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Abstract

One of the main concerns of today’s data centers is to maximize server utilization. In each
multi-core server processor, multiple applications are executed concurrently, increasing
resource efficiency as system resources are shared. However, performance and fairness
are highly dependent on the share of resources that each application receives, leading
to performance unpredictability. The rising number of cores (and running applications)
with every new generation of processors is leading to a growing concern for interference
at the shared resources.

Resource sharing has been typically tackled in High-Performance Computing (HPC);
nevertheless, due to the increasing prominence of cloud computing, issues typically han-
dled in HPC are now being targeted in this domain. This thesis focuses on addressing
resource interference when different applications are consolidated on the same server
processor from two main perspectives: HPC and cloud computing.

In the context of HPC, resource management approaches are proposed to reduce inter-
application interference at two major critical resources: the last level cache (LLC) and the
processor cores. The LLC plays a key role in the system performance of current multi-
cores by reducing the number of long-latency main memory accesses. LLC partitioning
approaches are proposed for both inclusive and non-inclusive LLC, as both designs are
present in current server processors. In both cases, newly problematic LLC behaviors are
identified and efficiently detected, granting a larger cache share to those applications that
make profitable use of the LLC space. As for processor cores, many parallel applications,
like graph applications, do not scale well with an increasing number of threads/pro-
cesses due to hardware and software issues. However, the default Linux time-sharing
scheduler performs poorly when running graph applications, which, unlike other sci-
entific applications, process vast amounts of data. To maximize system utilization, this
thesis proposes to co-locate multiple graph applications on the same server processor by
assigning the optimal number of cores to each one. By dynamically adapting the number
of threads spawned by the running applications, it is possible to change the number of
cores allocated to meet applications’ runtime requirements.

When studying the impact of system shared resources on cloud computing, this thesis ad-
dresses three major challenges: the complex infrastructure of cloud systems, the nature
of cloud applications, and the impact of inter-VM interference on the VMs’ performance.
Firstly, this dissertation presents the experimental platform developed to perform repre-
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Abstract

sentative cloud performance studies with the main cloud system components (hardware
and software). Secondly, an extensive characterization study is presented on a set of
representative latency-critical workloads as many important cloud workloads must meet
strict quality of service (QoS) requirements to provide a satisfactory user experience. The
aim of the studies is to outline considerations cloud providers should take into account to
improve performance and resource utilization. Finally, we propose an online approach
that detects and accurately estimates inter-VM interference in scenarios with multiple co-
located latency-critical VMs. The approach relies on metrics that can be easily monitored
in the public cloud as VMs are handled as “black boxes”. The research described above
is carried out following the restrictions and requirements to be applicable to public cloud
production systems.

In summary, this thesis addresses contention in the main system shared resources in the
context of server consolidation, both in HPC and cloud computing. Experimental results
show that important gains are obtained over the Linux OS scheduler by reducing the in-
terference at the shared resources. In inclusive LLCs, turnaround time (TT) is reduced by
over 40% while sustaining (and even improving) IPC by more than 3%. In non-inclusive
LLCs, fairness and TT are improved by 44% and 24%, respectively, while even improv-
ing performance up to 3.5%. By distributing core resources efficiently, an almost perfect
fairness can be obtained (on average 94%), and TT can be reduced by up to 80% In cloud
computing environments, performance degradation due to resource contention can be
estimated with an overall prediction error of 5%. All of the approaches proposed in this
dissertation have been designed to be applied in commercial server processors without
requiring any prior information. Decisions are performed dynamically at execution time
using the data collected from the hardware performance counters.

vi



Resumen

Una de las principales preocupaciones de los centros de datos actuales es maximizar la
utilización de los servidores. En cada servidor o procesador multinúcleo se ejecutan si-
multáneamente varias aplicaciones, lo que aumenta la eficiencia de los recursos gracias
a la compartición de los mismos. Sin embargo, el rendimiento y la equidad dependen
en gran medida de la proporción de recursos que recibe cada aplicación, lo que provoca
que su tiempo de ejecución sea imprevisible. El creciente número de núcleos (y de aplica-
ciones ejecutándose al mismo tiempo) con cada nueva generación de procesadores hace
que crezca la preocupación por el efecto causado por las interferencias en los recursos
compartidos.

La compartición de recursos se ha abordado típicamente en la computación de alto ren-
dimiento (HPC); sin embargo, debido a la creciente importancia de la computación en
la nube, los problemas que suelen tratarse en HPC se han trasladado a este ámbito. Esta
tesis se centra en mitigar la interferencia en los recursos compartidos cuando diferen-
tes aplicaciones se consolidan en un mismo procesador desde dos perspectivas: HPC y
computación en la nube.

En el contexto de HPC, para reducir la interferencia causada por la ejecución concurren-
te de múltiples aplicaciones, en esta tesis se proponen políticas de gestión para dos de
los recursos más críticos del sistema: la caché de último nivel (LLC) y los núcleos del
procesador. La LLC desempeña un papel clave en las prestaciones del sistema con los
procesadores multinúcleo actuales ya que reducen considerablemente el número de ac-
cesos de alta latencia a la memoria principal. Se proponen estrategias de particionado
de la LLC tanto para cachés inclusivas como no inclusivas, ya que ambos diseños están
presentes en la actualidad en los procesadores para servidores. Para los dos esquemas de
caché, se identifican y detectan eficientemente nuevos comportamientos problemáticos
en lo que se refiere a la LLC. Esto permite asignar un mayor espacio de caché a aquellas
aplicaciones que hacen un uso eficiente del mismo. En cuanto a los núcleos del proce-
sador, muchas aplicaciones paralelas, como las aplicaciones de grafos, no escalan bien a
medida que se incrementa el número de hilos/procesos debido a problemas hardware y
software. Sin embargo, el planificador de Linux, que aplica una estrategia de tiempo com-
partido, no ofrece buenas prestaciones cuando se ejecutan aplicaciones de grafo, ya que,
a diferencia de otras aplicaciones científicas, procesan grandes cantidades de datos. Para
maximizar la utilización del sistema, esta tesis propone ejecutar múltiples aplicaciones de
grafo simultáneamente en el mismo procesador, asignando el número óptimo de núcleos
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Resumen

a cada una. Adaptando el número de hilos creados por las aplicaciones en tiempo de eje-
cución, es posible cambiar el número de núcleos asignados para satisfacer los requisitos
de las aplicaciones de manera dinámica.

Para estudiar el impacto de los recursos compartidos del sistema en la computación en
la nube, esta tesis aborda tres grandes retos: la compleja infraestructura de los sistemas
en la nube, las características de las aplicaciones que se ejecutan en la nube y el impacto
de la interferencia entre máquinas virtuales (MV) en el rendimiento de éstas. En pri-
mer lugar, esta tesis presenta la plataforma experimental desarrollada con los principales
componentes de un sistema en la nube (hardware y software) para realizar estudios repre-
sentativos del rendimiento de la nube. En segundo lugar, se presenta un amplio estudio
de caracterización sobre un conjunto de aplicaciones de latencia crítica representativas,
ya que muchas cargas de trabajo importantes en la nube deben cumplir estrictos requi-
sitos de calidad de servicio (QoS) para brindar una experiencia de usuario satisfactoria.
El objetivo de los estudios es identificar las cuestiones que los proveedores de servicios
en la nube deben tener en cuenta para mejorar el rendimiento y la utilización de los re-
cursos. Por último, se realiza una propuesta que, de manera dinámica, permite detectar
y estimar de forma precisa la interferencia entre MV en escenarios en los que se ejecu-
tan múltiples MV con aplicaciones de latencia crítica. El enfoque se basa en métricas que
pueden monitorizarse fácilmente en la nube pública, ya que las MV deben tratarse como
“cajas negras”. Toda la investigación descrita se lleva a cabo respetando las restriccio-
nes y cumpliendo los requisitos para ser aplicable en entornos de producción en la nube
pública.

En resumen, esta tesis aborda la contención en los principales recursos compartidos del
sistema en el contexto de la consolidación de servidores, tanto en entornos de altas presta-
ciones como en entornos de nube. Los resultados experimentales muestran importantes
ganancias de prestaciones sobre el planificador del sistema operativo Linux al reducir
las interferencias en los recursos compartidos. En los procesadores con LLC inclusiva, el
tiempo de ejecución (TT) se reduce en más de un 40 %, mientras que se mantiene (e in-
cluso mejora) el IPC en más de un 3 %. En los sistemas con LLC no inclusiva, la equidad
y el TT mejoran en un 44 % y un 24 %, respectivamente, al mismo tiempo que se obtiene
una mejora del rendimiento de hasta en un 3,5 %. Al distribuir los núcleos del procesa-
dor de forma eficiente, se alcanza una equidad casi perfecta (de media un 94 %), y el TT
puede reducirse hasta un 80 %. En entornos de computación en la nube, la degradación
del rendimiento debido a la contención en los recursos compartidos puede estimarse con
un error de un 5 % en la predicción global. Todas las propuestas presentadas en esta te-
sis han sido diseñadas para ser aplicadas en procesadores de servidores comerciales sin
requerir ninguna información previa. Las decisiones se toman dinámicamente en tiempo
de ejecución utilizando los datos recogidos de los contadores de prestaciones hardware.
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Resum

Una de les principals preocupacions dels centres de dades actuals és maximitzar la uti-
lització dels servidors. A cada servidor o processador multinucli s’executen simultà-
niament diverses aplicacions, cosa que augmenta l’eficiència dels recursos gràcies a la
compartició dels mateixos. Tot i això, el rendiment i l’equitat depenen en gran mesura
de la proporció de recursos que rep cada aplicació, cosa que provoca que el seu temps
d’execució siga imprevisible. El nombre creixent de nuclis (i aplicacions executant-se al-
hora) amb cada nova generació de processadors fa que creixca la preocupació per l’efecte
causat per les interferències en els recursos compartits.

La compartició de recursos s’ha abordat típicament a la computació d’alt rendiment
(HPC); no obstant això, a causa de la creixent importància de la computació al núvol,
els problemes que solen tractar-se en HPC s’han traslladat a aquest àmbit. Aquesta tesi
se centra a mitigar la interferència en els recursos compartits quan diferents aplicacions
es consoliden en un mateix processador des de dues perspectives: HPC i computació al
núvol.

En el context d’HPC, per reduir la interferència causada per l’execució concurrent de múl-
tiples aplicacions, en aquesta tesi es proposen polítiques de gestió per a dos dels recursos
més crítics del sistema: la memòria cau d’últim nivell (LLC) i els nuclis del processador.
La LLC exerceix un paper clau a les prestacions del sistema en els processadors multi-
nucli actuals ja que redueixen considerablement el nombre d’accessos d’alta latència a
la memòria principal. Es proposen estratègies de particionament de la LLC tant per a
caus inclusives com no inclusives, ja que ambdós dissenys són presents actualment en
els processadors per a servidors. Per als dos esquemes de memòria cau, s’identifiquen i
detecten eficientment nous comportaments problemàtics pel que fa a la LLC. Això permet
assignar un major espai de memòria cau a aquelles aplicacions que en fan un ús eficient.
Pel que fa als nuclis del processador, moltes aplicacions paral·leles, com les aplicacions
de grafs, no escalen bé a mesura que s’incrementa el nombre de fils/processos a causa
de problemes hardware i software. Tot i això, el planificador de Linux, que aplica una es-
tratègia de temps compartit, no ofereix bones prestacions quan s’executen aplicacions de
graf, ja que, a diferència d’altres aplicacions científiques, processen grans quantitats de
dades. Per maximitzar la utilització del sistema, aquesta tesi proposa executar múltiples
aplicacions de grafs simultàniament al mateix processador, assignant el nombre òptim
de nuclis a cadascuna. Adaptant el nombre de fils creats per les aplicacions en temps
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d’execució, és possible canviar el nombre de nuclis assignats per satisfer els requisits de
les aplicacions de manera dinàmica.

Per estudiar l’impacte dels recursos compartits del sistema a la computació al núvol,
aquesta tesi aborda tres grans reptes: la complexa infraestructura dels sistemes al núvol,
les característiques de les aplicacions que s’executen al núvol i l’impacte de la interfe-
rència entre màquines virtuals (MV) al rendiment d’aquestes. En primer lloc, aquesta
tesi presenta la plataforma experimental desenvolupada amb els principals components
d’un sistema al núvol (hardware i software) per fer estudis representatius del rendiment
del núvol. En segon lloc, es presenta un ampli estudi de caracterització sobre un conjunt
d’aplicacions de latència crítica representatives, ja que moltes càrregues de treball impor-
tants al núvol han de complir requisits de qualitat de servei estrictes (QoS) per brindar
una experiència d’usuari satisfactòria. L’objectiu dels estudis és identificar les qüestions
que els proveïdors de serveis al núvol han de tenir en compte per millorar el rendiment i
la utilització dels recursos. Finalment, es fa una proposta que de manera dinàmica permet
detectar i estimar de manera precisa la interferència entre MV en escenaris on s’executen
múltiples MV amb aplicacions de latència crítica. L’enfocament es basa en mètriques que
es poden monitoritzar fàcilment al núvol públic, ja que les MV han de tractar-se com a
“caixes negres”. Tota la investigació descrita es duu a terme respectant les restriccions i
complint els requisits per ser aplicable en entorns de producció al núvol públic.

En resum, aquesta tesi aborda la contenció en els principals recursos compartits del sis-
tema en el context de la consolidació de servidors, tant en entorns d’altes prestacions
com en entorns de núvol. Els resultats experimentals mostren que s’obtenen importants
guanys sobre el planificador del sistema operatiu Linux en reduir les interferències en
els recursos compartits. En els processadors amb una LLC inclusiva, el temps d’execució
(TT) es redueix en més d’un 40%, mentres que es manté (i fins i tot millora) l’IPC en més
d’un 3%. En els que tenen una LLC no inclusiva, l’equitat i el TT es milloren en un 44%
i un 24%, respectivament, al mateix temps que s’obté una millora del rendiment de fins
a un 3,5%. Distribuint els nuclis del processador de manera eficient es pot obtindre una
equitat quasi perfecta (de mitjana un 94%), i el TT pot reduir-se fins a un 80%. En entorns
de computació al núvol, la degradació del rendiment degut a la contenció en els recursos
compartits pot estimar-se amb un error de predicció global d’un 5%. Totes les propostes
presentades en aquesta tesi han sigut dissenyades per a ser aplicades en processadors
de servidors comercials sense requerir cap informació prèvia. Les decisions es prenen
dinàmicament en temps d’execució utilitzant les dades recollides dels comptadors de
prestacions hardware.
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CHAPTER 1

Introduction

This chapter presents the main research issues addressed in this doctoral thesis and the
motivation for the work done. To help contextualize the research problem, first, impor-
tant background information is provided on interference at the main system resources,
focusing on the last level cache (LLC) and core resources. Resource sharing has been typi-
cally addressed in High-Performance Computing (HPC); however, the growing popular-
ity of cloud computing makes that problems commonly faced in HPC shift to this area.
In this regard, compared to HPC, the challenges faced in cloud computing are magnified
due to the importance of managing resource interference in public clouds to meet QoS
requirements. Finally, the objectives and main contributions of this thesis are described.

1.1 Resource Sharing in Server Processors

Current data centers are equipped with thousands of modern high-performance multi-
core processors. Each single processor allows multiple applications to be executed con-
currently, increasing resource utilization thanks to resource sharing. As the co-running
applications compete for the shared resources and present different resource demands,
the performance of each individual application becomes unpredictable. In other words,
the inter-application interference affects differently to each application yielding the sys-
tem to performance unpredictability, which aggravates as the unfairness grows. This the-
sis focuses on analyzing the inter-application interference and proposing management
strategies to deal both with performance and unfairness. The research concentrates on
two major critical resources: the LLC and the processor cores.

1.1.1. Last Level Cache (LLC)

Modern processors commonly implement a three-level cache hierarchy. The lower cache
levels (e.g., L2 and L3) are key components to hide the long main memory latencies,
and so they are sized big to reduce the number of accesses to the off-chip main mem-
ory. While the L2 cache is private to the core, the L3 or the last level cache (LLC) is
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shared among all cores. The fact that the LLC is shared allows to improve its utilization
and presents important advantages over splitting its storage capacity into smaller private
caches [1]. However, sharing the LLC can lead to important shortcomings from a system
performance perspective. One of the most harmful effects is known as cache pollution,
which refers to inaccurate prefetch requests [2, 3] that fill up the cache with blocks that
are never (or scarcely) referenced again, replacing other useful blocks.

The destructive interference among applications accessing the LLC increases the number
of accesses to the off-chip main memory, which incur long latencies that can severely
impact on the system performance. For this reason, the common design choice taken
by computer architects is to provide a huge LLC, in the order of a few MBs per core,
which adds up to tens of MBs. The capacity becomes even larger when the LLC is built
using denser memory technologies, like the eDRAM (embedded DRAM) used in the IBM
POWER9 [4] and in the Intel Knights Landing [5] processors.

In recent years, the increasing number of cores and the ongoing pursuit of better perfor-
mance has motivated the trend towards a higher reliance on private caches (e.g., large
L2 caches [6]). Therefore, new cache hierarchy organizations were introduced aimed at
keeping a larger amount of private data closer to the processor. Among these designs,
non-inclusive caches have been implemented in recent processors [7, 8, 9]. This design
choice avoids cache line replication (i.e., in the L2 and the LLC), using the available cache
space more efficiently. In this organization, the L2 cache is made larger, and the LLC
slice is reduced over that of inclusive LLCs. Overall, the cache space per core is reduced,
saving silicon area. The fact that there is less space per core to manage makes cache man-
agement more critical in processors with a non-inclusive LLC than with an inclusive LLC.
In addition, the number of accesses to the LLC is typically higher since it acts as a victim
cache of the L2 cache. This means that a fierce competition for cache space can take place.
Consequently, making efficient use of the smaller LLC space is even more critical than in
inclusive caches, as the cache pollution effect is magnified.

To address the interference at the LLC, some processor manufacturers like Intel, ARM,
and AMD have deployed technologies in server processors that allow distributing LLC
cache ways among co-running applications. For instance, Intel has deployed Cache Allo-
cation Technology (CAT) [10], which allows creating cache partitions and assigning them
to applications. The first processors that deployed Intel CAT had an inclusive LLC. This
technology has also been included in newer processors with a memory hierarchy con-
taining a non-inclusive LLC.

1.1.2. CPU Cores

Server processors are made up of multiple cores. Most processor manufacturers imple-
ment the simultaneous multithreading (SMT) paradigm [11], which allows a physical
core to issue instructions from different threads in each cycle. SMT allows increasing
the processor throughput; however, instructions from the threads concurrently running
on the same core compete, among other shared resources, for the scarce number of is-
sue ports, thus, introducing inter-thread interference that harms their performance with
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respect to their individual execution. Intel’s implementation of the SMT paradigm is
known as Hyper-Threading technology [12]. It typically supports the concurrent execu-
tion of two threads. From the OS perspective, a given physical core is seen as two logical
cores or CPUs. In a multi-core processor with Hyper-Threading cores, it is important to
differentiate between physical and logical cores when analyzing resource sharing. Two
threads running on different physical cores only share the off-core processor resources,
mainly the LLC and main memory. However, when two threads are assigned to the
two logical cores of the same physical core, they also compete for intra-core components.
These components are critical for performance and include, among others, issue ports,
reorder buffer (ROB), physical registers, load queue, store queue, functional units, as
well as L1 and L2 caches. As a consequence, the performance of a given thread highly
depends on the demands of the internal components of the thread it is co-running with
[13].

The current trend in server processors is to increase the number of cores. Recent proces-
sors like the 4th generation Xeon Scalable CPUs deploy up to 60 cores [14], and AMD
EPYC processors include up to 128 cores [15]. To provide full system utilization, proces-
sor cores must be fully subscribed. Many parallel scientific applications [16, 17, 18, 19]
provide the capability of launching as many threads/processes as available cores.

Over the last years, research initiatives have been proposed to make parallel applications’
number of threads/processes reconfigurable. However, many parallel applications are
not capable of scaling as the number of threads increases due to different hardware and
software issues: load balancing, data synchronization, cache interference, issue band-
width, and functional-unit saturation [20, 21, 22]. For this reason, many research efforts
have been made to use hardware resources best by adjusting the thread-level parallelism
(TLP) of multithreaded applications. More precisely, by assigning to an application the
optimal number of cores so that it launches the number of threads that achieves maximum
performance, avoiding resources being wasted or underused. To this end, parallel appli-
cations must be able to adapt the number of threads/processes dynamically at execution
time.

1.2 Cloud Computing Paradigm

Cloud computing has evolved as a key computing paradigm. An increasing amount of
computing is being performed in public clouds, such as Amazon’s EC2 [23], Microsoft
Azure [24], and Google Compute Engine [25]. Compared to traditional on-site setups,
cloud platforms provide two major advantages for end-users [26, 27]: i) cost efficiency
as users can quickly launch jobs without the up-front and operational costs of owning a
cluster, and ii) flexibility as users can easily request or release computational resources.

Most public cloud systems deploy powerful computing servers. Following the typical
virtualization model, the cloud provider allocates multiple virtual machines (VMs) in
the same physical machine, which provides fault isolation, security, and improved man-
ageability. This enables high flexibility and resource control.
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1.2.1. Issues and Particularities of Public Cloud Systems

Compared to research carried out in the context of HPC, cloud computing research im-
poses multiple challenges, especially if research is intended to be applicable to public
cloud production systems.

In order to perform representative cloud performance studies, the experimental platform
should resemble as much as possible to a real production environment. This fact is espe-
cially hard to achieve due to the complexity (both hardware and software) of production
systems. Consequently, research works simplify the experimental framework. Unfortu-
nately, existing studies omit important system components [28, 29, 30, 31, 32, 33] or do
not consider virtualization with VMs [34, 30, 31, 33], which results in losses of represen-
tativeness.

Despite the public cloud can run any kind of workload, an important characteristic that
makes public cloud servers different from traditional computing nodes is that they fre-
quently run latency-critical workloads. Most online or interactive services are examples
of these workloads. Unlike scientific workloads used in HPC, the performance of latency-
critical applications is given by the obtained tail latency, indicated as a percentile (e.g.,
95th or 99th) of all the latencies and accounts for the requests that take longer to complete.

A major shortcoming that cloud providers need to face when measuring and evaluating
performance is that they do not have information about the applications running on the
VMs. This means that VMs are treated as “black boxes”.

1.2.2. Resource Sharing and QoS

The fact that cloud providers co-locate multiple VMs in the same physical machine means
that inter-VM performance interference will appear due to competition for the major sys-
tem resources (e.g., processor cores, LLC, or main memory), making performance un-
predictable. In other words, the interference adversely impacts on the quality of service
(QoS) of the applications. Moreover, when the QoS degrades, it might not comply with
the service level objectives (SLOs) stated in the service level agreement (SLA) between a
cloud provider and a customer.

To avoid QoS violations and tackle the inter-VM performance interference, cloud providers
typically adopt an overprovisioning strategy. That is, resources are assigned to each VM
in excess to avoid possible performance degradation due to the inter-VM interference.
When running latency-critical applications, system resources must be conservatively over-
provisioned to ensure compliance with the SLA, as the performance of these workloads
is very sensitive to the inter-VM interference. This workaround, however, results in poor
utilization of the major resources of the cloud system. For instance, the average CPU uti-
lization is typically far below 50% in cloud servers running latency-critical applications
[35] and, in most cases, below 20% [36, 37].

The previous rationale means that an important concern for cloud providers is to re-
duce the overprovisioning costs of the system resources associated with the VM; in other
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Figure 1.1: The three main axes of research covered in this thesis.

words, there is an interest in improving the resource efficiency to lower the cost of VMs.
However, the public cloud imposes significant limitations to implementing a resource
management approach. First, it should not have prior knowledge of the workloads run-
ning on the VMs (i.e., they should be treated as black boxes). Second, it should not require
costly actions (e.g., isolating a VM). And third, it should be general enough to adapt to
different workloads and system conditions.

1.3 Objectives of the Thesis

The overall objective of this thesis is to address the inter-application interference at the
main system shared resources from two main perspectives: HPC and cloud computing.
Within each scope of research, this objective spawns across three main axes. First, the tar-
get shared resource(s) to be studied are specified (e.g., the LLC). Then, the workloads to
be run are selected (e.g., single-threaded scientific applications), considering the induced
interference we intend to study (e.g., cache thrashing behavior). Finally, the system plat-
form is selected depending on the workloads and the specific resource to be studied, and
the workload characteristics. Below, we summarize the extent to which this thesis deals
with these three axes:

Shared Resources. The main system shared resources addressed in this thesis vary de-
pending on the scope (HPC or cloud) of the study. Regarding HPC, the study focuses
on two major processor resources: the LLC and CPU cores. In the context of cloud com-
puting, the main shared resources of the entire system (CPU cores, LLC, main memory
bandwidth, disk bandwidth, and network bandwidth) are considered, as public cloud
environments cannot obviate any resource.

Workloads. Depending on the scope and the resource to be studied, different benchmark
suites are typically used. The manuscript starts by presenting resource management ap-
proaches aimed at HPC environments. In this context, we have used scientific single-
threaded applications to study the LLC interference and graph parallel workloads to
focus the research on core-allocation policies regulating thread-level parallelism (TLP).
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However, the popularity and increase in computational load of cloud computing have
caused resource sharing to be a concern for cloud providers. Therefore, this thesis evolves
the work performed in HPC to cloud computing. In this domain, cloud latency-critical
workloads are used to explore resource interference in cloud computing.

System Platform. The experimental setup is highly dependent on both the workload
characteristics and target shared resource(s) chosen to be studied. To study resource par-
titioning in HPC, multi-core processors with resource partitioning tools are required. Two
different processor architectures are considered in order to study interference at inclusive
and non-inclusive LLCs. In the case of cloud computing, a more complex experimental
platform is required with a client-server architecture, a storage node, and a system soft-
ware stack to implement virtualization. For this purpose, we implement an experimental
setup to perform cloud research. Also, the main memory storage capacity and the num-
ber of cores (and threads) can be critical elements depending on memory requirements
and scalability features of mulithreaded applications.

1.4 Main Contributions of the Thesis

This section summarizes the major contributions of this thesis, grouped according to the
two main computing paradigms addressed in this dissertation.

1.4.1. High-Performance Computing (HPC)

The research developed in HPC focuses on the resource management of the LLC (both
inclusive and non-inclusive design) and the CPU cores.

• System TT and throughput improvement via LLC partitioning. This disserta-
tion proposes LLC partitioning approaches that leverage Intel CAT to improve the
performance of multi-program workloads by identifying and protecting the appli-
cations whose performance is more damaged by LLC sharing. Newly problematic
LLC behaviors are identified, which can significantly drop the system performance
if not properly dealt with. We also propose an LLC partitioning phase-driven ap-
proach that dynamically adjust the partitioning according to changes in the LLC
behavior that applications experience during their execution.

• Containing cache pollution by partitioning of non-inclusive LLC. Current server
processors have redistributed the cache hierarchy space over previous generations,
making the LLC smaller but designed as non-inclusive to reduce the number of
replicated blocks. Cache management in this organization becomes more critical
than in inclusive caches. To address the harmful effect known as LLC pollution, we
propose Cache-Poll partitioning policy that, based on the polluting behavior and
the cache requirements of the co-running applications, distributes the LLC space at
run-time among applications. Cache-Poll exploits the non-inclusive LLC design by
leaving little room for cache-insensitive and polluting applications.
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• Spatial core-allocation varying TLP transparently. The default Linux scheduler,
which adopts a time-sharing policy to provide a fair scheduler, performs poorly
when multiple graph applications share a system. To deal with this issue, we
propose AFAIR, a core-allocation policy that dynamically adjusts the number of
cores assigned to each graph application based on the shared-memory resource
that bottlenecks the processor performance. AFAIR adapts the number of threads
spawned by the running applications dynamically without modifying the applica-
tions’ source code.

1.4.2. Cloud Computing

The work carried out in this thesis on cloud computing is focused on analyzing how the
performance of VMs is affected by the consumption of the main system resources consid-
ering a public cloud environment. In addition, we outline specific hints cloud providers
should take into account to improve the system performance and resource utilization.

• Experimental platform to carry out controlled cloud research. To perform cloud
research, a small experimental platform is commonly used, which hides the huge
system complexity and provides flexibility. Most platforms used in existing work
do not include all cloud components or lack the deployment of VMs to provide
isolation. To comply with all the main features of cloud production systems, we
present Stratus, an experimental platform used to carry out the cloud research
presented in this dissertation. Stratus uses VMs to isolate tenant applications, de-
ploys the three types of cloud nodes (server, client, and storage), and manages all
main shared system resources (cores, LLC space, memory, network, and disk band-
width).

• Characterization of cloud latency-critical workloads. Understanding how perfor-
mance is affected by the consumption of the main system resources is a major con-
cern for cloud providers in order to devise virtualization strategies that improve
system efficiency. For this aim, a set of representative latency-critical applications
are characterized, revealing that the performance of some applications does not
scale with the number of threads, and the performance of some others is insensitive
to the Hyper-Threading technology. To identify these applications at run-time, the
utilization trend of the major system resources is analyzed. In addition to CPU, we
have also studied how assigning the share of other major shared system resources
to each application impacts on performance.

• Detecting and estimating QoS degradation in the public cloud. To prevent QoS
violations, cloud providers adopt overprovisioning strategies, but they reduce server
utilization and increase operational costs. A mechanism that accurately estimates
performance degradation dynamically in a production system would allow cloud
providers to improve the servers’ utilization. This thesis proposes Cloud White, an
approach that is able to detect the inter-VM interference in scenarios with multiple
co-located latency-critical VMs and estimate the performance degradation using
multi-variable regression models. Unlike previous proposals, Cloud White esti-
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mates performance in terms of tail latency and considers the limitations of a public
cloud production system.

1.5 Thesis Outline

The remainder of this thesis is organized into eight chapters. Chapter 2 discusses the
related work and state-of-the-art approaches. Chapter 3 presents the experimental setup
designed to carry out the experiments presented in this thesis. The rest of the chapters
are grouped into two main blocks according to the scope of the research.

Regarding the research performed on HPC, Chapters 4 and 5 study the interference at the
LLC and propose cache partitioning approaches for inclusive and non-inclusive LLC, re-
spectively. Chapter 6 focuses on cores resource management, presenting a core-allocation
policy to improve the co-location performance of graph workloads.

With respect to the work performed on cloud computing, Chapter 7 analyzes the be-
havior of cloud workloads from a performance and resource-consumption perspective,
considering the scalability, load, thread-allocation, and inter-VM interference. Chapter 8
proposes a dynamic approach to detect inter-VM interference and estimate the resulting
QoS degradation.

Finally, Chapter 9 summarizes the main contributions of this thesis, discusses future
work, and lists the related publications.
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CHAPTER 2

State of the Art

This chapter describes relevant previous work on the topics covered in this dissertation.
First, the relevant work on resource management is introduced, analyzing approaches
that target HPC and Cloud Computing. Second, works analyzing the performance of
emerging workloads are revised. Finally, we discuss key state-of-the-art approaches pro-
posed to detect and estimate performance degradation in cloud production systems.

2.1 Resource Management Approaches

2.1.1. Last Level Cache (LLC)

The first approaches dealing with cache partitioning were implemented using simulation
frameworks. Some approaches like UCP [38], ASM [39], Vantage [40], PriSM [41] need
to modify the eviction and insertion policies to partition the cache; hence they cannot
be implemented in existing processors. Other approaches, like the filter cache [42] and
ROCA [43], split the cache into different structures to reduce interference.

An alternative approach has been to perform cache partitioning using software tools.
Many are based on page-coloring, a mechanism that allows controlling which cache sets
are assigned to the application data. Among them, an interesting proposal is the work
by Liu et al. [44], which proposes a multi-policy memory allocation approach, profiling
at run-time the slowdown obtained by applications when the cache space is reduced
and selecting the best partitioning policy (horizontal partitioning, vertical partitioning
or randomized page interleaving policy) based on this characterization. Park et al. [45]
profile applications’ cache behavior at page level to assess the page reusability. Then, the
LLC is divided into two partitions to place low and high reusability pages together.

Recently, the research trend has changed as some recent processors from distinct ven-
dors provide support to partition the cache [10, 8, 9], so nowadays, the main focus is on
implementing cache partitioning policies in commercial processors.
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Inclusive Caches

The works focusing on inclusive L3 caches aim to distribute a high number of cache ways,
20 or more in most processors, among the co-running applications. They mainly differ in
the type of the applications (e.g., latency-critical, best-effort, or high-priority) co-running
in the processor, which receive different treatment according to the aim of the approach
(e.g., quality of service of latency-critical, fairness, or turnaround time). These works can
be split into two main groups depending on whether they concentrate on HPC or cloud
workloads. Below these groups are discussed.

In the context of HPC, Selfa et al. [1] cluster applications using the k-means algorithm
and distribute cache ways between the groups, giving exponentially more space to the
applications whose performance suffer more from the interference at the LLC to improve
system fairness. El-Sayed et al. [46] also group applications into clusters, assigning them
to different CLOS. While it significantly improves throughput in selected workloads, it
uses detailed profiling, making KPart a more complex solution than those proposed in
this thesis. Similarly, DICER [47] uses a similar profiling to perform cache partitioning
where high-priority and best-effort applications are executed together. DCAPS [48] pro-
poses a framework based on predictors that use miss rate curves and LLC occupancy
predictions. This approach estimates the LLC occupancy from the number of misses
incurred, which can lead to wrong conclusions since some applications present a low
number of LLC misses but a high number of memory accesses due to prefetches, re-
sulting in a high LLC occupancy. Contrary to this work, we measure the effective LLC
occupancy to identify anomalous LLC behaviors that can drop the performance of the
co-runners. Sun et al. [49] propose combining cache partitioning with prefetch control
to reduce prefetcher-caused inter-core interference. Authors designed the Coordinated
Multi-resource Management (CMM) framework to detect prefetch-aggressive applica-
tions and allocate resources (prefetcher and cache space) accordingly.

In the context of cloud computing, research works [50, 31, 51] have been published deal-
ing with multiple hardware and software resource management mechanisms (among
them, cache partitioning) for cloud systems. These systems present workloads with par-
ticular characteristics, like latency-critical applications, where the quality of service (QoS)
must be satisfied, which run jointly with best-effort applications to improve resource uti-
lization. Multiple resources are tuned simultaneously (e.g., the number of cache ways
and cores) to meet QoS requirements. While Heracles [50] only considers a single latency-
critical application placed in a private partition, Parties [31] can manage multiple latency-
critical applications. In [51] Funaro et al. use a marked-driven auction system to partition
the LLC into isolated partitions. In this way, each guest can bid based on the number of
resources it wants to use.

Non-Inclusive Caches

Non-inclusive L3 caches (i.e., LLC) are the newest design trend; therefore, the most recent
works have been performed in processors with non-inclusive LLCs.
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2.1 Resource Management Approaches

Some approaches are designed for scientific workloads, targeting system throughput
and fairness. POCAT [52] uses Intel Top-down Microarchitecture Analysis Method (TMAM),
leveraging machine learning to predict applications’ IPC for different cache sizes. This
model also captures changes in the IPC behavior. However, it requires using a machine
learning dataset created by previously collecting TMAM metrics and IPC values of each
application for each cache way setting. Xiao et al. [53] identify prefetching sensitive ap-
plications to drive cache partitioning using an online profiling phase. Each prefetching-
sensitive application is assigned a single private cache way, and prefetching-insensitive
applications share the remaining cache ways. Park et al. [54] focus on workload consol-
idation of commodity servers. Both memory bandwidth and the L3 cache are studied
and partitioned together. However, the focus is on improving system fairness rather
than system performance. Saez et al. [55] propose LFOC+, a cache-clustering policy that
uses dynamic profiling to classify applications. Like [54], LFOC+ targets system fairness.
Chatterjee et al. [56] use compiler-generated information to collect information about the
memory footprint, cache sensitivity, reuse behavior, and phase timing to estimate the ap-
plications’ memory requirements. With this information, they propose a proactive cache
partitioning scheme that dynamically partitions the cache and schedules processes.

Most current data centers include processors with non-inclusive LLCs; thus, the latest
research in resource management in cloud computing has focused on these processors.
CLITE [30] propose multi-resource partitioning. It explores a model-learned relationship
between job performance and the assigned resource shares (number of cores, LLC ways,
memory bandwidth, memory capacity, disk bandwidth, and/or network bandwidth) us-
ing Bayesian Optimization. Alita [29] proposes eliminating interference by throttling re-
source polluters. Regarding the LLC, Alita isolates LLC polluters in one or few cache
ways, avoiding cache thrashing and disturbing VM’s with normal behavior, which share
all LLC space. Themis [57] manages memory subsystem resources to provide fair re-
source sharing while meeting QoS requirements of latency-critical applications. It clus-
ters VMs with similar memory bandwidth consumption to the same CLOS and config-
ures the number of LLC ways and memory bandwidth throttling value accordingly.

2.1.2. Cores

Recent works have proposed core allocation strategies to mitigate resource contention in
multi-core processors.

Kundan et al. [58] characterize the pressure that applications inflict on both LLC and
memory bandwidth to schedule applications to the processor cores, prioritizing those
applications that made the least progress. However, offline information (IPC of the ap-
plication alone) is required to estimate the progress. In addition, Hyper-Threading is
disabled.

Some works have exploited the fact that current parallel application runtimes (e.g., OMP
and MPI) support changing the number of spawned threads dynamically to improve
resource efficiency and system throughput. Galante et al. [59] have surveyed the ap-
proaches proposed in this area in different memory architectures (shared and distributed)
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and computing environments (cloud and fog). In [60], authors propose a dynamic resiz-
ing of malleable parallel applications scheduler for distributed-memory clusters. The aim
is to improve cluster utilization and job execution time. However, the code of applica-
tions must be changed to make them resizable. Yang et al. [61] present a specific solution
for iterative workloads running on Apache Spark named iSpark. Iterative applications
usually present initially a high CPU usage, which diminishes as the execution continues.
Thus, the authors propose a provisioning approach that dynamically changes the num-
ber of allocated long-running processes (e.g., executors) to avoid resource wastage and
handle under-utilization. SCALO [62] estimates scalability at runtime considering dy-
namic contention effects to control the threads allocated to each running OpenMP multi-
threaded application. Authors instrument OpenMP runtime to enable setting the degree
of parallelism during the execution of parallel regions and allow communication with the
SCALO daemon. TBFT [63] combines dynamic thread adjustment on OpenMP applica-
tions (without modifying or recompiling the code) with dynamic boosting mode tuning
with the objective of optimizing EDP (energy-delay product). NuPoCo [64] aims to maxi-
mize system utilization while minimizing execution time by controlling the degree of par-
allelism of co-located parallel applications and scheduling them in NUMA multi-socket
multi-core systems. The authors implement a dynamic loop scheduler in the OpenMP
runtime system to provide dynamic spatial scheduling. A similar approach, MAPPER
[65], focuses on ensuring QoS rather than maximizing system utilization. MAPPER may
run without runtime modification (i.e., MAPPER applies only the scheduling part), but
minor performance improvements are obtained.

In the context of scheduling, approaches have been proposed to optimize the execution
of concurrent parallel application execution. Some works [22, 66] aim to improve per-
formance by selecting the target number of threads (i.e., thread-level parallelism) each
application should execute. Then, given a set of applications, the best scheduling order
is decided based on this fact and the available hardware resources. These approaches,
however, provide little flexibility as they require knowing the running applications be-
fore the execution starts and do not allow adapting the number of spawned threads dy-
namically. PredG [67] uses machine learning to select the best thread and data mapping
policies to run graph applications on a NUMA system. Both approaches require knowing
application-level information, such as the input graphs for decision-making.

2.2 Emerging Workloads in Server Processors

2.2.1. Graph Workloads

Much research on graph applications has focused on proposing new hardware [68, 69,
70, 71] or the use of accelerators [72, 73, 74, 75] for optimizing graph processing perfor-
mance. However, these solutions are not currently available in data centers. Therefore,
commodity servers (i.e., general-purpose processors) are the popular choice to execute
graph workloads.
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Some previous works have characterized the performance of graph applications both un-
der simulators and on real processors to guide future hardware design optimizations for
graph processing. Most works [76, 71, 77, 78] focus on the memory subsystem’s impact
on graph applications. The main conclusions of these works are the following: i) good
performance scalability is obtained with increasing numbers of cores [77, 76]; ii) graph
applications are memory-latency bound since they do not fully utilize the memory band-
width [76, 77, 78]; iii) graph applications do show some locality [76, 78] and can benefit
from caching, being performance more sensitive to the LLC (L3 cache) space than to the
L2 cache [71]; iv) SMT introduces modest performance improvements [78, 76].

Other works focus the study on specific domains, such as the impact of branch prediction
on performance [79, 80], hardware prefetchers [81, 76], architectural enhancements, and
software optimizations [82] and energy efficiency [83].

2.2.2. Cloud Workloads

Due to the nature and fast evolution of the public cloud and related industry concerns,
many research works have been proposed in the last few years. These studies apply a
wide range of characterization methodologies that present significant differences regard-
ing virtualization levels (e.g., VMs, containers, or no virtualization), performance met-
rics (e.g., execution time, throughput, or tail latency), target shared resources (e.g., LLC,
main memory, etc.), and system configurations (e.g., SMT vs. no SMT, system specifica-
tions). In contrast to previous research works, in this thesis, we perform a comprehensive
study including all the main shared resources (i.e., CPU, LLC, main memory, network,
and disk); focusing on a realistic configuration for cloud providers with a full virtual
machine-oriented system stack and SMT-enabled CPUs; and considering tail latency as a
key metric to evaluate QoS from the tenant perspective.

The workload characterization performed in previous works is often leveraged to pro-
pose novel resource management approaches dealing with distinct shared resources that
affect the behavior of these applications. These approaches significantly differ in whether
the target workloads represent public cloud deployments. This is the case when the
workload is implemented using virtual machines (VMs) running in full-stack system
configurations. This section summarizes previous research taking into account this dif-
ferentiation.

Approaches Not Considering VMs

In [54], Park et al. focus on the interference at the LLC and/or memory bandwidth,
but they do not consider other major shared resources in the cloud environment like
the network or the disk. This approach only characterizes each application’s behavior
according to the number of LLC misses and accesses per second. However, the system
performance is not considered at all. Moreover, the approach mainly focuses on HPC
workloads, and only a small section studies the behavior of scenarios where a single
latency-critical application runs concurrently with other batch workloads.

13



Chapter 2 State of the Art

Also, regarding memory bandwidth, in [84], the impact of Intel Memory Bandwidth Al-
location (MBA) technology on performance is studied. MBA provides a relatively coarse
interface to limit main memory bandwidth consumption. Therefore, this approach also
studies complementary techniques such as thread packing [85] and clock modulation
[86].

Jeatsa et al. [87] propose CASY, a cache allocation system for serverless functions in Func-
tion as a service (FaaS) platforms. CASY leverages machine learning models to predict
the amount of cache to be assigned to each function based on the input data size.

In [88], each application is categorized considering four main aspects that affect perfor-
mance: scale-up (amount of resources per server), scale-out (number of servers per work-
load), server configuration, and interference (symbiotic workloads). This categorization
can be used to establish the right amount of resources allocated to an application to reach
a given performance level while maximizing overall resource utilization (i.e., avoid over-
provisioning). The resources considered are the number of compute cores, memory, and
storage capacity. Unlike our work, neither LLC occupancy, main memory bandwidth,
nor disk bandwidth are considered.

In [50], similarly to our work, Lo et al. characterize the impact of interference at shared
resources on performance for different load levels; however, just three latency-critical
Google workloads are characterized. To study the effect of interference, synthetic bench-
marks stress each shared resource. Nevertheless, the interference at the disk is not ana-
lyzed. In contrast, Parties [31] considers disk interference, analyzing six latency-critical
applications. However, Parties, as some of the works mentioned above, studies applica-
tions running in Linux containers, which are more light-weighted than full VMs. Thus,
the studied workloads are not representative of a significant amount of public cloud de-
ployments.

Full System Stack Approaches with VM Support

In [89], a mix of batch (Hadoop running over Mahout and Spark jobs) and latency-critical
applications (memcached jobs) are studied in three representative workload scenarios
(minimum, medium, and high load variability). This study focuses on finding the opti-
mal mapping of applications, in terms of the number of virtual CPUs, to reserved and
on-demand VM instances. Therefore, there is no insight into the exact resources (e.g.,
cache, disk bandwidth) that affect the jobs’ execution time.

To determine the best VM to physical core mapping, in [90], VMs are classified as com-
pute or memory intensive, considering readings from several performance counters. In
particular, only three performance events (L2 cache misses, L1 cache misses, and commit-
ted instructions) are used to classify applications. The focus is on best-effort scenarios,
and the evaluated workloads are four-application mixes composed of SPEC CPU2006
benchmarks, which are scheduled in pairs to the processor cores.

Finally, DeepDive [91] pursues to identify interference between VMs in Infrastructure as
a service (IaaS) clouds. Deepdive uses about a dozen low-level metrics (including per-
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formance events acting at the L2 cache as the LLC in the system, the iostat and netstat
tools, and available hypervisor -VM- statistics) to find out if interference is introduced as
well as what is the main shared resource where interference rises. Nevertheless, Deep-
Dive lacks important performance events, which are present in modern processors, and
partitioning mechanisms (i.e., Intel CAT and MBA) dealing with shared resources like
the LLC and the main memory bandwidth. The analysis introduces unexpected metrics,
like using the private L1 cache misses, mainly because the L2 is the LLC. In modern pro-
cessors, the latency of most L1 cache misses is hidden by the out-of-order mechanisms.
Experiments use three cloud and latency-critical (web search) workloads.

2.3 Interference in Cloud Systems

2.3.1. Interference Detection Based on Simple Measurements

There is extensive literature on detecting interference due to co-located jobs or resource
sharing. Many approaches [92, 31, 93, 88], however, monitor QoS (e.g., in terms of aver-
age latency or queries per second), which cloud providers cannot carry out in real pro-
duction systems since VMs should be handled as black boxes.

Recent approaches [32, 29] have tried to detect inter-VM interference while complying
with public cloud limitations. In [32], Javadi et al. propose Scavenger, a resource manager
that considers tenant workloads as black boxes and identifies performance interference
by monitoring the usage of a subset of the major system resources (memory, network,
LLC, and CPU) consumed by the VM. Chen et al. propose Alita [29], which identifies
contention online considering a different subset of the system resources (memory bus,
LLC, and power supply) based on low-level metrics but omitting important shared re-
sources like disk and network. These approaches present two main shortcomings. On the
one hand, the performance interference is detected in a subset of the system resources.
On the other hand, no prediction is made on how performance interference impacts on
the QoS of VMs.

2.3.2. Performance Interference Prediction Models

Prior works have proposed models to estimate the impact on performance caused by
the interference (e.g., introduced by co-runners or limited resources) in distinct environ-
ments or from different perspectives. In [94], online prediction models are built from a
user-level perspective. Microbenchmarks are run to estimate resource contention at the
shared resources, and then application-specific models are used to estimate its impact on
performance. Instead, this document focuses on the cloud provider’s point of view, and
therefore, we assume no knowledge of the application running within each VM.

Another important piece of research [95, 96, 33, 91] has focused on predicting the perfor-
mance interference that background applications introduce when co-located with latency-
critical applications. Other works like [97] focus on the co-location of HPC applications.
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All of these works [95, 96, 33, 97] access to data about the performance of individual
applications, which is not accessible by cloud providers, making these approaches not
practical in real production systems.

DeepDive [91] detects performance interference based on the aggregated resource system
utilization of VMs by monitoring low-level metrics. Nevertheless, an important weak-
ness of DeepDive is the isolation-based methodology used to quantify interference in VMs,
which is prohibitive in public cloud environments. Resource Central [36], based on that
certain VMs show consistent behaviors over multiple lifetimes, learns offline from past
behaviors to predict the future online behavior of the customer’s VM. This approach pre-
dicts high-level metrics like CPU utilization, cores, memory, or workload class. To this
end, it uses machine-learning methods (e.g., random forest) to output buckets instead of
predicting a single number through regression models.

Some approaches [98, 99, 30] use prediction models to estimate the resulting performance
when modifying a given resource configuration. Rusty [98] leverages neural networks
to make resource and energy consumption predictions, but performance is quantified
in terms of IPC and not tail latency. Twig [99] uses performance counters to estimate
the QoS that results from different dynamic voltage and frequency scaling (DVFS) and
core combinations. CLITE [30] elaborates prediction models to search for near-optimal
resource partitioning. However, both Twig and CLITE require monitoring the perfor-
mance (e.g., latency) of the executing applications at run-time, thus not considering VMs
as black boxes. In addition, performance degradation due to the interference is continu-
ously being estimated instead of only when detected.
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Experimental Framework

This chapter describes the experimental framework used to conduct the experiments pre-
sented in this thesis.

First, the experimental platforms are presented. Two Intel multi-core processors have
been used to carry out the work on HPC, each from a different microarchitecture. Regard-
ing Cloud Computing, we have deployed an experimental platform (Stratus) to perform
controlled cloud research, focusing on intra-node interference.

Then, we present the Resource and Application Manager developed to automate the ex-
ecution of experiments carried out in this thesis, as well as monitor and partition the
system-shared resources. This manager has been used both in the work conducted in
HPC and Cloud Computing.

Finally, this chapter describes the benchmark suites used.

3.1 Experimental Platforms

Two main Intel multi-core processors have been used to obtain the experimental results
of the work performed in this thesis.

• Intel Broadwell Processor. The work performed in inclusive LLC (Chapter 4) has
been carried out in an Intel Xeon E5-2620 v4 processor, which features eight cores
supporting Hyper-Threading. This processor implements a three-level cache hier-
archy, with a 20-way 20MB (1MB /way) LLC. Regarding main memory, it has two
16GB memory channels, making a total DRAM capacity of 32GB. It supports the
Intel Resource Directory Technologies (RDT) and includes up to sixteen Classes of
Service or CLOS (see Section 3.3.1).

• Intel Skylake-X Processor. The research carried out in non-inclusive LLC (Chap-
ter 5) and in the server node in the cloud computing part of this thesis (Chapters 7
and 8) has been performed in a 12-core Intel Xeon Silver 4116 processor running at
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Figure 3.1: Block diagram of the Intel Xeon Broadwell and Skylake processors with low core count
(LCC SoC) to illustrate the differences among both microarchitectures.

2.1GHz. Each core has a 1-MB private L2 cache, and all cores share a 16.5MB 11-
way (1.5MB/way) non-inclusive L3 cache. This processor supports also supports
Intel Resource Directory Technologies (RDT), but the maximum number of sup-
ported CLOS is 8. The machine has six main memory channels, holding each 16GB,
which amounts to a 96GB (6x16GB) DRAM. It supports a maximum bandwidth of
58 GB/s.

Figure 3.1 shows a block diagram of the memory and the cores of both the Intel Broadwell
and Skylake-X procesors. The Skylake-X architecture belongs to the Intel Xeon Scalable
processors, which marks a new era in the Xeon processors segments as it includes many
enhancements [100, 101].

Improved interconnection network. A mesh interconnect is used instead of a ring bus
to interconnect cores, as the latter did not scale well with an increased number of cores.

Redistribution of cache space. Intel Skylake-X provides larger L2 cache space (see Chap-
ter 5). Regarding the LLC, the available space per core is lower and presents a tile design.
It minimizes communication traffic as it does not require access to the network on chip
(NoC) to access its LLC slice.

Support to more memory channels. Intel Skylake-X servers support up to three channels
on each memory controller, making a total of six memory channels.

18
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Figure 3.2: Overview of the experimental framework developed for controlled cloud research.

New UPI technology and modular PCIe design The new Intel Ultra Path Interconnect
(UPI) replaces the QuickPath Interconnect (QPI) to support higher I/O traffic between
nodes. Regarding PCIe, the traffic no longer flows to a single point; up to three separate
PCIe lanes are included.

3.2 Cloud Computing Infrastructure

To conduct research in cloud computing, an experimental platform named Stratus has
been developed to perform controlled experiments. Stratus has been developed follow-
ing the guidelines provided by Huawei Cloud since this platform has been built under a
research and development agreement with Huawei Technologies Co., Ltd.

Stratus comprises three physical servers (main, client, and storage nodes) interconnected
with two 20 Gbps dedicated links. Figure 3.2 shows a block diagram of the experimental
platform, including the three system nodes: main node, client node, and storage node,
and the installed packages and libraries. Notice that the focus of the research of this
thesis is on the interference at the server node (i.e., intra-node interference); therefore,
one server node is enough for this purpose. However, Stratus can be easily expanded by
adding more server nodes.

The design choices to set up Stratus’ experimental platform are taken in two main axes:
the deployed hardware and the system software. This section presents and motivates the
choices we selected for each axis.
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Node
Processor Package

Main Memory
Processor #Cores (#Threads)

Main 2x Intel Xeon Sil-
ver 4116

24 (48) 12 x DDR4-2666 16GB
DIMMs

Client Intel E5-2658A 12 (24) 2 x DDR4-2133 16GB
DIMMs

Storage Intel i5-9400F 6 (6) 2 x DDR4-2666 16GB
DIMMs

Table 3.1: Node hardware specifications (processor package and main memory).

3.2.1. Deployed Hardware

A key design decision is selecting the node types and the amount of them in the exper-
imental framework. However, the huge complexity of managing a high number of ma-
chines that are found in real environments should be avoided. A cloud system includes
two main types of nodes: computing nodes and storage nodes. For results to be repre-
sentative of real scenarios, a minimal experimental framework requires at least one node
of each of these types. In addition, a separate node is needed to emulate client behavior.

Table 3.1 shows the specifications (processor package and main memory) for each of the
nodes. The specifications of the server and storage nodes can be considered representa-
tive of the nodes implemented in real cloud systems. For example, Google Cloud CPU
platforms [102], Amazon EC2 C6 and C5 instances [23], and Huawei Elastic Cloud servers
[103] use Intel Xeon Scalable Processors including from tens to hundreds of gigabytes of
main memory capacity.

Regarding the storage media in the storage node (shown in Figure 3.2), it is composed of
two SSD devices. The first one (SSD1) with 500GB of capacity contains the storage node
OS and system software, while the second one (SSD2) with 960GB is exclusively devoted
to acting as remote persistent storage for server applications running in the server node
VMs. This persistent storage is served to the server node as a Ceph Object Storage De-
vice (OSD). Ceph [104] is an open-source distributed storage platform that is commonly
installed in cloud environments.

Finally, the client and storage nodes are interconnected to the server node with two ded-
icated 20 Gbps networks. Specifically, the server node has two 20 Gbps network cards
(dual port, 10 Gbps per port) that connect to the client and storage nodes.

3.2.2. System Software

To build our experimental framework, we analyzed the main components of OpenStack
[105]. OpenStack is an open-source cloud computing software stack, and it is a de facto
standard for managing virtual services in both public and private clouds. OpenStack
is a complex software framework with multiple components and add-ons supporting
different types of hardware devices (e.g., network devices, storage devices, etc.) from
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Figure 3.3: Stratus’ system software deployed in the server node.

multiple vendors. To avoid dealing with such complexity, we built a simple framework
that includes the main software components that can be found in a typical OpenStack de-
ployment. The major simplification lies on the top software levels, which aims to reduce
management complexity but has a negligible or null impact on performance monitoring
and partitioning, which is the main purpose of Stratus’ framework.

Figure 3.3 presents a block diagram of the main components of the system software de-
ployed in the server node and their interactions. These components, which manage the
VMs and the network interconnections, are described below.

VM Infrastructure. The execution and management of VMs involves a complex software
stack, where three main levels can be distinguished: the hypervisor, the virtual resource
manager, and the guest OS and applications. The hypervisor refers to the OS installed in
the host physical machine (PM). A wide set of both open-source and proprietary hyper-
visors are currently being used in the industry. Examples of open-source hypervisors are
Linux with KVM [106] and Xen [107]. The former is one of the current industry trends,
and it is being used by Amazon [108] and Google [109]. The latter is also supported by
Amazon. The virtualization manager refers to the software platform that manages the
PM hardware resources and distributes them among VMs. One example of a virtualiza-
tion manager is Libvirt [110]. Some virtualizers, like QEMU [111], are also supported by
KVM and Xen. Finally, the guest OS and tenant applications run in the different VMs.
Guest OS and applications can be either proprietary or open source (e.g., a Linux server
distribution executing several Internet services).

Network Software. To interconnect the VMs with the physical network interface cards
(NICs) of the server node, a virtual switch is used. The virtual switch is set up with Open
vSwitch (OvS) [112]. Emulated NICs at the VMs (i.e., virtio [113] NICs) and each physical
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NIC (both ports) in the server node are accessed from the virtual switch through the Data
Plane Development Kit (DPDK) [114]. DPDK enables the direct transfer of packets be-
tween virtio NICs and physical NICs, bypassing the host OS kernel network stack. This
setup boosts network performance compared to the default packet forwarding mecha-
nism implemented in the Linux kernel.

3.3 Resource and Application Manager

Providing an experimental framework that allows automating the setup and execution
of experiments plays a key role in speeding up the research experiments.

For this aim, we have developed a resource and application manager to assist the re-
searcher, providing a user-friendly interface. It implements three main functions: i) man-
aging and controlling the execution of one or more applications, whether it is executing
with a VM or not, ii) monitoring hardware performance counters and system resource
utilization, iii) helping partition system resources and assigning them to the applications
or VMs.

Below, first, we explain how each of the system’s shared resources is monitored and par-
titioned. Then, to illustrate the functioning of the developed manager, we explain the
execution of experiments when launching experiments with VMs.

3.3.1. Monitoring & Partitioning Main Shared Resources

Applications executing together in the same processor compete for the system’s shared
resources. This means that the performance of a given application (or VM) will depend
on the co-running applications. In other words, on the share of the resource that the
application is able to use. As a consequence, it is worth studying to which extent the
performance of a given application is affected by varying the amount of share allocated
to the application.

Server processors provide support to monitoring events via hardware performance coun-
ters. These events count the occurrence of microarchitectural events, such as the number
of retired instructions or misses at a specific cache memory level. Our Resource and Ap-
plication Manager uses Linux Perf [115] to configure and access performance counters.

In addition, in the last few years, server processors have been provided with advanced
technologies that allow monitoring and partitioning the major system resources. Below,
we explain how the monitoring and partitioning of each shared resource is implemented
in the Resource and Application Manager without relying on any external tool.

CPU cores. The processors used to perform the experiments implement Intel Hyper-
Threading technology [12], that is, Intel’s implementation of the simultaneous multi-
threading (SMT) paradigm [11]. Hyper-Threading processors typically support the con-
current execution of two threads. From the operating system perspective, a given physi-
cal core is seen as two logical cores or CPUs. Thus, applications threads or processes can
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Figure 3.4: Intel CAT example with PIDs associated to two CLOSes.

be allocated or pinned to different logical cores using Linux CPU affinity system calls1.
One of the most popular metrics regarding CPU monitoring is CPU utilization, which
accounts for the percentage of time a CPU is active. It is a crucial metric in cloud environ-
ments since CPU utilization has been proven to be low (less than 20%) most of the time
[35, 37]. Thus, many resource provisioning strategies [36, 32, 116] seek to improve the
CPU usage. To obtain the utilization of each CPU, we use the data collected from the file
/proc/stat, which reports statistics about the kernel activity aggregated since the sys-
tem first booted. To pin the VMs’ virtual CPUs (vCPUs) to logical cores of the physical
machine, Stratus uses Libvirt’s API [110].

Last Level Cache (LLC). Due to the high latency to access to main memory upon LLC
misses, the LLC is one of the key shared resources in current multi-core processors. Re-
cently, some processor manufacturers like Intel have developed technologies that allow
monitoring and partitioning of the LLC. In Intel processors, these technologies are known
as Cache Monitoring Technology (CMT) and Cache Allocation Technology (CAT) [10].
The LLC is partitioned in a per way basis; that is, a cache way acts as the granularity size
allocated to Classes of Service (CLOS). A CLOS can be defined either as groups of appli-
cations (PIDs) or as groups of logical cores to which a partition of the LLC is assigned. For
each CLOS, the user has to specify i) the subset of ways that can be written and ii) which
applications or logical cores belong to the CLOS. The cache ways that can be written by
the applications belonging to a CLOS are defined with a capacity bitmask (CBM). Cache
ways are not necessarily private to a CLOS, as they can be shared with other CLOSes by
overlapping the CBMs. Figure 3.4 shows an example of a possible CAT configuration us-
ing 2 CLOSes and a shared cache with 20 ways. However, this technology is constrained
so the ways assigned to a given CLOS have to be consecutive.

Memory Bandwidth. Memory bandwidth can considerably impact the performance or
responsiveness of applications. For instance, in a server system with different VMs ac-
cessing the main memory, the inter-VM interference can significantly grow and make
the most memory-sensitive VMs perform below an acceptable level, compromising the
QoS. Recent Intel Xeon Scalable processors introduce Memory Bandwidth Allocation
(MBA) [117], which allows to distribute memory bandwidth between the running ap-
plications. More precisely, it allows controlling the memory bandwidth between the L2
and the L3 (i.e., LLC) caches. Similarly to CAT, MBA works using CLOS. That is, MBA
bandwidth limits apply only to CLOS, to which the user can assign tasks (PIDs) or cores.
However, MBA works on a per-core basis. If the individual memory bandwidths of two

1https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html
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Figure 3.5: Workflow followed by the Resource and Application Manager to launch experiments
when running one or more VMs. Yellow boxes represent optional actions.

applications running on the same core are limited with different values, the maximum
limitation is the one that will apply to that core.

Disk Bandwidth. Many workloads that operate on big data files or databases exceed
the main memory size. Consequently, these workloads must constantly rely on the I/O
system to access the disk and load/store the required data. Monitoring and partitioning
this subsystem is, therefore, of high interest. I/O access to the disks can be monitored
using the virsh tool or Libvirt’s API. Both mechanisms offer the same functionality and
allow monitoring the number of read, write, and flush operations, the number of bytes
read and written, as well as the total duration of the read, write, and flush operations.

Network Bandwidth. VMs running on the same physical machine share network re-
sources whose bandwidth and latency play an important role in the QoS of tenant appli-
cations. Consequently, network resources should be monitored and partitioned to mini-
mize the inter-VM interference. The number of network packets or bytes that go through
a network interface can be monitored with Libvirt’s API.

3.3.2. Manager in Action: Execution of Experiments with VMs

To illustrate how the developed Resource and Application Manager performs experi-
ments, Figure 3.5 identifies the main steps performed when launching one or more VMs
together with the applications to be run on them (VM-application pairs). Next, each of the
steps is discussed in detail.
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Define experiment workload and parameters. As a prior step, the workload (i.e., VMs
and applications to be run on them) and experimental conditions must be defined. To
ease this task, Stratus makes use of MAKO templates [118], which provide a simple and
intuitive language to specify the parameters of the experiments: VMs and applications
to be executed (domain name, workload, number of CPUs, etc.), vCPUs core pinning,
performance events to be monitored, length of the quantum, etc. The template can also
specify if VMs are only allowed to use a partition of a shared resource (LLC, memory
bandwidth, network bandwidth, or disk bandwidth).

Execute Launch script to start the manager. To start running an experiment, the user exe-
cutes the launch script. First, the script prepares the execution environment. For instance,
fixing the processor frequency to avoid variability among experiments. Additionally,
the processor clocks of both the server and client machines are synchronized to ensure
server- and client-collected metrics are aligned, using the Network Time Protocol (NTP)
[119] with a known NTP time server (europe.pool.ntp.org). When the environment is
ready, the configuration file is generated with the workloads to execute and all the exper-
iment’s parameters from the MAKO template. Then, the manager starts to run.

Prepare VMs for execution. First, the manager performs sets up and starts the VMs. To
reduce the start-up overhead, the manager makes use of the snapshots feature of Libvirt.
A snapshot is a copy of the state of a VM, including the disk and main memory contents.
This feature preserves a VM’s actual state and data at a given time. Therefore, this state
can be reverted at any moment. For each VM, we have taken a snapshot that has already
performed the OS boot process and is ready to receive the command to launch the target
benchmark. Once the VMs are started and the snapshots are loaded, the number of CPUs
of each VM (i.e., vCPUs) can be modified in case a multi-threaded application is going to
be executed and more than one CPU is required.

Setup resource monitoring and partitioning. With QEMU, each vCPU is associated with
a processor ID (PID) in the host OS. These PIDs are required to monitor hardware perfor-
mance counters with Perf individually for each thread (i.e., vCPU) of the VM. Similarly,
LLC and memory bandwidth monitoring is performed on a PID basis. The remaining
resources, network, and disk bandwidth are monitored per VM. The manager also al-
lows the partitioning of the main system shared resources and assigns each VM a share
of a given resource. Therefore, a resource share is allocated to the VM if specified in the
template.

Start running applications in the VMs. When the VMs are operative and ready to start
executing the applications, an SSH command is sent to each VM to start the execution
of each workload. Stratus’ manager is adapted to support the execution of client-server
workloads (e.g., TailBench benchmark suite) as well as best-effort or batch workloads
(e.g., stressor microbenchmarks or SPEC CPU benchmarks). In case of a client-server
workload, an SSH command is sent to the client node to start running the clients, which
send requests to the server (already running).

Perform actions in each quantum. Once the execution starts, the manager executes the
main loop (see Figure 3.5) for the rest of the execution time. In each iteration, the manager
is suspended for a given quantum length (established in the template). Then, data are
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collected from different sources (e.g., hardware performance counters, Linux file system,
Intel library, or Libvirt) to monitor the main system resources (CPU usage, LLC occu-
pancy, memory, network, and disk bandwidth). Additionally, the manager is adapted to
allow implementing and applying QoS policies. For instance, policies that manage re-
source sharing among VMs [31, 32, 29], predict interference among VMs [33, 30, 120, 121]
or schedule VMs [122].

Execution end. The main loop ends when the manager detects that all the VMs have
finished running their applications. At that time, it shuts down the running VMs.

All the data collected from the hardware performance counters and system resources
are stored in CSV files, ready to be processed. Additionally, for characterization and
debugging purposes, statistics and data are also collected inside the VMs. For instance,
in Tailbench workloads, the clients report results such as latency per query, queries per
interval, tail latency, etc.

3.4 Benchmarks

To quantify the interference in current multi-core processors within HPC and Cloud
Computing, popular and standard benchmark suites have been used, covering a wide
range of domains and applications. In addition, distinct microbenchmarks have been used
to evaluate specific components (see Chapter 8). Below, each of the studied benchmark
suites is presented.

3.4.1. Scientific Computing: SPEC CPU2006 and 2017

To evaluate the proposal to LLC partitioning proposals presented in Chapters 4 and 5, we
have used single-threaded applications from the SPEC CPU 2006 [123] and SPEC CPU
2017 [124] suites. These benchmark suites are made up of 50 applications and kernels,
representative of scientific applications of common use in the scientific community, used
to evaluate the processor performance.

For the SPEC CPU2006 benchmarks, we used the input files ref or reference to perform
experiments that focus on performance measurement.

Regarding SPEC CPU2017, the SPECrate suite has been used. These benchmarks aim to
run multiple concurrent copies of each benchmark and measure throughput. Like SPEC
CPU2006, both SPEC integer and SPEC floating-point benchmarks were used.

3.4.2. Graph Computing: GAP

To evaluate graph processing, have used graph applications from the GAP Benchmark
Suite [18]. This benchmark suite includes a set of graph algorithms (kernels) representa-
tive of a wide set of application domains (e.g., social networks, science) and five synthetic
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and real-world input graphs. We chose GAP since it provides the reference implemen-
tation of graph algorithms without the need to execute them under a framework, thus
avoiding framework-related overheads.

In Chapter 6, we evaluate the algorithms Betweenness Centrality (bc), Breadth-First Search
(bfs), Connected Components (cc), PageRank (pr), and Single-Source Shortest Path (sssp);
and the graphs Kron, Twitter, Urand, and Web. The combination of an algorithm with
an input graph will be referred to as a graph application (e.g., prKron, where pr is the
PageRank graph algorithm, and Kron is the input graph). Graph algorithms from GAP
are parallelized using OpenMP.

3.4.3. Cloud Benchmarks: Tailbench and CloudSuite

Latency-critical applications are increasingly common in data centers. These applications
typically support online interactive services (e.g., web search) and must respond to the
input requests within certain latency bounds to guarantee QoS (e.g., the 95th or 99th per-
centile latency) and provide a satisfactory user experience.

As latency-critical applications, we use the TailBench benchmark suite [125]. This suite
includes eight representative workloads of today’s latency-critical applications. Below,
the main characteristics of the studied applications are described:

• img-dnn is a handwriting recognition application based on OpenCV. The applica-
tion uses randomly chosen samples from the MNIST database.

• masstree is a fast in-memory key-value store written in C++. Each user’s request
often involves many tens or hundreds of requests to the key-value store; therefore,
it has very short latency requirements.

• moses is a statistical machine translation system written in C++. It is driven us-
ing randomly-chosen dialogue snippets from the opensubtitles.org English-Spanish
corpus.

• shore is a transactional on-disk database. It uses the industry-standard OLTP bench-
mark TPC-C. Its database and logs are both stored in a solid-state drive.

• silo is an in-memory transactional database designed for modern multicores. It
uses TPC-C like shore, although they differ significantly in how they store and ac-
cess data.

• specjbb is an industry-standard Java middleware benchmark. Java middleware is
widely used in business services and must often satisfy strict latency constraints.

• sphinx is a compute-intensive speech recognition system written in C++. Speech
recognition systems are an important component of speech-based interfaces and
applications such as Apple Siri, Google Now, and IBM Speech to Text.

• xapian is a search engine written in C++ that is widely used both in software frame-
works (e.g., Catalyst) and popular websites (e.g., the Debian wiki).
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Tailbench client requests are issued to the server following the Zipfian distribution, which
accurately models request times in online services [126] [127]. We extended the Tailbench
source code to report the tail latency of the requests serviced dynamically after a config-
urable time slice, set to 1 second in our experiments.

Cloud providers often need to evaluate the efficiency of servers that stream multimedia
content. However, none of the studied Tailbench applications exhibit such behavior since
they all present negligible network demands. Because of this reason, other applications
outside the Tailbench benchmark suite need to be considered. With this aim, this work
also analyzes the media-streaming workload from CloudSuite [19]. This application,
based on the NGINX web server, is a streaming server that hosts synthetic videos of var-
ious lengths and qualities. The server is accessed by clients based on the httperf’s wsesslog
session generator, which performs a set of requests per session for videos stored in the
server. This popular application in today’s data centers makes it possible to broaden the
spectrum of studied behaviors further.

3.5 Metrics

A wide set of metrics have been used to evaluate the performance of the research propos-
als presented in this dissertation. Below these metrics are presented, classified into two
main groups according to the granularity, application, or system they evaluate.

3.5.1. Application-Level Metrics

For the work performed in HPC, application-level metrics quantify the individual appli-
cation’s performance considering both the overall system as well as its specific perfor-
mance on the major system resources:

• Slowdown. This metric defines the performance loss an application experiences
considering the entire system, in terms of execution time, with respect to a baseline
system.

• IPC. It is the number of instructions committed per processor cycle. This is the
universal metric commonly used to quantify the overall system performance of
single-threaded applications.

• Individual components. Specific metrics have been evaluated for each individual
component. For instance, regarding the LLC, the following metrics can be used:

– HPKI_LLC. It refers to the number of hits in the LLC every thousand commit-
ted instructions.

– MPKI_LLC. It refers to the number of misses in the LLC every thousand com-
mitted instructions.
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– MPKC_LLC. It refers to the number of misses in the LLC every thousand clock
cycles. This metric is useful when comparing the access rate of different appli-
cations.

– Occupancy. LLC space, quantified in MB, used by an application.

In the context of cloud computing, metrics cover both the performance and resource uti-
lization of the running VMs. As in the presented experiments a VM only hosts an in-
dividual (single- or multi-threaded) application, we classify VM performance metrics in
application-level metrics.

• Tail Latency. It quantifies the response time of the requests that take longer to
complete than those falling in a given percentile (e.g., 95th).

• Response Time. It defines the average time the server takes to reply to client re-
quests.

• CPU utilization. This metric refers to the average CPU utilization of the logical
core(s) being evaluated.

• LLC occupancy and main memory bandwidth. Sum of the total LLC space in (MB)
occupied and main memory bandwidth (MB/s or GB/s) consumed, respectively,
by the vCPU cores.

• Disk and Network bandwidths. They refer to the bandwidth consumed, in MB/s,
at the disk and network, respectively, by a given VM.

3.5.2. System-Level Metrics

These metrics are used when multiple applications are running in the system.

• Turnaround time (TT). It is the time elapsed between the start and the end of the
execution of a program. In this thesis, it refers to the time that elapses from the
start of the execution of a workload mix to the moment at which the last appli-
cation of the mix ends. TT is considered one of the primary performance criteria
in general-purpose systems and interactive environments [128] as it is related to
resource utilization.

• Average Normalized Turnaround Time (ANTT). For a given workload mix, this
metric is calculated as the arithmetic mean of the slowdown of each application
that makes up the mix. It is a complementary metric to be studied alongside the TT
[129], as it quantifies the performance losses of individual applications.

• Fairness and Unfairness. Because of the inter-application interference at the shared
system resources, the performance of some applications can suffer severely. This
metric estimates how fairly and equitably the system resources are distributed among
co-running applications. In this thesis, both fairness and unfairness metrics are
used, quantified using the coefficient of variation [130]:
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Un f airness =
σslowdown

µslowdown
(3.1)

Fairness = 1 − Un f airness (3.2)

• Mean IPC. It is defined as the average IPC across all the applications that make
up the workload mix. This dissertation uses the geometric mean of IPC since the
arithmetic mean or raw-IPC can yield misleading conclusions [131]. This metric is
used to quantify system throughput.
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High-Performance Computing (HPC)
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CHAPTER 4

Inclusive LLC Resource Management

Applications executing in modern high-performance multi-core processors compete for
shared resources. Among these resources, the Last Level Cache (LLC), typically shared
among all the cores, plays a key role in the final performance.

Cache sharing yields the system to important issues from a performance perspective.
These problems appear due to the inter-application interference at the shared cache, mak-
ing the system performance become unpredictable. Some processor manufacturers like
Intel, ARM, and AMD have recently deployed technologies that allow distributing LLC
cache ways among co-running applications. For instance, Intel has deployed Cache Allo-
cation Technology (CAT), which is being delivered in recent server processors.

Several cache partitioning approaches leveraging Intel CAT have been proposed address-
ing different performance targets like system fairness [1] or system throughput [46].
However, these works present several drawbacks:

1. Complex solutions. They require modifying the kernel [48], offline information
[49] or performing a profiling phase [46, 47] where applications are executed with
different cache sizes, incurring a high overhead.

2. Harm the performance of individual applications. They benefit some specific
applications (e.g., to improve fairness [1]) at the expense of damaging the best-
performing ones, which has a negative impact on the overall system throughput.

3. Unseen behaviors. Do not address important cache behaviors present in current
workloads, such as low cache reuse [1].

This chapter presents the two LLC partitioning approaches proposed in this dissertation,
Critical-Aware (CA) and Critical-Phase Aware (CPA), that leverage Intel Cache Allocation
Technologies (CAT) to partition the cache and assign subsets of cache ways to groups of
applications based on the dynamic performance at run-time. Both CA and CPA manage
to reduce the turnaround time (TT) while sustaining (and even improving) the system
performance in terms of IPC by forcing applications to use the LLC space effectively.
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Figure 4.1: Example of the average behavior of representative critical and non-critical applications
when varying the LLC space.

To design the partitioning algorithms, we performed a detailed characterization of the
behavior of SPEC CPU 2006 and 2017 benchmark suites. The study identifies the different
behaviors applications experience from the LLC perspective.

4.1 Application Sensitivity to the LLC Space

To characterize the behavior of SPEC CPU2006 and SPEC CPU2017 applications1 from
the LLC perspective, which illustrates how the amount of cache space affects the overall
performance, we executed each application varying the assigned cache space from 1 to
20 ways. The study was carried out in an Intel machine with a 20-way 20MB (1MB/way)
LLC with Intel CAT support (see Chapter 3 for further details).

4.1.1. Critical and Non-Critical Behaviors

After analyzing the results, we concluded that the applications could be divided in terms
of how the cache space influences performance, at first glance, into two main categories:

• Critical applications. In these applications, an increase in the assigned LLC space
results in increased performance, quantified with the instructions per cycle (IPC).
Similarly, with a limited number of cache ways, they present a high number of
cache misses in the LLC (misses per kilo instruction or MPKI_LLC).

• Non-critical applications. These applications exhibit a contrasting behavior since
their performance does not improve by increasing the amount of LLC space over

1Since there are applications whose name appears in both suites, from now on, the suffix _06 and _17 will
be added to specify the corresponding suite.
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Figure 4.2: Average behavior of critical and problematic applications varying the LLC space.

two ways2. That is, the average IPC and MPKI_LLC remain constant when varying
the assigned number of ways. Additionally, the MPKI_LLC is particularly low,
which allows to easily distinguish this type of application from the critical one at
run-time.

Figure 4.1 illustrates the behaviors explained above with two plots, one representing two
critical applications, xalancbmk and omnetpp, and another with six non-critical applica-
tions, bwaves, dealII, leslie3d, calculix, gromacs, and sjeng, all from the SPEC CPU
2006 benchmark suite [123]. Note that both plots have two Y-axis scales, one for the IPC
(left Y-axis, data points represented with crosses) and another for the MPKI_LLC (right
Y-axis, data points represented with dots). The X-axis depicts the number of cache ways a
given application was allowed to use when executed alone in our experimental platform,
so for each application and cache space, we know the average IPC and MPKI_LLC.

4.1.2. Problematic Behaviors

A broader and deeper evaluation of an extensive range of workload mixes revealed that
some applications do not fit well in any of the two categories (i.e., critical and non-
critical). We found that, even though some applications have a high MPKI_LLC (a charac-
teristic previously identified as being of critical applications), their performance did not
improve with larger cache partitions. In contrast, the overall system performance was
harmed, as these applications increased the inter-application interference. Applications
with these behaviors will be referred to as problematic.

Looking further in this direction, we found that cache block reuse can assist in distinguish-
ing critical and problematic behaviors. The reuse can be quantified with the hits per kilo-
instruction (HPKI_LLC) metric. Figure 4.2 shows the IPC, MPKI_LLC and HPKI_LLC
average values of three applications (xalancbmk_06, milc_06, and mcf_17), all of them
identified as critical. For each application, the values shown in the graph were obtained

2With one way, the LLC behaves as a direct-mapped cache, and performance drops considerably.
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in isolated execution, increasing the number of assigned LLC ways from 1 to 20 (the en-
tire cache). As it can be observed, all of them present an average MPKI_LLC higher than 2
(an average value expected in critical applications). With the exception of xalancbmk_06,
the IPC does not significantly increase beyond two ways. For instance, milc_06’s IPC
slightly improves initially with two cache ways and then remains constant. Similarly,
the IPC improvement of mcf_17 is scarce compared to that obtained by xalancbmk_06
with larger partitions. Therefore, milc_06 and mcf_17 can be classified as problematic
applications.

Looking at the HPKI_LLC in Figure 4.2, we can make three interesting observations.
Firstly, xalancbmk_06’s HPKI_LLC grows with the number of LLC ways, and, conversely,
the MPKI_LLC decreases. As in other critical applications, this means that the perfor-
mance (IPC) achieved by xalancbmk_06 improves with the amount of LLC space. Sec-
ondly, in contrast, milc_06’s HPKI_LLC is always almost constant and close to 0, regard-
less of the number of LLC ways that it has been assigned. This is because LLC blocks are
scarcely reused (accessed again) or not reused at all before being evicted. Consequently,
the performance improvements are negligible with additional cache space. In this work,
we refer to this kind of problematic behavior as squanderer. Other contemporary works
[46, 38, 50, 132] also identify this type of cache polluter behavior; however, the work
proposed in this dissertation treats applications with this behavior differently.

Finally, mcf_17 presents the highest HPKI_LLC, which increases when the application is
granted additional LLC space. Nevertheless, assigning more cache ways over a given
number does not improve its performance. The reason is that the out-of-order execution
is not able to hide the latency of most accesses to the LLC, which eventually causes stalls
and prevents further performance gains. Moreover, there is an important number of LLC
misses, even with large LLC partitions, probably due to mcf_17’s cache access patterns
being difficult to predict and prefetch effectively. This kind of problematic behavior will
be referred to as bully and, to the best of our knowledge, it has not been identified in any
previous work.

4.1.3. Medium Behavior

Taking a closer look at the behavior of critical applications as initially identified, we found
that some of them presented a more relaxed behavior; that is, they showed a higher IPC
and lower MPKI_LLC than other more critical applications. That is, different degrees
of criticality can be appreciated. Figure 4.3 illustrates this fact by plotting the average
IPC and MPKI_LLC of two critical applications (xalancbmk_06 and blender_17), and,
for comparison purposes, a non-critical application (gromacs_06). As in Figure 4.2, the
values were obtained in isolated execution, increasing the number of assigned LLC ways.

In contrast to gromacs_06, whose performance is not affected, both critical applications
present a significant performance degradation with just two cache ways (2 MB). Never-
theless, compared to xalancbmk_06, which experiences a poor IPC (less than 1) with this
small cache space, blender_17 presents a mild IPC (around 1.4). In addition, blender_17’s
IPC stabilizes much earlier (with 6 LLC ways) compared to xalancbmk_06. Therefore, we
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Figure 4.3: Average behavior of critical and non-critical applications varying the LLC space.

claim that blender_17 is less critical because: i) it presents an IPC higher than other criti-
cal applications with reduced LLC space, and ii) it does not require as much LLC space to
maximize its performance. This means that it can be assigned to a smaller LLC partition
with a minor impact on its performance. This way, more LLC space could be devoted
to improve the performance of other applications. Consequently, CPA must ensure that
less critical applications do not occupy more LLC space than needed for performance by
monitoring their LLC occupancy (see Section 4.2.3 for further details). This less critical
behavior will be referred to as medium, while the more critical behavior has been named
sensitive.

4.2 Dynamic Behavior of Applications

4.2.1. Reaction to Constrained LLC Space

This section shows how applications may present different execution phases by executing
them in isolation with two cache ways, the minimum LLC space assigned to an applica-
tion in this work (1 cache-way partition is not considered as it makes the cache behave
as a direct-mapped cache, resulting in poor performance). This analysis assists us in ob-
serving how applications behave in each execution phase with limited (and available for
itself on average) LLC space.

Figure 4.4 illustrates the dynamic behavior of five applications, each representing one of
the previously identified LLC behaviors. The MPKI_LLC metric is depicted with a color-
changing line and the HPKI_LLC with a green line. The column on the right side labeled
as IPC shows the colormap associated with the IPC values. We found that an MPKI_LLC
and HPKI_LLC value below 0.5 means that the LLC does not adversely affect the IPC
and that there is negligible data reuse, respectively. Thus, a horizontal dotted black line
at Y = 0.5 is plotted in each graph to facilitate the analysis. The three upper plots of
Figure 4.4 correspond to gromacs_06, xalancbmk_06 and blender_17, which show repre-
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Figure 4.4: Dynamic behavior of the different application behaviors with 2 cache ways.

sentative non-critical, sensitive and medium behaviors, respectively. The leftmost graph
corresponds to a typical non-critical behavior. Gromacs_06 presents an MPKI_LLC close
to 0 throughout the execution, which yields an IPC relatively high (around 2), despite
the limited cache space. The next two graphs illustrate sensitive and medium behaviors,
respectively. As observed, xalancbmk_06’s IPC decreases as the MPKI_LLC increases;
that is, a rise in the MPKI_LLC line matches a color change to a darker color. Across all
its execution, this sensitive application presents a relatively low IPC (below 1) and an
MPKI_LLC as high as 11.

In contrast, blender_17, the medium application, presents a higher IPC than xalancbmk_06.
Following the same trend, blender_17 has lower MPKI_LLC than xalancbmk_06, al-
though it can be considered high if compared with the MPKI_LLC of non-critical ap-
plications, which is close to 0. Thus, we can argue that with a reduced cache space, the
impact on performance is much lower for a medium application than for a sensitive one.
On the other hand, the HPKI_LLC metric is used to distinguish a critical (sensitive or
medium) from a squanderer behavior. This is done by checking that there is at least some
LLC reuse; that is, the HPKI_LLC is higher than 0.5 (dotted line at y=0.5).

The two lower plots of Figure 4.4 depict the two different behaviors shown by problem-
atic applications. The left-side graph (Figure 4.4d) presents the behavior of milc_06, a
squanderer application with low LLC reuse. As observed, it has a high MPKI_LLC (sim-
ilar to the sensitive application xalancbmk_06), but its HPKI_LLC is always lower than
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Critical Applications
Sensitive Medium

gcc_17, omnetpp_06, omnetpp_17,
soplex_06, xalancbmk_06,

xalancbmk_17

blender_17, cactuBSSN_17,
fotonik3d_17, GemsFDTD_06,

parest_17, roms_17, sphinx3_06,
zeusmp_06

Problematic Applications
Squanderer Bully

milc_06 mcf_06, mcf_17
Non-critical Applications

astar_06, bwaves_06, bwaves_17, bzip2_06, cactusADM_06,
calculix_06, cam4_17, dealII_06, deepsjeng_17, exchange2_17,
gamess_06, gobmk_06, gromacs_06, h264ref_06, hmmer_06,

imagick_17, leslie3d_06, lbm_06, lbm_17, leela_17, libquantum_06,
nab_17, namd_06, namd_17, povray_06, povray_17, perlbench_06,

perlbench_17, sjeng_06, tonto_06, wrf_06, wrf_17, x264_17

Table 4.1: Categorization of SPEC CPU 2006 (_06) and SPEC CPU 2017 (_17) applications.

0.5. This behavior is homogeneous throughout the execution. The right-side graph (Fig-
ure 4.4e) illustrates the behavior of mcf_17, an application that presents a bully behavior.
Notice that this application does not present a bully behavior during the whole execution
but only in several execution phases. For instance, it can be observed that from approx-
imately second 85 to second 150, both the MPKI_LLC and HPKI_LLC are dramatically
high (both are above 10 most of the time), and thus, the IPC value drops down to about
0.5. In this type of phase, the performance of mcf_17 would not significantly improve if
more cache ways were assigned to it. This is due to the high amount of time taken by the
LLC accesses, as explained in Section 4.1.2. Therefore, even though the amount of LLC
hits is very high, this bully application will inevitably achieve poor performance.

4.2.2. Detecting Phase Changes Dynamically

As observed in the previous section, the behavior of phases from a performance (i.e., IPC)
point of view can widely differ. We found that IPC phases are linked to different LLC space
needs or LLC phases. For instance, notice that mcf_17’s behavior, studied above as an
example of a bully application, does not show this behavior during the entire execution.
In the execution phase that extends from second 5 to second 75 approximately, mcf_17
behaves as sensitive. In this phase, mcf_17 has lower HPKI_LLC and MPKI_LLC values
than in the plotted bully phase. Similarly, a non-critical behavior appears at the end
of the execution of both xalancbmk_06 and blender_17. Table 4.1 classifies the studied
applications according to their dominant behavior.

Techniques dealing with phase-change detection have been widely studied in the past
[133] [134] [135]. The main goal of detecting a new phase is to select the architectural
configuration leading to optimal performance for the incoming phase. In particular, in
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this work, we use phase-change detection to select the best cache partitioning scheme.
We have devised an approach to detect phase changes based on the method proposed by
Liao et al. [136], Interval Coefficient of Variation (ICOV), as part of an online phase detection
scheme that guides dynamic L2 cache partitioning, implemented using page coloring.
ICOV was chosen for two main reasons, simplicity, and effectiveness, as well as due to
hardware constraints since only four hardware performance counters are available in our
processor. This method measures the homogeneity of a given sample of numbers (IPC
values in this work). The ICOV value is calculated for intervals belonging to the same
phase according to Equation 1, where i, j, and j-1 are the initial interval of the phase, the
current one, and the previous one, respectively; and IPCx,y refers to the average IPC from
interval x and to interval y.

ICOV =
| IPCj − IPCi,j−1 |

IPCi,j
(Eq.1)

The lower the ICOV value, the closer the IPC of the current interval is to the phase trend.
We found 20% as the best-performing threshold for our proposal and platform.

4.2.3. Multiprogram Execution: Fighting for LLC Space

The previous analysis has shown that applications have different cache occupancy re-
quirements depending on their shown behavior. Non-critical applications require almost
no occupancy and present low interference, so they can be placed together in a single
partition. Critical applications have significant LLC space requirements, but it is impor-
tant to distinguish sensitive from medium since the latter does not need so much space.
Squanderer applications have little reuse, and therefore, they hardly require any space
like non-critical applications. Finally, bully applications need a minimum amount of LLC
space in order to not degrade, even more, their performance.
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Thus, the aim of the following study is to analyze if the Linux default scheduler (i.e.,
when no partitioning (NP) policy) assigns applications cache space according to their
needs. Figure 4.5 shows an example of the LLC space occupied by each application of
one of the studied mixes (#17) under NP. This mix contains one medium application
(parest_17), one sensitive application (xalancbmk_17), and six non-critical applications.
Two observations can be made. Firstly, there are non-critical applications like bwaves_06
and leslie3d _06 that occupy more space than the critical ones. Secondly, parest_17
occupies the same (or even more) space than xalancbmk_17, despite xalancbmk_17 hav-
ing higher space requirements. Notice that CPA correctly addresses both observations by
properly identifying the different cache behaviors.

From this example, we can conclude that applications cannot be characterized by only
monitoring the LLC occupancy but other LLC-related metrics, like IPC, MPKI, and HPKI,
should be monitored instead. Nevertheless, we can still leverage the LLC occupancy of
individual applications to check if, once classified, they are using efficiently the assigned
cache space. For instance, in the previous example, the LLC occupancy of a non-critical
application like bwaves_06 could be monitored to check if it is using an excessive amount
of cache space. Likewise, by monitoring LLC occupancy and performance (IPC) of critical
applications, we can detect a wasteful usage of LLC space performed by some medium
applications, which do not need as much LLC space as sensitive applications. Further
details can be found in Section 4.4.3.

4.3 Critical-Aware Approach

This section summarizes the main design goals of the Critical-Aware (CA) Partitioning
Approach. The general idea is to improve system throughput by only using two cache
partitions or two CLOS: one for the critical applications and another for the non-critical,
assigning a larger amount of LLC space to the critical applications. Reducing the effective
space non-critical applications prevents them from damaging the performance of critical
applications.

CA consists of three main phases: i) application classification, ii) base partition settings,
and iii) dynamic adjusting of partitions, discussed next.

4.3.1. Application Classification

At the beginning of the execution, before carrying out any action, some time is taken
to warm up the cache. After that, the algorithm enters the reset state, in which the
MPKI_LLC of all the applications is computed. The algorithm computes the rolling mean
(µ) and standard deviation (σ) for the last 10 intervals of the MPKI_LLC, considering
all the applications to detect outliers (that is, critical behavior) by using Miller’s crite-
rion [137]. Applications outliers are detected by comparing the MPKI_LLC of the current
interval to the result of Equation 4.1.

Limit_outlier_MPKI_LLC = µ + 3 × σ. (4.1)
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Figure 4.6: State diagram of cache partitioning performed by CA. CLOS #1 contains non-critical
applications, and CLOS #2 contains critical applications.

4.3.2. Base Partition Settings

Once applications are classified, the algorithm creates two partitions (CLOS #1 for non-
critical and #2 for critical applications), whose sizes depend on the number of critical
applications detected. Figure 4.6 shows the state diagram of the cache partitioning per-
formed by CA. This first stage is marked in red.

For instance, in case one critical application is detected, 12 ways are assigned to CLOS
#1, and 10 ways are assigned to CLOS #1. The higher the number of critical applications,
the more cache ways are assigned to CLOS #2, except when no critical applications are
found. Similarly, when there is a majority of critical applications, the cache is configured
as a single partition (default configuration).

The initial partitions’ layouts were empirically determined based on a deep and thorough
study of static configurations, evaluating application mixes with different numbers of
critical applications. Notice that a partition size represents a given percentage of the total
LLC ways. For instance, with one critical application, 60% of the ways are allocated to the
critical application’s CLOS and 50% to the non-critical applications’ CLOS, having 10%
of the cache ways shared between both CLOS. Thus, by applying this observation, the
proposed approach could be easily generalized and adapted to be used in another CAT
machine deploying an LLC with different associativity.
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When the number of critical applications varies due to a change in the behavior of an
application (from critical to non-critical or vice-versa), the actual partitioning scheme
must be updated. To this end, the algorithm transitions back to the reset state, setting
the default cache configuration (all applications in CLOS #1 with 20 ways). Then, the
classification process starts again.

4.3.3. Dynamic Adjusting of Partitions

Although the initial partition layouts obtain good performance for a wide set of appli-
cation mixes, there is not an optimal cache configuration that perfectly suits all of them.
For this purpose, CA dynamically adjusts the base configuration at run-time, measuring
the effect of such changes in the system performance and using them to guide changes in
the base partitioning (Dynamic cache way adjustment box in Figure 4.6).

To check the impact of a change in the actual partitioning, CA estimates what would have
been the performance if such a change was not made. A simple but effective approach is
to assume that the IPC in the next measured interval remains similar to the previous one.
This approach provides estimates with around 4% mean square error for the studied set of
applications.

An issue CA faces when dynamically adjusting partitions is that some applications tend
to have phases in which they are critical and phases where they are not. This is challeng-
ing because CA resets the partitioning when a change in the number of critical applica-
tions occurs. A high number of resets can reduce the potential system throughput. CPA
is a phase-change-driven approach, so it deals with this drawback.

4.4 Critical Phase-Aware Proposal

4.4.1. General Overview of the Approach

CPA, like CA, devotes the first intervals of execution to warming up the cache. Initially,
all applications are assumed to be non-critical and allocated in CLOS #1, which spans the
whole cache (i.e., the default CAT configuration).

Algorithm 1 depicts the pseudo-code of CPA partitioning policy which is applied (af-
ter the warm-up phase) periodically in each time interval of the execution. Firstly, in
step 1, the hardware performance counters are read, and the collected data are used to
calculate the inputs to the algorithm. Five main hardware events are sampled for each
studied application: instructions (I), cycles (C), and three LLC events (#misses, #hits, and
occupancy). The gathered values are used to compute the algorithm’s inputs (MPKI_LLC,
HPKI_LLC, IPC, and LLC occupancy).

In step 2, the ICOV value of each application is computed to detect phase changes, which
are detected when the ICOV surpasses the ICOVthreshold value. If a phase change is de-
tected, it is checked if a change in the application behavior has occurred. This is done
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Algorithm 1 CPA pseudo-code
1: —————– STEP 1 —————–
2: for all apps do
3: Read I, C, and LLC events (#misses, #hits, occupancy) and compute metrics: IPC, MPKI, HPKI
4: end for
5: —————– STEP 2 —————–
6: if First Interval then
7: update_clos = true
8: else
9: for all applications do

10: Compute ICOV
11: if ICOV > ICOVthreshold & application behavior change then
12: update_clos = true
13: end if
14: end for
15: end if
16: if update_clos then
17: Update cache settings according to Table 3; return
18: end if
19: —————– STEP 3 —————–
20: for all critical applications do
21: if IPC > thIPC,L & LLCoccup > LLCoccupcritical/2 then
22: Reduce the #ways assigned to the CLOS
23: end if
24: end for
25: if NumCritical == 1 & NumMedium == 1 then
26: Enlarge CLOS #1 to leverage the free space
27: end if
28: —————– STEP 4 —————–
29: for all non-critical apps do
30: if LLCoccup > LLCCLOS1/3 & MPKI < 0.5 & HPKI < 0.5 then
31: Isolate application in a CLOS with few ways
32: end if
33: end for
34: —————– STEP 5 —————–
35: if NumCritical ≥ 1 then
36: Adjust cache sizes of CLOS #1 and critical CLOS(es) like CA
37: end if

by comparing the inputs of the algorithm with the thresholds presented in Table 5.2.
For instance, one application is categorized as bully if its IPC is very low (less than
thIPC,VL), and both its MPKI_LLC and HPKI_LLC are very high (greater than thMPKI,VH
and thHPKI,VH, respectively). If a change in the application behavior is found, the cache
configuration is updated according Table 4.3. This configuration update may imply mov-
ing the application from one CLOS to another (e.g., from CLOS #1 to CLOS #2) and/or
updating the bit masks or the number of cache ways assigned to one or more CLOS.

The next steps further refine the cache configuration by determining if the applications
assigned to the cache partitions are behaving properly regarding their LLC occupancy. That
is, CPA checks if an application is using more cache space than it needs. In step 3, critical
applications are checked for a medium behavior. Since these applications do not need so
much LLC space as sensitive applications (see Section 4.1.3), CPA checks if there is a crit-
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Application
Category IPC

LLC
MPKI HPKI

Sensitive L (< 1.3) H (Eq.4.2) not VL (≥ 0.5)
Medium M (≥ 1.3) H (Eq.4.2) not VL (≥ 0.5)

Bully VL (≤ 0.6) VH (≥ 10) VH (≥ 10)
Squanderer × H (Eq.4.2) VL (< 0.5)
Non-critical otherwise

Table 4.2: Thresholds for each metric and level (thMetric,Level) used to identify the categories.
Columns define the metric and H (high), M (medium), L (low), VH (very high) and VL (very

low) define the levels.

ical application that shows a medium behavior (IPC is higher than thIPC,L) and occupies
too much cache space (more than half of the cache space occupied by the critical applica-
tions LLCoccupcritical). In such a case, the number of ways assigned to the CLOS holding
the medium application is reduced to the proportional part. That is, half if there are
one or two critical applications and one-third in case there are three critical applications.
Given that each critical application resides individually in one CLOS (see Section 4.4.3
for further details), the space assigned to each critical application can be easily managed.
In case there is only one critical application and it is detected as medium, the number of
ways of CLOS #1 is increased, so no cache ways are left unused. Note that, in case there
is more than one critical application, at least one should be considered as sensitive since
halving the space to, for instance, two critical applications will leave too little space for
them, damaging their performance.

In step 4, non-critical applications are checked. In this case, CPA isolates applications that
occupy an excessive amount of LLC space (quantified as more than one-third of CLOS
#1’s space) and make no profit from it. That is, they show very low reuse (HPKI_LLC)
and misses per kilo-instruction (MPKI_LLC). These applications are isolated in a separate
CLOS with few cache ways shared with CLOS #1. This cache arrangement prevents these
cache-greedy applications from occupying too much cache space.

Finally, in step 5, the partition sizes are adjusted as done in CA. This mechanism has
been implemented so that it does not let critical applications take too much space and
confine the remaining applications to a marginal space. Remark that every time the cache
configuration is updated in this step, CPA waits for some idle intervals where it is not
adjusted again, leaving some time for applications to take advantage of the additional
space or reduce the amount they are using to match the new configuration.

4.4.2. Identifying LLC Behaviors at Run-Time

LLC behaviors identified in previous sections are checked as follows. First, the algorithm
checks for a bully behavior. As discussed above, applications presenting this behavior ex-
hibit very high MPKI_LLC and HPKI_LLC values (higher than thMPKI,VH and thHPKI,VH,
respectively) and very low IPC (less than thIPC,VL). Since the performance of these ap-
plications does not improve by assigning them a higher amount of cache ways, two so-
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CA cache configurations (# of used ways)
# Critical Apps. CLOS #1 ways

(mask)
CLOS #2 ways (mask)

1 10 (0x003ff) 12 (0xfff00)
2 9 (0x001ff) 13 (0xfff80)
3 8 (0x000ff) 14 (0xfffc0)

0 or more than 3 20 (0xfffff) 20 (0xfffff)
CPA extensions

App. Type # CLOS(es) # of Ways (mask)
Bully/Non-critical 1 Same as CA

Critical 2, 3 or 4 Same as CA
Squanderer 5 or 6 2 ways/CLOS shared with

CLOS # 1 (0x00003 with 1
CLOS, 0x0000f with 2 CLOS)

Table 4.3: Initial cache mask configurations for CA and extended configurations used in CPA.

lutions could, in principle, apply, i) isolate it in a single and small CLOS or ii) allow it
to remain in CLOS #1 together with non-critical applications. We evaluated both design
choices and found that the second choice provides the best results because they span a
higher number of cache ways.

Second, CPA checks for critical (sensitive and medium) behaviors. Notice that both
sensitive and medium behaviors are identified as critical in step 2, but they are differ-
ently addressed in step 3, where the LLC space is adjusted accordingly. Critical applica-
tions present a high MPKI_LLC (greater than thMPKI,H). Note that in Table 5.2 threshold
thMPKI,H is not defined by a fixed value but by Equation 4.2. Therefore, this threshold
varies depending on the benchmarks that make up the mix, but according to the equation,
the threshold value will always be in the high level range (i.e., > 1). Although many sta-
tistical studies use 3 × std over the µ, we found empirically that a more relaxed threshold
(1.5 standard deviations) works well across the studied mixes. Additionally, the equation
excludes the MPKI_LLC of applications showing a previously detected problematic be-
havior from the calculation of the mean and standard deviation since such high values
skew the data model. Note too that CPA does not only consider the MPKI_LLC to detect
a critical behavior but also takes into account the achieved IPC and the LLC reuse (i.e.,
HPKI_LLC) (see Section 4.1).

thMPKI_LLC,H = max(1, µ + 1.5 × std) (4.2)

Third, CPA checks for squanderer behavior. An application exhibits this behavior when-
ever it fulfills two conditions: i) it occupies a significant fraction of the LLC, and ii)
it presents low data reuse. The former means that the application experiences a high
MPKI_LLC (fulfills Equation 4.2), and the latter that it has a very low HPKI_LLC (less
than thHPKI,VL). Taking into account the previous rationale, CPA isolates squanderer ap-
plications into a separate CLOS with few cache ways (shared with CLOS #1) since no
performance benefits are achieved with additional space.
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Finally, if the behavior of a given application does not fulfill the criteria of any of the three
mentioned behaviors, then it is considered non-critical.

4.4.3. Dynamic CLOS Management

CPA leverages the data collected from the LLC occupancy hardware counter, which mea-
sures the cache space occupied by each application. To the best of our knowledge, this is
the first time this metric has been used to drive a partitioning strategy.

When applications are placed together in a CLOS, the space available is often not shared
evenly. Applications present different access rates, and the LLC replacement algorithm
is driven, among others, by the access rate. This means that if two applications sharing
the same CLOS have widely different access rates, the application accessing with higher
frequency will likely occupy much more space than the other. Having an unconstrained
number of CLOS allows CPA to use private CLOS to host individual applications and
easily control the cache ways assigned to them. Note that a private CLOS does not nec-
essarily means private space since the ways assigned to a CLOS may be shared with
another CLOS.

Private CLOS in CPA serve three main purposes, i) limit the interference between medium
and sensitive applications, ii) avoid unfair space distribution among non-critical appli-
cations and iii) isolate squanderer applications. The first purpose is achieved by placing
each critical application in a specific CLOS. The rationale behind this design choice is to
facilitate reducing the LLC space to medium applications since they need less space than
sensitive applications, so reducing the inter-critical application interference. The second
aim refers to non-critical applications. Even though these applications have little space
requirements, some non-critical applications occupy more cache space than they need,
i.e., the same performance is achieved with less occupancy. This may affect co-runners’
performance if they are left with too little space (e.g., less than 1 MB). Thus, these appli-
cations are isolated in a separate CLOS with a few cache ways if this situation is detected.
Finally, the third aim is achieved by isolating squanderer applications individually in
private CLOS with few LLC ways since these applications have little reuse and barely
need LLC space. Notice that the space assigned to these CLOS is shared with CLOS #1,
unlike previous works which isolated this cache pollutant applications in a private CLOS
with private ways (not share ways with other co-runners). This fact, however, reduces
the effective cache space that can be accessed by the remaining applications, which is
is not the best design choice for performance [1]. Therefore, unlike previous works, we
allow the ways assigned to squanderer applications to overlap with other applications.
In particular, with the ways assigned to non-critical applications and other problematic
applications, which are less affected by LLC interference than critical applications.

4.4.4. Working Example

To help understand how CPA works and illustrate how cache partitions are disposed,
this section presents a working example of a hypothetical execution scenario considering
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Figure 4.7: Cache partitioning example in CPA. Each column represents one cache way, and each
row one CLOS.

a mix made up of eight applications. The example studies six different events that occur
along the execution. Figure 4.7 shows the active CLOS (following the criteria shown in
Table 4.3) and the LLC ways (from 1 to 20 ways) associated with each CLOS on each
event.

At the start of the execution (Figure 4.7a) all 8 applications of the workload mix are in
CLOS #1, which spans all the cache (default cache configuration). After warming up the
cache (at First Interval), each application’s behavior is checked. Suppose that one of the
8 applications exhibits a critical behavior and another a squanderer. Each application is
assigned to a separate CLOS, i.e., two new cache partitions sized with the initial settings
are created (see Figure 4.7b). In this case, CLOS #2 holds the critical application and is
assigned 12 cache ways (ways #1 to #12, see Table 4.3), and the squanderer application is
allocated in CLOS #5 with 2 cache ways (ways #19 and #20). The partition sizes are then
dynamically adjusted depending on their LLC requirements. For simplicity, the dynamic
adjustment is not shown in this example since it follows a complex state machine. Some
cache ways are shared (i.e., overlapped) among CLOS #1 and #2 to improve the cache
efficiency.

In the next event, Figure 4.7c, a non-critical application in CLOS #1 experiences a phase
change and starts showing a critical behavior. Then, CPA creates a new partition (asso-
ciated with CLOS #3) to host this application, and the CLOS mask is updated. Notice
that each application showing a critical behavior is placed on a different private CLOS,
but initially, both partitions share the same ways. Lets assume now that the critical ap-
plication in CLOS #2 shows a higher IPC than thIPC,L and it occupies a high fraction of
the critical LLC space. This application is labeled as medium, and the CLOS #2 size is
reduced to half (Figure 4.7d). The next event (Figure 4.7e) assumes that an application in
CLOS #1 starts showing a squanderer behavior (wasting the cache space by occupying a
high fraction of the partition), but it presents a very low MPKI and data reuse. To coun-
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teract this situation, CPA creates a new partition (associated with CLOS #6) to isolate this
application. Notice that CLOS #5 and #6 are assigned 4 shared ways instead of 2 cache
ways each in order to improve cache efficiency.

Finally, the critical (i.e., sensitive) behavior of the application in CLOS #3 moves to a bully
behavior (Figure 4.7f). When this happens, two main actions are carried out. Firstly, the
application in CLOS #3 is returned back to CLOS #1. Secondly, CLOS #2 is given back
the space it had before halving it, and in forthcoming intervals, this application will be
rechecked for a medium behavior.

4.5 Experimental Setup

The experiments have been conducted in the Intel Broadwell processor described in Sec-
tion 3.1 with the software manager we developed, described in Section 3.3.

4.5.1. Workload Mixes

The workload mixes evaluated in this work were randomly generated using 50 appli-
cations: 28 applications from the SPEC CPU 2006 benchmark suite and 22 applications
from the SPEC CPU 2017 suite. Table 4.1 shows how applications classify into the defined
categories. It can be appreciated that non-critical applications dominate both benchmark
suites. Taking this observation into account, 31 mixes consisting of 8 applications each
(i.e., the number of cores in the system) were randomly generated, keeping non-critical
applications as the dominant group and varying the number of critical and problematic
applications from 1 to 3.

Mixes have been ordered according to the number of applications that the mix contains
belonging to the critical or problematic categories; that is, the higher the number of the
mix, the higher the number of applications from these categories. Mixes #1 to #12 contain
one critical or problematic application, mixes #13 to #24 contain two, and mixes #25 to
#31 contain three.

4.5.2. Experimental Parameters

In this work, thresholds (upper and/or lower) were empirically determined through
thousands of experiments for three main metrics: IPC, MPKI_LLC, and HPKI_LLC. For
each metric, different levels have been defined, referred to as Very High (VH), High (H),
Medium (M), Low (L), and Very Low (VL). Table 4.2 summarizes the values of the thresh-
olds used to perform the experiments presented in Section 4.6. From now on, we will use
the term thMetric,Level to refer to the threshold of a given level for a given metric. Notice
that threshold thIPC,L behaves as an upper threshold for medium applications and as a
lower threshold for sensitive applications. All metrics have a fixed numeric threshold
except for MPKI_LLC, which is determined by Equation 4.2 (Section 4.4.2), a variation of
Equation 4.1 (Section 4.3.1) which was used in CA.
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In addition to the thresholds in Table 5.2, we set the ICOVthreshold to 0.20, the number of
idle intervals to 5, and the number of warm-up intervals to 10. Experiments use CLOS #1
to host non-critical applications, and a new CLOS is allocated whenever a new behavior
that requires a private partition is detected. For the 8-application mixes used in this
work, CPA considers a maximum of 6 CLOS: CLOS #1 devoted to non-critical and bully
applications, CLOS #2, #3 and #4 for critical applications (CPA supports up to 3 critical
applications), and CLOS #5 and #6: for squanderer and non-critical applications wasting
LLC space, respectively. Experiments were also performed using more CLOS, but results
did not improve, thus the presented results only used 6 partitions.

4.5.3. Methodology

To calculate the IPC, MPKI_LLC, HPKI_LLC and LLC occupancy values, we use the fol-
lowing Perf hardware counters: instructions, ref-cycles, mem_load_uops_retired.l3
_hit, mem_load_uops_retired.l3_miss and intel_cqm/llc_occupancy/.

Workload mixes are run until all the applications in the mix have completed a fixed num-
ber of instructions. This number corresponds to the number of instructions the applica-
tion executes when running alone for 60 seconds. When an application reaches this limit,
and it is not the last one in the mix to reach such a limit, it is restarted, so the results of the
other applications are not skewed by the fact that they have fewer co-runners. Nonethe-
less, when analyzing the results, only the values of the first execution run of each appli-
cation are considered. At regular 500ms intervals, the experimental framework reads the
performance counters and passes the values to the partitioning algorithm. Each exper-
iment is repeated 3 times, and the average values and the standard deviation for each
metric are derived. Results in Section 4.6 are shown within a 95% confidence interval
with a margin of error lower than 3%.

4.6 Evaluation

4.6.1. Impact of Newly Identified Behaviors

This section first illustrates the main differences between CPA and CA regarding two
key metrics (IPC and LLC occupancy) through the study of an example mix (#20). The
mix consists of 1 critical (xalancbmk_06), 1 squanderer application (milc_06), and 6 non-
critical applications. This mix was chosen to help understand why the squanderer be-
havior is difficult to identify.

Figure 4.8 shows the IPC (before being restarted) and LLC occupancy (for the whole ex-
ecution) achieved along the execution for each of the 8 applications in the example mix.
Figure 4.8a and Figure 4.8b present the results for CA and CPA, respectively. Several ob-
servations can be made. Firstly, looking at the X-axis, whose length is bounded by the TT
(that is, the execution time of the longest-running application of the mix, xalancbmk_06),
it can be seen that CPA improves TT significantly, nearly 20%. In this specific mix, CA
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Figure 4.8: Dynamic values of IPC and LLC occupancy of mix #20 under CA and CPA.

achieves similar results to the Linux default NP policy. The main reason is that the behav-
ior of squanderer applications is not correctly detected. Squanderer applications present
a high MPKI_LLC. Therefore, CA confuses milc_06 with a critical application and allo-
cates it into a partition with a greater amount of LLC. However, since squanderer appli-
cations present very little reuse, this additional space does not translate into performance
gains. This behavior can be observed in the LLC occupancy graph of Figure 4.8a (right
side), where milc_06 occupies a large fraction of the space during nearly the whole exe-
cution.

CPA detects and handles this newly identified behavior, so milc_06 is no longer allowed
to occupy such a large LLC space. At the beginning of the execution (by second 5),
milc_06 is identified as a squanderer application because it presents high MPKI_LLC and
very low HPKI_LLC. This application shows the same behavior throughout its execution
time, so it remains in a separate CLOS with a reduced amount of LLC space. The space
released by milc_06 is taken by xalancbmk_06, a critical application that benefits from
additional cache space, and the remaining non-critical applications. Notice that gains in
TT are due to xalancbmk_06, as a non-critical application is barely affected. Looking at
the IPC graphs, we can see that even though milc_06 is assigned much less LLC space
by CPA than by CA, its IPC (and execution time) is unaffected. Compared to CA, CPA
improves the IPC by nearly 4%.
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Figure 4.9: TT and ANTT improvement (in %) w.r.t. NP for each workload mix.

4.6.2. Turnaround Time Evaluation

This section compares the turnaround time (TT) and average normalized turnaround
time (ANTT) [129] of CPA, CA, and Dunn [1], a state-of-the-art partitioning policy.

Figure 4.9a plots the TT improvement (in percentage) of the studied approaches with
respect to NP across 31 8-application workload mixes. CPA improves TT over 40% in
three mixes over NP. On average, this improvement is of 11%, which is slightly higher
in Dunn (12%) and lower (6%) in CA. An interesting observation is that CPA improves
TT considerably with respect to Dunn and CA in those mixes containing a squanderer
application, e.g., mix #9 and mix #10. This is because neither Dunn nor CA consider block
reuse and LLC occupancy; thus, they are not able to detect behaviors strongly related
to these metrics such as those exhibited by squanderer applications; and, as explained
above, a wrong classification of squanderer applications leads the system to performance
losses. Finally, we would like to remark that CPA manages to reach improvements of
over 35% in four mixes.

While TT is primarily a user-oriented performance metric [128], it does not consider the
performance losses of an application over isolated execution, which can lead to mislead-
ing conclusions. To deal with this fact, we study a complementary metric, ANTT, which
should be analyzed alongside TT (see Section 3.5 for further details). Figure 4.9b shows
the ANTT improvement (in percentage) achieved by the studied policies over NP for
each workload mix executed. As observed, CPA shows the best results, reaching in three
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Figure 4.10: IPC (geometric mean) improvement (in %) w.r.t. NP.

mixes improvements over 4%. In contrast, Dunn degrades this metric by more than 4% in
four mixes since it is a more aggressive policy that tries to benefit most those applications
showing the highest slowdown (i.e., critical). An important observation is that in those
mixes where Dunn outperforms CPA regarding TT, CPA is able to improve ANTT. For
instance, CPA manages to reach a TT improvement higher than 50% in mix #18, where
Dunn and CA improve by 58% and 20%, respectively. However, CPA outperforms the
other two approaches in ANTT by up to 5%. This means that CPA successfully consid-
ers the applications’ individual performance as well as the overall system performance,
and that the gains in the latter are not at the cost of damaging the performance of the
co-running applications.

4.6.3. IPC Evaluation

In addition to TT and ANTT, the system throughput is also evaluated in this chapter in
terms of IPC (see Section 3.5 for further details).

Figure 4.10 shows the improvement (in percentage) of the IPC geometric mean with re-
spect to NP for each workload mix in the studied policies. Dunn allows the system to
achieve good system fairness, however, when problematic behaviors identified in this
thesis work are present in the mix, the IPC can drop. The IPC is difficult to sustain in
partitioning approaches focused on multi-program workloads mainly because, to deal
with system fairness or TT, these partitioning approaches seek to benefit those appli-
cations showing an atypical behavior at the expense of damaging the best performing
ones. Nevertheless, in spite of this fact, the devised CPA approach properly addresses
the newly identified behaviors, improving TT and ANTT while sustaining the IPC or
even improving it over 3% in some mixes.

Overall, CPA (and CA but to a lesser extent) manages to maintain and even improve, in
some cases, the IPC, whereas Dunn’s IPC is worse than NP in most cases. Even though
Dunn obtains, on average, a slightly better TT, this improvement should never be at the
cost of degrading the system throughput. This principle was first drafted in CA and has
been fully tackled in this work.
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Figure 4.11: CPA versus KPart: IPC (geometric mean), TT and ANTT.

Application KPart CPA
Time (s) IPC Time (s) IPC

sjeng_06 65.5 1.34 38.5 2.28
hmmer_06 60.1 1.45 41.0 2.14
nab_17 71.8 1.22 60.5 1.45

libquantum_06 38.3 2.29 61.5 1.43
tonto_06 41.6 2.10 63.5 1.38
soplex_06 109.3 0.80 65.0 1.35
sphinx3_06 61.1 1.43 85.5 1.03

mcf_06 211.9 0.41 123.0 0.71
TT/IPC(geomean) 211.9 1.23 123.0 1.39

Table 4.4: Execution time (s) and IPC the individual applications of mix #13, and TT and IPC
(geomean) of the mix.

4.6.4. Comparing CPA with KPart

This section compares our proposal with KPart [46]. This approach groups applications
into N clusters, this number ranges from 2 to the number of applications in the mix and
each cluster is assigned to a cache partition, which has private ways. In order to run KPart
in our experimental platform, we adapted the cache partitioning technique to work with
a 20-way cache. We tried the same 31 mixes described in Section 4.5.1, but the KPart
framework was only able to run 15 of them, as some SPEC benchmarks are composed of
multiple binaries, and supporting that requires important changes in the KPart architec-
ture.

Results for IPC (geometric mean), TT, and ANTT are shown in Figure 4.11. For fair com-
parison purposes, we also ran the application mixes in CPA until each application of the
mix committed 200 billion instructions, like in KPart. As observed, CPA outperforms
KPart, on average, by 6% in IPC (geometric mean), 30% in TT, and 6% in ANTT.

To provide further insight into why CPA outperforms KPart, we looked into those work-
loads where KPart presents a poor performance and found three main reasons: i) KPart
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allocates multiple applications to 1-way partitions, ii) KPart places problematic and criti-
cal applications together, and iii) CPA is triggered when it is really needed (phase changes)
and does more precise changes.

For illustrative purposes, we present below a comparative study of mix #13, made up of
5 non-critical applications (sjeng_06, hmmer_06, nab_17, libquantum_06, tonto_06),
1 critical sensitive application (soplex_06), 1 critical medium application (sphinx3_06)
and 1 bully application (mcf_06). Table 4.4 shows the results of the execution time and
IPC obtained for each benchmark of this mix. As it can be observed, the performance
(i.e., IPC) of some non-critical applications drops considerably compared to CPA. KPart
allocates firstly these applications into the same 1-way CLOS, and then in a CLOS with
very little space (1 way/application). Consequently, the partition behaves like a direct-
mapped cache, which results in performance degradation. In contrast, CPA does not
constrain non-critical applications to such a reduced space, thus it does not present this
downside. Another important difference is that KPart is not able to correctly identify
bully applications like mcf_06. In this example mix, KPart assigns firstly mcf_06 too lit-
tle space (1 way), which damages its performance considerably. In the following cache
disposal (that is, clustering applications in CLOS and assigning them cache ways), it is
placed together with soplex_06 in a CLOS with a high number of ways (14). However,
as shown in the characterization study, problematic applications (mcf_06 in this example)
tend to occupy and waste a high portion of their allocated LLC space. Therefore, placing
them in the same cluster as critical applications results in lower performance, as they re-
duce the space available for the critical ones, without significant performance gains. In
the last cache disposal, mcf_06 is given too much space (9 private ways) that it is not able
to use profitably. Notice that CPA mostly uses shared cache ways among CLOS, which,
as proved by [1], generally yields a better performance (see Section 4.4.3).

Another difference between KPart and CPA is how often the cache configuration is mod-
ified and the number of applications/partitions affected. In this mix, KPart performs a
total of 3 cache disposals, compared to CPA, which performs 10 cache configuration up-
dates (following criteria in Table 4.3), and 23 cache adjustments (Step 5 in Algorithm 1).
CPA performs more frequent and precise cache configuration updates, which adapts bet-
ter to behavior changes of the applications.

Consequently, in this example mix CPA improves the IPC (geomean) by 13% since it
avoids low IPCs (2 out 8 applications present IPC below 1 in KPart). CPA also outper-
forms by 61% in TT. We carried out further experiments to estimate the impact of each
of the analyzed aspects. We found that TT drops to 53% when phase detection is not
applied and to 27% when using 1-way partitions, proving that major performance gains
come from the proposed strategy that identifies new specific cache behaviors and per-
forms more precise cache configuration updates.
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4.7 Summary

This chapter has presented the work on LLC space management performed in an Intel
Broadwell processor with Intel Cache Allocation Technology, one of the first Intel micro-
architectures to include this technology.

An exhaustive characterization of the behavior of SPEC CPU 2006 and 2017 applications
is performed in terms of the assigned LLC space and interference at its resource. The
study has shown that applications behaviors can be classified into five categories: non-
critical, sensitive, medium, squanderer, and bully, identified at runtime by monitoring
the performance metrics IPC, MPKI_LLC, HPKI_LLC, and LLC occupancy. Applications’
LLC behavior is not always the same but may change throughout their execution. The
system performance can significantly drop if the LLC space allocated does not correctly
adapt to such behavior changes.

In this regard, this chapter has proposed the Critical Aware (CA) and Critical-Phase
Aware (CPA) LLC partitioning approaches. CA is a simple approach that only consid-
ers the critical and non-critical behaviors, while CPA considers all five behaviors. The
major differences between CPA and CA are the following:

• CPA is phase-change driven. This reduces unnecessary checks on the behavior of
applications and makes CPA a much more general solution.

• Additional criteria have been introduced to identify the new application behaviors
at run-time.

• A higher number of CLOS better fits the higher number of identified behaviors and
allows greater control of the LLC space.

Both CA and CPA improve overall system performance by considerably reducing the
TT over Linux default behavior. Compared to CA and the state-of-the-art approaches
KPart and Dunn, CPA achieves significant performance gains by correctly identifying
those applications presenting problematic behaviors and allocating more private space
to those presenting sensitive behavior.

The source code of CPA has been made available at http://hdl.handle.net/10251/
143182.
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CHAPTER 5

Non-Inclusive LLC Resource
Management

The current trend of server processors is to increase the amount of private cache space
(L2 cache) available to the core. As a consequence, the amount of shared L3 cache is
reduced considerably. To make better use of the cache space, the design of the cache is
no longer inclusive but non-inclusive, and exclusive designs have been adopted in recent
processors [138]. However, less space per core to manage and more demanded space
(i.e., more traffic since the L3 acts as a victim cache) by applications means that fierce
competition for cache space will take place.

This chapter analyzes the cache requirements of SPEC CPU2006 and SPEC CPU2017 ap-
plications1 in non-inclusive caches compared to inclusive caches, as well as the inter-
application interference that rises due to the reduced L3 cache space. The results of this
study are used to design Cache-Poll, a cache partitioning strategy aimed at improving
system throughput in non-inclusive caches by minimizing cache pollution.

5.1 Motivation

Cache management is more critical in processors with non-inclusive L3 caches due to
two main reasons that arise by design. On the one hand, they present smaller capacity
per core both in the L3 and in the entire cache hierarchy than with inclusive L3 caches.
This means that there is less flexibility in assigning L3 cache space to applications. On the
other hand, the fact that the L3 cache is non-inclusive implies that a significant number of
the evicted L2 cache blocks (regardless if they are dirty or clean blocks) are written back
to the L3 cache.

To illustrate this claim, we measured the L2 writebacks in both Intel Broadwell and
Skylake-X processors, implementing an inclusive and non-inclusive L3 cache, respec-

1Since there are applications whose name appears in both suites, from now on, the suffix _06 and _17 will
be added to specify the corresponding suite.
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Figure 5.1: L2 cache writebacks in 31 8-application workloads executed in an Intel Broadwell and
Skylake-X processors.

tively. Figure 5.1 shows the results for 31 randomly generated 8-application workloads.
Despite that the L2 cache is four times larger, the total number of L2 writebacks to the
non-inclusive L3 cache of the Skylake-X processor is much higher (3× to 4×) than that of
the Broadwell.

This increased traffic implies that it is even more critical than in inclusive caches to make
efficient use of the smaller L3 cache space. For this purpose, we focus on minimizing
the effect known as cache pollution. The term pollution has been used in the past to refer
to inaccurate prefetch requests (i.e., useless prefetches) and addressed in different ways
[2, 3]. In this work, we extend its meaning to refer to any action that allocates new blocks
into the cache that are never (or scarcely) referenced. Under this umbrella, pollution can
arise from different sources. In addition to useless prefetches, we identify other causes
of cache pollution; misspeculated loads, that is, load instructions that are executed at
the shadow of a misspeculated branch; and poor locality, which refers to blocks that are
brought by demand but not (or scarcely) referenced again. Notice that although the latter
blocks are not, strictly speaking, polluting the cache, we consider these blocks under the
umbrella since they introduce a certain type of pollution by replacing other useful blocks.

5.2 Background

The on-chip cache hierarchy has evolved in the last processor generations, like Intel Xeon
Scalable [101] starting with the Skylake-X architecture, from inclusive to non-inclusive L3
caches.

Inclusive L3 caches keep copies of all the blocks stored in the private L2 caches. To be
effective, its size needs to be much larger than the storage capacity of all the L2 caches.
When a block is fetched from main memory, it is filled up both in the L2 and L3 caches
(see Figure 5.2). Then, when the block is evicted from the L2 cache, it is written back to
the L3 only in case it has been modified.
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Figure 5.2: Difference between inclusive and non-inclusive L3 caches when a miss occurs both at
the L2 and L3 caches.

In non-inclusive L3 caches, a block in the L2 cache may or may not be present in the L3
cache. Different implementations are possible. Figure 5.2 (right side) shows the scheme
deployed in the Intel Skylake-X architecture [101]. Upon an L3 cache miss, the requested
block is fetched from memory and filled into the L2 cache. The L3 cache serves as a victim
cache of the L2 caches (i.e., upon eviction from the L2, most blocks are written back to the
L3 regardless of whether they have been modified or not) and for prefetching purposes.
However, it does not act as a pure victim cache, but the design allows to drop and not
write back to the L3 cache those evicted L2 blocks that are deemed to be less likely to
be reused shortly [139]. In this processor, to help guarantee cache coherence, the Snoop
Filters extend the L3 cache directory to keep track of the blocks stored in the L2 caches.

5.3 Characterizing L3 Cache Behavior

Ideal cache sharing would assign additional cache space to an application only if it trans-
lates into performance improvements without degrading the performance of the co-runners.

This section first characterizes how the available L3 cache space impacts the performance
of the studied applications. Then, we study the types of cache pollution introduced by
the applications and how it slows down the execution time.

5.3.1. Space Requirements in Non-Inclusive vs. Inclusive Caches

The new cache hierarchy organization (larger L2 cache and smaller non-inclusive L3
cache) deployed in the Intel Scalable family has changed the L3 cache needs of appli-
cations to achieve maximum performance compared to previous processor generations.

Figure 5.3 shows how the achieved performance (i.e., IPC) evolves, both in an Intel Broad-
well processor (Figure 5.3a) and in an Intel Skylake-X processor (Figure 5.3b), as the num-

59



Chapter 5 Non-Inclusive LLC Resource Management

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IP
C

# L3 cache  ways

gromacs leela_r sjeng omnetpp
xalancbmk_r soplex fotonik3d_r milc

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

IP
C

# L3 cache  ways

gromacs leela_r sjeng omnetpp
xalancbmk_r soplex fotonik3d_r milc

(a) Intel Broadwell

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

1 2 3 4 5 6 7 8 9 10 11

IP
C

# L3 cache  ways

gromacs leela_r sjeng omnetpp
xalancbmk_r soplex fotonik3d_r milc

(b) Intel Skylake-X

Figure 5.3: Performance of individual applications with an increasing number of ways in Intel
Broadwell and Skylake-X processor.

ber of cache ways increases from 1 to the entire cache (20 and 11 ways, respectively) for
eight representative applications when running in isolation. Three main observations can
be made.

First, we distinguish two main application behaviors, depending on whether the appli-
cations’ performance improves as the number of cache ways increases. The latter ap-
plications will be referred to as L3 insensitive. Applications showing this behavior are
gromacs_06, leela_17, sjeng_06, fotonik3d_17 and milc_06.

Second, notice that only one cache way is enough for L3 insensitive applications to achieve
maximum performance in the Skylake-X processor when running alone. The reason why
they have such little space is twofold. On the one hand, the working set fits better in the
larger L2 cache. On the other hand, by design, since the L3 is non-inclusive, it keeps a
few replicas of L2 cache blocks. On the contrary, in the inclusive L3 cache of the Intel
Broadwell, applications need to replicate their working set both in the L2 and L3 caches;
therefore, the L3 space cannot be limited as much.

Third, the previous rationale means that there will be fewer accesses to the L3 cache when
running alone, especially in L3 insensitive applications, and therefore, they will achieve
higher IPC in the Intel Skylake-X. However, high cache-demanding applications (from
now on referred to as L3 sensitive), like xalancbmk_17, achieve higher performance in
the Broadwell processor when occupying the whole (20 ways) larger 20MB L3 cache.

After analyzing the impact of the non-inclusive L3 cache, from now on, the remainder of
the chapter will focus on the Intel Skylake-X processor.

5.3.2. Estimating Slowdown in Non-Inclusive Caches

A key step in any sharing policy is to identify the applications whose overall performance
benefits most from additional cache space since the L3 cache space is shared among mul-
tiple co-runners, and the final goal is to maximize overall performance. That is, identify
those (L3 sensitive) applications that experience higher slowdown (over individual exe-
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Figure 5.4: Study of the correlation of stallsL2 and HPKIL3 with slowdown of individual applica-
tions executed in multi-program execution.

cution) when the available cache space is reduced, which is challenging. The challenge
lies in that this estimate must be done at run-time in multi-program execution. This sec-
tion deals with this challenge in non-inclusive caches.

Previous works [1, 46, 55] and the approach presented in Chapter 4, have proved that L3
sensitive applications can be detected with metrics such as L3 cache misses and processor
stalls due to these misses in inclusive caches. We analyzed a wide set of metrics reported
in the literature (e.g., number of L3 misses per kilo instruction committed) and found that
the number of processor stalls due to L2 misses (stallsL2)2 is the metric that best correlates
in non-inclusive L3 caches.

However, as pointed out by [55], some aggressor L3 insensitive applications experience
a high number of stalls and could be mistaken as L3 sensitive applications if only relied
on this metric. Therefore, additional metrics are required to allow distinguish this sit-
uation. In this regard, CPA, presented in Chapter 4, also considered the hits in the L3
cache as a good proxy to distinguish aggressor L3 insensitive applications from sensitive
applications.

Figure 5.4a shows the slowdown and the stallsL2 of individual applications3 when ex-
ecuted with 11 co-runners in 12-application workloads (i.e., 12 points are presented for
each workload). A total of 1128 points are plotted. The point size in the graph grows
linearly according to the hits per kilo instructions performed at the L3 cache (HPKIL3).
Notice that a good correlation can be observed (0.8704) between stallsL2 and slowdown
in the Skylake server processor. However, it is 17% lower than that found by Selfa et
al. in the Haswell processor [1]. This can be observed in the plot where points do not
form a unique tendency line but follow several parallel trends. However, note that the
point size varies among the different tendency lines for a given value of stallsL2. That
is the value of the HPKIL3 differs. This can be seen in the area between 5.0 × 1010 and
9.0× 1010 (marked with a red oval and zoomed in grey color) with minuscule points (i.e.,

2Performance counter cycle_activity.stalls_l2_miss
3SPEC CPU2006 and SPEC CPU2017
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Figure 5.5: Individual characterization of SPEC CPU2006 and SPEC CPU2017 applications under
limited cache space (2 ways or 3MB) considering demand, prefetch, and speculative requests.

Each point is sized according to its MPKCL2.

almost zero HPKIL3). It can also be appreciated that there are at least two applications
with the same amount of stalls but with opposite cache sensitivity behavior. This can be
observed looking at the vertical line crossing at 6.0 × 1010 stallsL2, which cuts across ap-
plications suffering around a slowdown of 1.1 (minuscule points located in the red oval
with HPKIL3 close to zero) and 1.5 (bigger points).

Figure 5.4b illustrates this claim through an example. This plot depicts the stallsL2 (blue
bar, left y-axis), the slowdown (orange bar, right y-axis), and the HPKIL3 (number on
top of the bar) obtained by each application that makes up the workload. As it can be
observed, milc_06 has similar stalls to soplex_06 (and even higher), but milc_06 experi-
ences less slowdown than soplex_06 (1.19 versus 1.43). However, soplex_06’s HPKIL3 is
much higher than milc_06’s, which is negligible. Therefore, we can conclude that stallsL2
alone is not a good proxy for performance to detect L3 sensitive applications, but addi-
tional metrics like the HPKIL3 are needed.

5.3.3. Identifying Cache Pollution

Applications polluting the cache introduce inter-application interference on performance
since cache lines of other applications are forced to evict, which makes them slow down
their execution. Therefore, the pollution effect caused by L3 insensitive applications
needs to be minimized to achieve the best performance. This section aims to identify
applications introducing pollution from three main sources: useless prefetches, loads ex-
ecuted in the shadow of a misspeculated branch, and poor locality.

Requests from all the applications compete for L3 cache space. Many works in the past
used the misses per kilo instructions (MPKI) as a metric to evaluate both the cache perfor-
mance and identify memory-intensive applications. Since applications execute instruc-
tions at very different rates (e.g., IPC varying from 0.4 to 3.4), then it makes more sense to
use the misses per kilo processor cycle (MPKC) at the L2 (MPKCL2) instead of the MPKI
as the metric to compare the number of L3 cache accesses performed by the applications.

The key goal of the experiments carried out in this section is to identify cache-polluting
applications that do not (or slightly) suffer from a reduced cache space. To this end,
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experiments were conducted by limiting the cache space to only two cache ways (i.e.,
3MB). Figure 5.5 plots the relationship between the slowdown suffered by 50 applica-
tions over full cache ways (i.e., 16.5MB) and three main pollution-related metrics: useless
prefetches, bad speculated loads and hit ratio. Applications with a slowdown lower
than 1.2 (L3 insensitive) are colored in yellow. Points colored in blue correspond to L3-
sensitive applications that require a high amount of space for performance; thus, they
cannot be constrained to a few cache ways. In the three graphs, the point size is propor-
tional to the MPKCL2.

Figure 5.5a shows how the L3 hit ratio relates to the slowdown. The analysis focuses on
big points (i.e., high access rate to the L3 cache) colored in yellow, that is, exhibiting a low
hit ratio (e.g., below 0.3 in the red box). These applications are bwaves_17, fotonik3d_17
and lbm_06. Even though these applications experience a small slowdown, they intro-
duce pollution in the cache since most of them are not reused again.

Regarding useless prefetches, a similar reasoning can be done. Figure 5.5b shows the re-
sults. Useless prefetches have been quantified as the ratio of prefetch accesses that miss
in the L3 cache over the total cache accesses made to the L3 cache using the performance
events indicated in Table 5.1. Applications introducing more pollution are those repre-
sented as “big points”, as they bring much useless data into the L3 cache but experience
a low slowdown (see red box). These applications are bwaves_17, fotonik3d_17, lbm_06,
lbm_17, mcf_17, nab_17 and namd_17.

Finally, we quantify the pollution introduced by loads executed at the shadow of a mis-
predicted branch labeled as bad speculation [140]. Figure 5.5c shows the results. Bad
speculation has been quantified as the total number of demand requests that miss the L2
cache over the number of retired loads that miss the L2 cache (1 means there is no bad
speculation). Notice that most applications present a similar value, except for lbm_06 and
lbm_17, which show an extremely high value. Thus, we can conclude that bad specula-
tion is the least critical of the three studied cache-polluting sources across all the studied
applications.

5.4 Cache-Poll Approach

This section presents Cache-Poll, an L3 non-inclusive cache management approach that
efficiently detects applications causing pollution an reduces its space to a minimum, leav-
ing room for L3 sensitive applications. Algorithm 2 shows the pseudo-code of Cache-
Poll. The algorithm consists of four main steps, which are explained next.

5.4.1. Classifying Applications

In the first step (lines 1 to 4 of Algorithm 2), performance counters (events) are read with
Perf [115] each execution quanta (e.g., 500ms), which are used in subsequent steps to
compute the required performance metrics. Table 5.1 shows the relationship between
performance metrics and events.
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Algorithm 2 Cache-Poll pseudo-code
1: —————– 1. Read and compute metrics ————————
2: for all applications do
3: Read performance events and compute metrics (see Table 1)
4: end for
5: ——————– 2. Classify applications —————————-
6: for all applications do
7: —- A) DETECT DEGREE OF SENSITIVITY —-
8: if high stallsL2 & high HPKIL3 then
9: L3 sensitive behavior

10: else if low stallsL2 & low HPKIL3 then
11: L3 insensitive behavior
12: else
13: Mild L3 sensitive behavior
14: end if
15: —– B) DETECT CACHE POLLUTERS: L3 insensitive —–
16: if high MPKCL2 then
17: if (low HPKIL3 & low hitRatio) | (high f ractionPF & high uselessPF) | (high badSpeculation) then
18: L3 insensitive behavior
19: end if
20: end if
21: end for
22: —————— 3. Assign applications to CLOS ——————–
23: for all applications do
24: if L3 insensitive then
25: Assign to CLOS #1 with 2 ways
26: else if L3 sensitive then
27: Assign to CLOS #2 with full ways
28: else
29: Assign to CLOS #3 with 3/4/full ways*
30: end if
31: end for
32: ———- 4. Refine L3 sensitive CLOS space distribution ————
33: for all L3 sensitive applications do
34: if low stallsL2 w.r.t maximum stallsL2 then
35: Assign to CLOS #4 with 7 ways
36: end if
37: end for

In the next step, applications are classified according to the sensitivity their performance
shows to the assigned cache space in order to allocate them the correct cache share. This
is done at the start of the execution (after some warm-up intervals) for all applications
to identify their initial behavior. After this point, applications’ behavior will only be
checked when they experience a phase-change which minimizes overhead. That is when
their performance (i.e., IPC) trend changes. To identify execution phase changes, we
leverage ICOV’s method [136]. Classification is performed in two major steps:

1. Detect degree of sensitivity (lines 7 to 14). In this first step, the level of sensitivity
is explored using the stallsL2 metric together with the HPKIL3.

2. Detect cache pollution (lines 15 to 22). In this second step, different checks are per-
formed concerning the three main sources of cache pollution discussed in previous
sections.
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Metric Performance event(s)
stallsL2 cycle_activity.stalls_l2_miss

HPKIL3
inst_retired.any
mem_load_retired.l3_hit

hitRatio mem_load_retired.l3_hit
mem_load_retired.l3_miss

f ractionPF
uselessPF

offcore_response.all_pf_data_rd.l3_miss.any_snoop
offcore_response.all_pf_data_rd.l3_hit.any_snoop
offcore_response.demand_data_rd.l3_miss.any_snoop
offcore_response.demand_data_rd.l3_hit.any_snoop

badSpeculation l2_rqsts.demand_data_rd_miss
mem_load_retired.l2_miss

Table 5.1: Metric-performance events relationship, for each of the metrics used in Cache-Poll.
Note f ractionPF and uselessPF are computed using the same performance events.

Metric Level Threshold

stallsL2
high >Q3(rolling_window, N=10)
low <Q1(rolling_window, N=10)

HPKIL3
high >AVG(rolling_window, N=10)
low <1

MPKCL2 high >AVG(rolling_window, N=10)
hitRatio low <0.2

f ractionPF high >80
uselessPF high >50

badSpeculation high >2

Table 5.2: Thresholds empirically determined for our experimental platform for the metrics and
levels used in Cache-Poll.

Performing the classification in two rounds allows to detect those applications that may
present a considerable degree of sensitivity but introduce more pollution than perfor-
mance gains are obtained when allocating additional space (see Section 5.3).

Algorithm 2 uses two thresholds (low and high) to estimate the sensitivity levels of the
different metrics. Their value has been empirically established after performing a high
number of experiments. Table 5.2 shows the threshold values used in the experimental
evaluation.

5.4.2. Distributing the L3 Cache Space

Once the applications have been classified, the L3 cache space is distributed accord-
ingly. Since Intel CAT partitions the cache at a per-CLOS basis, applications must be
first grouped into CLOS before dividing the L3 cache space. L3 cache partitioning in In-
tel Skylake-X represents a significant challenge compared to previous architectures since
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it has lower cache capacity (16.5 MB compared to 20 MB) and less but larger cache ways
(11 1.5 MB ways compared to 20 1 MB ways). This lower granularity provides less flex-
ibility to partition the L3 cache space. Additionally, the reduced number of ways (11)
limits the scalability of the number of co-runners if private ways are devoted to indi-
vidual applications. Therefore, having small cache partitions to isolate applications like
in state-of-the-art approaches [53, 46, 55] is no longer suitable. However, as shown in
Section 5.3.1, L3 insensitive applications have fewer cache space requirements, and thus,
they can be placed together in a small cache partition.

At the start of the execution, Cache-Poll places all the applications in the same CLOS (#1)
with full cache ways. From then on, when an application is identified as L3 sensitive,
CLOS #1 space is reduced to 2 ways, and the identified application(s) are placed in a
separate CLOS (#2) with all the available cache space (11 ways). That is, two ways are
being used by both CLOS. We tested different cache sizes for CLOS #1 and found that 1-
way partition incurred many space conflicts and evictions in the L3 cache directory [141],
harming performance severely. Instead, 2-way partitions (adding more cache ways to
CLOS #1 resulted in no performance gains) solved this issue and allowed L3 sensitive ap-
plications to have the maximum possible private space. If a mild L3 sensitive application
is detected, Cache-Poll places it in CLOS #3 with some extra space over the 2-way CLOS
#1. CLOS #3 is sized depending on the number of co-running L3 sensitive applications:
i) all the cache ways if there are no sensitive applications, ii) 4 ways if there are less than
three sensitive applications, and iii) 3 ways otherwise. In this way, more or less space
is given depending on the sensitivity of the co-runners since L3 sensitive applications
benefit most from additional L3 space.

5.4.3. Refining L3 Cache Space Distribution

Finally, in the last step of Cache-Poll (lines 32 to 37 of Algorithm 2), further refinements
are performed to tune the cache space distribution to the cache demands of the applica-
tions. More specifically, a more refined space distribution is performed among L3 sen-
sitive applications since we observed that not always the most sensitive application oc-
cupied the largest L3 cache share. That is, some less sensitive applications presented a
higher L3 access rate (i.e., high MPKCL2) and, thus, occupied more cache space. To deal
with this fact, L3 sensitive applications presenting less than 60% of the stallsL2 of the
most L3 sensitive application are placed in a separate CLOS (#4) with a reduced amount
of space (7 ways).

5.5 Experimental Setup

Both the methodology followed to carry out the experiments and run the workload
mixes, and the software manager to conduct them were the same as those used in Chap-
ter 4 focusing on inclusive caches. The experiments have been conducted in the Intel
Skylake processor described in Section 3.1.
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L3 sensitive applications
mcf_06, omnetpp_06, omnetpp_17, soplex_06, xalancbmk_06, xalancbmk_17

L3 insensitive applications
astar_06, bwaves_06, bwaves_17, bzip2_06, cactusADM_06, calculix_06,
cam4_17, dealII_06, deepsjeng_17, exchange2_17, gamess_06, gobmk_06,

gromacs_06, h264ref_06, hmmer_06, libquantum_06, perlbench_06,
parest_17, mcf_17, imagick_17, leslie3d_06, lbm_06, lbm_17, leela_17,

nab_17, namd_06, namd_17, povray_06, povray_17, perlbench_17, sjeng_06,
tonto_06, wrf_06, wrf_17, blender_17, cactuBSSN_17, fotonik3d_17,

GemsFDTD_06, roms_17, sphinx3_06, zeusmp_06, milc_06, perlbench_06

Table 5.3: Classification of SPEC CPU2006 (_06) and SPEC CPU2017 (_17) applications.

Mix # ∑L3 insensitive MPKCL2 ∑L3 sensitive MPKCL2
1 - 17 ≈150 ≈ from 20 to 60
18 - 35 ≈200 ≈ from 20 to 60
36 - 54 ≈250 ≈ from 20 to 60

Table 5.4: Computation of the L3 cache access rate (in misses per kilo cycle) of the 54 12-
application workloads.

5.5.1. Workload Mixes

To evaluate Cache-Poll, we have randomly generated 54 12-application (as many applica-
tions as cores in the processor) workloads with the SPEC CPU2006 (reference input data)
and SPEC (rate) CPU2017 benchmark suites. We have used other workload mixes than
those used to evaluate the work carried out in the inclusive LLC as applications’ level of
cache sensitivity differs in the processor with the non-inclusive caches (mainly due to the
hierarchy including caches with different sizes and policies). On top of this, the Skylake
processor has more cores (12 compared to 8), therefore, mixes with a higher number of
applications needed to be generated.

Table 5.3 classifies the studied applications as L3 sensitive and insensitive depending on
whether their performance improves or not with additional cache space, respectively.
The designed workload mixes include both sensitive and insensitive applications and
have been generated considering different levels of L3 cache access rates (MPKCL2),
shown in Table 5.4. Mixes are grouped in three main groups (#1-#17, #18-#35, and #36-
#54) depending on the L3 insensitive MPKCL2, and within each group, there are sorted in
ascending order of L3 sensitive MPKCL2. For a given mix, the MPKCL2 level is computed
as the sum of the (sensitive or insensitive) applications’ MPKCL2, obtained in individ-
ual execution. To create cache pollution, the MPKCL2 for the L3 insensitive applications
ranges from 150 to 250, and for sensitive applications from 20 to 60. Notice that this de-
sign forces the algorithm to focus on dealing with the huge interference introduced by
insensitive applications.
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Figure 5.6: Comparison of the L3 cache hits, slowdown and occupancy experienced by the 12
applications of mix 36.

5.6 Evaluation

5.6.1. Enhancing Performance by Containing Pollution

Cache-Poll is aimed at containing pollution in a few L3 cache ways so that L3 sensitive ap-
plications benefit from this freed cache space, improving the overall performance. This
section evaluates how Cache-Poll addresses cache pollution by performing an efficient
cache space distribution.

To illustrate how Cache-Poll contains pollution, we compare its performance against a
state-of-the-art approach CPp f [53] and No-Part (i.e., default Linux OS) using two 12-
application workloads (mixes 36 and 44). These mixes showcase how Cache-Poll effi-
ciently contains pollution and adapts its partitioning scheme to the different execution
phases. Performance results are detailed for each application of the workload.

68



5.6 Evaluation

0
1
2
3
4

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

ast_06 blen_17 gam_06 ima_17 roms_17 lbm_06 fot_17 Gem_06 libq_06 milc_06 mcf_06 xala_06

Hi
ts
 L
3 
(x
10

^9
)  Prefetch hits Demand hits

(a) L3 cache hits

1.0

1.5

2.0

2.5

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

Ca
ch
e‐
Po

ll
CP

pf
N
o‐
Pa
rt

ast_06 blen_17 gam_06 ima_17 roms_17 lbm_06 fot_17 Gem_06 libq_06 milc_06 mcf_06 xala_06

Sl
ow

do
w
n

(b) Slowdown

0 50 100 150 200
Time interval (0.5s)

0
2
4
6
8

10
12
14
16

LL
C 

oc
cu

p.
 (M

B)

astar_06
blender_17

gamess_06
imagick_17

roms_17
lbm_06

fotonik3d_17
GemsFDTD_06

libquantum_06
milc_06

mcf_06
xalancbmk_06

0 20 40 60 80 100 120 140 160
Time interval (0.5s)

0
2
4
6
8

10
12
14
16

LL
C 

oc
cu

p.
 (M

B)

(c) Cache-Poll occupancy

0 50 100 150 200 250
Time interval (0.5s)

0
2
4
6
8

10
12
14
16

LL
C 

oc
cu

p.
 (M

B)

(d) CPp f occupancy

0 50 100 150 200
Time interval (0.5s)

0
2
4
6
8

10
12
14
16

LL
C 

oc
cu

p.
 (M

B)

(e) No-Part occupancy

Figure 5.7: Comparison of the L3 cache hits, slowdown, and occupancy experienced by the ap-
plications of mix 44.

Figure 5.6 shows the results for mix 36. In the top row of graphs, three bars are plotted for
each application, corresponding to results obtained for the three evaluated approaches.
Figure 5.6a shows the L3 demand and prefetch hits, and Figure 5.6b shows the slowdown.
As it can be observed, Cache-Poll is the approach showing the highest number both of
L3 demand and prefetch hits for the L3 sensitive application xalancbmk_06, that is, the
one experiencing the highest slowdown. This increase in L3 hits allows xalancbmk_06 to
reduce its slowdown from 87% to 18% compared to No-Part. The reason for such slow-
down reduction is that Cache-Poll controls and isolates pollution in a few cache ways.
Due to this fact, more room is made available for xalancbmk_06 (see Figure 5.6c) that is
used both for demand and prefetch requests. In contrast, parest_17’s available space
is reduced considerably in Cache-Poll compared to No-Part, reducing the L3 prefetch
hits. Even so, this does not translate into important performance losses, unlike with L3
sensitive applications.

Notice that, even though xalancbmk_06 has more space in CPp f than in No-Part (see
Figures 5.6d and 5.6e), its slowdown does not improve. The reason is that CPp f places
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Figure 5.8: Performance and fairness results for Cache-Poll compared against No-Part.

xalancbmk_06, classified as non-prefetching sensitive (NPS), together with other NPS ap-
plications in the same partition (with exchange2_r, cactuBSSN_17, namd_17, imagick_17,
povray_17). Additionally, due to the high amount of prefetching sensitive (PS) applica-
tions (the remaining six applications of the mix) and the partitioning scheme of CPp f ,
only six ways are available for NPS applications. On the contrary, Cache-Poll assigns
more private space to xalancbmk_06 (9 private ways) since the L3 insensitive applica-
tions are placed together with the cache-polluting applications, avoiding interfering with
sensitive applications. This translates into important turnaround time benefits: Cache-
Poll achieves a speedup by 58.8%, while CPp f does not manage to improve the mix’s
turnaround time.

Similar reasoning can be applied to mix 44 presented in Figure 5.7. In this mix, Cache-
Poll identifies two L3 sensitive applications, xalancbmk_06 and mcf_06. However, in this
case, mcf_06 does not exhibit the same behavior across the entire execution, but it shows
L3 sensitive behavior between intervals 5 and 10 and from interval 60 until it finishes its
execution. Since Cache-Poll detects execution phase-changes, it can adapt dynamically
its cache partitioning scheme to suit the cache requirements in each phase. In contrast,
CPp f performs a more general classification based on the benefit applications experience
from hardware prefetchers, and thus, it does not consider run-time cache requirements.
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Compared to No-Part, the achieved performance gains by Cache-Poll are by 43% while
CPp f results in around 15% performance loss.

In summary, Cache-Poll has proved effective in containing cache pollution and provid-
ing the largest amount of space to L3 sensitive applications. In contrast, mainly due to
design reasons, CPp f has not proved to be effective when executing a high number of
applications and to contain cache pollution effectively, thus harming the performance of
L3 sensitive applications.

5.6.2. Performance and Fairness

This section evaluates the performance of Cache-Poll in terms of turnaround time (TT)
and geomean IPC, and unfairness. To compute unfairness, first, the inverse of the slow-
down that each application experiences in multi-program execution is computed. Then,
the standard deviation is obtained and divided by the average [142].

As mentioned in Section 5.5.1 workload are classified in three main groups (#1-#17, #18-
#35, and #36-#54) according to the sum of MPKCL2 of the cache insensitive applications.
To help the analysis, the sum of the MPKCL2 of both cache-sensitive (purple points) and
insensitive applications (orange points) have been plotted. Each of the studied levels is
marked with a grey dashed line.

Figure 5.8a presents the TT gains over No-Part for the 54 studied mixes. Cache-Poll achieves
the best performance, in general, when there is a high difference between the two plot-
ted grey dashed lines (∑ MPKCL2 of insensitive and sensitive applications) like in mixes
18, 23, 26, and 44. This is mainly due to a high number of cache-polluting applications
making competition for space harder for demand requests of sensitive applications. The
studied workloads include up to 3 L3 sensitive applications, which is reasonable con-
sidering the low frequency (6 out of 50) of this type of application across all the SPEC
CPU. Nonetheless, we checked Cache-Poll’s behavior with a high number (up to 7) of L3-
sensitive applications. In this case, performance gains over No-Part decrease smoothly
with the number of sensitive applications despite performance gains still remaining sig-
nificant (4% with seven sensitive applications). This is reasonable since the more L3-
sensitive applications, the less room for (insensitive) polluting applications; thus, the
magnitude of the problem decreases. Regardless of the considered level of L3 sensitive
and/or insensitive applications, Cache-Poll effectively detects the identified cache pollut-
ing behaviors, partitioning the cache so that L3 sensitive applications are provided with
most of the space, and insensitive and polluting applications are contained in a few cache
ways, obtaining significant TT reductions.

Reducing TT translates, in general, into significant unfairness improvements. Figure 5.8b
shows the results. In some mixes like 18 and 36, unfairness is reduced more than double
over No-Part. Finally, Figure 5.8c shows that TT and unfairness are not improved at the
cost of IPC. In contrast, the geomean of IPC is improved up to 3.6% and on average by
1.45%.
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5.7 Summary

L3 cache pollution rises due to the smaller L3 cache space available in modern processors
and the higher L2-L3 traffic induced by the non-inclusive L3 cache. This effect is espe-
cially significant when the processor runs a high number of applications stressing the
L3 cache. Consequently, pollution needs to be addressed to improve processor perfor-
mance. This research has identified performance metrics to detect sensitive applications
to the cache space and measured three main types of L3 cache pollution at run-time.

This chapter has presented Cache-Poll that, based on the polluting behavior and the cache
requirements of the co-running applications, distributes the L3 cache space at run-time
among applications. Cache-Poll takes benefit of the non-inclusive L3 design by leav-
ing little room for cache-insensitive and polluting applications. This implies that cache-
sensitive applications are granted more private space. This fact allows for improving
the overall system performance (quantified with the turnaround time) and the unfair-
ness compared to Linux default OS. Unlike existing approaches on non-inclusive caches,
Cache-Poll is designed to work for a high number of cache-insensitive and sensitive ap-
plications (i.e., as many applications as the number of cores).
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CHAPTER 6

Core Resource Management

Graph computation has gained increasing popularity as it is used for problem-solving
in many contemporary domains such as social networking, big data, and machine learn-
ing [143, 144, 145, 146, 147]. The increasing computational power of current commodity
multi-core processors allows processing massive graphs in a single machine [148, 149,
150, 151, 152]. Considering the scalability issues of graph applications, [66, 20, 21, 22],
executing multiple graph applications concurrently is the most efficient approach to pro-
vide full system utilization. However, when multiple graph applications are scheduled
together, by default, the parallel runtime creates as many threads as logical cores for each
application. Then, the OS scheduler applies a time-sharing policy, which can severely
damage the performance.

To overcome time-sharing weaknesses, each application should be assigned to a fraction
of the processor cores, removing the intra-core interference. To this end, two main issues
must be overcome: i) how many cores should be allocated to each application at each
point in time, and ii) how can an application change the number of threads spawned
dynamically? Previous works [64, 65, 66, 60, 63, 22, 62] have proposed spatial scheduling
approaches to improve the efficiency of the execution of parallel applications by tuning
the thread-level parallelism (TLP). Only the approaches proposed by Moori et al. and
Srikanthan et al. [66, 65] consider graph applications. Moori et al. [66] propose a static
approach that decides the TLP before the application execution starts; thus, this is not
applicable in dynamic environments. In contrast, MAPPER [65] regulates application
parallelism at run-time, but, as experimental results will show, it does not perform well
with graph workloads.

This chapter proposes AFAIR, a fair spatial core-allocation approach to accelerate graph
workloads. For a given workload mix, AFAIR dynamically determines the best CPU
configuration (number of cores assigned to each application) by balancing the consump-
tion of the shared memory resources. By assigning the optimal number of cores to each
application, AFAIR minimizes the total execution time and, thus, maximizes system per-
formance and fairness.
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Figure 6.1: Effect of time sharing in 2-application workload mixes with respect to standalone
execution using all cores.

6.1 Motivation: Weaknesses of the Default Linux Time-Sharing Sched-
uler with Graph Workloads

The standard Linux time-sharing scheduler, namely SCHED_OTHER1, is intended to be
used when no special real-time mechanisms are required and aims to ensure fair progress
among all SCHED_OTHER threads [153].

When executing graph applications under time sharing, SCHED_OTHER first allocates
all processor cores to one of the applications, which monopolizes the processor cores
for a share of time; after that, the scheduler alternates the application by switching in
another application, in a round-robin fashion. Each share of time is around 15ms in our
experimental platform (see Section 6.2 for further details) when running workloads made
up of two graph applications.

As a consequence, the inter-application interference rises each time the application switches
out and then in again, as the incoming application replaces instructions and data of the
outgoing application from the processor components (e.g., L1 data cache, L2 cache, and
L3 cache). This is especially critical, as experimental results will show when executing
graph applications.

We evaluated the performance of SCHED_OTHER while running workloads made up of
two graph applications to check how fairly it behaves. To this end, we measured the slow-
down that each application of the pair suffers with respect to individual execution when
using all available cores (see Section 6.2 for full experimental details). For illustrative
purposes, Figure 6.1 presents the results for ten experiments of 2-application workloads.
It can be observed that, as expected, all applications experience slowdown (Figure 6.1a).
We experimentally checked that the share of time is roughly the same across the running
applications; however, while the performance of some applications in some workloads
is only slightly affected (e.g., 1.5× slowdown), the performance of others suffers signifi-
cantly, as high as 4×. Different cases can be appreciated: sometimes only one application

1https://man7.org/linux/man-pages/man7/sched.7.html
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is significantly affected and the other only a little (e.g., prTwitter and bcWeb), but there is
also the case where both can be severely slowed down (e.g., ssspTwitter and bcWeb).

To provide further insights on this issue, we looked into performance counters measuring
processor stalls due to specific processor components at execution time. More precisely,
those that account for execution stalls caused by resources of both the processor frontend
(e.g., L1 Icache) and backend (e.g., D-TLB, L1 Dcache, L2 cache, L3 cache, and main mem-
ory) [140]. Figure 6.1b shows the relative increase (in percentage) of the stall cycles mea-
sured under SCHED_OTHER in the workloads over standalone execution. It can be seen
that applications suffering a high slowdown are those experiencing the higher increase in
the number of processor stalls. For instance, in the first workload (prTwitter and bcWeb),
bcWeb experiences around 3.5× more processor stalls than when executed alone. This
increase mainly arises in the backend, since time sharing makes applications compete for
data-cache space and main-memory resources. That is, each time a new application is
switched in, it replaces data from the outgoing application. Subsequent accesses to this
data will miss in the cache, which will translate into a higher number of stalls. We found
that most of these stalls arise due to an increase in the number of L3 cache misses. In
addition, we also found the L3 miss penalty is longer under time sharing meaning that
main-memory contention increases.

In the same workload, however, we surprisingly found that the number of stalls in prTwit-
ter decreases over standalone execution. The reason is that the miss penalty of all the
cache levels reduces. This is mainly due to prTwitter experiencing a high number of cache
misses, and some of them are handled by the cache and memory controllers while this
application is switched out. Moreover, we found that the number of misses in prTwitter
in any cache level is by an order of magnitude greater than that of bcWeb.

To take away: SCHED_OTHER allocates applications in a round-robin fashion, trying to
be ‘fair’ by allowing each thread to run the same amount of time. However, the par-
ticular conditions of graph applications—they spawn across all the processor cores and
mostly have high L3 cache miss rates—makes this policy introduce important unfairness
from a performance perspective. While the performance of some applications is hardly affected
(e.g., 1.5× slowdown), the performance of others can be significantly affected (e.g., by 4× slow-
down), resulting in low system fairness.

6.2 Experimental Setup

Hardware. The experiments have been conducted in the Intel Skylake processor de-
scribed in Section 3.1 with the software manager we developed, described in Section 3.3.
The OpenMP [154] libgomp library modifications have been performed on top of GCC
version 7.5.0.

Workloads. In this work, we have used graph applications from the GAP Benchmark
Suite [18] (more details can be found in Section 3.4).
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Methodology. The methodology adopted to execute the workloads is as follows: appli-
cations that make up the workload are launched so that they complete the initial graph
loading and building phase, which is performed sequentially. Once all applications have
completed this initial sequential phase, each workload runs until all applications of the
mix execute the same number of instructions (N) as they would execute if they ran alone
for 1,000 seconds in 1 CPU (2 threads). In this way, we only consider the time when all
applications are performing parallel computation, allowing us to assess the fairness of the
equal-priority co-running applications based on their parallel efficiency (i.e., scalability
with respect to 1 CPU). To obtain N, we increased the number of trials each graph algo-
rithm runs, a configurable parameter of the GAP Benchmark Suite. The applications that
do not finish last continue to run until the other applications finish. However, only the
results of the first N instructions are considered.

6.3 Graph Applications’ Characterization

This section characterizes the performance scalability of graph applications as the core
count used to run each application increases. We also analyze the main characteristics
from a resource consumption perspective that these applications exhibit at run-time.

The aim of this study is twofold. On the one hand, to provide insights regarding the
best distribution of number of cores among applications. On the other hand, to develop
guidelines that allow the scheduler to identify these applications at run-time.

6.3.1. Performance Scalability to Core Count

To help study scalability in performance with increasing numbers of cores, we define the
scalability factor as the ratio of the execution time of the application executed with all
the cores of the system (12 in our platform) to its execution time with only one core. In
other words, this term defines the maximum performance achievable in the processor
over one core using both threads.

Figure 6.2 presents the scalability trend as more cores are added to the studied graph
applications from 1 up to 12, corresponding to monopolizing all processor cores. As it
can be observed, most applications present a linear trend, meaning that they manage to
achieve a near-perfect scalability (i.e., close to 12). Other researchers presented similar
observations [77, 76] despite reporting a less linear scalability trend.

The rightmost point of the straight line defines the scalability factor. According to this
value, applications can be grouped in three scalability groups:

• Low scalability. This group includes applications with a scalability factor less than
1/2 the number of cores (i.e., 6). This group contains only bfsUrand, which shows a
scalability factor of around 4.6.
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Figure 6.2: Scalability trend (w.r.t. 1 CPU) of the studied graph applications with increasing
number of cores. Each core executes two threads (Hyper-Threading enabled). The scalability at

12 CPUs defines the scalability factor.

• Medium scalability. This category includes applications whose scalability factor is
between 1/2 and 3/4 the number of cores (i.e., between 6 and 9). Applications that
fall in this category are bfsKron, bfsTwitter, bfsWeb, and bcWeb.

• High scalability. Includes applications whose scalability factor is over 3/4 the num-
ber of cores (i.e., over 9). The remaining applications fall into this category.

The fact that there are applications showing different scalability trends means that when
running multiple graph applications together, those applications that present a lower
scalability factor (i.e., medium and low scalability) will require a higher number of cores
than those that present high scalability, to balance the applications’ progress and provide
system fairness.

To take away: We observe that, among the studied graph applications, most applications
show high scalability to core count in contrast to a small proportion of applications that
show medium or low scalability. If the scheduling policy is aimed at maximizing system
utilization considering fairness, when running multiple graph applications that show
different scalability trends, it should favor the application(s) showing the lower scalability factor
by assigning it more cores so it can spawn more threads.

6.3.2. Identifying Applications’ Scalability

As mentioned above, the scheduler should be capable of discerning at execution time
those applications showing high scalability from those experiencing lower scalability, in
order to decide how many cores should be allocated to each application.
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Figure 6.3: Processor stalls (fraction) breakdown over the total execution time: frontend and mem-
ory hierarchy (L1, L2, L3 caches and main memory).

For this purpose, and in order to provide insights about how to identify the scalability
group each application belongs to, we looked into the major system resources that can po-
tentially be a bottleneck to application performance. More precisely, we have quantified
the number of processor stalls and classified them according to the processor side where
they come from (i.e., frontend or backend). Figure 6.3 shows the fraction of stalls [140]
(averaged over the total execution time) across all threads of the studied graph appli-
cations when they execute in all the processor cores. Frontend stalls, mainly due to the
instruction cache and instruction TLB, are presented together as they represent a small
fraction of time. Backend stalls can be split into core and memory stalls, but the plot only
presents memory stalls classified according to the memory structure that causes the stall,
as core stalls were close to zero in our platform. Applications are sorted in descending or-
der of scalability factor (see Section 6.3.1), ccUrand being the application showing highest
scalability (11.9) and bfsUrand the application with lowest scalability (4.6).

It can be appreciated that the 11 most scalable graph applications (i.e., the 11 leftmost
applications) show that, for a high fraction of their execution time (over 60%), the pro-
cessor is blocked due to backend stalls. This corroborates the observation of previous
works [76, 77, 78]. The main contributor to stalls is main memory, although the L3 cache
is also equally significant or even higher in some applications (e.g., ccUrand). The only
exception is prWeb, whose execution time is not dominated by backend stalls.

To provide insights into the reasons why some applications scale poorly, we looked into
the graph algorithms and input graphs. We found that the bfs algorithm presents an effi-
cient code that needs to check fewer vertices [76] so both the L3 cache and main memory
are less critical resources. We also found that the Web graph contains significant spatial
locality as it leads to longer contiguous accesses to the L1 data cache [78]; in addition, the
Web graph is the smallest one so it experiences fewer L3 cache misses.

Regarding the remaining applications (bfsWeb to bfsUrand), which are grouped as medium
and low scalability, they show several important differences with respect to highly scal-
able applications. First, these applications show lower sensitivity to the backend (i.e., the
fraction of time is lower), except for bfsUrand. Among the backend stalls, most of these

78



6.3 Graph Applications’ Characterization

are due to the L1 data cache. These stalls are mainly caused by or at the L1 D-Cache (e.g.,
a delay hit waiting for an in-flight load or stalls due to store-to-load forwarding). Notice
that these stalls are assigned to the L1 cache and not to a lower cache level, as they are
not caused by an L1 load miss pending. Therefore, applications with medium and low
scalability are less sensitive to interference at the memory resources shared among cores
(i.e., LLC and main memory), since most of their performance is limited by the L1 data
cache (private to each core). A particular case occurs with the poorly scalable application
bfsUrand, which presents a significant fraction of stalls due to the LLC. We observed that,
unlike the other studied applications, it presents a high hit rate in the LLC.

Independently of the application’s scalability, the L2 cache has little effect on the execu-
tion time since graph applications show a reuse distance larger than that serviced by the
L2 cache [71].

To take away: From the previous analysis, three main conclusions can be drawn:

• Applications that are highly limited (over 0.50) by one shared-memory component
(e.g., the L3 cache or main memory) show the highest scalability.

• Applications showing medium to low scalability are limited by memory but to a
lesser extent. On the contrary, the L1 cache has a significant impact.

• The application showing the lowest scalability, bfsUrand, is also limited by the LLC
but, unlike the other applications, it shows a high hit rate in this cache level.

6.3.3. Parallel Regions Dynamic Memory Behavior

The GAP Benchmark Suite is comprised of a set of graph algorithms that perform parallel
computation using OpenMP. Among the studied graph applications, some, like ssspKron,
present a single parallel region that lasts the entire execution, but most applications in-
clude multiple parallel regions with different characteristics. The length of the parallel
regions varies from less than a second to over 20s.

Having different types of parallel region means that an application can vary its needs
from a resource consumption perspective depending on the parallel region it is execut-
ing. To confirm this, we checked for possible execution phases from a main memory per-
spective, as this is the processor resource that most limits performance. We found that
seven applications (bcUrand, ccUrand, prUrand and the four graphs running with sssp)
present a regular consumption across their execution despite consisting of multiple par-
allel regions. In contrast, in the remaining ten applications, the bandwidth consumption
changes from one parallel region to another. To illustrate the different memory trends,
Figure 6.4 shows the memory bandwidth consumption in GB/s, both raw values per
second (interval value) and the rolling mean (window size of 10 seconds) of three ap-
plications across their execution when launched alone in the experimental platform with
all cores available. Both ccUrand and prKron present different, well-differentiated exe-
cution phases. However, if we compare the rolling mean values, the average consump-
tion of ccUrand is roughly the same across the different phases whereas prKron varies
its consumption in each one, presenting an irregular bandwidth consumption. Another

79



Chapter 6 Core Resource Management

0 10 20 30 40 50 60 70 80
Time (s)

10

15

20

25

M
em

or
y 

BW
 (G

B/
s)

interval value rolling mean (WS = 10)

(a) ccUrand (regular BW consumption)

0 10 20 30 40 50 60 70
Time (s)

36
38
40
42
44
46
48

M
em

or
y 

BW
 (G

B/
s)

interval value rolling mean (WS = 10)

(b) prKron (irregular BW consumption)

0 20 40 60 80 100 120
Time (s)

0

5

10

15

20

M
em

or
y 

BW
 (G

B/
s)

interval value rolling mean (WS = 10)

(c) bfsTwitter (irregular BW consumption)

Figure 6.4: Main memory bandwidth consumption over time.

example of an irregular behavior is shown in Figure 6.4c. In this case, bfsTwitter does
not present such well-defined execution phases like ccUrand and prKron but varies its
consumption in a more bursty behavior.

The irregular behavior of some graph applications, together with the fact that obtaining
the number of cores that an application should be assigned with offline profiling is too
costly, motivated us to explore the possibility of enabling applications to adapt their num-
ber of spawned threads at execution time based on the target number of cores assigned
by the scheduler.

6.4 Graph Workloads Spatial Scheduler

Time sharing behaves unfairly from a performance point of view, because applications’
performance is differently affected despite having the same share of time, when a frac-
tion of their data blocks are evicted by the incoming applications. A way to deal with
this shortcoming is to avoid applications from sharing the cores, for instance, dividing
the cores equally among the co-running applications. However, considering that graph
applications present different resource demands, and thus, scalability factors, applying
such an equal core distribution policy may not yield the system to its best performance.

A key functionality of the scheduler is to find the best performing CPU configuration. A
CPU configuration for an n-application workload, is defined by n variables x1_x2_..._xn,
where xi states the number of cores assigned to application i, and the sum of them equals
the number of processor cores. For instance, for a workload consisting of two applica-
tions, A and B, the configuration x_y denotes that applications A and B, have assigned x
and y cores, respectively, x + y being the total number of processor cores.
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(a) Memory BW ccUrand-bfsTwitter (b) Memory BW ssspUrand-bfsUrand (c) Memory BW bcKron-bfsKron

(d) LLC occup. ccUrand-bfsTwitter (e) LLC occup. ssspUrand-bfsUrand (f) LLC occup. bcKron-bfsKron

Figure 6.5: Relationship between the execution time and the metrics memory BW (top row) and
LLC occupancy (bottom row) for different CPU configurations. The point of interests are marked

with a black circle. Turnaround time is highlighted in yellow.

To quantify co-location performance, we consider the turnaround time. A possible ap-
proach to find the CPU configuration that results in the best turnaround time could be us-
ing a thorough offline profiling analysis. This process, however, is generally complex and
costly (even more so with increasing numbers of co-running applications) [155]. Thus, it
becomes impractical in a real environment where many unknown applications are con-
stantly encountered [156].

To address this issue, the proposed scheduler estimates dynamically at small phases of
execution time (e.g., several OS quanta) the best distribution of cores among applications.
To this end, the applications must have the capability of adapting their spawned threads
dynamically at run-time depending on the number of cores assigned by the scheduler,
which is challenging. Below, we discuss how AFAIR addresses this challenge.

6.4.1. Determining the Best CPU Configuration

Deciding the number of cores each of the co-running graph applications should be as-
signed to minimize turnaround time is challenging, especially when there is no infor-
mation regarding the work each application must complete. Let’s clarify this challenge
through an example. Assume applications A and B are executed at some point under
CPU configuration x_y. The challenge lies in finding out at execution time if releasing
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one core from a given application to give it to the other (e.g., change the CPU configura-
tion to x − 1_y + 1) would improve the turnaround time.

To deal with this challenge, AFAIR only makes use of online information gathered at each
execution quantum from specific hardware counters. In this regard, we analyzed the
relationship between the simultaneous execution of multiple (e.g., two or three) graph
applications varying the CPU configuration (i.e., the number of cores assigned to each
application). We mainly collected metrics that quantify the performance of major com-
ponents of the memory hierarchy, since the performance of these applications is mainly
affected by these components (see Section 6.3.2).

The LLC and the main memory are the two major resources showing the highest con-
tention (i.e., source of performance bottleneck), both in standalone and in multi-program
execution. Figure 6.5 plots the relationship between the execution time varying the CPU
configuration and the studied metrics (main memory bandwidth, top row, and LLC oc-
cupancy, bottom row of plots) across three pairs of applications presenting three repre-
sentative behaviors. Pairs of applications are made up of a highly scalable application
(ccUrand, ssspUrand or bcKron) and a medium (bfsTwitter, bfsKron) or a low scalable (bf-
sUrand) application. Every pair has been executed under four CPU configurations x_y as
they are the most impacting ones on performance, where x and y are the number of cores
assigned to the application represented by solid lines and dashed lines, respectively. No-
tice that x+ y equals 12 across the four configurations. Each plot shows two pairs of lines:
the blue lines show the trend of the execution time for each application, and the orange
lines show the trend for the studied metric. The point that minimizes the turnaround
time is that when both blue lines meet (marked by a black circle). The turnaround time
trend of the workload, highlighted in yellow, is defined by the slowest application at any
point of time. Notice that if the orange lines meet around the same point (also marked
by a black circle) as the blue lines, then this metric can be considered as a good proxy for
turnaround time.

Two interesting observations can be made. Firstly, the best CPU configuration varies
depending on the scalability group of the less scalable application. The workloads that
contain a medium scalable application experience the best turnaround time in configu-
ration 5_7 while the workload containing the less scalable application (bfsUrand) reaches
such a point beyond the configuration 5_7 towards 4_8. Results present the values aver-
aged across all the quanta of the execution. Some applications present execution phases
that may show different trends (see Section 6.4.2), therefore, the configuration resulting
in the best turnaround time can dynamically vary according to the execution phase (see
Section 6.5.4 for further details).

Secondly, none of the metrics performs necessarily better than the other but it depends
of the workload. LLC occupancy performs best in workload ccUrand-bfsTwitter as ccU-
rand is limited by LLC space (0.44 L3 cache compared to 0.21 main memory in Figure
6.3). For the other two workloads, memory bandwidth is the best performance indica-
tor since ssspUrand and bcKron introduce a higher pressure on the memory bandwidth
(0.77 and 0.58, respectively), compared to the LLC (0.02 and 0.19, respectively). A special
case can be observed for ssspUrand-bfsUrand (Figure 6.5b), where the orange lines (mem-
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ory bandwidth) meet a bit before the point where the blue lines (execution time) meet.
As mentioned in Section 6.3.2, bfsUrand presents a high hit ratio in the LLC (over 0.8);
therefore, the scheduler could enhance the performance of this application by providing
it with more cores so it has access to a larger share of the resources monitored (i.e., LLC
and memory bandwidth) as the application generates more threads.

To take away: This analysis has illustrated the approach AFAIR follows to estimate the
CPU configuration that yields the lowest turnaround time by identifying and balancing the con-
sumption of the shared memory resources (LLC or main memory) that most harms the performance
of the highly scalable applications. Notice that this happens as a side effect of spawning the
applications in more threads; however, no specific technology (e.g., Intel CAT [10]) is
used to assign more cache space to the target application. In the case of a low scalable
application, the balance point moves to favor (i.e., more cores should be assigned to) such
an application.

6.4.2. Modifying the Number of Spawned Threads Dynamically

The GAP Benchmark Suite applications are parallelized with Open-MP. By default, OpenMP
checks the number of cores and spawns the application in as many threads as logical
cores it detects only at the start of the execution. We modified the GNU OpenMP library
(libgomp) so that the CPU affinity is checked before the start of each parallel region, and
the number of threads is tuned based on the number of allocated CPUs. To obtain the
number of CPUs assigned to the running application, we have implemented the func-
tion GetCPUCount(), which uses the system function sched_getaffini- ty to find the
number of currently assigned CPUs.

To use AFAIR’s extension, the path of the modified libgomp library must be added
to LD_LIBRARY_PATH environment variable. This implementation allows AFAIR to run
transparently without needing to modify the source code of OpenMP applications. Our
extension could be easily applied to other parallel runtimes as it requires changing and
adding a few code lines.

6.4.3. Putting it All Together: AFAIR

This section introduces the AFAIR approach, which applies performance criteria to dy-
namically adapt the affinity of graph applications (and thus, the number of spawned
threads) to CPUs with the aim of minimizing the turnaround time of co-located applica-
tions, providing system fairness. AFAIR consists of five main steps discussed below.

Initial CPU configuration.

When cores are not shared in a time-interleaving fashion, the execution time of workloads
is significantly reduced. The number of processor stalls are decreased by i) removing the
intra-core interference, and ii) reducing the off-core interference as processor stalls reduce
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when requests from multiple applications are allowed to compete among them, at the
same time, for LLC and main memory. Therefore, since AFAIR has no information about
the co-running applications in the first quantum, it assigns the same number of cores to
each application (e.g., 6 cores in case two applications are scheduled).

Application behavior profiling

To determine the behavior each application presents, we sample and monitor perfor-
mance counters for a period of Q quanta. At the end of each profiling period, the metrics
of interest are computed (stalls due to L1 cache, LLC, and main memory; LLC occupancy
and memory bandwidth), which are used to classify applications’ behavior. This process
is performed in two steps:

(i) Determining the scalability (high/low) trend of each application. First, we iden-
tify the scalability trend each application presents by looking at the peak L1 stalls
(95% percentile) values. Those applications in which L1 stalls represent a signif-
icant fraction of the total execution time2 are classified as poorly (i.e., medium to
low) scalable applications. Otherwise, they are considered as highly scalable appli-
cations.

(ii) Determining the memory performance bottleneck. As shown in Section 6.3.2,
scalable applications’ performance bottleneck is mainly due to the LLC or main
memory. Therefore, the metric of interest is defined depending on the resource that
harms most the performance of highly scalable applications: the LLC occupancy for
applications whose performance is limited by the LLC, and the memory bandwidth
for applications with dominant stalls introduced by main memory.

Testing if a new core configuration needs to be applied

Regardless of the metric used as a proxy, we found that the best configuration to mini-
mize the turnaround time is located at the point where the metric of interest is balanced
for both applications (see Figure 6.5). Therefore, AFAIR continues releasing cores to the
application with the highest number of stalls introduced by the L1 cache until reaching
this point. However, if the application scaling worse presents a high hit rate in the LLC,
this means it presents low scalability, and thus, the balance point is relaxed so that this
application receives a slightly higher share of the resource.

In case there are three applications running simultaneously, if there is more than one
highly scalable application, the one chosen as a candidate to release a core is the applica-
tion showing the highest metric value. Likewise, among the applications with medium
or low scalability, the one chosen to receive the released core is the application present-
ing the lowest metric value. Notice that when running three applications, the application
that releases the core is not always the same, as its behavior is likely to change with one
core less.

2E.g., we found that over 0.3 presents the best results in our experimental platform.
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Applying the new core configuration

If the criteria is met to change the core configuration (i.e., transfer one core from one
application to another), it is not applied immediately in the next quantum. Instead, as
explained previously, the approach needs to wait until applications finish their current
parallel region before being able to change the number of spawned threads to each co-
running application.

Applications, however, do not finish their parallel regions at the same time but they run
in a non-synchronized way. Therefore, the final core balancing cannot be applied until
that point of time. To deal with this fact, the application that finishes earlier continues
running with the new number of cores estimated by the approach. Meanwhile, the other
application remains running with its actual number of cores. Therefore, two scenarios
can occur: i) a new core is allocated to the application that finishes earlier and used in
time sharing by both applications, and ii) a core is released and not used by any of the
applications. Nonetheless, the number of quanta this situations occur are very small
compared to the total execution quanta (see Section 6.5.5).

Due to the constraint explained above regarding the response time of applying a new
configuration, a bad decision could lead to important performance losses. Therefore, a
new configuration is applied only if the tendency changes, i.e., the observed behavior is
maintained throughout two or more consecutive phases.

Roll back to a previous core configuration

Applications may or may not experience regular behavior during the whole execution
(see Figure 6.4). Thus, there may be execution phases where the highly scalable appli-
cation requires the core it had previously released in order to sustain its performance.
This can be detected if the highly scalable application presenting the lowest metric value
(e.g., lowest memory bandwidth) drops below a certain level (e.g., 60% of the fair propor-
tion). In such a case, the application with low scalability that presents the highest metric
value returns a core to this application.

6.5 Performance Evaluation

6.5.1. Workload Mixes

To evaluate the scheduling approaches, we have generated 40 2-application workloads
and 25 3-application workloads. Due to the fact that graph applications have huge mem-
ory requirements (tens of Gigabytes) and our experimental platform has a relatively small
number of cores, workloads with a higher number of graph applications cannot be run.

To test the ability of AFAIR to adapt the cores’ allocation, we have mixed applications
belonging to different scalability groups. Table 6.1 shows the number of applications of
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# of apps.
Workloads # Apps. grouped by scalability

Groups Low Medium High

2
#1 to #12 1 0 1
#13 to #40 0 1 1

3

#1 to #5 1 1 1
#6 to #15 1 0 2
#16 to #18 0 2 1
#19 to #25 0 1 2

Table 6.1: Characteristics of the workloads generated.

each scalability group contained in each workload. Notice that when running applica-
tions with similar scalability factor (i.e., they belong to the same scalability group), the
best CPU configuration is the same as that applied by Equal, which is the starting point
of AFAIR. The workloads within each group contain the same amount of applications
showing high, medium or low scalability and have been sorted in descending order of
turnaround time gain obtained with AFAIR with respect to Equal.

6.5.2. Compared Schedulers

AFAIR is compared with the following scheduling policies:

• Linux. Applications are executed with Linux’s default scheduler, which applies
a time-sharing scheduler. Each application launches as many threads as possible
(equal to the total number of cores).

• Serial. Applications are executed serially, one after another, so that they execute
alone with all possible cores.

• Equal. Applications are executed with the same number cores, each launching only
as many threads as assigned cores.

• MAPPER. State-of-the-art approach proposed by Srikanthan et al. [65], which con-
trols the degree of parallelism of each application and the specific cores allocated.

6.5.3. Experimental Results

This section evaluates the performance of AFAIR, both in terms of system utilization
(quantified with the turnaround time or TT) and system fairness. For each workload,
results for all the studied policies are shown.

Figure 6.6 presents the performance gains (in %) in TT AFAIR achieves over the studied
scheduling policies across the studied 2- and 3-application workloads. As observed, re-
gardless of the number of co-running applications, AFAIR clearly outperforms Linux and
MAPPER by 45% and 49% on average, respectively. Similar to Linux, MAPPER allocates
CPUs at logical-core level, meaning that two different applications can share the same
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Figure 6.6: Gain (in %) of the turnaround time (TT) obtained with AFAIR with respect to the other
evaluated scheduling policies.
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Figure 6.7: Fairness results (in %) obtained with all the the evaluated scheduling policies.

physical core. Unlike other scientific compute-intensive benchmarks, graph applications
are memory-bound and experience important performance constraints (e.g., caches and
TLB misses) specific to the cache hierarchy and main memory. Therefore, sharing the
same core can yield the system to severe performance degradation due to the huge intra-
core interference at the D-Cache and D-TLB (see Figure 6.3). For instance, this is the case
of workload #28 composed of ssspWeb and bfsKron applications. Consequently, and due
to sharing the core introducing highly unpredictable behavior, Linux and MAPPER poli-
cies work poorly in fairness (see Figure 6.7), which is by 44% and 62% in 2-application
workloads, respectively. Similar results can be observed with 3-application workloads.

Compared to Serial and Equal policies, where applications are not allowed to share the
core, AFAIR improvements reduce, but even so, they are on average by 8%, and rise
up to 18% in some applications. Moreover, as shown in Figure 6.7, these performance
gains are achieved while significantly improving fairness. While Serial and Equal achieve
an average fairness by 62% and 78% in 2-application workloads, AFAIR obtains almost
perfect fairness above 98% in nearly half of the workloads giving an average fairness by
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Figure 6.8: Frequency each CPU configuration has been applied in the studied workloads.

95%. Notice that in workloads #38 to #40, AFAIR matches the performance achieved by
Equal. The reason is that these workloads reach their best TT when assigning half of the
cores to each application. Results slightly differ in 3-application workloads.

6.5.4. Analyzing AFAIR’s Dynamic Behavior

To demonstrate the effectiveness of AFAIR in adapting the CPU configuration at run-
time, Figure 6.8 shows the number of times each CPU configuration x_y or x_y_z has been
applied in each of the studied 2-application and 3-application workloads, respectively. To
ease the analysis, the relationship between applications and the corresponding number
of cores in the CPU configuration is always from highest to lowest scalability group. This
means that, for a given workload, x always corresponds to the number of cores assigned
to the highly scalable application, and the last value (y in x_y and z in x_y_z) always
corresponds to the number of cores assigned to an application showing medium or low
scalability. For 3-application workloads, y can be an application of any scalability group.

For most workloads, the configuration that allocates equal number of cores (6_6 in Figure
6.8a and 4_4_4 in Figure 6.8b), which is the starting configuration in AFAIR, is only ap-
plied for one or a low number of phases. For example, workload #5, which corresponds
to pair ssspUrand-bfsUrand in Figure 6.5, manages to converge quickly to configuration
4_8, achieving performance gains of 12.5%. This means that AFAIR is able to rapidly
detect the core-allocation demand needs of applications.

Among those workloads that achieve lowest performance gains with respect to Equal
(see Figure 6.6), most of the execution phases have the default Equal configuration, while
those that obtain highest performance gains have only one or a few phases with Equal.
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Nonetheless, some applications benefit from a longer time in 6_6, like workload #26 (Fig-
ure 6.8a), which corresponds to pair ccUrand-bfsTwitter in Figure 6.5. Despite the fact that
the configuration that achieves the lowest turnaround time on average is 5_7, in 35% of
the execution phases, the configuration applied is 6_6. Recall that bfsTwitter presents an
irregular memory bandwidth consumption (see Figure 6.4c).

In general, AFAIR assigns more cores to applications that present low scalability. For ex-
ample, in the 2-application workloads, AFAIR allocates 8 cores in most of the phases to
the applications that present low scalability and 4 cores to its highly scalable co-running
application (workloads #1 to #7 in Figure 6.8a). Additionally, results show that having
multiple configurations also brings significant gains. For instance, in the 2-application
workloads #8 to #11, performance gains rise by 11%. In these workloads, AFAIR applies
the configuration 5_7 in a similar number of phases as configuration 4_8. As explained
in Section 6.4.1, applications may have different needs in different execution phases. An-
other example can be observed in workload #6 in Figure 6.8b, where AFAIR adopts in
62% of the phases the configuration 3_3_6 and in 31% of the phases the configuration
4_3_5. This proves that a dynamic core-allocation policy can bring substantial perfor-
mance gains.

6.5.5. Overhead of AFAIR

The overhead of applying AFAIR comes mainly from reading the performance counters
with Linux Perf and measuring the memory bandwidth and LLC occupancy with Intel
RDT, which is minimal. As explained in Section 6.4.3, when the CPU configuration is
changed, it is not applied immediately in the next quantum. All executing applications
must finish their current parallel region before changing the number of spawned threads.
Thus, there can be some quanta where some cores are time shared or not used at all (see
Section 6.4.3). Nonetheless, we found that these situations occur, on average, only in 2%
and 5% of the execution quanta in the 2- and 3-application workloads, respectively.

6.6 Summary

Current data centers seek to maximize the use of hardware resources. Among the work-
loads of interest, graph computation has become essential today to solve problems in
many application domains, such as scientific computing, social networks, and big-data
analytics. Thus, optimizing the execution of graph applications is of high interest.

This chapter has presented AFAIR, a disruptive core-allocation policy that launches mul-
tiple graph applications simultaneously, allocates each a subset of cores, and adapts the
number of threads of the application to be launched dynamically to maximize both sys-
tem utilization and fairness. Moreover, the number of threads spawned by the running
applications is changed at run-time without any modification in the applications’ source
code.
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Experimental results show that AFAIR manages to obtain near-optimal system fairness.
At the same time, it improves system utilization by reducing the total turnaround time
significantly. AFAIR overcomes the weakness of the default Linux time-sharing policy
and improves the performance of other scheduling policies commonly used (Serial and
Equal), as well as outperforming the state-of-the-art approach MAPPER.
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CHAPTER 7

Workload Characterization in the
Public Cloud

Cloud computing, compared to HPC, poses new challenges to computer architects. On
the one hand, cloud systems deploy a virtualized environment and are composed of mul-
tiple components that interact with each other, including server nodes, client nodes, stor-
age nodes, and interconnection networks. Unfortunately, existing studies [54, 84, 50, 31]
omit important system components or do not consider the appropriate software environ-
ment, resulting in a loss of representativeness. On the other hand, among cloud appli-
cations, latency-critical applications deserve special interest as the performance of these
applications is defined by the tail latency (typically 95th or 99th percentile) since QoS vio-
lations cannot be overlooked but could be hidden under the average latency metric.

This chapter characterizes a set of representative multithreaded latency-critical appli-
cations (Tailbench [125], and media-streaming [19] applications) in a production-like
environment, implementing the full system stack (hardware and software). First, we
study the impact of varying the number of threads or scalability, as well as the effect
of Hyper-Threading (i.e., threads running on the same core), on the performance –tail
latency and QPS while satisfying QoS– for each application. Results reveal two main
counter-intuitive findings regarding the insensitivity of applications to the number of
server threads (non-scalable) and Hyper-Threading. With the aim of detecting these ap-
plications at run-time, we study the correlation between these applications and the uti-
lization of each major (CPU, LLC, main memory bandwidth, disk bandwidth, and net-
work bandwidth) system resource showing that measuring the utilization and trend of
these resources can help in the detection. Finally, by applying existing technologies, we
study the impact of inter-VM interference at the main shared resources other than the
CPU.

All the studies are made from two main perspectives. On the one hand, research conclu-
sions are highlighted in small to take away sections. On the other hand, practical actions
oriented to the cloud provider are highlighted in small cloud provider actions sections that
include hints to improve performance and the utilization of the major resources.
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7.1 Experimental Methodology

7.1.1. Latency-Critical Applications

Latency-critical applications are widely used in cloud environments. In these appli-
cations, the cloud server typically implements online services (e.g., speech recognition
or language translation) and must respond to the input requests within specific latency
bounds to guarantee QoS and provide a satisfactory user experience.

As a representative set of latency-critical applications, we use the TailBench benchmark
suite [125] (more details in Chapter 3.4), which includes applications from diverse set
domains that exhibit a wide range of tail-latency behaviors. In addition, this work also
analyzes the media-streaming workload from CloudSuite [19] as none of the studied
Tailbench applications exhibit such behavior since they all present negligible network
demands.

7.1.2. Setting Representative Load Levels

Unlike HPC benchmark suites, TailBench applications include the QPS parameter that al-
lows generating a wide range of load levels. For experimental purposes, this parameter
needs to be tuned to match the desired workload level. Below, we discuss the approach
followed to obtain a representative range of QPS values for each of the studied applica-
tions.

To simulate real client-server behavior, clients of TailBench applications issue requests to
the server following the Zipfian1 distribution [126, 127]. To do so, the clients use a request
generator to indicate the points of time when requests are issued to satisfy the demanded
QPS and the Zipfian distribution. Unfortunately, when a large QPS is demanded, it may
happen that the client cannot generate and send the requests fast enough. In this scenario,
the client might still reach the desired QPS on average but break the Zipfian distribution,
which compromises the representativeness of the experiment.

To address this issue and make experimental results representative, we defined the metric
timely requests ratio, which accounts for the percentage of requests that the clients can
issue fulfilling the request times generated following the Zipfian distribution. A request
is defined as non-timely when the request time provided by the request generator is earlier
than the current time. Notice that clients can break the distribution and still meet the
requested QPS on average. In this regard, we found that even though a single client can
generate up to thousands of requests per second, usually, it can only generate between
400 and 600 without breaking the distribution. To provide representative results, we
checked that the target QPS is achieved while guaranteeing that at least 97.5% of the
requests are timely.

1The Zipfian distribution is a related discrete power law probability distribution that states that, for a
given set of items (e.g., words of a text), the frequency of any item is inversely proportional to its rank in the
frequency table.
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Workload QPS range Number of clients
img-dnn 100 – 3100 12
masstree 250 – 2500 12
moses 10 – 1100 6
shore 10 – 2000 12
silo 250 – 4000 18
specjbb 250 – 3500 18
sphinx 0.2 – 8.5 2
xapian 100 – 2800 4

Table 7.1: QPS range and number of clients used for each workload to guarantee that the ratio of
timely requests is above 97.5%.
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Figure 7.1: Sever VM core configurations studied. N stands for the number of threads spawned
by the server, each assigned to a different vCPU.

Under this condition, we explored the QPS range of each workload as well as the re-
quired number of clients to generate the requests. QPS steps were chosen to cover a wide
range of representative CPU loads, from 10% to saturation (over 50%). This allows study-
ing the behavior at a usual average utilization [157] (e.g., 20%) and how it is affected as
the load grows. Table 7.1 presents the results. As observed, QPS widely varies among
applications, ranging from 0.2 to 8.5 in sphinx and from 250 to 4000 in silo.

Unlike TailBench applications, the load of media-streaming is indicated as the number
of sessions. Any number of clients can be launched to complete the target number of
sessions. In this work, we explore the client load up to a maximum of 70 sessions and 24
clients since we found out that a higher number of sessions yields saturated results.

7.1.3. Studied Server Scenarios

We characterize the behavior of Tailbench applications and media-streaming across differ-
ent server configurations or scenarios. Scenarios have been designed to evaluate both
the effect of Hyper-Threading and the scalability when the server application spawns
a higher number of threads. We assume that each thread is assigned to an individual
virtual CPU (vCPU).
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Three main configurations have been considered, as shown in Figure 7.1, to generate
scenarios of interest. In configuration (a), only one vCPU is used, pinned to a logical core,
which is in charge of running the single-threaded server application. In configuration (b),
the server application runs N threads (assigned to N vCPU cores), and each one runs in
single-threaded mode in a different physical core.

Finally, configuration (c) differs from configuration (b) in that the N threads (vCPU cores)
are pinned in pairs to the two logical cores of the same SMT physical core, running both
threads concurrently. Notice that scenario (c) uses half the number of SMT cores of sce-
nario (b).

Under these configurations, N has been evaluated both for two and eight threads or vC-
PUs, providing five main scenarios. More precisely, configuration (b) splits into scenario
2-ST (2 threads are assigned to 2 cores working each in single task mode) and 8-ST, and
configuration (c) breaks down into 2-SMT (2 threads are pinned to half the number of
cores working in multi-task mode) and 8-SMT. Notice that configuration (a) can be seen
as a particular case of configuration (b) for N equals 1, so it will be referred to as 1-ST and
represents the fifth scenario. These scenarios allow comparing the behavior of a single-
threaded server against a multithreaded server, as well as the impact of Hyper-Threading
in a relatively high multithreaded (i.e., eight threads) server.

7.1.4. Studied Performance Metrics

To characterize the workloads in the above scenarios, we need to define the metrics of
interest. The characterization studies presented in this work cover both performance and
resource utilization Below, we list the studied metrics.

• 95th tail latency, i.e., the 95th percentile of the sojourn (end-to-end) times, which
considers both queue and service times. This percentile indicates that only 5% of
the responses take longer to complete than that value. In the case of media-streaming,
it shows the 95th percentile of the server response time. In this thesis work, we
consider that this metric defines the QoS (see Section 7.2).

• CPU utilization. This metric refers to the average CPU utilization of the logical
cores assigned to the VM (vCPU cores), e.g., for the 2-thread scenarios, we report
the average utilization of the two CPUs where the application is running. To ob-
tain the utilization of each CPU, we use the data collected from the file /proc/stat,
which reports statistics about the kernel activity aggregated since the system first
booted. The CPU utilization quantifies the fraction of time the application runs on
the processor (i.e., percentage of active time with respect to the total time). Notice
that this time also accounts for the time the application waits for main memory
accesses even though the processor is stalled and no instruction can be executed.

• LLC occupancy and main memory bandwidth show the sum of the LLC capacity
occupied and main memory bandwidth consumed, respectively, by the vCPU cores.
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Workload Tail latency QoS QPS single-thread
img-dnn 3.6 ms 600
masstree 1.4 ms 1000
moses 7.1 ms 250
shore 25 ms 90
silo 0.5 ms 700
specjbb 0.7 ms 1500
sphinx 4275.4 ms 0.6
xapian 6.2 ms 300
media-streaming 500 ms 25

Table 7.2: Tail latency QoS (LQoS) requirements for the Tailbench workloads in our experimental
platform.

• Network bandwidth. Two main bandwidths can be considered from the server
(i.e., running-VM perspective): received and transmitted. The latter is dominant,
and the former is almost negligible, so the study focuses on the latter one.

• Disk bandwidth. This metric refers to the disk bandwidth consumed by the run-
ning VM at the server node.

7.2 QoS and Tail Latency Analysis

7.2.1. Defining QoS

Nowadays, many online-service workloads present tail latency QoS constraints. These
constraints are part of the Service Level Agreement (SLA) in some cases; in other cases,
users should make sure of hiring enough resources to meet their target QoS. To determine
realistic tail latency QoS constraints in our experimental setup and evaluate whether the
workloads meet the QoS, we define the QoS requirement for each workload as a function
of the average service time. This approach is based on the one proposed by Delimitrou
et al. [158]. The QoS target for each workload is defined as 5× the average service time
achieved with a CPU utilization of 20% in the 1-ST scenario. We will refer to this value
as LQoS. Experimental results in this chapter assume that QoS is met whenever the 95th

tail latency is lower than the corresponding LQoS.

Table 7.2 presents the LQoS values (in ms) and the QPS supported by the single-threaded
server for each workload that meets the QoS latency constraint. Tail latency require-
ments range from 0.5 ms for silo to 4275.4 ms for sphinx. Notice that the LQoS of sphinx
is over 4 s, which may seem rather high in comparison with other speech recognition
services. However, we found that these values are in line with the results of this appli-
cation presented by other researchers [125]. Finally, in media-streaming LQoS is defined
in terms of 95th percentile of the response time [159]. Many web and streaming services
are time-bounded, requiring the response time to be less than a fixed threshold [160]. In
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Figure 7.2: 95th tail latency (ms) for Tailbench applications and 95th percentile of the response
time (ms) for media-streaming.

this work, we have set the threshold to 500ms as the maximum assumable delay the user
should wait for the demanded streaming content.

7.2.2. Tail Latency Analysis

This section studies the effect of the studied configurations on the tail latency provided
that LQoS is met. Figure 7.22 shows the results. The figure consists of nine plots, one
for each studied application. In each plot, the LQoS value is represented by a horizontal

2Notice that due to QoS requirements ranging from milliseconds to seconds, different scales have been
used to ease the analysis.
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dotted line. Since all the studied metrics experience high variation, scatter plots are used
instead of line plots. More precisely, the LOWESS [161] algorithm has been used to create
a smooth trend line to ease the analysis3. In the analysis of this metric, we found a major
observation and two main findings discussed below.

Observation 1: Performance Scalability

It is expected that the performance of the studied multithreaded latency-critical appli-
cations, which are built to execute in cloud systems, scales with the number of threads.
This is true for most applications, as they exhibit great performance scalability and sup-
port higher QPS while meeting LQoS, with 2 and 8 threads, than when running on the
single-threaded server. Two main tendencies can be identified in thread scalable applica-
tions.

Firstly, applications that significantly improve the supported QPS with both 2 and 8
threads. Applications showing this behavior are img-dnn, moses, sphinx, or xapian. For
instance, img-dnn meets LQoS with 600 QPS, 1600 QPS, and 2900 QPS in the 1-ST, 2-ST,
and 8-ST scenarios, respectively. This means that the supported QPS in the 2-ST and 8-ST
is 2.67× and 4.83× higher than in the 1-ST.

Secondly, applications that show minor QPS improvements with 2 threads but exhibit a
high-performance increase with 8 threads. This is the case for shore and media-streaming.
For the latter application, it can be observed that the response time in both 8-ST and 8-
SMT scenarios does not saturate in the same way as the other applications. The response
time grows up to about 75 sessions, the point after which it remains constant and starts
decreasing. Even though the LQoS point has not been reached, this trend indicates that
the server has saturated.

Finding 1: QPS Insensitive Applications to the Number of Server Threads

Many factors, such as the application configuration, the application version, the system’s
features, and the virtualization environment, affect scalability. Therefore, adding a high
number of server threads does not always translate into the server being capable of sup-
porting more QPS. We found three applications showing this behavior. Below we analyze
the reason behind this unexpected behavior for each application.

Specjbb supports up to 700 QPS with the single-threaded configuration and improves up
to 1200 QPS with the 2-ST scenario but then experiences a little drop to 1100 QPS with the
8-ST server that quadruples the number of threads. The reason behind this behavior is,
as introduced before, that the version of specjbb provided in the Tailbench benchmark
suite has a fixed number of warehouses (a unit of stored data) during the whole run,
and there is a one-to-one mapping between warehouses and threads, meaning that the
number of server threads cannot be configured as in other applications. This makes the
configuration of this application not optimal for scalability.

3We leveraged an existing implementation [162] of LOWESS, and set the alpha parameter to 0.6 and the
polynomial degree to 1.
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Masstree also supports more cumulative QPS with 2 threads than with 8 threads. We
looked into the reasons that explain this behavior, and we found that the DRAM fetch
cost is a limiting factor in masstree’s scalability as also found in recent research [163].
More precisely, the number of processor stalls due to main memory accesses rises with
the number of contending queries (QPS), thus the off-chip DRAM bottlenecks the perfor-
mance and no improvement is obtained when increasing the number of threads. Conse-
quently, the CPU utilization drops in the highly-threaded scenarios, as studied next.

Silo also shows the best results in the 2-ST scenario but is followed by the 1-ST scenario,
which outperforms the 8-ST server. However, there is no consensus on the behavior of
this application. For instance, in [164] silo is identified as scalable, and in [125], authors
argue that the overhead of adding threads prevents this application from scaling beyond
a few threads.

Finding 2: SMT Insensitive Applications

Since our server implements Intel processors with Hyper-Threading technology (that is,
the code mark used by Intel to refer to its SMT implementation), an important decision to
improve the server efficiency is whether threads should be pinned to the same physical
core (i.e., to two logical cores of the same SMT core) or they should be pinned to distinct
cores. If threads are pinned by couples to physical cores, only half the number of SMT
cores need to be used. However, running two threads concurrently in the same core
causes interference at the shared core resources [13, 165], harming the performance (i.e.,
QoS) with respect to single-task execution. This concern is analyzed next.

As expected, it can be observed in Figure 7.2 that for a given number of threads, the
supported QPS is, in general, higher in the ST scenarios. For instance, in sphinx, a signif-
icant difference rises between SMT and ST configurations, which translates into 2× and
1.4× higher QPS in the 2-ST and 8-ST scenarios over the corresponding SMT scenarios,
respectively. The general trend is that applications achieving higher performance in ST
scenarios are those identified above, showing performance scalability with the number
of threads. We use the term SMT sensitive to refer to these applications.

Nonetheless, it can be noticed that some applications do not benefit at all from having
the threads pinned to separate cores and working in single-task mode. We refer to these
applications as SMT insensitive. This is the case for the three insensitive applications to
the number of threads, which show barely any difference between the 8-SMT and 8-ST
servers since their performance does not scale. Counter-intuitively, the scalable applica-
tions media-streaming and shore also show an SMT-insensitive behavior. We looked into
this event and found that the main reason behind this behavior is that the CPU is not a
critical resource in these applications. In other words, reducing the pressure on the CPU
resources does not translate into actual performance gains.

An interesting observation is that in masstree (Figure 7.2b) the 2-SMT configuration out-
performs the 2-ST configuration (i.e., using only one core). We investigated this unex-
pected behavior and found that masstree keeps all the data (i.e., key-value database) in
memory. These data are shared among threads. Thus, pinning two server threads to
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the same core reduces the core resources for each thread but improves the data sharing
through the private L1 and L2 caches.

To Take Away. In Finding 1, we have identified three workloads that do not experience scal-
ability when running in 8-threaded scenarios and five applications showing different degrees of
scalability. In Finding 2, we have identified that there is a strong connection between scalability
and SMT-sensitive applications. In general, more scalable applications support higher QPS when
running in single-task mode, while low scalable applications present a close SMT insensitive be-
havior.

Cloud provider actions for performance improvements. Cloud provider admins could im-
prove resource utilization and take benefit from Finding 1 by constraining to two logical cores
those server applications presenting poor scalability. The key question is how to detect these ap-
plications. Regarding Finding 2, important CPU utilization savings can be achieved in case of
SMT-insensitive applications are detected at run-time.

The major challenge for cloud providers lies in how applications can be identified as i)
QPS insensitive to the number of server threads (Finding 1) and/or as ii) SMT insensitive
(Finding 2) at production time. To deal with this challenge, we looked into the behav-
ior exhibited by applications by measuring the utilization of major system components.
The main purpose of this study is to analyze possible correlations between the resource
consumption of the major system components and both QPS and SMT sensitivity of ap-
plications.

7.3 Major System Resource Consumption Analysis and Findings’
Correlation

This section analyzes the utilization of the major system components (CPU utilization,
LLC occupancy, main memory trend, network, and disk) for each workload and estab-
lishes logical relationships between the consumption of these resources and the findings
presented in the previous section.

7.3.1. Analysis of CPU Utilization

The CPU utilization was measured at specific client load levels of interest that can be
identified in Figure 7.2 as follows. It was studied at the abscissa of the point where the
tail latency curve crosses the LQoS horizontal line, which represents the client load (i.e.,
QPS or the number of sessions in media-streaming) that meets the LQoS for each studied
scenario.

Figure 7.3a shows the results. It plots the quartiles of the average CPU distribution with
box plots for each scenario. Central quartiles are represented as boxes, variability outside
the boxes as vertical lines, and outliers as points. A strong relationship between CPU
utilization and the findings discussed above can be observed.
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Figure 7.3: Box plots showing the resource consumption supported by the studied applications
in each scenario before reaching LQoS.

Regarding Finding 1, the three applications showing no scalability with the number of
threads experience a sharp drop in CPU utilization in the highly threaded scenarios.
On the contrary, this sharp drop is not experienced in applications showing scalability.
Among these applications, those presenting high CPU utilization with 1-ST (e.g., moses
and sphinx) further increase their utilization with 8-ST. For instance, sphinx increases its
CPU utilization by over 90%. The reason is that high CPU utilization is caused by mem-
ory stalls that block the processor execution for longer, as further discussed in the next
section. In contrast, those presenting medium CPU utilization (e.g., img-dnn and xapian)
do not experience a CPU utilization increase in the 8-threaded scenarios, but it remains
equal or even decreases.
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Regarding Finding 2, SMT insensitive applications present a low CPU utilization (e.g.,
below 20%) regardless of the number of threads, except for masstree in the Tailbench
applications, which presents a medium (by 40%) CPU utilization for the low-threaded
scenarios. As discussed above, masstree presents this particular behavior because the
off-chip DRAM main memory bottlenecks the system performance. Thus, adding more
server threads translates into a slight decrease in the overall performance and a drop
in the average CPU utilization since 4× more threads provide less system performance.
In contrast, SMT-sensitive applications present a medium to high CPU utilization in the
low-threaded scenarios.

7.3.2. LLC Occupancy and Main Memory Bandwidth

The shared Last Level Cache (LLC) can have a high impact on the system performance
(see Chapters 4 and 5). Some recent processors have implemented hardware support
that allows the system administrator to partition this component among applications
at run-time (e.g., at the granularity of OS quantum). This section analyzes the space
requirements of each application and its trend when increasing the number of threads.
Below, we analyze the results, mainly focusing on the correlation with Observation 1.

On the one hand, applications present both different cache requirements per individual
query and number of QPS; consequently, the LLC occupancy experiences wide differ-
ences among the studied applications. On the other hand, for a given application, the
higher the number of queries the server processes, the higher the LLC occupation, re-
gardless of the number of threads. However, only scalable applications can significantly
raise the LLC occupancy in the 8-threaded scenarios. It is also worth mentioning that
the main memory bandwidth consumed depends on the number of LLC misses. There-
fore, it is strongly connected to the data locality of the cached blocks as well as the LLC
occupancy since a high occupancy would rise in many LLC capacity misses.

Figures 7.3b and 7.3c present the distribution across all the execution quanta of the LLC
space and main memory bandwidth consumed, respectively, by the applications in the
studied scenarios at the LQoS threshold. Taking into account both LLC occupancy and
main memory bandwidth, two main types of applications can be observed related to
Observation 1 and Finding 1, discussed below:

1. Applications where the 8-threaded scenarios significantly raise the supported
QPS. In these applications, the huge increase in the supported QPS translates into
a huge increase in the LLC utilization, which makes these applications consume
nearly all the cache capacity (over 14MB out of 16.5MB). Exceptions are shore (though
this application consumes 12MB) and media-streaming, whose average LLC occu-
pancy is around 7 MB but in some execution phases of the 8-threaded scenarios, it
manages to occupy the full cache space. This common behavior is exhibited by the
Tailbench applications showing scalability with eight threads. Notice that mem-
ory bandwidth increases in a 10× factor, which means that the LLC suffers a high
amount of cache misses. This translates into long main memory latencies that intro-
duce significant processor stalls and, consequently, an increase in CPU utilization.
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Additionally, the relative difference in bandwidth is much higher (log scale) than
the difference in LLC space, meaning that most cache misses are capacity misses.

2. Applications showing small differences in the cache occupancy regardless of the
number of threads. This behavior can be observed in the remaining applications
(i.e., those not showing QPS scalability) like masstree. The reason is that QPS is not
improved in the 8-threaded scenarios. Consequently, the main memory bandwidth
among the studied scenarios also experiences minor differences. Almost all the ap-
plications exhibiting the former behavior nearly consume all the cache space in the
8-threaded scenarios suffering a high amount of cache misses. This means that the
performance of these applications is clearly limited by this processor component;
hence the cloud provider should identify these applications to assign them more
space. Section 7.4 analyzes this claim in further detail.

7.3.3. Disk Bandwidth

Among the studied Tailbench applications, only three of them are disk oriented: moses,
shore, and xapian. The remaining applications make scarce usage of the disk. In fact,
their disk bandwidth consumption remains below 1 MB/s during most of the execution
time. Figure 7.3e presents the results.

Disk bandwidth is not constant during the execution time, but it experiences peaks and
drops over time. As it can be observed in Figure 7.3e, most applications have many out-
lier values (represented by diamond-like dots), meaning that disk bandwidth is usually
low and presents some peak values at few intervals of time. In contrast, more disk-
consuming applications like shore include fewer outliers as the median of the disk con-
sumption (horizontal line crossing the boxes) is much higher.

In spite of some Tailbench applications being disk oriented, the presented results make
the disk bandwidth consumption not a concern in our experimental platform in terms
of scalability. That is, this resource does not prevent the performance of disk-oriented
applications from growing in the 8-threaded scenarios. However, remember that even if
the SSD installed in the storage server allows up to 500 MB/s in large sequential reads,
the bandwidth is significantly reduced when operations become small and random, and
read and write operations are combined. Therefore, interference is likely to take place
when multiple applications perform disk I/O operations at the same time. This issue
will be studied in more detail in Section 7.4.4.

To Take Away In this section, we have analyzed and identified the relationship between the find-
ings and the utilization of the main system resources. We found that both non-scalable and SMT
insensitive (e.g., silo) applications present medium to low CPU utilization in the low-threaded
scenarios, which drastically drops in the 8-threaded scenarios. The terms low and high are used to
refer to below- and above-average, respectively. On the contrary, both scalable and SMT-sensitive
applications (e.g., moses) experience a medium to high CPU utilization in the low-threaded sce-
narios that tend to increase in the 8-threaded scenarios. These applications present a significant
increase in the main memory bandwidth consumption as the number of threads increases.
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Workload
Resource Utilization Finding 1 Affinity Finding 2 Affinity

CPU LLC MM Network Disk QPS Scalability SMT
utilization Occupancy trend Bw Bw with # 8 threads sensitive

img-dnn Medium ≈ Medium ↑ ↑ ↑ Low Low + + +
masstree Medium ↓ Medium ≈ ≈ Low Low No No
moses High ↑ High ↑ ↑↑↑ Low Medium + +
shore Low ↑ Low ↑ ↑ Low Medium + + No
silo Low ↓ Medium ≈ ≈ Low Low No No
specjbb Low ↓ High ≈ ≈ Low Low No No
sphinx High ↑ Medium ↑ ↑ ↑ ↑ Low Low + + + +
xapian Medium ≈ Medium ↑ ↑ ↑ Low Medium + + + + +
media-streaming Low ↓ Low ≈ ↑ High Low + + No

Table 7.3: QPS scalability, SMT sensitivity, and resource consumption of the studied applications.
Resource consumption (low, medium, or high) is measured with the single-threaded server and
the trend (↓ or ↑) represents the behavior change from 1-ST to 8-ST. Conditions to fulfill each

finding are highlighted in yellow (Finding 1), blue (Finding 2), and green (Findings 1 and 2).

Cloud provider actions to detect applications. In order to help cloud providers, we present
Table 7.3 that shows the average utilization (low, medium, and high) of the studied resources
for 1-ST, and the trend (upwards or downwards arrow) it experiences with 8-ST. The table also
shows the main memory bandwidth behavior with 8-ST over 1-ST. With ↑↑↑, ↑↑, and ↑ denotes
that memory bandwidth rises with 8 threads by 104, around 103, around 102, respectively. This
table summarizes the previous findings. The conditions to fulfill Finding 1 and Finding 2 are
highlighted in yellow and blue, respectively. The conditions that remain valid for both findings
are colored in green. It can be concluded that only checking the CPU utilization and the memory
trend is enough for cloud providers to identify the applications with higher resource requirements
and carry out the corresponding actions to improve resource management previously described.

7.3.4. Network Bandwidth

The studied TailBench workloads present negligible (i.e., below 1 MB/s) network band-
width requirements. Thus, this consumption is not a concern in our experimental 20 Gb/s
network. In contrast, media-streaming consumes much higher network bandwidth. Fig-
ure 7.3d presents the experimental results.

In media-streaming, however, bandwidth consumption is a major concern. Similarly as
discussed above regarding disk bandwidth, network bandwidth experiences high peaks
and drops as sessions are dynamically started and finished. This can be observed in
Figure 7.3d, where the lower whisker of all media-streaming plots drops down to 0 MB/s
and the upper whisker reaches around 1000 MB/s.

To Take Away The network allows cloud tenants to access the cloud system. This resource is
typically over-dimensioned since queuing delays in this component can force the cloud system to
violate the QoS regardless of the improvement actions made in the other major system components.
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7.4 Analysis of Inter-VM Interference at the Main Shared Resources

So far, we have analyzed the performance of the server workloads by allocating threads
in pairs to the same physical core or each thread to a different core. This section goes
a step beyond and pursues to analyze the impact of the inter-VM (i.e., inter-workload)
interference at the main shared system resources, other than the CPU. To this end, we
focus on resources whose sharing can be controlled by the cloud provider. In other words,
the cloud provider can apply existing advanced technologies to allocate certain amounts
of specific shared resources to the running applications.

Some examples of these technologies are Intel Resource Director Technology (RDT) [166],
which implements Cache Monitoring Technology (CMT) and Cache Allocation Technol-
ogy (CAT) that allow monitoring and partitioning of the LLC occupancy, respectively;
and Memory Bandwidth Monitoring (MBM) and Memory Bandwidth Allocation (MBA)
from Intel RDT support monitoring and partitioning of the memory bandwidth, respec-
tively. Below, we use all these technologies to limit the available space or bandwidth for
the target application, and study the effect on performance [1, 54, 84]. Notice that by
limiting the amount of a given resource, we mimic a scenario where the remaining frac-
tion of the shared resource is being used by other VMs –from either the same or distinct
tenant– competing for that resource.

Before analyzing the impact, we first categorize applications from the major system re-
source that constraints its performance.

7.4.1. Workload Classification

The performance of the studied workloads is mainly dominated by a major system re-
source (CPU, disk, or network). The studied workloads present a diversity of behaviors
covering all the major system components. This section relates applications with the ma-
jor consumed resources and the discussed findings.

CPU Workloads. This group includes workloads mainly dominated by CPU resources,
including core, LLC, and DRAM memory, which make negligible use of network and
disk. DRAM memory is included as CPU since, from the OS perspective, the time the
CPU waits for DRAM accesses is accounted as CPU utilization. One could expect CPU
workloads to scale in performance. However, this is not always the case since a well-
balanced design and a 95th tail latency large enough are required. Instead, CPU applica-
tions present both scalable and non-scalable behaviors. Examples of scalable workloads
are img-dnn and sphinx, and examples of non-scalable masstree, silo and specjbb. The
former set of applications behave as SMT sensitive and the latter as SMT insensitive.

Disk Workloads. Applications in this group present a significant disk bandwidth con-
sumption that makes them stand out from the remaining categories. Two main categories
can be distinguished according to whether the dominant bandwidth is incurred by disk
read or write operations. Examples of applications presenting a medium disk utilization
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CPU Disk Network
Non-Scalable Scalable Read Write Streaming
specjbb img-dnn moses shore media-streaming
silo sphinx xapian
mastree

Table 7.4: Workload Classification.
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Figure 7.4: Impact of limiting the number of LLC ways on the maximum supported QPS and
memory BW.

mainly due to read operations are moses and xapian, while shore is an example of work-
load presenting a medium disk utilization due to writes. An interesting observation is
that all these applications scale in performance with the number of threads; however,
each of them presents a different behavior with respect to SMT.

Network Streaming Workloads. As mentioned above, media-streaming is the only studied
workload presenting a noticeable network bandwidth consumption. This application
scales with the number of threads, increasing the memory bandwidth. As the number of
threads increases, the CPU utilization reduces by as much as 10%.

Table 7.4 presents the devised groups (first row), categories (second row), and workload
classification. Notice that all the applications except a subset of CPU workloads scale
their performance as the number of threads increases. Next, we study the impact on the
performance of constraining the LLC, main memory bandwidth, and disk bandwidth.

7.4.2. LLC Partitioning Analysis

This section analyzes the impact of reducing the LLC space available to the target server
application. Intel CAT supports assigning specific cache ways to applications. To this
end, different Classes of Service (CLOS) are defined with specific cache ways. Then, each
target workload (or VM) is associated with a CLOS.
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Figure 7.5: Impact of limiting the memory BW on the maximum supported QPS and LLC misses.

The Intel Xeon Silver 4116 processor, used as the server in the experimental platform,
implements an 11-way 16.5 MB LLC; hence each cache way provides 1.5 MB storage
capacity. To study the impact of reducing the available cache capacity to the target appli-
cation, we reduced the number of cache ways assigned to the application to 7 ways (i.e.,
12 MB), 5 ways (7.5 MB), and 2 ways (3 MB). The remaining cache space is assumed to be
assigned to other VMs running on other cores and competing for this resource.

The study analyzes four workloads: two CPU scalable workloads (img-dnn and sphinx)
and two disk workloads (moses and shore) on the 8-ST server. Figure 7.4a presents the
percentage decrease of the maximum supported QPS (w.r.t. the QPS achieved with full
cache space) when varying the number of LLC ways assigned to each workload. Limit-
ing the LLC can translate into an increase in the main memory BW, especially in memory-
intensive applications. This side effect can be appreciated in Figure 7.4b, which shows
the memory BW increase. As observed, the applications showing the highest scalability,
img-dnn and shore, present bigger QPS reduction (over 30% with 2 cache ways), and
consequently, the bus bandwidth consumption significantly rises in a factor over 3.5×.
Despite that moses and sphinx also present important scalability and cache occupancy,
they experience lower QPS reduction than the other applications. This is due to the fact
that moses and sphinx consume much more memory bandwidth under no cache con-
straints.

Cloud provider actions for performance improvements. Results show that applications
presenting high scalability are much more sensitive to the available cache space. Limiting this
space translates into an important rise in the memory bandwidth of these applications. Therefore,
the cloud provider should consider both QPS scalability and memory bandwidth as a guide to limit
the cache ways assigned to a given VM.

7.4.3. Main Memory Bandwidth Analysis

The impact of memory bandwidth on performance depends on the LLC demands of
the applications and the underlying system organization. For instance, a huge LLC can
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catch most of the accesses of some memory-hungry applications, reducing the number
of off-chip memory accesses. To carry out this experiment, we used Intel Memory Band-
width Allocation (MBA), which works similarly to Intel CAT; applications are assigned
to CLOSes since we can only limit the amount of memory bandwidth that the CLOSes
can use.

For illustrative purposes, we considered the same four applications as in the previous
section, and we studied the effect of reducing the memory bandwidth to 8-, 6-, 4-, and 2-
GB/s on both the supported QPS and effective bandwidth consumption. The huge LLC
catches most of the working set of non-memory-hungry applications when they run alone
on the system, and the whole cache is available for them. Therefore, we do not analyze
those applications (img-dnn and shore) having an MPKI (misses per kilo instructions) of
the LLC lower than 0.4 since they are scarcely or not affected at all by constraining the
memory bandwidth under these conditions.

Figure 7.5a shows the results for moses and sphinx. As observed, both applications suffer
a linear degradation in the percentage of supported QPS; however, the slope of the curve
in moses is much more pronounced, showing a much higher degradation. On average,
both applications consume a similar amount of bandwidth. We looked at the reasons
behind this behavior, and we found that it is mainly because moses has a more bursty
memory bandwidth than sphinx, which shows a more regular pattern (see Figure 7.3c).
That is, the upper whisker is much higher (over 104 × 4) in moses than in sphinx (around
104 × 4). Finally, limiting the main memory bandwidth slows down the execution time
of the application; consequently, as a side effect, the number of LLC misses also reduces
linearly with the limited bandwidth since they take place over a longer time. Figure 7.5b
supports this claim. As observed, the obtained values almost match those obtained with
the decrease in the supported QPS.

Cloud provider actions for performance improvements. The memory bandwidth can have
a strong impact on the performance of the workloads. The cloud provider should provide enough
memory bandwidth to applications (e.g., CPU scalable) suffering a high number of LLC misses;
otherwise, the performance can dramatically drop.

7.4.4. Disk Bandwidth Analysis

The disk does not prevent the performance of disk-oriented applications from growing in
the 8-threaded scenarios since the studied applications have a small consumption com-
pared to the available total bandwidth (see Section 7.3.3). Despite this fact, the disk band-
width is a concern in public clouds, especially in those situations where multiple VMs try
to perform I/O operations at the same time.

To test this claim, we have used the microbenchmark stress-ng to introduce a constant
stress on the disk bandwidth by performing random write operations. Different inter-
ference levels have been explored by limiting the disk bandwidth assigned to stress-ng
to 50 MB/s, 100 MB/s and 200 MB/s, which has been done with the libvirt tool. The
remaining disk bandwidth (up to 500MB/s) is available for the studied benchmark. We
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Figure 7.6: Impact of stressing the disk BW using a microbenchmark on the maximum supported
QPS and reduced disk BW consumption.

analyzed the impact on the supported QPS and on how the consumed bandwidth re-
duces over isolated execution.

Figure 7.6 shows the results for the three disk applications, shore, xapian, and moses. Fig-
ure 7.6a shows the impact of stress-ng on the consumed bandwidth of the disk applica-
tions for the studied interference levels. The consumed bandwidth significantly reduces
over isolated execution (None), especially in shore and xapian. This happens because
their bandwidth consumption keeps similar across all the execution intervals; that is, the
standard deviation of the gathered bandwidth values is very small, and all the values
fall close to the median (see Figure 7.3e), and stress-ng reduces the available bandwidth
across all the execution time. In contrast, moses consumes most of its bandwidth at the
beginning of its execution; thus, its consumption is only affected at that execution phase.

Figure 7.6b shows the impact of the bandwidth reduction on the supported QPS. It is
strongly related to the type of disk operation performed. It can be noticed that disk
read workloads (i.e., at least 80% of the operations are reads) suffer less performance
degradation, even when their bandwidth decreases over 60% in xapian. In this case,
performance drops by 20% when stress-ng consumes 200MB/s. In contrast, in disk
write workloads like shore, the supported QPS decrease (in percentage) is higher than
the bandwidth consumption decrease.

Cloud provider actions for performance improvements. There is a strong connection be-
tween disk bandwidth consumption and the performance of disk applications, especially for write
disk workloads that present a homogeneous disk consumption across the execution time. The cloud
provider should take special care with these applications by pinning them to machines with bal-
anced or low disk bandwidth consumption.
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7.5 Summary

7.5 Summary

This chapter has presented a characterization study of cloud workloads aimed at iden-
tifying key relationships between performance and resource consumption. The results
show that CPU resources can be significantly reduced by considering that the perfor-
mance of some applications does not scale with the number of threads and that threads
of Hyper-Threading insensitive applications can be allocated to the same physical cores
without affecting performance. Identifying these applications at run-time, however, is
challenging. We have shown that this challenge can be successfully dealt with by ana-
lyzing the utilization of the major system components. In addition to CPU, we have also
studied how each application’s share of other major shared system resources impacts
performance. Experimental results show that some applications can suffer performance
losses of over 80% if not provided with a big-enough share of its critical resource.

The conclusions of the presented studies and the discussions identifying cause-effect re-
lationships among the utilization of the different system components can be used as a
basis for cloud providers to develop virtualization strategies.
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CHAPTER 8

Detecting and Estimating Inter-VM
Interference in the Public Cloud

Cloud providers can achieve economies of scale by building large-scale data centers and
sharing resources among different jobs which run in virtual machines (VMs). However,
sharing the physical machine means that inter-VM performance interference will appear
due to multiple VMs competing for the major system resources (e.g., processor cores,
last level cache (LLC), or main memory), making performance unpredictable and jeopar-
dizing compliance of the service level agreement (SLA) between a cloud provider and a
customer.

To avoid QoS violations and tackle inter-VM performance interference, cloud providers
typically adopt an overprovisioning strategy, where resources are assigned to each VM in
excess to avoid possible performance degradation due to inter-VM interference. More-
over, public cloud servers frequently run latency-critical workloads. Unlike conventional
workloads, the performance of latency-critical applications is given by the obtained tail
latency, indicated as a percentile (e.g., 95th or 99th) of all the latencies and accounts for
the requests that take longer to complete. This means that the performance of these
workloads is very sensitive to inter-VM interference. Because of this fact, system re-
sources need to be conservatively overprovisioned to ensure compliance with the SLA.
This workaround, however, results in poor utilization of the major resources of the cloud
system.

This chapter proposes Cloud White, an approach that can detect and quantify inter-VM
interference online when running multiple latency-critical applications in different VMs
running on the same physical machine. With our approach, the VM is not a black box
anymore, but its behavior (and introduced interference) is revealed, becoming “white”
or Cloud White.
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Co-located VMs
increase utilization

Performance degradation grows

Performance degradation reduces

Figure 8.1: Typical scenario: 1) co-located VM load grows and increases interference, 2) perfor-
mance degradation increases for the target VM, 3) co-located VM reduces its load.

8.1 Motivation

In a public cloud system, a VM can experience performance losses due to a change either
in its load (intra-VM) or in the load of other VMs (inter-VM). Detecting the cause of inter-
ference inducing the performance loss is challenging. The former case refers to intra-VM
interference, and thus, it is not a concern for the cloud provider, which is the focus of
this manuscript. This chapter concentrates on the latter case, where two or more VMs
are involved, and the performance degrades due to the inter-VM interference. We use
the terms victim and inflicting to refer to VM(s) suffering performance degradation and
the VM(s) increasing its load, respectively. Notice that a given VM can become a victim
or act as inflicting across different periods of its execution time. The main goal of this
chapter is twofold: detect the victim VM(s) and estimate its performance degradation,
both especially challenging when all the co-running applications are latency-critical in
the public cloud.

We illustrate the problem in Figure 8.1, which shows how the tail latency of a victim VM
co-located with multiple resource-consuming VMs degrades over a 180-second time in-
terval. The example starts in a steady situation with all co-located VMs running at a
relatively low utilization (i.e., shared resources are not stressed). This steady situation
is assumed to be the normal conditions or baseline situation; thus, we assume that at this
point in time, the performance of the victim VM is not (or slightly) suffering due to the
inter-VM interference (1 means no performance degradation). At second 50, one of the
co-located VMs (inflicting VM) increases its load and starts consuming more shared re-
sources. This load increase impacts the performance of other VMs. In the example, the
victim degrades up to 1.4× – 1.6× its performance compared to the steady situation.
After the second 100, the resource consumption of the inflicting VM reduces, and the
performance degradation of the victim VM returns to a low level.

Discerning which are the victim and inflicting VMs is challenging in the public cloud,
especially when running multiple latency-critical applications, since i) VMs are seen as
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Approach Year
Main Features

Interference detection
Performance
interference pre-
diction

Tail latency All main system resources? Black box?

Deepdive [91] 2013 ✓, low-level metrics ✓, but in isola-
tion

×, average ✓ ✓

RC [36] 2017 × ✓, VM informa-
tion

✓, median / 99th ×, no disk & network ✓

Scavenger [32] 2018 ✓, VM resource usage × ✓, 90th / 95th ×, no disk ✓
Alita [29] 2020 ✓, low-level metrics × ×, average ×, no disk & network ✓
Twig [99] 2020 × ✓, low-level

metrics
✓, 99th ×, no disk & network ×

CLITE [30] 2020 × ✓, resource
shares

✓, 95th ✓ ×
Cloud White 2022 ✓, GIPS metric ✓, low-level

metrics
✓, 95th ✓ ✓

Table 8.1: Summary of closely-related work to Cloud White supporting latency-critical applica-
tions, sorted by chronological order.

“black boxes” so the cloud provider has no information about the applications running
on the VMs, and ii) these applications present rather low shared resources utilization.

Some previous works have tried to address these challenges. Table 8.1 summarizes the
main features of these approaches. However, these approaches present two main short-
comings. On the one hand, performance interference is detected in a subset of the system
resources. On the other hand, no prediction is made on how performance interference
impacts on the QoS of VMs.

To overcome these issues, this chapter proposes Cloud White, an approach that not only
identifies the victim VM(s) in cloud systems running multiple latency-critical applica-
tions as “black boxes”, but also provides accurate estimates of their performance degra-
dation. Cloud White uses the Giga Instructions Per Second (GIPS) to identify the victim
VM(s). The novelty does not lie in the GIPS metric itself, but we show its effectiveness for
this purpose; in other words, as far as we know, it is the first time it is used to discern the
victim VM(s). Performance degradation is estimated through multi-variable regression
models.

Cloud White is, to the best of our knowledge, the first approach that can deal with
the two challenges mentioned above: identify the victim VM(s) in cloud systems with
latency-critical applications, and provide accurate estimates of its performance degrada-
tion. Moreover, the dynamic prediction error is, on average, below 10%.

8.2 Experimental Setup

8.2.1. Platform

With the aim of building a controlled environment closely resembling one of the public
clouds, we set up an experimental platform described in detail in Chapter 3.2.
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In summary, our experimental platform includes all the components of a typical cloud
system [167]. Even though it is not composed of many nodes like a production system,
the setup of one server node and one client node complies with the twofold objective of
this work: i) study the interference among VMs executing in the same server node, and ii)
use the client node to carry out experiments with a controlled load that helps us evaluate
(even saturate the server) and validate our approach.

8.2.2. Workloads

Latency-Critical Benchmarks

In this work, we use a set of representative latency-critical benchmarks from the Tail-
bench suite [125]: img-dnn, masstree, moses, silo and specjbb. More details can be
found in Chapter 3.4. According to the characteristics of these applications, our results
confirm that they are mainly limited by CPU or memory resources (more details in Chap-
ter 7); thus, two different models will be required to predict the performance (see Section
8.4).

Microbenchmarks

To introduce interference in a controlled manner, a practical option commonly employed
[50, 32, 31, 29, 94] is the use of microbenchmarks, or synthetic benchmarks, specially
designed to stress specific systems resources (e.g., the cache, the main memory, or the
disk) by introducing interference in their utilization. One of the main advantages of
using microbenchmarks is that they can be finely tuned, setting different utilization levels
on each shared resource. To generate a workload that introduces realistic interference,
we have used the stress-ng [168] microbenchmark, which stresses the three main system
components (LLC, main memory bandwidth, and disk). In addition, we used iPerf3 [169]
to stress the network bandwidth.

Below, we present five types of workload scenarios created with the microbenchmarks to
analyze different stressing levels at the major system components.

No interference. This scenario represents the common situation of the target system,
where there is a low (by 10%) processor utilization and resource usage. It will be used as
our baseline scenario to check performance degradation.

Cache-memory stressing. This scenario is used to study the effect of stressing the LLC
occupancy and main memory bandwidth. Three main stressing levels have been consid-
ered: memory bandwidth consumption from 1.9 to 5.5 GB/s and LLC space from approx.
12.5 to 14.7 MB.

Disk stressing. This scenario implies a high number of write and read operations to
disk. Three stressing levels have been considered, from moderate (around 45 MB/s) to
high (over 100 MB/s) disk bandwidth consumption.
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Figure 8.2: Relationship between GIPS and QPS for the five studied latency-critical applications.

Cache-memory-disk stressing. This scenario adds the stress introduced by the cache-
memory and disk scenarios within the same experiment.

Network stressing. This scenario stresses the network bandwidth (both receive and
transmit, but in separate experiments).

8.2.3. System Load Conditions

A key modeling decision is to establish the load level of interest to be studied. The client
load is controlled by varying the queries per second (QPS) performed by clients. How-
ever, the QPS is an internal metric of the workload unknown to the cloud provider. Thus,
we consider CPU utilization as a proxy of the load from the cloud provider perspective.

To this end, two main CPU utilization levels are of interest to the cloud provider: normal
and overloaded conditions. Normal conditions refer to low processor utilization (e.g.,
10%), where the interference introduced due to the VM load is negligible. Current cloud
servers [36, 37] typically run at this low CPU utilization. Overloaded conditions refer to
a relatively high processor utilization (e.g., over 50%), where cloud providers assume the
system SLO may be violated. It is important to note that the utilization value strongly
depends on the type of workload. For instance, if performance is measured in terms
of tail latency, minor CPU variations can turn into a significant tail latency increase and
cause important performance degradation (more details in Chapter 7). We considered
CPU utilizations ranging from 10% to 60% to analyze the impact of varying the inflicting
VM’s load on the victim’s performance.

8.3 Cloud White: Detecting the Inter-VM Interference

8.3.1. GIPS: a New Way to Detect the Victim and Inflicting VMs

One could think that CPU utilization could be used as an intuitive solution to detect
the VM causing the interference. The CPU utilization, however, grows not only when
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Figure 8.3: Normalized GIPS of victim VM (fixed QPS) and inflicting VM (increasing QPS) for
different CPU loads, high and low. The right Y-axis shows the IPC obtained (black line) by the

victim VM in each of the test cases.

the QPS of the target VM grows during its execution but also due to the inter-VM in-
terference. The reason is that the CPU utilization comprises both the time the processor
executes instructions, which grows with the QPS, and the time it is stalled waiting for
memory accesses, which grows with interference. This means that, apart from CPU uti-
lization, other metrics are needed, as discussed below.

To cope with this challenge, a wide set of performance metrics (like the IPC, ROB stalls,
etc.) were analyzed. We found that the number of instructions executed per second helps
identify the inflicting and victim VMs. More precisely, the Giga Instructions executed
Per Second (GIPS). Based on this finding, the devised approach uses the GIPS to identify
the victim VM(s). Notice that the novelty is not the metric itself but the purpose for
which it is used. The rationale is as follows. The amount of instructions a VM commits
per second is directly related to the number of queries it receives per second (QPS). That
is, if a victim VM keeps its load steady (i.e., the server processes the same requests per
second), its GIPS remains unaffected. Otherwise, the GIPS will change.

To support this claim, we studied the correlation between QPS and GIPS. Figure 8.2 plots
the results, varying the QPS for the five studied applications executed under four server
threads (1, 2, 4, and 8) configurations. Tested QPS ranges from 100 to 2000 (i.e., the
maximum value before the 95th tail latency saturates). For each server configuration,
both QPS and GIPS have been normalized to that of the lowest QPS value (i.e., 100). A

118



8.3 Cloud White: Detecting the Inter-VM Interference

total of 175 points are plotted. Results show that the GIPS presents a very strong linear
correlation (R2 = 0.9896), almost perfect, to QPS.

It should be taken into account that cloud workloads do not stress 100% the CPU, but
the CPU utilization usually takes low values (e.g., 20%) [36, 37]. Therefore, IPC and GIPS
are not directly correlated since IPC is calculated over the time the CPU is busy (i.e.,
utilization time) while the GIPS is computed over the total measurement time, which
comprises both the utilization time and time the VM is waiting for client requests.

8.3.2. Case Study with Two VMs

This section shows how the GIPS helps detect the victim and the inflicting VMs running
latency-critical applications through a practical example. For illustrative purposes, only
two VMs are used, one acting as the victim and another as the inflicting.

Figure 8.3 shows the GIPS and the IPC varying the CPU utilization of the victim and
inflicting VMs across four different scenarios. In each plot, each pair of bars corresponds
to a different experiment. The X-axis legend below each bar indicates the CPU utilization
of the victim and inflicting VMs in the experiment. Two load (utilization) levels, low
(left-side plots) and high (right-side plots), are considered for the victim VM, which refer
to about 10% and 50% CPU utilization in isolation, respectively. The utilization of the
inflicting VM has been set to grow from about 10% (no contention) up to 60%. More
precisely, QPS has been experimentally configured to achieve that utilization. The first
pair of columns refer to a low contention scenario where the inflicting VM presents a low
load, and it is used as a baseline. The GIPS of both VMs are normalized to the achieved
in the baseline scenario.

In the upper plots, img-dnn is the victim VM under low load (Figure 8.3a) and high load
(Figure 8.3b), and specjbb is the inflicting VM growing the interference from left to right.
This can be appreciated as the normalized GIPS of the inflicting VM (orange bar) grows
by 4× in the highest interference. On the contrary, the GIPS of the victim VM (blue bar)
remains around 1 across the six experiments in the plot. The interference introduces an
important change in the victim’s behavior. The CPU utilization grows from 11% to 15%
when it works under low load (left side plot) and from 50% to 52% (right side plot).
This represents an important growth (in percentage), especially under low load condi-
tions, thus, it translates into significant performance losses. Notice that the IPC of the
victim VM (right Y-axis) significantly decreases as the interference increases, dropping
from around 1.78 to 1.53.

In the bottom plots (Figures 8.3c and 8.3d) the applications change their role: img-dnn is
the inflicting VM and specjbb is victim VM. Similar results can be observed. Again, the
GIPS of the victim VM are not affected as the interference increases while the GIPS of the
inflicting VM grows up in a 5× factor. Unlike the previous figures, the CPU utilization
of the victim grows in a negligible way (less than 1%); consequently, its IPC drops to a
lesser extent, especially in the low load plot (Figure 8.3c). This is because img-dnn is more
memory-intensive than specjbb and, thus, is more sensitive to the co-runner’s workload.
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Algorithm 3 Cloud White’s interference detection phase pseudo-code where inflicting
and victim behaviors are detected.
1: for all apps do
2: Compute %guestnorm and GIPSnorm
3: if %guestnorm increases M% then
4: if GIPSnorm increases N% then
5: Inflicting behavior
6: Tag as victim all non-inflicting VMs
7: else
8: Victim behavior
9: end if

10: else
11: VM’s behavior is steady
12: end if
13: end for

Finally, we would like to remark that the GIPS metric is not limited to two VMs, but it
can be applied regardless of the number of VMs (see Section 8.5.3).

8.3.3. Cloud White’s Interference Detection Phase Algorithm

Algorithm 3 presents the pseudo-code of the interference detection mechanism performed
by Cloud White. That is, the steps carried out to discern if a given VM presents an in-
flicting or a victim behavior. First, the normalized load and GIPS are computed for each
application. Load is quantified in terms of percentage of guest time (from the /proc/stat
system file, see Section 8.4.2). Normalized values are computed with respect to No Inter-
ference scenario (see Section 8.5.1 for more details). Once computed, Cloud White checks
if the VM has experienced a load change. This is done by checking if %guest time has
changed –increase or decrease– more than a given threshold (M%) over the rolling mean
of the previous intervals. If this condition fulfills, then it checks if the GIPS has also no-
ticeably changed (over N%). In such a case, the VM is tagged as inflicting. Otherwise,
it is tagged as a victim. Notice that some VMs may not experience load changes (lines
10-11). However, if one of the co-located VM(s) exhibits an inflicting behavior, the VMs
exhibiting a steady behavior are also tagged as victims as they may be possibly affected in
the near future by the interference caused by the inflicting VM(s). The results presented
in this work have been obtained with M% and N% set to 5 and 50, respectively.

8.4 Cloud White: Modeling Performance Degradation

8.4.1. Experimental Methodology

To devise the models to estimate the performance degradation, we first need to study the
impact of the interference on the system performance. This study needs to be done in a
controlled way; that is, we need a method to control the introduced interference. To this
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end, we have used microbenchmarks described in Section 8.2.2 to create typical scenarios
of interference in the system’s main shared resources.

In the experiments, all (24 logical) cores of our machine are used to model scenarios
closely resembling to a production system. Two different instances of the microbench-
mark are used. One instance is devoted to stress one or some shared resources and is
hosted in a VM with 8 logical cores. The other instance referred to as no interference, has
been used to introduce relatively low interference that will barely affect the victim VM.
To this end, 6 logical cores are occupied, presenting each of them with a low utilization.
In this way, the stress introduced comes only from a subset (i.e., 8) of the system’s cores,
as it is likely to occur in real systems. From the remaining logical cores, 2 were devoted
to the victim VM and 8 to run the software agent components (OVS, DPDK, and Stratus
manager described in Chapter 3.2). From now on, we assume the same core distribution
of the software agents.

The devised models should be general enough to adapt to other applications showing
similar characteristics. To check this claim, we make two different groups of workloads:
one for building the models (known workloads) and another for evaluating the models
(unknown workloads) not previously used. From our set of applications, we identified two
behaviors, CPU- and memory-bound (see Section 8.2.2). In case Cloud White encoun-
ters an application presenting an unseen behavior, models would be trained with this
application to update or generate new models. We use specjbb and img-dnn as known
workloads presenting CPU- and memory-bound behaviors, respectively, and leave silo,
masstree and moses as unknown applications.

8.4.2. Looking for Performance Metrics as Model Parameters

Since the cloud provider sees tenant VMs as “black boxes”, we studied a wide set of
performance indicators from the main system components (processor, memory, network,
and disk) with the aim of finding the potential correlation between them and perfor-
mance degradation (i.e., tail latency).

We evaluated two different CPU metrics related to where the processor spends time: guest
time, which accounts for the time spent by processes running on a virtual CPU, and idle
time, which represents the time spent idling (i.e., not executing instructions) while there
are no disk I/O requests outstanding. To assess the core performance, we have evaluated
metrics to quantify throughput (e.g., IPC) and interference within the core (e.g., proces-
sor stalls and L1 cache misses). In addition, we have studied metrics that quantify the
LLC occupancy and bandwidth consumption in the main memory, disk, and network.
Regarding network bandwidth, we found out that the Tailbench applications consump-
tion is very low compared to the maximum supported bandwidth (over 20 Gb/s) in our
experimental platform. Thus, no performance degradation was observed due to the in-
terference in the network bandwidth. Furthermore, the cloud provider should always
provide enough network bandwidth to almost completely avoid interference at this com-
ponent because queuing delays at the network will immediately prevent the application
from meeting the required QoS.
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(a) img-dnn (b) specjbb

Figure 8.4: Correlation of the studied metrics for img-dnn and specjbb for a 20% processor uti-
lization.

Figure 8.4 illustrates the correlation between the degradation of the 95th tail latency and
the studied metrics (left-most column and top row) for the two applications representa-
tive of memory- and CPU-bound behaviors, img-dnn and specjbb running a QPS that
results in an average CPU utilization of 20%. That is, how much performance degrada-
tion (compared to that obtained in the No Interference scenario) is related to each of the
studied performance metrics. Additionally, the correlation between each pair of metrics
is shown. Each table represents the correlation of the studied metrics for each application,
obtained from the results of all the experiments performed with the microbenchmarks in
all the stressing scenarios previously discussed. Positive correlations are colored in blue
and negative ones in red, where a darker shade implies a stronger correlation. Correla-
tions between 0.2 and 0.6 are colored in light blue, and correlations between 0.6 and 1
are in dark blue. Negative correlations within the same range are colored in light and
dark red. Cells colored in white represent a very low correlation (i.e., between -0.2 and
0.2). As observed in the 95th tail lat. column, img-dnn’s performance strongly correlates
with the processor utilization, core, and LLC metrics. However, specjbb achieves the
strongest correlation in just a subset of these metrics (percentage of guest time and pro-
cessor stalls) and the main memory bandwidth. Even though specjbb is CPU-bound,
memory bandwidth has a stronger correlation with performance degradation in specjbb
than in img-dnn. Specjbb’s tail latency is 4× shorter than that of img-dnn and consumes
more memory resources, so a small impact on the memory bandwidth can turn into per-
formance degradation. Note, however, that the correlation factor indicates how related
are the variations in both metrics but gives no insight into the impact on the performance
of the interference in that component. In both cases, network- and disk-related metrics
achieve a poor correlation, being stronger in specjbb but not significant enough. This
was expected because the two workloads present relatively low disk and network uti-
lization.
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Figure 8.5: Relationship between IPC and performance degradation for img-dnn varying the CPU
utilization (10% to 50%).

8.4.3. Relationship between System Load and the Models

So far, we have considered that the CPU utilization of the victim remains constant and
the CPU utilization of the inflicting ranges from 10% to 60% (higher utilization normally
translates into higher interference) to analyze workload conditions of interest (see Section
8.2.3). However, in the real cloud, the processor utilization of the victim does not remain
constant, but it tends to vary in the range from normal to overloaded.

Under different CPU utilization levels, we observed that the trend of the performance
metrics also varies. An example can be observed in Figure 8.5, showing the relationship
between dynamic performance degradation (95th tail latency) and IPC for the studied
CPU utilization scenarios for img-dnn. Each point corresponds to the 95th tail latency and
IPC achieved over a time interval of 5 seconds, resulting in more than 1000 points plotted
in the graph.

Values have been normalized to the average value obtained with the No Interference work-
load scenario (see Section 8.2.2). As observed, the slope of the points corresponding to
each CPU utilization (with different colors) varies, being more pronounced for higher
processor utilization. Additionally, points that belong to higher CPU loads (i.e., 40% and
50%) present a non-linear trend. Therefore, building a unique model that embraces all
processor utilizations may lead to high prediction errors. To deal with this fact, specific
models can be built for distinct processor utilization (e.g., 10%, 30%, and 50%).

8.4.4. Multi-Variable Regression Models

To acquire sound knowledge about the performance-related metrics (see Section 8.4.2),
we analyzed how each metric individually correlates with performance degradation us-
ing regression models. We found that none of them strongly correlate with performance
in a generalized way. Therefore, we looked into multi-variable regression models to de-
vise models that achieve a stronger correlation. These models pursue improving the
correlation by combining several metrics.
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Figure 8.6: Histograms with the frequency distribution of the 95th tail latency degradation values
in different scenarios.

Designing statistical models. Due to the non-linear nature of the tail latency metric,
linear regression models are not the most suitable models to use. We also observed that
the performance degradation metric does not follow a normal distribution.

Figure 8.6 shows the distribution of the performance degradation (95th tail latency nor-
malized over No interference). A value of 1 on the X-axis means no performance degra-
dation. Results were gathered in the stressing scenarios for img-dnn and specjbb for two
processor utilization levels: 20% (upper plots) and 50% (bottom plots). As observed, the
histograms do not exhibit a symmetric shape. As expected, in the top plots where the
CPU utilization (20%) is lower, the performance is less affected by the interference. This
can be appreciated in that, in around 96% of the observations, performance degrades by
a factor of 1.9×. In contrast, in the highest CPU load scenario (Figures 8.6c and 8.6d), this
range is extended up to around 2.8, meaning that in some cases, performance degrada-
tion can be as much as 180%.

In all cases, the histogram shape does not resemble a typical bell-shaped curve but is
right skewed, especially in the highest CPU load plots, illustrating that the Gaussian
distribution is not the most appropriate distribution for tail latency [170]. To check this,
we modeled the measured data linearly and performed the Anderson-Darling test [171],
which confirmed that, generally, the models’ residuals were not normally distributed.
We found that only img-dnn’s 50% CPU load model satisfied the normality assumption,
so this can be considered as a rare case. Additionally, we checked that in most cases,
performance degradation did not present a linear relationship with the studied metric
(e.g., IPC values corresponding to 40% and 50% CPU utilization in Figure 8.5). Therefore,
for generalization purposes, we looked into other models that do not require the data
to be normally distributed. Among these, we found that the generalized linear models
(GLM) [172] are the most appropriate for non-linear and skewed distributions [173].

Model fitting - reduction strategy. The models were built and fitted using statsmodel
Python library [171]. The model fitting was performed with the iteratively reweighted
least squares (IRLS) method, with the objective of minimizing the deviation that occurs
when estimating performance degradation. No constraints were specified to obtain the
model coefficient values. A model reduction strategy [174] by statistical significance of
the terms has been followed to find the truly significant variables. This implies that,
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Generalized Linear Model Regression Results
Dep. Variable: perf. deg. No. Observations: 425
Model: GLM Df Residuals: 420
Model Family: Gamma Df Model: 4
Link Function: inverse_power Scale: 0.0043907
Method: IRLS Log-Likelihood: 396.96
No. Iterations: 6 Deviance: 1.7979
Covariance Type: nonrobust Pearson chi2: 1.84

coef std err z P > |z| [0.025 0.975]
const 1.0602 0.017 63.261 0.000 1.027 1.093
guest% -0.0207 0.009 -2.261 0.024 -0.039 -0.003
Mem. BW -0.0233 0.002 -10.432 0.000 -0.028 -0.019
Core stalls -0.1674 0.017 -9.713 0.000 -0.201 -0.134
Total stalls 0.0876 0.016 5.446 0.000 0.056 0.119

Table 8.2: Example of the parameters and statistics of the prediction model generated with data
from specjbb with a 20% CPU load.

initially, the model is built including all candidate variables (performance metrics), and
the least statistically significant variable (largest P>|z|, fulfilling that is higher than 5%)
is removed. This process is repeated until the model only contains significant terms.
In this work, we considered candidate variables, the performance metrics achieving a
correlation higher than 0.4.

For illustrative purposes, Table 8.2 shows an example of the model generated with the
data from the experiments performed with specjbb under stressing conditions for 20%
CPU utilization. The upper part of the table shows a summary of the characteristics
of the resultant model, both qualitative and quantitative. In this example, the obtained
model belongs to the GLM Gamma exponential family, with inverse_power (i.e., recip-
rocal) link function, the default link function for the Gamma family. Other link functions
were explored, like the logarithmic function, but the best results were obtained with the
inverse_power. We would like to remark that the model characteristics are the same for
the models generated for all the CPU utilization levels. Results like the Log-Likelihood,
Deviance, and Pearson chi2 [175] indicate the model goodness to the data used to train
it. For instance, deviance is a measure of goodness of fit (the lower and closer to zero, the
better).

The bottom part of Table 8.2 shows the coefficients of the model variables, as well as the
standard error of each one. Among the generated models, this is the part that mainly
differs since each model has different (both in number and value) coefficients. As a result
of the model reduction, all independent variables present a P>|z| lower than 5%. In
this example, the model comprises five independent terms: a constant term and four
significant variables (degrees of freedom, Df, equals 4), which correspond to the metrics
guest%, memory BW, core stalls, and total stalls.

The goodness of the model can also be analyzed graphically. Figure 8.7 shows four exam-
ples of the relationship between the real performance degradation values with the pre-
dicted values for img-dnn and specjbb in two different CPU utilization scenarios. Results
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Figure 8.7: Scatter plots with real (measured) vs. predicted performance degradation.

show that most of the points lie on the curve x = y (plotted diagonal) or very close to it,
which indicates the perfect prediction (i.e., real and predicted values are equal). Higher
processor utilization scenarios (Figure 8.7c and Figure 8.7d) show the higher spread,
something expected since tail latency is more affected with higher CPU utilization (i.e.,
overloaded scenario).

Final models. This section presents the memory-bound and CPU-bound models de-
vised in this work for img-dnn and specjbb, respectively. Equations 8.1 and 8.2 show
the formulas where K, x1, x2 to xn represent the coefficients of the constant term and the
independent variables, respectively. ymem and yCPU represent the dependent variables
in terms of performance degradation for the memory-bound and CPU-bound models,
respectively.

ymem =
1

K + (x1 × idle%) + (x2 × IPC)
+(x3 × MPKI_L2) + (x4 × MPKI_L3)
+(x5 × mem_BW) + (x6 × mem_stalls)
+(x7 × core_stalls) + (x8 × total_stalls)


(8.1)

yCPU =
1

K + (x1 × guest%) + (x2 × idle%) + (x3 × IPC)
+(x4 × mem_BW) + (x5 × MPKI_L2)
+(x6 × MPKI_L3) + (x7 × mem_stalls)
+(x8 × core_stalls) + (x9 × total_stalls)


(8.2)

Since performance degradation strongly depends on the CPU utilization, each model
needs to be tuned for five CPU values (i.e., 10%, 20%, 30%, 40%, and 50%). We found that
this number is enough to provide accurate estimates. For each individual model (i.e.,
the model generated for a CPU load), only those statistically significant terms have been
considered, meaning the coefficients of the remaining terms are set to zero. For instance,
in the model described in Table 8.2 only the variables of the guest%, memory bandwidth,
core stalls, and total stalls metrics are significant and therefore, their parameters are not
equal to zero.
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8.5 Cloud White Evaluation

8.5.1. Experimental Methodology

To evaluate the model accuracy, we performed a wide set of experiments both with one
and multiple latency-critical applications. Firstly, we tested the effectiveness of the mod-
els by executing the target latency-critical application in a VM (victim VM) with two vir-
tual CPUs (VCPUs) along with a stressor microbenchmark, launched in another VM (in-
flicting VM) running on eight VCPUs. Then, experiments were performed with multiple
(two and three) latency-critical applications running in different VMs to test if Cloud
White could effectively distinguish the victim and inflicting VMs and estimate the per-
formance degradation of the victim VM. Some applications were configured to increase
their load (i.e., QPS) gradually at different points of the execution time to dynamically
introduce or remove interference. Each VM was launched with 2 (victim) or 4 (inflict-
ing) VCPUs. The remaining CPUs were occupied by an instance of the microbenchmark
running the No Interference scenario launched in a VM with 8 VCPUs.

For the experiments performed with the microbenchmark, we configured it to run the
No Interference scenario for the first M seconds. During this time, Cloud White sees that
the system presents a low and constant load and gathers the baseline values. Remem-
ber that the public cloud runs, most of the time, in steady phases with low CPU loads
[35, 37]; therefore, baseline values would be gathered during these times. After this time,
the microbenchmark adopts the stressing cache-memory-disk model (see Section 8.2.2)
for N seconds. When this happens, Cloud White detects that a load change is taking
place in the VM running the microbenchmark (i.e., acts as inflicting) and starts to ap-
ply the regression model to the VM identified as the victim to estimate its performance
degradation. Finally, the microbenchmark adopts the No Interference model again in or-
der to check if Cloud White can detect this new situation and estimate that little or no
performance degradation is taking place. In this work, M and N are set to 60s and 50s,
respectively. Similarly, in the multiple latency-critical applications experiments, we have
configured inflicting applications to start increasing the load after a minimum of 45s so
that Cloud White can gather the baseline values during this time.

Experiments were repeated five times, point at which the deviation among the measured
95th tail latencies was less than 5%, except for some experiments with higher CPU load
(e.g., 40% and 50%) that experienced higher deviation between 7% and 10%. Prediction
accuracy results were evaluated in terms of 1) overall prediction error, which defines the
difference between the real and estimated performance degradation of the entire exper-
iment, and 2) average dynamic prediction error, which quantifies the average error of each
prediction performed with respect to the real value in each 1s quantum. In both cases,
performance degradation quantifies the 95th tail latency normalized against that obtained
in a phase under low interference (e.g., first M seconds of the execution). Therefore, a
value of 1.0 means no performance degradation, and higher values mean degradation
has taken place.
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Figure 8.8: Bar plots comparing the overall real and predicted performance degradation (i.e., 95th

tail latency). The CPU utilization refers to that achieved, on average, when applications were
executed with No Interference.

8.5.2. Prediction Effectiveness with a Single Latency-Critical Application

This section shows the results obtained when applying Cloud White to the set of stud-
ied applications executed individually together with the microbenchmark. This includes
those applications left outside for validation purposes (masstree, moses and silo), as
well as those used to create and train the models (img-dnn and specjbb). The goal of in-
cluding the latter two applications in the evaluation is to check if Cloud White correctly
applies the appropriate model when predicting performance degradation. Notice that,
in all cases, Cloud White sees these applications as black boxes and has no prior infor-
mation on the applications under execution other than the resource consumption and
hardware/software events gathered at run-time with the PMU.

Overall results can be observed in Figure 8.81. Each graph presents the normalized real
or measured performance degradation (blue bar) and the normalized estimated perfor-
mance degradation (orange bar) for a variety of CPU utilization levels (X-axis), calculated
as the 95th percentile of all the measurements and estimations made at run-time, respec-
tively. Interval bars show the deviation achieved for the run-time values of both the
measured and estimated normalized latency in the experiments. As it can be observed,
Cloud White can estimate performance degradation accurately for most of the experi-
ments, having, on average, a 5% prediction error. Experiments with high CPU load (i.e.,
40% and 50%), however, make slightly higher prediction errors (7.5%). This is mainly
because applications are close to saturating and, therefore, 95th tail latency shows more

1silo shows no results for 50% CPU utilization since the application saturates before reaching this load.
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Figure 8.9: Dynamic graphs comparing the real and predicted performance degradation (i.e., 95th

tail latency).

spike values. This is also reflected in the interval bars, as longer interval bars mean that
there exists a higher deviation among values. In general, we can observe that the esti-
mated values’ deviation is similar to the real values’ deviation.

A complete evaluation, however, should also consider how Cloud White behaves when
the workload changes dynamically. Figure 8.9 shows examples of how real (measured)
performance degradation evolves across the execution time and the predicted perfor-
mance degradation performed by the models for experiments with 20% and 40% CPU
load for the first 150 seconds of execution2. Since 95th tail latency metric experiences high
variation, a best-fit curve computer with the LOWESS algorithm [162] has been plotted
instead of a line joining all the points. Notice that prediction starts around the second 60,
the point at which Cloud White detects that the co-running VM is changing its load and
possibly causing interference. As it can be observed, both the real and predicted curves
follow a similar trend in most time intervals, showing Cloud White is able to detect and
predict performance degradation accurately. On average, the dynamic prediction error
is less than 10%, except for some experiments like in specjbb with 40% CPU utilization,
which is higher. Likewise, moses experiences a higher sensitivity to interference at the
shared resources obtaining higher prediction errors in some experiments, but in all cases,
the average prediction error is less than 20%.

Additionally, Cloud White is able to determine that little or no performance degradation
is taking place in the last third of the execution when the co-running VM is no longer
stressing the system’s main resources. This proves that Cloud White can be effectively
used to detect performance degradation.

8.5.3. Prediction Effectiveness with Multiple Latency-Critical Applications

This section evaluates how Cloud White behaves when running two and three VMs
with latency-critical applications. For this purpose, we have chosen img-dnn, silo, and

2silo 40% has a shorter execution time since higher time resulted in QoS violation.
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Figure 8.10: Normalized GIPS and performance degradation (i.e., 95th tail latency) of experiments
performed with 2 VMs executing img-dnn and silo as the victim (V) and inflicting (I) VMs (plots

a and b) and vice-versa (plots c and d).

specjbb. The first two applications were chosen since they exhibited high sensitivity
(img-dnn, see Figure 8.8a) and low sensitivity (silo, see Figure 8.8c) to the interfer-
ence. For the three VMs experiments, specjbb was added with an inflicting role since
it presents a significant consumption of shared resources and performs a high QPS (re-
sults shown in Chapter 7). Thus, it introduces high pressure and interference.

The main objective is to check Cloud White’s two major design issues: i) distinguish the
victim VM and, ii) accurately estimate its performance degradation. Although we have
tested up to three VMs concurrently running latency-critical workloads, Cloud White
is not limited to three. Notice, however, that in real public systems, not many latency-
critical workloads are co-located in the same node due to their QoS requirements, so it is
not realistic to test a high number of latency-critical workloads.

Two latency-critical applications. This section analyzes Cloud White’s behavior when
running two latency-critical applications. To this end, we followed the methodology
(mapping of VMs to VCPUs and the way in which the interference is introduced) de-
scribed in Section 8.5.1. Figure 8.10 shows the results for the first 150 seconds of two
experiments performed with the pair made by img-dnn and silo; in the first experiment,
img-dnn acts as the victim (constant 50% CPU load) and silo as the inflicting VM, and in
the second, both applications exchange the role (silo runs now with constant 30% CPU
load). The two upper plots (Figures 8.10a and 8.10b) show the results for the first exper-
iment. Figure 8.10a shows the normalized GIPS with respect to the steady scenario (first
50 seconds) before silo starts to increase its load. As already studied in Section 8.3, the

130



8.5 Cloud White Evaluation

0 25 50 75 100 125 150
Time (s)

0
1
2
3
4
5
6

No
rm

. G
IP

S

V-VM (img.)
I-VM (specjbb)

I-VM (silo)

(a) GIPS victim VM img-dnn

0 25 50 75 100 125 150
Time (s)

1.00
1.25
1.50
1.75
2.00

Pe
rf.

 d
eg

ra
da

tio
n

Real Predicted

(b) Performance victim VM img-dnn

0 25 50 75 100 125 150
Time (s)

0
1
2
3
4
5
6

No
rm

. G
IP

S

(c) GIPS victim VM silo

0 25 50 75 100 125 150
Time (s)

1.00
1.25
1.50
1.75
2.00

Pe
rf.

 d
eg

ra
da

tio
n

(d) Performance victim VM silo

Figure 8.11: Normalized GIPS and performance degradation (i.e., 95th tail latency) of experiments
performed with 3 VMs executing img-dnn, silo and specjbb as the victim (V) or inflicting (I)

VMs. In plots a and b, img-dnn is the victim, and in plots c and d, silo takes this role.

GIPS of the victim VM (i.e., img-dnn) remain almost constant if the load experiences no
variations, while the GIPS increase if the load increases, as it happens for the inflicting
VM (i.e., silo). It can be observed that the load increase (from second 50 to second 110
approx.) matches the top of the curve of Figure 8.10b on the right side, which draws
the real and predicted performance degradation of img-dnn, the victim VM. Around the
second 60, Cloud White detects that the load of the co-running VM has increased sig-
nificantly and starts to estimate the effect it has on img-dnn’s performance. Notice that
after the second 110 approx., the load of the inflicting VM reduces, and so does the in-
terference it introduces until it reaches the steady load again. In this experiment, Cloud
White is able to estimate the performance degradation with an overall prediction error of
6% and an average dynamic prediction error of less than 10%. A similar reasoning can
be applied to the two bottom figures (Figures 8.10c and 8.10d), which correspond to the
second experiment where img-dnn is the inflicting application. In this case, the average
dynamic prediction error is roughly the same, but the overall prediction error slightly
lowers to 4%.

Three latency-critical applications. Finally, we analyze how Cloud White behaves with
three co-located VMs running latency-critical workloads. For illustrative purposes, Fig-
ure 8.11 presents the results for img-dnn, silo and specjbb. In the first experiment, img-
dnn is the victim application (constant 50% CPU load), and the other applications act as
inflicting (Figures 8.11a and 8.11b). In the second experiment, silo acts as the victim
application with a constant 20% CPU load (Figures 8.11c and 8.11d). As in the previous
section, the normalized GIPS of the victim VM remains around 1 for the whole execution,
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Figure 8.12: Comparison of the LLC occupancy and performance of img-dnn and stress_ng.

which allows Cloud White to identify it; meanwhile, the inflicting VMs show an increas-
ing trend of the GIPS, matching the load increase. For the steady-load victim VM, Cloud
White is able to accurately estimate the performance degradation in both cases, with an
overall prediction error of 7.5% in the case where img-dnn is the victim VM and 8% in the
case where silo is the victim VM and an average dynamic prediction error of 11% and
8.5%, respectively.

8.6 Comparison to Prior Work

Cloud White can detect the inter-VM interference i) considering VMs as “black boxes”
while ii) assuming these VMs run latency-critical applications. Combining both state-
ments together is one of the main contributions of this work.

This section compares our approach with the state-of-the-art approach Alita [29]. For
this purpose, we implemented Alita in our experimental platform. As our proposal, this
approach also handles VMs as black boxes; hence, the comparison concentrates on an-
alyzing the online interference detection capabilities and differences between both ap-
proaches.

Alita uses low-level information, although different from that used by Cloud White. The
major difference is not only in the metrics used but how the interference is detected.
On the one hand, Cloud White combines numerous hardware events in a multi-variable
regression model that estimates performance degradation considering resource interac-
tions. Alita simplifies the process of estimating degradation in three main shared re-
sources (LLC, memory bus, and CPU) in an independent way. Next, we compare the
effectiveness of Cloud White against Alita from the point of view of latency-critical ap-
plications.

LLC contention. Alita evaluates LLC contention based on the fair LLC quota each VM
should occupy, which is determined by the number of CPUs assigned to the VM. Nonethe-
less, as proved in Chapter 4, LLC occupancy is not a good metric to quantify contention
since it does not consider data reuse. Figure 8.12 presents a counter-example to illus-
trate this claim, where img-dnn is executed together with the stressor microbenchmark
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(stress_ng), each on a VM with 8 VCPUs. Img-dnn shows the same behavior across all
the execution while the microbenchmark occupies little LLC space (less than 1 MB) except
in the second third of the execution (from 60s to 110s) where it stresses the LLC, polluting
it with data with little locality (i.e., no reuse). In the first and last third of the execution,
img-dnn occupies most of the LLC space (over 10MB out of 16.5MB). If computed the fair
LLC quota, each VM should occupy 5.5MB (8/24 × 16.5). Thus, Alita detects img-dnn
is polluting the LLC when, in fact, it is not since the IPC of stress_ng (see Figure 8.12b)
is almost the same as that achieved when running alone. On the contrary, in the second
third of the execution, Alita does not detect the real LLC contention (see img-dnn’s tail
latency increase in Figure 8.12c) since both VMs have a balanced LLC consumption. As
opposed to Alita, Cloud White would properly detect this interference since i) img-dnn
would not be detected as inflicting since its GIPS do not vary, and ii) stress_ng would
be detected as inflicting in the middle phase where the GIPS increase.

Memory Bus contention. Alita quantifies memory bus contention by detecting split locks
[29], which deeply degrade the performance of latency-critical applications. This ap-
proach works well on specific workloads like malicious tenant programs. We do not
observe, however, split locks in the studied Tailbench applications. Moreover, when
memory bandwidth contention appears in regular workloads, it is not detected by Alita,
unlike Cloud White which considers memory-related metrics.

CPU contention. Contention in the CPU is quantified in terms of power. In the case of
CPU-intensive applications, Alita detects CPU contention since these applications achieve
a high IPC and present high circuitry activity, which significantly increases the dynamic
power and temperature. On the contrary, latency-critical applications do not stress the
CPU so much, and thus, we observed little increase in temperature (a few degrees Celsius
at most) when running such applications.

In summary, Alita is suited to work with specific workloads presenting a high interfer-
ence but cannot be considered as a general approach. In contrast, Cloud White is, to the
best of our knowledge, the only approach able to detect smooth interference caused by
inflicting VMs running latency-critical applications.

8.7 Applying Cloud White to Improve QoS

Cloud White aims to detect the inter-VM interference and quantify the performance
degradation suffered by the victim VM(s). This information can be leveraged by cloud
providers to carry out specific actions depending on the level of performance degrada-
tion. For instance, urgent solutions need to be carried out where a narrow margin exists
with SLA violations. The most straightforward action the cloud provider can carry out
in such a case is to move the identified victim VM to another less-loaded node. Notice
that if this VM is not properly identified, the cloud provider cannot know which VM to
move. Other more refined actions for not-so-urgent situations may be more appropri-
ate than migration since this process is resource-intensive [176, 36]. For VMs with large
image sizes, it can be very costly. These actions include analyzing the major shared pro-
cessor resource that bottlenecks the performance due to interference. For instance, in case
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it is the LLC or memory bandwidth the resource that experiences a higher utilization in-
crease, then the cloud provider can assign a larger share of it (e.g., LLC cache ways or
memory bandwidth) to the victim VM in order to raise its performance to the same level
it was before the inflicting action.

8.8 Summary

This chapter has presented an in-depth analysis of how performance degradation can be
identified and quantified in a realistic scenario with multiple co-located VMs, handling
VMs as black boxes and relying on metrics that can be easily monitored in the public
cloud.

The proposed approach, Cloud White, uses the GIPS metric as a novel way to discern
victim VM(s), which have a steady load over the last quanta. Still, their performance can
degrade due to the interference introduced by the inflicting VM(s). After that, it estimates
the performance degradation of the victim VM(s) using multivariable linear regression
models.

Results show that Cloud White can accurately identify the victim VM(s) when running
multiple VMs together. Moreover, we have shown that Cloud White can do so dynami-
cally by detecting the co-running VMs that experience load changes. Upon a load change,
Cloud White estimates the performance degradation of the victim VMs accurately.

To the best of our knowledge, this is the first approach that detects and quantifies inter-
VM interference in cloud systems running latency-critical applications.
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CHAPTER 9

Conclusions

This thesis has addressed the issue of resource management in server processors from
two main perspectives: high-performance computing (HPC) and cloud computing. In
the former, research has focused on managing two major system resources: the LLC and
the processor cores. We proposed techniques efficiently distribute resources among co-
running applications to improve system performance. In the latter, an extensive study
has been carried out to analyze the impact of the major system resources on cloud work-
loads. The results are used as the basis of an online interference detection technique
proposed.

This chapter outlines the main contributions of these proposals and identifies possible
future directions to continue the work. Finally, the scientific publications related to this
dissertation are listed.

9.1 Contributions

9.1.1. High-Performance Computing

Three main topics have been studied, focusing on the LLC and the processor cores. On
the one hand, The LLC is a major shared resource in current multi-core processors. To
ease the management of this resource, processor manufacturers started to include hard-
ware tools in commercial processors that allow distributing the LLC space among cores
or executing applications. In this regard, this dissertation has proposed cache partition-
ing management approaches that can be classified into two main topics according to the
cache design: inclusive and non-inclusive LLCs. On the other hand, another major shared
system resource is the processor cores. The management of this resource is critical for per-
formance as the number of cores continues to increase in each new many-core generation.
Next, these three topics are presented.

Topic 1. Partitioning inclusive LLC. Chapter 4 of this thesis has presented two cache
partitioning approaches to distribute the cache space among co-running applications dy-
namically. Firstly, an exhaustive characterization of the behavior of SPEC CPU 2006 and
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2017 applications is performed regarding the assigned LLC space and the interference at
this resource. The study has analyzed the relationship between the system performance
(IPC) and the LLC performance, considering the number of accesses to main memory
(MPKI_LLC), reuse (HPKI_LLC), and interference with other applications (occupancy).
Under these performance metrics, five cache behaviors, non-critical, sensitive, medium,
squanderer, and bully, have been found. However, applications can experience multiple
LLC behaviors throughout their execution which match the IPC phases of the applica-
tion. The study’s main contribution is that if LLC behaviors are not correctly identified,
the system performance can significantly drop. Based on these findings, this dissertation
proposed the Critical Aware (CA) and Critical-Phase Aware (CPA) LLC partitioning ap-
proaches. CA is a simple but effective approach considering only critical and non-critical
behaviors. On the contrary, CPA considers all five behaviors and is phase-change driven,
which reduces unnecessary checks on the behavior of applications and makes CPA a
much more general solution.

Experimental results show that CPA improves TT over Linux default behavior by about
40% in mixes without hurting the system performance. CPA avoids performance losses
CA obtains in mixes with problematic applications, improving over 20% the TT. Com-
pared to state-of-the-art approaches, CPA outperforms KPart (on average, TT by 30%)
and obtains similar TT as Dunn without sacrificing system ANTT and IPC. The main
results of this research have been published in the IEEE TPDS journal and the Euro-Par
2018 conference (see J1 and C1 publications in Section 9.3).

Topic 2. Partitioning non-inclusive LLC. LLC management has also been addressed in
Chapter 5 but considering the implications of a cache memory hierarchy with a non-
inclusive LLC, the new memory trend in modern server processors. This new design
makes the private L2 cache larger and the non-inclusive L3 cache smaller, shrinking
the per-core cache space. Additionally, there is more L2-L3 traffic as evicted L2 cache
blocks, whether dirty or clean, are written back to the L3 cache. These facts amplify the
harmful cache pollution phenomenon; thus, cache management becomes more critical in
non-inclusive caches. To tackle this issue, this thesis has proposed Cache-Poll, a cache-
partitioning approach designed to effectively contain pollution and distribute space con-
sidering the application’s sensitivity to the cache space. We extended the meaning of
pollution to refer to any scarcely referenced blocks that replace other useful blocks in the
L3 cache, identifying three main types of pollution. We used the metrics stalls caused
by L2 cache misses and hits in the L3 cache (HPKI_L3) to detect those applications more
sensitive to the cache space. Cache-Poll benefits from the non-inclusive L3 design by
leaving little room for cache-insensitive and polluting applications, as these have fewer
space requirements.

Experimental results in an Intel Skylake Xeon Silver 4116 processor with 54 12-application
(as many applications as the number of cores) workloads show that Cache-Poll achieves
significant performance gains over Linux OS and outperforms the state-of-the-art ap-
proach CPp f , as Cache-Poll works for a high number of cache-insensitive and sensitive
applications. TT gains are as high as 58% and around 24% on average. Unfairness gains
are up to 127% and, on average, by 44%. The main results of this research have been
published at ICPP 2022 conference (see C2 publication in Section 9.3).
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Topic 3. Spatial core allocation. The current design trend in high-performance pro-
cessors is to deploy many cores to match the increasing growth in the computational
demand of applications, which allows launching many threads/processes to speed up
computation. However, many parallel applications do not scale well with an increasing
number of threads/processes due to hardware and software issues. The research has con-
centrated on graph applications, which, unlike other scientific applications, process vast
amounts of data, which makes the default Linux time-sharing scheduler perform poorly.
To overcome time-sharing weaknesses, each application should be assigned to a fraction
of the processor cores, removing the intra-core interference. However, since applications
present significantly irregular scalability trends with increasing numbers of cores and
may exhibit different execution phases, the optimal number of cores can vary dynamically
at execution time. This Ph.D. thesis has proposed AFAIR (Chapter 6), a core-allocation
approach to co-locate multiple applications in the same server processor. AFAIR is a fair
spatial core-allocation policy aimed at maximizing system utilization when executing
multiple graph applications concurrently. AFAIR dynamically determines the number of
cores assigned to each application by balancing the consumption of the shared memory
resources. We implement a transparent method on top of the OpenMP runtime to allow
applications to adapt the number of threads spawned dynamically during their execution
to the number of assigned cores by AFAIR.

Experimental results show that AFAIR manages to obtain a near-optimal system fairness
(94% on average). Regarding system utilization, AFAIR outperforms the Linux time-
sharing scheduler and a state-of-the-art approach by reducing the total turnaround time
by over 40% on average and up to 80% regardless of the number of executing applica-
tions. AFAIR can be applied directly to any commodity server processor and malleable
workloads that allow dynamic adjustment. The main results of this research have been
submitted to PACT 2023 conference (see R1 submission in Section 9.3).

9.1.2. Cloud Computing

Cloud systems pose additional challenges compared to typical HPC systems. The com-
plex infrastructure of cloud systems, the nature of cloud applications, and resource effi-
ciency are some of the major concerns with such systems.

Topic 4. Experimental platform for controlled cloud research. A major issue researchers
need to face to start developing cloud research is building (or using) an experimental
platform that deploys the main features of real cloud systems (types of nodes, virtual-
ization, resource management). Existing solutions use testbeds to evaluate their work,
but these platforms do not jointly these features and, thus, do not provide representative
results. Chapter 3 presents Stratus, the experimental platform developed to carry out
controlled cloud research presented in this thesis. Unlike experimental setups used in ex-
isting work, our developed experimental platform complies with all the features of cloud
environments in terms of hardware and software deployment. One node of each type is
included (server, client, and node), as well as a representative software stack based on
a typical deployment of OpenStack. Additionally, it implements an application and re-
source manager that assists the researcher in the execution of experiments and resource
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management, which is key to designing QoS policies to mitigate inter-VM interference.
Stratus has been presented at PDP 2023 conference (see C3 publication in Section 9.3).

Topic 5. Workload characterization in the public cloud. Regarding cloud applications,
multi-threaded latency-critical applications represent an important subset of cloud work-
loads. Unlike compute-intensive applications, performance is defined in terms of latency
instead of throughput since these applications must respond to the input requests within
certain latency bounds to guarantee QoS (e.g., the 95th or 99th percentile latency) and pro-
vide a satisfactory user experience. Understanding how performance is affected by the
utilization of the major system resources is a primary concern of public cloud providers.
Chapter 7 characterizes the behavior, in terms of tail latency, of a set of representative
latency-critical applications when varying the load (queries per second) under different
conditions. Firstly, the impact of increasing the number of threads and different thread-
to-core allocation policies (single-task and multi-task) are analyzed, revealing that some
applications’ performance does not scale and shows a Hyper-Threading insensitive be-
havior. To identify these applications at run-time to improve resource utilization, an anal-
ysis of the major system resource consumption was carried out, concluding that applica-
tions with higher resource requirements can be identified by checking the CPU utiliza-
tion and memory bandwidth trend with an increasing number of threads. The previous
analysis is performed considering the applications running alone in the system. How-
ever, cloud systems collocate multiple applications in the same server node, so they must
share the main system resource. To assess the performance in this situation, we analyze
the impact of reducing the LLC, memory bandwidth, and disk bandwidth using resource
partitioning tools available in commercial processors. Results show that enough resource
share should be provided to sustain performance, especially the memory and disk band-
width which correlate strongly with the performance. The main results of this research
have been published FGCS journal (see J2 publication in Section 9.3).

Topic 5. Inter-VM interference in the public cloud. To avoid QoS violations due to
inter-VM interference, cloud providers typically adopt an overprovisioning strategy, as-
signing resources in excess to each VM to prevent degradation. However, this strategy
results in poor resource utilization. Accurately estimating performance degradation due
to inter-VM interference would allow cloud providers to improve resource utilization
while meeting applications’ QoS requirements. Chapter 8 proposes Cloud White, an
approach that detects and accurately estimates inter-VM interference in scenarios with
multiple co-located latency-critical VMs. This is especially challenging since the perfor-
mance of latency-critical is defined by the tail latency (e.g., 95th percentile), which has a
non-linear behavior and is more sensitive to interference. Furthermore, VMs are treated
as black boxes, meaning no information about the running VMs is provided. With Cloud
White, the VM is not a black box anymore, but its behavior (and introduced interference)
is revealed, becoming “white” or Cloud White. Cloud White works in two main stages.
Firstly, the victim and inflicting VM(s) are discerned, considering whether or not the load
is steady using the GIPS metric. After that, it estimates the performance degradation of
the victim VM(s) using multi-variable linear regression models. Experimental results
show that Cloud White is able to identify the victim VM(s) in scenarios of multiple run-
ning VMs and estimate the performance degradation they experience, with a total error
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deviation of about 5% and an average dynamic prediction error of less than 10%. To the
best of our knowledge, this is the first approach that detects and quantifies inter-VM in-
terference in cloud systems running latency-critical applications. Cloud White approach
has been published in FGCS journal (see J3 publication in Section 9.3).

9.2 Future Directions

9.2.1. Evolving Systems and Applications

The current trend in server processors found in data centers is implementing multi-
socket NUMA nodes with increasing cores. This opens a new research spectrum as a
higher number of cores allows the execution of a higher number of critical high resource-
demanding applications. In this regard, emerging workloads, such as big data, artificial
intelligence, and graph, are becoming more prevalent in current data centers.

The fact that NUMA nodes comprise multiple sockets implies an additional decision-
making step for the resource manager, as applications must first be scheduled to one
of the sockets. Then, for each socket, resources are distributed among the scheduled
applications.

9.2.2. Future Research Topics

Research needs to be defined considering emerging workloads, application domains, and
the processor and memory system trend.

Regarding LLC partitioning, the research can address approaches in multiple sockets and
nodes, taking into account both main memory bandwidth restrictions and prefetch gains
considering the overall workload. Notice that the systems described above will impose
new challenges as new latencies (e.g., NUMA), memory constraints, and a higher number
of critical applications must be considered. Regarding core allocation, systems with more
cores will result in higher power consumption and heat dissipation. Therefore, resource
management strategies will need to take into consideration energy efficiency in addition
to system performance.

Concerning cloud computing, dynamic resource provisioning is currently a hot research
topic. The information provided by the proposed prediction model in this dissertation,
Cloud White, can be leveraged by a resource manager to take corrective actions. That
is, Cloud White can be used to detect VMs suffering low performance due to inter-VM
interference. Then, a resource manager can be designed to analyze the resources that bot-
tleneck the performance and partition them accordingly (e.g., limit LLC to the inflicting
VMs).

The approaches proposed in this thesis are performed using heuristics and multi-variable
regression models. Although promising experimental results are obtained, these ap-
proaches require an arduous experimental process to establish thresholds or build pre-
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dictive models when new conditions are encountered (e.g., applications with an unknown
behavior). To address these weaknesses, as for future work, we plan to implement ma-
chine learning methods into Stratus to build learning models. Applying machine learn-
ing would allow thresholds or prediction models to be dynamically adjusted and learn
from data collected in the running experiments.

9.3 Publications

Below are listed the works exclusively related to this thesis. The contributions of the
Ph.D. candidate to the works are the design and implementation of the proposed ap-
proaches, conducting and analyzing the experiments, writing the paper drafts, and pre-
senting the papers at the conferences. The co-authors of these works have collaborated
in designing the proposals, analyzing the experimental results, and writing the papers.
Their valuable advice has enriched the work carried out in this Ph.D. Thesis.

9.3.1. Published Papers

The following papers were submitted and accepted in international journals, interna-
tional conferences, and domestic conferences.

International Journals

J1. Lucia Pons, Julio Sahuquillo, Vicent Selfa, Salvador Petit, Julio Pons. “Phase-Aware
Cache Partitioning to Target Both Turnaround Time and System Performance”. In
IEEE Transactions on Parallel and Distributed Systems (Q2), vol. 31, no. 1, pp. 2556-2568,
2020.

J2. Lucia Pons, Josué Feliu, José Puche, Chaoyi Huang, Salvador Petit, Julio Pons, María
E. Gómez, Julio Sahuquillo. “Effect of Hyper-Threading in Latency-Critical Multi-
threaded Cloud Applications and Utilization Analysis of the Major System Resources”.
In Future Generation Computer Systems (Q1), vol. 131, pp. 194-208, 2022.

J3. Lucia Pons, Josué Feliu, Julio Sahuquillo, María E. Gómez, Salvador Petit, Julio Pons,
Chaoyi Huang. “Cloud White: Detecting and Estimating QoS Degradation of Latency-
Critical Workloads in the Public Cloud”. In Future Generation Computer Systems (Q1),
vol. 138, pp. 13-25, 2023.

International Conferences

C1. Lucia Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit, Julio Pons. “Improving
System Turnaround Time with Intel CAT by Identifying LLC Critical Applications”.
In Proceedings of the 24th International European Conference on Parallel and Distributed
Computing (Euro-Par), pp. 603-615, Turin, Italy, 2018. CORE A.

C2. Lucia Pons, Julio Sahuquillo, Salvador Petit, Julio Pons. “Cache-Poll: Containing
Pollution in Non-Inclusive Caches Through Cache Partitioning”. In Proceedings of the
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51st International Conference on Parallel Processing (ICPP), pp. 33:1-33:11, virtual, 2022.
CORE A.

C3. Lucia Pons, Salvador Petit, Julio Pons, María E. Gómez, Chaoyi Huang and Julio
Sahuquillo. “Stratus: A Hardware/Software Infrastructure for Controlled Cloud Re-
search”. In Proceedings of 31st Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp. 299-306, Naples, Italy, 2023. This publication
received the Best Paper Award in the Special Session “Cloud Computing on Infras-
tructure as a Service and its Applications”. CORE C.

Domestic Conferences and Posters

• Lucía Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit, María E. Gómez, Julio
Pons. “The memory wall in multicore processors: mitigating the LLC interference
with Intel CAT”. Poster presented in Informática para Tod@s, Madrid, Spain, 2018.

• Lucía Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit, Julio Pons. “Mejora del
Turnaround Time con la Tecnología CAT de Intel”. In Actas de las XXIX Jornadas de
Paralelismo, pp. 153-159, Teruel, Spain, 2018.

• Lucía Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit, Julio Pons. “Critical-
ity Aware LLC Partitioning: Reducing System Turnaround Time with Intel CAT”.
Poster presented in Informática para Tod@s, A Coruña, Spain, 2019.

• Lucía Pons, Josué Feliu, Salvador Petit, Julio Pons, María E. Gómez y Julio Sahuquillo.
“Caracterización de las aplicaciones de latencia crítica Tailbench en un entorno
cloud”. In Actas de las XXXI Jornadas de Paralelismo, pp. 503-512, Málaga, Spain,
2021.

• Lucia Pons, Josué Feliu, Chaoyi Huang, Salvador Petit, Julio Pons, María E. Gómez,
Julio Sahuquillo. “Exploiting Hyper-Threading in the Public Cloud”. In Proceedings
of the 18th International Summer School on Advanced Computer Architecture and Com-
pilation for High-performance Embedded Systems (ACACES), pp. 147-150, Fiuggi, Italy,
2022.

• Lucía Pons, Julio Sahuquillo, Salvador Petit, Julio Pons. “Caracterización de las
prestaciones y la polución en las caches no inclusivas”. In Actas de las XXXII Jornadas
de Paralelismo, pp. 345-351, Alicante, Spain, 2022.

9.3.2. Papers Under Review

The following paper was submitted and is currently under review:

R1. Lucia Pons, Julio Sahuquillo, and Timothy M. Jones. “AFAIR: A Fair Spatial Sched-
uler for Accelerating Graph Workloads on Commodity Servers”. Submitted to 32nd
International Conference on Parallel Architectures and Compilation Techniques (PACT 2023).
CORE B.
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The research skills acquired during the development of this thesis have helped to propose
a new approach that aids Computer Architecture Instructors when teaching SMT con-
cepts. In this regard, we propose teaching SMT topics in real hardware under machine-
learning workloads. The approach, as well as the illustrative experimental results, have
been submitted to the Elsevier Advance in Computers journal:

• Lucia Pons, Marta Navarro, Salvador Petit, Julio Pons, María E. Gómez, and Julio
Sahuquillo. “SMT Efficiency in Supervised ML Methods: A Throughput and Inter-
ference Analysis”. Submitted to Elsevier Advances in Computers journal (Q2).

The results of this work have not been included as part of this manuscript as we preferred
to keep the manuscript focused on research proposals.

9.3.3. Unsuccessful Attempts

Failure is inevitable in growth and essential to success, especially when pursuing a
research career. The valuable feedback provided by the reviewers has contributed to
improving the quality of the work and helped me develop essential skills in research,
such as self-improvement and self-criticism.

To conclude, we would like to list the rejected submitted papers:

• Lucia Pons, Josué Feliu, José Puche, Chaoyi Huang, Salvador Petit, Julio Pons,
María E. Gómez, Julio Sahuquillo. “Understanding Cloud Workloads Performance
in a Production like Environment”. Submitted to Journal of Parallel and Distributed
Computing, October 2020.

• Lucia Pons, Josué Feliu, Julio Sahuquillo, María E. Gómez, Salvador Petit, Julio
Pons, Huang Chaoyi. “Cloud White: A Production System Approach for Estimat-
ing QoS Degradation in the Public Cloud”, submitted to the 28th IEEE International
Symposium on High-Performance Computer Architecture (HPCA 2022).

• Lucia Pons, Josué Feliu, Julio Sahuquillo, María E. Gómez, Salvador Petit, Julio
Pons, Huang Chaoyi. “Cloud White: A Production System Approach for Estimat-
ing QoS Degradation in the Public Cloud”, submitted to the 49th International Sym-
posium on Computer Architecture (ISCA 2022).

• Lucia Pons, Julio Sahuquillo, Salvador Petit, Julio Pons. “Cache-Poll: Contain-
ing Pollution in Non-Inclusive Caches Through Cache Partitioning”. Submitted
to ACM International Conference on Supercomputing (ICS 2022).

• Lucia Pons, Julio Sahuquillo, Timothy Jones. “GRASS: Accelerating Graph Work-
loads on Commodity Servers through Spatial Scheduling”, submitted to the 50th
International Symposium on Computer Architecture (ISCA 2023).
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Transparently Identifying and Managing Performance Interference in Virtualized
Environments,” in Proceedings of USENIX ATC, 2013, pp. 219–230.

149



REFERENCES

[92] N. Vasic, D. M. Novakovic, S. Miucin, D. Kostic, and R. Bianchini, “DejaVu: accel-
erating resource allocation in virtualized environments,” in Proceedings of ASPLOS,
2012, pp. 423–436.

[93] R. Nishtala, P. Carpenter, V. Petrucci, and X. Martorell, “Hipster: Hybrid Task Man-
ager for Latency-Critical Cloud Workloads,” in Proceedings of HPCA, 2017, pp. 409–
420.

[94] H. Moradi, W. Wang, and D. Zhu, “Online Performance Modeling and Prediction
for Single-VM Applications in Multi-Tenant Clouds,” IEEE Transactions on Cloud
Computing, vol. 11, no. 1, pp. 97–110, 2021.

[95] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-Flux: Precise Online QoS Man-
agement for Increased Utilization in Warehouse Scale Computers,” in Proceedings
of ISCA, 2013, pp. 607–618.

[96] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: managing performance in-
terference effects for QoS-aware clouds,” in Proceedings of EuroSys, Apr. 2010, pp.
237–250.

[97] M. Melo Alves and L. M. d. A. Drummond, “A Multivariate and Quantitative
Model for Predicting Cross-Application Interference in Virtual Environments,”
Journal of Systems and Software, vol. 128, no. C, pp. 150–163, 2017.

[98] D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime interference-aware pre-
dictive monitoring for modern multi-tenant systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 1, pp. 184–198, 2020.

[99] R. Nishtala, V. Petrucci, P. Carpenter, and M. Sjalander, “Twig: Multi-Agent Task
Management for Colocated Latency-Critical Cloud Services,” in Proceedings of
HPCA, 2020, pp. 167–179.

[100] P. Alcorn, “Intel Xeon Platinum 8176 Scalable Processor Review
[Online],” Available: https://www.tomshardware.com/reviews/
intel-xeon-platinum-8176-scalable-cpu,5120-4.html, 2023, accessed: 2023-02-
20.

[101] A. Kumar and M. Trivedi, “Intel Xeon Scalable Processor Architecture Deep Dive,”
2017, presentation at Intel Press Workshops.

[102] “Google Cloud Compute Engine - CPU platforms [Online],” Available: https://
cloud.google.com/compute/docs/cpu-platforms, 2022, accessed: 2022-11-14.

[103] “Huawei Elastic Cloud Server (ECS) [Online],” Available: https://www.
huaweicloud.com/intl/en-us/product/ecs.html, 2022, accessed: 2022-11-14.

[104] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn, “Ceph: A Scalable, High-
Performance Distributed File System,” in Proceedings of OSDI, 2006, pp. 307–320.

[105] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “OpenStack: Toward an Open-source So-
lution for Cloud Computing,” International Journal of Computer Applications, vol. 55,
no. 3, pp. 38–42, Mar. 2012.

150

https://www.tomshardware.com/reviews/intel-xeon-platinum-8176-scalable-cpu,5120-4.html
https://www.tomshardware.com/reviews/intel-xeon-platinum-8176-scalable-cpu,5120-4.html
https://cloud.google.com/compute/docs/cpu-platforms
https://cloud.google.com/compute/docs/cpu-platforms
https://www.huaweicloud.com/intl/en-us/product/ecs.html
https://www.huaweicloud.com/intl/en-us/product/ecs.html


REFERENCES

[106] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the Linux virtual
machine monitor,” in Proceedings of the Linux symposium, vol. 1, no. 8, 2007, pp.
225–230.

[107] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS operating systems
review, vol. 37, no. 5, pp. 164–177, 2003.

[108] “Amazon Web Services [Online],” Available: https://aws.amazon.com/ec2/faqs/
?nc1=h_ls, 2022, accessed: 2022-11-28.

[109] “Google Compute Engine FAQ [Online],” Available: https://cloud.google.com/
compute/docs/faq, 2022, accessed: 2022-11-28.

[110] “libvirt: The virtualization API [Online],” Available: https://libvirt.org, 2022, ac-
cessed: 2022-11-28.

[111] “QEMU [Online],” Available: https://www.qemu.org, 2022, accessed: 2022-11-28.

[112] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang,
J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The Design and Implementation
of Open vSwitch,” in Proceedings of NSDI, May 2015, pp. 117–130.

[113] R. Russell, “virtio: towards a de-facto standard for virtual I/O devices,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103, 2008.

[114] “DPDK [Online],” Available: https://www.dpdk.org/, 2022, accessed: 2022-11-28.

[115] A. C. de Melo, “Performance counters on Linux,” in Linux Plumbers Conference, vol.
118, 2009.

[116] B. Cai, K. Li, L. Zhao, and R. Zhang, “Less Provisioning: A Hybrid Resource Scal-
ing Engine for Long-Running Services With Tail Latency Guarantees,” IEEE Trans-
actions on Cloud Computing, vol. 10, no. 3, pp. 1941–1957, 2022.

[117] Andrew H., Abbasi, Khawar M., Marcel C., “Introduction to Memory
Bandwidth Allocation,” Available at https://software.intel.com/en-us/articles/
introduction-to-memory-bandwidth-allocation, 2019.

[118] Michael Bayer et al., “Mako Templates [Online],” Available: http://www.
makotemplates.org/, 2019, accessed: 2022-11-29.

[119] D. L. Mills, “Internet time synchronization: the network time protocol,” IEEE Trans-
actions on communications, vol. 39, no. 10, pp. 1482–1493, 1991.

[120] S. Chen, A. Jin, C. Delimitrou, and J. F. Martínez, “ReTail: Opting for Learning
Simplicity to Enable QoS-Aware Power Management in the Cloud,” in Proceedings
of HPCA, 2022, pp. 155–168.

[121] R. Jia, Y. Yang, J. Grundy, J. Keung, and L. Hao, “A systematic review of scheduling
approaches on multi-tenancy cloud platforms,” Information and Software Technology,
vol. 132, pp. 1–16, 2021.

151

https://aws.amazon.com/ec2/faqs/?nc1=h_ls
https://aws.amazon.com/ec2/faqs/?nc1=h_ls
https://cloud.google.com/compute/docs/faq
https://cloud.google.com/compute/docs/faq
https://libvirt.org
https://www.qemu.org
https://www.dpdk.org/
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
https://software.intel.com/en-us/articles/introduction-to-memory-bandwidth-allocation
http://www.makotemplates.org/
http://www.makotemplates.org/


REFERENCES

[122] Z. Wang, C. Xu, K. Agrawal, and J. Li, “Adaptive scheduling of multiprogrammed
dynamic-multithreading applications,” Journal of Parallel and Distributed Computing,
vol. 162, pp. 76–88, 2022.

[123] Standard Performance Evaluation Corporation, SPEC CPU 2006 [Online], Available:
http://spec.org/cpu2006, accessed: 2018-03-30.

[124] Standard Performance Evaluation Corporation, SPEC CPU 2017 [Online], Available:
http://spec.org/cpu2016, accessed: 2018-03-30.

[125] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evaluation method-
ology for latency-critical applications,” in Proceedings of IISWC, 2016, pp. 1–10.

[126] R. Baeza-Yates, “Applications of web query mining,” in Proceedings of ECIR, 2005,
pp. 7–22.

[127] D. G. Feitelson, Workload modeling for computer systems performance evaluation. Cam-
bridge University Press, 2015.

[128] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[129] K. Luo, J. Gummaraju, and M. Franklin, “Balancing thoughput and fairness in SMT
processors,” in Proceedings of ISPASS, 2001, pp. 164–165.

[130] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout, “Fairness-
aware scheduling on single-ISA heterogeneous multi-cores,” in Proceedings of
PACT, 2013, pp. 177–187.

[131] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance,” IEEE Computer Architecture Let-
ters, vol. 13, no. 2, pp. 93–96, 2014.

[132] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for Latency-Critical Tasks on Shared
Multicore Systems,” in Proceedings of ASPLOS, 2016, pp. 33–47.

[133] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection tech-
niques,” in Proceedings of MICRO, Dec 2003, pp. 217–227.

[134] G. L. T. Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. da Costa, “A User
Friendly Phase Detection Methodology for HPC Systems’ Analysis,” in Proceedings
of GREENCOM-ITHINGS-CPSCOM, 2013, pp. 118–125.

[135] A. Sembrant, D. Eklov, and E. Hagersten, “Efficient software-based online phase
classification,” in Proceedings of IISWC, Nov 2011, pp. 104–115.

[136] X. Liao, R. Guo, D. Yu, H. Jin, and L. Lin, “A Phase Behavior Aware Dynamic
Cache Partitioning Scheme for CMPs,” International Journal of Parallel Programming,
vol. 44, pp. 68–86, 02 2016.

[137] J. Miller, “Short Report: Reaction Time Analysis with Outlier Exclusion: Bias Varies
with Sample Size,” Journal of Experimental Psychology, vol. 43, no. 4, pp. 907–912,
1991.

152

http://spec.org/cpu2006
http://spec.org/cpu2016


REFERENCES

[138] J. Hofmann, C. L. Alappat, G. Hager, D. Fey, and G. Wellein, “Bridging the archi-
tecture gap: abstracting performance-relevant properties of modern server proces-
sors,” arXiv preprint arXiv:1907.00048, 2019.

[139] T. Gruber and J. Hammer, “L2 L3 MEM traffic on Intel Skylake SP
CascadeLake SP,” Available at https://github.com/RRZE-HPC/likwid/wiki/
L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP, 2019, accessed: 2022-04-
20.

[140] A. Yasin, “A Top-Down method for performance analysis and counters architec-
ture,” in Proceedings of ISPASS, 2014, pp. 35–44.

[141] J. D. McCalpin, “HPL and DGEMM Performance Variability on the Xeon Platinum
8160 Processor,” in Proceedings of SC18, 2018, pp. 225–237.

[142] K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout, “Fairness-
aware Scheduling on single-ISA Heterogeneous Multi-cores,” in Proceedings of
PACT, 2013, pp. 177–188.

[143] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One Tril-
lion Edges: Graph Processing at Facebook-Scale,” in Proceedings of VLDB Endow-
ment, 2015, pp. 1804–1815.

[144] L. Quick, P. Wilkinson, and D. Hardcastle, “Using Pregel-like Large Scale Graph
Processing Frameworks for Social Network Analysis,” in Proceedings of ASONAM,
2012, pp. 457–463.

[145] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S.-M.-R. Beheshti, A. Barnawi,
and S. Sakr, “Large scale graph processing systems: survey and an experimental
evaluation,” Cluster Computing, vol. 18, no. 3, pp. 1189–1213, 2015.

[146] W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and L. Zhou, “Tux²: Dis-
tributed Graph Computation for Machine Learning,” in Proceedings of NSDI, 2017,
pp. 669–682.

[147] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
Convolutional Neural Networks for Web-Scale Recommender Systems,” in Pro-
ceedings of KDD, 2018, pp. 974–983.

[148] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework for
Shared Memory,” in Proceedings of PPoPP, 2013, pp. 135–146.

[149] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-Stream: Edge-Centric Graph Pro-
cessing Using Streaming Partitions,” in Proceedings of SOSP, 2013, pp. 472–488.

[150] S. Grossman, H. Litz, and C. Kozyrakis, “Making Pull-Based Graph Processing
Performant,” in Proceedings of PPoPP, 2018, pp. 246–260.

[151] F. McSherry, M. Isard, and D. G. Murray, “Scalability! But at What Cost?” in Pro-
ceedings of HOTOS, 2015, p. 14.

153

https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP
https://github.com/RRZE-HPC/likwid/wiki/L2-L3-MEM-traffic-on-Intel-Skylake-SP-CascadeLake-SP


REFERENCES

[152] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically Efficient Parallel Graph
Algorithms Can Be Fast and Scalable,” ACM Transactions on Parallel Computing
(TOPC), vol. 8, no. 1, pp. 1–70, 2021.

[153] C. S. Pabla, “Completely fair scheduler,” Linux Journal, vol. 2009, no. 184, p. 4, 2009.

[154] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel
programming in OpenMP. Morgan kaufmann, 2001.

[155] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bronevetsky, and S. Bagchi, “Pythia:
Improving Datacenter Utilization via Precise Contention Prediction for Multiple
Co-Located Workloads,” in Proceedings of Middleware, 2018, pp. 146–160.

[156] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu,
S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards,
V. Bedekar, S. Mainali, R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, and
L. Rigas, “Windows Azure Storage: A Highly Available Cloud Storage Service with
Strong Consistency,” in Proceedings of SOSP, 2011, pp. 143–157.

[157] L. A. Barroso and U. Hölzle, “The case for energy-proportional computing,” Com-
puter, vol. 40, no. 12, pp. 33–37, 2007.

[158] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,” Communications
of the ACM, vol. 61, no. 8, pp. 65–72, 2018.

[159] D. A. Menasce, “QoS issues in web services,” IEEE internet computing, vol. 6, no. 6,
pp. 72–75, 2002.

[160] F. Raimondi, J. Skene, and W. Emmerich, “Efficient online monitoring of web-
service SLAs,” in Proceedings of SIGSOFT, 2008, pp. 170–180.

[161] W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,”
Journal of the American statistical association, vol. 74, no. 368, pp. 829–836, 1979.

[162] J. D. Triveri, “LOESS - Nonparametric Scatterplot Smooth-
ing in Python [Online],” Available: http://www.jtrive.com/
loess-nonparametric-scatterplot-smoothing-in-python.html, 2018, accessed:
2020-12-21.

[163] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore key-value
storage,” in Proceedings of EuroSys, 2012, pp. 183–196.

[164] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden, “Speedy transactions in mul-
ticore in-memory databases,” in Proceedings of SOSP, 2013, pp. 18–32.

[165] J. R. Bulpin and I. Pratt, “Hyper-Threading Aware Process Scheduling Heuristics,”
in Proceedings of ATEC, 2005, pp. 399–402.

[166] “Intel RDT Library [online],” Available: https://github.com/intel/intel-cmt-cat/
tree/master/lib, accessed: 2019-08-26.

154

http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-in-python.html
http://www.jtrive.com/loess-nonparametric-scatterplot-smoothing-in-python.html
https://github.com/intel/intel-cmt-cat/tree/master/lib
https://github.com/intel/intel-cmt-cat/tree/master/lib


REFERENCES

[167] “Kunpeng BoostKit for Virtualization [Online],” Huawei Technologies Co., Ltd.,
Tech. Rep. Issue 11, June 2021. [Online]. Available: https://support.huaweicloud.
com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf

[168] Canonical Ltd, “Ubuntu manpage: stress-ng [Online],” Available: https://
manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html, 2020, accessed:
2020-09-30.

[169] ESnet, NLANR, DAST, “iPerf tool for network bandwidth measurements [On-
line],” Available: https://iperf.fr/, 2020, accessed: 2020-09-30.

[170] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, “Tales of the Tail: Hardware,
OS, and Application-Level Sources of Tail Latency,” in Proceedings of SoCC, 2014,
pp. 1–14.

[171] S. Seabold and J. Perktold, “statsmodels: Econometric and statistical modeling with
python,” in Proceedings of SCIPY, 2010, pp. 92–96.

[172] J. Wakefield, “Non-linear regression modelling and inference,” in Methods And
Models In Statistics: In Honour of Professor John Nelder, FRS. World Scientific, 2004,
pp. 119–153.

[173] S. Dodd, A. Bassi, K. Bodger, and P. Williamson, “A comparison of multivariable
regression models to analyse cost data,” Journal of Evaluation in Clinical Practice,
vol. 12, no. 1, pp. 76–86, 2006.

[174] M. Valbuena, D. Sarabia, and C. de Prada, “A Reduced-Order Approach of Dis-
tributed Parameter Models Using Proper Orthogonal Decomposition,” in Proceed-
ings of ESCAPE, 2011, pp. 26–30.

[175] E. López-González and M. Ruiz-Soler, “Análisis de datos con el Modelo Lineal
Generalizado. Una aplicación con R,” Revista española de pedagogía, vol. 69, no. 248,
pp. 59–80, 2011.

[176] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, A. Yousafzai, and F. Xia, “A sur-
vey on virtual machine migration and server consolidation frameworks for cloud
data centers,” Journal of Network and Computer Applications, vol. 52, pp. 11–25, 2015.

155

https://support.huaweicloud.com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf
https://support.huaweicloud.com/intl/en-us/twp-kunpengcpfs/kunpengcpfs-twp.pdf
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://iperf.fr/



	Abstract
	Resumen
	Resum
	List of Acronyms
	Contents
	Introduction
	Resource Sharing in Server Processors
	Cloud Computing Paradigm
	Objectives of the Thesis
	Main Contributions of the Thesis
	Thesis Outline

	State of the Art
	Resource Management Approaches
	Emerging Workloads in Server Processors
	Interference in Cloud Systems

	Experimental Framework
	Experimental Platforms
	Cloud Computing Infrastructure
	Resource and Application Manager
	Benchmarks
	Metrics

	I High-Performance Computing (HPC)
	Inclusive LLC Resource Management 
	Application Sensitivity to the LLC Space
	Dynamic Behavior of Applications
	Critical-Aware Approach
	Critical Phase-Aware Proposal
	Experimental Setup
	Evaluation
	Summary

	Non-Inclusive LLC Resource Management
	Motivation
	Background
	Characterizing L3 Cache Behavior
	Cache-Poll Approach
	Experimental Setup
	Evaluation
	Summary

	Core Resource Management
	Motivation: Weaknesses of the Default Linux Time-Sharing Scheduler with Graph Workloads
	Experimental Setup
	Graph Applications' Characterization
	Graph Workloads Spatial Scheduler
	Performance Evaluation
	Summary


	II Cloud Computing
	Workload Characterization in the Public Cloud
	Experimental Methodology
	QoS and Tail Latency Analysis
	Major System Resource Consumption Analysis and Findings' Correlation
	Analysis of Inter-VM Interference at the Main Shared Resources
	Summary

	Detecting and Estimating Inter-VM Interference in the Public Cloud
	Motivation
	Experimental Setup
	Cloud White: Detecting the Inter-VM Interference
	Cloud White: Modeling Performance Degradation
	Cloud White Evaluation
	Comparison to Prior Work
	Applying Cloud White to Improve QoS
	Summary


	Conclusions
	Contributions
	Future Directions
	Publications

	References

