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Abstract: Bearings are the elements that allow the rotatory movement in induction motors, and the 

fault occurrence in these elements is due to excessive working conditions. In induction motors, elec-

trical erosion remains the most common phenomenon that damages bearings, leading to incipient 

faults that gradually increase to irreparable damages. Thus, condition monitoring strategies capable 

of assessing bearing fault severities are mandatory to overcome this critical issue. The contribution 

of this work lies in the proposal of a condition monitoring strategy that is focused on the analysis 

and identification of different fault severities of the outer race bearing fault in an induction motor. 

The proposed approach is supported by fusion information of different physical magnitudes and 

the use of Machine Learning and Artificial Intelligence. An important aspect of this proposal is the 

calculation of a hybrid-set of statistical features that are obtained to characterize vibration and stator 

current signals by its processing through domain analysis, i.e., time-domain and frequency-domain; 

also, the fusion of information of both signals by means of the Linear Discriminant Analysis is im-

portant due to the most discriminative and meaningful information is retained resulting in a high-

performance condition characterization. Besides, a Neural Network-based classifier allows validat-

ing the effectiveness of fusion information from different physical magnitudes to face the diagnosis 

of multiple fault severities that appear in the bearing outer race. The method is validated under an 

experimental data set that includes information related to a healthy condition and five different 

severities that appear in the outer race of bearings. 

Keywords: condition monitoring; fault severity; bearings; feature calculation; feature extraction;  

information fusion; neural network; Linear Discriminant Analysis 

 

1. Introduction 

A great deal of the applications in the modern industry is composed of electrome-

chanical systems or kinematic chains that generally involve electrical rotating machinery. 

In fact, it has been reported by the International Energy Agency (IEA) that electric motors 

demand more than half of the global electricity [1,2]; additionally, it has been estimated 

that such electrical demand may grow approximately 2.1% per year. On the other side, it 

is expected that electric motors used in the industry will represent more than 30% of the 

total growth until 2040 [2,3]. In this regard, the Induction Motor (IM) is the most used 

electric machine in the industrial sector; although IM is included in a wide range of in-

dustrial applications due to its reliability, robustness, and efficiency, the occurrence of 
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faults during its operation represents a critical issue since unexpected stoppages are pro-

duced and affect the efficiency of the production lines [4–6]. Consequently, aiming to face 

these issues, the development of condition monitoring strategies focused on fault detec-

tion and identification in IM, and its linked components, is being one of the priorities ad-

dressed by new research works. 

The IM faults occurrence is commonly produced by electrical or mechanical stresses 

that finally produce damages over the mechanical or electrical parts of the IM. Thus, 

within the most common faults that influence the IM operation are those damages that 

affect the stator, rotor, and the bearing elements [7–9]; specifically, the occurrence of faults 

in IMs is mainly associated with these elements (stator, rotor, and bearings) representing 

around 32%, 10%, and 40%, respectively [10,11]. That is, a high percentage of fault occur-

rence in IMs is produced by its associated bearings; consequently, bearings play an im-

portant key role that may affect the operation, reliability, and efficiency of IMs. As it has 

been reported in the literature, bearings have finite life that is limited by their resistance 

to fatigue; thus, the occurrence of faults is inherent to its operation, even under ideal op-

erating conditions [12,13]. In this sense, most of the common faults in bearing may be 

attributed to the following causes: (i) overload, which may be generated by static load 

and/or unbalances or misalignments; (ii) excessive or insufficient lubrication; (iii) external 

contamination; (iv) inappropriate installation and/or design; and (v) electrical discharges 

passing through the bearing [14,15]. Hence, electrical discharges are considered one of the 

most critical causes that may produce the gradual degradation of bearings in IMs. 

A large number of diagnosis strategies have been proposed and focused on the iden-

tification and diagnosis of bearing failures, where the acquisition of different signals such 

as the occurrence of vibrations, stator current signatures, voltages, temperatures, and ther-

mal imagining have been analyzed aiming to provide the condition assessment of bear-

ings [16–19]. Despite different signals may be analyzed to achieve the fault diagnosis in 

bearings, the vibrations signals remain the most preferred that has been accepted by the 

industrial sector [5,20,21]. In this regard, in [22], a diagnosis strategy to identify impulsive 

bearing failures from variable-speed vibrations by means of measuring the short-term 

spectral components from vibration signals is proposed; although effective results are ob-

tained through the application of the method, additional knowledge is mandatory for set-

ting the optimum parameters that are required for the considered techniques in order to 

obtain high-performance results. Similarly, in [23], the combination of the spectral and 

permutation entropy of vibrations signal for assessing different types of damage on bear-

ings during low-speed conditions is analyzed; despite different bearing conditions may 

be assessed, the proposed method seems to be designed to face the fault identification for 

specific operation conditions, such as continuous speed and load. On the other side, the 

identification of faults in bearings can be also performed through classical approaches 

based on MCSA (Motor-Current Signature Analysis); in this sense, in [24], stator current-

based bearing fault diagnosis using fractional wavelet denoising and deep learning algo-

rithms is presented; although through the proposed method is possible to identify the 

damage of outer and inner races of bearings, the application of the methods is focused on 

the detection of a unique fault severity. Likewise, in [25], a novel methodology for fault 

size estimation of ball bearings using stator current signals is proposed, where the fault-

excited harmonic components and amplitudes in stator current are estimated, and the 

FHD (Fault-excited Harmonic Distortion) evaluated to achieve the fault size estimation. 

Even though different fault sizes can be detected, the estimation of undesired frequency 

components that may appear overlapped with the fault-related components may lead to 

infeasible detections. Therefore, the separate analysis of vibrations and stator currents 

may lead to the identification and detection of bearing damages, and the analysis of both 

signals present particular advantages that may contribute to improving the condition as-

sessment of bearing faults if both signals are analyzed together. Although several works 

have been proposed to perform the bearing fault detection and diagnosis, some challenges 

still exist that have not been addressed in the field of bearing fault assessment, which are 
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(i) the bearing fault detection from the viewpoint of severity detection has not been exten-

sively studied; thus, the identification of fault graduality may be difficult whether physi-

cal magnitudes, such as stator current, show small changes and/or variations in ampli-

tude, and (ii) the occurrence of bearing faults may be confused with other faulty compo-

nents since fault-related patterns overlapping is a common effect in rotating machines. 

Additionally, it must be mentioned that others have tried to overcome these chal-

lenges through ensemble learning, parallel Neural Networks, and transfer learning-based 

solutions; however, complex condition monitoring structures are needed to achieve good 

performance results. In this regard, for example, in [26], a diagnosis method that first in-

cludes a higher-order spectral analysis and multitask learning-based convolutional neural 

network is proposed for the identification of the bearing health condition, and second, 

identifying bearing fault conditions by means of a transfer learning-based approach in the 

presence of multiple crack conditions. However, although this proposal leads to the effi-

cient diagnosis of bearing faults, prior knowledge about the implementation and config-

uration of deep learning (DL) techniques is the main limitation to develop complex struc-

tures that are also based on ensemble learning approaches [27]. Moreover, recent DL-

based approaches have to overcome some challenges that must be avoided for practical 

applications. These limitations are: (i) the operation is limited to the amount of data that 

are not easy to obtain in industrial sites; (ii) difficulties and unclear understandable inter-

pretation for practitioners; (iii) generalization-based approaches to avoid overfitted re-

sponses and solutions; and (iv) the strategical hyper-parameter tuning procedures to en-

able its easy access and configuration. Nevertheless, even though good performance re-

sults are obtained, the use of ensemble learning-based on DL results in a complicated task; 

thus, these challenges can be overcome by the proposal of strategies that incorporate 

proper processing techniques, i.e., analysis in the time-domain and frequency-domain, 

and by considering multiple signals that contain different information, but its fusion leads 

to highlighting those representative fault-related patterns. 

Most of the proposed studies that have analyzed and identified the occurrence of 

faults in bearings are commonly focused on analyzing those faults that are related to the 

electrical erosion phenomenon [13,15,28]. In this regard, in the research field, the faults 

produced by electrical erosion are artificially produced by drilling a hole in the outer race, 

inner race and/or by damaging the rolling elements of the bearing [29–31]. Additionally, 

most of the times, the initial damage of bearings can start with small holes that may grow 

gradually until producing irreversible damages; thereby, the importance of studying the 

evolution of faults in bearings is an interesting topic that should continue to be studied. 

On the other side, it should be highlighted that most of the reported works in regard to 

the detection of different severities of bearing faults are validated under experimental da-

tasets, where critical damages are produced on the bearing elements, i.e., excessive dam-

ages produced by drilling holes in the outer race with a diameter higher than 6 mm [32]. 

During the analysis of the occurrence of bearing faults, it would be interesting to study 

the evolution of the fault occurrence, which is a more gradual effect that can happen in 

industrial environments. 

The proposal of condition monitoring strategies have been supported by the use of 

different signal processing techniques that can be based on different domain analyses, i.e., 

time-domain [33,34], frequency-domain [21], and time-frequency domain analysis [35]. 

For the time-domain analysis, the estimation of statistical time-domain features is taken 

into account for many of the proposed diagnosis methods. Statistical time-domain fea-

tures are preferred due to its simplicity of calculation and its effectiveness to model 

changes and trends of signals [18,33]. Despite that, most of the classical approaches aim 

to perform the diagnosis of bearing faults by carrying out the analysis of the characteristic 

fault-related frequency components through the FFT (Fast Fourier Transform) [34]. Fur-

thermore, although the analysis of the fault-related frequency components produced by 

bearing failures leads to achieving the occurrence of faults, additional knowledge and ex-

perience is necessary to distinguish between multiple frequency components that tend to 



Appl. Sci. 2021, 11, 8033 4 of 20 
 

appear as the fault-related frequency patterns. Additionally, time-frequency analysis rep-

resented by complex techniques, such as the Hilbert transform, has been included in con-

dition monitoring strategies [8]. In this regard, Artificial Intelligence (AI) algorithms and 

Machine Learning (ML) techniques have been also incorporated in condition-monitoring 

strategies; thus, diagnosis and classification structures can be based on Neural Networks 

(NNs), Support Vector Machines (SVMs), decision trees, among others, to achieve the au-

tomatic fault diagnosis [16,35,36]. Conversely, the use of ML techniques is implemented 

as feature extraction and feature reduction techniques [37]. Even heuristic search algo-

rithms, such as Genetic Algorithms (GA), are also used in condition monitoring ap-

proaches to solve optimization problems that commonly focus on procedures to select 

those significant features [38]. Accordingly, the consideration of both AI algorithms and 

ML techniques in condition monitoring strategies can lead to improve the resulting fault 

diagnosis; even more, if the proposal of condition monitoring methods is based on the 

fusion of information. 

Bearings are the elements that allow the rotating movement in rotating machines, 

and the sudden occurrence of faults is inherent to its operation. Additionally, the occur-

rence of faults in bearings may initially occur by its degradation, and then, several dam-

ages may appear over the inner race, outer race, and the balls of the bearing. Thus, there 

are different fault severities that occur from the initial failure to its most critical degree. In 

this regard, a condition monitoring methodology designed for identifying different sever-

ities of the outer race bearing fault in an IM is proposed in this work. The proposed 

method is supported by tools, such as Machine Learning (ML) techniques and Artificial 

Intelligence (AI), that facilitate the fusion information of different physical magnitudes. 

Indeed, the contribution and novelty of this proposal include the processing of different 

signals through different domain analyses, that is, the time-domain and frequency-do-

main. In fact, an important aspect of this approach is the calculation of statistical features 

that are obtained to characterize the acquired vibration and stator current signals; the es-

timation of statistical features in different domain analyses leads to a high-performance 

signal characterization. Additionally, the fusion of vibrations with stator current infor-

mation is carried out by subjecting their characteristic statistical features to a dimension-

ality reduction procedure. Thereby, the dimensionality reduction is achieved by the LDA, 

which is classic technique that leads to achieve the maximum linear separation between 

multiple classes and allows the visual representation into a 2D space. Finally, the auto-

matic diagnosis and fault severity identification is performed through a classical NN-

based classifier. The proposed method is validated under a complete set of experimental 

data that was acquired from a self-designed test bench. Moreover, the effectiveness of this 

proposal is proved since six different bearing conditions are effectively diagnosed and 

identified. The assessed conditions comprise a healthy condition and five different sever-

ities of fault that appear in the outer race of a bearing with a damage of 1 mm, 2 mm, 3 

mm, 4 mm, and 5 mm, respectively. 

2. Theoretical Background 

2.1. Bearing Faults in Electric Motors 

The rotating movement of the electrical machines, such as IM, is produced by means 

of the bearing elements; therefore, its proper operation ensures the availability of such 

electric machines [14]. The occurrence of failures in bearings may be to different sources; 

indeed, different types of failures may appear in bearings; in this sense, the most studied 

faults in bearings are related to problems that appear in the inner race, outer race, cage, 

and balls. Although the common occurrence of faults in bearings can be produced by 

overloads, the electrical discharge is also considered a critical issue that can lead to the 

appearance of faults in bearings [15]. 

This issue is also known as electrical erosion, and it is considered as a phenomenon 

produced by the current leakage; specifically, this phenomenon produces a micro-scaling 



Appl. Sci. 2021, 11, 8033 5 of 20 
 

of the rolling surfaces [39]. Thereby, the current leakage usually occurs during the IM op-

eration generating small craters on the bearing surfaces (outer and/or inner races), and 

this damage appears since the leakage of currents travels through the rolling elements 

(bearing balls) from the outer race to the inner race, as shown in Figure 1a. Subsequently, 

on the contact surfaces, a similar process to the electric arc welding arises, that is, a high 

current density on small contact surfaces, as Figure 1b depicts. Then, as shown in Figure 

1c, the material is heated to high temperatures, where the bearing material may experi-

ment with a temperature ranging from the temper level to the melt level. As a conse-

quence, the appearance of discolored areas and the appearance of craters occur in those 

areas where the material has been melted and removed due to the rotation of the rolling 

element. Finally, the excess material that adhered to the rolling elements of the bearing 

wears away, as shown in Figure 1d. 

  
(a) (b) 

  
(c) (d) 

Figure 1. Electrical erosion produced on the bearing surfaces by means of the current leakage phe-

nomenon that consist of: (a) the crossing of the electric current through the rolling elements; (b) the 

electric arc welding occurs between the rolling elements and bearing surfaces; (c) the molten mate-

rial solidifies and then separates; (d) the excessive material in the rolling elements wears away. 

In this sense, electric erosion is considered one of the main causes of the gradual deg-

radation of bearings in electric machines such as IMs; indeed, such phenomenon may pro-

duce the sudden appearance of damages on the outer and/or inner races of the bearing 

[13]. Although, initially, the failures produced on the outer and/or inner races may not 

affect the operation of the electric machines; the quick evolution of the bearing degrada-

tion can cause several issues in electric machines, even their unexpected breakdown. 

Thereby, in real applications, when craters are produced in the outer race and/or the inner 

race of the bearing, the generation of impacts when the rolling elements pass through 

them is produced. In fact, as it is known and according to the theoretical basis of bearings 

operation, when they are working under the influence of defects in the inner-race and/or 

outer-race, it affects the whole bearing system due to the influence of the induced impacts 

that result from balls coming into contact with the damaged area during the rotating op-

eration of bearings. Even though these impacts are usually generated at intervals of time 

that are influenced by the severity (size) and shape of the fault, its occurrence may or may 

not appear depending on the severity of the damage [40]. 

2.2. Classic Fault-Related Patterns Produced by the Occurrence of Faults in Bearings 

The identification of bearing faults through vibration-based analysis has been con-

sidered as a reliable diagnostic approach that has been widely accepted by the industrial 

sector. On the other hand, the analysis of vibrations by means of frequency-domain tech-

niques, such as the FFT, has been widely implemented because this technique allows rep-

resenting the discrete and periodic components of signals into a frequency plane, where 

the characteristic and most representative frequency components are projected [34]. Ac-

cordingly, dealing with the diagnosis of bearing faults, the vibration spectra are used for 



Appl. Sci. 2021, 11, 8033 6 of 20 
 

detecting the occurrence of faults in bearings. As it is known, the common failures in bear-

ings are associated to defects in the outer race, inner race, rolling elements, and the cage. 

Thereby, the occurrence of any of these faults may produce a characteristic pattern that 

can be associated a specific frequency component. Hence, to assess the faults in the bear-

ings, it is mandatory to know fault-related frequency components that are produced by 

the sudden occurrence of bearing faults [12]. In this regard, the identification of bearing 

defects can be performed by locating their fault-related frequencies over the vibration 

spectrum; in fact, high amplitudes on the fault-related frequency components are due to 

the fault appearance. Therefore, the mathematical equations to identify defects in the 

outer race, inner race, and balls of bearings are related to the fault-related components of 

Equations (1) and (2), respectively. With the calculation of the BPFO (Ball Pass Frequency 

of the Outer race) and BPFI (Ball Pass Frequency of the Inner race) components, it is pos-

sible to locate the fault-related frequency components in the frequency spectrum and de-

termine the presence of bearing faults on the outer race and inner race. It should be noted 

that these fault-related frequency components are computed in terms of the number of 

rolling elements (balls), Nb; the ball diameter, BD; the pitch diameter, PD; the contact an-

gle, ϴ; and the rotational frequency, frm, [41]. 

���� =
��

2
��� �1 −

��

��
cos �� (1) 

���� =
��

2
��� �1 +

��

��
cos �� (2) 

2.3. Machine Learning-Based Feature Reduction 

Most of the proposed condition monitoring approaches include the estimation of 

high-dimensional sets of features as a part of the diagnosis procedure. Precisely, the fea-

ture calculation is carried out aiming to obtain the characteristic patterns associated to 

malfunction operations. Thus, the sets of features are obtained from signals that describe 

the behavior of a system, i.e., an electromechanical system. Subsequently, unhelpful and 

correlated information may be estimated if a large number of features is estimated. In this 

sense, the application of machine learning-based feature reduction techniques represents 

a practical solution to retain the most significant and representative information. 

Thus, the Principal Component Analysis (PCA) and the Linear Discriminant Analy-

sis (LDA) are within the best well-known techniques used to reduce the dimensionality of 

a high-dimensional set of features. The PCA is an unsupervised linear method that allows 

reducing the dimension of a correlated data set to a linear space of unrelated indicators 

while preserving the greatest possible variance. The application of the PCA results in the 

extraction of a new set of features that are sorted according to the cumulative variance 

that preserves and are known as principal components [5,11,42]. On the other hand, the 

LDA is a supervised linear method that allows a dimensionality reduction by extracting a 

new set of features, in which the maximization of the data separability is achieved for a C 

number of considered classes. Although both methods have been widely used in several 

condition monitoring strategies, the implementation of the LDA is appropriated to be ap-

plied in multi-class problems leading to high effectiveness during the condition assess-

ment [19,37]. 

3. Proposed Method 

The proposed condition monitoring method for the detection of different fault sever-

ities in the outer race of bearings is based on the flowchart in Figure 2. The assessment of 

different fault severities in the outer race of bearings is carried out by characterizing the 

available physical magnitudes, vibrations, and stator current through the estimation of a 

significant set of hybrid features that include statistical features from different domains. 

Moreover, the information fusion and data compression are considered fundamental 

parts of the proposed method. In this sense, the estimated hybrid features are fusioned 

and represented in a 2-dimensional space by means of applying one of the most well-
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known machine learning techniques, the LDA. Finally, the automatic assessment and de-

tection of different fault severities on the outer race bearing of an IM are achieved by 

means of an NN-based classifier. The diagnosis methodology is proposed by following a 

step-by-step scheme that allows its practical application over electromechanical systems 

that are related to rotating machinery, such as IM, gearboxes, shafts, among others. Under 

this consideration, the proposed diagnosis methodology represents an approach that 

leads to the characterization of the bearing operation and its posterior recognition. 

 

Figure 2. A flow chart of the proposed condition monitoring method for the diagnosis and detection of multiple fault 

severities that may occurred in the outer race of bearings in IM’s. 

3.1. Hybrid-Based Feature Calculation 

The proposed method supports different or multiple physical magnitudes, despite 

vibration signals being the most preferred physical magnitude to diagnose the fault oc-

currence in bearings. In this proposal, the processing of different signals to achieve an 

improved characterization of the electromechanical system condition is considered, 

which, in turn, is related to the bearing condition. Thus, in the first stage, the three avail-

able signals (two vibration signals and one stator current) are characterized with the aim 

of computing a meaningful set of hybrid features. Subsequently, the processing of the 

available signals is carried out in two domains, that is, the time-domain (TD) and fre-

quency-domain (FD). During the characterization procedure, the acquired signals are seg-

mented into equal parts of one second; the consideration of this temporal period guaran-

tees sufficient statistical consistency in most of the practical applications. 

In this regard, for the TD analysis, the available signals are characterized by estimat-

ing a set of T = 15 statistical features, and as a result, two representative T-dimensional 

feature matrices are obtained from the considered signals. Thereby, the characteristic fea-

ture matrix in the TD for the vibrations signals is M�� and for the stator current is M��, 

where T ∈ ℝT. On the other side, for the FD analysis, from each segmented part of the 

available signals, its corresponding frequency spectrum is computed through the classical 

application of the FFT technique. Subsequently, from each achieved frequency spectrum 

for each considered signal, a set of F = 14 statistical features is estimated aiming to obtain 

a numerical representation of the previously estimated frequency spectra. After applying 

the FD analysis, two significant F-dimensional feature matrices are obtained separately 

for the vibration signals and the stator current. The characteristic feature matrices in the 

FD are  M�� for vibrations and M�� for stator current, where F ∈ ℝF. 

The characterization of signals by means of its processing through different domain 

analyses, such as TD and FD, allows improving the characterization of the fault-related 

patterns because it has been proved to ensure that promising results are achieved in the 

condition assessment when a meaningful set of hybrid features is estimated. Regarding 
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the statistical features that are proposed to be estimated during the processing of the vi-

bration and stator current signals in TD and FD analyses, the corresponding mathematical 

equations of the proposed sets of statistical features are summarized in Tables 1 and 2; 

these proposed sets of features have been usually considered in several condition moni-

toring approaches [33–35]. Thus, the statistical features computed in the TD are repre-

sented by Equations (3)–(17), while those computed in the FD are represented by Equa-

tions (18)–(30). The estimation of these sets of statistical features provides several ad-

vantages in condition monitoring strategies, that is, high-performance signal characteri-

zation due to its ability of modeling trends and changes in signals when its estimation is 

performed in TD, whereas the calculation of statistical features in FD allows modeling 

changes in the main frequency components with a high convergence to the power spec-

trum. Furthermore, in regard to the computational burden, the easy computation of sta-

tistical features shows an advantage over other complex signal processing, such as DWT 

and MUSIC, among others [10,21]. 

Table 1. The proposed set of statistical features for the characterization of the available signals dur-

ing the processing in the time-domain analysis, where x(i) is a sample for i = 1,2,…,N, and N is the 

number of points for each acquired signal. 

Statistical Time-Domain Feature Mathematical Equation  

Mean �� =
1

�
∙ � |��|

�

���
 (3) 

Maximum value �� = ���(�) (4) 

Root mean square �� = �
1

�
∙ � (��)

�
�

���
 (5) 

Square root mean �� = �
1

�
∙ � �|��|

�

���
�

�

 (6) 

Standard deviation �� = �
1

�
∙ � (�� − ��)�

�

���
 (7) 

Variance �� =
1

�
∙ � (�� − ��)�

�

���
 (8) 

RMS Shape factor �� =
��

1
�

∙ ∑ |��|
�
���

 (9) 

SRM Shape factor �� =
��

1
�

∙ ∑ |��|
�
���

 (10) 

Crest factor �� =
��

��
 (11) 

Latitude factor ��� =
��

��
 (12) 

Impulse factor ��� =
��

1
�

∙ ∑ |��|
�
���

 (13) 

Skewness ��� =
∑[(�� − ��)�]

��
�  (14) 

Kurtosis ��� =
∑[(�� − ��)�]

��
�  (15) 

Fifth moment ��� =
∑[(�� − ��)�]

��
�  (16) 

Sixth moment ��� =
∑[(�� − ��)�]

��
�  (17) 
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Table 2. The proposed set of statistical features for the characterization of frequency spectra esti-

mated from each available signal during its processing in the frequency-domain analysis, where s(k) 

is a spectrum for j = 1,2,…,M, and M is the number of lines with fj as the frequency value of the jth 

spectrum line. 

Statistical Feature Mathematical Equation  

Mean �� =
1

�
∙ � �(�)

�

���
 (18) 

Variance �� =
1

� − 1
∙ � (�(�) − ��)�

�

���
 (19) 

Third moment �� =
1

������
� ∙ � (�(�) − ��)�

�

���
 (20) 

Fourth moment �� =
1

������
� ∙ � (�(�) − ��)�

�

���
 (21) 

Grand mean �� =
∑ �� �(�)�

���

∑ �(�)�
���

 (22) 

Standard deviation 1 �� = �
∑ ��� − ���

�
 �(�)�

���

�
 (23) 

C Factor �� = �
∑ ��

� �(�)�
���

∑ �(�)�
���

 (24) 

D Factor �� = �
∑ ��

� �(�)�
���

∑ ��
� �(�)�

���

 (25) 

E Factor 
�� =

∑ ��
� �(�)�

���

�∑ �(�)�
���  ∑ ��

� �(�)�
���

 
(26) 

G Factor ��� =
F�

��
 (27) 

Third moment 1 ��� =
∑ ��� − ���

�
 �(�)�

���

� ��
�  (28) 

Fourth moment 1 ��� =
∑ ��� − ���

�
 �(�)�

���

� ��
�  (29) 
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��
 (31) 

3.2. Feature Extraction and Fusion Domain 

The second stage of the proposed method is focused on performing the information 

fusion and data compression by means of the LDA technique. In this sense, it must be 

highlighted that the evaluated condition is represented by the available signals that are 

characterized by a high-dimensional set of hybrid features, where this meaningful set of 

features comprises the characteristic patterns of the available signals that are processed in 

different domains. Even though the characterization of signals through a hybrid set of 

features leads to a high-performance characterization in condition monitoring strategies, 

the estimation of correlated and non-useful information is inevitable even if complex sig-

nal processing is implemented. 

In this regard, the LDA technique is applied over all the resulting feature matrices 

(M��, M��, M��, and M��) estimated from analyzing the vibration and stator current sig-

nals in two different domains, TD and FD. The main objective of the LDA is reducing the 

original high-dimensional space of the hybrid set of features into a low-dimensional 



Appl. Sci. 2021, 11, 8033 10 of 20 
 

space, where the features of the hybrid set are fusioned during the dimensionality reduc-

tion procedure. The information fusion and/or feature fusion is symbolized by the linear 

combination, in different weights, of the original set of features (high-dimensional set of 

hybrid features) that is intended to be projected into a new and reduced dimensional 

space (i.e., 2D or 3D spaces). The new resulting features projected in the new reduced 

space are also known as the extracted features. 

Consequently, the fusion of vibrations and the stator current is represented by the 

new extracted features, and the resulting projection contains the fusion of information 

provided by statistical features estimated from different signal processings in both do-

mains, TD and FD. On the other hand, the LDA is a suitable machine learning technique 

to be applied in condition monitoring methodologies due to the projection of the extracted 

features into a 2D space allows the visualization of all considered conditions. Addition-

ally, it may deal with multi-class problems, but this peculiarity is an advantage since the 

LDA may maximize the linear separation as much as possible between clusters of different 

classes. 

3.3. Classification and Severity Diagnosis 

Finally, in the third stage, the automatic fault detection and severity diagnosis by 

means of a classical NN-based structure are performed. It should be highlighted that an 

interesting advantage of the proposed hybrid-based feature calculation in conjunction 

with the feature extraction and fusion domain is that it leads to a reduction in the com-

plexity related to the configuration of the required classification algorithm; that is, a high-

performance pattern characterization of the considered conditions is achieved facilitating 

the classification task. 

In this regard, the following parameters are taken into account for the proposed NN-

based classifier: (i) the structure consists of a simple multi-layer NN that comprises three-

layers: the input, hidden, and output layers; (ii) the number if neurons for each layer are 

defined as two, ten, and six neurons for the input, hidden, and output layer, respectively; 

(iii) the backpropagation is used as the training algorithm; (iv) the sigmoid function is 

used as the activation function; (v) 50 epochs are the number of iterations. Specifically, the 

number of neurons considered in the input layer is equal to the number of features ex-

tracted by means of the LDA technique, and for this proposed work, the features extracted 

by the LDA are represented in a 2D space. For the hidden layer, the number of neurons is 

fixed to ten neurons, which have been defined by following the literature suggestions 

[43,44]. Such literature suggestions are supported by the results obtained in practices of 

performance analysis based on trial and error for the selection of the number of neurons 

in the hidden layer [45]. In the output layer, a number of neurons equal to six are consid-

ered, where each neuron considered in the output layer represents each one of the evalu-

ated conditions that are associated to a particular fault severity in the outer race of bear-

ings. Moreover, it should be mentioned that the proposed NN-based classifier is trained 

and tested under a k-fold cross-validation scheme to obtain statistical and significant re-

sults. During the training and testing of the NN-based classifier, the sigmoid function is 

used as the activation function, and the backpropagation is used as the training algorithm 

during 50 epochs. Additionally, even though optimization algorithms can be optionally 

used to improve the performance of some NN-structures during the training procedure. 

The proposed multi-layered NN-based classifier is not supported by any optimizer algo-

rithm since it is a simple multi-layer construction. In Figure 3, the structure of the pro-

posed multi-layer NN-based classifier is shown. 
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Figure 3. The multi-layer structure of the proposed NN-based classifier for assessing the different 

bearing conditions under study. 

4. Experimental Setup 

4.1. Electromechanical Test Bench Based-System 

The proposed methodology is validated under a complete set of experimental data. 

In this sense, an electromechanical test bench-based system is used to evaluate different 

fault severities in a bearing element. The electromechanical system is a self-designed la-

boratory test bench, and it is based on a pulley-belt system as the flow chart in Figure 4. 

shows. The electromechanical system includes a 971-W three-phase induction motor (IM) 

(model is WEG00136APE48T) with one pair of poles, and the IM is fed through a variable 

frequency driver (VFD) (model WEGCFW08) with 220 VAC as a power supply; the use of 

the VFD allows controlling the rotational speed of the IM. Additionally, a conventional 

alternator is used as a mechanical load, and it is coupled to the IM using the pulley-belt 

system, as Figure 4 shows; the alternator comprises approximately 25% of the nominal 

load of the IM. 

Regarding the acquired signals, the occurrence of vibrations in the IM and the stator 

current consumption of one of its three phases are continuously monitored and acquired 

by a data acquisition system (DAS), which is a proprietary low-cost design based on FPGA 

(field-programmable gate array) technology. The proprietary DAS has a serial-output 

sampling analog-to-digital converter with 12 bits and 4 channels (model ADS7841). Thus, 

the mechanical vibrations that are produced in the electromechanical system are acquired 

through an accelerometer sensor model LIS3L02AS4 that is placed on the top of the IM 

case; in this sense, the acquired vibrations are those produced on the perpendicular plane 

of the rotating axis of the IM shaft, as illustrated in Figure 4. On the other hand, the stator 

current of one of the three phases of the IM is measured through a hall-effect sensor from 

Tamura Corporation (model L08P050D15); such a sensor is capable of measuring up to 50 

Amps with a high linearity response (1%). Thereby, the hall effect sensor is placed be-

tween the VFD and the IM in power supply lines, as is shown in Figure 4. Each of the 

considered sensors is individually mounted on a PCB that includes the corresponding 

anti-alias filter and signal conditioning. The sampling frequencies used to acquire the oc-

currence of vibrations and the stator current consumption were set to 3000 Hz and 6000 

Hz, respectively. 

…
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Figure 4. A flow chart of the electromechanical system based on a pulley-belt system and its wiring 

to perform the acquisition of vibrations signals and the stator current signature. 

4.2. Considered Conditions under Evaluation 

As aforementioned and according to the theoretical basis of the bearing operation, 

impacts are induced over the whole bearing system when bearings are working under the 

influence of defects in the inner race and/or outer race, such impacts appear when the 

balls get in contact with the damaged area during the rotating operation of bearings. Thus, 

these impacts usually appear at intervals of time that are influenced by the severity (size) 

and shape of the fault. Therefore, regarding the assessed conditions, different fault sever-

ities in one of the bearing elements of the IM are experimentally tested under different 

rotational speed conditions; specifically, the end-drive bearing of the IM (model 6203) is 

that bearing under evaluation. 

Consequently, six different bearing conditions are taken into account during the ex-

perimentation. The evaluated conditions are the healthy condition (HC) and five different 

fault severities that are artificially induced on the outer race of the bearing. To generate 

the different fault severities, five identical bearings are damaged with different tungsten 

drill bits with diameters of 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm; thus, by drilling a com-

pletely through-hole that passes the outer race of each identical bearing, five bearing fault 

severities (S1, S2, S3, S4, and S5, respectively) are produced. In Figure 5, the damaged 

bearings are shown. 

Accordingly, during the experimentation, different values are considered to be set as 

the supply frequency in the VFD, aiming to produce different rotational speeds in the IM; 

thus, each bearing condition (HC, S1 to S5) is iteratively tested under different values of 

supply frequency that are set in the VFD, that is, 5 Hz, 15 Hz, 50 Hz, and 60 Hz. In this 

sense, for each supply frequency, the vibration signals and the stator current are continu-

ously measured, acquired, and stored in a personal computer for posterior analysis. 

Therefore, each bearing condition is tested 15 times under each considered supply fre-

quency, and the vibrations and current signals are acquired during 10 s of the steady-state 

operation of the IM; as a result, for each bearing condition, 150 s of the measured signals 

are acquired. 
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Figure 5. The set of damaged bearings experimentally tested in the IM of an electromechanical sys-

tems. The damaged bearings are damaged in their outer race with a severity of damage of: 1 mm 

(S1), 2 mm (S2), 3 mm (S3), 4 mm (S4), and 5 mm (S5). 

5. Results and Discussions 

To validate the effectiveness of the proposed method in front of the diagnosis and 

detection of the different severities of bearing faults, the method is applied to the available 

signals that are acquired from the pulley-belt electromechanical system; such signals are 

the two vibration signals and the stator current signature. Hence, as described in Section 

3.1, these signals were acquired during 150 s of the continuous operation of the IM, and 

its processing is carried out under Matlab, which is a dedicated software used in a great 

deal of engineering applications. According to the proposed method, each one of the ac-

quired signals is segmented into equal 1-second parts to generate a consecutive set of sam-

ples; afterward, the multi-domain analysis is performed over each one of the segmented 

parts of the signals to perform the signal characterization in two different domains, that 

is, DT and DF. Moreover, the proposed multi-domain analysis leads to achieve high-per-

formance characterization of the electromechanical system operation, which, in turn, is 

associated with the different bearing conditions. 

In this regard, for the TD analysis, the set of 15 statistical features is computed from 

each segment of each available signal; thus, for both vibration signals, a feature matrix 

with 30 statistical features and 150 samples (dim(M��) = (150 × 30)) is achieved; meanwhile, 

the feature matrix achieved from the stator current consists of 15 statistical features with 

150 samples (dim(M��) = (150 × 15)). On the other hand, in the FD analysis, from each 

segmented part of each available signal, the corresponding frequency spectrum is esti-

mated by means of applying the FFT technique, and then, from each resulting spectrum, 

the set of 14 statistical features is calculated to characterize each corresponding spectrum 

into a set of representative numerical values. Thereby, for both vibrations signals analyzed 

in FD, a feature matrix with 28 statistical features and 150 samples (dim(M��) = (150 × 28)) 

is computed; whereas, for the analysis in FD of the stator current signature, a characteristic 

feature matrix that contains 14 statistical features with 150 samples (dim(M��) = (150 × 14)) 

is achieved. Consequently, for each evaluated condition, a high-dimensional set of hybrid 

features that contain the characteristic patterns is computed. The high-dimensional set of 

hybrid features includes the four representative feature matrices: M�� , M�� , M��, and 

M��, which are estimated after analyzing each one of the available signals in two different 

domains (TD and FD). Hence, the resulting dimension by concatenating the features ma-

trices consist of 87 statistical features in TD and FD with 150 consecutive samples 

(dim([M��, M��, M��, M��]) = (150 × 87)). Additionally, it should be clarified that these 

representative feature matrices are estimated for each one of the considered conditions 

that is experimentally tested under the considered supply frequencies fixed in the VFD (5 

Hz, 15 Hz, and 50 Hz). 

In order to carry out the information fusion and data compression, the high-dimen-

sional set of hybrid features are subjected to the feature extraction procedure by means of 

applying the LDA technique. In this sense, the whole resulting feature matrices, consid-
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ering all supply frequencies and all bearing conditions, are concatenated, as shown in Ta-

ble 3. From Table 3, it must be noted that all considered conditions, HC, S1, S2, S3, S4, and 

S5, are concatenated as row elements, where each condition includes its corresponding 

feature matrices achieved by analyzing the vibration signals in TD and FD, M��and M��, 

respectively, and also includes its corresponding feature matrices achieved by analyzing 

the stator current signature in TD and FD, M�� and M��, respectively. In regard to the 

domain of analysis, the resulting feature matrices are concatenated as column elements, 

as shown in Table 3. Additionally, for the different values of supply frequency, each tested 

condition includes the corresponding feature matrices that are particularly estimated 

from the vibrations and stator current signals when the frequencies in the VFD are set to 

5 Hz, 15 Hz, and 50 Hz. Such supply frequencies are addressed in Table 3 as @5 Hz, @15 

Hz and @50 Hz, respectively. 

Subsequently, the LDA technique is applied over all concatenated matrices, aiming 

to perform the fusion of information, that is, the fusion of statistical features estimated 

from multiple signals analyzed in both domain analyses, DT and DF. The information 

fusion stage is achieved because the LDA is based on a linear transformation that projects 

the information of the original feature space (87-dimensional space) into a new and re-

duced feature space (2-dimensional space). The resulting projection symbolizes the linear 

combination, in different weights, of the original set of features (high-dimensional set of 

hybrid features), where the most representative information of all considered features is 

retained. In fact, those features that have a high weight, in the linear combination, have a 

high influence over the resulting projection. In contrast, those insignificant features may 

have a lower influence and a low weight that does not have significant influence over the 

resulting projection. 

Table 3. The arrangement of feature matrices that are subjected to the feature extraction and fusion 

domain procedure. 
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After applying the LDA technique over the hybrid set of features of all considered 

conditions, the original 87-dimensional feature space is projected into a 2-dimensional 

space, where the projected features belong to the new set of extracted features. In Figure 

6, a visual representation of the new extracted features achieved by means of the LDA 

technique is shown. From this resulting projection, it can be appreciated that different 

clusters appear separated between them; each cluster represents each one of the consid-

ered conditions evaluated under different operating supply frequencies (5 Hz, 15 Hz, and 

50 Hz). Moreover, although the clear separation between all considered conditions is de-

sired, a slight overlapping appears between the conditions S3 and S5; such overlapping 

may lead to achieving a lower performance of classification performance during the con-

dition assessment. However, on the other hand, it should be highlighted that the HC is 

well separated from all faulty conditions, and this fact results in avoiding false negatives 

during the condition assessment, which is an advantage because the proper working con-

dition of rotating electrical machines is assured. From the obtained projection of Figure 6, 

it must be highlighted that the proposed signal characterization by means of the statistical 
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features estimated from different signals in different domains, and its fusion and com-

pression through the LDA can lead to a wide range of operating frequencies that, in in-

dustrial environments, cover the common ranges of rotating speeds for any considered 

electrical machine. 

 

Figure 6. The resulting 2-dimensional LDA projection achieved over all considered conditions, that 

is, HC, S1, S2, S3, S4, and S5. 

Previous to the application of the automatic diagnosis and severity detection, aiming 

to emphasize the effectiveness of the proposed method in regards to the consideration of 

different signals and in regards to their processing in different domains, in Figure 7a,b the 

qualitative representations are shown, which were achieved by means of a PCA projection 

over the representative feature matrices estimated from analyzing the vibrations signals 

in both domains, TD and FD, respectively. In both resulting projections, the data distribu-

tions of all considered conditions can be appreciated, and from Figure 7a,b, it can be also 

seen that the characterization of vibration signals in the TD may contribute to the separa-

tion of the S2, S3, S4, and S5 conditions. Conversely, the characterization of the vibrations 

signals through the FD leads to the separation of S1, S2, S3, and S4 conditions. Therefore, 

the fusion of the information calculated from different signals and different domains will 

improve the contribution in the face of the separation of the considered conditions. 
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(a) (b) 

Figure 7. Two-dimensional PCA projection performed over all considered conditions: HC, S1, S2, S3, S4, and S5, and 

applied to the statistical features estimated from vibration signals in both analysis domains: (a) DT and (b) DF. 

Subsequently, the automatic condition assessment and fault severity identification is 

carried out by means of the proposed NN-based classifier; thereby, the new features ex-

tracted by the application of the LDA are evaluated through the proposed classifier. As 

mentioned previously, the NN-based structure consists of three layers, where the input, 

hidden, and output layers have a number of neurons defined as 2, 10, and 6, respectively. 

Additionally, the NN-based classifier is trained and tested under a k-fold cross-validations 

scheme with a number of k = 5 folds, and the NN is trained and tested during 50 epochs 

through a probabilistic sigmoid function that is used as the activation function. Hence, 

each considered condition is represented by a total number of samples equal to 450, from 

which 360 samples are used for training purposes and the remaining 90 samples are used 

for validation purposes. As a result, during the training and validations of the proposed 

NN, global classification ratios around 98.9% and 98.7% are achieved, respectively. In Ta-

ble 4, the confusion matrix that summarizes the individual classification scores performed 

by the NN-based classifier is shown. As can be seen, most of the misclassifications are 

between faulty conditions, which proves that the prediction of false negatives is avoided. 

Additionally, for the training of the NN-based classifier, the decision regions of all 

considered conditions are modeled and estimated to be projected over a 2D plane. Subse-

quently, in Figure 8, the resulting decision regions is shown, and over these regions, the 

set of samples that have been considered during the validation process are projected. On 

the other side, the associated diagnosis probability can also be estimated for those samples 

that are associated with misclassification problems, and the analysis of such associated 

diagnosis probability may lead to a re-classification by assigning its appropriated true 

class. 
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Table 4. The confusion matrix achieved during the training and validation of the proposed NN-

based structure. 

  True Class 

  Training Validation 

  HC S1 S2 S3 S4 S5 HC S1 S2 S3 S4 S5 

A
ss

ig
n

e
d

 C
la

ss
 HC 360 0 0 1 0 0 89 0 0 0 0 0 

S1 0 351 1 0 0 0 0 89 1 0 0 0 

S2 0 9 359 0 0 0 1 1 89 0 0 0 

S3 0 0 0 352 0 5 0 0 0 88 0 2 

S4 0 0 1 1 360 0 0 0 0 0 90 0 

S5 0 0 0 6 0 355 0 0 0 2 0 88 

 

Figure 8. The resulting decision regions achieved during the training of the NN-based classifier for 

detecting the considered bearing fault severities. 

6. Conclusions 

Most industrial machines are based on electromechanical systems or kinematic 

chains that are mainly driven by electrical rotating machines, such as IMs, where bearings 

are the elements that allow its rotating movement, and the sudden appearance of faults is 

inherent to its operation. In this regard, in this work, a condition monitoring methodology 

designed for identifying different severities of the outer race bearing fault in an IM is pro-

posed. The proposed method is supported by tools, such as Machine Learning (ML) tech-

niques and Artificial Intelligence (AI), that facilitates the fusion information of different 

physical magnitudes and that leads to high-performance pattern characterization. Specif-

ically, this work proposes the fusion information of different physical magnitudes, such 

as vibrations and stator current, which are characterized through a hybrid set of statistical 

features that is estimated by the signal processing in two different domains: the time-do-

main and frequency-domain. This proposal aims to promote the detection of different 

fault severities in the outer race of a bearing can be effectively performed by the use of 

multiple physical magnitudes, such as vibrations and stator current, that are processed in 

multiple domains, leading to high-performance signal characterization. In fact, the detec-

tion and evolution assessment of incipient faults that appear in bearings can be a complex 

task since the fault-related patterns may not show significant changes compared to when 

several damages are induced; that is, the identification of fault graduality may be difficult 

whether physical magnitudes, such as stator current, show small changes and/or varia-

tions in amplitude. Thus, the main contributions of this work include the use of different 
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physical magnitudes for estimating the characteristic patterns associated to the bearing 

condition; indeed, the estimation of statistical features through different domain analyses 

results in high-performance signal characterization. Moreover, the use of ML techniques, 

such as the LDA, allows performing the fusion of information because the compression 

and reduction of information is carried out by mapping, with different weights, the orig-

inal feature space into a new space of lower dimension (i.e., 2D). Consequently, the char-

acterization of vibration and stator current signal through statistical features from differ-

ent domains, together with its fusion through the LDA technique, facilitates the classifi-

cation task performed by the NN-based classifier. In this regard, it is proved that, by 

means of the proposed method, a global classification ratio higher than 98.7% is obtained 

during the diagnosis of different fault severities that may appear in the bearing outer race. 

On the other side, the proposed approach presents a coherent design of the structure that 

includes Machine Learning and Artificial Intelligence that, in comparison with other re-

lated works that propose ensemble learning structures based on Deep Learning, allows 

correctly identifying different severities in the outer race of bearings. Moreover, it should 

be highlighted that this proposed methodology has been designed to overcome and face 

the occurrence of unexpected faults that may appear insignificant but may gradually in-

crease until producing irreversible damages. The proposed method is validated under a 

complete set of experimental data that considered a healthy condition (HC) and five se-

verities in the outer race of a bearing (S1, S2, S3, S4, and S5). For future work, the analysis 

of the remaining useful life remains a research topic that must be addressed, and the anal-

ysis of combined faults that may occur simultaneously in different parts of bearings also 

needs to be addressed. Additionally, it has been detected that the proposal of condition 

monitoring strategies that may be capable of assessing the bearing condition inde-

pendently of the bearing technology, i.e., metallic, hybrid, and full ceramic bearings, is 

also necessary. The obtained results make the proposed method suitable for application 

to condition assessments of machinery involved in industrial applications. 
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