higher variability, resulting in higher JSD values. 
The main advantages of using JSD are: (1) its probabilistic interpreta-
tion, where 0 means equal distributions and 1 means non-overlapping 
distributions, and (2) that the measurements are not affected by large 
sample sizes, offering a robust alternative to classical statistical tests 
[17]. Furthermore, this approach provides a technique to explore vari-
ability among temporal batches of data, namely the Information- 
Geometric Temporal (IGT) plots and Data Temporal Heatmaps 
(DTHs), which help in uncovering temporal trends in the data, as well as 
to identify abrupt or recurrent changes in data distributions over time or 
time periods with similar data distributions. To compute JSD measure-
ments and construct the IGT plots and DTHs, we used the R package 
“EHRtemporalVariability” [21]. To use this package, data was trans-
formed into a matrix representing monthly relative frequency hospi-
talizations per hospital and condition. These methods and tools have 
been successfully applied to assess DQ temporal variability issues in US 
[6,21], UK [46] and Spanish [47] healthcare data. 

All analyses were performed using R version 3.6.2 and RStudio 
version 1.2.1335 (RStudio Team, Boston, Massachusetts, United States). 

Fig. 1 presents a step-by-step explanation of the processes to estimate 
and display visualization tools for multisource and temporal variability 
assessment in clinical coded data. 

Fig. 1. Overview and steps considered in the methodological approach for multisource and temporal data variability in clinical coding.  
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3. Results 

3.1. Data description 

Data on 5,938,203 hospitalizations from 41 hospitals were included 
in the final sample. In Table 1, descriptive statistics of the sample 
considered for analysis is presented, including dispersion metrics of the 
crude hospitalization ratios (unadjusted) of the 15 most frequently 
admitted conditions, to provide basic insights regarding the magnitude 
of existing variation in coding condition-specific conditions. 

The most frequently admitted condition in the period 2011–2017 
was related to the “Liveborn” condition category (478,338 admissions, 
median crude ratio of 8,055 per 100,000 admissions). It is possible to 
observe, however, that the level of variation in data does not necessarily 
relate to the frequency, as conditions such as acute cerebrovascular 
disease presented the second-lowest interquartile range amongst top-15 
conditions (668 per 100,000 admissions), despite being the third most 
frequently admitted condition, possibly indicating a lower degree of 
variability and more coding consistency across hospitals in comparison 
with other common conditions. 

3.2. Multisource variability 

To better quantify multisource variability that is not expected or 
explained by natural inter-hospital differences, condition-specific SHR 
were firstly computed using a logistic model adjusted for patient char-
acteristics (age and sex). The Kruskall-Wallis tests results indicated that 
the association between the age-sex SHR with ACSS hospital group 
category was statistically significant (p < 0.05) for most of the diseases 
in the top-15 conditions, except for “Cardiac dysrhythmias” and “Biliary 
tract disease”, whereas teaching status was statistically significant for 
“Acute bronchitis”, “Biliary tract disease”, “Complication of device”, 
“Coronary atherosclerosis and other heart disease”, “Fracture of neck of 

femur” and “Osteoarthritis”. Amongst the top-15 conditions, the 
geographic region where the hospital is located was only significantly 
associated for “Acute myocardial infarction”. The p-values obtained 
with the aforementioned tests can be found in Supplementary Table 1. 

Thus, as statistically significant associations with the ACSS hospital 
group category and teaching status were verified for several conditions 
(represented by the CCS categories), we recomputed condition-specific 
SHRs by including these variables in the logistic models. Table 2 sum-
marizes the overall variability in SHR for the 15 most frequently 
admitted conditions by means of the ratio of variance to mean, as well as 
goodness of fitness metrics (Brier’s score and C-statistics) of the models 
employed for deriving the standardized rates. 

The adjustment of SHR for hospital characteristics considerably 
reduced the ratio of variance to mean for all conditions, except for 
congestive heart failure, while it improved the overall discriminative 
ability (C-statistics) of the logistic models (Table 2). All logistic models 
presented a C-statistics above 0.68 (range: 0.68–0.97) following the 
adjustment for hospital characteristics. Moreover, Brier’s score was 
close to 0 for all 15 conditions. 

Fig. 2 shows the funnel plots of the SHR for three selected conditions 
before (Fig. 2A) and after (Fig. 2B) this adjustment. The benchmark 
(horizontal line) placed at 1 indicates fully control, where the expected 
and observed number of hospitalizations reported in a given hospital are 
equal. We highlighted the sources (hospitals) with the highest degree of 
deviation, which were those falling outside the 99.8 % overdispersed 
control limits. 

Several hospitals presented a substantially higher or lower-than- 
expected SHR due to a specific disease. Some hospitals grouped into 
the same ACSS hospital group category, such as B3 and B4, were 
opposite outliers in coding acute myocardial infarction (Fig. 2), with the 
latter presenting a much lower-than-expected SHR, whereas its peer 
stood out in the opposite direction. Furthermore, substantial differences 
were observed in the funnel plots after adjusting for hospital 

Table 1 
Sample statistics in terms of crude hospitalization ratios for the 15 most frequently admitted conditions (CCS) in Portuguese public hospitals, 2011–2017.  

CCS (Top-15 most frequently 
admitted) 

Total number of 
hospitalizations 

Overall Crude Ratio (per 
100,000 hospitalizations) 

Median Crude Ratio (per 
100,000 hospitalizations) 

Standard deviation Crude 
Ratio (per 100,000 
hospitalizations) 

Interquartile 
range (Q1 – Q3) 

Liveborn 478,338  8,055.3  8,812.7 2,714.7 3,472.8 (6,857.1; 
10,329.9) 

Pneumonia (except that caused by 
tuberculosis or sexually 
transmitted disease) 

291,639  4,911.2  4,978.4 2,193.6 2,783.6 (3,984.9; 
6,768.5) 

Acute cerebrovascular disease 177,225  2,984.5  3,159.3 1,060.4 667.9 (2,753.2; 
3,421.0) 

Biliary tract disease 162,354  2,734.1  2,968.3 1,157.4 1,450.3 (2,375.5; 
3,825.8) 

Urinary tract infections 142,344  2,397.1  2,384.1 1,055.2 1,307.1 (1,748.2; 
3,055.3) 

Congestive heart failure 120,642  2,031.6  2,102.4 1,087 1,252.8 (1,634.4; 
2,887.3) 

Acute bronchitis 96,737  1,629.1  1,482.5 981.2 823.2 (1,324.7; 
2,147.8) 

Abdominal hernia 94,995  1,599.7  1,631.5 853.4 1,026.3 (1,195.0; 
2,221.3) 

Fracture of neck of femur (hip) 87,893  1,480.1  1,744.8 620 856.0 (1,308.4; 
2,164.4) 

Acute myocardial infarction 85,701  1,443.2  1,255.7 806.2 882.0 (891.5; 
1,773.5) 

Osteoarthritis 82,681  1,392.4  1,534.1 864.4 1,148.0 (1,097.8; 
2,245.8) 

Coronary atherosclerosis and other 
heart disease 

79,710  1,342.3  848.1 893 1,429.4 (346.3; 
1,775.6) 

Polyhydramnios and other problems 
of amniotic cavity 

77,030  1,297.2  1,240.7 831.7 927.7 (830.6; 
1,758.3) 

Complication of device 70,609  1,189.1  871.9 469 532.7 (718.6; 
1,251.3) 

Cardiac dysrhythmias 70,271  1,183.4  1,181.1 573.5 843.7 (762.8; 
1,606.5)  
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characteristics, either in shape or position of the outlying hospitals. For 
“Acute myocardial infarction” and “Liveborn”, hospitals from group F 
are indicated as extreme outliers when adjusting SHR only for age and 
sex, even though such behavior is likely to be related to the level of 
specialization of these institutions, which are designated to cancer care. 
After adjusting for hospital characteristics, these institutions are no 
longer indicated as extreme outliers for these two conditions (Fig. 2B). 
Overall, the adjustment for hospital characteristics changed the set of 
outliers, except for “Polyhydramnios and other problems of amniotic 
cavity”, in which hospital D1 remained as the only outlier, even after 
adjusting for hospital characteristics, with a much higher-than-expected 

SHR for that condition. 

3.3. Temporal variability 

To assess temporal variability, monthly relative frequencies of 
condition-specific hospitalizations (considering the discharge date) in 
each hospital were assessed. Fig. 3 presents the DTHs of monthly relative 
frequencies of hospitalizations for the studied period for four selected 
conditions within the top-15 ((A) Acute myocardial infarction; (B) 
Osteoarthritis; (C) Pneumonia; (D) Liveborn). The heat maps are or-
dered by relative frequency of condition-specific hospitalizations, where 

Table 2 
Variability in condition-specific SHR for the 15 most frequently admitted conditions, 2011–2017.  

Outcome Ratio of variance to 
mean 

Brier’s 
Score 

C- 
statistics 

Ratio of variance to 
mean 

Brier’s 
Score 

C- 
statistics 

Liveborn  0.157  0.038  0.963  0.148  0.037  0.967 
Pneumonia (except that caused by tuberculosis or sexually 

transmitted disease)  
0.120  0.045  0.735  0.063  0.045  0.750 

Acute cerebrovascular disease  0.122  0.028  0.738  0.066  0.028  0.750 
Biliary tract disease  0.150  0.026  0.646  0.050  0.026  0.679 
Urinary tract infections  0.139  0.023  0.684  0.087  0.023  0.692 
Congestive heart failure  0.153  0.019  0.789  0.077  0.019  0.803 
Acute bronchitis  0.285  0.016  0.733  0.152  0.016  0.755 
Abdominal hernia  0.247  0.016  0.709  0.125  0.016  0.729 
Fracture of neck of femur (hip)  0.145  0.014  0.838  0.114  0.014  0.850 
Acute myocardial infarction  0.339  0.014  0.73  0.296  0.014  0.755 
Osteoarthritis  0.341  0.014  0.772  0.242  0.013  0.798 
Coronary atherosclerosis and other heart disease  0.481  0.013  0.772  0.586  0.013  0.802 
Polyhydramnios and other problems of amniotic cavity  0.357  0.012  0.937  0.330  0.012  0.941 
Complication of device  0.189  0.012  0.641  0.076  0.012  0.684 
Cardiac dysrhythmias  0.228  0.012  0.702  0.148  0.012  0.717  

Fig. 2. Funnel plots of the SHR due to polyhydramnios and other problems of amniotic cavity, acute myocardial infarction and liveborn, before (A) and after (B) 
adjustment for hospital characteristics. 
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hospitals located at the top are those presenting the lowest frequencies. 
The visual inspection of the temporal heat maps allowed the immediate 
detection of several affected distributions at institutional level over the 
years, highlighted by the arrows in Fig. 3. The “Liveborn” category 
(Fig. 3D) in general presented more stable relative frequencies during 
the studied period in comparison with the other presented conditions. 

Regarding “Acute myocardial infarction”, abrupt and prolonged 
decreases and increases in relative frequency are observed for several 
hospitals, as indicated by the arrows (Fig. 3A). Amongst the diseases in 
the top-15, “Osteoarthritis” was one of the conditions for which several 
discontinuities are observed, in which relative frequencies present 
sudden changes for the month of August, which is represented by the 
various isolated red, orange, or dark-blue dots that appear aligned in 
August of every year in the heat map, as indicated by the arrows 
(Fig. 3B). 

The temporal evolution of “Pneumonia”, the second most common 
admitted condition, also presented discontinuities in several hospitals, 
highlighting sudden decreases in hospitals E4 and C2 in the biennium 
2012–2013, contrasting with a sudden increase in hospital D8 after 2013 
(these cases are indicated by the arrows in Fig. 3C). Furthermore, it is 
also possible to observe outlier points aligned in the month of November 
2014, as highlighted by the circle in Fig. 3C, with special emphasis for 
hospital B10 (Fig. 3C). 

Although the relative frequencies of hospitalizations related to 
“Liveborn” were more homogeneous over time for most hospitals in 
comparison with other conditions, it is possible to detect some abrupt 
changes, namely for hospital C2 (line above C10, indicated by the arrow 
in Fig. 3D, where a prolonged yellow line is replaced by a prolonged 
green line until the end of the period), where a sudden decrease occurred 
after 2013, or hospital E3 (second line from the bottom, indicated by the 
arrow in Fig. 3D), which concentrated substantially higher relative 
frequencies (between 7 and 9 %) in the beginning of the period, but 
remained below 5 % until the end of the monitored period. An increase 
in relative frequencies of hospitalizations related to “Liveborn” was also 

detected for Hospital B10 after mid-2013 (as indicated by the arrow in 
Fig. 3D). 

Furthermore, we constructed IGT plots to assess the overall temporal 
variability considering data from all hospitals. In Fig. 4, the IGT plot of 
the monthly relative frequencies of hospitalizations for four selected 
conditions among those within the top-15 ((A) Acute myocardial 
infarction; (B) Liveborn; (C) Congestive Heart Failure; (D) Osteoar-
thritis) can be seen for the entire period. Each point represents a data 
batch for a specific year and month, represented in the yym format, in 
which the first 2 numbers represent the year, and the last character in-
dicates the month (Month abbreviations: {’J’, ’F’, ’M’, ’A’, ’m’, ’j’, ’x’, 
’a’, ’S’, ’O’, ’N’, ’D’}.). Colors indicate the annual seasons, with darker 
gradients indicating winter months and warmer gradients indicating 
summer months. The distance between monthly data points represents 
the JSD between their values (relative frequency of hospitalizations). 

Overall, probability distributions changed over time for most dis-
eases within the top-15, although with different intensities. In general, 
the plots suggest that the chronological order was a factor for increased 
similarity. Some of them presented accentuated shifts, such as “Acute 
myocardial infarction”, where the flow of data points evolved irregu-
larly over the studied period, and two abrupt changes were observed in 
2013 and 2016, forming three temporal clusters (I - before 2013, II - 
between 2013 and 2016, and III - after 2016) (Fig. 4A). Other conditions 
with noticeable changes in temporal probability distributions included 
“Liveborn”, in which an abrupt change can be observed after 2012 
(Fig. 4B), and “Congestive heart failure”, which presented a more 
distinct data distribution in 2017 in comparison with the remaining 
period (Fig. 4C). 

Despite some discontinuities observed at hospital level in the DTHs, 
amongst the top-15 conditions, osteoarthritis was the one for which no 
clear abrupt change in data distributions was observed, forming an IGT 
plot composed of a single and more compacted cluster containing 
monthly data from the entire period (Fig. 4C). Nevertheless, outliers 
exclusively comprising data for the month of August (all years) were 

Fig. 3. Data Temporal Heatmaps of monthly relative frequencies of Portuguese hospitalizations due to Acute myocardial infarction (A), Osteoarthritis (B) Pneumonia 
(C) and Liveborn (D) 2011–2017. 
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observed in the IGT plots for this condition. 

4. Discussion 

The purpose of this article was to describe the process of detecting 
DQ implications from applying a set of methods in the assessment of 
multisource and temporal variability in healthcare data. To this aim, we 
systematically applied the methods in a comprehensive multisite re-
pository, the Portuguese Hospital Morbidity Database, comprising his-
torical hospitalization data from all public hospitals in mainland 
Portugal. However, the methodological approaches used in this paper 
can be extended and reproduced for other healthcare data and clinical 
domains, addressing some gaps of common methods in the literature for 
variability assessment. Furthermore, in this paper, we sought to rein-
force the importance of the systematic assessment of multisource and 
temporal variability as a key aspect of DQ among healthcare data, 
mainly when multisite data sources are considered. 

The results obtained with the application of visualization tools such 
as IGT plots, clearly showed affected temporal data patterns that could 
be potentially related to the recent transition to ICD-10-CM in Portugal. 
The transition process to ICD-10-CM started in Portugal in August 2016, 
with three public hospitals being selected as pilots to implement the new 
coding system in October 2016, whereas the remaining hospitals would 
shift to ICD-10-CM by January 2017 [30]. Moreover, this new coding 
system adds more complexity into clinical coding tasks by offering 
increased granularity and a much higher number of codes to further 
specify the several diseases when compared to the previous version 
(ICD-9-CM) [30]. However, this impact seems to widely differ between 
conditions, as diseases such as acute myocardial infarction and 

congestive heart failure presented a much more accentuated change in 
probability distributions for 2016 and 2017 data in comparison with 
other conditions, such as osteoarthritis or liveborn. 

It is important to point out that some comorbid conditions might 
occur in an inpatient episode as comorbidity or subsequent diagnosis 
following admissions for other causes. Nevertheless, chronic conditions 
are recorded inconsistently in hospital administrative datasets [48], and 
the usage of comorbidities as principal or secondary diagnoses may 
cause hospitals to present a substantially lower frequency of such con-
ditions in the secondary diagnoses’ fields, and vice-versa. For instance, 
in funnel plot assessment, hospitals B3 and B4 were opposite outliers in 
terms of SHR due to acute myocardial infarction, as some ICD codes 
related to this disease can be regarded as a comorbidity [49]. In this 
case, the latter presented a much lower-than-expected hospitalization 
ratios, whereas the first presented a much higher-than-expected (Fig. 2), 
despite belonging to the same hospital category and thereby no signif-
icant differences in their complexity level are supposed to occur. This 
aspect may severely affect measurements of quality of care, such as 30- 
day acute myocardial infarction in-hospital mortality, which often in-
cludes only patients with a principal diagnosis of acute myocardial 
infarction in its calculation [50]. A similar situation can occur for 
pneumonia, whose accurate coding may be affected by the variation in 
usage of sepsis or respiratory failure as principal diagnosis [51]. 

Changes in software usage, such as DRG grouper versions, may also 
be a potential source of data variability. For several conditions, namely 
acute myocardial infarction and liveborn, the analysis of IGT plots and 
temporal heat maps highlights substantial changes in data patterns 
coinciding with changes in the DRG grouper versions, namely after 
January 2013, when the AP (All-Patient)-DRG version 21 was replaced 

Fig. 4. IGT plot of monthly relative frequency of Portuguese hospitalizations due to Acute myocardial infarction (A), Liveborn (B), Congestive heart failure (C) and 
Osteoarthritis (D), 2011–2017. Regarding Acute myocardial infarction (A), it is possible to observe two moments of sudden changes, one in 2013 (transition from 
cluster I to cluster II) and in 2016 (transition from cluster II to III). In terms of Liveborn admissions (B), there are clearly two clusters of similar temporal data, 
following an abrupt change in 2013. For Congestive heart failure (C), probability distributions started to differ in 2016, widening in 2017, whose points are placed 
distant from the remaining data; Osteoarthritis (D) was the condition with the least variation in probability distribution over time, forming a single and more 
compacted cluster composed of data of the entire period. Nevertheless, all data points for the month of August appear as outliers, possibly indicating potential 
DQ issues. 
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by version 27 [52], and after January 2015, when the APR (All-Patient 
Refined)-DRG was adopted in Portugal [53], introducing a novel patient 
stratification concept whose financial structure relies more on secondary 
diagnoses coding, which may have driven different coding behaviors. 
Extreme temporal changes in DRG groups have also been found in the 
literature for the US National Hospital Discharge Survey (NHDS) data 
[54]. 

The use of the funnel plots provided several practical advantages, 
namely its usability for any clinical domain, capacity to uncover and 
easily display anomalous patterns between sources. Another advantage 
is to use the SPC present in the funnel plots to establish a reference for 
variability comparison, especially considering the lack of gold standard 
or reference datasets for healthcare data. Moreover, we advise the use of 
funnel plots with standardized rates related to the frequency of an 
outcome (i.e., hospitalizations, disease prevalence) for multisource 
variability assessment to minimize the effects of natural variability. In 
the application presented in this paper, we considered hospitalization 
ratios, but the indicator and its calculation should be determined by the 
reuse purpose. We reinforce the importance of properly controlling the 
indicators for other external factors, as it may be a critical aspect for 
isolating variability that could be related to DQ issues. Finally, we 
employed logistic regression models to compute individual probabilities 
of the target event (occurrence of a condition-specific hospitalization), 
but other models that are suitable for multimodal distributions and 
larger samples can also be explored for this adjustment, namely proba-
bilistic machine learning models. The choice of the adjustment model 
will largely depend on the types, quantity, and distribution of the vari-
ables on the dataset, as well as the sample size. 

Additionally, the use of the suggested visualization tools for tem-
poral variability assessment to detect affected data batches provides a 
generic and reproducible method to be integrated into data quality 
monitoring frameworks, especially when such evaluations occur over 
time. The IGT plots should be regarded as a powerful and complemen-
tary tool to the DTHs, as it allows a global view of data distribution of the 
entire dataset and pattern changes that are not always clear in heat 
maps. Furthermore, the JSD metric displayed in the IGT plots can be 
applied to any type of variables or in transformed data (i.e., Principal 
Component Analysis), and it is comparable across studies [17]. These 
tools can also be useful to check data inconsistencies and support hos-
pitals (and other healthcare settings) in monitoring the effects of 
changes in a given system, protocols, standards, software and even to 
evaluate the impact of new coding systems, such as the ICD-10-CM. This 
R-based open-source tool can be used on different sources, including raw 
Electronic Health Records (EHRs) and other healthcare datasets. 
Furthermore, unlike other methods mostly based upon classical statis-
tical approaches, it is a suitable tool for assessing multimodal and highly 
coded data, which are common characteristics of healthcare/biomedical 
data. Finally, the JSD is complementary to DHTs in the sense that it 
provides a single metric to represent the entire repository in a given time 
point and allows the identification of sudden temporal deviations in an 
objective way through visual inspection. Additionally, the DHTs 
described in Fig. 3 provide a straightforward exploratory analysis for the 
details causing the change patterns, which in some cases is more difficult 
to find in simpler time series. 

Some important limitations regarding both set of methods should be 
considered. Concerning the temporal variability assessment, the sug-
gested set of methods rely exclusively on visual inspection. In this light, 
clustering analysis can be further applied on the projected months to 
find subgroups and outlying batches, enhancing temporal variability 
assessment. Regarding multisource variability assessment, we recom-
mend testing for different data distributions is recommended to choose 
the formula for estimating the funnel plot control limits that better suits 
the data being analyzed. Although it is recommended in the literature 
that standardized assumes Poisson distribution, in this work, the ratio 
indicates SHR with binomial distribution (below 1), which thereby may 
have influenced the results. Additionally, multisource comparison was 

based upon standardized ratios computed by the indirect method, in 
which individual rates compare a hospital with the reference population 
representing the sum of all hospitals [56]. Therefore, ratios are not 
stable if a specific hospital presents a substantially different age distri-
bution from the reference population [56]. Once unexpected multi-
source or temporal variability is observed, further explanation is always 
required to identify possible causes. Checking for possible DQ issues 
should ideally occur after ensuring that contextual predictors related to 
natural data variability are addressed, namely differences in the patient 
case-mix across hospitals, hospital characteristics, as well as external 
factors influencing natural temporal variability, i.e., increased preva-
lence of respiratory diseases during winter months. For instance, DTH 
for pneumonia showed an anomalous change in November 2014, which 
appears to coincide with an increased influenza activity during the 
2014–2015 winter season in Europe [55], thereby minimizing the pos-
sibility of DQ issues. As future work, extensive research on the refine-
ment of the predictive models used to compute the expected rates for 
multisource variability assessment, in which probabilistic machine 
learning models can be explored, is required. Furthermore, additional 
work should also focus on methods to explain root causes of unexpected 
variability and provide actionable insights. To this aim, a clinical coding 
process reference model, including specific DQ management process 
will be proposed as part of our future work. 

5. Conclusions 

In this article, we describe the process of detecting DQ implications 
by applying a set of methods based on SPC and probabilistic temporal 
data quality control approaches for monitoring multisource and tem-
poral variability, using a nationwide Portuguese hospital database. The 
presented methods are generalizable, empirically driven and based on 
SPC, which constitutes and advantage considering the lack of gold 
standard for these datasets. For many diseases, relevant changes in 
temporal data distribution were observed and appear to coincide with 
some factors impacting the data generation process, such as the transi-
tion to ICD-10-CM and the adoption of different DRG grouper software 
versions. Those seem to be key factors impacting the observed vari-
ability and should be more carefully investigated. The use of funnel plots 
with standardized ratios, DTHs and IGT plots provides generalizable and 
reproducible tools based on previous literature that can be useful for 
discovering abnormal patterns in healthcare data, helping to detect 
potential random or systematic issues affecting the quality and reuse of 
the data. The main contribution of this work is demonstrating the suc-
cessfulness of systematically applying a set of multisource and temporal 
variability methods for healthcare data for detecting potential DQ im-
plications for their reuse. Given the characteristics of these types of 
datasets, and when multisite data repositories are considered, this work 
reinforces the importance of assessing variability in DQ checks pro-
cesses, also highlighting novel possibilities, namely the capacity of 
monitoring changes impacting the data-generation processes, such as 
transition to new coding systems or DRG grouper software. The novelty 
of this work is the use of a set of methods to discover new DQ insights in 
healthcare data. 
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