Computers & Security 121 (2022) 102855

Computers
& Security

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A Taxonomy for Threat Actors’ Persistence Techniques N

Check for
updates

Antonio Villalén-Huerta®*, Hector Marco-Gisbert®, Ismael Ripoll-Ripoll®

aS2 Grupo, Ramiro de Maeztu 7, Valencia, 46022 Spain
b Department of Computing Engineering, Universitat Politécnica de Valéncia, Camino de Vera s/n, Valencia, 46022 Spain

ARTICLE INFO ABSTRACT

Article history:

Received 18 March 2022
Revised 22 June 2022
Accepted 21 July 2022
Available online 26 July 2022

The main contribution of this paper is to provide an accurate taxonomy for Persistence techniques, which
allows the detection of novel techniques and the identification of appropriate countermeasures. Persis-
tence is a key tactic for advanced offensive cyber operations. The techniques that achieve persistence
have been largely analyzed in particular environments, but there is no suitable platform-agnostic model
to structure persistence techniques. This lack causes a serious problem in the modeling of activities of ad-
Keywords: vanced threat actors, hindering both their detection and the implementation of countermeasures against
TTP their activities. In this paper we analyze previous work in this field and propose a novel taxonomy for
Persistence persistence techniques based on persistence points, a key concept we introduce in our work as the basis
Advanced Persistent Threat for the proposed taxonomy. Our work will help analysts to identify, classify and detect compromises, sig-
Malware nificantly reducing the amount of effort needed for these tasks. It follows a logical structure that can be
MITRE ATT&CK easy to expand and adapt, and it can be directly used in commonly accepted industry standards such as

MITRE ATT&CK.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Persistence refers to the capability of a malware to survive to
changes and interrupts, including reboots, in a compromised sys-
tem. It is a widely used term in malware research, so most of its
definition are malware-related; for example, Sikorski and Honig
(2012) define persistence as a behaviour of malware by which it
tries to be in a compromised system for a long time. A more accu-
rate definition is provided by Gittins and Soltys (2020), where the
authors define persistence as a method by which malware survives
a reboot of the victim operating system. Persistence is an impor-
tant attribute that malware writers consider in its design; the rea-
son is simple (Wei et al., 2017): the longer the malware can stay in
the victims device, the more value it generates for the adversary.

However, persistence is not malware-specific: advanced threat
actors do not use malware in all operations, but they also try to
maintain their persistence in a targeted victim. In fact, persistence
is a key tactic for these actors; when an Advanced Persistent Threat
(APT) compromises a victim, one of the first steps that it will
execute is to guarantee its foothold on the targeted infrastructure,
maintaining the compromise upon system reboots.

* Corresponding author.
E-mail addresses: antonio.villalon@s2grupo.es (A.
iripoll@disca.upv.es (H. Marco-Gisbert).

Villalén-Huerta),

https://doi.org/10.1016/j.cose.2022.102855

Considering persistence as a key goal, persistence techniques
are those that allow a threat actor to achieve it; they have been
largely analyzed, but we have not found a clear structure for
them, being most of the approaches architecture and operating
system (OS) dependent. This fact hinders the identification of com-
promises out of the analyzed technologies. This paper provides
a platform-agnostic taxonomy for persistence techniques, suit-
able for their identification and characterization. This taxonomy
is based on a concept we introduce in our work, the persistence
point: the location within the system where a persistence artifact
is stored.

The contributions of this paper are the following ones:

 To provide an OS-independent taxonomy of persistence points,
thus allowing analysts to identify persistence techniques in all
platforms.

» To ease not only the detection of persistent artifacts but also
the identification of the capabilities of threat actors.

- To identify the most used persistence points, then determining
the most exploited system capabilities to achieve persistence
and establishing probabilities in order to prioritize investiga-
tions, where applicable.

The rest of the paper is organized as follows. The background,
Section 2, provides an introduction to cyber operations tactics and
techniques. In Section 3 we assess the problem of the lack of a
suitable structure for persistence techniques to help analysts in

0167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102855
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102855&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:antonio.villalon@s2grupo.es
mailto:iripoll@disca.upv.es
https://doi.org/10.1016/j.cose.2022.102855
http://creativecommons.org/licenses/by/4.0/

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

their investigations. Section 4 analyzes the prior work to identify
persistence approaches, and in Section 5 we propose a novel tax-
onomy for persistence points, as a direct way to structure tech-
niques and to identify a compromised system. In Section 6 we dis-
cuss the results of our work, comparing them with previous ap-
proaches and identifying improvements where applicable, as well
as future research lines. Finally, Section 7 summarizes the outcome
of the overall work.

2. Background

From an abstract point of view, Robert Axelrod et al. define
persistence of a resource (Axelrod and Iliev, 2014) as the proba-
bility that if you refrain from using it now, it will still be usable
in the next time period. When specifically dealing with malware,
persistence is defined (Kirillov et al., 2011) as a process by which
malware ensures continual execution on a system, independent of
low-level system events such as shutdowns and reboots.

Persistent malware is the one (Vogl et al., 2014) that makes per-
manent changes in memory and permanently changes the control
flow within a system such that it can continue to achieve its ob-
jective. This feature allows the malware to be aware of and to re-
act to changes in the compromised systems. Without persistence,
malware is severely limited, and consequently, its impact is also
limited; for this reason most threat actors, particularly advanced
ones, will establish persistence in their victims in order to achieve
an extended temporal effect for their operations.

In the context of advanced threat actors’ operations, persistence
is the tactic by which adversaries try to maintain their foothold on
a targeted infrastructure; this tactic comprises different techniques
that include any access, action, or configuration changes that allow
the attacker to achieve the tactic, such as replacing or hijacking
legitimate code or adding startup code. As we can see, this con-
cept of persistence as a tactic exceeds all technological -including
malware- considerations: persistence is defined as a key tactic for
threat actors, regardless of malware. To accomplish its goals, an ad-
vanced threat actor must guarantee its presence in a compromised
infrastructure: that is, in one or more compromised systems.

3. Problem statement

Persistence is a key tactic for advanced threat actors and even
for simple malware: the ability to control a compromised target
over time, while remaining unnoticed, is an essential to guaran-
tee the success of an offensive operation. However, when analyzing
the capabilities that these threat actors develop in their operations,
all research is focused on particular approaches related to specific
technologies. In this sense, Microsoft Windows environments, as
the most abused platform, have been largely analyzed in order to
identify the locations where the artifacts that grant persistence can
be located.

An analysis focused on specific platforms, or even on specific
malware, has obvious limitations, as all the identification of per-
sistence techniques are architecture and OS-dependent. The most
relevant limitation is related to the identification of techniques in
technologies outside of the scope of those specific platforms. This
means that when faced with the compromise of a new platform
and trying to identify if an attacker has enabled persistence on it,
an analyst has only vague references for investigation. In this case,
analysts do not have a common reference to identify the mech-
anisms that enable persistence, nor to identify the locations of
the system where an intruder can achieve persistence. For an ag-
ile identification of persistence techniques in new environments,
analysts need a common platform-agnostic reference that allows
them to quickly determine which elements have to be examined
and what to look for inside them.

Computers & Security 121 (2022) 102855

In addition to the dependence on specific platforms, much re-
search work about persistence focuses on specific malware and its
capabilities to survive a system reboot. These approaches are useful
for the analysis of particular malicious code, but they lack a global
vision of the persistence. As we have stated before, persistence is
a key tactic for an advanced threat, not a simple malware capa-
bility. In fact, different APT actors do not rely on malware to con-
duct their operations, the so called malwareless ones, while others
do not use malware to achieve some specific tactics. Please note
that although in computer virology the definition of malware is
an open problem (Kramer and Bradfield, 2010), when we refer to
malware we refer to any code added, changed, or removed from
a software system in order to intentionally cause harm or subvert
the intended function of the system (McGraw and Morrisett, 2000;
Namanya et al., 2018; Mishra and Jha, 2022). Attending to this def-
inition, we do not consider elements such as legitimate system
tools or remote credentials for legitimate services as malware, al-
though they can be abused to maintain persistence.

When facing malwareless operations, detection becomes more
complex. Atomic and computed indicators of compromise, such as
hashes, do not provide the full capabilities for an accurate detec-
tion, so analysts must usually deal with behavioral indicators: for
example, those that allow the contextualization of a legitimate sys-
tem tool execution in order to classify it as anomalous. Due to
their stealthiness, malware free approaches are interesting for ad-
vanced threat actors in different tactics of an operation, from in-
trusion (Zimba and Wang, 2017) to data exfiltration (Zimba and
Chishimba, 2017) or lateral movement (Ussath et al., 2016). Re-
garding persistence, different techniques exploited by threat ac-
tors such as SANDWORM (Slowik, 2018) or APT29 (Nafisi and
Lelli, 2021) do not rely on malware but on legitimate services
and tools. Even some actors such as ALLANITE are able to conduct
whole malwareless operations (Slowik, 2019). In this way, we ar-
gue that persistence is not only malware-related, but it is a tactic
of advanced threat actors in offensive cyber operations that can be
achieved through malware or through simple abuse of legitimate
resources.

No suitable approximation for persistence techniques that
would allow analysts the identification of compromised systems
has been defined. In addition, no research has been performed re-
garding where persistence is stored in a targeted system: that is,
which locations of a system should be analyzed in order to de-
tect the compromise. Identifying where persistence is stored is a
must when dealing with operations performed by advanced threat
actors. Tactics are mandatory to identify what to look for, but de-
tecting where the attacker has stored an artifact for persistence is
mandatory to identify where to look for techniques that implement
the persistence tactic. Without a common platform-agnostic refer-
ence for persistence techniques, the detection of persistence arti-
facts in a targeted system follows an unstructured approach that
delays the defensive capabilities and opens a window of opportu-
nity for hostile actors.

4. Approaches and limitations

MITRE ATT&CK (Adversarial Tactics, Techniques, and Common
Knowledge) is a globally accessible knowledge base of adver-
sary tactics and techniques based on real-world observations. This
framework represents the biggest effort to identify tactics and
techniques for advanced actors, and it presents a plain structure for
Persistence techniques, which makes it difficult to establish a clear
taxonomy or categorization for them. Some efforts have been made
to align technical persistence capabilities with MITRE ATT&CK.
Oosthoek and Doerr (2019) provides a link between Microsoft
Windows malware and the framework by identifying the malware
persistence capabilities. These relationships have also been ana-

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

lyzed in Gittins and Soltys (2020) and Lee et al. (2020), where the
authors map different persistence approaches used in Microsoft
Windows malware samples to MITRE ATT&CK techniques. How-
ever, in the case of the Persistence tactic, this framework is too
close to the most technical aspects of techniques, so it is not
suitable for abstraction and for a modeling of techniques in a
platform-agnostic way. Other malware-related frameworks from
MITRE, such as MAEC (Malware Attribute Enumeration and Char-
acterization) or CME (Common Malware Enumeration) do not pro-
vide even a categorization for persistence techniques. SHIELD, an
active defense knowledge base that MITRE is developing to cap-
ture and organize what they are learning about active defense and
adversary engagement, identifies defenses against the techniques
stated in ATT&CK, but it does not provide a valid taxonomy for
them.

Sharma et al. (2019) characterize malware persistence into
three categories: run-time, re-boot and trojanized system binaries;
although this can be considered an interesting approach to con-
sider behaviors of the malware in order to design a Fuzzy Inference
System, it does not capture all the elements to build a taxonomy
model.

Based on their basic approach to persistence, Webb (2018) clas-
sifies techniques in five main categories: User Login Execution,
System Startup Execution, Dynamic Linked Library (DLL) Injection,
Execution Hijacking and Adversary Backdoors. This proposal pro-
vides some key aspects to a OS-independent approach, but as it is
mainly focused on Microsoft Windows aspects, it still lacks a com-
plete platform-agnostic view.

Mankin (2013) breaks persistence capabilities into three phases:
installation, system boot and service load. Although this is an in-
teresting approach for the modeling and detection of persistence,
the author does not propose a classification for persistence mech-
anisms, but a common breakdown structure for all of them, with a
focus on Windows services as a particular technique.

Most of the current approaches to the analysis of persistence
techniques have been made to identify OS-dependent persistence
methods. As we have stated before, the most analyzed persis-
tence mechanisms are related to Microsoft Windows environments.
Windows Auto-Start Extensibility Points (ASEP) were first intro-
duced by Wang et al. (2004); they were defined as the subset
of operating system and application extensibility points that can
be “hooked” to enable auto-starting of programs without explicit
user invocation. ASEP are a key concept for malware persistence,
as they define points that an attacker can abuse to maintain its
foothold on a targeted system. In Uroz and Rodriguez (2019) Daniel
Uroz et al. propose a taxonomy for Windows ASEP divided into
four categories: system persistence mechanisms, program loader
abuse, application abuse, and system behavior abuse; each of them
is analyzed and its characteristics are extracted, identifying fam-
ilies of persistence points as shown in Fig. 1. Although this is a
valid classification, in addition to being focused on Microsoft Win-
dows it only defines the main four previous categories, without
sub categories for them, so it should be detailed in order to spec-
ify a more complete taxonomy. A key resource to identify per-
sistence points in Windows environments is Microsoft Autoruns
(Russinovich et al., 2009; Russinovich and Margosis, 2016). It is
a utility that has the most comprehensive knowledge of auto-
starting locations of any startup monitor, showing what programs
are configured to run during system boot up or login, and when
various built-in Windows applications are started.

The technical persistence capabilities that Microsoft Windows
provides have been analyzed in different works. Monnappa (2018);
Sikorski and Honig (2012) and O’Leary (2019) identify particular
persistence mechanisms and locations for this operating system,
while (Mohanta and Saldanha, 2020) provides a basic structure for
persistence capabilities: startup shell directories, registry RUN, ser-

Computers & Security 121 (2022) 102855

vices, file infection, DLL hijacking, Winlogon and Task Scheduler.
These approaches provide different proposals for the identification
of persistence techniques in Microsoft Windows. However, none of
these approaches, all of them focused on a particular environment,
provides a platform-agnostic proposal suitable to be used in other
technologies.

Regarding other operating systems, in Hwang and
Lee (2019) Jun-ho Hwang et al. identify four methods for ELF
malware persistence in Linux systems: subsystems initialization,
time-based execution, file infection and replacement and user
files alteration. O’Leary (2019) analyzes both Windows and Linux
persistence mechanisms with practical examples, but without
establishing a common framework for the classification of the
identified techniques. Wardle (2014b) analyzes malware per-
sistence mechanisms in Mac OS X, as well as the particular
techniques used by different malware samples in this operating
system. Also regarding Mac OS X, Wardle (2014b) provides an
initial approach to technical capabilities and analyzes several
malware samples and their persistence techniques. Again, as in
Windows environments, none of these approaches delves into
the definition of a general proposal for persistence techniques,
considering only the identification of particular techniques for
specific platforms.

Another key research line for persistence techniques is IoT-
focused malware, as connected devices are growing in num-
ber and critical infrastructures are a clear target for hostile ac-
tors. Linux IoT malware persistence capabilities are analyzed in
Brierley et al. (2020), where Calvin Brierley et al. identify, with-
out providing a model or structure, six methods for persistence:
modifying writable file systems, recreating read-only file sys-
tems, initrd/initramfs modification, “set writable flag” kernel mod-
ule, update process exploitation and ubootkit. The authors de-
fend that no universal method to gain persistence on IoT de-
vices has been identified. In Bytes and Zhou (2020) Andrei Bytes
et al. analyze techniques used in Programmable Logic Controllers
(PLC), extending Linux generic mechanisms to particular embed-
ded Linux devices but without providing a suitable structure for
them. Németh (2020) analyzes rootkit persistence techniques in
IoT devices, identifying Linux Kernel Modules, ramdisk-based and
user space programs as main categories. Inside the last of them,
the authors classify techniques into the following classes: service
managers, job schedulers and user-specific startup files. Related
to smart grid environments, in Eder-Neuhauser et al. (2017) Peter
Eder-Neuhauser et al. identify persistence methods such as ma-
nipulation or anti malware tools, code obfuscation or encryption
techniques. The authors analyze malware samples using each of
the identified persistence mechanisms, but they do not provide a
general structured classification suitable for its use outside smart
grid environments.

In addition to different operating systems technologies, the per-
sistence capabilities of malware families are also a key research
focus. One of the most analyzed families is ransomware, due to
the growing impact that this malicious software is causing in all
kind of organizations. Lemmou et al. (2021) different ransomware
samples and their persistence mechanisms, among other behav-
iors. Regarding banking malware, which is also a relevant issue,
Black et al. (2018) an identification of the mechanisms for per-
sistence in this kind of malicious programs: specific registry keys,
such as registry or Applnit_DLLs, program trojanization, and bootk-
its.

Persistence capabilities from specific malware samples have
been also analyzed in different works. Gittins and Soltys (2020)
analyzes several samples to identify their persistence capabili-
ties. In Popli and Girdhar (2019) the authors analyze WannaCry
and Petya capabilities without focusing on an in-depth analysis,
identifying the persistence capabilities of both malware samples.

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Computers & Security 121 (2022) 102855

Windows ASEP

System persistence mechanisms | IProgram loader abuse l

IApplication abuse l ISystem behavior abuse

)

Run keys (HKLM) Image File Execution Options

Run keys (HKCU)

Startup folder

(%ALLUSERSPROFILE%)

Extension hijacking (HKLM) Winlogon
Extension hijacking (HKCU) Trojanized system binaries DLL hijacking
Shortcut manipulation Office addins Applnit DLL

Startup folder

Browser helper objects Active setup (HKLM)

Active setup (HKCU)

(%APPDATA %) COM hijacking (HKLM)
Scheduled tasks COM hijacking (HKCU)
Services Shim databases

Fig. 1. Windows Auto-Start Extensibility Points

Akbanov et al. (2019) and Kao and Hsiao (2018) provide an in-
depth analysis of WannaCry, and Wardle (2014a) analyzes iWorm
persistence, an OS X backdoor. Although these works analyze the
persistence techniques of main malware samples or families, none
of them provides a suitable structure for the abstraction of these
techniques.

Malware that does not rely on the file system to run is re-
ferred to as fileless malware, and its persistence capabilities have
been analyzed in different works. In Kumar et al. (2020) Sushil
Kumar et al. classify fileless malware in three different categories
in relation to its persistence techniques: memory-resident mal-
ware, Windows registry malware and rootkit fileless malware. In
Sanjay et al. (2018) the authors identify Windows registry, WMI
store, SQL tables or Scheduled tasks as usual locations to achieve
fileless persistence. In Vogl et al. (2014) Sebastian Vogl et al. ana-
lyze persistent data-only malware and discuss its challenges, pre-
senting a proof of concept of this kind of malware and providing
additional techniques to achieve persistence. Data only malware
is malware that introduces specially crafted data into a system
with the intent of manipulating the control flow without chang-
ing or introducing new code. Ramaswamy (2008) provides an ini-
tial classification for rootkits, differentiating between kernel-level
and user-level rootkits, being the first ones the most analyzed in
literature. In Joy et al. (2011) Jestin Joy et al. expand this classifica-
tion, identifying three types of rootkits: virtualization, kernel-level
and library-level, being this last one a user-level rootkit. Never-
theless, none of the related work on malware persistence provides
a taxonomy for the persistence techniques they explore, focusing
once again only on the particular features of samples, families or
malware persistence approaches.

5. Our proposal

After the analysis of the current approaches to define a valid
classification for persistence techniques, their strengths and weak-
nesses and, especially, their main lacks, we propose a platform-
independent persistence taxonomy. This taxonomy will allow an-
alysts to classify techniques, regardless of the technology used in
each case, as well as to identify new persistence capabilities that
threat actors might develop, thus being able to identify and imple-
ment counter measures against them.

To establish such a taxonomy we have to formally define the
following concepts:

« Persistence point. The location within a compromised system
where a persistence artifact is stored.

- Persistence technique. The actions that enable a persistence
mechanism into a target, relying on a persistence point.

Please note that in this context, the term “artifact” refers not
only to malicious software implanted in the targeted system, but
to any software or configuration abused or manipulated by a threat
actor in order to gain persistence. A persistence point is, as its def-
inition highlights, a location; this location can be a hardware com-
ponent, a file system point, a Windows registry entry, etc. As an
example, in previous sections we have referred to fileless malware;
regarding persistence capabilities, this could be considered a first
classification for persistence points, although it is too general, as
it comprises many types of persistence points with little relation
between them.

Persistence techniques directly rely on persistence points to
achieve their goal; from an analysts’ perspective, a persistence
point defines where to look for persistence, while a persistence
technique defines what to look for. No technique can be achieved
without a persistence point. In this context, we can understand a
persistence technique just as the abuse or manipulation of a per-
sistence point. We refer to abuse when a threat actor does not
modify the persistence point, but just exploits one or more of its
standard capabilities. We refer to manipulation when the attacker
alters the persistence point for his own benefit, by fabricating spu-
rious data or by modifying or canceling legitimate data. For exam-
ple, techniques relying on system accounts as a persistence point
include those related to credential abuse, those related to the mod-
ification of legitimate users’ credentials and those related to the
addition of non legitimate users to the system. The relationship
between persistence techniques and persistence points is direct: all
persistence techniques rely on at least one persistence point, and
we can detect the artifacts that achieve persistence by inspecting
those points.

In this work we establish a taxonomy for persistence points,
which directly defines a taxonomy for persistence techniques. We
propose four upper level categories:

Pre-0S persistence points, those regarding hardware, firmware
or initial sequences of a system boot, before a particular oper-
ating system is loaded.

OS persistence points, those related to the boot of a particular
operating system and to its native capabilities.

Server—software persistence points, those related to remotely
accessible software that is provided to users without a full ac-
cess to the system.

User persistence points, those related to particular user activi-
ties or configurations.

In the following sections we discuss each of the proposed cate-
gories for persistence points and we specify their particular struc-
ture, thus defining a taxonomy for persistence techniques.

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Hardware I Firmware | Boot device I

| Boot sector ‘ | Boot loader |

Fig. 2. Pre-0S persistence points

5.1. Pre-0S persistence

The boot process for a computer system fully depends on the
specific hardware and on the OS that will be running on it. Most
research is focused on the boot process for BIOS or UEFI based x86
systems running Microsoft Windows OS flavours. In this particular
case, the boot process can be described in a simple way as follows:

1. On startup, firmware (BIOS or UEFI) is called and transferred
with execution.

2. This firmware initializes hardware devices and goes through
storage devices to look for a bootable one.

3. When a bootable device is found, boot code is executed, loading
the boot sector for a bootable partition.

4. Boot sector loads and executes the operating system boot
loader.

5. Boot loader loads the OS kernel from the storage device.

In the case of UEFI systems, this firmware directly loads the op-
erating system boot loader without relying on boot sectors, thus
skipping step 3; in these systems, this boot loader is just an EFI
file in the filesystem.

While a rootkit is malicious software that impacts its target
at user and kernel levels (Rao and Selvakumar, 2014), a bootkit
is a particular rootkit that transfers its storage location from the
file system to the hardware and activates itself while or even be-
fore the operating system kernel is loaded (Li et al., 2011). Bootk-
its are largely analyzed in Matrosov et al. (2019); as this mali-
cious software is loaded before the operating system, it can tam-
per the whole computer system. According to the different stages
in boot process, Li et al. (2011) classifies bootkit technologies
into four categories: BIOS-based bootkit, MBR-based bootkit, NTL-
DRbased bootkit, and others. A similar approach is followed in
Gao et al. (2012), where Hongbo Gao et al. expose the same clas-
sification without the “others” category. As BIOS-based bootkits
write their malicious payload directly into the BIOS, they typically
have to target particular BIOS or hardware, so they are rarely seen
in the wild (Grill, 2016). MBR and NTLDR-based bootkits are the
dominant types in real-world malware.

These works provide a key approach for an initial taxonomy of
Pre-0S persistence points: those that are OS-independent, BIOS or
MBR, and those that are based on the initial steps of a particu-
lar OS being loaded, such as NTLDR and others. However, this ap-
proach lacks a whole family of persistence points that we must
consider: those related to hardware implants. In fact, hardware im-
plants are not usually considered in persistence techniques fami-
lies, such as those presented in MITRE ATT&CK.

To provide a platform-agnostic approach, we divide Pre-OS per-
sistence points into three main families: hardware, firmware and
software related, as shown in Fig. 2.

Hardware persistence points are those related to hardware
implants to maintain persistence on a specific targeted system.
At the early stages of a system boot, this hardware and its
linked firmware are initialized by a firmware component, just
as UEFI or BIOS. These implants have few academic research,

Computers & Security 121 (2022) 102855

especially focusing on covert channels for air-gapped networks
(Guri et al., 2016; Wakabayashi et al., 2017; Morgner et al., 2018).
In LaSota (2019) Austin Lasota provides a very brief introduction
to different types of hardware implants in Apple’s Mac hardware
and their countermeasures. Until now, the most extensive infor-
mation about these implants continues to be NSA’s ANT catalog,
which has been publicly exposed and which is detailed in works
such as Cayford et al. (2014).

In addition to hardware, UEFI, BIOS or equivalent firmware is
another key persistence point. In Matrosov (2019) Alex Matrosov
proposes a classification of vulnerabilities and attack vectors for
BIOS persistent infection, identifying persistent and non-persistent
implants for UEFI firmware through post exploitation and sup-
ply chain vulnerabilities. Note that when referring to hardware
and firmware persistence in our taxonomy we are considering not
only the main system components, but also the peripheral de-
vices, especially those that have direct memory access (DMA) to
the main system runtime memory. In fact, DMA attacks have been
largely analyzed, from a pure malware perspective in Stewin and
Bystrov (2012), where Patrick Stewin et al. introduce the concept
of DMA malware, to a general threat actor capability (Breuk and
Spruyt, 2012).

Finally, firmware components go through a boot sequence that
depends on the type of firmware being used; here we find the
third family of Pre-OS persistence points, those related to the
boot device. In this case we differentiate two families of persis-
tence points: boot sector and boot loader ones. Legacy systems
(i.e., BIOS) use boot sectors (for example, Master Boot Record, or
MBR, which loads a Volume Boot Record, or VBR). Boot sectors are
to call a boot loader (in those systems with UEFI this boot loader
is just an EFI file in the filesystem, as stated before), which loads
the OS kernel, which is another persistence point but in this case
0S-dependent, as described in next section.

We want to highlight that when dealing with virtual machines
running over hypervisors, our proposed taxonomy is completely
valid. In this particular case, pre-OS persistence points are ones
exposed in this section, but considering two main aspects. The
first one is that these persistence points can be identified in the
hypervisor systems, not only in the virtual machines. The second
one regards these virtual machines: being the same persistence
points, on virtual machines they are stored in software that em-
ulates hardware components.

5.2. OS native persistence

Once the OS starts to boot, a second category for our taxonomy
is defined by those persistence techniques based on different OS
capabilities. In this case, the obtained privileges can be those of
the operating system or those of a particular user, as system boot
is executed with administrative privileges. In Fig. 3 our proposed
OS native persistence points taxonomy is shown.

Within this category we find first of all the operating system
kernel as a persistence point; when an OS boots, its kernel is
loaded and a process is started to execute tasks such as software
initialization or module loading. By subverting the operating sys-
tem kernel, a kernel rootkit embeds itself into the compromised
kernel and stealthily causes damage with full unrestricted access
to the systems resources (Riley et al., 2008). Kernel persistence
can be achieved through the compromise of the OS kernel itself or
through the compromise of kernel modules in any of their forms,
such as kernel modules, kernel extensions or kernel drivers, loaded
on startup or when certain conditions are met. Malware such as
Drovorub exploits kernel persistence points, establishing persis-
tence through kernel modules (FBI/NSA, 2020).

Once the kernel is loaded and the basic capabilities of the
operating system are started, boot procedures are another OS-

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Computers & Security 121 (2022) 102855

OS-dependent

Kernel | Boot procedures | | Accounts |

| Scheduled tasks | |Base software | —| Remote points

Initialization scripts

Initialization databases

OS Kernel
Modules

Startup items

Services

Environment variables

A

— Applications
Periodic tasks -
- Extensions
One-time tasks - -
- Configurations
Timers -
Threat objects
Startup
Conditional

Fig. 3. OS native persistence points

dependent persistence point. In this stage of a system boot we
find clock synchronization, daemons launched or subsystems ini-
tialized; in addition, please note that many operating systems can
execute or load user files when booting. In all of these tasks, code
is executed and configuration files are loaded, so a hostile actor can
modify them to achieve OS-dependent persistence; in the particu-
lar case of remote objects access, such as in clock synchronization,
the threat actor can also compromise remote systems in order to
establish persistence on a targeted one, but here we must refer to
remote persistence points, as stated in this section.

Inside the boot procedures family, in addition to these initial-
ization scripts, many operating systems provide a database, such as
Windows Registry or AIX Object Data Manager, where stored data
is accessed during system boot to initialize specific OS capabilities,
such as network settings or program launch. We must differenti-
ate this family of persistence points from the previous one, as they
are stored on a different location for the OS and they are accessed
and managed in most cases with specific native tools. In fact, mal-
ware that enables persistence by adding a specific entry into these
databases is considered fileless, as opposed to malware that stores
an artifact in the filesystem. For example, Windows Registry is a
widely used persistence point; we can find different threat ac-
tors exploiting this registry to achieve persistence, such as APT32
(Dahan, 2017) or APT37 (FireEye, 2018), as well as specific malware
such as WannaCry (Akbanov et al., 2019) or Bisonal (Hayashi and
Ray, 2018; Horejsi et al., 2020).

In addition to initialization databases, different operating sys-
tems such as Microsoft Windows or Apple Mac OSX also provide a
startup items location, usually a folder with references to programs
(in many cases in the form of symbolic links) that are executed
during system boot. By simply adding the correct reference to a
program in this persistence point, the program will be launched on
startup; jRAT is a known cross—platform backdoor exploiting this
kind of persistence points (Kamluk and Gostev, 2016). Please note
that in these operating systems there is usually a similar persis-
tence point for each particular user, where references are executed
when the user logs in.

As a fourth category inside the boot procedures family, we find
services, also called daemons, managed by the OS and launched
to perform specific tasks in the background. Linux malware of-
ten exploits these services persistence points (Cozzi et al., 2018;
O’Leary, 2019). The tasks launched by services may include start-
ing clients to connect to remote services, enabling operating sys-
tem capabilities such as the execution of scheduled tasks or the

launching of long time running processes that will be up as the
operating system is running. Inside this category we find standard,
mandatory OS services and daemons, those related to non operat-
ing system native applications: although they can also be started
as services in many cases, from a technical point of view, we clas-
sify their persistence points inside the “Server Software” category.
For example, the compromise of a Microsoft Exchange Server in
order to establish persistence by a threat actor relies on Microsoft
Exchange (a server software) as a persistence point, not on a na-
tive system service. This point is clear, as server software has its
own configurations, in many cases including access accounts, out-
side the OS configuration files. While a system service can not be
stopped or uninstalled without introducing some kind of system
instability, a server software can be completely stopped interfering
only with its own availability.

Finally, as a fifth family inside this category we must consider
environment variables; these variables are set during system boot
and they affect global execution of applications in the system. We
differentiate them from the base software categories, as in this
case the persistence point is not related to a particular applica-
tion, but to the whole system. In addition, please note that many
of these variables can be overwritten by user-related ones; in this
case we do not consider them as a separate persistence point, as
they are set in the login scripts for a particular user.

One of the easiest points for an attacker to gain persistence is
through the abuse of accounts that grant access to targeted sys-
tems. This technique has been exploited by threat groups such
as APT29 (CISA, 2020). When dealing with persistence points, we
must differentiate accounts related persistence points from login-
related ones; while all of them trigger execution when a user logs
in the system, account-related ones are stored in the system’s user
table, while those related to user’s login are stored in the user’s
home directory. In the same way, we must also differentiate sys-
tem accounts, those that grant access to the system, both as priv-
ileged and as unprivileged users, and application accounts, those
that grant access to a specific application served within the system,
mainly to external users: for example, a web, database or e-
mail account. An attacker can abuse both of them, but persistence
points are different: in one case, the persistence point is located
in the system’s user table, while in the other one the persistence
point is the particular user database or equivalent regarding the
targeted application. For this reason we consider application ac-
counts as a category for persistence points within software com-
promise, not within the accounts category.

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

The abuse of scheduled tasks capabilities that any OS provides
comprises persistence techniques exploited in the wild by threat
actors such as APT3 (Bahrami et al., 2019) or specific malware such
as Emotet (Kuraku and Kalla, 2020), and even frameworks such as
Cobalt Strike provide this capability (Varlioglu et al., 2022). Unix
at or cron utilities, or Windows at.exe or Task Scheduler are
commonly used by threat actors to maintain persistence on com-
promised systems. In this case, we can find three families of per-
sistence points, as they are stored in different locations in the op-
erating system: those related to the execution of periodic tasks,
those related to the execution of one-time tasks and those related
to timers.

Base software represents another family of OS-related persis-
tence points in our taxonomy. In this case, persistence is stored in
software that is not initialized during system boot (as it is in the
“Services” branch) but in software that is natively provided by the
0S, stored at disk and that is not mandatory for the OS to boot,
but it is to run properly. In this category of persistence points we
propose in our taxonomy four families: the own application and
its extensions (that is, the binaries launched on the execution), the
software configuration and threat objects.

The binaries used by the base software can be trojanized by a
threat actor in order to execute malicious code, and this can be
done both in the main software binary and in its extensions (for
example, libraries, plugins or code loaded under certain circum-
stances). In this context, we define trojanization (Mankin, 2013)
as the process to hijack an executable object that already exists
on the system, patching it with malicious code that will be exe-
cuted when the previously-benign program is loaded to run. An
example of a threat actor achieving persistence through this per-
sistence point is Gelsemium, a cyber espionage group that drops
a trojanized DLL to be loaded by the spoolsv Windows service
(Dupuy and Faou, 2021).

Software configuration is also a persistence point abused by at-
tackers; in this case we refer to the configuration loaded on startup
and to the configuration loaded under certain events (for exam-
ple, when a condition is met or when a software extension is ex-
ecuted), named conditional configuration in this work. Please note
that startup and conditional configuration persistence points are
differentiated because they may be stored in different locations
and they can also have different syntax and even different formats.

Finally, the last main category inside the base software persis-
tence points is the one related to threat objects for the software.
These malicious objects are especially crafted to execute certain ac-
tions on the targeted system when they are accessed in any form
(for example, loaded or executed) by the software; until that mo-
ment, no malicious activity is performed, being this access the trig-
ger that maintains persistence. Webshells are well-known exam-
ples of threat objects: malicious files added to the web contents
that, when accessed in some form, can grant access to the system.
Webshells are exploited by many threat actors such as Deep Panda
(Thompson, 2020) or OilRig (Lai et al., 2021).

In our proposed taxonomy, we consider remote persistence
points as the last family of locations that persistence techniques
rely on. In this case, the persistence point is located on a remote
system and persistence is triggered when the remote object is ac-
cessed. Although a remote persistence point can be found for al-
most all the previous categories, it is important to differentiate
them as they are not stored on the targeted system, so this system
has no hostile activity until the remote point is accessed. Remote
persistence points can be found from the own boot process, for
example in netbooted systems where the operating system boots
from a network image, but also when dealing with accounts, re-
mote services or even remote threat objects opened by a server
software. We highlight that we consider important to differentiate
them from local persistence points because they are stored outside

Computers & Security 121 (2022) 102855

Server-dependent

Applications| |Extcnsi0ns| |Conﬁgurati0ns| |Acc0unts| lThrcat objects

| Startup l ICondiIional|

Fig. 4. Server-dependent persistence points

the targeted system, so the techniques for their location and iden-
tification are different. Apart from laboratory proofs of concept, we
have not identified specific real-world malware relying on remote
persistence; although technically possible, we consider it is not ex-
ploited on the wild.

5.3. Server software persistence

Server software is another key persistence point. This cate-
gory is related to software that, when running on a system, pro-
vides services to remote users; we must differentiate this family
from the category of base software because server software is not
mandatory for the operating system to run properly. With the ex-
ception of appliances or dedicated systems, server software is in-
stalled apart from the OS, so it can be uninstalled without affecting
the OS native capabilities. Inside this category we can find software
such as mail or web servers, VPN hubs or terminal servers.

In our taxonomy we propose five families of persistence points
for server software persistence. We are identifying persistence
points related to software, so four of them are the same as in base
software, and also as the ones in user software: the own applica-
tion and its extensions, the software configuration and the threat
objects. The fifth of these families is related to the accounts that
grant access to the software. In Fig. 4 this taxonomy is shown.

We must focus on this fifth category for server software per-
sistence points, the one related to Accounts. In OS base software
or in user software we do not find a family for Accounts, as in
these cases software is executed in a system by a previously au-
thenticated entity. However, when dealing with server software,
Accounts are a key persistence point, as they are remotely abused
by attackers. In server software, persistence techniques include the
abuse of legitimate accounts as well as their manipulation. Account
abuse relies on valid software credentials that are used by a threat
actor among time, granting direct access to the software and to the
information. Known threat actors abusing accounts to gain persis-
tence are APT28 (Mwiki et al., 2019), APT29 (Gavaudan et al., 2021)
or APT39 (Hawley et al., 2019). Account manipulation include the
addition of accounts to be exploited by an attacker, as well as
the modification of credentials that grant access to the software.
Known threat actors performing account manipulation for persis-
tence purposes include Sandworm (Slowik, 2018).

5.4. User dependent persistence

Finally, a fourth category for persistence points, as for tech-
niques, is the one based on specific user locations and actions. In
these techniques, persistence is triggered after a user executes a
particular action, and the persistence point is usually located in the
home directory of the targeted user, with exception of remote per-
sistence points, as we will describe later. The privileges of the hos-
tile actor are those of the particular user that executed the action,
being the capabilities to execute privileged commands restricted
to the elevation of privileges through the exploitation of vulnera-
bilities. In Fig. 5 our proposed User-dependent persistence points
taxonomy is shown. Please note that although an attacker can en-
able persistence relying on the user’s scheduled tasks, this family

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Login related

Computers & Security 121 (2022) 102855

User-dependent

| User software| | Remote points |

IScripts | | Items I |C0nﬁgurations| IApplications

IExtenSions | Configurations l TThreat objects

| Startup | |Conditional|

Fig. 5. User-dependent persistence points

of persistence points is considered OS-dependent, as it does not
rely on a specific user action to be triggered, but on the complete
boot of the OS.

In first place, login-related techniques are those that group per-
sistence points triggered when a user logs in a system. We must
consider this category apart from the one exposed in the previ-
ous section, regarding accounts of a targeted systems, as the per-
sistence point in this case is different and located in the user’s own
configuration, not in the system capabilities.

Inside the login-related persistence points we must differenti-
ate between logon scripts, logon items and logon configurations.
The first family includes those user-defined files that are exe-
cuted when the user logs in the system, usually in the form of
scripts. The second one refers, as when dealing when OS-booting
related persistence, to the location where references to applica-
tions are stored to be automatically launched when a user logs
in. Finally, the third family refers to specific software configura-
tions that are loaded in the login process, not by user software but
by server software that enables the login process. For example, if
a threat actor achieves persistence by modifying a user SSH “au-
thorized_keys” file, it is not altering a user software configuration,
but a user configuration loaded by a server software. These per-
sistence points could be considered as conditional configurations
for server software, but we find it important to differentiate them,
as they are located in a different place from global server software
configurations, and they are also writable without privileged access
to the system. When we are referring to login related persistence
points, we must also consider logout as a persistence trigger. Most
operating systems allow users to define scripts, items or configura-
tions to be accessed not only while a user logs in, but also when a
user logs out of the targeted system. APT28 is a threat actor which
actively exploits Login related persistence points in Windows sys-
tems (Calvet et al., 2016); examples of malware which is also able
to exploit these points include Attor (Hromcova, 2019) or Netwire
(Chen et al., 2020).

Another main family of user-persistence techniques is the one
based on user software. When we refer to user software we
are dealing with applications that are executed by specific users,
not by system capabilities, although in most cases, particularly in
multi-user environments, the software itself and some of its exten-
sions are not writable by a normal user, but only by a privileged
one. For user software as a persistence point we propose a struc-
ture similar to the one regarding server software, with the ex-
ception of the “Accounts” category, as user software does not use
this kind of persistence point. Following this approach, persistence
points can be found in the own application executable, in its ex-
tensions, in its configuration parameters, both on startup or condi-
tional, or in specific threat objects.

As in server software persistence points, the first category in
user software ones is the own application or its extensions, re-
garding techniques consisting on their malicious manipulation in

order to maintain persistence on a compromised system. Each
time the compromised application is executed or its extensions
are loaded by the user, the threat actor can execute malicious
code on the target system. Naikon group is an example of an
APT relying on these persistence points, as to maintain persis-
tence it drops a malicious extension to be loaded by Microsoft
Word at startup (Checkpoint, 2020). Examples of specific malware
abusing these persistence points are Industroyer (Slowik, 2018;
Di Pietro et al., 2021), which trojanizes Windows Notepad to estab-
lish a backdoor persistence mechanism, or Kobalos, which replaces
the SSH client with a trojanized version in order to steal cre-
dentials on compromised systems (Léveillé and Sanmillan, 2021;
Pleiter et al., 2021). In addition to the use of applications and
their extensions as persistence points, a threat actor can rely on
the particular configurations of these applications, both loaded at
startup or under certain conditions. This approach is the same
that we have stated in server software but, in this case, related
to user software. For example, MuddyWater APT exploits Microsoft
Office configurations to maintain persistence on a compromised
target (TOK and CELIKTAS, 2019), while APT32 replaces Microsoft
Outlook configuration files to implant a backdoor for persistence
(Dahan, 2017). Finally, the last category inside user software per-
sistence points, as in server software ones, is the one regarding
malicious objects opened or loaded by an application. In this case,
persistence is triggered when the threat object is accessed by the
user. These persistence points are used regarding objects that are
regularly accessed, even automatically loaded, by the user; in other
case, persistence would be very weak for an advanced threat actor,
as it would fully depend on the user manually opening a threat ob-
ject. To our knowledge, this kind of threat objects without a guar-
anteed access are not commonly exploited, although it is techni-
cally possible. The only group we have identified relaying on these
persistence points is Gamaredon, which inserts malicious macros
into existing documents providing persistence when they are re-
opened (Boutin, 2020).

Please note that threat objects, as in server software, can be
both local (for example, malicious templates to be loaded) and re-
mote; in fact, not only threat objects, but also software configu-
rations, extensions or even login related persistence points can be
both local and remote. In these cases, as we did in OS dependent
taxonomy, we consider again the concept of remote persistence
point, as they are located outside the targeted system, so persis-
tence relies on a third party, also compromised, system.

5.5. Summary

In our proposal we present a novel taxonomy for persistence
points, those that store artifacts that are abused to maintain per-
sistence in a compromised system. This model provides a direct
taxonomy for techniques exploited by threat actors. We propose
four high level families for these points: those regarding locations

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Table 1
Persistence points proposed taxonomy.
Hardware
Pre-0S Firmware
Boot device Boot sector
Boot loader
0S-dependent Kernel OS kernel
Modules

Boot procedures Initialization scripts
Initialization databases
Startup items

Services

Environment variables
Accounts
Scheduled tasks Periodic tasks

One-time tasks

Timers

Base software Applications
Extensions
Configurations Startup

Conditional

Threat objects

Remote points

Server software Applications

Extensions

Configurations Startup
Conditional

Accounts

Threat objects

User-dependent Login related Scripts

Items
Configurations

User software Applications
Extensions
Configurations Startup

Conditional

Threat objects
Remote points

prior to the OS boot, those regarding locations directly linked to OS
capabilities, those regarding locations related to server software as
an addendum for the system and, finally, those related to user—
related locations of the system. Each of them is divided into differ-
ent families to provide an accurate persistence points taxonomy.

The proposed taxonomy for persistence points we have devel-
oped in this work is shown in Table 1, where we summarize the
different persistence points families for all of the main stated cat-
egories.

6. Discussion

We have identified the absence of a suitable taxonomy for the
techniques commonly used by advanced threat actors to achieve
persistence. As with the rest of tactics MITRE ATT&CK defines, this
framework provides a plain relationship for persistence techniques.
Such a plain structure hinders the analysis and, most important,
the detection, of these techniques. As persistence is mandatory
for most advanced threat actor’s operations, it is important to es-
tablish a suitable approach for persistence techniques that allows
analysts to identify the persistence in a potentially compromised
system.

Persistence is not only a key tactic for advanced threat actors,
but also a key feature for malware. Persistence has been analyzed
in three main research lines: Microsoft Windows techniques, spe-
cific malware capabilities and, during the last years, persistence
in IoT-related infrastructures. None of these lines provides a suit-
able taxonomy for persistence techniques, but only weak classifi-
cations schemes for them, linked to specific operating systems or
even malware capabilities. Without a global, platform-independent

Computers & Security 121 (2022) 102855

approach, a relevant problem for analysts is to identify persistence
in environments that have not been previously explored.

In this paper we define the concept of persistence point as the
location within a compromised system where a persistence arti-
fact has been stored. Dealing with persistence as a global tactic for
advanced threat actors, these locations are classified into a novel
taxonomy for persistence points, thus establishing the locations of
a system that have to be analyzed to identify persistence mecha-
nisms. In this way, our approach provides a common reference for
the identification of persistence techniques, as the relationship be-
tween persistence techniques and persistence points is direct. All
persistence techniques rely on at least one persistence point. For
analysts, by inspecting these points it is possible to detect the ar-
tifacts that achieve persistence, even when facing compromises in
new environments or technologies.

To discuss the completeness and correctness of our work, we
have mapped MITRE ATT&CK persistence techniques to our pro-
posed taxonomy. This framework is the main public effort to estab-
lish a classification for tactics and techniques used by threat actors.
As on May, 2022, MITRE ATT&CK “Persistence” tactic (last modified
on 19th July 2019), identified as TA00O03, consists of techniques
that adversaries use to keep access to systems across restarts,
changed credentials, and other interruptions that could cut off
their access. MITRE ATT&CK provides no structure for techniques
inside the “Persistence” tactic; the framework places all of these
techniques at the same level, providing in some cases specific sub
techniques. Although this approach is followed in all ATT&CK tac-
tics and techniques, we advocate that it is important to provide
a fine classification for all tactics, and in this case, for the “Per-
sistence” one, by dividing its techniques at least in the first-level
classification we provide in this work, based on persistence points.

The mapping of MITRE ATT&CK persistence techniques to the
persistence points we propose in our work is shown in Table 2 .

As we can confirm, all techniques and subtechniques identified
by MITRE ATT&CK for the “Persistence” tactic can be mapped to
our proposed taxonomy. Based on persistence points, our approach
provides not only this full coverage, but also a platform-agnostic
structure for all these techniques, improving the detail that MITRE
ATT&CK defines. Our structure also considers techniques not iden-
tified or partially identified in the MITRE ATT&CK framework: for
example, our proposal extends T1137, Office Application Startup, to
generic applications startup, considering not only Microsoft Office
but any application a user can execute to achieve persistence.

Analyzing this mapping, it draws our attention that Hardware is
a persistence point in the second classification level without MITRE
ATT&CK associated techniques. This fact highlights the absence of
techniques relying on hardware implants as persistence points. As
we have stated in this work, these implants are expensive and
highly platform-dependent, so threat actors do not use them on
the wild. The other persistence point in the second classification
level without linked techniques is server software extensions and
configurations. In this case, this fact highlights that when a hostile
actor uses server software to achieve persistence, it mostly relies
on accounts, threat objects and even the own application binary
as persistence points. This is a normal finding, particularly with
the accounts and threat objects persistence points, as for a threat
actor it is usually easier to abuse or manipulate such objects than
to rely on extensions, not used in all server software deployments,
or configurations, in many cases customized for each particular de-
ployment and thus harder to iterate among multiple victims.

Another key finding is that Pre-OS persistence points are the
less exploited ones by hostile actors. As we have stated in our
work, although these persistence points are the hardest ones to
detect and eradicate, their exploitation is usually expensive and
difficult to achieve. In front of this situation, we can confirm that
the abuse and manipulation of persistence points linked to the op-

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Table 2
MITRE ATT & CK techniques mapping.

Computers & Security 121 (2022) 102855

Hardware

Pre-0S

Firmware

T1543.001
T1543.002
T1543.004

Boot device

Boot sector
T1543.003

Boot loader
T1543.003

0OS-dependent

Kernel

0S kernel
T1547.006

Modules
T1547.006

Boot procedures

Initialization
scripts
T1037.004

Initialization
databases

T1547.001
T1547.003
T1547.004
T1547.005
T1547.010
T1037.001
T1546.001
T1546.002
T1546.007
T1546.008
T1546.009
T1546.010
T1546.011
T1546.012
T1546.015
T1574.011
T1137.002

Startup items
T1547.001
T1547.011
T1037.002
T1543.001
T1543.004

Services T1097
T1547.002
T1547.008
T1547.010
T1547.012
T1543.002
T1543.003
T1546.003
T1546.014
T1574.010
T1053.004

Environment
variables

T1574.001
T1574.004
T1574.006
T1574.007
T1574.012

Accounts

T1098.004
T1136.001
T1136.003
T1078.001
T1078.003
T1078.004

10

(continued on next page)

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Table 2 (continued)

Computers & Security 121 (2022) 102855

Hardware

Scheduled tasks

Periodic tasks
T1053.003
T1053.005

One-time tasks
T1053.001
T1053.002

Timers
T1053.006

Base software
T1205.001

Applications
T1546.005
T1546.006
T1546.008
T1574.005

Extensions
T1574.001

Configurations

Startup

T1546.011
T1546.013
T1574.002
T1574.006

Conditional

Threat objects

T1574.008
T1574.009

Remote points T1078.002

T1037.003

T1136.002

T1574.001

T1543.005

Server software Applications

T1546.005

T1546.006

Extensions

Configurations Startup
Conditional

Accounts

T1098.001

T1098.002

T1098.003

T1133

Threat objects

T1525

T1505.001

T1505.002

T1505.003

User-dependent Login related Scripts

T1546.004
Items
T1547.001
T1547.007
T1547.009
T1547.011
T1543.001
Configurations
T1098.004

User software Applications
T1554
T1546.005
T1546.006

1

(continued on next page)

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Table 2 (continued)

Computers & Security 121 (2022) 102855

Hardware

Extensions

T1176

T1137.001

T1137.006

Configurations Startup
T1574.002
T1137.003
T1137.004
T1137.005
Conditional

Threat objects
T1574.008
T1574.009

Remote points
T1137.004

erating system boot procedures comprises most of the techniques
from the framework. Particularly, an initialization database such as
Windows Registry is the main persistence point for all analyzed
MITRE ATT&CK techniques. Our taxonomy also extends this specific
platform-dependent approach to a generic family of Initialization
databases for OS-dependent persistence points.

Our approach significantly improves the analysis of persistence
linked to specific operating systems or technologies. Platform-
dependent approaches are only useful for the particular environ-
ments they are designed for, but they are not able to establish a
common reference to be used in all platforms. None of the previ-
ous approaches we have analyzed defines a platform-agnostic clas-
sification, although some of them try to establish such a classifica-
tion for the particular environments they study. These particular
approaches have provided the common basis for our novel pro-
posal of a general taxonomy suitable for all platforms. Our novel
platform-agnostic taxonomy is a useful tool for defenders to face
the detection of persistence techniques, as well as for the planning
and execution of offensive operations such as cyberspace exploita-
tion or cyberspace attack. The application of our proposal to both
of these perspectives improves an organizations’ security.

From a practical point of view, persistence detection is usually
a complex task when facing advanced threat actors. These actors
exploit uncommon techniques in a broad range of platforms, from
standard operating systems such as Microsoft Windows or Linux
to closed appliances, and even legacy systems. When facing inci-
dents, MITRE ATT&CK framework is the common starting point for
defenders. However, this framework is technology-dependent, so it
can not be exploited to face persistence in new environments, and
even to hunt not previously identified techniques in common plat-
forms. In this sense, our taxonomy provides a general model that
can be used to structure knowledge about persistence points, thus
allowing analysts the identification of novel, or at least uncommon,
ones. As all techniques rely on at least one persistence point, the
identification of these persistence points directly implies the dis-
covery of persistence techniques.

Relying on a closed framework for persistence analysis, we
are limited to the previously identified persistence techniques. For
example, MITRE ATT&CK identifies persistence techniques linked
to different user software compromise; they include techniques
linked to specific user software such as Microsoft Office or web
browsers. Without a platform-agnostic model, persistence detec-
tion is mostly limited to these specific applications. By using
our taxonomy, analysts can not only deal with persistence points
linked to Microsoft Office or web browsers, but they can extrap-
olate them to other user applications, thus being able to iden-

12

tify new persistence points. Through this identification, security
analysts can determine all the possible locations where an arti-
fact can be stored for persistence purposes: i.e. the analysts are
identifying where to look for, or where to implant (in an offen-
sive operation), persistence artifacts. This is especially relevant not
only in common platforms or technologies, but also when facing
the identification of persistence techniques in novel, not previously
analyzed, environments, such as legacy systems or proprietary
appliances.

Once persistence points have been identified, from a defensive
perspective these points must be analyzed in order to find traces
of abuse or manipulation. Please note that, as we have previously
stated, a persistence point can store not only malware, but also
a full range of configurations or legitimate tools to enable persis-
tence through them. This analysis can be performed through intru-
sion detection techniques, out of the scope of our proposal, such as
misuse or anomaly detection. In addition, from an offensive per-
spective, the identification of persistence points will help the red
team to determine the different points where an artifact can be
stored in a target. Those points will range from the well-known
ones to the less used ones, this is, to the less monitored ones. On
a prior basis, the exploitation of uncommon persistence points will
increase the probability of success for an offensive cyberspace op-
eration.

Finally, in this section we identify machine learning as an
especially interesting research line. Machine learning approaches
can be applied not only to identify intrusions, including persis-
tence, against infrastructure, but also to classify them into a suit-
able taxonomy of persistence points. Different researches have
been conducted to analyze malware capabilities with machine
learning approaches (Santos et al., 2013; Nath and Mehtre, 2014;
Yuan, 2017; Bahtiyar et al., 2019). A summary of them can be found
in Ucci et al. (2019) or Singh and Singh (2020). Nevertheless, al-
though some of these approaches establish a suitable classification
for malware (Gibert et al., 2020; Qamar et al., 2019), none has fo-
cused on the persistence mechanisms used in each case, neither in
a potential classification for these mechanisms.

7. Conclusions

Persistence, the ability to keep presence in a targeted system
for a long time, is a key tactic for the operations of advanced threat
actors. These operations are expensive for an actor, so once a target
has been compromised it is a common approach to keep control of
this target as long as possible.

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

Persistence techniques have been largely analyzed in particular
technologies, from specific operating systems to malware samples
or ICS (Industrial Control Systems) environments. However, these
analysis lack a global perspective, thus making it difficult to iden-
tify general capabilities that can be extrapolated from one envi-
ronment to another. This is a relevant problem for security an-
alysts when facing the potential compromise of new systems or
technologies, as there is not a common reference to check for the
identification of techniques in these environments.

In this work we provide a global platform-agnostic taxonomy
for persistence techniques that allows the analysis of compromised
systems regardless of their technology, thus easing the security an-
alysts’ work. This novel approach identifies persistence points as
the locations within a system where persistence artifacts can be
located. These points represent the components of a targeted in-
frastructure that are abused to maintain persistence, so they define
the locations where analysts must check the presence of artifacts.
The relationship between persistence points and persistence tech-
niques is direct.

Our taxonomy is based on four main persistence points families,
regarding those that are located before the OS boots, those that
are located on OS-dependent capabilities, those that are located on
server software and, finally, those that are user-dependent, mainly
located in a user’s particular files. All of these families are di-
vided into different categories to specify where persistence arti-
facts can be located. As a first and novel taxonomy, our proposal
can be used as a fundamental basis for new and more specific
approaches.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Antonio Villalon-Huerta: Writing - original draft. Hector
Marco-Gisbert: Writing - original draft. Ismael Ripoll-Ripoll:
Writing - original draft.

References

Akbanov, M., Vassilakis, V.G., Logothetis, M.D., 2019. Wannacry ransomware: Analy-
sis of infection, persistence, recovery prevention and propagation mechanisms.
Journal of Telecommunications and Information Technology 113-124.

Axelrod, R, Iliev, R, 2014. Timing of cyber conflict. Proceedings of the National
Academy of Sciences 111 (4), 1298-1303.

Bahrami, P.N., Dehghantanha, A., Dargahi, T., Parizi, R.M., Choo, K.-K.R., Javadi, H.H.,
2019. Cyber kill chain-based taxonomy of advanced persistent threat actors:
analogy of tactics, techniques, and procedures. Journal of information process-
ing systems 15 (4), 865-889.

Bahtiyar, $., Yaman, M.B., Altinigne, C.Y., 2019. A multi-dimensional machine learn-
ing approach to predict advanced malware. Computer networks 160, 118-
129.

Black, P, Gondal, I, Layton, R.,, 2018. A survey of similarities in banking malware
behaviours. Computers & Security 77, 756-772.

Boutin, J.-I., 2020. Gamaredon group grows its game. Technical Report. ESET.

Breuk, R., Spruyt, A., 2012. Integrating dma attacks in exploitation frameworks. Uni-
versity of Amsterdam, Tech. Rep 2011-2012.

Brierley, C., Pont, J., Arief, B., Barnes, D.J., Hernandez-Castro, J.C., 2020. Persistence
in linux-based iot malware. In: 25th Nordic Conference on Secure IT Systems
(Nordsec).

Bytes, A., Zhou,]., 2020. Post-exploitation and persistence techniques against pro-
grammable logic controller. In: International Conference on Applied Cryptogra-
phy and Network Security. Springer, pp. 255-273.

Calvet, J., Campos,]., Dupuy, T., 2016. Visiting The Bear Den. Technical Report. ESET.

Cayford, M., Van Gulijk, C,, van Gelder, P., 2014. All swept up: An initial classifi-
cation of nsa surveillance technology. Safety and Reliability: Methodology and
Applications 643-650.

Checkpoint, 2020. Naikon APT: cyber espionage reloaded. Technical Report. Chek-
point.

13

Computers & Security 121 (2022) 102855

Chen, Y.-H., Lin, Y.-D., Chen, C.-K,, Lei, C.-L., Huang, C.-Y., 2020. Construct macos cy-
ber range for red/blue teams. In: Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, pp. 934-936.

CISA, 2020. Advanced Persistent Threat Compromise of Government Agencies, Crit-
ical Infrastructure, and Private Sector Organizations. Technical Report. Cyberse-
curity and Infrastructure Security Agency.

Cozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D., 2018. Understanding linux mal-
ware. In: 2018 IEEE symposium on security and privacy (SP). IEEE, pp. 161-
175.

Dahan, A., 2017. Operation Cobalt Kitty: A large-scale APT in Asia carried out by the
OceanLotus Group. Technical Report. Cyber Reason.

Di Pietro, R., Raponi, S., Caprolu, M., Cresci, S., 2021. Critical infrastructure. In: New
Dimensions of Information Warfare. Springer, pp. 157-196.

Dupuy, T., Faou, M., 2021. Gelsemium. Technical Report. ESET.

Eder-Neuhauser, P, Zseby, T., Fabini,], Vormayr, G., 2017. Cyber attack models for
smart grid environments. Sustainable Energy, Grids and Networks 12, 10-29.
FBI/NSA, 2020. Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub
Malware. Technical Report. National Security Agency, Federal Bureau of Investi-

gation.

FireEye, 2018. APT37 (REAPER). The Overlooked North Korean Actor. Technical Re-
port. FireEye, Inc., Milpitas, CA, USA.

Gao, H,, Li, Q.,, Zhu, Y., Wang, W., Zhou, L., 2012. Research on the working mecha-
nism of bootkit. In: 2012 8th International Conference on Information Science
and Digital Content Technology (ICIDT2012), Vol. 3. IEEE, pp. 476-479.

Gavaudan, L., Legras, S., Ventos, V., 2021. Cyber range automation, a bedrock for ai
applications. Proceedings of the 28th C&ESAR 165.

Gibert, D., Mateu, C., Planes, J., 2020. The rise of machine learning for detection
and classification of malware: Research developments, trends and challenges.
Journal of Network and Computer Applications 153, 102526.

Gittins, Z., Soltys, M., 2020. Malware persistence mechanisms. 24th International
Conference on Knowledge-Based and Intelligent Information & Engineering Sys-
tems 176, 88-97.

Grill, B., 2016. Bootkits revisited; detecting, analysing and mitigating bootkit threats.
Technischen Universitat Wien.

Guri, M., Monitz, M., Elovici, Y., 2016. Usbee: Air-gap covert-channel via electromag-
netic emission from usb. In: 2016 14th Annual Conference on Privacy, Security
and Trust (PST). IEEE, pp. 264-268.

Hawley, S., Read, B., Brafman-Kittner, C., Fraser, N., Thompson, A., Rozhansky, Y.,
Yashar, S., 2019. APT39: An iranian cyber espionage group focused on personal
information. Technical Report. Mandiant.

Hayashi, K., Ray, V., 2018. Bisonal Malware Used in Attacks Against Russia and South
Korea. Technical Report. PaloAlto Networks.

Horejsi, J., Lunghi, D., Pernet, C., Kazuki, F,, 2020. Earth akhlut: exploring the tools,
tactics and procedures of an advanced threat actor operating a large infrastruc-
ture. VB 2020 localhost.

Hromcova, Z., 2019. At commands, TOR-based communications: meet Attor, a fan-
tasy creature and also a spy platform. Technical Report. ESET.

Hwang,].-h., Lee, T.-j., 2019. Study of static analysis and ensemble-based linux
malware classification. Journal of the Korea Institute of Information Security &
Cryptology 29 (6), 1327-1337.

Joy, J., John, A., Joy, J., 2011. Rootkit detection mechanism: a survey. In: Interna-
tional Conference on Parallel Distributed Computing Technologies and Applica-
tions. Springer, pp. 366-374.

Kamluk, V., Gostev, A., 2016. Adwind - A cross-platform RAT. Technical Report.
Kaspersky.

Kao, D.-Y., Hsiao, S.-C., 2018. The dynamic analysis of wannacry ransomware. In:
2018 20th International Conference on Advanced Communication Technology
(ICACT). IEEE, pp. 159-166.

Kirillov, 1., Beck, D., Chase, P., Martin, R., 2011. Malware attribute enumeration and
characterization. Technical Report.

Kramer, S., Bradfield, J.C., 2010. A general definition of malware. Journal in computer
virology 6 (2), 105-114.

Kumar, S, et al., 2020. An emerging threat fileless malware: a survey and research
challenges. Cybersecurity 3 (1), 1-12.

Kuraku, S., Kalla, D., 2020. Emotet malware’'a banking credentials stealer. losr J.
Comput. Eng 22, 31-41.

Lai, A.C.T,, Wong, KW.K,, Wong,].TW,, Lau, A.TW,, Ho, A.P.L,, Wang, S., Muppala, J.K,
2021. Backdoor investigation and incident response: From zero to profit. In:
12th EAI International Conference on Digital Forensics and Cyber Crime.

LaSota, A., 2019. The present and potential future of mac hardware. implants.

Lee, G., Shim, S., Cho, B., Kim, T., Kim, K., 2020. Fileless cyberattacks: Analysis and
classification. ETRI Journal.

Lemmou, Y., Lanet, J.-L., Souidi, E.M., 2021. A behavioural in-depth analysis of ran-
somware infection. IET Information Security 15 (1), 38-58.

Léveillé, M.-E.M., Sanmillan, I., 2021. A wild Kobalos appears. Tricksy Linux malware
goes after HPCs. Technical Report. ESET.

Li, X.,, Wen, Y., Huang, M.H., Liu, Q., 2011. An overview of bootkit attacking ap-
proaches. In: 2011 Seventh International Conference on Mobile Ad-hoc and Sen-
sor Networks. IEEE, pp. 428-431.

Mankin, J., 2013. Classification of malware persistence mechanisms using low-arti-
fact disk instrumentation. Northeastern University, Boston, Massachusetts.

Matrosov, A. 2019. Uefi vulnerabilities classification focused on bios implant
delivery. https://medium.com/@matrosov/uefi-vulnerabilities-classification-
4897596e60af.

Matrosov, A., Rodionov, E., Bratus, S., 2019. Rootkits and bootkits: reversing modern
malware and next generation threats. No Starch Press.

http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0046
https://medium.com/@matrosov/uefi-vulnerabilities-classification-4897596e60af
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0048

A. Villalén-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll

McGraw, G., Morrisett, G., 2000. Attacking malicious code: A report to the infosec
research council. IEEE software 17 (5), 33-41.

Mishra, R., Jha, S.K., 2022. Survey on botnet detection techniques. In: Internet of
Things and Its Applications. Springer, pp. 441-449.

Mohanta, A., Saldanha, A., 2020. Persistence mechanisms. In: Malware Analysis and
Detection Engineering. Springer, pp. 213-236.

Monnappa, K.A., 2018. Learning Malware Analysis: Explore the concepts, tools, and
techniques to analyze and investigate Windows malware. Packt Publishing Ltd.

Morgner, P., Pfennig, S., Salzner, D., Benenson, Z., 2018. Malicious iot implants: Tam-
pering with serial communication over the internet. In: International Sympo-
sium on Research in Attacks, Intrusions, and Defenses. Springer, pp. 535-555.

Mwiki, H., Dargahi, T, Dehghantanha, A., Choo, K.-K.R., 2019. Analysis and triage
of advanced hacking groups targeting western countries critical national infras-
tructure: Apt28, red october, and regin. In: Critical infrastructure security and
resilience. Springer, pp. 221-244.

Nafisi, R. Lelli A., 2021. Goldmax, goldfinder, and sibot: Analyzing NO-
BELIUM's layered persistence. https://www.microsoft.com/security/blog/2021/
03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/.

Namanya, A.P, Cullen, A., Awan, LU, Disso, J.P, 2018. The world of malware: An
overview. In: 2018 IEEE 6th International Conference on Future Internet of
Things and Cloud (FiCloud). IEEE, pp. 420-427.

Nath, H.V., Mehtre, B.M., 2014. Static malware analysis using machine learning
methods. In: International Conference on Security in Computer Networks and
Distributed Systems. Springer, pp. 440-450.

Németh, K., 2020. Detection of persistent rootkit components on embedded IoT de-
vices.

Oosthoek, K., Doerr, C., 2019. Sok: Att&ck techniques and trends in windows mal-
ware. In: International Conference on Security and Privacy in Communication
Systems. Springer, pp. 406-425.

O'Leary, M., 2019. Malware and persistence. In: Cyber Operations. Springer,
pp. 507-566.

Pleiter, D., Varrette, S., Krishnasamy, E., Ozdemir, E., Pilc, M., 2021. Security in an
evolving European HPC Ecosystem. Technical Report. PRACE aisbl.

Popli, N.K,, Girdhar, A., 2019. Behavioural analysis of recent ransomwares and pre-
diction of future attacks by polymorphic and metamorphic ransomware. In:
Computational Intelligence: Theories, Applications and Future Directions-Vol-
ume II. Springer, pp. 65-80.

Qamar, A., Karim, A., Chang, V., 2019. Mobile malware attacks: Review, taxonomy &
future directions. Future Generation Computer Systems 97, 887-909.

Ramaswamy, A., 2008. Detecting kernel rootkits. Technical Report. Dartmouth Col-
lege, NH, USA.

Rao, H., Selvakumar, S., 2014. A kernel space solution for the detection of android
bootkit. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Con-
vention of Computer Society of India-Vol I. Springer, pp. 703-711.

Riley, R, Jiang, X., Xu, D., 2008. Guest-transparent prevention of kernel rootkits
with vmm-based memory shadowing. In: International Workshop on Recent
Advances in Intrusion Detection. Springer, pp. 1-20.

Russinovich, M.E., Margosis, A., 2016. Troubleshooting with the Windows Sysinter-
nals Tools. Microsoft Press.

Russinovich, M.E., Solomon, D.A., Ionescu, A., 2009. Windows® Internals. O'Reilly
Media, Inc.

Sanjay, B., Rakshith, D., Akash, R., Hegde, V.V., 2018. An approach to detect fileless
malware and defend its evasive mechanisms. In: 2018 3rd International Con-
ference on Computational Systems and Information Technology for Sustainable
Solutions (CSITSS). IEEE, pp. 234-239.

Santos, L., Devesa, J., Brezo, F, Nieves,]J., Bringas, P.G., 2013. Opem: A static-dynamic
approach for machine-learning-based malware detection. In: International joint
conference CISIS'12-ICEUTE’ 12-SOCO’ 12 special sessions. Springer, pp. 271-
280.

Sharma, A., Gandotra, E., Bansal, D., Gupta, D., 2019. Malware capability assessment
using fuzzy logic. Cybernetics and Systems 50 (4), 323-338.

Sikorski, M., Honig, A., 2012. Practical malware analysis: the hands-on guide to dis-
secting malicious software. No Starch Press.

Singh, J., Singh, J., 2020. A survey on machine learning-based malware detection in
executable files. Journal of Systems Architecture 101861.

Slowik, J., 2018. Anatomy of an attack: Detecting and defeating crashoverride. Virus-
Bulletin.

Slowik, J., 2019. Evolution of ICS attacks and the prospects for future disruptive
events. Technical Report. Threat Intelligence Centre Dragos Inc, Hanover, MD,
USA.

Stewin, P, Bystrov, 1., 2012. Understanding dma malware. In: International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, pp. 21-41.

Thompson, E.C., 2020. Threat intelligence. In: Designing a HIPAA-Compliant Security
Operations Center. Springer, pp. 37-63.

TOK, M.S., CELIKTAS, B., 2019. Muddywater apt group and a methodology proposal
for macro malware analysis. Bilisim Teknolojileri Dergisi 12 (3), 253-263.

Ucci, D., Aniello, L., Baldoni, R., 2019. Survey of machine learning techniques for
malware analysis. Computers & Security 81, 123-147.

Uroz, D., Rodriguez, RJ., 2019. Characteristics and detectability of windows auto-s-
tart extensibility points in memory forensics. Digital Investigation 28, S95-5104.

Ussath, M., Jaeger, D., Cheng, F., Meinel, C., 2016. Advanced persistent threats: Be-
hind the scenes. In: 2016 Annual Conference on Information Science and Sys-
tems (CISS). IEEE, pp. 181-186.

14

Computers & Security 121 (2022) 102855

Varlioglu, S., Elsayed, N., ElSayed, Z., Ozer, M., 2022. The dangerous combo: Fileless
malware and cryptojacking. In: IEEE Region 3 Technical, Professional and Stu-
dent Conference.

Vogl, S., Pfoh, J., Kittel, T., Eckert, C., 2014. Persistent data-only malware: Function
hooks without code. NDSS. Citeseer.

Wakabayashi, S., Maruyama, S., Mori, T.,, Goto, S., Kinugawa, M., Hayashi, Y.-i., 2017.
Poster: Is active electromagnetic side-channel attack practical? In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-
rity, pp. 2587-2589.

Wang, Y.-M., Roussev, R., Verbowski, C., Johnson, A., Wu, M.-W., Huang, Y., Kuo, S.-Y.,
2004. Gatekeeper: Monitoring auto-start extensibility points (aseps) for spyware
management. In: LISA, Vol. 4, pp. 33-46.

Wardle, P.,, 2014. Invading the core: Iworm'’s infection vector and persistence mech-
anism. Virus Bulletin.

Wardle, P., 2014. Methods of malware persistence on mac os x. In: Proceedings of
the virus bulletin conference.

Webb, M.S., 2018. Evaluating tool based automated malware analysis through per-
sistence mechanism detection. Kansas State University.

Wei, F, Li, Y, Roy, S., Ou, X., Zhou, W., 2017. Deep ground truth analysis of current
android malware. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, pp. 252-276.

Yuan, X., 2017. Phd forum: Deep learning-based real-time malware detection with
multi-stage analysis. In: 2017 IEEE International Conference on Smart Comput-
ing (SMARTCOMP). IEEE, pp. 1-2.

Zimba, A., Chishimba, M., 2017. Exploitation of DNS tunneling for optimization
of data exfiltration in malware-free APT intrusions. Zambia ICT Journal 1 (1),
51-56.

Zimba, A., Wang, Z., 2017. Malware-free intrusions: Exploitation of built-in pre-au-
thentication services for APT attack vectors. International Journal of Computer
Network and Information Security 9 (7), 1.

Antonio Villalon-Huerta is Chief Security Officer at S2
Grupo. He holds a MSc in Computer Engineering from the
Universidad Politecnica de Valencia, Spain. With 25 years
of experience in the cyber security field, in his career he
has executed and managed analysis, defense, attack and
exploitation projects, as well as designed and managed
security operations and incident response centers. Anto-
nio is the author of different books, articles and chap-
ters on the subjects of cyber security and cyber intelli-
gence, as well as a regular speaker in many congresses
and courses. His research interests include the Russian cy-
ber intelligence community and the modeling and detec-
tion of advanced threat actors.

Dr. H. Marco-Gisbert (M'13-SM’18) is an associate pro-
fessor and cybersecurity researcher at the Universitat Po-
litecnica de Valencia, Spain. He holds a PhD in Computer
Science, Cybersecurity, from Universitat Politecnica de Va-
lencia. Hector is senior member of the Institute of Electri-
cal and Electronics (IEEE), and member of the Engineering
and Physical Sciences Research Council (EP- SRC) in UK.
Previously, he was associate professor at University of the
West of Scotland, UK and cybersecurity researcher at the
Universitat Politecnica de Valencia where he co-founded
the “cybersecurity research group”. Hector was part of the
team developing the multi-processor version of the Xtra-
tuM hypervisor to be used by the European Space Agency
in its space crafts. He participated in multiple research projects as Principal Inves-
tigator and Co-Investigator. Hector is author of many papers of computer security
and cloud computing. He has been invited multiple times to reputed cybersecurity
conferences such as Black Hat and DeepSec. Hector has published more than 10
Common Vulnerabilities and Exposures (CVE) affecting important software such as
the Linux kernel. He has received honors and awards from Google, Packet Storm Se-
curity and IBM for his security contributions to the design and implementation of
the Linux ASLR. Hector’s professional interests include low level cybersecurity, se-
cure and non-secure world kernel and userland security, virtualization security and
applied cryptography.

Ismael Ripoll-Ripoll received the PhD in computer sci-
ence from the Universitat Politécnica de Valéncia in 1996,
where he is currently professor of several cybersecurity
subjects in the Department of Computing Engineering. In
reverse chronological order: before working on security,
he participated in multiple research projects related to
hypervisor solutions for European spacecrafts; dynamic
memory allocation algorithms; Real-Time Linux; and hard
real-time scheduling theory. Currently, he is applying all
this background to the security field. His current re-
search interests include memory error defense/attacks
techniques (SSP and ASLR) and software diversication. He
is the leader of the Cybersecurity researcher group at the

UPV.

http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0054
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0056
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0057
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0058
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0060
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0067
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0068
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0069
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0070
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0071
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0072
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0073
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0074
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0075
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0076
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0077
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0078
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0079
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0080
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0081
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0082
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0083
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0084
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0085
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0086
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0087
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0088
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0089
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0090
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0091
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0092

	A Taxonomy for Threat Actors’ Persistence Techniques
	1 Introduction
	2 Background
	3 Problem statement
	4 Approaches and limitations
	5 Our proposal
	5.1 Pre-OS persistence
	5.2 OS native persistence
	5.3 Server software persistence
	5.4 User dependent persistence
	5.5 Summary

	6 Discussion
	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

