
Computers & Security 121 (2022) 102855

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

A Taxonomy for Threat Actors’ Persistence Techniques

Antonio Villalón-Huerta

a , ∗, Hector Marco-Gisbert b , Ismael Ripoll-Ripoll b

a S2 Grupo, Ramiro de Maeztu 7, Valencia, 46022 Spain
b Department of Computing Engineering, Universitat Politécnica de Valéncia, Camino de Vera s/n, Valencia,46022 Spain

a r t i c l e i n f o

Article history:

Received 18 March 2022

Revised 22 June 2022

Accepted 21 July 2022

Available online 26 July 2022

Keywords:

TTP

Persistence

Advanced Persistent Threat

Malware

MITRE ATT&CK

a b s t r a c t

The main contribution of this paper is to provide an accurate taxonomy for Persistence techniques, which

allows the detection of novel techniques and the identification of appropriate countermeasures. Persis-

tence is a key tactic for advanced offensive cyber operations. The techniques that achieve persistence

have been largely analyzed in particular environments, but there is no suitable platform–agnostic model

to structure persistence techniques. This lack causes a serious problem in the modeling of activities of ad-

vanced threat actors, hindering both their detection and the implementation of countermeasures against

their activities. In this paper we analyze previous work in this field and propose a novel taxonomy for

persistence techniques based on persistence points, a key concept we introduce in our work as the basis

for the proposed taxonomy. Our work will help analysts to identify, classify and detect compromises, sig-

nificantly reducing the amount of effort needed for these tasks. It follows a logical structure that can be

easy to expand and adapt, and it can be directly used in commonly accepted industry standards such as

MITRE ATT&CK.

© 2022 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

c

t

d

(

t

r

a

a

t

s

t

a

m

i

(

e

m

i

a

l

t

s

p

a

a

i

p

i

h

0

. Introduction

Persistence refers to the capability of a malware to survive to

hanges and interrupts, including reboots, in a compromised sys-

em. It is a widely used term in malware research, so most of its

efinition are malware–related; for example, Sikorski and Honig

2012) define persistence as a behaviour of malware by which it

ries to be in a compromised system for a long time. A more accu-

ate definition is provided by Gittins and Soltys (2020) , where the

uthors define persistence as a method by which malware survives

 reboot of the victim operating system. Persistence is an impor-

ant attribute that malware writers consider in its design; the rea-

on is simple (Wei et al., 2017): the longer the malware can stay in

he victims device, the more value it generates for the adversary.

However, persistence is not malware–specific: advanced threat

ctors do not use malware in all operations, but they also try to

aintain their persistence in a targeted victim. In fact, persistence

s a key tactic for these actors; when an Advanced Persistent Threat

APT) compromises a victim, one of the first steps that it will

xecute is to guarantee its foothold on the targeted infrastructure,

aintaining the compromise upon system reboots.
∗ Corresponding author.

E-mail addresses: antonio.villalon@s2grupo.es (A. Villalón-Huerta),

ripoll@disca.upv.es (H. Marco-Gisbert) .

S

t

s

ttps://doi.org/10.1016/j.cose.2022.102855

167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article
Considering persistence as a key goal, persistence techniques

re those that allow a threat actor to achieve it; they have been

argely analyzed, but we have not found a clear structure for

hem, being most of the approaches architecture and operating

ystem (OS) dependent. This fact hinders the identification of com-

romises out of the analyzed technologies. This paper provides

 platform–agnostic taxonomy for persistence techniques, suit-

ble for their identification and characterization. This taxonomy

s based on a concept we introduce in our work, the persistence

oint: the location within the system where a persistence artifact

s stored.

The contributions of this paper are the following ones:

• To provide an OS–independent taxonomy of persistence points,

thus allowing analysts to identify persistence techniques in all

platforms.

• To ease not only the detection of persistent artifacts but also

the identification of the capabilities of threat actors.

• To identify the most used persistence points, then determining

the most exploited system capabilities to achieve persistence

and establishing probabilities in order to prioritize investiga-

tions, where applicable.

The rest of the paper is organized as follows. The background,

ection 2 , provides an introduction to cyber operations tactics and

echniques. In Section 3 we assess the problem of the lack of a

uitable structure for persistence techniques to help analysts in
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2022.102855
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102855&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:antonio.villalon@s2grupo.es
mailto:iripoll@disca.upv.es
https://doi.org/10.1016/j.cose.2022.102855
http://creativecommons.org/licenses/by/4.0/

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

t

p

o

n

c

p

a

o

2

p

b

i

p

m

l

m

fl

j

a

m

l

o

a

i

a

t

t

l

c

m

t

v

i

3

f

o

t

t

a

t

t

i

b

m

s

r

t

m

a

a

a

a

t

i

a

t

a

s

c

f

v

a

b

d

d

t

a

m

a

t

N

i

t

t

c

h

t

e

t

t

v

t

C

g

t

L

a

w

g

o

a

r

w

h

g

w

t

m

a

t

m

t

e

f

d

n

4

K

s

f

t

P

t

t

O

W

p

heir investigations. Section 4 analyzes the prior work to identify

ersistence approaches, and in Section 5 we propose a novel tax-

nomy for persistence points, as a direct way to structure tech-

iques and to identify a compromised system. In Section 6 we dis-

uss the results of our work, comparing them with previous ap-

roaches and identifying improvements where applicable, as well

s future research lines. Finally, Section 7 summarizes the outcome

f the overall work.

. Background

From an abstract point of view, Robert Axelrod et al. define

ersistence of a resource (Axelrod and Iliev, 2014) as the proba-

ility that if you refrain from using it now, it will still be usable

n the next time period. When specifically dealing with malware,

ersistence is defined (Kirillov et al., 2011) as a process by which

alware ensures continual execution on a system, independent of

ow-level system events such as shutdowns and reboots.

Persistent malware is the one (Vogl et al., 2014) that makes per-

anent changes in memory and permanently changes the control

ow within a system such that it can continue to achieve its ob-

ective. This feature allows the malware to be aware of and to re-

ct to changes in the compromised systems. Without persistence,

alware is severely limited, and consequently, its impact is also

imited; for this reason most threat actors, particularly advanced

nes, will establish persistence in their victims in order to achieve

n extended temporal effect for their operations.

In the context of advanced threat actors’ operations, persistence

s the tactic by which adversaries try to maintain their foothold on

 targeted infrastructure; this tactic comprises different techniques

hat include any access, action, or configuration changes that allow

he attacker to achieve the tactic, such as replacing or hijacking

egitimate code or adding startup code. As we can see, this con-

ept of persistence as a tactic exceeds all technological –including

alware– considerations: persistence is defined as a key tactic for

hreat actors, regardless of malware. To accomplish its goals, an ad-

anced threat actor must guarantee its presence in a compromised

nfrastructure: that is, in one or more compromised systems.

. Problem statement

Persistence is a key tactic for advanced threat actors and even

or simple malware: the ability to control a compromised target

ver time, while remaining unnoticed, is an essential to guaran-

ee the success of an offensive operation. However, when analyzing

he capabilities that these threat actors develop in their operations,

ll research is focused on particular approaches related to specific

echnologies. In this sense, Microsoft Windows environments, as

he most abused platform, have been largely analyzed in order to

dentify the locations where the artifacts that grant persistence can

e located.

An analysis focused on specific platforms, or even on specific

alware, has obvious limitations, as all the identification of per-

istence techniques are architecture and OS–dependent. The most

elevant limitation is related to the identification of techniques in

echnologies outside of the scope of those specific platforms. This

eans that when faced with the compromise of a new platform

nd trying to identify if an attacker has enabled persistence on it,

n analyst has only vague references for investigation. In this case,

nalysts do not have a common reference to identify the mech-

nisms that enable persistence, nor to identify the locations of

he system where an intruder can achieve persistence. For an ag-

le identification of persistence techniques in new environments,

nalysts need a common platform–agnostic reference that allows

hem to quickly determine which elements have to be examined

nd what to look for inside them.
2
In addition to the dependence on specific platforms, much re-

earch work about persistence focuses on specific malware and its

apabilities to survive a system reboot. These approaches are useful

or the analysis of particular malicious code, but they lack a global

ision of the persistence. As we have stated before, persistence is

 key tactic for an advanced threat, not a simple malware capa-

ility. In fact, different APT actors do not rely on malware to con-

uct their operations, the so called malwareless ones, while others

o not use malware to achieve some specific tactics. Please note

hat although in computer virology the definition of malware is

n open problem (Kramer and Bradfield, 2010), when we refer to

alware we refer to any code added, changed, or removed from

 software system in order to intentionally cause harm or subvert

he intended function of the system (McGraw and Morrisett, 20 0 0 ;

amanya et al., 2018 ; Mishra and Jha, 2022). Attending to this def-

nition, we do not consider elements such as legitimate system

ools or remote credentials for legitimate services as malware, al-

hough they can be abused to maintain persistence.

When facing malwareless operations, detection becomes more

omplex. Atomic and computed indicators of compromise, such as

ashes, do not provide the full capabilities for an accurate detec-

ion, so analysts must usually deal with behavioral indicators: for

xample, those that allow the contextualization of a legitimate sys-

em tool execution in order to classify it as anomalous. Due to

heir stealthiness, malware free approaches are interesting for ad-

anced threat actors in different tactics of an operation, from in-

rusion (Zimba and Wang, 2017) to data exfiltration (Zimba and

hishimba, 2017) or lateral movement (Ussath et al., 2016). Re-

arding persistence, different techniques exploited by threat ac-

ors such as SANDWORM (Slowik, 2018) or APT29 (Nafisi and

elli, 2021) do not rely on malware but on legitimate services

nd tools. Even some actors such as ALLANITE are able to conduct

hole malwareless operations (Slowik, 2019). In this way, we ar-

ue that persistence is not only malware–related, but it is a tactic

f advanced threat actors in offensive cyber operations that can be

chieved through malware or through simple abuse of legitimate

esources.

No suitable approximation for persistence techniques that

ould allow analysts the identification of compromised systems

as been defined. In addition, no research has been performed re-

arding where persistence is stored in a targeted system: that is,

hich locations of a system should be analyzed in order to de-

ect the compromise. Identifying where persistence is stored is a

ust when dealing with operations performed by advanced threat

ctors. Tactics are mandatory to identify what to look for, but de-

ecting where the attacker has stored an artifact for persistence is

andatory to identify where to look for techniques that implement

he persistence tactic. Without a common platform–agnostic refer-

nce for persistence techniques, the detection of persistence arti-

acts in a targeted system follows an unstructured approach that

elays the defensive capabilities and opens a window of opportu-

ity for hostile actors.

. Approaches and limitations

MITRE ATT&CK (Adversarial Tactics, Techniques, and Common

nowledge) is a globally accessible knowledge base of adver-

ary tactics and techniques based on real–world observations. This

ramework represents the biggest effort to identify tactics and

echniques for advanced actors, and it presents a plain structure for

ersistence techniques, which makes it difficult to establish a clear

axonomy or categorization for them. Some efforts have been made

o align technical persistence capabilities with MITRE ATT&CK.

osthoek and Doerr (2019) provides a link between Microsoft

indows malware and the framework by identifying the malware

ersistence capabilities. These relationships have also been ana-

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

l

a

W

e

c

s

p

M

a

v

a

t

a

s

t

t

a

s

S

m

s

S

E

v

m

p

i

t

t

a

f

t

m

t

W

d

o

b

u

a

f

U

f

a

i

i

v

d

s

i

s

(

a

s

a

v

p

S

p

w

p

v

T

o

t

p

t

L

m

t

fi

p

e

i

s

t

s

i

m

W

t

c

s

f

b

t

B

o

m

t

u

f

v

e

(

d

t

I

u

t

m

t

E

n

t

t

g

g

s

f

t

k

s

i

B

s

s

i

b

a

t

a

i

yzed in Gittins and Soltys (2020) and Lee et al. (2020) , where the

uthors map different persistence approaches used in Microsoft

indows malware samples to MITRE ATT&CK techniques. How-

ver, in the case of the Persistence tactic, this framework is too

lose to the most technical aspects of techniques, so it is not

uitable for abstraction and for a modeling of techniques in a

latform–agnostic way. Other malware–related frameworks from

ITRE, such as MAEC (Malware Attribute Enumeration and Char-

cterization) or CME (Common Malware Enumeration) do not pro-

ide even a categorization for persistence techniques. SHIELD, an

ctive defense knowledge base that MITRE is developing to cap-

ure and organize what they are learning about active defense and

dversary engagement, identifies defenses against the techniques

tated in ATT&CK, but it does not provide a valid taxonomy for

hem.

Sharma et al. (2019) characterize malware persistence into

hree categories: run–time, re–boot and trojanized system binaries;

lthough this can be considered an interesting approach to con-

ider behaviors of the malware in order to design a Fuzzy Inference

ystem, it does not capture all the elements to build a taxonomy

odel.

Based on their basic approach to persistence, Webb (2018) clas-

ifies techniques in five main categories: User Login Execution,

ystem Startup Execution, Dynamic Linked Library (DLL) Injection,

xecution Hijacking and Adversary Backdoors. This proposal pro-

ides some key aspects to a OS–independent approach, but as it is

ainly focused on Microsoft Windows aspects, it still lacks a com-

lete platform–agnostic view.

Mankin (2013) breaks persistence capabilities into three phases:

nstallation, system boot and service load. Although this is an in-

eresting approach for the modeling and detection of persistence,

he author does not propose a classification for persistence mech-

nisms, but a common breakdown structure for all of them, with a

ocus on Windows services as a particular technique.

Most of the current approaches to the analysis of persistence

echniques have been made to identify OS–dependent persistence

ethods. As we have stated before, the most analyzed persis-

ence mechanisms are related to Microsoft Windows environments.

indows Auto–Start Extensibility Points (ASEP) were first intro-

uced by Wang et al. (2004) ; they were defined as the subset

f operating system and application extensibility points that can

e “hooked” to enable auto–starting of programs without explicit

ser invocation. ASEP are a key concept for malware persistence,

s they define points that an attacker can abuse to maintain its

oothold on a targeted system. In Uroz and Rodríguez (2019) Daniel

roz et al. propose a taxonomy for Windows ASEP divided into

our categories: system persistence mechanisms, program loader

buse, application abuse, and system behavior abuse; each of them

s analyzed and its characteristics are extracted, identifying fam-

lies of persistence points as shown in Fig. 1 . Although this is a

alid classification, in addition to being focused on Microsoft Win-

ows it only defines the main four previous categories, without

ub categories for them, so it should be detailed in order to spec-

fy a more complete taxonomy. A key resource to identify per-

istence points in Windows environments is Microsoft Autoruns

 Russinovich et al., 2009 ; Russinovich and Margosis, 2016). It is

 utility that has the most comprehensive knowledge of auto–

tarting locations of any startup monitor, showing what programs

re configured to run during system boot up or login, and when

arious built–in Windows applications are started.

The technical persistence capabilities that Microsoft Windows

rovides have been analyzed in different works. Monnappa (2018) ;

ikorski and Honig (2012) and O’Leary (2019) identify particular

ersistence mechanisms and locations for this operating system,

hile (Mohanta and Saldanha, 2020) provides a basic structure for

ersistence capabilities: startup shell directories, registry RUN, ser-
3
ices, file infection, DLL hijacking, Winlogon and Task Scheduler.

hese approaches provide different proposals for the identification

f persistence techniques in Microsoft Windows. However, none of

hese approaches, all of them focused on a particular environment,

rovides a platform–agnostic proposal suitable to be used in other

echnologies.

Regarding other operating systems, in Hwang and

ee (2019) Jun–ho Hwang et al. identify four methods for ELF

alware persistence in Linux systems: subsystems initialization,

ime–based execution, file infection and replacement and user

les alteration. O’Leary (2019) analyzes both Windows and Linux

ersistence mechanisms with practical examples, but without

stablishing a common framework for the classification of the

dentified techniques. Wardle (2014b) analyzes malware per-

istence mechanisms in Mac OS X, as well as the particular

echniques used by different malware samples in this operating

ystem. Also regarding Mac OS X, Wardle (2014b) provides an

nitial approach to technical capabilities and analyzes several

alware samples and their persistence techniques. Again, as in

indows environments, none of these approaches delves into

he definition of a general proposal for persistence techniques,

onsidering only the identification of particular techniques for

pecific platforms.

Another key research line for persistence techniques is IoT–

ocused malware, as connected devices are growing in num-

er and critical infrastructures are a clear target for hostile ac-

ors. Linux IoT malware persistence capabilities are analyzed in

rierley et al. (2020) , where Calvin Brierley et al. identify, with-

ut providing a model or structure, six methods for persistence:

odifying writable file systems, recreating read–only file sys-

ems, initrd/initramfs modification, “set writable flag” kernel mod-

le, update process exploitation and ubootkit. The authors de-

end that no universal method to gain persistence on IoT de-

ices has been identified. In Bytes and Zhou (2020) Andrei Bytes

t al. analyze techniques used in Programmable Logic Controllers

PLC), extending Linux generic mechanisms to particular embed-

ed Linux devices but without providing a suitable structure for

hem. Németh (2020) analyzes rootkit persistence techniques in

oT devices, identifying Linux Kernel Modules, ramdisk–based and

ser space programs as main categories. Inside the last of them,

he authors classify techniques into the following classes: service

anagers, job schedulers and user–specific startup files. Related

o smart grid environments, in Eder-Neuhauser et al. (2017) Peter

der–Neuhauser et al. identify persistence methods such as ma-

ipulation or anti malware tools, code obfuscation or encryption

echniques. The authors analyze malware samples using each of

he identified persistence mechanisms, but they do not provide a

eneral structured classification suitable for its use outside smart

rid environments.

In addition to different operating systems technologies, the per-

istence capabilities of malware families are also a key research

ocus. One of the most analyzed families is ransomware, due to

he growing impact that this malicious software is causing in all

ind of organizations. Lemmou et al. (2021) different ransomware

amples and their persistence mechanisms, among other behav-

ors. Regarding banking malware, which is also a relevant issue,

lack et al. (2018) an identification of the mechanisms for per-

istence in this kind of malicious programs: specific registry keys,

uch as registry or AppInit _ DLLs, program trojanization, and bootk-

ts.

Persistence capabilities from specific malware samples have

een also analyzed in different works. Gittins and Soltys (2020)

nalyzes several samples to identify their persistence capabili-

ies. In Popli and Girdhar (2019) the authors analyze WannaCry

nd Petya capabilities without focusing on an in–depth analysis,

dentifying the persistence capabilities of both malware samples.

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Fig. 1. Windows Auto–Start Extensibility Points

A

d

p

p

o

t

f

b

K

i

w

S

s

fi

l

s

a

i

w

i

t

a

l

t

a

t

a

o

m

5

c

n

i

a

e

t

m

f

o

t

a

i

p

e

r

c

i

b

a

p

t

w

p

s

m

s

a

r

p

i

i

a

b

p

w

t

w

p

g

kbanov et al. (2019) and Kao and Hsiao (2018) provide an in–

epth analysis of WannaCry, and Wardle (2014a) analyzes iWorm

ersistence, an OS X backdoor. Although these works analyze the

ersistence techniques of main malware samples or families, none

f them provides a suitable structure for the abstraction of these

echniques.

Malware that does not rely on the file system to run is re-

erred to as fileless malware, and its persistence capabilities have

een analyzed in different works. In Kumar et al. (2020) Sushil

umar et al. classify fileless malware in three different categories

n relation to its persistence techniques: memory–resident mal-

are, Windows registry malware and rootkit fileless malware. In

anjay et al. (2018) the authors identify Windows registry, WMI

tore, SQL tables or Scheduled tasks as usual locations to achieve

leless persistence. In Vogl et al. (2014) Sebastian Vogl et al. ana-

yze persistent data–only malware and discuss its challenges, pre-

enting a proof of concept of this kind of malware and providing

dditional techniques to achieve persistence. Data only malware

s malware that introduces specially crafted data into a system

ith the intent of manipulating the control flow without chang-

ng or introducing new code. Ramaswamy (2008) provides an ini-

ial classification for rootkits, differentiating between kernel–level

nd user–level rootkits, being the first ones the most analyzed in

iterature. In Joy et al. (2011) Jestin Joy et al. expand this classifica-

ion, identifying three types of rootkits: virtualization, kernel–level

nd library–level, being this last one a user–level rootkit. Never-

heless, none of the related work on malware persistence provides

 taxonomy for the persistence techniques they explore, focusing

nce again only on the particular features of samples, families or

alware persistence approaches.

. Our proposal

After the analysis of the current approaches to define a valid

lassification for persistence techniques, their strengths and weak-

esses and, especially, their main lacks, we propose a platform–

ndependent persistence taxonomy. This taxonomy will allow an-

lysts to classify techniques, regardless of the technology used in

ach case, as well as to identify new persistence capabilities that

hreat actors might develop, thus being able to identify and imple-

ent counter measures against them.

To establish such a taxonomy we have to formally define the

ollowing concepts:

• Persistence point. The location within a compromised system

where a persistence artifact is stored.

• Persistence technique. The actions that enable a persistence
mechanism into a target, relying on a persistence point. t

4
Please note that in this context, the term “artifact” refers not

nly to malicious software implanted in the targeted system, but

o any software or configuration abused or manipulated by a threat

ctor in order to gain persistence. A persistence point is, as its def-

nition highlights, a location; this location can be a hardware com-

onent, a file system point, a Windows registry entry, etc. As an

xample, in previous sections we have referred to fileless malware;

egarding persistence capabilities, this could be considered a first

lassification for persistence points, although it is too general, as

t comprises many types of persistence points with little relation

etween them.

Persistence techniques directly rely on persistence points to

chieve their goal; from an analysts’ perspective, a persistence

oint defines where to look for persistence, while a persistence

echnique defines what to look for. No technique can be achieved

ithout a persistence point. In this context, we can understand a

ersistence technique just as the abuse or manipulation of a per-

istence point. We refer to abuse when a threat actor does not

odify the persistence point, but just exploits one or more of its

tandard capabilities. We refer to manipulation when the attacker

lters the persistence point for his own benefit, by fabricating spu-

ious data or by modifying or canceling legitimate data. For exam-

le, techniques relying on system accounts as a persistence point

nclude those related to credential abuse, those related to the mod-

fication of legitimate users’ credentials and those related to the

ddition of non legitimate users to the system. The relationship

etween persistence techniques and persistence points is direct: all

ersistence techniques rely on at least one persistence point, and

e can detect the artifacts that achieve persistence by inspecting

hose points.

In this work we establish a taxonomy for persistence points,

hich directly defines a taxonomy for persistence techniques. We

ropose four upper level categories:

• Pre–OS persistence points, those regarding hardware, firmware

or initial sequences of a system boot, before a particular oper-

ating system is loaded.

• OS persistence points, those related to the boot of a particular

operating system and to its native capabilities.

• Server–software persistence points, those related to remotely

accessible software that is provided to users without a full ac-

cess to the system.

• User persistence points, those related to particular user activi-

ties or configurations.

In the following sections we discuss each of the proposed cate-

ories for persistence points and we specify their particular struc-

ure, thus defining a taxonomy for persistence techniques.

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Fig. 2. Pre–OS persistence points

5

s

r

s

c

e

s

fi

a

i

fi

f

i

c

p

i

i

D

G

s

w

h

i

d

P

M

l

p

c

p

l

s

s

i

A

l

a

e

(

I

t

a

m

w

s

a

p

B

i

p

a

o

v

t

l

B

o

S

d

t

b

t

(

M

t

i

t

O

r

v

e

fi

h

o

p

u

5

i

c

t

i

O

k

l

i

t

k

t

c

t

s

o

D

t

o

.1. Pre–OS persistence

The boot process for a computer system fully depends on the

pecific hardware and on the OS that will be running on it. Most

esearch is focused on the boot process for BIOS or UEFI based x86

ystems running Microsoft Windows OS flavours. In this particular

ase, the boot process can be described in a simple way as follows:

1. On startup, firmware (BIOS or UEFI) is called and transferred

with execution.

2. This firmware initializes hardware devices and goes through

storage devices to look for a bootable one.

3. When a bootable device is found, boot code is executed, loading

the boot sector for a bootable partition.

4. Boot sector loads and executes the operating system boot

loader.

5. Boot loader loads the OS kernel from the storage device.

In the case of UEFI systems, this firmware directly loads the op-

rating system boot loader without relying on boot sectors, thus

kipping step 3; in these systems, this boot loader is just an EFI

le in the filesystem.

While a rootkit is malicious software that impacts its target

t user and kernel levels (Rao and Selvakumar, 2014), a bootkit

s a particular rootkit that transfers its storage location from the

le system to the hardware and activates itself while or even be-

ore the operating system kernel is loaded (Li et al., 2011). Bootk-

ts are largely analyzed in Matrosov et al. (2019) ; as this mali-

ious software is loaded before the operating system, it can tam-

er the whole computer system. According to the different stages

n boot process, Li et al. (2011) classifies bootkit technologies

nto four categories: BIOS–based bootkit, MBR–based bootkit, NTL-

Rbased bootkit, and others. A similar approach is followed in

ao et al. (2012) , where Hongbo Gao et al. expose the same clas-

ification without the “others” category. As BIOS–based bootkits

rite their malicious payload directly into the BIOS, they typically

ave to target particular BIOS or hardware, so they are rarely seen

n the wild (Grill, 2016). MBR and NTLDR–based bootkits are the

ominant types in real–world malware.

These works provide a key approach for an initial taxonomy of

re–OS persistence points: those that are OS–independent, BIOS or

BR, and those that are based on the initial steps of a particu-

ar OS being loaded, such as NTLDR and others. However, this ap-

roach lacks a whole family of persistence points that we must

onsider: those related to hardware implants. In fact, hardware im-

lants are not usually considered in persistence techniques fami-

ies, such as those presented in MITRE ATT&CK.

To provide a platform–agnostic approach, we divide Pre–OS per-

istence points into three main families: hardware, firmware and

oftware related, as shown in Fig. 2 .

Hardware persistence points are those related to hardware

mplants to maintain persistence on a specific targeted system.

t the early stages of a system boot, this hardware and its

inked firmware are initialized by a firmware component, just

s UEFI or BIOS. These implants have few academic research,
5

specially focusing on covert channels for air–gapped networks

 Guri et al., 2016 ; Wakabayashi et al., 2017 ; Morgner et al., 2018).

n LaSota (2019) Austin Lasota provides a very brief introduction

o different types of hardware implants in Apple’s Mac hardware

nd their countermeasures. Until now, the most extensive infor-

ation about these implants continues to be NSA’s ANT catalog,

hich has been publicly exposed and which is detailed in works

uch as Cayford et al. (2014) .

In addition to hardware, UEFI, BIOS or equivalent firmware is

nother key persistence point. In Matrosov (2019) Alex Matrosov

roposes a classification of vulnerabilities and attack vectors for

IOS persistent infection, identifying persistent and non–persistent

mplants for UEFI firmware through post exploitation and sup-

ly chain vulnerabilities. Note that when referring to hardware

nd firmware persistence in our taxonomy we are considering not

nly the main system components, but also the peripheral de-

ices, especially those that have direct memory access (DMA) to

he main system runtime memory. In fact, DMA attacks have been

argely analyzed, from a pure malware perspective in Stewin and

ystrov (2012) , where Patrick Stewin et al. introduce the concept

f DMA malware, to a general threat actor capability (Breuk and

pruyt, 2012).

Finally, firmware components go through a boot sequence that

epends on the type of firmware being used; here we find the

hird family of Pre–OS persistence points, those related to the

oot device. In this case we differentiate two families of persis-

ence points: boot sector and boot loader ones. Legacy systems

i.e., BIOS) use boot sectors (for example, Master Boot Record, or

BR, which loads a Volume Boot Record, or VBR). Boot sectors are

o call a boot loader (in those systems with UEFI this boot loader

s just an EFI file in the filesystem, as stated before), which loads

he OS kernel, which is another persistence point but in this case

S–dependent, as described in next section.

We want to highlight that when dealing with virtual machines

unning over hypervisors, our proposed taxonomy is completely

alid. In this particular case, pre–OS persistence points are ones

xposed in this section, but considering two main aspects. The

rst one is that these persistence points can be identified in the

ypervisor systems, not only in the virtual machines. The second

ne regards these virtual machines: being the same persistence

oints, on virtual machines they are stored in software that em-

lates hardware components.

.2. OS native persistence

Once the OS starts to boot, a second category for our taxonomy

s defined by those persistence techniques based on different OS

apabilities. In this case, the obtained privileges can be those of

he operating system or those of a particular user, as system boot

s executed with administrative privileges. In Fig. 3 our proposed

S native persistence points taxonomy is shown.

Within this category we find first of all the operating system

ernel as a persistence point; when an OS boots, its kernel is

oaded and a process is started to execute tasks such as software

nitialization or module loading. By subverting the operating sys-

em kernel, a kernel rootkit embeds itself into the compromised

ernel and stealthily causes damage with full unrestricted access

o the systems resources (Riley et al., 2008). Kernel persistence

an be achieved through the compromise of the OS kernel itself or

hrough the compromise of kernel modules in any of their forms,

uch as kernel modules, kernel extensions or kernel drivers, loaded

n startup or when certain conditions are met. Malware such as

rovorub exploits kernel persistence points, establishing persis-

ence through kernel modules (FBI/NSA, 2020).

Once the kernel is loaded and the basic capabilities of the

perating system are started, boot procedures are another OS–

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Fig. 3. OS native persistence points

d

fi

t

e

i

m

l

t

e

r

i

W

i

s

a

a

a

w

d

a

w

t

(

s

R

t

s

(

d

p

s

k

t

t

w

s

t

t

O

i

t

l

o

m

i

a

s

F

o

E

t

o

s

s

i

o

e

a

d

c

t

o

c

t

t

t

a

m

r

i

t

h

t

i

t

m

m

p

i

p

t

c

p

ependent persistence point. In this stage of a system boot we

nd clock synchronization, daemons launched or subsystems ini-

ialized; in addition, please note that many operating systems can

xecute or load user files when booting. In all of these tasks, code

s executed and configuration files are loaded, so a hostile actor can

odify them to achieve OS–dependent persistence; in the particu-

ar case of remote objects access, such as in clock synchronization,

he threat actor can also compromise remote systems in order to

stablish persistence on a targeted one, but here we must refer to

emote persistence points, as stated in this section.

Inside the boot procedures family, in addition to these initial-

zation scripts, many operating systems provide a database, such as

indows Registry or AIX Object Data Manager, where stored data

s accessed during system boot to initialize specific OS capabilities,

uch as network settings or program launch. We must differenti-

te this family of persistence points from the previous one, as they

re stored on a different location for the OS and they are accessed

nd managed in most cases with specific native tools. In fact, mal-

are that enables persistence by adding a specific entry into these

atabases is considered fileless, as opposed to malware that stores

n artifact in the filesystem. For example, Windows Registry is a

idely used persistence point; we can find different threat ac-

ors exploiting this registry to achieve persistence, such as APT32

 Dahan, 2017) or APT37 (FireEye, 2018), as well as specific malware

uch as WannaCry (Akbanov et al., 2019) or Bisonal (Hayashi and

ay, 2018 ; Horejsi et al., 2020).

In addition to initialization databases, different operating sys-

ems such as Microsoft Windows or Apple Mac OSX also provide a

tartup items location, usually a folder with references to programs

in many cases in the form of symbolic links) that are executed

uring system boot. By simply adding the correct reference to a

rogram in this persistence point, the program will be launched on

tartup; jRAT is a known cross–platform backdoor exploiting this

ind of persistence points (Kamluk and Gostev, 2016). Please note

hat in these operating systems there is usually a similar persis-

ence point for each particular user, where references are executed

hen the user logs in.

As a fourth category inside the boot procedures family, we find

ervices, also called daemons, managed by the OS and launched

o perform specific tasks in the background. Linux malware of-

en exploits these services persistence points (Cozzi et al., 2018 ;

’Leary, 2019). The tasks launched by services may include start-

ng clients to connect to remote services, enabling operating sys-

em capabilities such as the execution of scheduled tasks or the
6
aunching of long time running processes that will be up as the

perating system is running. Inside this category we find standard,

andatory OS services and daemons, those related to non operat-

ng system native applications: although they can also be started

s services in many cases, from a technical point of view, we clas-

ify their persistence points inside the “Server Software” category.

or example, the compromise of a Microsoft Exchange Server in

rder to establish persistence by a threat actor relies on Microsoft

xchange (a server software) as a persistence point, not on a na-

ive system service. This point is clear, as server software has its

wn configurations, in many cases including access accounts, out-

ide the OS configuration files. While a system service can not be

topped or uninstalled without introducing some kind of system

nstability, a server software can be completely stopped interfering

nly with its own availability.

Finally, as a fifth family inside this category we must consider

nvironment variables; these variables are set during system boot

nd they affect global execution of applications in the system. We

ifferentiate them from the base software categories, as in this

ase the persistence point is not related to a particular applica-

ion, but to the whole system. In addition, please note that many

f these variables can be overwritten by user–related ones; in this

ase we do not consider them as a separate persistence point, as

hey are set in the login scripts for a particular user.

One of the easiest points for an attacker to gain persistence is

hrough the abuse of accounts that grant access to targeted sys-

ems. This technique has been exploited by threat groups such

s APT29 (CISA, 2020). When dealing with persistence points, we

ust differentiate accounts related persistence points from login–

elated ones; while all of them trigger execution when a user logs

n the system, account–related ones are stored in the system’s user

able, while those related to user’s login are stored in the user’s

ome directory. In the same way, we must also differentiate sys-

em accounts, those that grant access to the system, both as priv-

leged and as unprivileged users, and application accounts, those

hat grant access to a specific application served within the system,

ainly to external users: for example, a web, database or e–

ail account. An attacker can abuse both of them, but persistence

oints are different: in one case, the persistence point is located

n the system’s user table, while in the other one the persistence

oint is the particular user database or equivalent regarding the

argeted application. For this reason we consider application ac-

ounts as a category for persistence points within software com-

romise, not within the accounts category.

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

c

a

a

C

a
c

p

s

e

t

t

t

s

“

O

b

p

i

s

t

d

e

s

a

o

c

e

s

a

(

t

a

p

e

t

d

a

t

T

t

(

m

g

p

t

W

(

p

r

s

c

m

t

h

p

e

f

m

s

t

Fig. 4. Server–dependent persistence points

t

t

h

p

p

5

g

v

f

m

c

s

t

s

f

p

s

t

o

g

s

o

t

t

A

b

a

a

a

i

t

o

a

t

K

t

5

n

t

p

h

s

t

b

t

b

t

a

The abuse of scheduled tasks capabilities that any OS provides

omprises persistence techniques exploited in the wild by threat

ctors such as APT3 (Bahrami et al., 2019) or specific malware such

s Emotet (Kuraku and Kalla, 2020), and even frameworks such as

obalt Strike provide this capability (Varlioglu et al., 2022). Unix

t or cron utilities, or Windows at.exe or Task Scheduler are

ommonly used by threat actors to maintain persistence on com-

romised systems. In this case, we can find three families of per-

istence points, as they are stored in different locations in the op-

rating system: those related to the execution of periodic tasks,

hose related to the execution of one–time tasks and those related

o timers.

Base software represents another family of OS–related persis-

ence points in our taxonomy. In this case, persistence is stored in

oftware that is not initialized during system boot (as it is in the

Services” branch) but in software that is natively provided by the

S, stored at disk and that is not mandatory for the OS to boot,

ut it is to run properly. In this category of persistence points we

ropose in our taxonomy four families: the own application and

ts extensions (that is, the binaries launched on the execution), the

oftware configuration and threat objects.

The binaries used by the base software can be trojanized by a

hreat actor in order to execute malicious code, and this can be

one both in the main software binary and in its extensions (for

xample, libraries, plugins or code loaded under certain circum-

tances). In this context, we define trojanization (Mankin, 2013)

s the process to hijack an executable object that already exists

n the system, patching it with malicious code that will be exe-

uted when the previously–benign program is loaded to run. An

xample of a threat actor achieving persistence through this per-

istence point is Gelsemium, a cyber espionage group that drops

 trojanized DLL to be loaded by the spoolsv Windows service

 Dupuy and Faou, 2021).

Software configuration is also a persistence point abused by at-

ackers; in this case we refer to the configuration loaded on startup

nd to the configuration loaded under certain events (for exam-

le, when a condition is met or when a software extension is ex-

cuted), named conditional configuration in this work. Please note

hat startup and conditional configuration persistence points are

ifferentiated because they may be stored in different locations

nd they can also have different syntax and even different formats.

Finally, the last main category inside the base software persis-

ence points is the one related to threat objects for the software.

hese malicious objects are especially crafted to execute certain ac-

ions on the targeted system when they are accessed in any form

for example, loaded or executed) by the software; until that mo-

ent, no malicious activity is performed, being this access the trig-

er that maintains persistence. Webshells are well–known exam-

les of threat objects: malicious files added to the web contents

hat, when accessed in some form, can grant access to the system.

ebshells are exploited by many threat actors such as Deep Panda

 Thompson, 2020) or OilRig (Lai et al., 2021).

In our proposed taxonomy, we consider remote persistence

oints as the last family of locations that persistence techniques

ely on. In this case, the persistence point is located on a remote

ystem and persistence is triggered when the remote object is ac-

essed. Although a remote persistence point can be found for al-

ost all the previous categories, it is important to differentiate

hem as they are not stored on the targeted system, so this system

as no hostile activity until the remote point is accessed. Remote

ersistence points can be found from the own boot process, for

xample in netbooted systems where the operating system boots

rom a network image, but also when dealing with accounts, re-

ote services or even remote threat objects opened by a server

oftware. We highlight that we consider important to differentiate

hem from local persistence points because they are stored outside
7
he targeted system, so the techniques for their location and iden-

ification are different. Apart from laboratory proofs of concept, we

ave not identified specific real–world malware relying on remote

ersistence; although technically possible, we consider it is not ex-

loited on the wild.

.3. Server software persistence

Server software is another key persistence point. This cate-

ory is related to software that, when running on a system, pro-

ides services to remote users; we must differentiate this family

rom the category of base software because server software is not

andatory for the operating system to run properly. With the ex-

eption of appliances or dedicated systems, server software is in-

talled apart from the OS, so it can be uninstalled without affecting

he OS native capabilities. Inside this category we can find software

uch as mail or web servers, VPN hubs or terminal servers.

In our taxonomy we propose five families of persistence points

or server software persistence. We are identifying persistence

oints related to software, so four of them are the same as in base

oftware, and also as the ones in user software: the own applica-

ion and its extensions, the software configuration and the threat

bjects. The fifth of these families is related to the accounts that

rant access to the software. In Fig. 4 this taxonomy is shown.

We must focus on this fifth category for server software per-

istence points, the one related to Accounts. In OS base software

r in user software we do not find a family for Accounts, as in

hese cases software is executed in a system by a previously au-

henticated entity. However, when dealing with server software,

ccounts are a key persistence point, as they are remotely abused

y attackers. In server software, persistence techniques include the

buse of legitimate accounts as well as their manipulation. Account

buse relies on valid software credentials that are used by a threat

ctor among time, granting direct access to the software and to the

nformation. Known threat actors abusing accounts to gain persis-

ence are APT28 (Mwiki et al., 2019), APT29 (Gavaudan et al., 2021)

r APT39 (Hawley et al., 2019). Account manipulation include the

ddition of accounts to be exploited by an attacker, as well as

he modification of credentials that grant access to the software.

nown threat actors performing account manipulation for persis-

ence purposes include Sandworm (Slowik, 2018).

.4. User dependent persistence

Finally, a fourth category for persistence points, as for tech-

iques, is the one based on specific user locations and actions. In

hese techniques, persistence is triggered after a user executes a

articular action, and the persistence point is usually located in the

ome directory of the targeted user, with exception of remote per-

istence points, as we will describe later. The privileges of the hos-

ile actor are those of the particular user that executed the action,

eing the capabilities to execute privileged commands restricted

o the elevation of privileges through the exploitation of vulnera-

ilities. In Fig. 5 our proposed User–dependent persistence points

axonomy is shown. Please note that although an attacker can en-

ble persistence relying on the user’s scheduled tasks, this family

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Fig. 5. User–dependent persistence points

o

r

b

s

c

o

s

c

a

T

c

s

r

t

i

t

b

a

t

b

s

f

a

c

t

p

o

t

u

a

t

t

(

b

a

n

m

s

o

t

c

t

p

t

t

u

g

o

t

a

c

A

t

W

a

D

l

t

d

P

t

t

s

t

t

O

t

O

(

s

m

p

u

r

c

a

j

a

c

p

i

o

b

m

r

b

t

p

t

5

p

s

t

f persistence points is considered OS–dependent, as it does not

ely on a specific user action to be triggered, but on the complete

oot of the OS.

In first place, login–related techniques are those that group per-

istence points triggered when a user logs in a system. We must

onsider this category apart from the one exposed in the previ-

us section, regarding accounts of a targeted systems, as the per-

istence point in this case is different and located in the user’s own

onfiguration, not in the system capabilities.

Inside the login–related persistence points we must differenti-

te between logon scripts, logon items and logon configurations.

he first family includes those user–defined files that are exe-

uted when the user logs in the system, usually in the form of

cripts. The second one refers, as when dealing when OS–booting

elated persistence, to the location where references to applica-

ions are stored to be automatically launched when a user logs

n. Finally, the third family refers to specific software configura-

ions that are loaded in the login process, not by user software but

y server software that enables the login process. For example, if

 threat actor achieves persistence by modifying a user SSH “au-

horized _ keys” file, it is not altering a user software configuration,

ut a user configuration loaded by a server software. These per-

istence points could be considered as conditional configurations

or server software, but we find it important to differentiate them,

s they are located in a different place from global server software

onfigurations, and they are also writable without privileged access

o the system. When we are referring to login related persistence

oints, we must also consider logout as a persistence trigger. Most

perating systems allow users to define scripts, items or configura-

ions to be accessed not only while a user logs in, but also when a

ser logs out of the targeted system. APT28 is a threat actor which

ctively exploits Login related persistence points in Windows sys-

ems (Calvet et al., 2016); examples of malware which is also able

o exploit these points include Attor (Hromcová, 2019) or Netwire

 Chen et al., 2020).

Another main family of user–persistence techniques is the one

ased on user software. When we refer to user software we

re dealing with applications that are executed by specific users,

ot by system capabilities, although in most cases, particularly in

ulti–user environments, the software itself and some of its exten-

ions are not writable by a normal user, but only by a privileged

ne. For user software as a persistence point we propose a struc-

ure similar to the one regarding server software, with the ex-

eption of the “Accounts” category, as user software does not use

his kind of persistence point. Following this approach, persistence

oints can be found in the own application executable, in its ex-

ensions, in its configuration parameters, both on startup or condi-

ional, or in specific threat objects.

As in server software persistence points, the first category in

ser software ones is the own application or its extensions, re-

arding techniques consisting on their malicious manipulation in
f

8
rder to maintain persistence on a compromised system. Each

ime the compromised application is executed or its extensions

re loaded by the user, the threat actor can execute malicious

ode on the target system. Naikon group is an example of an

PT relying on these persistence points, as to maintain persis-

ence it drops a malicious extension to be loaded by Microsoft

ord at startup (Checkpoint, 2020). Examples of specific malware

busing these persistence points are Industroyer (Slowik, 2018 ;

i Pietro et al., 2021), which trojanizes Windows Notepad to estab-

ish a backdoor persistence mechanism, or Kobalos, which replaces

he SSH client with a trojanized version in order to steal cre-

entials on compromised systems (Léveillé and Sanmillan, 2021 ;

leiter et al., 2021). In addition to the use of applications and

heir extensions as persistence points, a threat actor can rely on

he particular configurations of these applications, both loaded at

tartup or under certain conditions. This approach is the same

hat we have stated in server software but, in this case, related

o user software. For example, MuddyWater APT exploits Microsoft

ffice configurations to maintain persistence on a compromised

arget (TOK and CEL ̇IKTAS, 2019), while APT32 replaces Microsoft

utlook configuration files to implant a backdoor for persistence

 Dahan, 2017). Finally, the last category inside user software per-

istence points, as in server software ones, is the one regarding

alicious objects opened or loaded by an application. In this case,

ersistence is triggered when the threat object is accessed by the

ser. These persistence points are used regarding objects that are

egularly accessed, even automatically loaded, by the user; in other

ase, persistence would be very weak for an advanced threat actor,

s it would fully depend on the user manually opening a threat ob-

ect. To our knowledge, this kind of threat objects without a guar-

nteed access are not commonly exploited, although it is techni-

ally possible. The only group we have identified relaying on these

ersistence points is Gamaredon, which inserts malicious macros

nto existing documents providing persistence when they are re-

pened (Boutin, 2020).

Please note that threat objects, as in server software, can be

oth local (for example, malicious templates to be loaded) and re-

ote; in fact, not only threat objects, but also software configu-

ations, extensions or even login related persistence points can be

oth local and remote. In these cases, as we did in OS dependent

axonomy, we consider again the concept of remote persistence

oint, as they are located outside the targeted system, so persis-

ence relies on a third party, also compromised, system.

.5. Summary

In our proposal we present a novel taxonomy for persistence

oints, those that store artifacts that are abused to maintain per-

istence in a compromised system. This model provides a direct

axonomy for techniques exploited by threat actors. We propose

our high level families for these points: those regarding locations

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Table 1

Persistence points proposed taxonomy.

Hardware

Pre–OS Firmware

Boot device Boot sector

Boot loader

OS–dependent Kernel OS kernel

Modules

Boot procedures Initialization scripts

Initialization databases

Startup items

Services

Environment variables

Accounts

Scheduled tasks Periodic tasks

One–time tasks

Timers

Base software Applications

Extensions

Configurations Startup

Conditional

Threat objects

Remote points

Server software Applications

Extensions

Configurations Startup

Conditional

Accounts

Threat objects

User–dependent Login related Scripts

Items

Configurations

User software Applications

Extensions

Configurations Startup

Conditional

Threat objects

Remote points

p

c

a

r

e

o

d

e

6

t

p

f

S

t

f

t

a

s

b

i

c

i

a

c

e

a

i

l

f

a

t

a

n

t

t

p

a

t

n

h

p

l

A

o

t

c

t

i

t

t

t

a

s

c

p

b

o

p

s

A

t

e

g

b

a

A

t

w

h

t

l

c

a

o

a

t

a

t

o

p

l

w

d

d

t

rior to the OS boot, those regarding locations directly linked to OS

apabilities, those regarding locations related to server software as

n addendum for the system and, finally, those related to user–

elated locations of the system. Each of them is divided into differ-

nt families to provide an accurate persistence points taxonomy.

The proposed taxonomy for persistence points we have devel-

ped in this work is shown in Table 1 , where we summarize the

ifferent persistence points families for all of the main stated cat-

gories.

. Discussion

We have identified the absence of a suitable taxonomy for the

echniques commonly used by advanced threat actors to achieve

ersistence. As with the rest of tactics MITRE ATT&CK defines, this

ramework provides a plain relationship for persistence techniques.

uch a plain structure hinders the analysis and, most important,

he detection, of these techniques. As persistence is mandatory

or most advanced threat actor’s operations, it is important to es-

ablish a suitable approach for persistence techniques that allows

nalysts to identify the persistence in a potentially compromised

ystem.

Persistence is not only a key tactic for advanced threat actors,

ut also a key feature for malware. Persistence has been analyzed

n three main research lines: Microsoft Windows techniques, spe-

ific malware capabilities and, during the last years, persistence

n IoT–related infrastructures. None of these lines provides a suit-

ble taxonomy for persistence techniques, but only weak classifi-

ations schemes for them, linked to specific operating systems or

ven malware capabilities. Without a global, platform–independent
9
pproach, a relevant problem for analysts is to identify persistence

n environments that have not been previously explored.

In this paper we define the concept of persistence point as the

ocation within a compromised system where a persistence arti-

act has been stored. Dealing with persistence as a global tactic for

dvanced threat actors, these locations are classified into a novel

axonomy for persistence points, thus establishing the locations of

 system that have to be analyzed to identify persistence mecha-

isms. In this way, our approach provides a common reference for

he identification of persistence techniques, as the relationship be-

ween persistence techniques and persistence points is direct. All

ersistence techniques rely on at least one persistence point. For

nalysts, by inspecting these points it is possible to detect the ar-

ifacts that achieve persistence, even when facing compromises in

ew environments or technologies.

To discuss the completeness and correctness of our work, we

ave mapped MITRE ATT&CK persistence techniques to our pro-

osed taxonomy. This framework is the main public effort to estab-

ish a classification for tactics and techniques used by threat actors.

s on May, 2022, MITRE ATT&CK “Persistence” tactic (last modified

n 19th July 2019), identified as TA0 0 03, consists of techniques

hat adversaries use to keep access to systems across restarts,

hanged credentials, and other interruptions that could cut off

heir access. MITRE ATT&CK provides no structure for techniques

nside the “Persistence” tactic; the framework places all of these

echniques at the same level, providing in some cases specific sub

echniques. Although this approach is followed in all ATT&CK tac-

ics and techniques, we advocate that it is important to provide

 fine classification for all tactics, and in this case, for the “Per-

istence” one, by dividing its techniques at least in the first–level

lassification we provide in this work, based on persistence points.

The mapping of MITRE ATT&CK persistence techniques to the

ersistence points we propose in our work is shown in Table 2 .

As we can confirm, all techniques and subtechniques identified

y MITRE ATT&CK for the “Persistence” tactic can be mapped to

ur proposed taxonomy. Based on persistence points, our approach

rovides not only this full coverage, but also a platform–agnostic

tructure for all these techniques, improving the detail that MITRE

TT&CK defines. Our structure also considers techniques not iden-

ified or partially identified in the MITRE ATT&CK framework: for

xample, our proposal extends T1137, Office Application Startup, to

eneric applications startup, considering not only Microsoft Office

ut any application a user can execute to achieve persistence.

Analyzing this mapping, it draws our attention that Hardware is

 persistence point in the second classification level without MITRE

TT&CK associated techniques. This fact highlights the absence of

echniques relying on hardware implants as persistence points. As

e have stated in this work, these implants are expensive and

ighly platform–dependent, so threat actors do not use them on

he wild. The other persistence point in the second classification

evel without linked techniques is server software extensions and

onfigurations. In this case, this fact highlights that when a hostile

ctor uses server software to achieve persistence, it mostly relies

n accounts, threat objects and even the own application binary

s persistence points. This is a normal finding, particularly with

he accounts and threat objects persistence points, as for a threat

ctor it is usually easier to abuse or manipulate such objects than

o rely on extensions, not used in all server software deployments,

r configurations, in many cases customized for each particular de-

loyment and thus harder to iterate among multiple victims.

Another key finding is that Pre–OS persistence points are the

ess exploited ones by hostile actors. As we have stated in our

ork, although these persistence points are the hardest ones to

etect and eradicate, their exploitation is usually expensive and

ifficult to achieve. In front of this situation, we can confirm that

he abuse and manipulation of persistence points linked to the op-

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Table 2

MITRE ATT & CK techniques mapping.

Hardware

Pre–OS Firmware

T1543.001
T1543.002
T1543.004

Boot device Boot sector

T1543.003

Boot loader

T1543.003

OS–dependent Kernel OS kernel

T1547.006

Modules

T1547.006

Boot procedures Initialization

scripts

T1037.004

Initialization

databases

T1547.001
T1547.003
T1547.004
T1547.005
T1547.010
T1037.001
T1546.001
T1546.002
T1546.007
T1546.008
T1546.009
T1546.010
T1546.011
T1546.012
T1546.015
T1574.011
T1137.002

Startup items

T1547.001
T1547.011
T1037.002
T1543.001
T1543.004

Services T1097
T1547.002
T1547.008
T1547.010
T1547.012
T1543.002
T1543.003
T1546.003
T1546.014
T1574.010
T1053.004

Environment

variables

T1574.001
T1574.004
T1574.006
T1574.007
T1574.012

Accounts

T1098.004
T1136.001
T1136.003
T1078.001
T1078.003
T1078.004

(continued on next page)

10

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Table 2 (continued)

Hardware

Scheduled tasks Periodic tasks

T1053.003
T1053.005

One–time tasks

T1053.001
T1053.002

Timers

T1053.006

Base software

T1205.001
Applications

T1546.005
T1546.006
T1546.008
T1574.005

Extensions

T1574.001

Configurations Startup

T1546.011
T1546.013
T1574.002
T1574.006

Conditional

Threat objects

T1574.008
T1574.009

Remote points

T1037.003
T1136.002
T1574.001
T1543.005

T1078.002

Server software Applications

T1546.005
T1546.006

Extensions

Configurations Startup

Conditional

Accounts

T1098.001
T1098.002
T1098.003
T1133

Threat objects

T1525
T1505.001
T1505.002
T1505.003

User–dependent Login related Scripts

T1546.004

Items

T1547.001
T1547.007
T1547.009
T1547.011
T1543.001

Configurations

T1098.004

User software Applications

T1554
T1546.005
T1546.006

(continued on next page)

11

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

Table 2 (continued)

Hardware

Extensions

T1176
T1137.001
T1137.006

Configurations Startup

T1574.002
T1137.003
T1137.004
T1137.005

Conditional

Threat objects

T1574.008
T1574.009

Remote points

T1137.004

e

f

W

M

p

d

l

d

m

c

o

s

t

a

p

p

t

a

t

o

a

e

s

t

d

d

c

e

f

c

a

o

i

c

a

e

t

l

b

t

o

l

o

t

a

f

i

s

o

t

a

a

p

o

s

a

t

s

m

s

t

s

o

a

i

e

e

c

t

a

b

l

Y

i

t

f

c

a

7

f

a

h

t

rating system boot procedures comprises most of the techniques

rom the framework. Particularly, an initialization database such as

indows Registry is the main persistence point for all analyzed

ITRE ATT&CK techniques. Our taxonomy also extends this specific

latform–dependent approach to a generic family of Initialization

atabases for OS–dependent persistence points.

Our approach significantly improves the analysis of persistence

inked to specific operating systems or technologies. Platform–

ependent approaches are only useful for the particular environ-

ents they are designed for, but they are not able to establish a

ommon reference to be used in all platforms. None of the previ-

us approaches we have analyzed defines a platform–agnostic clas-

ification, although some of them try to establish such a classifica-

ion for the particular environments they study. These particular

pproaches have provided the common basis for our novel pro-

osal of a general taxonomy suitable for all platforms. Our novel

latform–agnostic taxonomy is a useful tool for defenders to face

he detection of persistence techniques, as well as for the planning

nd execution of offensive operations such as cyberspace exploita-

ion or cyberspace attack. The application of our proposal to both

f these perspectives improves an organizations’ security.

From a practical point of view, persistence detection is usually

 complex task when facing advanced threat actors. These actors

xploit uncommon techniques in a broad range of platforms, from

tandard operating systems such as Microsoft Windows or Linux

o closed appliances, and even legacy systems. When facing inci-

ents, MITRE ATT&CK framework is the common starting point for

efenders. However, this framework is technology–dependent, so it

an not be exploited to face persistence in new environments, and

ven to hunt not previously identified techniques in common plat-

orms. In this sense, our taxonomy provides a general model that

an be used to structure knowledge about persistence points, thus

llowing analysts the identification of novel, or at least uncommon,

nes. As all techniques rely on at least one persistence point, the

dentification of these persistence points directly implies the dis-

overy of persistence techniques.

Relying on a closed framework for persistence analysis, we

re limited to the previously identified persistence techniques. For

xample, MITRE ATT&CK identifies persistence techniques linked

o different user software compromise; they include techniques

inked to specific user software such as Microsoft Office or web

rowsers. Without a platform–agnostic model, persistence detec-

ion is mostly limited to these specific applications. By using

ur taxonomy, analysts can not only deal with persistence points

inked to Microsoft Office or web browsers, but they can extrap-

late them to other user applications, thus being able to iden-
12
ify new persistence points. Through this identification, security

nalysts can determine all the possible locations where an arti-

act can be stored for persistence purposes: i.e., the analysts are

dentifying where to look for, or where to implant (in an offen-

ive operation), persistence artifacts. This is especially relevant not

nly in common platforms or technologies, but also when facing

he identification of persistence techniques in novel, not previously

nalyzed, environments, such as legacy systems or proprietary

ppliances.

Once persistence points have been identified, from a defensive

erspective these points must be analyzed in order to find traces

f abuse or manipulation. Please note that, as we have previously

tated, a persistence point can store not only malware, but also

 full range of configurations or legitimate tools to enable persis-

ence through them. This analysis can be performed through intru-

ion detection techniques, out of the scope of our proposal, such as

isuse or anomaly detection. In addition, from an offensive per-

pective, the identification of persistence points will help the red

eam to determine the different points where an artifact can be

tored in a target. Those points will range from the well–known

nes to the less used ones, this is, to the less monitored ones. On

 prior basis, the exploitation of uncommon persistence points will

ncrease the probability of success for an offensive cyberspace op-

ration.

Finally, in this section we identify machine learning as an

specially interesting research line. Machine learning approaches

an be applied not only to identify intrusions, including persis-

ence, against infrastructure, but also to classify them into a suit-

ble taxonomy of persistence points. Different researches have

een conducted to analyze malware capabilities with machine

earning approaches (Santos et al., 2013 ; Nath and Mehtre, 2014 ;

uan, 2017 ; Bahtiyar et al., 2019). A summary of them can be found

n Ucci et al. (2019) or Singh and Singh (2020) . Nevertheless, al-

hough some of these approaches establish a suitable classification

or malware (Gibert et al., 2020 ; Qamar et al., 2019), none has fo-

used on the persistence mechanisms used in each case, neither in

 potential classification for these mechanisms.

. Conclusions

Persistence, the ability to keep presence in a targeted system

or a long time, is a key tactic for the operations of advanced threat

ctors. These operations are expensive for an actor, so once a target

as been compromised it is a common approach to keep control of

his target as long as possible.

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

t

o

a

t

r

a

t

i

f

s

a

t

l

f

t

T

n

r

a

s

l

v

f

c

a

D

c

i

C

M

W

R

A

A

B

B

B

B

B

B

B

C

C

C

C

C

C

D

D

D
E

F

F

G

G

G

G

G

G

H

H

H

H

H

J

K

K

K

K

K

K

L

L
L

L

L

L

M

M

M

Persistence techniques have been largely analyzed in particular

echnologies, from specific operating systems to malware samples

r ICS (Industrial Control Systems) environments. However, these

nalysis lack a global perspective, thus making it difficult to iden-

ify general capabilities that can be extrapolated from one envi-

onment to another. This is a relevant problem for security an-

lysts when facing the potential compromise of new systems or

echnologies, as there is not a common reference to check for the

dentification of techniques in these environments.

In this work we provide a global platform–agnostic taxonomy

or persistence techniques that allows the analysis of compromised

ystems regardless of their technology, thus easing the security an-

lysts’ work. This novel approach identifies persistence points as

he locations within a system where persistence artifacts can be

ocated. These points represent the components of a targeted in-

rastructure that are abused to maintain persistence, so they define

he locations where analysts must check the presence of artifacts.

he relationship between persistence points and persistence tech-

iques is direct.

Our taxonomy is based on four main persistence points families,

egarding those that are located before the OS boots, those that

re located on OS–dependent capabilities, those that are located on

erver software and, finally, those that are user–dependent, mainly

ocated in a user’s particular files. All of these families are di-

ided into different categories to specify where persistence arti-

acts can be located. As a first and novel taxonomy, our proposal

an be used as a fundamental basis for new and more specific

pproaches.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Antonio Villalón-Huerta: Writing – original draft. Hector

arco-Gisbert: Writing – original draft. Ismael Ripoll-Ripoll:

riting – original draft.

eferences

kbanov, M., Vassilakis, V.G., Logothetis, M.D., 2019. Wannacry ransomware: Analy-

sis of infection, persistence, recovery prevention and propagation mechanisms.
Journal of Telecommunications and Information Technology 113–124 .

xelrod, R., Iliev, R., 2014. Timing of cyber conflict. Proceedings of the National
Academy of Sciences 111 (4), 1298–1303 .

ahrami, P.N., Dehghantanha, A., Dargahi, T., Parizi, R.M., Choo, K.-K.R., Javadi, H.H.,
2019. Cyber kill chain-based taxonomy of advanced persistent threat actors:

analogy of tactics, techniques, and procedures. Journal of information process-

ing systems 15 (4), 865–889 .
ahtiyar, Ş ., Yaman, M.B., Altıni ̆gne, C.Y., 2019. A multi-dimensional machine learn-

ing approach to predict advanced malware. Computer networks 160, 118–
129 .

lack, P., Gondal, I., Layton, R., 2018. A survey of similarities in banking malware
behaviours. Computers & Security 77, 756–772 .

outin, J.-I., 2020. Gamaredon group grows its game. Technical Report. ESET .

reuk, R., Spruyt, A., 2012. Integrating dma attacks in exploitation frameworks. Uni-
versity of Amsterdam, Tech. Rep 2011–2012 .

rierley, C., Pont, J., Arief, B., Barnes, D.J., Hernandez-Castro, J.C., 2020. Persistence
in linux-based iot malware. In: 25th Nordic Conference on Secure IT Systems

(Nordsec) .
ytes, A., Zhou, J., 2020. Post-exploitation and persistence techniques against pro-

grammable logic controller. In: International Conference on Applied Cryptogra-
phy and Network Security. Springer, pp. 255–273 .

alvet, J., Campos, J., Dupuy, T., 2016. Visiting The Bear Den. Technical Report. ESET .

ayford, M., Van Gulijk, C., van Gelder, P., 2014. All swept up: An initial classifi-
cation of nsa surveillance technology. Safety and Reliability: Methodology and

Applications 643–650 .
heckpoint, 2020. Naikon APT: cyber espionage reloaded. Technical Report. Chek-

point .
13
hen, Y.-H., Lin, Y.-D., Chen, C.-K., Lei, C.-L., Huang, C.-Y., 2020. Construct macos cy-
ber range for red/blue teams. In: Proceedings of the 15th ACM Asia Conference

on Computer and Communications Security, pp. 934–936 .
ISA, 2020. Advanced Persistent Threat Compromise of Government Agencies, Crit-

ical Infrastructure, and Private Sector Organizations. Technical Report. Cyberse-
curity and Infrastructure Security Agency .

ozzi, E., Graziano, M., Fratantonio, Y., Balzarotti, D., 2018. Understanding linux mal-
ware. In: 2018 IEEE symposium on security and privacy (SP). IEEE, pp. 161–

175 .

ahan, A., 2017. Operation Cobalt Kitty: A large-scale APT in Asia carried out by the
OceanLotus Group. Technical Report. Cyber Reason .

i Pietro, R., Raponi, S., Caprolu, M., Cresci, S., 2021. Critical infrastructure. In: New

Dimensions of Information Warfare. Springer, pp. 157–196 .

upuy, T., Faou, M., 2021. Gelsemium. Technical Report. ESET .
der-Neuhauser, P., Zseby, T., Fabini, J., Vormayr, G., 2017. Cyber attack models for

smart grid environments. Sustainable Energy, Grids and Networks 12, 10–29 .

BI/NSA, 2020. Russian GRU 85th GTsSS Deploys Previously Undisclosed Drovorub
Malware. Technical Report. National Security Agency, Federal Bureau of Investi-

gation .
ireEye, 2018. APT37 (REAPER). The Overlooked North Korean Actor. Technical Re-

port. FireEye, Inc., Milpitas, CA, USA .
ao, H., Li, Q., Zhu, Y., Wang, W., Zhou, L., 2012. Research on the working mecha-

nism of bootkit. In: 2012 8th International Conference on Information Science

and Digital Content Technology (ICIDT2012), Vol. 3. IEEE, pp. 476–479 .
avaudan, L., Legras, S., Ventos, V., 2021. Cyber range automation, a bedrock for ai

applications. Proceedings of the 28th C&ESAR 165 .
ibert, D., Mateu, C., Planes, J., 2020. The rise of machine learning for detection

and classification of malware: Research developments, trends and challenges.
Journal of Network and Computer Applications 153, 102526 .

ittins, Z., Soltys, M., 2020. Malware persistence mechanisms. 24th International

Conference on Knowledge–Based and Intelligent Information & Engineering Sys-
tems 176, 88–97 .

rill, B., 2016. Bootkits revisited; detecting, analysing and mitigating bootkit threats.
Technischen Universitat Wien .

uri, M., Monitz, M., Elovici, Y., 2016. Usbee: Air-gap covert-channel via electromag-
netic emission from usb. In: 2016 14th Annual Conference on Privacy, Security

and Trust (PST). IEEE, pp. 264–268 .

awley, S., Read, B., Brafman-Kittner, C., Fraser, N., Thompson, A., Rozhansky, Y.,
Yashar, S., 2019. APT39: An iranian cyber espionage group focused on personal

information. Technical Report. Mandiant .
ayashi, K., Ray, V., 2018. Bisonal Malware Used in Attacks Against Russia and South

Korea. Technical Report. PaloAlto Networks .
orejsi, J., Lunghi, D., Pernet, C., Kazuki, F., 2020. Earth akhlut: exploring the tools,

tactics and procedures of an advanced threat actor operating a large infrastruc-

ture. VB 2020 localhost .
romcová, Z., 2019. At commands, TOR–based communications: meet Attor, a fan-

tasy creature and also a spy platform. Technical Report. ESET .
wang, J.-h., Lee, T.-j., 2019. Study of static analysis and ensemble-based linux

malware classification. Journal of the Korea Institute of Information Security &
Cryptology 29 (6), 1327–1337 .

oy, J., John, A., Joy, J., 2011. Rootkit detection mechanism: a survey. In: Interna-
tional Conference on Parallel Distributed Computing Technologies and Applica-

tions. Springer, pp. 366–374 .

amluk, V., Gostev, A., 2016. Adwind – A cross–platform RAT. Technical Report.
Kaspersky .

ao, D.-Y., Hsiao, S.-C., 2018. The dynamic analysis of wannacry ransomware. In:
2018 20th International Conference on Advanced Communication Technology

(ICACT). IEEE, pp. 159–166 .
irillov, I., Beck, D., Chase, P., Martin, R., 2011. Malware attribute enumeration and

characterization. Technical Report .

ramer, S., Bradfield, J.C., 2010. A general definition of malware. Journal in computer
virology 6 (2), 105–114 .

umar, S., et al., 2020. An emerging threat fileless malware: a survey and research
challenges. Cybersecurity 3 (1), 1–12 .

uraku, S., Kalla, D., 2020. Emotet malware’a banking credentials stealer. Iosr J.
Comput. Eng 22, 31–41 .

ai, A.C.T., Wong, K.W.K., Wong, J.T.W., Lau, A.T.W., Ho, A.P.L., Wang, S., Muppala, J.K.,

2021. Backdoor investigation and incident response: From zero to profit. In:
12th EAI International Conference on Digital Forensics and Cyber Crime .

aSota, A., 2019. The present and potential future of mac hardware. implants .
ee, G., Shim, S., Cho, B., Kim, T., Kim, K., 2020. Fileless cyberattacks: Analysis and

classification. ETRI Journal .
emmou, Y., Lanet, J.-L., Souidi, E.M., 2021. A behavioural in-depth analysis of ran-

somware infection. IET Information Security 15 (1), 38–58 .

éveillé, M.-E.M., Sanmillan, I., 2021. A wild Kobalos appears. Tricksy Linux malware
goes after HPCs. Technical Report. ESET .

i, X., Wen, Y., Huang, M.H., Liu, Q., 2011. An overview of bootkit attacking ap-
proaches. In: 2011 Seventh International Conference on Mobile Ad-hoc and Sen-

sor Networks. IEEE, pp. 428–431 .
ankin, J., 2013. Classification of malware persistence mechanisms using low-arti-

fact disk instrumentation. Northeastern University, Boston, Massachusetts .

atrosov, A., 2019. Uefi vulnerabilities classification focused on bios implant
delivery. https://medium.com/@matrosov/uefi- vulnerabilities- classification-

4897596e60af .
atrosov, A., Rodionov, E., Bratus, S., 2019. Rootkits and bootkits: reversing modern

malware and next generation threats. No Starch Press .

http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0002
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0003
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0004
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0005
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0017
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0018
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0019
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0020
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0021
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0032
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0033
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0034
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0035
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0036
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0037
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0038
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0039
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0040
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0043
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0044
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0045
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0046
https://medium.com/@matrosov/uefi-vulnerabilities-classification-4897596e60af
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0048

A. Villalón-Huerta, H. Marco-Gisbert and I. Ripoll-Ripoll Computers & Security 121 (2022) 102855

M

M

M

M

M

M

N

N

N

N

O

O

P

P

Q

R

R

R

R

R

S

S

S

S

S

S

S

S

T

T

U

U

U

V

V

W

W

W

W

W

W

Y

Z

Z

i
t

a
c

C

t
c

t
c

a

U

cGraw, G., Morrisett, G., 20 0 0. Attacking malicious code: A report to the infosec
research council. IEEE software 17 (5), 33–41 .

ishra, R., Jha, S.K., 2022. Survey on botnet detection techniques. In: Internet of
Things and Its Applications. Springer, pp. 4 41–4 49 .

ohanta, A., Saldanha, A., 2020. Persistence mechanisms. In: Malware Analysis and
Detection Engineering. Springer, pp. 213–236 .

onnappa, K.A., 2018. Learning Malware Analysis: Explore the concepts, tools, and
techniques to analyze and investigate Windows malware. Packt Publishing Ltd .

orgner, P., Pfennig, S., Salzner, D., Benenson, Z., 2018. Malicious iot implants: Tam-

pering with serial communication over the internet. In: International Sympo-
sium on Research in Attacks, Intrusions, and Defenses. Springer, pp. 535–555 .

wiki, H., Dargahi, T., Dehghantanha, A., Choo, K.-K.R., 2019. Analysis and triage
of advanced hacking groups targeting western countries critical national infras-

tructure: Apt28, red october, and regin. In: Critical infrastructure security and
resilience. Springer, pp. 221–244 .

afisi, R., Lelli, A., 2021. Goldmax, goldfinder, and sibot: Analyzing NO-

BELIUM’s layered persistence. https://www.microsoft.com/security/blog/2021/
03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/ .

amanya, A .P., Cullen, A ., Awan, I.U., Disso, J.P., 2018. The world of malware: An
overview. In: 2018 IEEE 6th International Conference on Future Internet of

Things and Cloud (FiCloud). IEEE, pp. 420–427 .
ath, H.V., Mehtre, B.M., 2014. Static malware analysis using machine learning

methods. In: International Conference on Security in Computer Networks and

Distributed Systems. Springer, pp. 440–450 .
émeth, K., 2020. Detection of persistent rootkit components on embedded IoT de-

vices .
osthoek, K., Doerr, C., 2019. Sok: Att&ck techniques and trends in windows mal-

ware. In: International Conference on Security and Privacy in Communication
Systems. Springer, pp. 406–425 .

’Leary, M., 2019. Malware and persistence. In: Cyber Operations. Springer,

pp. 507–566 .
leiter, D., Varrette, S., Krishnasamy, E., Özdemir, E., Pilc, M., 2021. Security in an

evolving European HPC Ecosystem. Technical Report. PRACE aisbl .
opli, N.K., Girdhar, A., 2019. Behavioural analysis of recent ransomwares and pre-

diction of future attacks by polymorphic and metamorphic ransomware. In:
Computational Intelligence: Theories, Applications and Future Directions-Vol-

ume II. Springer, pp. 65–80 .

amar, A., Karim, A., Chang, V., 2019. Mobile malware attacks: Review, taxonomy &
future directions. Future Generation Computer Systems 97, 887–909 .

amaswamy, A., 2008. Detecting kernel rootkits. Technical Report. Dartmouth Col-
lege, NH, USA .

ao, H., Selvakumar, S., 2014. A kernel space solution for the detection of android
bootkit. In: ICT and Critical Infrastructure: Proceedings of the 48th Annual Con-

vention of Computer Society of India-Vol I. Springer, pp. 703–711 .

iley, R., Jiang, X., Xu, D., 2008. Guest-transparent prevention of kernel rootkits
with vmm-based memory shadowing. In: International Workshop on Recent

Advances in Intrusion Detection. Springer, pp. 1–20 .
ussinovich, M.E., Margosis, A., 2016. Troubleshooting with the Windows Sysinter-

nals Tools. Microsoft Press .
ussinovich, M.E., Solomon, D.A., Ionescu, A., 2009. Windows® Internals. O’Reilly

Media, Inc .
anjay, B., Rakshith, D., Akash, R., Hegde, V.V., 2018. An approach to detect fileless

malware and defend its evasive mechanisms. In: 2018 3rd International Con-

ference on Computational Systems and Information Technology for Sustainable
Solutions (CSITSS). IEEE, pp. 234–239 .

antos, I., Devesa, J., Brezo, F., Nieves, J., Bringas, P.G., 2013. Opem: A static-dynamic
approach for machine-learning-based malware detection. In: International joint

conference CISIS’12-ICEUTE’ 12-SOCO’ 12 special sessions. Springer, pp. 271–
280 .

harma, A., Gandotra, E., Bansal, D., Gupta, D., 2019. Malware capability assessment

using fuzzy logic. Cybernetics and Systems 50 (4), 323–338 .
ikorski, M., Honig, A., 2012. Practical malware analysis: the hands-on guide to dis-

secting malicious software. No Starch Press .
ingh, J., Singh, J., 2020. A survey on machine learning-based malware detection in

executable files. Journal of Systems Architecture 101861 .
lowik, J., 2018. Anatomy of an attack: Detecting and defeating crashoverride. Virus-

Bulletin .

lowik, J., 2019. Evolution of ICS attacks and the prospects for future disruptive
events. Technical Report. Threat Intelligence Centre Dragos Inc, Hanover, MD,

USA .
tewin, P., Bystrov, I., 2012. Understanding dma malware. In: International Confer-

ence on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, pp. 21–41 .

hompson, E.C., 2020. Threat intelligence. In: Designing a HIPAA-Compliant Security

Operations Center. Springer, pp. 37–63 .
OK, M.S., CEL ̇IKTAS, B., 2019. Muddywater apt group and a methodology proposal

for macro malware analysis. Bili ̧s im Teknolojileri Dergisi 12 (3), 253–263 .
cci, D., Aniello, L., Baldoni, R., 2019. Survey of machine learning techniques for

malware analysis. Computers & Security 81, 123–147 .
roz, D., Rodríguez, R.J., 2019. Characteristics and detectability of windows auto-s-

tart extensibility points in memory forensics. Digital Investigation 28, S95–S104 .

ssath, M., Jaeger, D., Cheng, F., Meinel, C., 2016. Advanced persistent threats: Be-
hind the scenes. In: 2016 Annual Conference on Information Science and Sys-

tems (CISS). IEEE, pp. 181–186 .
14
arlioglu, S., Elsayed, N., ElSayed, Z., Ozer, M., 2022. The dangerous combo: Fileless
malware and cryptojacking. In: IEEE Region 3 Technical, Professional and Stu-

dent Conference .
ogl, S., Pfoh, J., Kittel, T., Eckert, C., 2014. Persistent data-only malware: Function

hooks without code. NDSS. Citeseer .
akabayashi, S., Maruyama, S., Mori, T., Goto, S., Kinugawa, M., Hayashi, Y.-i., 2017.

Poster: Is active electromagnetic side-channel attack practical? In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Secu-

rity, pp. 2587–2589 .

ang, Y.-M., Roussev, R., Verbowski, C., Johnson, A., Wu, M.-W., Huang, Y., Kuo, S.-Y.,
2004. Gatekeeper: Monitoring auto-start extensibility points (aseps) for spyware

management. In: LISA, Vol. 4, pp. 33–46 .
ardle, P., 2014. Invading the core: Iworm’s infection vector and persistence mech-

anism. Virus Bulletin .
ardle, P., 2014. Methods of malware persistence on mac os x. In: Proceedings of

the virus bulletin conference .

ebb, M.S., 2018. Evaluating tool based automated malware analysis through per-
sistence mechanism detection. Kansas State University .

ei, F., Li, Y., Roy, S., Ou, X., Zhou, W., 2017. Deep ground truth analysis of current
android malware. In: International Conference on Detection of Intrusions and

Malware, and Vulnerability Assessment. Springer, pp. 252–276 .
uan, X., 2017. Phd forum: Deep learning-based real-time malware detection with

multi-stage analysis. In: 2017 IEEE International Conference on Smart Comput-

ing (SMARTCOMP). IEEE, pp. 1–2 .
imba, A., Chishimba, M., 2017. Exploitation of DNS tunneling for optimization

of data exfiltration in malware-free APT intrusions. Zambia ICT Journal 1 (1),
51–56 .

imba, A., Wang, Z., 2017. Malware-free intrusions: Exploitation of built-in pre-au-
thentication services for APT attack vectors. International Journal of Computer

Network and Information Security 9 (7), 1 .

Antonio Villalón-Huerta is Chief Security Officer at S2

Grupo. He holds a MSc in Computer Engineering from the
Universidad Politecnica de Valencia, Spain. With 25 years

of experience in the cyber security field, in his career he
has executed and managed analysis, defense, attack and

exploitation projects, as well as designed and managed

security operations and incident response centers. Anto-
nio is the author of different books, articles and chap-

ters on the subjects of cyber security and cyber intelli-
gence, as well as a regular speaker in many congresses

and courses. His research interests include the Russian cy-
ber intelligence community and the modeling and detec-

tion of advanced threat actors.

Dr. H. Marco-Gisbert (M’13-SM’18) is an associate pro-

fessor and cybersecurity researcher at the Universitat Po-

litecnica de Valencia, Spain. He holds a PhD in Computer
Science, Cybersecurity, from Universitat Politecnica de Va-

lencia. Hector is senior member of the Institute of Electri-
cal and Electronics (IEEE), and member of the Engineering

and Physical Sciences Research Council (EP- SRC) in UK.
Previously, he was associate professor at University of the

West of Scotland, UK and cybersecurity researcher at the
Universitat Politecnica de Valencia where he co-founded

the “cybersecurity research group”. Hector was part of the

team developing the multi-processor version of the Xtra-
tuM hypervisor to be used by the European Space Agency

n its space crafts. He participated in multiple research projects as Principal Inves-
igator and Co-Investigator. Hector is author of many papers of computer security

nd cloud computing. He has been invited multiple times to reputed cybersecurity
onferences such as Black Hat and DeepSec. Hector has published more than 10

ommon Vulnerabilities and Exposures (CVE) affecting important software such as

he Linux kernel. He has received honors and awards from Google, Packet Storm Se-
urity and IBM for his security contributions to the design and implementation of

he Linux ASLR. Hector’s professional interests include low level cybersecurity, se-
ure and non-secure world kernel and userland security, virtualization security and

pplied cryptography.

Ismael Ripoll-Ripoll received the PhD in computer sci-

ence from the Universitat Politécnica de Valéncia in 1996,
where he is currently professor of several cybersecurity

subjects in the Department of Computing Engineering. In
reverse chronological order: before working on security,

he participated in multiple research projects related to
hypervisor solutions for European spacecrafts; dynamic

memory allocation algorithms; Real-Time Linux; and hard

real-time scheduling theory. Currently, he is applying all
this background to the security field. His current re-

search interests include memory error defense/attacks
techniques (SSP and ASLR) and software diversication. He

is the leader of the Cybersecurity researcher group at the
PV.

http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0049
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0053
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0054
https://www.microsoft.com/security/blog/2021/03/04/goldmax-goldfinder-sibot-analyzing-nobelium-malware/
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0056
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0057
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0058
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0059
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0060
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0065
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0066
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0067
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0068
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0069
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0070
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0071
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0072
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0073
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0074
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0075
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0076
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0077
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0078
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0079
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0080
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0081
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0082
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0083
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0084
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0085
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0086
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0087
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0088
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0089
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0090
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0091
http://refhub.elsevier.com/S0167-4048(22)00249-8/sbref0092

	A Taxonomy for Threat Actors’ Persistence Techniques
	1 Introduction
	2 Background
	3 Problem statement
	4 Approaches and limitations
	5 Our proposal
	5.1 Pre-OS persistence
	5.2 OS native persistence
	5.3 Server software persistence
	5.4 User dependent persistence
	5.5 Summary

	6 Discussion
	7 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References

