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• A performance comparison of all relevant SRA metrics to date is presented. 

• A new SRA metric named Criticality-Slack-Sensitivity index (CSS) is proposed. 

• CSS is the top-performing metric in one-off calculation mode. 

• The Schedule Sensitivity Index (SSI) is the best metric in iterative calculation. 

• The duration of construction projects can be significantly shortened using SRA. 
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Schedule Risk Analysis 2 

 3 

Abstract 4 

In Schedule Risk Analysis (SRA), activity sensitivity metrics measure the importance 5 

of activities in a project schedule. Highly sensitive activities are those more likely to increase 6 

project duration variability and/or cause project duration extensions. Several activity 7 

sensitivity metrics have been proposed over the years, but a comparison of all of them has 8 

never been made. This has made it difficult to know which metrics perform better and under 9 

what circumstances. 10 

In this paper, an extensive comparison of all relevant SRA activity sensitivity metrics 11 

is performed using a set of 4100 artificial projects. Unlike previous studies, the comparison 12 

framework is decoupled from corrective actions (e.g. activity crashing) which allows the 13 

merits of each metric to be assessed individually. Additionally, a new metric that performs 14 

better for overall sensitivity ranking is proposed. Results show that most sensitivity metrics 15 

do not perform well unless they are applied iteratively (the sensitivity of the remaining 16 

scheduled activities has to be recalculated whenever the duration variability of at least one 17 

activity has been restricted). However, if applied iteratively, most metrics can enhance 18 

project monitoring and control, while significantly shortening project duration. 19 

 20 

Keywords: scheduling; schedule risk analysis; activity sensitivity; project delays; project 21 

control.  22 



1. Introduction 23 

Schedule risk analysis (SRA) is a simulation technique that allows project managers 24 

to identify the critical schedule components that may have the biggest impact on project 25 

objectives [1]. SRA is a prominent project monitoring and control technique, maybe only 26 

surpassed in popularity by the Earned Value Management (EVM), a technique with which 27 

SRA can be combined resulting in what is known as Dynamic project scheduling [2]. 28 

However, whereas EVM is predominantly a ‘reactive’ technique (EVM measures 29 

actual time and/or cost deviations with respect to a baseline), SRA is a proactive technique. 30 

SRA identifies which schedule components (normally a subset of activities) are key to 31 

delivering the project on time and/or budget even before those components have actually 32 

started. Identifying those key components allows the project manager to focus on the project 33 

tasks that really matter, that is, to be more efficient. 34 

Economy and productivity have always been crucial aspects of construction 35 

management [3], but even so, projects ending late and/or suffering from cost overruns are still 36 

a widespread phenomenon [4]. Maybe not that surprisingly though, poor planning, 37 

monitoring and control practices usually stand out as the most relevant factors causing project 38 

overruns [5]. In this context, every tool that shows promise in alleviating this problem is 39 

worth considering. 40 

Over the years, SRA has produced a series of metrics that allow the activities that are 41 

more ‘important’ than others to be discriminated mathematically. Scientific literature 42 

frequently refers to these as activity ‘sensitivity’ measures or just ‘SRA metrics’ [6]. 43 

Basically, these metrics rank activities by giving them a number (generally ranging from 0 to 44 

1) reflecting their relative importance. Once these values are known, the project manager can 45 

also set a numerical threshold, which can be dynamically adjusted later, if necessary. All 46 

activities whose metric value exceeds the threshold should be monitored more closely during 47 



execution. By ‘monitoring’ researchers generally mean that it should be ensured that those 48 

activity durations do not exceed their planned durations [7], otherwise the project duration 49 

and/or cost will surely be negatively impacted. 50 

Previous comparisons of these metrics have also simulated the effect of some 51 

corrective actions that are taken when highly sensitive activities suffer from time overruns 52 

[6]. This approach has some advantages when reflecting on how these metrics can be applied 53 

in real contexts. However, it also has a critical disadvantage: the effects of SRA are mixed up 54 

with the outputs of those corrective actions. This makes it very difficult to distinguish which 55 

are the real benefits of implementing SRA on its own, and also, under which circumstances 56 

each SRA metric performs best. 57 

In the same vein, previous studies have combined SRA with some scheduling 58 

compression techniques (e.g. activity crashing, activity fast-tracking or activity substitution) 59 

[8]. Scheduling compression techniques undoubtedly have an important place in project 60 

planning, monitoring and control. However, they serve a very different purpose: to shorten 61 

the schedule either beforehand and/or during the project execution stage. Project managers 62 

always try to find a balance between a sufficiently short project duration and the increased 63 

risk, money or resources that such a schedule configuration involves. Once a suitable balance 64 

is found (because there is no more money, resources, or just because it becomes too risky or 65 

technically impossible to shorten it any more), SRA can be implemented to measure the 66 

activity sensitivity and ensure that the project is delivered as planned. 67 

Consequently, the aim of SRA is to ensure that the actual activity durations are as 68 

close as possible to their planned durations. Shorter durations, while not harmful, are much 69 

less likely than delays. Hence, the purpose of SRA is to identify those activities whose 70 

potential duration variability needs to be reduced (constrained). How these durations are 71 

constrained in practice is outside the scope of this paper. However, it generally involves 72 



tighter and more frequent activity progress control as well as some pre-specified back-up 73 

plans if any highly sensitive activities suffer delays. 74 

As a result, the real foe in project control is duration variability. There have been 75 

many studies pointing out exactly the same. Among the most recent, Ballesteros-Pérez et al. 76 

[9] demonstrated how classical (deterministic) scheduling techniques generally underestimate 77 

project duration and cost, by neglecting activity duration variability. Later, Ballesteros-Pérez 78 

et al. [10], on measuring the ratios of actual vs. planned activity durations on a wide set of 79 

construction projects, determined that the coefficient of variation is around 60%. These 80 

authors also proved that this (unconstrained) activity duration variability is enough to 81 

increase the duration of construction projects by an average of 20% and the project cost by at 82 

least 7%. All these facts make clear that it is necessary to start paying more attention to 83 

activity duration variability and the tools that can handle it effectively. Among these tools, 84 

SRA is arguably the most effective. 85 

Finally, there have been many other pieces of research dealing with SRA at project-86 

level. Project-level aspects are generally dependent on the project type and/or some 87 

contextual information that is not generally easy to generalise and/or model mathematically 88 

[11]. Hence, the scope of this paper is restricted to activity-level sensitivity metrics only. 89 

Project level aspects, while undoubtedly important, will be left for future research. 90 

Therefore, in this paper, a performance comparison of all activity-based sensitivity 91 

metrics published to date is carried out. A metric’s performance is understood as its capacity 92 

to restrict project duration variability and shorten average project duration. The comparison 93 

framework adopted will also show how effective SRA metrics are, regardless of other 94 

scheduling compression techniques. Other aspects considered will be: how the performance 95 

of the SRA metrics increases as more activities have their durations constrained (an effort is 96 

made to make their actual duration equal to the planned duration), as well as the influence of 97 



network topology (what the network looks like in a project schedule). In order to obtain 98 

realistic and representative results, a varied set of 4100 project network schedules is used in 99 

this study. Activity duration variability in these network schedules will be modelled to 100 

resemble that of actual construction projects. This will further enhance the representativeness 101 

of the results obtained. 102 

The paper will be structured as follows. In the Literature review section, the three 103 

subsections will go over the mathematical notation, the details of the SRA metrics compared, 104 

and the results from previous (partial) performance comparison studies. A new SRA metric 105 

will also be proposed and mathematically defined in this section. In the Materials and 106 

methods section, the artificial project dataset as well as the activity duration modelling will be 107 

described. Then, the performance framework for measuring the effectiveness of all SRA 108 

metrics will be outlined. The Results section will summarise all the metrics performance 109 

results under different scenarios (different levels of project control and network topologies) 110 

as well as how the SRA metrics are calculated (one-off vs iteratively). The Discussion section 111 

will propose complementary SRA approaches and justify how current metrics still show a 112 

significant potential for improvement. Finally, the Conclusions will summarise the research 113 

analysis and contributions, state the limitations and suggest some research continuations. 114 

 115 

2. Literature review 116 

2.1.Existing activity-based SRA metrics 117 

The eight metrics whose performance is compared are described in this section. The 118 

most relevant variables and mathematical expressions will be defined contextually, instead of 119 

at the outset. This approach will make it easier to remember their meanings later. 120 

Nevertheless, for easier reference, a comprehensive description of all variables and 121 

abbreviations is listed and explained in alphabetical order as Supplemental online material.  122 



SRA metrics can only be calculated by (Monte Carlo) simulation. The following 123 

notation will be common to all metrics and is defined here: 124 

i refers to each activity in a construction schedule (project) with i=1, 2, … n. 125 

n is the total number of activities in a construction schedule. 126 

j refers to each Monte Carlo simulation run when calculating the SRA metrics and project 127 

durations with j=1, 2, … N.  128 

N is the total number of Monte Carlo simulations performed. 129 

k refers to the number of activities whose duration variability (σi) will be constrained with 130 

k=0, 1, 2, … n.  131 

σi represents the standard deviation of activity i’s durations in the N simulation runs. When 132 

an activity is constrained, it will mean that its possible activity (stochastic) duration 133 

will always be forced to equal its planned duration. In this context, when σi is said to 134 

be constrained, what is really meant is that σi=0, and activity i’s duration will 135 

become a deterministic variable (constant throughout the simulation runs and equal 136 

to its planned/baseline duration). 137 

 138 

With this preliminary notation, all the SRA metrics to be compared are presented in 139 

Table 1. To avoid information cluttering, the simulation-based estimators of all metrics have 140 

been presented as Supplemental online material.  141 

<Insert Table 1 here>[12] [13] [14] 142 

The last row of Table 1 contains the Criticality-Slack-Sensitivity index (CSS), a new 143 

metric proposed in this study. The CSS constitutes an improvement of the SSI and MOI 144 

metrics by adding a third term considering the difference between activity i’s slack when all 145 

activity durations are stochastic (E(si)) versus deterministic (s’i). The expression of the CSS 146 

(extracted from Table 1) is:  147 



   (1) 148 

In particular, this new index presents three terms, each responsible for one task. The 149 

CI term attributes more importance to those activities that are more frequently critical. The 150 

difference between the stochastic and deterministic slacks indirectly measures the average 151 

impact of the merge event bias in activity i, that is, how much the variability of all project 152 

activities allows activity i to shift. If this term is zero, this can be because either activity i is 153 

always critical or is never critical. In the first case, both E(si) and s’i equal 0. In the second 154 

case, E(si)=s’i. However, in neither case will the activity contribute to minimising the merge 155 

event bias, that is, to reducing the Project duration average (it might reduce the project 156 

duration variability though, but only if CIi=1). Finally, the third term (the ratio of duration 157 

standard deviations) reflects the proportion of project duration variability that can be 158 

controlled by the activity i itself (not by other activities). This term has been inherited from 159 

the SSI. 160 

Apart from the SRA metrics described in Table 1, other alternative approaches can be 161 

found in the literature. For example, it has been suggested by a few researchers that 162 

combining some of the SRA metrics described in Table 1 could enhance their performance 163 

[15]. In this regard, it was reported by Liu and Wang [11], that Yangbin Ou, in an internal 164 

dissertation in 2003 (that could not be accessed by the authors of this paper), proposed and 165 

tested a composite metric named Activity Compound Criticality Index (ACCI). This metric 166 

apparently corresponded to the product of CI and CRI(r). As a precautionary action, the 167 

performance of pairs of all the SRA metrics described above was tested by the authors of this 168 

paper. For the sake of clarity and brevity, those auxiliary experiments have not been included 169 

in the results. However, it is worth highlighting that no combination showed a higher 170 

performance than that of the top performing metric out of the two metrics being multiplied. 171 

( )
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Furthermore, there have been a few examples of other metrics whose calculation 172 

involves some kind of (subjective) judgemental input. Among these, probably the most 173 

relevant is the Activity Critical Comprehensive Index (ACCI 1) proposed by Cui et al. [16]. 174 

This ACCI consists of three additive terms that measure the relative importance that the 175 

project manager wants to attribute to the average project (1) duration, (2) variance and (3) 176 

activity criticality, with respect to the (1) duration, (2) variance and (3) criticality of the 177 

longest path it belongs to, respectively. The three terms are quite simplistic and the idea is 178 

that the scheduler decides which one he/she wants to prioritise. However, the three terms are 179 

actually encompassed (in one way or another) in the expression of the previous eight metrics. 180 

For this reason, these composite additive metrics have not been explored further. 181 

Finally, differing significantly from previous approaches, but also requiring some 182 

subjective input, other authors have measured activity importance by measuring how each 183 

activity could contribute to an increase in project duration variability. In this vein, Cho and 184 

Yum [17] developed a Taguchi tolerance-based design technique that could be implemented 185 

manually, but whose calculation actually takes quite a lot longer than performing Monte 186 

Carlo simulations. The analysis performed here will also analyse project variability by 187 

choosing activities according to their ranked SRA metric values. However, this study will 188 

mostly focus on how SRA metrics can shorten project duration (not just its variability). 189 

Hence, these alternative metrics will no longer be considered. 190 

 191 

2.2.Previous SRA performance comparison studies 192 

While there have been many studies discussing the advantages and limitations of 193 

some SRA metrics (e.g. [6,13,15]), the purpose of this paper is not to recount the latter. 194 

                                                             
1 This metric has the same abbreviation as the Activity Compound Criticality Index, but they actually have 
nothing in common. 



Numerical comparison of activity-based sensitivity metrics, on the other hand, have been in 195 

short supply. To date, only Vanhoucke [1,2,7] and Madadi and Iranmanesh [14] have 196 

attempted to measure the performance of SRA metrics by resorting to relatively large and 197 

representative network datasets. 198 

The studies by Vanhoucke [1,2,7] were the first to perform a thorough comparison of 199 

the first six metrics (the MOI and CSS were not included). Vanhoucke measured the 200 

performance of these metrics by comparing how different threshold metric values (during a 201 

simulated project execution) allowed activities requiring some type of intervention (normally 202 

to be shortened to bring the project back on track) to be flagged. In particular, Vanhoucke 203 

resorted to an index named Unit Contribution (UC). The UC was defined as the decrease in 204 

the number of time units (e.g. days) of the project duration divided by the decrease in the 205 

total number of time units of all controlled activities resulting from the corrective actions 206 

adopted. For instance, whenever a highly sensitive activity (considered as such by having 207 

exceeded a threshold value) experienced a duration overrun, its activity duration was halved. 208 

Then, the resulting decrease in total project duration (with respect to average project 209 

duration) was measured. This approach was satisfactory to show that SRA metrics are indeed 210 

useful and that some seem to perform better than others. The author also created the network 211 

dataset that will be used later in this study and proved numerically how network topology 212 

significantly conditions the effectiveness of SRA. However, Vanhoucke’s studies had the 213 

following limitations. 214 

First, the SRA metrics were used as action thresholds, which does not provide any 215 

insight into whether the metric values are proportional or just roughly rank the activities’ 216 

sensitivity. 217 

Second, the studies left unanswered how often SRA metrics need to be recalculated 218 

(once at the beginning? Once at every tracking period? Once after any activity suffers a 219 



deviation (no matter how small) from the project baseline?). These questions will be 220 

answered later in this study. 221 

Third, Vanhoucke’s performance analyses always involved activity crashing 222 

(whenever a highly sensitive activity was delayed and had to be brought back on track). As 223 

described earlier, this approach mixed the contributions of crashing with SRA, making it 224 

difficult to distinguish what was the result of what. Here, the effectiveness of the SRA 225 

metrics will be analysed separately from any corrective action. 226 

Fourth, the number of simulations from Vanhoucke’s studies generally were of 100 227 

runs per simulated project. With this number of simulations, a relative error of around 10% is 228 

to be expected (the relative error is measured as the standard deviation of the Monte Carlo 229 

estimates with respect to their actual value). In this study, 10,000 simulations are used per 230 

SRA metric and project. Since the error of Monte Carlo estimates is proportional to 231 

[18], this will reduce errors to approximately a tenth. 232 

Fifth, Vanhoucke’s studies did not include the MOI metric, nor the CSS metric as the 233 

latter has been proposed here for the first time. Moreover, the results from this study later do 234 

not entirely agree with Vanhoucke’s performance results, which also merits closer inspection. 235 

Two years later, Madadi and Iranmanesh [14] resorted to a different but smaller 236 

network dataset and compared the performance of the MOI against the CI, SI and CRI(r) 237 

metrics (neither the CRI(ρ), CRI(τ), SSI, nor CSS were included). However, they also 238 

(indirectly) measured the effect of constraining some activities on reducing both the project 239 

duration mean and its variability.  240 

According to the studies briefly described above, the top performing metrics were the 241 

SSI (for Vanhoucke) and the MOI (for Madadi and Iranmanesh). The performance analysis in 242 

this paper will compare both for the first time, while also considering the (direct) effect of 243 

constraining activity duration on both the average project duration and its variability. 244 

1 N



3. Materials and methods 245 

Hulett [19] was one of the first to set clear directions on how SRA should be 246 

implemented. He defined four sequential steps which are briefly outlined here: 247 

1. Define the baseline schedule, which will act as the point of reference for subsequent 248 

simulation runs. 249 

2. Define activity duration (and cost) uncertainty by means of defining the statistical 250 

distributions that model those activity durations (and costs) for each activity. 251 

3. Run (Monte Carlo) simulations. In each run, the activities (and in consequence, the 252 

project) will have different durations and costs (and probably a different critical path). 253 

4. Sensitivity output. With the information stored from the previous step through many 254 

simulation runs, it is then possible to calculate the activity sensitivity metrics. 255 

 256 

In this study, these four steps were repeated for each artificial schedule network (4100 257 

projects), for each SRA metric (8 plus one that ranks the activities randomly), and for two 258 

calculation modes (one-off and iteratively). One-off means that all SRA metrics were 259 

calculated just once at the beginning of each project. Iteratively means that all metrics were 260 

recalculated as activity duration variabilities were constrained one by one, that is up to 30 261 

times (activities) per project. The iterative mode of calculation was included to assess 262 

whether the remaining activity SRA metric values become unreliable when the project 263 

manager attempts to keep the duration of some activities as planned (on time). Finally, as 264 

stated earlier, the number of simulation runs from step 3 was always 10,000. 265 

 266 

3.1.Simulated projects dataset 267 

The artificial projects dataset consisted of 4,100 activity-on-node networks with 30 268 

activities each. Each network had two dummy activities (with zero duration) signalling the 269 



project start and end. This dataset, along with other instances of artificial projects (see [20] 270 

for an overview), was developed by the Ghent University Operations Research & Scheduling 271 

Research Group and can be downloaded here: 272 

http://www.projectmanagement.ugent.be/research/data/RanGen (MT set). From each network 273 

(project), a file can be found containing all the predecessors activity information. 274 

The project dataset was generated with the RanGen2 algorithm. RanGen2 is a robust 275 

random network generator validated in several studies [21,22] and capable of generating a 276 

wide range of different network topologies. The same set of projects has been used in many 277 

recent research studies on SRA (e.g. [23,24]) and EVM (e.g. [2,25,26]). 278 

In particular, the project dataset was generated under pre-set values of four 279 

topological indicators: the serial-Parallel (SP), the Activity Distribution (AD), the Length of 280 

Arcs (LA), and the Topological Float (TF). The SP indicator describes how close a network is 281 

to a serial or parallel network. The AD describes the distribution of activities in the different 282 

network paths. The LA measures the distance between two activities in the project network. 283 

The TF measures the slack or float activities have at a topological level, that is, how dense 284 

the network is. All indicators range from 0% to 100%. These four topological indicators were 285 

initially proposed by Vanhoucke et al. [22] and slightly refined in Vanhoucke [23]. They are 286 

considered representative and accurate descriptors of a network topology. For the interested 287 

reader, the values of all four indicators can be found for the 4100 network instances as 288 

Supplemental online material. 289 

The different project networks were generated by setting specific staggered values of 290 

the SP indicator from SP=0 (all project activities are in parallel) to SP=100% (all activities 291 

are in series). While the SP was set, the other indicators (AD, LA and TF) could vary freely 292 

when searching for new random network configurations. Namely, the series of SP values 293 

used were 7%, 17%, 28%, 38%, 48%, 59%, 69%, 79%, and 90%. Extremes (0% and 100%) 294 



were not included in the analyses as they are not considered representative of real 295 

construction projects. Also, rounded SP values (e.g. 10%, 20%, 30%...) were not possible due 296 

to the fixed number of activities per project (30). 297 

Concerning the stochastic generation of activity durations, many statistical 298 

distributions have been used in the past (Uniform, Beta, Normal, Triangular, etc.) [1,6,27]. 299 

Log-Normal distributions were used here for the following reasons. Log-Normal 300 

distributions, by definition, cannot produce negative durations, but still allow for values 301 

located far from the distribution average. Log-Normal distributions are quite simple (they 302 

depend on two parameters only) but recent empirical studies have shown that they still 303 

satisfactorily model construction activity duration variability [28,29]. With this in mind, the 304 

Log-Normally-distributed activity durations were generated using this expression: 305 

    (2) 306 

Where µi represents each activity i’s average duration average (the planned/baseline 307 

duration) and CVi the coefficient of variation of a Normal distribution with zero mean (and a 308 

standard deviation of 1). The second term of expression 2 (the 10^Normal distribution) 309 

generates log-normally-distributed multipliers. This Normal distribution had a zero mean 310 

because this way the average stochastic activity durations coincided (on average) with their 311 

planned/baseline durations, as µi·10^0=µi·1=µi. This kept the projects from ending 312 

systematically sooner or later.  A base of 10 was used here because, along with Euler’s 313 

number, it is the most common logarithmic base. 314 

In the proposed simulation framework, all activities are scheduled to start as soon as 315 

possible and activity preemption is not allowed; the latter to avoid randomly affecting activity 316 

duration variability. Additionally, µi and CVi values were generated beforehand for the 30 317 

activities of the 4100 networks (30·4100=123,000 pairs of different µi and CVi values). Only 318 

with this approach was it possible to ensure that each activity had exactly the same average 319 

( )0,10 iNormal mean CV
i id µ =×!



duration and variability when different SRA metrics were compared in different simulation 320 

runs. In particular, the activity planned/baseline duration µi values were arbitrarily and 321 

stochastically generated following a Normal distribution with mean 100 (e.g. days) and 322 

standard deviation 20 (e.g. days). CVi values, on the other hand, were generated following a 323 

Uniform distribution ranging between 0.10 and 0.30. The latter range was adopted so that the 324 

activity duration variability emulated the same levels of variability as those observed in a 325 

sample of 101 projects by Ballesteros-Pérez et al. [10]. More precisely, those authors 326 

identified that most activity duration variability lies in the range (in Log-scale with base 10) 327 

between 0.1 (low variability) and 0.3 (high variability), with the average being 0.2. 328 

Therefore, unlike µi whose values hardly make any difference to the results, the CVi 329 

values chosen greatly influence the results’ representativeness. As CVi values were carefully 330 

chosen to resemble those of real construction projects, it is expected that the results here will 331 

also provide a realistic order of magnitude of how the duration of real construction projects 332 

can be shortened by constraining the duration variability of the most sensitive activities. For 333 

those readers interested in knowing how the same SRA metrics would perform under 334 

scenarios with strictly lower and higher activity duration variability (CVi=0.10 and 0.30, 335 

respectively), the same simulation results can be found as Supplemental online material. 336 

Moving forward, only the case of CVi varying uniformly between 0.10 and 0.30 has been 337 

presented. 338 

Finally, it may be worth noting that in this study the activity cost dimension has been 339 

intentionally neglected in the sensitivity analyses. This is a common trait in most SRA studies 340 

as, generally, the cost dimension is much simpler than the time dimension. Whereas activity 341 

order matters in time analysis, the cost is merely an additive variable. The project cost 342 

generally resembles a Normal distribution whose average and standard deviation can be 343 

closely approximated by the sum of averages and cost variances of all activity cost 344 



distributions [30]. This conjecture was recently confirmed by Batselier and Vanhoucke [31] 345 

in an empirical study involving 52 projects. This means that the network topology does not 346 

influence project cost either, unless there is a significant correlation between project duration 347 

and project cost. However, while this correlation seems to exist at activity level, it does not 348 

seem significant at project level [10]. As a result, the cost dimension in this and future SRA 349 

metrics comparisons can be safely neglected without any loss of representativeness. 350 

 351 

3.2.Performance measurement framework 352 

For each simulation run, all activities had their SRA metrics calculated (once in the 353 

one-off calculation mode, or multiple times in the iterative mode). Then, activities were 354 

ranked by decreasing order of the value of each SRA metric. This means that, by decreasing 355 

order of one SRA metric at a time, k activities out of the total n activities per schedule, had 356 

their duration variability constrained (their stochastic durations were forced to remain 357 

constant and equal to the planned durations, that is, to equal to µi). Experiments were 358 

repeated testing all SRA metrics and the whole range of k activities from 0 (no activities with 359 

duration variability constrained) up to 30 (all activities in the schedule had their duration 360 

variability constrained). 361 

With regards to metric performance measurements, two variables were registered for 362 

each simulation run: the project duration median percentile reduction (Dmk) and the project 363 

duration standard deviation reduction (Dσk). Results for both variables and for all 4100 364 

projects can be found as Supplemental online material. Results in the paper will only report 365 

their average Dmk and Dσk values. Also, due to its particular relevance, the calculation 366 

procedure of Dmk is represented in Figure 1. 367 

<Insert Figure 1 here> 368 



Figure 1 shows two (probabilistic) project duration curves, both of which are obtained 369 

with N (10,000 here) Monte Carlo simulation runs. The one on the right represents the project 370 

when all its activity durations can vary freely (no activity durations have been constrained). 371 

The curve on the left represents the project duration when k activities have had their duration 372 

variability constrained (that is di=µi). Hence, Dmk measures the difference of the project 373 

duration median (measured in probability, that is, as a reduction in percentiles) between two 374 

scenarios: a project with k activities constrained and the original project duration curve (when 375 

no activity durations had been constrained yet). This can be formulated mathematically as: 376 

Dmk= 0.5 – Probk=0(mk)    with k = 0, 1, 2… n   (3) 377 

Hence, Dmk represents the (negative) increment between two probability values. The 378 

median is chosen as a more reliable indicator because, unlike the Project Duration average, it 379 

is always associated with the same probability value (50th percentile = 0.5). 380 

The second performance variable is quite simple and represents the project duration 381 

standard deviation reduction (in the N simulation runs) when k activities have been 382 

constrained (respect to the unconstrained schedule with k=0). It is defined as: 383 

    with k = 0, 1, 2… n    (4) 384 

Finally, and following a similar convention, from now on project control (PC) will be 385 

referred to as k/n, that is, the percentage of activities whose duration variability has been 386 

constrained. This variable will be useful in providing an estimate of the project manager’s 387 

control effort when a monitoring the project execution. 388 

 389 

4. Results 390 

4.1.SRA metrics performance by project control level 391 

0

1 k
k

k

ss
s =

D = -



The average performance results measured by Dmk and Dσk are presented in this 392 

section. Detailed results by project can be found in the Supplemental online material. 393 

Figure 2 shows the first set of the performance results when all SRA metrics are 394 

calculated once off and by varying level of project control (PC). It may be worth 395 

remembering that one-off means that all SRA metrics were calculated just once at the 396 

beginning of each project. That is, they were used to rank all activities by decreasing order of 397 

importance at the outset, and they were never recalculated later as some activities had their 398 

durations constrained. This is relevant, as when a single activity is duration-constrained, the 399 

sensitivities of all remaining activities may also change. 400 

<Insert Figure 2 here> 401 

Figure 2 shows in two tables the Dmk values (top) and Dσk values (bottom). The 402 

percentage of activities that have had their duration variability constrained from PC=0% 403 

(none) up to 100% (all) is displayed in columns. All the SRA metrics compared are shown in 404 

rows, plus a random allocation of constrained activities at the top of each table. This row 405 

represents a baseline comparison that all SRA metrics should outperform (in this case by 406 

achieving lower values).  407 

Values of Dmk range from 0% (no project duration difference at all with the initial 408 

project duration median percentile) up to 35.8%. However, the latter value (35.8%) is 409 

conditioned by the level of activity variability that it was chosen for the activity durations 410 

when trying to resemble that of real construction projects. Also, obviously, when PC=0% or 411 

100%, all metrics perform exactly the same because no or all activities are constrained. On 412 

average then, 35.8% is the maximum percentile a median project duration may reach when all 413 

project activities are kept perfectly on time.  414 

On the other hand, project duration variability reduction (measured by the decrease in 415 

the project duration standard deviation), can range between 0% (no constrained activities) up 416 



to 100% (all activity durations have been constrained). The latter would correspond to a 417 

deterministic schedule. 418 

Regarding metric performance, the effectiveness of these metrics increases with PC 419 

effort, as expected. However, their performance ceiling will be better assessed when the 420 

iterative calculations from Figure 3 are analysed later. 421 

In Figure 2, the top performing metric, both in Dmk and Dσk values, is the new CSS. 422 

This metric, when calculated once off, achieves the maximum (average) project duration 423 

median and variability reduction with respect to the totally unconstrained schedule. The 424 

values of this metric are highlighted in bold. The second-best metric is the CRI(τ). This 425 

comes as a surprise because in Vanhoucke’s [1,2,7] studies this metric was always among the 426 

worst performers. This is not actually seen to be the case for the one-off calculation mode. 427 

After the CSS and the CRI(τ), the remaining six metrics perform similarly, both for Dmk and 428 

the Dσk. 429 

Overall, maybe with the exception of CSS and CRI(τ), results suggest that all metrics 430 

become virtually blind after starting to constrain some activity durations. “Blind” here means 431 

that they become virtually useless, as they are no longer are capable of determining which 432 

activities are the most sensitive. This is essential in real-life project monitoring and control, 433 

as the scheduler needs to know that any change, even if this means ensuring that activities 434 

last as planned, will impact the sensitivities of the remaining (unconstrained) activities. 435 

Figure 3 presents the same performance results, but with SRA metrics being 436 

recalculated as activity durations are being constrained (iterative calculation mode). In this 437 

figure, for the sake of clarity, only the first 9 activities with constrained durations (up to 438 

PC=9/30=30%) have been shown. This calculation approach is more computationally 439 

demanding than the one-off calculations (because SRA metrics calculations need to be 440 

repeated as many times as the activities are constrained). However, by looking at the 441 



corresponding values between Figures 2 and 3 (columns with PC=10, 20 and 30% mostly), it 442 

is evident that the performance of all metrics has improved significantly. All metrics (even 443 

the worst performing, Random excluded) achieve higher Dmk and Dσk values than those in 444 

Figure 2 with one-off calculations. 445 

<Insert Figure 3 here> 446 

There are also some changes in the ranking. The metrics that performed better before 447 

(CSS and CRI(τ)) are just average performers now. The best iterative metric is the SSI, closely 448 

followed by CRI(r) and CRI(ρ). The CI and SI are the worst performers. In this instance, and 449 

apart from the CSS and MOI results which were not included originally, all results fully agree 450 

with Vanhoucke’s [1,2,7], but not with Madadi and Iranmanesh’s [14]. The only explanation 451 

possible is that Vanhoucke must have resorted to iterative calculations, whereas Madadi and 452 

Iranmanesh must have used one-off calculations. 453 

Additionally, from Figure 3 it is possible to approximate the performance ceilings of 454 

all SRA metrics. Let us take a closer look, for example, at the PC=30% column. This column 455 

represents the project duration median probability reduction (top table) and project duration 456 

variability reduction (bottom table) that a project manager could achieve if a tight control was 457 

kept on 30% of the project activities. This level of control seems representative and feasible 458 

in real projects. In this column, the SSI achieved Dmk=27.1% and Dσk=52.3%. The same 459 

values in one-off calculations for the CSS were Dmk=19.6% and Dσk=28.1%. And the 460 

equivalent values for Random allocation are Dmk=13.1% and Dσk=14.7%. Overall, this shows 461 

that the top performing metric in one-off calculation (the CSS) is approximately halfway 462 

between not being effective at all (represented by the random allocation results) and the best 463 

performance possible (those from the SSI in iterative mode). 464 

At this point it is also convenient to remember that combinations of pairs of the eight 465 

metrics above were also tested (but not reported here). However, none clearly outperformed 466 



the current ones. This might mean that, despite each metric having different sensitivity 467 

detection mechanisms, the SSI seems to represent the current performance ceiling. That is, 468 

with the activity variability levels adopted, no better values of Dmk and Dσk could be found. 469 

The obvious next research step then would be to try to propose an SRA metric that could 470 

perform like the iterative SSI but when applied one-off. This is something the new CSS has 471 

not fully achieved, but it seems to be on the right track. 472 

 473 

4.2.SRA metrics performance by Serial-Parallel and Project Control level 474 

The same 4100 networks analysed can be reorganised by their Serial-Parallel (SP) 475 

indicator and by Project Control (PC) level. As described earlier, the SP describes how close 476 

a network is to a perfectly serial (SP=100%) or parallel network (SP=0%). SP is calculated as 477 

the number of activities in the path with the highest number of activities (which may not be 478 

the longest in duration) minus 1, divided by the total number of activities in the schedule 479 

minus 1, that is n-1 (dummy activities are not considered). The SP is probably one of the 480 

simplest, yet most relevant topological indicators. Vanhoucke [7] proved in his studies that 481 

the SP seems to greatly condition the tracking efficiency of both the EVM and SRA 482 

techniques. This author also conducted an exploratory study of several construction projects 483 

and reported that most construction projects boast SP indicators ranging between 12% and 484 

78%. Our simulated projects dataset indeed covers a slightly wider range of SP values (from 485 

7% up to 90%).  486 

Finally, in Vanhoucke’s [7] performance comparison, probably the most 487 

comprehensive to date, approximately PC=27% of all activities were controlled. Results for 488 

up to PC=30% are shown in the following tables. However, further PC values can be found 489 

as Supplemental online material. 490 



As a result, Figures 4 and 5 show the SRA metrics performance results (only Dmk 491 

values are shown on this occasion) assuming calculations are one-off (Figure 4) and iterative 492 

(Figure 5). 493 

<Insert Figure 4 here> 494 

<Insert Figure 5 here> 495 

Quick inspection of both figures confirms again that as the level of PC control 496 

increases, Dmk values also increase. Similarly, it is evident that the SRA metrics lose 497 

effectiveness (SRA metrics have lower Dmk values) as the SP increases, that is, as they 498 

become closer to serial networks. Additionally, the CSS and the CRI(τ) are still the top 499 

performing metrics in the one-off calculations, but the CSS gains more advantage as the PC 500 

increases. In the iterative calculations, the SSI still seems to perform better, but is closely 501 

followed by CRI(r) and CRI(ρ). 502 

Finally, a comparison of equivalent PC levels in both figures against random 503 

allocation confirms again that the top performing one-off metrics still have significant room 504 

for improvement (defined by the top performing iterative metrics, the SSI for instance). 505 

 506 

5. Discussion 507 

An enhanced SRA metric should reach Dmk and Dσk values similar to the ones 508 

observed for the SSI in Figures 3 and 5 (iterative calculations), but be achieved with one-off 509 

calculations. However, finding a mathematical expression that achieves this has proven to be 510 

quite elusive. There are two main reasons for this.  511 

First, whenever an activity suffers a deviation from the baseline schedule, the whole 512 

schedule suffers some degree of change too. One-off numerical results shown earlier clearly 513 

support this as it is evident that SRA metrics become very unreliable as highly sensitive 514 

activities have their duration constrained. 515 



Second, decreasing activity duration variability does not always lead to a decrease in 516 

project duration variability. Sometimes the latter can remain unaffected or, as proved by 517 

Gutierrez and Paul [32], it can also lead to an increase in project duration variability. 518 

Similarly, Elmaghraby et al. [33] experimentally showed that decreasing some activity 519 

average durations could cause project duration extensions on some (rare) occasions. This 520 

means that finding an activity or schedule (mathematical) attribute that is ‘always’ 521 

proportional to a project duration extension is certainly not straightforward. 522 

Overall, both reasons demonstrate that finding a better SRA metric for one-off 523 

calculations is an extremely challenging task. Maybe because of this, the effectiveness of 524 

SRA has not been exempt from criticism. Some researchers have found that focusing solely 525 

on activity sensitivity may lead to erroneous assessment of activity importance [19,34]. To 526 

overcome this limitation, some researchers suggested shifting the point of attention to the 527 

potential risks that produce activity and/or project duration variability (risk-driven approach) 528 

[35]. This approach can bring some advantages (it is indeed more accurate if all risks are 529 

known beforehand). However, in real contexts, most risks are difficult to anticipate, let alone 530 

(probabilistically) estimate their impact before the project is executed. Fortunately, both 531 

approaches (activity sensitivity and risk-driven approach) are not exclusive, but rather 532 

complementary. 533 

Other researchers have pointed out the obvious limitation of trying to measure activity 534 

importance based on a single figure (an index ranging from 0 to 1). The most notable works 535 

in this regard were the ones by Kuchta and Dorota [36] and Bowman [37–39]. Kuchta and 536 

Dorota [36] proposed a method to assess the criticality of activities with a fuzzy approach. 537 

Bowman, on the other hand, proposed a way of drawing the sensitivity curves of all activities. 538 

These sensitivity curves actually correspond to the representation of the Criticality Index (CI) 539 

as a function of activity duration. In his papers, Bowman devised a quite ingenious way of 540 



drawing those curves by resorting to a single set of Monte Carlo simulation runs. However, 541 

while useful, both Kuchta and Dorota’s and Bowman’s approaches did not allow to rank or 542 

prioritise the activities unless their impact was considered. Also, as the durations of some 543 

activities are constrained, the fuzzy calculations and sensitivity curves need to be updated 544 

too, and that is not possible unless more simulations are run. This means that their approaches 545 

suffer from exactly the same limitations as the SRA metrics compared above when calculated 546 

once off. 547 

Finally, despite falling outside the scope of this paper, an interesting discussion would 548 

concern the extent to which activity duration variability should be constrained when 549 

monitoring and controlling the progress of real projects. Two recent works have recently 550 

focused on this front, but with very different approaches. First, Hu et al. [40] measured how 551 

the incorporation of activity sensitivity measurements into (Critical Chain) buffer 552 

management could lead to better project schedule risk management. Second, Martens and 553 

Vanhoucke [41] proved empirically that integrating some project-specific information 554 

(mostly resource availability) into the construction of control tolerance limits brings 555 

significantly higher monitoring efficiency. This means that, eventually, SRA cannot be 556 

implemented irrespective of resource availability aspects. These, and hopefully future studies, 557 

will enhance the relevance of the topic addressed in the present study. It is also clear that 558 

multiple avenues of research remain to be explored.  559 

 560 

6. Conclusions 561 

Schedule Risk Analysis (SRA) is a simulation technique that allows activity 562 

sensitivity to be measured with the intention of identifying those activities that require closer 563 

control during project execution. If an activity is highly sensitive, it is more likely that, if this 564 

activity is delayed, the whole project will also be delayed. Since 1963, several activity 565 



sensitivity metrics have been proposed, but previous performance comparison analyses have 566 

never involved all of them. Furthermore, previous comparisons have always involved 567 

corrective actions (mostly activity crashing), which made it difficult to quantify to what 568 

extent SRA was effective on its own. 569 

In this paper, by resorting to a representative set of 4100 simulated projects, a 570 

systematic comparison of the most relevant activity-based SRA metrics published to date has 571 

been performed. The comparison is based on two performance indicators: the project duration 572 

median percentile reduction and the project duration standard deviation reduction. Both 573 

performance indicators quantify the (duration and variability) reduction achieved by a project 574 

whose activities are (partially or completely) duration-constrained versus the same project 575 

when its activity duration can vary freely (remain all unconstrained). Results have been 576 

derived and analysed by Project Control (PC) level and by staggered values of the Serial-577 

Parallel (SP) indicator. Furthermore, performance measurements have involved two SRA 578 

metrics calculation modes: one-off and iterative. In the one-off calculation mode, the metrics 579 

are calculated just once (at the outset). In the iterative calculation mode, the metrics are 580 

recalculated whenever the schedule suffers any changes (e.g. after at least one activity has its 581 

duration constrained). Finally, for representativeness purposes, activity duration variability 582 

has been set to resemble that of real construction projects. 583 

Results have confirmed that when the metrics are calculated once off, the top 584 

performing metric is the newly proposed Criticality-Slack-Sensitivity index (CSS) followed 585 

by the Cruciality Index with Kendall’s tau (CRI(τ)). These results seem to contradict previous 586 

performance studies. However, the performance of all metrics is approximately doubled 587 

when they are calculated iteratively, that is, when metrics are recalculated as activities have 588 

their duration variability constrained. This latter approach is, however, much more 589 



computationally demanding. Under the iterative calculation assumption, the top performing 590 

metric is the Schedule Sensitivity Index (SSI), closely followed by the CRI(r) and the CRI(ρ). 591 

At a numerical level, results show that in construction projects, a 35.8% project 592 

duration median percentile reduction can be achieved against the original project duration 593 

when all activities are constrained (PC=100%). In a more representative case when only 30% 594 

of all activities are constrained (PC=30%), the median percentile can reach 19.6% (in one-595 

off) or 27.1% (in iterative calculation mode). Both lead to significant project duration 596 

reductions. These are clear examples of the great benefits that project control can bring to 597 

construction managers. 598 

Finally, whereas SRA metric performance, in the case of iterative calculation seems to 599 

have reached its full potential, there still seems to be room for improvement in more effective 600 

one-off metrics. Reasons for these statements have also been discussed. 601 

A limitation of this study is obviously the lack of empirical validation. This is almost 602 

unavoidable, as real projects are only carried out once. Activity duration variability, unless 603 

provided by very experienced project schedulers, is very difficult to anticipate too. However, 604 

without such estimates, it is nearly impossible to calculate the SRA metrics for validation 605 

purposes from real project data. Similarly, it is also impossible to know which combination of 606 

constrained activities would have led to a shorter project duration in the presence of a single 607 

outcome: the as-built result (equivalent to a single simulation run). Overcoming these 608 

limitations may be an unsurmountable task. Therefore, in the absence of empirical validation, 609 

the comprehensive simulation approach taken here can hopefully provide strong evidence on 610 

the potential benefits of using SRA in real construction projects. 611 
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Metric and source Brief description Generic expression 

Criticality Index  
(CI) 

(Van Slyke, 1963) [12] 

The CI was the first metric for measuring 
activity sensitivity. It basically measures the 
probability of an activity i falling in the 
critical path. 

 

Where CIi is activity i’s Criticality Index; si is activity 
i’s slack (also known as total float); and E(·) is the 
expectation (average).  

Significance Index 
(SI) 

(Williams, 1992) [13] 

This metric was an attempt to overcome the 
limitations of the CI. The SI incorporates an 
estimate of the potential impact that a delay in 
activity i may cause in the whole project. 

 

Where di is activity i’s duration; PD is the Project 
Duration; and PDj is the Project duration at simulation 
run j. 

Cruciality Index based 
on Pearson product-

moment (CRI(r)) 

(Williams, 1992) [13] 

This and the next two Cruciality Indices try to 
evaluate the activity importance by measuring 
the correlation between the activity duration 
and the project duration. CRI(r) corresponds 
to the linear correlation version 

 

Where correl(x,y) denotes the linear correlation 
between x and y; covar(x,y) the covariance between x 
and y; σi

2 is activity i’s duration variance; and σp
2 is 

the Project Duration variance. 

Cruciality Index based 
on Spearman’s rank 

(CRI(ρ)) 

(Williams, 1992) [13] 

This metric tries to anticipate the potential 
non-linearities that the correlation between 
the activity duration and the project duration 
may have. 

 

CRI(ρ) actually measures the (squared) ranking 
differences between the activity durations and the 
project durations. For further mathematical details go 
to the supplemental online material. 

Cruciality Index based 
on Kendall’s rank 

(CRI(τ)) 

(Williams, 1992) [13] 

This metric measures the correlation by 
counting the proportion of concordant and 
discordant pairs of the same two variables (di 
and PD) 

 

Where is an auxiliary index defined as =j+1, 
j+2,…N. For further mathematical details go to the 
supplemental online material. 

Schedule Sensitivity 
Index (SSI) 

(Vanhoucke, 2010a)[7] 

Vanhoucke [7] indicated that the Project 
Management Body of Knowledge (PMBoK) 
suggested assessing activity sensitivity by 
multiplying the activity probability of being 
critical (the CI) and its impact (measured by 
the relative importance of the activity 
duration variability).  

 

Where σi is activity i’s duration standard deviation; 
and σp is the Project Duration standard deviation. 

Management-Oriented 
Index (MOI) 

(Madadi and 
Iranmanesh, 2012)[14] 

This metric was the first to combine activity 
information with topological network 
information. 

 

Where σmax is the highest standard deviation among the 
σi values of all activities, that is, σmax=max σi  with 
i=1,2,… n; E(si) is the expectation (average) of activity 
i’s slack (in all simulation runs) and nsuccessors i is the 
total number of (direct and transitive) successors of 
activity i. 

Criticality-Slack-
Sensitivity index 

(CSS) 

(this paper) 

This new index is a refinement of the 
previous SSI and MOI metrics, and it is 
proposed in this paper for the first time. 

 

Where s’i is activity i’s slack in the deterministic 
schedule, that is, when all activities in the schedule last 
their planned (baseline) durations. E(si), CIi and SSIi 
have been defined above. 

Table 1. Summary of all SRA activity-based metrics compared 
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Figure 1. Tracking efficiency measurement approach (Dmk calculation) 
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Figure 2. Project Duration median percentile reduction (Δmk) and Project Duration standard 

deviation reduction (Δσk) as a function of the Project Control (PC) effort for all SRA metrics 

in one-off calculation mode (top performing values highlighted in bold text) 

  

∆mk  values
PC (%) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random 0.0% 4.3% 8.7% 13.1% 17.5% 21.8% 25.7% 29.3% 32.4% 34.9% 35.8%
CI 0.0% 5.6% 10.9% 15.7% 20.4% 24.7% 28.2% 31.3% 33.7% 35.3% 35.8%
SI 0.0% 5.6% 10.8% 15.8% 20.4% 24.7% 28.2% 31.3% 33.7% 35.3% 35.8%

CRI(r) 0.0% 5.2% 10.5% 15.4% 20.0% 24.3% 27.9% 31.0% 33.5% 35.2% 35.8%
CRI( ρ) 0.0% 5.3% 10.5% 15.4% 20.0% 24.3% 27.9% 30.9% 33.4% 35.2% 35.8%
CRI( τ) 0.0% 6.8% 12.4% 17.5% 22.1% 26.1% 29.4% 32.1% 34.1% 35.5% 35.8%
SSI 0.0% 5.3% 10.6% 15.6% 20.2% 24.5% 28.1% 31.2% 33.6% 35.3% 35.8%
MOI 0.0% 5.6% 10.9% 15.8% 20.3% 24.5% 28.0% 31.0% 33.5% 35.2% 35.8%
CSS 0.0% 7.2% 14.0% 19.6% 24.5% 28.4% 31.4% 33.6% 35.1% 35.8% 35.8%

∆σ k  values
PC (%) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random 0.0% 4.6% 9.4% 14.7% 20.6% 27.2% 34.7% 43.4% 54.2% 69.2% 100.0%
CI 0.0% 6.9% 13.9% 20.7% 28.0% 36.9% 44.7% 53.5% 64.3% 76.7% 100.0%
SI 0.0% 6.9% 13.9% 20.8% 28.1% 36.9% 44.9% 54.0% 64.7% 77.6% 100.0%

CRI(r) 0.0% 6.2% 13.2% 20.0% 27.2% 35.7% 43.2% 51.8% 62.6% 75.4% 100.0%
CRI( ρ) 0.0% 6.3% 13.3% 19.9% 27.2% 35.5% 43.0% 51.3% 61.9% 74.6% 100.0%
CRI( τ) 0.0% 8.7% 16.4% 24.2% 32.6% 42.5% 51.7% 61.3% 71.9% 84.3% 100.0%
SSI 0.0% 6.5% 13.5% 20.3% 27.5% 36.3% 44.4% 53.2% 64.1% 76.8% 100.0%
MOI 0.0% 7.0% 14.1% 20.7% 27.9% 36.1% 43.4% 51.6% 62.1% 74.9% 100.0%
CSS 0.0% 9.4% 19.2% 28.1% 36.8% 46.0% 55.0% 64.3% 74.9% 87.4% 100.0%



 

Figure 3. Project Duration median percentile reduction (Δmk) and Project Duration standard 

deviation reduction (Δσk) as a function of the Project Control (PC) effort for all SRA metrics 

in iterative calculation mode (top performing values highlighted in bold text) 

  

∆mk  values
PC (%) 0% 3.3% 6.7% 10% 13.3% 16.7% 20% 23.3% 26.7% 30% 100%

Random 0.0% 1.5% 2.8% 4.3% 5.8% 7.2% 8.7% 10.1% 11.7% 13.1% 35.8%
CI 0.0% 2.0% 4.7% 7.3% 10.1% 12.8% 15.5% 17.9% 20.0% 22.0% 35.8%
SI 0.0% 2.0% 4.7% 7.4% 10.0% 12.7% 15.4% 17.7% 19.8% 21.7% 35.8%

CRI(r) 0.0% 1.7% 6.5% 10.7% 14.3% 17.5% 20.3% 22.7% 24.8% 26.6% 35.8%
CRI( ρ) 0.0% 1.9% 6.5% 10.6% 14.2% 17.4% 20.3% 22.8% 24.8% 26.6% 35.8%
CRI( τ) 0.0% 1.4% 3.7% 6.0% 8.0% 10.0% 11.8% 13.6% 15.4% 17.1% 35.8%
SSI 0.0% 4.8% 8.8% 12.5% 15.7% 18.7% 21.3% 23.5% 25.4% 27.1% 35.8%
MOI 0.0% 2.0% 5.7% 9.0% 12.2% 15.1% 17.8% 20.2% 22.3% 24.2% 35.8%
CSS 0.0% 4.1% 7.5% 10.6% 13.3% 15.9% 18.2% 20.2% 21.8% 23.4% 35.8%

∆σ k  values
PC (%) 0% 3.3% 6.7% 10% 13.3% 16.7% 20% 23.3% 26.7% 30% 100%

Random 0.0% 1.4% 2.9% 4.6% 6.2% 7.7% 9.4% 11.2% 12.9% 14.7% 100.0%
CI 0.0% 2.4% 6.5% 10.7% 14.9% 19.1% 23.7% 27.9% 31.8% 35.8% 100.0%
SI 0.0% 2.3% 6.6% 10.5% 14.7% 19.0% 23.4% 27.4% 31.0% 34.7% 100.0%

CRI(r) 0.0% 2.0% 11.7% 19.5% 26.3% 32.3% 37.9% 43.0% 47.7% 52.1% 100.0%
CRI( ρ) 0.0% 1.9% 11.5% 19.1% 25.6% 31.3% 36.4% 41.1% 45.7% 49.9% 100.0%
CRI( τ) 0.0% 1.1% 4.4% 7.4% 9.9% 12.5% 15.0% 17.6% 20.4% 23.1% 100.0%
SSI 0.0% 9.5% 17.0% 23.5% 29.2% 34.4% 39.2% 43.9% 48.3% 52.3% 100.0%
MOI 0.0% 2.4% 9.3% 15.1% 20.5% 25.6% 30.3% 35.0% 39.4% 43.8% 100.0%
CSS 0.0% 6.0% 10.8% 15.0% 18.9% 22.3% 25.7% 28.3% 30.9% 33.2% 100.0%



 

Figure 4. Project Duration median percentile reduction (Δmk) values as a function of the 

Serial-Parallel (SP) indicator and three Project Control (PC) levels (10, 20 and 30%) for all 

SRA metrics in one-off calculation mode (top performing values highlighted in bold text) 

  

PC = 10%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 4.5% 4.3% 3.9% 4.5% 4.2% 3.9% 4.0% 4.5% 4.2%
CI 7.3% 6.5% 5.0% 5.0% 5.4% 4.6% 4.3% 4.8% 4.4%
SI 7.2% 6.5% 5.1% 4.8% 5.4% 4.9% 4.3% 4.8% 4.7%

CRI(r) 6.1% 5.9% 5.0% 4.5% 5.0% 4.8% 4.5% 4.7% 4.3%
CRI( ρ) 6.5% 5.9% 4.8% 4.6% 5.1% 4.9% 4.6% 4.8% 4.5%
CRI( τ) 9.5% 8.5% 7.2% 7.1% 6.3% 5.4% 5.2% 5.1% 4.9%

SSI 6.6% 6.1% 5.0% 4.5% 5.0% 4.9% 4.3% 4.7% 4.6%
MOI 6.5% 6.3% 4.8% 5.5% 5.5% 5.3% 4.9% 4.9% 4.4%
CSS 11.2% 9.7% 8.1% 6.9% 6.4% 6.0% 5.2% 5.0% 4.4%

PC = 20%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 9.7% 9.0% 8.4% 7.4% 8.5% 7.8% 7.8% 9.1% 8.9%
CI 13.8% 12.3% 9.5% 9.8% 10.6% 9.7% 9.0% 9.6% 9.0%
SI 13.3% 12.2% 9.1% 9.7% 10.6% 9.5% 8.8% 9.6% 9.2%

CRI(r) 12.1% 11.9% 8.9% 8.9% 10.2% 9.5% 9.1% 9.5% 8.9%
CRI( ρ) 12.6% 12.1% 8.9% 9.2% 10.2% 9.2% 9.0% 9.5% 8.8%
CRI( τ) 17.2% 14.6% 12.4% 11.7% 11.8% 11.3% 10.0% 10.1% 9.6%

SSI 12.6% 12.1% 9.1% 9.3% 10.2% 9.3% 8.9% 9.6% 9.0%
MOI 12.4% 12.2% 9.1% 9.9% 10.7% 10.4% 9.1% 9.8% 9.5%
CSS 19.6% 18.2% 15.9% 14.2% 12.7% 11.5% 10.7% 10.0% 9.6%

PC = 30%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 15.2% 13.5% 12.3% 11.6% 12.6% 11.5% 12.3% 13.4% 13.5%
CI 20.5% 17.2% 13.8% 13.8% 15.7% 14.3% 13.3% 14.2% 13.9%
SI 20.4% 17.4% 13.8% 13.7% 15.6% 14.2% 13.7% 14.3% 13.6%

CRI(r) 18.8% 16.9% 14.0% 13.4% 15.3% 13.6% 13.3% 14.2% 13.2%
CRI( ρ) 19.3% 16.8% 13.8% 13.4% 15.3% 13.5% 13.3% 14.1% 13.4%
CRI( τ) 24.0% 19.9% 16.5% 15.8% 17.1% 16.0% 14.8% 14.9% 14.0%

SSI 20.1% 17.1% 14.1% 13.4% 15.4% 14.0% 13.2% 14.3% 13.0%
MOI 18.8% 17.1% 14.1% 13.7% 15.8% 14.4% 13.7% 14.6% 14.1%
CSS 27.0% 23.9% 22.4% 20.4% 18.7% 16.5% 16.0% 14.9% 14.5%



 

Figure 5. Project Duration median percentile reduction (Δmk) values as a function of the 

Serial-Parallel (SP) indicator and three Project Control (PC) levels (10, 20 and 30%) for all 

SRA metrics in iterative calculation mode (top performing values highlighted in bold text) 

PC = 10%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 4.5% 4.3% 3.9% 4.5% 4.2% 3.9% 4.0% 4.5% 4.2%
CI 13.3% 10.1% 7.9% 6.5% 6.2% 5.8% 5.2% 5.1% 4.8%
SI 13.1% 10.1% 7.5% 7.2% 6.4% 6.0% 5.4% 5.0% 4.9%

CRI(r) 15.5% 13.3% 11.1% 10.2% 9.8% 8.9% 8.5% 8.3% 8.0%
CRI( ρ) 15.9% 13.1% 11.3% 9.8% 9.6% 8.8% 8.9% 8.5% 8.4%
CRI( τ) 7.9% 7.5% 6.2% 6.0% 5.4% 5.0% 4.5% 4.9% 4.7%

SSI 19.6% 15.5% 13.5% 12.2% 11.2% 10.6% 10.4% 9.8% 9.7%
MOI 16.2% 12.2% 9.3% 8.3% 7.8% 6.8% 6.6% 6.4% 6.0%
CSS 19.2% 15.1% 11.9% 9.9% 9.1% 7.5% 6.2% 6.6% 5.6%

PC = 20%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 9.7% 9.0% 8.4% 7.4% 8.5% 7.8% 7.8% 9.1% 8.9%
CI 27.6% 22.1% 16.9% 13.9% 12.8% 11.7% 10.3% 10.1% 9.4%
SI 27.3% 21.8% 16.9% 14.3% 12.9% 11.7% 10.6% 10.2% 9.5%

CRI(r) 28.2% 24.4% 21.3% 19.7% 19.1% 17.4% 16.4% 16.5% 15.6%
CRI( ρ) 30.5% 24.9% 21.0% 19.4% 18.5% 17.1% 17.0% 16.3% 15.8%
CRI( τ) 15.6% 14.0% 11.8% 11.6% 11.2% 10.1% 9.8% 9.9% 9.6%

SSI 31.6% 26.2% 21.8% 20.5% 19.4% 18.0% 17.7% 17.2% 17.2%
MOI 30.4% 24.2% 19.2% 16.7% 15.1% 13.9% 13.4% 12.7% 11.7%
CSS 31.4% 25.6% 20.9% 17.5% 15.7% 12.7% 11.3% 11.7% 10.2%

PC = 30%
SP 0.07 0.17 0.28 0.38 0.48 0.59 0.69 0.79 0.90

Random 15.2% 13.5% 12.3% 11.6% 12.6% 11.5% 12.3% 13.4% 13.5%
CI 37.3% 29.5% 25.6% 21.4% 19.3% 17.4% 16.3% 15.0% 14.3%
SI 36.6% 28.7% 25.7% 21.2% 19.2% 17.4% 16.2% 15.1% 14.2%

CRI(r) 36.5% 30.5% 27.0% 25.5% 25.5% 23.7% 22.7% 22.8% 21.6%
CRI( ρ) 38.8% 31.2% 27.6% 25.5% 24.9% 23.3% 22.9% 22.6% 21.6%
CRI( τ) 23.2% 19.5% 16.1% 15.6% 16.6% 15.5% 14.4% 14.7% 14.1%

SSI 39.6% 31.6% 28.0% 26.0% 25.2% 23.9% 23.6% 23.0% 22.9%
MOI 38.8% 30.6% 26.9% 23.6% 21.6% 19.5% 19.4% 18.6% 17.7%
CSS 39.1% 30.8% 27.1% 23.4% 21.2% 17.4% 15.3% 16.2% 14.4%



Supplemental Online material 

 

4100-project simulation detailed results 

All project simulation results discussed in the paper can be accessed here: 

http://bit.ly/2JPHhnm . This link corresponds to a 33 MB MS Excel file. Please, be patient 

when downloading and opening it. 

Additionally, there is also some additional simulation data comparing the same 

project networks under the assumption of low, medium and high activity duration variability. 

These results can be accessed here: http://bit.ly/2uAUERz . This link corresponds to a 118 

MB Zip file containing multiple MS Excel spreadsheets. Please, be patient when 

downloading and opening it. 

 

Abbreviations list 

AD Activity Distribution (topological) indicator. 

CI Criticality index 

CIi Activity i’s Criticality Index 

correl(x,y) Linear correlation between x and y 

covar(x,y) Covariance between x and y. 

CRI(r) Cruciality Index based on Pearson product-moment. 

CRI(ρ) Cruciality Index based on Spearman’s rank. 

CRI(τ) Cruciality Index based on Kendall’s rank. 

CSS Criticality-Slack-Sensitivity index. 

Dmk Project Duration median percentile reduction respect to the initial PD curve when 

k activities have their duration variability constrained (σi=0). 

Dσk Project Duration standard deviation reduction respect to the initial PD curve when 

k activities have their duration variability constrained (σi=0). 



 Ranking difference between  and PDj at simulation run j, that is 

 

di Activity i’s duration. 

 Activity i’s duration at simulation run j. 

E(·) Expectation (average) of (·). 

i Activity (in a given schedule network) identifier index. 

j Monte Carlo simulation run identifier index. 

k Total number of activities whose duration variability (σi) has been constrained 

(forced to σi=0) for project control purposes. 

LA Length of Arcs (topological) indicator. 

 Auxiliary index defined as =j+1, j+2,…N. 

µi Activity i’s duration average (planned duration). 

mk Project duration median when k activities have their duration variability constrained. 

MOI Management-Oriented index. 

N Total number of Monte Carlo simulations performed in a construction schedule. 

n Total number of activities in a construction schedule. 

Normal(·) Normal probability distribution. 

nsuccessors i Total number of (direct and transitive) successors of activity i. 

PC Level of Project Control (expressed as k/n, that is, % of activities with 

constrained duration variability respect to the total number of activities) 

PD Project Duration. 

PDj Project duration at simulation run j.  

Probk(·) Probability in density curve k of (·). 

 Activity i’s duration variance 

 Project Duration variance. 

σi Activity i’s duration standard deviation 

σmax Highest standard deviation among the σi values of all scheduled activities in a 

project, that is σmax=max σi  with i=1,2,… n 

σp Project Duration standard deviation. 

si Activity i’s slack (also known as total float) 
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 Activity i’s slack at simulation run j. 

s’i Activity i’s slack (total float) when all activities in the schedule last their avg. durations. 

SI Significance index. 

SP Serial-Parallel (topological) indicator. It measures how close a network resembles 

a perfectly parallel network (SP=0) or a series network (SP=1) 

SSI Schedule Sensitivity index. 

TF Topological Float (topological) indicator.  

j
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Appendix B: Activity sensitivity metrics simulation-based estimators 

When resorting to Monte Carlo simulation, expressions in Table 1 on the paper can be 

computed using the following simulation-based estimators. All abbreviations and variables 

can be found in the previous abbreviations list. 
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