
Departamento de Sistemas Informáticos y Computación

Valencian Research Institute for Artificial Intelligence

Information Retrieval

Based on DOM Trees

Julián Alarte Aleixandre
Supervised by:

Josep Silva Galiana

A Thesis presented for the degree of
Doctor of Computer Science at the Technical University of Valencia

July 2023

Information Retrieval

Based on DOM Trees

Julián Alarte Aleixandre

Supervisor
Josep Silva Galiana Universitat Politècnica de València

Reviewers
Jesús Almendros Jiménez Universidad de Almeŕıa

Pascual Julián Iranzo Universidad de Castilla-La Mancha
Ginés Damián Moreno Valverde Universidad de Castilla-La Mancha

Examiners
Francisco Javier Oliver Villarroya Universitat Politècnica de València

Pascual Julián Iranzo Universidad de Castilla-La Mancha

José Ángel Olivas Varela Universidad de Castilla-La Mancha

A mis hijos, Julián y Gonzalo.

Por vuestras innumerables y maravillosas
visitas al estudio mientras trabajaba en la tesis.

Momentos de pérdida de concentración tan inocentes y
entrañables que siempre recordaré con una gran sonrisa.

Ojalá esta tesis os inspire para cumplir vuestros sueños.

“You never fail until you stop trying.”

Albert Einstein

Agradecimientos

En un momento de mi vida decid́ı dejar un trabajo como desarrollador en
una pequeña empresa para realizar el máster de ingenieŕıa del software en
la UPV. Terminé las asignaturas del máster, pero al empezar a trabajar en
el colegio, no llegué a realizar el TFM en ese momento. Posteriormente,
al cabo de unos años, me puse en contacto con mi actual director de tesis
Josep Silva para realizar dicho TFM, y él inmediatamente me introdujo
en el área de Web Mining. De esa manera llegué al apasionante mundo
de la investigación, el cual me fascinó desde el primer momento. Empecé
a colaborar con doctorandos del grupo MiST de la UPV, los cuales me
acogieron extraordinariamente bien desde el primer minuto.

Al terminar el TFM no tuve ninguna duda en continuar. Teńıa claŕısimo
que queŕıa seguir en el mundo de la investigación y convertirme en doctor.
Sin embargo, debido a mi trabajo fuera de la universidad, sab́ıa que no iba
a ser un doctorando “t́ıpico”. Por ejemplo, no iba a poder trabajar en un
laboratorio junto a mis compañeros doctorandos, ni iba a poder realizar
estancias en el extranjero, etc. Sab́ıa que iba a dedicar una gran parte de
mi tiempo libre a investigar, pero no me importaba, al contrario, era una
idea que me fascinaba y que hoy en d́ıa puedo decir que fue un gran acierto.

Durante estos años he trabajado con varias personas. Todas ellas me
han ayudado y apoyado incondicionalmente durante todo el doctorado,
pero no tengo palabras para expresar mi agradecimiento a la labor que
mi director de tesis, Josep Silva, ha realizado conmigo. Josep ha sido y
siempre será mi profesor, mi gúıa, mi mentor, mi amigo. Él me abrió las
puertas y me ha enseñado todo lo que sé sobre el mundo de la investigación,
y pese a no estar en un laboratorio ni contratado me ha hecho sentir parte
del grupo. Josep, gracias por enseñarme este mundo tan apasionante y por
confiar en mı́ para poder llevar a cabo esta investigación. Gracias por tu
tiempo y tu paciencia para explicarme cualquier duda o concepto que no
sab́ıa o no entend́ıa. Gracias por guiarme y siempre tener un consejo o una

9

10

idea que darme en los momentos en los que estaba atascado. Gracias por
valorar mi trabajo; y aunque algo necesitase muchas correcciones, llevarlas
a cabo siempre destacando el trabajo de una manera constructiva. Gracias
por ver más allá y, ante cualquier contratiempo o adversidad, quedarte
siempre con el lado positivo. En definitiva, gracias por ser, además de mi
profesor, mi amigo y un gran referente. Da pena que acabe esta etapa en
la que me has hecho sentir no solo como un doctorando, sino también como
un colaborador y amigo. Investigar ya forma parte de mi vida y espero
poder seguir haciéndolo contigo por mucho tiempo.

Durante estos años he intentado siempre aprender algo de las personas
de las que me rodeaba. Pero debo destacar la gran labor realizada por
dos personas con las que he colaborado. Ellos me acogieron como uno
más desde el primer minuto, tuvieron paciencia ayudándome a descubrir
un mundo totalmente desconocido para mı́ hasta ese momento. Recuerdo
las reuniones interminables en los seminarios del departamento, los emails
enviados y respondidos a cualquier hora, y mis visitas al laboratorio para
que me explicaseis conceptos que no entend́ıa. Gracias David y Tama por
vuestra ayuda y por todo el tiempo que me habéis dedicado.

En el departamento he conocido también a varias personas que, aunque
ellos no lo sepan, me han ayudado a mantener la motivación en los momen-
tos en que lo necesitaba. Todos ellos magńıficas personas que no dudan
en echarte una mano cuando los necesitas. Algunos de ellos han colabo-
rado con nosotros en las sesiones de lluvia de ideas que realizábamos en los
seminarios; a otros los he conocido en las famosas reuniones que seguimos
realizando, también llamadas “Scaquing Games”, que son de desconexión,
aunque para mı́ siempre suponen una inyección de motivación. Gracias
Sergio, Adrián, Damián, Carlos y Javier, que no se pierdan nunca esos
momentos.

También quiero agradecer su labor y su colaboración a Luis, el cual
en el marco de su trabajo de fin de grado nos ayudó en la conversión a
WebExtension de las herramientas. Además, quiero destacar y agradecer
el trabajo de Joan, el cual ha diseñado la portada de la tesis. Los dos
bocetos que realizó son tan buenos que he estado bastante tiempo dudando
hasta decidirme por la portada definitiva.

Durante todos estos años no he podido evitar contarles en innumer-
ables ocasiones a mis amigos aspectos relacionados con la tesis: que si
estábamos preparando un art́ıculo, que si hab́ıamos publicado en tal re-
vista, etc. Agradezco su interés y su paciencia. Además, echaré de menos
la mı́tica frase ¿pero cuándo la terminas?.

11

Quiero agradecer también su colaboración a mis compañeros del colegio
Hermanos Maristas de Valencia. Durante la realización de la tesis, varias
veces he necesitado su ayuda. Ellos, hermanos, directivos o profesores,
no han dudado ni un segundo en ayudarme incondicionalmente. Saben lo
importante que es para mı́ esta investigación y yo valoro de corazón toda
la ayuda que me han prestado.

Es imposible agradecer su inmensa colaboración a Ana, mi mujer, y
Julián y Gonzalo, mis hijos. Ellos no lo saben, pero me han dado, entre
otras cosas, lo que más me haćıa falta para realizar la tesis, el tiempo.
Debo pedirles disculpas por todo el tiempo que les he robado, tiempo que
podŕıa haber pasado con ellos y lo he dedicado a investigar. He intentado
compaginar la familia, el trabajo y la tesis de la mejor manera posible, pero
sé que a ellos les he robado much́ısimo tiempo y les prometo que haré un
esfuerzo para compensarles. Gracias por todo, sin vosotros no lo habŕıa
podido conseguir.

Agradezco enormemente a mis padres Leonor y Julián, y mi hermana
Nora que siempre me hayan apoyado en todas las decisiones que he tomado.
De hecho, nunca tendré suficientes palabras para agradecer a mis padres
que confiaran en mı́ y me apoyaran en un momento en el que les necesitaba
enormemente. Necesitaba que me dieran una oportunidad y aśı lo hicieron.
Gracias a su cariño, sus ánimos, y su apoyo pasé de tenerlo todo perdido
a volver a ser yo. Si no me hubiesen ayudado a superar esa etapa de mi
vida, estoy seguro de que nunca seŕıa la persona que soy ahora y tampoco
hubiese conseguido ser doctor. Muchas gracias por todo.

Abstract

For several years, the amount of information available on the Web has
been growing exponentially. Every day, a huge amount of data is generated
and it is made immediately available on the Web. Indexers and crawlers
browse the Web daily to find the new information that has been added,
and they make it available to answer the users’ search queries. However,
the amount of information is so huge that it must be preprocessed. Given
that users are only interested in the relevant information, it is not necessary
for indexers and crawlers to process other boilerplate, redundant or useless
elements of the web pages. Processing such irrelevant elements lead to an
unnecessary waste of resources, such as storage space, runtime, bandwidth,
etc. Different studies have shown that between 40% and 50% of the data
on the Web are noisy elements. For this reason, several techniques focused
on the detection of both, relevant and irrelevant data, have been developed
over the last 20 years. The problems of identifying the relevant content
of a web page, its template, its menu, etc. can be faced in various ways,
and for this reason, there exist completely different techniques to address
those problems. This thesis is focused on the development of information
retrieval techniques based on DOM trees. Its goal is to detect different parts
of a web page, such as the main content, the template, and the main menu.
Most of the existing techniques are focused on the detection of text inside
the main content of the web pages, mainly by removing the template of
the web page or by inferring the main content. The techniques proposed in
this thesis do not only extract text by eliminating the template or inferring
the main content, but also extract any other relevant information from web
pages such as images, animations, videos, etc. Our techniques are not only
useful for indexers and crawlers but also for the user browsing the Web. For
instance, in the case of users with functional diversity problems (such as
blindness), removing noisy elements can facilitate them to read (or listen to)
the web pages. To make the techniques broadly accessible to everybody, we

13

14

have implemented them as browser extensions, which are compatible with
Mozilla-based and Chromium-based browsers. In addition, these tools are
publicly available, so any interested person can access them and continue
with the research if they wish to do so.

Resumen

Desde hace varios años, la cantidad de información disponible en la web
crece de manera exponencial. Cada d́ıa se genera una gran cantidad de in-
formación que prácticamente de inmediato está disponible en la web. Los
buscadores e indexadores recorren diariamente la web para encontrar toda
esa información que se ha ido añadiendo y aśı, ponerla a disposición del
usuario devolviéndola en los resultados de las búsquedas. Sin embargo, la
cantidad de información es tan grande que debe ser preprocesada con an-
terioridad. Dado que el usuario que realiza una búsqueda de información
solamente está interesado en la información relevante, no tiene sentido que
los buscadores e indexadores procesen el resto de elementos de las páginas
web. El procesado de elementos irrelevantes de páginas web supone un
gasto de recursos innecesario, como por ejemplo espacio de almacenamiento,
tiempo de procesamiento, uso de ancho de banda, etc. Se estima que entre
el 40% y el 50% del contenido de las páginas web son elementos irrele-
vantes. Por eso, en los últimos 20 años se han desarrollado técnicas para
la detección de elementos tanto relevantes como irrelevantes de páginas
web. Este objetivo se puede abordar de diversas maneras, por lo que ex-
isten técnicas diametralmente distintas para afrontar el problema. Esta
tesis se centra en el desarrollo de técnicas basadas en árboles DOM para
la detección de diversas partes de las páginas web, como son el contenido
principal, la plantilla, y el menú. La mayoŕıa de técnicas existentes se cen-
tran en la detección de texto dentro del contenido principal de las páginas
web, ya sea eliminando la plantilla de dichas páginas o detectando direc-
tamente el contenido principal. Las técnicas que proponemos no sólo son
capaces de realizar la extracción de texto, sino que, bien por eliminación
de plantilla o bien por detección del contenido principal, son capaces de
aislar cualquier elemento relevante de las páginas web, como por ejemplo
imágenes, animaciones, videos, etc. Dichas técnicas no sólo son útiles para
buscadores y rastreadores, sino que también pueden ser útiles directamente

15

16

para el usuario que navega por la web. Por ejemplo, en el caso de usuarios
con diversidad funcional (como seŕıa una ceguera) puede ser interesante la
eliminación de elementos irrelevantes para facilitar la lectura (o escucha)
de las páginas web. Para hacer las técnicas accesibles a todo el mundo,
las hemos implementado como extensiones del navegador, y son compati-
bles con navegadores basados en Mozilla o en Chromium. Además, estas
herramientas están públicamente disponibles para que cualquier persona
interesada pueda acceder a ellas y continuar con la investigación si aśı lo
deseara.

Resum

Des de fa diversos anys, la quantitat d’informació disponible en la web creix
de manera exponencial. Cada dia es genera una gran quantitat d’informació
que immediatament es posa disponible en la web. Els cercadors i index-
adors recorren diàriament la web per a trobar tota aqueixa informació que
s’ha anat afegint i aix́ı, posar-la a la disposició de l’usuari retornant-la en
els resultats de les cerques. No obstant això, la quantitat d’informació és
tan gran que aquesta ha de ser preprocessada. Atés que l’usuari que real-
itza una cerca d’informació solament es troba interessat en la informació
rellevant, no té sentit que els cercadors i indexadors processen la resta
d’elements de les pàgines web. El processament d’elements irrellevants de
pàgines web suposa una despesa de recursos innecessària, com per exemple
espai d’emmagatzematge, temps de processament, ús d’amplada de banda,
etc. S’estima que entre el 40% i el 50% del contingut de les pàgines web
són elements irrellevants. Precisament per això, en els últims 20 anys s’han
desenvolupat tècniques per a la detecció d’elements tant rellevants com
irrellevants de pàgines web. Aquest objectiu es pot afrontar de diverses
maneres, per la qual cosa existeixen tècniques diametralment diferents per
a afrontar el problema. Aquesta tesi se centra en el desenvolupament de
tècniques basades en arbres DOM per a la detecció de diverses parts de
les pàgines web, com són el contingut principal, la plantilla, i el menú. La
majoria de tècniques existents se centren en la detecció de text dins del con-
tingut principal de les pàgines web, ja siga eliminant la plantilla d’aquestes
pàgines o detectant directament el contingut principal. Les tècniques que
hi proposem no sols són capaces de realitzar l’extracció de text, sinó que,
bé per eliminació de plantilla o bé per detecció del contingut principal,
són capaços d’äıllar qualsevol element rellevant de les pàgines web, com
per exemple imatges, animacions, v́ıdeos, etc. Aquestes tècniques no sols
són útils per a cercadors i rastrejadors, sinó que també poden ser útils di-
rectament per a l’usuari que navega per la web. Per exemple, en el cas

17

18

d’usuaris amb diversitat funcional (com ara una ceguera) pot ser inter-
essant l’eliminació d’elements irrellevants per a facilitar-ne la lectura (o
l’escolta) de les pàgines web. Per a fer les tècniques accessibles a tothom,
les hem implementades com a extensions del navegador, i són compatibles
amb navegadors basats en Mozilla i en Chromium. A més, aquestes eines
estan públicament disponibles perquè qualsevol persona interessada puga
accedir a elles i continuar amb la investigació si aix́ı ho desitjara.

Contents

Table of Contents 19

List of Figures 25

List of Tables 28

I Introduction 33

1 Preamble 35

1.1 Motivation . 35

1.2 Contributions of the thesis 37

1.3 Structure of the thesis . 39

2 Block Detection Techniques 43

2.1 Data Mining . 43

2.2 Web Mining . 44

2.3 Web Content Classification 45

2.4 Wrappers and Unsupervised Learning 47

2.5 Block Detection . 48

2.6 Conclusions . 52

II Foundations 53

3 The DOM tree 55

3.1 Brief history of DOM . 56

3.2 Main characteristics of DOM 57

3.3 From the document to the browser’s screen 58

3.4 Conclusions . 63

19

20 Contents

4 Preliminary Definitions and Notation 65

4.1 Basic definitions . 65

4.2 Site-level techniques . 68

4.2.1 Candidates selection 69

4.2.2 Mapping . 72

4.3 Web page blocks . 72

4.3.1 Web page menu . 72

4.3.2 Template . 73

4.3.3 Main content . 74

4.3.4 Relationship between web page menu and template . 74

4.3.5 Relationship between the template and the main con-
tent . 74

4.4 Evaluation metrics . 76

III Page-level Block Detection Algorithms 79

5 Page-level Menu Detection 81

5.1 Related Work . 82

5.2 Menu detection algorithm 83

5.2.1 Rating DOM nodes 83

5.2.2 Selection of candidates 88

5.2.3 Selection of root nodes 88

5.2.4 Selection of the menu node 91

5.3 Implementation . 92

5.3.1 Empirical evaluation 92

5.4 Conclusions . 100

5.5 Contributions . 102

6 Page-level Content Extraction 103

6.1 Related Work . 104

6.2 Main content extraction . 105

6.2.1 The web page’s main content 106

6.2.2 Weighting DOM nodes 107

6.2.3 Properties standardization 111

6.2.4 c−SET computation 113

6.2.5 Selecting the main content nodes 114

6.2.6 Final post-process 115

6.3 Implementation . 117

6.3.1 Empirical evaluation 118

Contents 21

6.4 Conclusions . 125

6.5 Contributions . 126

IV Site-level Block Detection Algorithms 127

7 Candidates selection algorithms 129

7.1 Related Work . 130

7.2 Identifying web pages that implement the same template . . 131

7.2.1 Complete subdigraphs 132

7.2.2 Hyperlink analysis 134

7.2.3 Finding web page candidates in a website 139

7.3 Implementation . 143

7.3.1 Empirical evaluation 144

7.4 Conclusions . 151

7.5 Contributions . 152

8 Equal Top-Down Mapping 153

8.1 Related Work . 153

8.2 Comparing DOM nodes . 154

8.2.1 Template extraction from a complete subdigraph . . 154

8.3 Implementation . 159

8.3.1 Empirical evaluation 160

8.4 Conclusions . 165

8.5 Contributions . 166

9 Site-level Template Detection 167

9.1 Related work . 167

9.2 Template detection . 170

9.2.1 The web page’s template 170

9.2.2 Building a complete subdigraph 171

9.2.3 Web pages implementing several templates 173

9.2.4 Template detection from a complete subdigraph . . 174

9.3 Implementation . 175

9.3.1 Empirical evaluation 175

9.4 Conclusions . 183

9.5 Contributions . 184

22 Contents

10 Site-level Content Extraction 187

10.1 Related work . 187

10.2 Main content extraction . 190

10.2.1 The web page’s main content 191

10.2.2 Set of web pages selection 194

10.2.3 Web pages mapping 195

10.2.4 Candidate set reduction 196

10.2.5 Main content branch detection 198

10.2.6 Discarding candidates 200

10.2.7 Main content selection 201

10.3 Implementation . 203

10.3.1 Empirical evaluation 204

10.4 Conclusions . 218

10.5 Contributions . 219

11 Hybrid Technique for Template Detection 221

11.1 Related work . 222

11.2 Hybrid template detection 223

11.2.1 HTML to DOM corresponding to page-level ConEx 224

11.2.2 Content extraction 225

11.2.3 Hyperlink analysis 226

11.2.4 Complete subdigraph extraction 227

11.2.5 HTML to DOM corresponding to TemEx 227

11.2.6 Template detection 227

11.3 Implementation . 228

11.3.1 Empirical evaluation 229

11.4 Conclusions . 233

11.5 Contributions . 233

V Comparison with the State of the Art 235

12 Comparison with the State of the Art 237

12.1 Selection and description of web template detectors 239

12.1.1 Methodology for the selection of template detectors 239

12.1.2 Search results . 241

12.2 A workbench for template detection 246

12.3 Comparison of template detectors 250

12.3.1 Computation time 252

12.3.2 Scalability . 252

Contents 23

12.3.3 Asymptotic costs . 253

12.4 Comparison of content extractors 254

12.5 Conclusions . 258

12.6 Contributions . 259

VI Implementations 261

13 TeCo Benchmark Suite 263

13.1 Benchmark suite’s structure 264

13.2 Producing the gold standard 266

13.3 Benchmark details . 267

13.4 Guidelines for using the suite 271

13.4.1 Downloading and configuring the suite 271

13.4.2 Rules for using the suite and report 275

13.5 Conclusions . 280

13.6 Contributions . 281

14 Implementation 283

14.1 WebExtensions’ implementation 283

14.1.1 Architecture . 283

14.1.2 Structure . 287

14.1.3 Evaluation environment 289

14.2 Usage scenario . 290

14.3 Tools information . 292

14.3.1 Differences between different browsers 293

14.4 Conclusions . 294

14.5 Contributions . 295

VII Conclusions and Future Work 297

15 Conclusions 299

16 Open Lines of Research 305

Bibliography 308

A Glossary of Acronyms 329

24 Contents

B Scientific Contributions 333
B.1 Conference papers . 333
B.2 Journal Publications . 334
B.3 List of derived artifacts . 336

List of Figures

1.1 News article from Bild newspaper (left) and its main content
(right) . 36

2.1 Part of a web page represented as a DOM tree 50

2.2 Relationship between disciplines 51

3.1 HTML document (left) and its DOM tree (right) 55

3.2 Example of the differences between both versions of Inter-
mediate DOM . 56

3.3 HTML to DOM phases . 59

3.4 HTML to DOM phases example 60

3.5 CSS to CSSOM phases . 60

3.6 Generated CSSOM tree . 61

3.7 Render tree from DOM and CSSOM 63

3.8 Critical Rendering Path scheme 64

4.1 Template and main content example 75

5.1 Example of a DOM tree where the gray node is the menu . 84

5.2 Example of menu node with a high density of hyperlinks . . 89

5.3 Example of the selection of root node candidates 91

5.4 Example of the detection of a web page menu 93

5.5 Relation between the size of the web page and the runtime 99

5.6 Result of the normality test for MenEx 100

5.7 Result of the Spearman test for MenEx 101

6.1 Web page of www.lemonde.fr’s website and its main content
(extracted with our web content extraction tool) 104

6.2 Relation between the size of the web page and the runtime 123

6.3 Result of the normality test for page-level ConEx 124

25

26 List of Figures

6.4 Result of the Spearman test for page-level ConEx 125

7.1 Web pages of LiveScience sharing a template 131
7.2 LiveScience Website topology 133
7.3 Hyperlink distance . 136
7.4 Hyperlink and DOM distance examples 138
7.5 Key page (left) and a CS set of web pages (right) automati-

cally identified with the tool 144
7.6 Similarity between the key page and the web pages pointed

and not pointed by the menu 145
7.7 Graphical representation of Table 7.4 147
7.8 Graphical representation of Table 7.5 149

8.1 Equal top-down mapping between DOM trees 155
8.2 Nodes with the same amount of children 156
8.3 Node A with more children than B 156
8.4 Node B with more children than A 157

9.1 Example of DOM nodes repeated in several web pages . . . 172
9.2 Web pages of Polithecnical University of Valencia sharing a

template . 172
9.3 Template extracted from web pages implementing different

templates . 174
9.4 Example of the detection of a web page template 175
9.5 Transformation of a DOM node for runtime improvement . 179
9.6 Relation between the size of the web page and the runtime 182
9.7 Result of the normality test for TemEx 183
9.8 Result of the Spearman test for TemEx 184

10.1 Main content of IEEE’s ‘mission and vision’ web page ex-
tracted with the site-level content extraction tool 188

10.2 Main content DOM nodes example 191
10.3 Main content with irrelevant DOM nodes example 193
10.4 Web pages of IEEE’s website sharing the template 194
10.5 Set of candidate nodes . 197
10.6 Candidate set reduction . 199
10.7 Main content branch detection 201
10.8 Discarding candidates . 202
10.9 Discarding candidates . 203
10.10Relation between the size of the web page and the runtime 215
10.11Result of the normality test for site-level ConEx 217

List of Figures 27

10.12Result of the Spearman test for site-level ConEx 218

11.1 Hybrid template detection technique scheme 223
11.2 Example of the detection of a web page template 229

12.1 QUORUM flow chart . 241
12.2 Workbench architecture . 247
12.3 Runtime trendlines associated with DOM tree sizes 253
12.4 Image gallery from NASAS’s website extracted with our web

content extraction tool . 254

14.1 Architecture of the WebExtensions 285
14.2 Entity-relationship model of the database 286
14.3 REST web service scheme 286
14.4 REST web service request from the WebExtension 287
14.5 Structure of the WebExtensions 288
14.6 VRAIN’s web page loaded into the browser 291
14.7 MenEx button . 291
14.8 VRAIN’s web page main menu extracted with MenEx . . . 292
14.9 Toggle view button . 292

List of Tables

5.1 Determining the best values of the thresholds and node pro-
perties . 96

5.2 Results of the performed experiments 97

5.3 Results of the performed experiments grouped by benchmark
type . 98

6.1 Determining the optimal size of the c−SET 118

6.2 Determining max. words threshold 119

6.3 Evaluation of the precision, recall, F1, and runtime for re-
trieved DOM nodes . 120

6.4 Evaluation of the precision, recall, F1, and runtime for re-
trieved words . 121

6.5 Results of the performed experiments grouped by benchmark
type . 122

7.1 Links obtained from a Caltech’s web page 141

7.2 Order obtained from a Caltech’s web page 142

7.3 Menu links influence by benchmark type 146

7.4 Relationship between hyperlink distance and recall 147

7.5 Relationship between DOM distance and template distance 148

7.6 Comparison of different candidate selection methods 150

7.7 Determining the size of the complete subdigraph 150

8.1 Position value when nodes have the same number of siblings 156

8.2 Position value when DOM node A has more children 157

8.3 Position value when DOM node B has more children 157

8.4 Determining the optimum size of the complete subdigraph . 162

8.5 Determining the best values of the equality relation , pro-
perties . 165

29

30 List of Tables

9.1 Experimental evaluation results 177

9.2 Experimental evaluation results grouped by category 178

9.3 Results obtained for different Group and Childnodes para-
meters . 181

10.1 Determining the optimal size of the n-CS 205

10.2 Determining the best values of the equality relation , pro-
perties for site-level ConEx 206

10.3 Evaluation of the precision, recall, F1, and runtime for re-
trieved DOM nodes . 208

10.4 Evaluation of the precision, recall, F1, and runtime for re-
trieved DOM nodes (cont.) 209

10.5 Evaluation of the precision, recall, F1, and runtime for re-
trieved words . 210

10.6 Evaluation of the precision, recall, F1, and runtime for re-
trieved words (cont.) . 211

10.7 Results of the performed experiments grouped by category . 213

10.8 Results obtained for different Group and Childnodes para-
meters . 215

11.1 Experimental evaluation results of the hybrid template de-
tection algorithm . 231

11.2 Experimental evaluation of the hybrid template extraction
algorithm grouped by category 232

12.1 Selected papers that describe web template extraction tools 242

12.2 Runtime of each module . 250

12.3 Empirical evaluation and comparison with five site-level web
template detection algorithms 251

12.4 Empirical evaluation with CETD’s metrics 256

12.5 Empirical evaluation with Web2text’s metrics 257

13.1 Number of benchmarks of each TeCo version 264

13.2 Sources of the Institutions / Associations benchmarks . . . 268

13.3 Sources of the Media / Communication benchmarks 269

13.4 Sources of the Forums / Social benchmarks 270

13.5 Sources of the Personal / Blogs benchmarks 271

13.6 Sources of the Companies / Shops benchmarks 272

13.7 Benchmark properties . 275

13.8 Path to the key page of each benchmark 280

List of Tables 31

14.1 Results of Mozilla-based and Chromium-based browsers . . 293
14.2 Runtimes of Mozilla-based and Chromium-based browsers . 294

Part I

Introduction

33

Chapter 1

Preamble

1.1 Motivation

A web page contains information that can be classified as relevant or irrele-
vant content according to the user’s needs. For that reason, the extraction
of information from web pages is a productive task for both, humans and
computer systems. Usually, authors refer to the relevant content in a web
page as main content (see, e.g., [10, 17, 22, 120, 70]). It can consist of text,
images, and any other multimedia; and it is generally surrounded by or even
mixed with irrelevant (noisy) information such as menus, advertisements,
headers, footers, banners, etc. Removing this irrelevant and noisy infor-
mation from a web page is key to extracting the relevant data for the user
or computer system. The task of extracting the main content from a web
page consists in isolating the useful information by removing the elements
that do not contain useful knowledge for the user (see, e.g., in Figure 1.1
right, where the main content of a news german article (including images)
has been extracted from the Bild newspaper web page (left).

Since the web pages on the World Wide Web are extremely hetero-
geneous, even in web pages using the same content management system
(CMS), the task of extracting information blocks (main content, menu,
template, etc.) is a challenging task.

The importance of web templates lies in the fact that they are used as a
basis for building new web pages that share a common look and feel. This is
a key element in web development because the reuse of components allows
for the automation of tasks. It should be highlighted that most websites
are maintained automatically by code generators that produce web pages
based on templates. The use of web templates is also essential for users
who browse the web because they can benefit from intuitive and uniform
web designs which share a common vocabulary of coloured and formatted
visual elements.

35

36 Chapter 1. Preamble

Figure 1.1: News article from Bild newspaper (left) and its main content
(right)

The detection of the main content is also a key element for indexers and
crawlers:

• The isolation of the main content helps indexers and crawlers to focus
on the most relevant information. The main purpose of indexers and
crawlers is to provide users with only relevant information. Therefore,
extracting the main content is an essential task in order to prepro-
cess that information. Gibson et al. [44] measured that template
elements represent between 40% and 50% of all the data on the Web.
This justifies the development and application of techniques such as
template extraction [120, 114], or main content detection [117, 15] as
a preprocessing method.

• Processing the whole web pages (including noisy elements) can lead
to a waste of resources such as bandwidth, storage, or time. Hence,
indexers and crawlers perform preprocessing tasks on the web pages
in order to isolate the main content from other noisy information. As
a consequence, due to its importance, the main content is indexed
and stored in another way.

Modern crawlers and indexers do not treat all terms in a web page in
the same way. Web pages are preprocessed to identify the template because
template extraction allows them to identify those pagelets that only contain
noisy information such as advertisements and banners. This content should
not be indexed in the same way as the relevant content. Indexing the
non-content part of templates not only affects accuracy, but it also affects
performance and can lead to a waste of storage space, bandwidth, and time.
Template extraction helps indexers to isolate the main content. This allows
us to enhance indexers by assigning higher weights to the really relevant
terms. Once templates have been extracted, they are processed for indexing

1.2. Contributions of the thesis 37

(they can be analyzed only once for all web pages using the same template).
Moreover, links in templates allow indexers to discover the topology of a
website (e.g., through navigational content such as menus), thus identifying
the main web pages. They are also essential to compute pageranks. Modern
websites are usually responsive and thus, they are automatically adapted to
different screen sizes. However, there is also a large amount of websites not
adaptable for different device sizes. Isolating the main content and thus,
removing the templates, is also useful to adapt the web pages to small
devices [28], focusing only on the relevant content of the web page.

This thesis focuses on HTML-structured web pages. Thus, web pages
that are built using alternate technologies such as Flash1 are ignored. From
an engineering standpoint, a web page is represented as a set of Document
Object Model (DOM) nodes [29]. As a consequence, the main content of a
web page is represented with a subset of those nodes, and it contains the
relevant information of that web page. Similarly, the main menu of a web
page is represented with a subset of nodes that include all the links present
in the menu. Finally, the web template is represented with the whole DOM
tree excluding those nodes that are not repeated in other web pages of the
same website.

As shown by the following chapters, the representation of a web page
as a DOM tree provides many benefits to block detection techniques. For
instance, it allows content extraction techniques to extract not only text
content but also other kinds of content such as images, videos, animations,
etc. Due to its tree structure, it also allows us to easily perform DOM
node operations such as traverse, insert, delete, search, etc. Moreover,
representing web pages as a DOM tree also facilitates the implementation
of block detection techniques as browser extensions.

1.2 Contributions of the thesis

This thesis contributes to the area of web page block detection with the
development of new techniques. On the practical side, an important result
of the thesis is the development of a workbench for template detection
and content extraction. This workbench can be used to plug in different
implementations and share common resources, thus the comparison of such
implementations can be done in a fair manner. The third contribution of

1Multimedia software platform also known as Adobe Flash or Macromedia Flash. It
has been discontinued since 2020, but it was mainly used for the production of animations,
web applications, mobile games, embedded web browser video players, etc.

38 Chapter 1. Preamble

this thesis is a large suite of benchmarks that can be used in several block
detection techniques. The techniques developed in this thesis, as well as
the other contributions, are described below:

Page-level Menu Detection (Chapter 5) receives a web page as input
and provides its main menu as output. The technique creates a set
of DOM nodes that contain the main menu with high probability.
Then, these DOM nodes are analyzed to select the node that actually
contains the main menu.

Page-level Content Extraction (Chapter 6) isolates the main content
of a web page by just analyzing the information found on that web
page. The algorithm also builds a set of nodes that correspond to the
main content with high probability. Finally, it selects one or several
nodes from that set to infer the main content.

Candidates Selection (Chapter 7) detects a set of web pages from the
same website that share the same template. This is important in
site-level block detection techniques because they need to load and
analyze several web pages from the same website.

Equal Top-Down Mapping (Chapter 8) compares the DOM trees of
several web pages to identify the template they share. It is usually
combined with candidates selection algorithms.

Site-level Template Detection (Chapter 9) identifies the template of a
web page by analyzing several web pages from its website. For this
purpose, it uses the Candidates Selection and the Equal Top-Down
Mapping algorithms.

Site-level Content Extraction (Chapter 10) isolates the main content
of a web page by analyzing several web pages from its website. As
the Site-level Template Detection technique, it is also based on the
Candidates Selection and the Equal Top-Down Mapping algorithms.

Hybrid Template Detection (Chapter 11) combines the Page-level Con-
tent Extraction algorithm with the Site-level Template Detection al-
gorithm in order to infer the template of a web page.

Workbench for block detection (Chapter 12) provides a common plat-
form that allows any block detection algorithm to access several re-
sources useful for block detection, such as HTML to DOM conversion,
Hyperlink Analysis, Complete Subdigraph computation, etc.

1.3. Structure of the thesis 39

TeCo Benchmark Suite (Chapter 13) is a suite of benchmarks that in-
cludes 150 real heterogeneous websites. All the benchmarks are pre-
pared for menu detection, content extraction, and template detection
techniques.

All the proposed techniques have been implemented as WebExtensions,
which are compatible with a wide variety of web browsers (i.e., Mozilla-
based and all the Chromium-based browsers). All of them are open source
and publicly available. Moreover, they are officially published by Mozilla
in the Firefox browser add-ons website.

As with all WebExtensions, our implementations have been written
using standard Web technologies (JavaScript, HTML, and CSS) plus some
dedicated JavaScript APIs. However, the algorithms presented in this thesis
are language—and paradigm—independent.

1.3 Structure of the thesis

The thesis is divided into seven main parts: Introduction, Foundations,
Page-level Block Detection Algorithms, Site-level Block Detection Algo-
rithms, Comparison with the State of the Art, Implementations, and Con-
clusions and future work.

1. The Introduction justifies the motivations of this thesis in Section 1.1,
its contributions in Section 1.2, and the structure of the thesis in
Section 1.3. Chapter 2 provides an introduction to the block detection
techniques used in this thesis.

2. In the Foundations, we first explain in Chapter 3 the DOM tree, which
is the data structure used as the basis of all techniques proposed in
this thesis. Then, in Chapter 4, we provide a common theoretical
setting with all the definitions and notation that are later used and
shared in all sections of the thesis. This allows us to use a common
vocabulary throughout the whole thesis. However, the organization of
the thesis has been thought to allow the reading of any section without
following a concrete order because each section is self-contained. For
this purpose, the exposition of a technique included in any section
could reference some previously explained techniques or algorithms,
but they are shortly described at that point if needed. This allows
easy access to any particular technique because, if the reader is only
interested in one technique, she is not required to read and understand
others.

40 Chapter 1. Preamble

3. The Page-level Block Detection Algorithms part is divided into two
chapters: page-level menu detection, and page-level main content ex-
traction.

• The page-level menu detection chapter (Chapter 5) describes a
page-level technique to extract the main menu from a website.

• The page-level main content extraction chapter (Chapter 6) ex-
plains another page-level technique which isolates the main con-
tent of a web page.

4. The Site-level Block Detection Algorithms part is divided into five
chapters: candidates selection algorithm, equal top-down mapping,
site-level template detection, site-level main content extraction, and
hybrid template detection.

• The candidates selection chapter (Chapter 7) introduces a tech-
nique to select a set of web pages from the same website that
can be used as input in site-level template detection techniques.

• The equal top-down mapping chapter (Chapter 8) describes a
mapping between several DOM trees that allows us to check
whether two nodes from different web pages are equal.

• The site-level template detection chapter (Chapter 9) presents
a technique that combines the candidates selection technique in
Chapter 7 and the equal top-down mapping in Chapter 8 to infer
the template of a web page.

• The site-level content extraction chapter (Chapter 10) describes
a technique that also combines the candidates selection tech-
nique in Chapter 7 and the equal top-down mapping in Chap-
ter 8 to isolate the main content of a web page.

• The hybrid template detection chapter (Chapter 11) introduces a
hybrid technique that combines two block detection algorithms.
First, the page-level main content extraction technique identifies
the main content of a web page. Then, the site-level template
detection technique uses the information previously obtained to
infer the template.

5. With respect to the Comparison with the State of the Art part, Chap-
ter 12 explains the process we followed to select several techniques
from the state of the art and the results we obtained by comparing
them.

1.3. Structure of the thesis 41

6. The Implementations block is divided into two chapters: TeCo bench-
marks suite and implementation.

• The benchmark suite (TeCo) used for training and evaluating
the techniques is detailed in Chapter 13.

• The implementation process of all the techniques is described in
Chapter 14. In addition, this chapter shows a usage scenario of
the implemented techniques.

7. Regarding the Conclusions and future work part, Chapter 15 exposes
the conclusions of the thesis, and Chapter 16 enumerates the open
lines of work that can be further explored.

Finally, Appendix A provides a glossary of acronyms that can help the
reader to easily and quickly query and understand a concept when they
need to.

Chapter 2

Block Detection Techniques

This chapter provides a general overview of block detection techniques. The
chapter starts describing the most general discipline, which corresponds to
Data Mining. Then, it outlines a particular case of Data Mining, con-
cretely Web Mining. It describes some Web Mining related concepts, such
as Wrappers, Supervised Learning, and Unsupervised Learning. Finally, the
chapter establishes a context for the block detection techniques and algo-
rithms described in this thesis, such as Template Detection, Main Content
Extraction, and Menu Detection.

2.1 Data Mining

Data Mining, also known as knowledge discovery in databases (KDD), is the
process of searching information from large amounts of possible uncertain
data through algorithms [87]. Concretely, [70] defined Data Mining as
the process of discovering useful patterns or knowledge from data sources,
e.g., databases, texts, images, the Web, etc. The patterns must be valid,
potentially useful, and understandable. Data Mining is a multi-disciplinary
field involving machine learning, statistics, databases, artificial intelligence,
information retrieval, and visualization.

Data Mining tasks are classified into two categories:

• Supervised learning (predictive): those algorithms that map an in-
put to an output based on training data. Some common supervised
learning tasks are classification, regression, time series analysis, and
prediction.

• Unsupervised learning (descriptive): algorithms that learn patterns
from untagged data. Some common unsupervised learning tasks are
clustering, summarization, sequence discovery, and association rules.

43

44 Chapter 2. Block Detection Techniques

Despite some authors define more tasks, the data mining process is often
organized [70] in the following processes:

• Pre-processing: This process adapts the raw data to the data mining
algorithm. Usually, the raw data is not appropriate for mining due
to several reasons, and it has to be cleaned to remove noises or ab-
normalities. In addition, sometimes, the data is too large or involves
irrelevant attributes, so it has to be reduced.

• Data mining: The pre-processed data is the input of a data mining
algorithm which will discover patterns or knowledge.

• Post-processing: This task examines the discovered patterns in order
to identify which ones are useful for applications. There are several
evaluation and visualization techniques to make this decision.

Data Mining and Information Retrieval are different but related disciplines.
An information retrieval system was defined by [97] as designed to make
a given stored collection of information items available to a user popula-
tion, which is similar to the definition in [71], that states that Information
Retrieval covers algorithms dealing with retrieval subsets from the large
collections based on users’ needs.

The data mining process traditionally uses structured data stored in
relational databases, spreadsheets, and flat files. In the last 20 years, due
to the expansion of the Web, Web Mining has become highly important
and popular.

2.2 Web Mining

The main objective of Web Mining is to discover useful information or
knowledge from the Web. Web Mining uses many Data Mining techniques,
however, it can not be considered purely an application of traditional data
mining techniques because of the heterogeneity of the Web data. Web
Mining tasks are classified by [70] according to the primary types of data
used in the mining process, in:

• Web structure mining, which aims to discover useful knowledge from
hyperlinks, since they represent the structure of the Web. For in-
stance, the analysis of the navigational information contained by the
hyperlinks of a website may contribute to the identification of its
topology. This is essential for indexers and crawlers. It should be

2.3. Web Content Classification 45

noted that traditional Data Mining does not cover this kind of task
because it is unlikely to find link structures in the data collections it
uses.

• Web content mining, which analyzes the Web to extract or infer use-
ful information, patterns, or knowledge from web pages. For instance,
we can extract the main content or the main menu of a web page.
Moreover, web content mining techniques can also automatically clus-
ter or classify a web page according to its topics. This kind of task is
similar to the traditional Data Mining.

It should be noted that Web content mining is different from Web
scraping. Authors of [107] define Web scraping as the process of re-
trieving necessary information from a website and converting it into
a structured form for future analysis. However, contrarily to Web
content mining, this process does not involve any data processing or
analysis. For instance, an example of Web scraping is the work of
Murali [82], which uses a web scrapper to extract online price infor-
mation through automated browsing using the structure of the DOM
tree.

• Web usage mining, which refers to discovering user access patterns.
For that purpose, algorithms analyze Web usage logs, which register
every action made by users. It should be highlighted that web usage
mining uses many traditional data mining algorithms.

The Data Mining process and the Web Mining process are very simi-
lar, since as stated before the difference is usually in the data collection.
Traditional data mining uses data already collected and stored in a data
warehouse, while Web mining algorithms have to crawl web pages, some-
times a large amount. The Web mining process is divided into the same
tasks as the traditional data mining process: pre-processing, Web data
mining, and post-processing.

2.3 Web Content Classification

The need for web page classification for web information extraction and
organization has increased considerably due to the exponential growth of
the amount of information on the Internet. Because of the high complexity
and diversity of web pages, web classification is a complex task which has
a high computational cost. Authors of [96] define a typical classification

46 Chapter 2. Block Detection Techniques

problem as the process of mapping input variables into discrete categories.
Similarly, web page classification can be defined as mapping a web page
into one or several categories. The following machine learning algorithms,
described in [96], are some of the most used algorithms in web classification:

• K-Nearest Neighbors: KNN algorithm classifies a sample based on its
k neighbors. Therefore, samples with similar input values are labeled
using the same target label. The algorithm classifies a new sample
using similarity measures. If multiple neighbors are considered, the
algorithm uses a voting mechanism.

• Support Vector Machine: The goal of the SVM algorithm is to com-
pute the best decision boundary (called hyperplane) that separates a
n-dimensional space into classes. This allows in the future to easily
classify a new data sample in the accurate category.

• Näıve Bayes: This classification model is based in a probabilistic
approach. The label of the sample is determined by the class with
the highest probability. The Näıve Bayes classifier assumes that the
input features are statistically independent each other. Consequently,
for a given class, the value of one feature is not affected by the value
of any other feature.

• Artificial Neural Network: It is a computational or mathematical
model based on biological neural networks. It is formed by an inter-
related group of artificial neurons which model the neurons in a bio-
logical brain. The neurons receive inputs and produce outputs based
on their predefined activation functions. Most ANNs are adaptive
systems which change their structure based on external or internal
information that pass through the network in the learning phase.

• Decision Tree: It is a supervised learning method used for data clas-
sification. Its main goal is to split the data into regions with samples
from only one class. This is not possible with real data, therefore
their goal is to create subsets as pure as possible (subsets with many
samples as possible from a single class). Regions on a decision tree
are separated by the decision boundaries, which are the basis for the
classification decisions of the decision tree model.

2.4. Wrappers and Unsupervised Learning 47

2.4 Wrappers and Unsupervised Learning

A wrapper is a method that extracts content from a particular data source
with an unstructured format or converts the data into a structured format
[102]. Therefore they are mostly used to convert HTML content into a
structured format. Based on the technique used to build the wrapper, [70]
enumerates three main approaches:

1. Manual approach: One or several human programmers observe the
web page and its source code. They find some patterns, and then
they write a program that performs the extraction of the target data.
The main problem with this approach is that is not scalable to a large
number of sites.

2. Wrapper induction: This is a semi-automatic supervised learning so-
lution. In this approach, a set of web pages or data records are
labelled and then, a set of extraction rules is learned from them. Fi-
nally, the rules are used to extract the targeted data from similar
formatted pages.

3. Automatic extraction: This is an unsupervised approach where given
a web page or a website, it automatically finds patterns or grammars
from them for data extraction. As it does not require manual la-
belling, it is easily scalable to a large number of websites and web
pages.

Supervised learning (predictive) discovers patterns in the training data
that associate data attributes to a class attribute. Then, those patterns are
used to predict the values of the class attribute of other data instances. On
the other hand, we can find unsupervised learning (descriptive) where data
have no class attributes, so those data need to be explored to find some
intrinsic structures in them.

A typical example of unsupervised learning is clustering. It is the pro-
cess that organizes data instances into groups. The instances in a group are
similar in some way. Therefore, a cluster is a set of data instances which
are “similar” to each other (and “dissimilar” to data instances in other
clusters).

The techniques proposed in this thesis belong to the third approach
since they are unsupervised learning techniques.

48 Chapter 2. Block Detection Techniques

2.5 Block Detection

Block Detection is a Web Mining discipline that tries to isolate different
functional blocks from a web page. Therefore, this discipline includes tech-
niques such as Content Extraction, Template Detection, Menu Detection,
etc. Block detection techniques can belong to any of the approaches de-
fined in Section 2.4, but in the case of the techniques presented in this
thesis, they all belong to the automatic extraction (unsupervised learning)
approach. However, it is possible to find in the literature a wide variety of
predictive and descriptive block detection approaches (see, e.g., [46, 117,
24, 51, 118, 115, 66, 123]).

Bar-Youssef et al. [19] defined a pagelet as a self-contained logical re-
gion within a page that has a well-defined topic or functionality. While
Content Extraction tries to detect and isolate the main content pagelets of
a web page, Template Detection tries to isolate the template. Therefore,
both techniques are closely related because they are almost complemen-
tary: detecting and removing the template of the web page leaves the main
content, or the main content plus maybe another functional block such as
comments, sub-menus, etc. In addition, there exist many other block de-
tection techniques, such as menu detection, which tries to isolate the main
menu of a web page, comments detection which tries to isolate the users’
comments, etc.

Besides the classification based on the technique used to build the wrap-
per (described in Section 2.4), block detection techniques can be further
classified depending on the way in which they internally represent the web
pages: (i) web pages are treated as HTML code, (ii) web pages are treated
as a rendered image, and (iii) web pages are treated as a DOM tree:

i. HTML-based approaches are mainly based on densitometry methods
([79]) that use the textual information of the web page. Many of them
assume that the main content on a web page contains a high text den-
sity and a low tag density. For instance, Ferraresi et al. [38] analyze
the HTML code and define the main content as the largest continuous
text area with fewer amount of HTML tags. Kohlschütter et al. [60]
examine a small set of shallow text features to classify the text ele-
ments of a web page. Weninger et al. [117] defined the CETR method
(Content Extraction via Tag Ratios), which analyzes the HTML code
and computes the CETR ratio by counting the number of characters
and tags inside each tag. The distribution of the code between the
lines of a web page is not necessarily the one expected by the user.

2.5. Block Detection 49

The format of the HTML code can be completely unbalanced (i.e.,
without tabulations, spaces or even carriage returns), especially when
it is generated by a non-human-directed system. Li et al. [68] pro-
posed an algorithm called NBCE that initially transforms the HTML
source code into the form of the tree structure (different from the
DOM tree). It extracts triples from the HTML, which are used to
construct a graph based on neo4j1 database. Finally, the main con-
tent of the given web page can be extracted by deciding whether a
node is the main content node or not. As a common example, the
reader can see the source code of the main Google web page. At the
time of writing these lines, all the code of the web page is distributed
in only a few lines without any legible structure.

ii. Some techniques, called vision-based methods, assume that the main
content of a web page is frequently located, or at least partially lo-
cated, in the central part of the web page (e.g., Burget et al. [22]).
They suppose that the main content (or at least part of it) is visible
without scrolling. Authors from [53] propose a main content extrac-
tion algorithm that uses some visual features, such as the elements’
positions, size, and distance from three centers. Those centers are
computed from the browser window, the first browsing area, and the
web document. Berg [21] proposed a hybrid technique that combines
a densitometry method with vision-based features. The algorithm
adds heuristics based on the appearance of the elements to heuristics
obtained from the HTML structure. Vision-based techniques are not
so widespread as others because rendering web pages for classification
involves expensive computational operations [61].

iii. Currently, the most extended approach is to use the representation
of a web page as a DOM tree (see Figure 2.1). In 2002, Bar-Yossef
et al. [19] proposed a method that infers information from the web
page’s DOM tree and computes the frequent pagelet sets. Yi et al.
[120], Vieira et al. [114] and Alarte et al. [10] also proposed template
detection techniques that use the DOM tree representation of the
web page. Roughly, these techniques identify the template by finding
common DOM subtrees in different web pages of a website.

In particular, Yi et al. [120] proposed a new data structure called Site
Style Tree (SST) that summarizes information from various DOM
trees. The technique examines several web pages of the website and

1https://neo4j.com/

50 Chapter 2. Block Detection Techniques

BODY

DIV

DIV

…

DIV

P

DIV

DIV

P

DIV

…

PDIVDIV

…

DIVIMG DIV

Figure 2.1: Part of a web page represented as a DOM tree

adds the repeated nodes to the SST structure. It is based on the
assumption that the most repeated nodes in the SST are template
nodes. Sun et al. [106] proposed a general method for extracting con-
tent from diverse web pages. It introduces two concepts to measure
the importance of nodes: Text Density and Composite Text Density.
Insa et al. [51] used a similar notion of density that, for each DOM
node, computes the relation between the number of words and leaves
in its subtree. Then, among the nodes with a higher density of text,
they identify the most relevant node (the main content). In the same
line, in [106], the approach is based on computing the ratio between
the number of chars and tags in the subtree of a DOM node. For
instance, the technique presented in Chapter 6 uses the same idea.
It computes a ratio based on the number of text words contained in
the descendants of a DOM node. This ratio is later combined with
other metrics that also account for non-textual content. Yu and Jin
[122] proposed a content extraction algorithm that is based on the
DOM tree of the web page and can manage the big heterogeneity and
variability of web pages. The algorithm divides the DOM tree of the
web page into several blocks, and then it performs the extraction of
content blocks based on statistical information. Authors from [121]
presented a method that establishes a small neural network which
takes multiple features of DOM nodes as input, and predicts whether
the nodes contain relevant text information.

It should be highlighted that some techniques combine the rendered
image of the web page with the information provided by its DOM tree.
Authors of [23] use the DOM tree to extract the information blocks from

2.5. Block Detection 51

a web page. Then, they put all the blocks into a pool and an algorithm
performs a visual separator detection based on the sizes, positions and
separations of the blocks. The input of [64] consists in a screenshot of the
web page, a list of bounding boxes, and neighbourhood information for each
element obtained from the DOM tree.

All the techniques presented in this thesis are based on the third ap-
proach, that is, they all use the representation of a web page as a DOM
tree. Therefore, they can take advantage of the properties of the DOM
trees.

Block detection techniques can also be classified depending on the num-
ber of web pages they can access:

• Page-level techniques. They only use the information contained on
the target web page.

• Site-level techniques. They use the information contained on several
web pages (often from the same website).

On the one hand, the main advantage of page-level techniques compared to
site-level techniques is that they are faster because they only need to load
and analyze one single web page, whereas site-level techniques need to load
and analyze a set of web pages. On the other hand, site-level techniques
are usually more accurate because they obtain more information since they
load and analyze different web pages of the website.

Data Mining

Web Mining

Block Detection

Content ExtractionTemplate detection Menu Detection

Figure 2.2: Relationship between disciplines

52 Chapter 2. Block Detection Techniques

2.6 Conclusions

This thesis presents several block detection techniques, concretely, a site-
level template detection technique, another page-level menu detection tech-
nique, and a page-level content extraction technique. In addition, it also
presents a site-level content extraction technique, and another site-level
hybrid template detection technique.

The aim of this chapter is to place those techniques in their correspond-
ing knowledge disciplines. As mentioned above, there are many types of
block detection techniques depending on the data they intend to extract.
Figure 2.2 helps to place the presented techniques in their corresponding
disciplines, as it shows, block detection techniques belong to a more general
discipline called Web Mining. As mentioned in Section 2.2, Web Mining
tries to discover useful information from the Web, therefore, it depends
on a more general discipline called data mining (see Section 2.1), which is
the process of searching information from a large amount of data through
algorithms.

Part II

Foundations

53

Chapter 3

The DOM tree

The Document Object Model (DOM) [29] is basically a way of conceptu-
alizing the contents of a document. Concretely, it is a multi-platform and
language-independent interface that represents an HTML or XML docu-
ment as a hierarchical tree structure, where each node corresponds to a
part of the document. Therefore, the DOM produces the representation of
an HTML or XML document as a logical tree.

Each node of the tree, except for the root node, is connected by an edge
to its parent node, and it is also connected by edges to its child nodes (if
any). The different branches end in a node, and each node contains objects.
There also exist methods to access the tree or change elements such as the
tree structure, the style or the content of a node, as well as event handlers
attached to the nodes. There is a direct relationship between an HTML or
XML code and its associated DOM tree.

<html>
<head>
<title>Sample web page</title>

</head>
<body>
<h1>Title of the web page</h1>
<div>
<p>Content of the web page</p>

</div>
<p>Footer of the web page</p>

</body>
</html>

HTML

BODY

DIV

P

DIV

#text

H1

#text

PTITLE

HEAD

#text

#text

Figure 3.1: HTML document (left) and its DOM tree (right)

Example 3.0.1 Consider the HTML example code and its associated DOM
tree in Figure 3.1. Each HTML tag has a corresponding DOM node in the

55

56 Chapter 3. The DOM tree

DOM tree. Moreover, each piece of text has its corresponding “#text” DOM
node. We can observe that each DOM node has only one unique parent,
but a DOM node can have several (or none) children.

3.1 Brief history of DOM

The history of the Document Object Model starts with the “first browser
war” (1995) between Netscape Navigator and Microsoft Internet Explorer
[56]. In December 1995, Netscape Communications released Netscape Navi-
gator 2, which included JavaScript. Later, in august 1996, Microsft released
Internet Explorer 3.0, which included a reimplementation of JavaScript
called JScript. Both, JavaScript and JScript resulted in a significant im-
provement because they allowed web developers to create web pages with
client-side interactivity. This first approach was partly defined in the spec-
ifications of HTML 4, and is known as “DOM level 0” or “Legacy DOM”.
At that time, the most common usage of the “DOM level 0” allowed us to
do basic things such as the creation of image rollovers, or client-side form
validation.

Later, in 1997, Netscape Communications and Microsoft released ver-
sion 4.0 of their browsers (Netscape Navigator and Microsoft Internet Ex-
plorer respectively). Those browsers included support for Dynamic HTML
(DHTML), which is the first integration between JavaScript, HTML, and
CSS. DHTML was the combination of those three techniques and allowed
enabling changes to a loaded HTML document. Unfortunately, the devel-
opment of the DHTML DOM extensions by each browser was in parallel
and proved to be incompatible. These versions of the DOM are known as
“Intermediate DOM”. In conclusion, DHTML tried to offer lots of possibili-
ties, but unfortunately, it was very hard to use due to the incompatibilities
between both browsers. Figure 3.2 shows an example of the difference
between both versions of DOM while trying to find out the left position
of the element “elem” and assign it to the variable “pos”. The first line
corresponds to a code written for Netscape DOM, while the second line
corresponds to a code written for Microsoft DOM.

var pos = document.layers[’elem’].left;

var pos = document.all[’elem’]. leftpos;

Figure 3.2: Example of the differences between both versions of Intermedi-
ate DOM

3.2. Main characteristics of DOM 57

Finally, in 1998, the World Wide Web Consortium (W3C) standardized
the DOM (known as “DOM level 1”). Microsoft released Internet Explorer
5 with full support for W3C’s standardized DOM, while Netscape launched
Netscape Navigator 6 which also supported the standardized DOM. It
should be highlighted that both browsers were still backwards compati-
ble. “DOM level 1” defines a set of objects and interfaces to access and
change the objects of the document, which is represented as a hierarchical
tree structure. The last version defined by W3C was “DOM level 4”, in
2015. Between versions 1 and 4, W3C defined “DOM level 2” in 2000, and
“DOM level 3” in 2004.

3.2 Main characteristics of DOM

The Document Object Model (DOM) is an API for well-formed XML and
valid HTML documents. It provides a definition for the logical structure
of documents, as well as the way a document is accessed and manipulated.

Through the tools provided by the Document Object Model, program-
mers can create documents, navigate their structure, and also add, change,
or remove elements and content. Any element found in an XML or HTML
document can be accessed, modified, deleted, or inserted using the DOM.

Since “DOM level 1”, as different versions are specified by W3C, the
key objective for the DOM is to provide a standard API that can be used
in a wide range of environments and applications. In addition, it should
be noted that the DOM is designed to be used with any programming
language.

Documents in the DOM have a logical structure which is similar to
a tree; concretely, it is like a “forest” or “grove”, since they can contain
more than one tree. Each document includes up to one doctype nodes,
exactly one root element node, and zero or more comments or processing
instructions. For the document, the root of the element tree corresponds to
the root element. Nevertheless, the DOM does not state that documents
must be implemented as a grove or a tree, nor does it define how the
relationships among objects should be implemented. Therefore, the DOM
is a logical model that may be implemented conveniently. It is important
to highlight the structural isomorphism property of the DOM, which states
that if any two Document Object Model implementations are used to create
a representation of the same document, they will create the same structure
model [29].

58 Chapter 3. The DOM tree

As it is an object model, the DOM identifies:

• The objects and interfaces used to manipulate and represent a docu-
ment.

• The semantics of those objects and interfaces, including both, at-
tributes and behaviour.

• The relationships and collaborations among these objects and inter-
faces.

3.3 From the document to the browser’s screen

A Web browser is a piece of software that transforms an HTML file received
from the server into a rendered image that is displayed to the user and
allows for user interaction. However, one of the modules of the browser is
a software component that establishes what to display to the user based
on the files it receives. This core software component is called the browser
engine and is present in every browser. For instance, the browser engine of
Firefox is called Gecko, Safari’s is called WebKit, Chrome’s is called Blink,
etc.

The process followed by a browser to display a web page [47, 48] is
known as critical rendering path (CRP), and it can be described as follows:

i. The browser reads the raw bytes of data from the server, correspond-
ing to HTML, CSS, and JS files. Those bytes of data are raw data,
so they have to be converted to a form that the browser understands:

• From HTML to DOM (see Figure 3.3): First, based on the char-
acter encoding of the HTML file, the raw bytes of data are
converted into characters. Then, those characters are parsed
into tokens, which are specified by the W3C HTML5 standard1.
The parser understands each string between angle brackets (e.g.,
<body>, <div>, etc.) and also understands the set of rules that
has to apply to each string. For instance, a token that represents
a table has different properties than a token that represents an
image. A token is a sort of data structure that includes infor-
mation about a certain HTML tag. Then, after the tokenization
process, those tokens are converted into objects (nodes), which

1http://www.w3.org/TR/html5/

3.3. From the document to the browser’s screen 59

define their properties and rules. Finally, the nodes are linked
in a tree data structure called DOM tree, which includes all the
relationships (parent-child, sibling, etc.) between nodes.

HTML bytes Characters Tokens Nodes DOM tree

Figure 3.3: HTML to DOM phases

Example 3.3.1 Consider the HTML example code below. Fig-
ure 3.4 details the construction of the DOM tree that corresponds
to such HTML code. First, the browser obtains the raw bytes of
the HTML file from the network or a local drive. Then, they are
converted into characters, which correspond to the HTML source
file. The next phase converts strings of characters into distinct
tokens. For instance, we can observe that <html> is converted
into StartTag:html, <head> is converted into StartTag:head,
etc. The following phase, called lexing phase, converts the tokens
into their corresponding nodes. Finally, the nodes are linked rep-
resenting all the relationships, which produce the DOM tree that
can be observed at the bottom of the figure.

<html>
<head>
<link href="style.css" rel="stylesheet"/>

</head>
<body>
<p>This is an example</p>
<div>

</div>
</body>

</html>

• From CSS to CSSOM (see Figure 3.5): The raw bytes of CSS
follow a process similar to the raw bytes of HTML. To sum-
marize, the raw bytes of CSS data are converted to characters.
Then, they are tokenized and converted to nodes. Finally, a tree
structure called CSS Object Model (CSSOM) is created. One
of the particular features of the CSS is called the cascade. The
cascade is how the browser infers which styles are applied to an
element. When the final set of styles is computed for any object
of the web page, the browser starts computing the most general

60 Chapter 3. The DOM tree

rule applicable to that node (i.e., if it is a “DIV” node which is
a child of the “BODY” element, all the styles of the “BODY”
element are applied). Then, the browser recursively refines the
computed styles with more specific rules. Therefore, the rules
“cascade down”.

Example 3.3.2 Consider the CSS example code below. It cor-
responds to the “style.css” file linked in the HTML in Example
3.3.1. As in Example 3.3.1, first CSS bytes are converted into
characters, then characters are converted into tokens, then to-

HTML bytes

Characters

Tokens

Nodes

DOM tree

3c 68 74 6d 6c 3e 3c 68 65 61 64 3e 3c 6c 69 6e 6b 20 68 72 65 66 3d e2 80 9c 73 74 79 6c 65 2e 63 73
73 e2 80 9d 20 72 65 6c 3d e2 80 9c 73 74 79 6c 65 73 68 65 65 74 e2 80 9d 2f 3e 3c 2f 68 65 61 64 3e
3c 62 6f 64 79 3e 3c 70 3e 54 68 69 73 20 69 73 20 61 6e 20 65 78 61 6d 70 6c 65 3c 2f 70 3e 3c 64 69

76 3e 3c 69 6d 67 20 73 72 63 3d e2 80 9c 65 78 61 6d 70 6c 65 2e 70 6e 67 e2 80 9c 2f 3e 3c 2f 64 69
76 3e 3c 2f 62 6f 64 79 3e 3c 2f 68 74 6d 6c 3e 0a

<html><head><link href=“style.css”rel=“stylesheet”/></head><body><p>This is an

example</p><div></div></body></html>

StartTag : html StartTag : head StartTag : link EndTag : head StartTag : body

StartTag : p EndTag : pThis is an… StartTag : div StartTag : img

EndTag : div EndTag : body EndTag : html

HTML HEAD LINK BODY P DIV IMG This is an…

HTML

HEAD BODY

LINK
P DIV

IMGThis is an…

Figure 3.4: HTML to DOM phases example

CSS bytes Characters Tokens Nodes CSSOM tree

Figure 3.5: CSS to CSSOM phases

3.3. From the document to the browser’s screen 61

kens into nodes, and finally, the tree structure is built. In this
case, that structure corresponds to the CSS Object Model (CS-
SOM). Figure 3.6 shows the CSSOM tree that corresponds to the
CSS example code below. We can observe that the CSS rules in
red correspond to the rules previously defined for ancestor nodes,
while the black CSS rules correspond to the specific rules defined
for the node.

body { font-color: gray }
p { font-size: 1.5em; font-style: italic }
div { text-align left }
img { float: right }

BODY

P DIV

IMG

font-color: gray;

font-color: gray;
font-size: 1.5em;
font-style: italic;

font-color: gray;
text-align: le�;

font-color: gray;
text-align:le� ;
float: right;

Figure 3.6: Generated CSSOM tree

• In this phase, the browser has to consider the JavaScript code
because it can modify the styling and content of the web page.
For instance, JavaScript code can modify the CSSOM properties
of the elements from the DOM tree, or even it can add and
remove elements from the DOM tree.

When the browser engine finds JavaScript code, it stops the
DOM construction process until the script finishes its execution.
This is because, as pointed out above, the execution of a script
can alter the DOM structure. It should be highlighted that
adding the async property to the < script > tag overrides this.
On the other hand, when the browser engine finds JavaScript
code and the CSSOM is not yet ready, it halts the execution
of the script until the CSSOM is ready. This guarantees that
the script does its job of changing the styling of the web page
(if it has to). Therefore, JavaScript code execution is “parser
blocking”, that is, when the browser encounters JavaScript code,

62 Chapter 3. The DOM tree

it pauses DOM and CSSOM construction and executes the code
before proceeding with it.

ii. Then, the browser combines two independent structures (DOM and
CSSOM) into a new structure called the render tree. This new struc-
ture contains the information of all visible DOM content on the web
page, and the CSSOM information required by the different DOM
nodes. The render tree is used by the browser to compute the layout
of the visible elements, and it is the input of the painting process that
performs the rendering of the pixels to the screen.

The render tree is constructed as follows:

• The process starts at the root of the DOM tree and traverses
each visible node. Not visible nodes (i.e., meta tags, script tags,
nodes hidden via CSS, etc.) are omitted since they must not be
part of the rendered output.

• For each visible node, the process finds its corresponding CS-
SOM rules and applies them.

• Finally, the process adds the content to the visible nodes.

It should be noted that the browser will not render any processed
content until the CSSOM is built, as CSS is a render-blocking re-
source. The output of the process is a render that includes both, the
style and the information of all the content that should be displayed
on the screen.

Figure 3.7 shows the render tree built from the DOM and CSSOM
trees. We can observe that the non-visible nodes (“HTML”, “HEAD”,
and “LINK”) do not appear in the render tree. In addition, the
“BODY” node appears with a dashed line because it is not a visible
node, concretely its descendants are visible nodes.

iii. Once the render tree has been built, the browser performs the layout.
That is, it renders the information stored in the render tree to the
screen. For that, it computes the exact size and position of each
object on the web page.

iv. Finally, considering the information about the sizes and positions of
each DOM node, the browser “paints” those nodes to the screen. The
result of this phase is the browser screen with the different elements
rendered to the screen.

3.4. Conclusions 63

HTML

HEAD BODY

LINK
P DIV

IMGThis is an…

BODY

P DIV

IMG

font-color: gray;

font-color: gray;
font-size: 1.5em;
font-style: italic;

font-color: gray;
text-align: le�;

font-color: gray;
text-align:le� ;
float: right;

BODY

P DIV

IMG

font-color: gray;

font-color: gray;
font-size: 1.5em;
font-style: italic;

font-color: gray;
text-align: le�;

font-color: gray;
text-align:le� ;
float: right;

This is an…

DOM CSSOM

Render tree

Figure 3.7: Render tree from DOM and CSSOM

To summarize, Figure 3.8 shows the critical rendering path process. The
input of the process is the HTML, CSS and JavaScript data. The HTML
is converted to DOM and the CSS is converted to CSSOM, but in both
cases, the browser engine considers the JavaScript code if it has not been
explicitly declared as asynchronous. Once the DOM and CSSOM are built,
their combination produces the render tree. Then, the layout is performed.
That is, the browser engine computes the exact size and position of each
object on the web page. Finally, the nodes are “painted” to the screen
producing the representation of the web page on the users’ browser.

3.4 Conclusions

This chapter introduces the concept of DOM tree, describing its main char-
acteristics and the process performed by the browser to convert an HTML
file into a DOM tree. The DOM tree contains all the relevant data from the
HTML web page, except for the styling which is contained by the CSSOM
tree.

64 Chapter 3. The DOM tree

DOM

CSSOM

RENDER TREE LAYOUT PAINTJAVASCRIPT

CSS

HTML

Figure 3.8: Critical Rendering Path scheme

As described in Section 2.5, all the techniques presented in this thesis
use the representation of a web page as a DOM tree. Using DOM trees pro-
vides many benefits to block detection techniques. For instance, regarding
content extraction techniques, it allows us not only to extract text content
(unlike other techniques such as [110, 121]), but also other kinds of con-
tent such as videos, animations, images, etc. In addition, representing web
pages as a DOM tree allows us to easily perform operations such as tra-
verse, insert, delete, search, etc. DOM nodes. Moreover, it should be noted
that representing web pages as a DOM tree facilitates the implementation
of block detection techniques as browser extensions, and consequently, to
show the extracted block on the users’ browser maintaining its styling.

Chapter 4

Preliminary Definitions and
Notation

Despite block detection techniques can use different forms of representing
the web pages (see e.g. Section 2.5), all the techniques described in this
thesis have a common denominator: they are based on DOM trees cor-
responding to web pages. All of them convert the HTML files into their
corresponding DOM trees and perform the required operations in order to
extract the desired block. For this reason, it is essential to provide a defi-
nition of some basic terms such as web page, website, hyperlink, etc. that
are used throughout the whole thesis.

In addition, this chapter also provides some definitions and notations
related to block detection that are used in several chapters. Especially, we
provide general and complete definitions for the web page’s template, main
content, and equal top-down mapping, among others.

4.1 Basic definitions

In this section, we provide formal definitions for some key terms that appear
in almost all chapters since they are used by all techniques.

As this thesis uses the DOM tree representation of the web pages to
identify some of their information blocks, such as the template, the main
content, and the main menu, first we provide a definition for a web page
based on its representation as a DOM tree.

Definition 4.1.1 (Web page) A web page P is a tree (N,A) formed from
a finite set of nodes N . Every non-leaf node n ∈ N contains an HTML
tag (including its attributes). Leaf nodes can be text nodes, CDATA section
nodes, comment nodes, or notation nodes1. The root node corresponds to

1Processing instruction nodes are also leaf nodes, but they are only supported in XML
documents.

65

66 Chapter 4. Preliminary Definitions and Notation

the BODY HTML tag. A is a finite set of arcs such that (n→ n′) ∈ A, with
n, n′ ∈ N , if and only if the tag or text associated with n′ is inside the tag
associated with n, and there does not exist an unclosed tag between them.

Once we have a formal definition for a web page, we provide a set of
functions used by our techniques which are very useful to manipulate web
pages. Given a node n in a web page P = (N,A), we define:

• page(n) is P .

• parent(n) represents a node n′ ∈ N such that (n′, n) ∈ A.

• ancestors(n) is a set of nodes that contains all the nodes that are in
the path from the root to n.

• descendants(n) are those nodes that belong to the subtree of n, i.e.,
those nodes for which n is an ancestor.

• subtree(n) is a set that contains n and all the descendants of n. That
is descendants(n) ∪ {n}.

• leaves(n) is the number of leaves in descendants(n).

• childNodes(n) is the number of children of n.

• depth(n) is the length of the path from the root of the DOM tree to
node n.

• maxDepth(P) is the maximum depth of the web page P , i.e., it is the
maximum value for function depth(n) (for any n).

• words(n) is the total number of words in descendants(n) excluding
those that belong to hyperlinks.

• distance(n1, n2) is the length (measured with the number of edges)
of the path between two nodes n1 and n2. The distance from n1 to
n2 is 0 if and only if n1 = n2.

Moreover, it is necessary to provide a formal definition for the relation
between two web pages. A hyperlink, among other things, represents the
link between two web pages.

Before establishing a definition for hyperlink, it is important to outline
how it is represented. Thus, we provide first a formal definition of web
address.

4.1. Basic definitions 67

Definition 4.1.2 (Web address) A web address is a non-empty sequence
of words joined by juxtaposition w1w2w3...wn, where each word finishes with
a slash with the exception of the last one. Any web address can be generated
by the following grammar:

H = dir
H = dir/
H = dir/H

where dir represents any sequence of characters (usually a domain or a
directory).

Definition 4.1.2 formally describes a web address as a sequence of words
separated by a slash. This web address is the one used in hyperlinks to
establish a relation from one page to another.

Definition 4.1.3 (Hyperlink Node) Given a web page P = (N,A), a
hyperlink node is a DOM node whose DOM tagName property value is “A”.2

Hyperlink nodes include a web address that points to some web page.

Definition 4.1.3 describes a hyperlink node as a node that points to
another web page through a web address. We represent with hyperlinks(P)
the set of hyperlink nodes in a web page P . We use link(n) to refer to the
link (url) contained in node n (it is assumed that n is a hyperlink node).

Definition 4.1.4 (Target) Given a web page P = (N,A) and a hyperlink
node n ∈ N , target(n) is the web page P ′ = (N ′, A′) that is pointed from
the URL included in n.

Definition 4.1.4 describes the function target(n), which given a hyper-
link node, gives the web page pointed by its URL.

Definition 4.1.5 (Hyperlink) Given a website S, a web page P = (N,A) ∈
S, and another web page P ′ = (N ′, A′), a hyperlink is the relation between
a pair of web pages (P, P ′) such that ∃ n ∈ N | n ∈ hyperlinks(P) ∧
target(n) = P ′.

Definition 4.1.5 formally describes a hyperlink as the relation between a
pair of web pages where one web page of the pair has a link to the other web
page. It should be noted that both web pages can be the same, however
they are usually different. Given the domain W of web pages, the set of
hyperlinks is a relation R ⊆W ×W .

2Note that A and “A” are unrelated. While A is a set of arcs, “A” is a kind of tag in
the DOM model.

68 Chapter 4. Preliminary Definitions and Notation

Some of our techniques need to obtain the set of hyperlinks contained
in the subtree rooted in a given node. Definition 4.1.6 describes a formal
specification of the set and provides a function that returns the set of
hyperlinks contained in the descendants of a DOM node.

Definition 4.1.6 (Node’s hyperlinks) Given a web page P = (N,A)
and a node n ∈ N , hyperlinks(n) is the set containing all the hyperlink
nodes in descendants(n).

Finally, based on some of the previous definitions, we can formally define
a collection of web pages from the same domain called a website. A website
is a set of web pages that belong to the same domain, which usually share
the same template and main menu. However, it should be noted that most
websites implement more than one template, so two web pages that belong
to the same website do not necessarily share their template.

Definition 4.1.7 (Website) A website S is a set of web pages such that

• ∃ U : ∀ P ∈ S, U is a non-empty prefix of P ’s web address.

• ∃ Proot ∈ S : ∀ P ′ ∈ S, Proot 6= P ′ : (Proot, P
′) ∈ hyperlinks(S)∗,

where X∗ is the reflexive and transitive closure of X, and
hyperlinks(S) = {(page(n), target(n))} with n ∈ ∪Q∈S hyperlinks(Q).

Definition 4.1.7 formally describes a website as a set of web pages that
meet two conditions: on the one hand, they share a prefix of their URI (it
is usually the domain). On the other hand, all the web pages that belong
to the website must be reachable from at least one web page of the website
(usually known as index.html).

4.2 Site-level techniques

This section provides several key definitions for the site-level block detection
techniques developed in this thesis. The template detection techniques
described in Chapter 9 and Chapter 11, as well as the content extraction
technique described in Chapter 10, share their candidates selection strategy
and the mapping they use to check whether two DOM nodes from two
different web pages are the same node or not.

4.2. Site-level techniques 69

4.2.1 Candidates selection

Site-level techniques need to load and analyze several web pages in order
to extract the desired block. In order to select those web pages (called
candidates) we need a candidates selection strategy. The candidates se-
lection strategy of the techniques developed in this thesis is based on the
importance of selecting web pages from the same website that share their
template. The key idea of this candidates selection strategy is that, if the
selected web pages share their template, a fair comparison between them
can provide the template or the main content with more accuracy.

The definitions described in this subsection are the base of the can-
didates selection algorithm explained in Chapter 7, which is used by the
template detection techniques in Chapter 9 and Chapter 11, and the con-
tent extraction technique in Chapter 10.

The aim of the candidates selection algorithm is to establish an order
for the web pages that belong to a website. This order identifies the web
pages that should be compared to infer the template of the website. That
order is formed as the combination of two orders called link relevance and
DOM relevance. Those orders use functions that provide metrics relative to
some web page’s elements. Some of those functions are formalized through
the following definitions.

Definition 4.2.1 (hyperlink distance) Given two links h, h′, the dis-
tance from h to h′ is defined as:

hDistance(h, h′) =

0 if h = h′

+n if h′ = h/d1/ . . . /dn
−n if h = h′/d1/ . . . /dn
−m if h = d1/ . . . /dn/dn+1/ . . . /dn+m and

h′ = d1/ . . . /dn/d
′
n+1/ . . . /d

′
n+o and

dn+1 6= d′n+1

−n if h = d1/ . . . /dn and
h′ = d′1/ . . . /d

′
m and d1 6= d′1

where di represents any directory used to compose the links.

Definition 4.2.1 computes the distance between two hyperlinks of the
same website based on the directories where the web pages pointed by
them are located. It should be highlighted that the obtained distance can
be positive, negative, or zero.

Because the distance can be positive or negative, then the order of the
parameters in hDistance(h, h′) is important. Thus, the distance between

70 Chapter 4. Preliminary Definitions and Notation

two hyperlinks is defined from the first hyperlink to the second hyperlink
(hDistance is not commutative).

Definition 4.2.2 (DOM path) A DOM path is a non-empty sequence
of DOM nodes joined by juxtaposition n1n2n3...nn, where each node is the
parent of the next node.

Given a DOM node n, the DOM path of n is formed from a sequence of
DOM nodes that starts at the root node of the DOM tree and that finishes
at n. As pointed out in Definition 4.2.2, each node is the parent of the next
node in the sequence.

Definition 4.2.3 (length of a DOM path) Given a node n in a DOM
tree, the length of its path, path(n), is represented with |path(n)|, and it
denotes the number of nodes in the sequence:

|path(n)| =

1 if path(n) = n0

1 + |path(n′)| if path(n) = n0path(n′)
where path(n′) is a DOM path

(4.1)

Definition 4.2.3 computes the length of a DOM path as a positive integer
by counting the number of DOM nodes in the sequence.

Once the length of a path is known, the distance between two nodes in
the DOM tree can be obtained. Note that a path of a node is not forced to
start at the root of the tree; but in the definition of distance, both paths
start from it.

Definition 4.2.4 (DOM distance) Given a DOM tree T = (N,A), with
n, n′, n0 ∈ N , the DOM distance from n to n′ is defined as:

dDistance(n, n′) =

0 if path(n) = path(n′)
j + k if path(n) = n0...nim1...mj

and path(n′) = n0...nim
′
1...m

′
k

and m1 6= m′1

(4.2)

Based on Definition 4.2.3, Definition 4.2.4 computes the distance be-
tween two DOM nodes as the length of the shortest path between them in
the DOM tree. In this case, the order of the parameters is not relevant.
Therefore, the distance from n to n′ is equal to the distance from n′ to n.

Previous definitions provide a basis for formalizing the two orders that
are combined to form the candidates selection order. The following two
definitions formalize both orders.

4.2. Site-level techniques 71

Definition 4.2.5 (link relevance) Given any set of hyperlink nodes N
of a DOM tree and a reference hyperlink h, N is equipped with the preorder
≤h

link called link relevance and defined as follows. For any n1, n2 ∈ N we
have:

n1 =h
link n2 iff hd1 = hd2

n1 <h
link n2 iff

0 ≤ hd1 < hd2 ∨
hd2 < hd1 ≤ 0 ∨
hd2 < 0 ≤ hd1

where

hd1 = hDistance(h, link(n1)) hd2 = hDistance(h, link(n2))

Definition 4.2.5 is based on Definition 4.2.1, and establishes an order
for the links that have to be explored from the web page whose block has
to be extracted (also known as key page). First, this order promotes the
links to web pages that are physically located in the same directory as the
key page. Then, it explores those links that are physically located in a
subdirectory of the directory of the key page. Finally, it considers the links
physically located outside the directory of the key page.

Definition 4.2.6 (DOM relevance) Given any set of hyperlink nodes N
of a DOM tree T and a reference set of hyperlink nodes N ′ in T , N is
equipped with the preorder ≤N ′

DOM called DOM relevance and defined as
follows. For any n1, n2 ∈ N we have:

n1 =N ′
DOM n2 iff

{
N ′ = ∅ ∨
dn′1 = dn′2

n1 <N ′
DOM n2 iff dn′1 > dn′2

where

dn′1 = min
n∈N ′

dDistance(n, n1) dn′2 = min
n∈N ′

dDistance(n, n2)

Definition 4.2.6 establishes an order for the hyperlink DOM nodes of
a web page based on the definition of the distance between two DOM
nodes (see Definition 4.2.4). We can observe that this order promotes the
hyperlink DOM nodes that are located further than the rest of the hyperlink
DOM nodes in the web page.

72 Chapter 4. Preliminary Definitions and Notation

4.2.2 Mapping

Once the site-level techniques in this thesis have selected the set of candi-
date web pages they have to load and analyze, they need to compare the
DOM nodes of such web pages using a mapping called equal top-down map-
ping (ETDM). The following definition corresponds to the ETDM, whose
algorithm is described in Chapter 8.

Definition 4.2.7 (equal top-down mapping) A mapping from a DOM
tree T = (N,A) to another DOM tree T ′ = (N ′, A′) is an inyective partial
relation from N to N ′. Given an equality relation , between tree nodes, a
mapping M between two DOM trees T and T ′ is said to be equal top-down
if and only if

• equal: for every pair (n, n′) ∈M , n , n′.

• top-down: for every pair (n, n′) ∈ M , with n 6= root(T) and n′ 6=
root(T ′), there is also a pair (parent(n), parent(n′)) ∈M .

This definition is parametric with respect to the equality relation ,,
since the relation is open to cover any possible implementation.

The Equal Top-down Mapping described above establishes two condi-
tions required to consider that two DOM nodes are the same node. First,
they have to be equal considering the equality relation ,. Then, as it is
a top-down algorithm, to map two DOM nodes as equal, their ancestors
must also have been mapped as one to one equals.

4.3 Web page blocks

4.3.1 Web page menu

From a web designer point of view, a web page menu is a collection of
hyperlinks that point to the same or another web pages. It is often used
to establish a hierarchy inside the own website, so that web page menus
include essential navigational information.

From the point of view of DOM, as defined in [3], a web page menu is a
DOM node whose subtree is the smallest subtree that contains at least two
hyperlinks pointing to web pages of the same website; moreover, because
a menu provides navigation to the website, the same menu must appear in
at least another web page of the website. Formally,

4.3. Web page blocks 73

Definition 4.3.1 (Web page menu) Given a website S, a web page P =
(N,A) ∈ S with a node n ∈ N , and a set H of hyperlink nodes in the subtree
rooted at n that point to web pages in S, we say that n is a web page menu
if and only if:

• |H| ≥ 2; and

• 6 ∃ m ∈ N | (n,m) ∈ A∗ ∧ ∀ h ∈ H . h ∈ descendants(m); and

• ∃ P ′ = (N ′, A′) ∈ S | n ∈ N ′.

Definition 4.3.1 establishes the three conditions a DOM node must meet
to be considered a web page menu. First, the node at least contains two
hyperlinks in its descendants pointing to two web pages in the same website.
Second, for each set of hyperlinks that form a menu, its menu node is unique
because it cannot contain a child that is a menu node for the same set of
hyperlinks. Third, the main menu node must appear at least in another
web page of the website.

Based on Definition 4.3.1, DOM-based block detection techniques can
infer the main menu of a web page by detecting the DOM node that cor-
responds to it. Given a web page or a website as input, those techniques
compute the main menu and return it as a single DOM node.

4.3.2 Template

The definition of template of a web page cannot be outlined from the point
of view of a single web page since it is based on the comparison of that web
page with some other web pages from the same website. The part of a web
page that is considered a template is shared with other web pages from the
same website. It provides a common design and navigation to at least a
set of several web pages from the same website. Therefore, a web template
can be represented as a set of DOM nodes that are repeated in several web
pages from the same website. Formally,

Definition 4.3.2 (Template) Given a web page P = (N,A), and a web-
site S, P ∈ S, the template is a set of DOM nodes M ⊆ N such that:

∀m ∈M . ∃P ′ = (N ′, A′) ∈ S, P ′ 6= P, m ∈ N ′

According to Definition 4.3.2, the set of all DOM nodes considered as
a template must be present in other web pages from the same template.

74 Chapter 4. Preliminary Definitions and Notation

4.3.3 Main content

In order to provide a definition of main content which is independent of any
method, we follow an engineering perspective based on the structure of the
web page. The definition assumes the existence of a labelling relevant(n)
applied to the leaf nodes. That labelling identifies those leave nodes in the
web page that should belong to the main content. Formally,

Definition 4.3.3 (Main content) The main content of a web page P =
(N,A) is a set of DOM nodes M ⊆ N such that:

i. All relevant nodes belong to the subtrees of the main content nodes:
∀ n ∈ N, relevant(n) . n ∈ subtree(n′ ∈M).

ii. All leaf nodes that belong to the subtrees of the main content nodes
are relevant:
∀ n ∈ leaves(n′ ∈M) . relevant(n).

iii. The set of main content nodes is minimal:
6 ∃ M ′ ⊂M . ∀ n ∈ N, relevant(n), n ∈ subtree(n′ ∈M ′).

Definition 4.3.3 shows that all the DOM nodes labelled as relevant must
be descendants from the main content nodes. Moreover, all the descendants
of the main content nodes have to be relevant. Finally, the set of main
content nodes should be minimal.

4.3.4 Relationship between web page menu and template

The web page’s main menu and its template are directly related since the
menu is always contained in the template. As stated before, the template
provides the web pages in a website with a common design and navigation.
Providing navigation involves the inclusion of elements like the main menu,
submenus, footers, breadcrumbs, etc.

Web page menus are not considered part of the main content because
they do not provide relevant information for the users browsing the website.
They provide navigational information which is useful for the users to find
relevant information.

4.3.5 Relationship between the template and the main con-
tent

The template of a web page and its main content are highly related since
they are mutually exclusive. Therefore, the DOM nodes that belong to the
template surely do not belong to the main content, and vice versa.

4.3. Web page blocks 75

BODY

DIV

DIV

DIV

DIV

P

P

#text

P

DIV

…

IMGPDIV

…

DIVIMG P

#text

DIV

A DIV DIV

A #text#text P

#text

IMG

IMG

DIV

DIV

DIV

DIV

DIV

#text

DIV

P

#text

Figure 4.1: Template and main content example

However, despite some papers do consider them as complementary, this
fact is not true in all cases. Some authors use boilerplate removal tech-
niques to infer the main content [120, 99, 115], which involves that they
consider the template and the main content as complementary. Neverthe-
less, on many web pages this is not true. For instance, Berg [21] categorizes
the content into three groups: main content, optional content, and noisy
content (template). The author defines the optional content as content that
could be considered part of the main content because it is useful for some
users, but it is not the main focus of the web page. An example of optional
content could be the comment section of news websites or blogs. It is useful
for some users but it is not the most relevant content of the web page.

Moreover, in most web pages there is a small set of DOM nodes that do
not belong to the template (they are not repeated in other web pages from
the same website), and in addition, they do not belong to the set of main
content nodes since it has to contain all the relevant DOM nodes and it also
has to be minimal. Figure 4.1 shows an example of this phenomenon. The

76 Chapter 4. Preliminary Definitions and Notation

dashed “DIV” node near the “BODY” node is the borderline node between
the template and the rest of the web page. All the descendant DOM nodes
of this node do not belong to the template. On the other hand, the darker
“DIV” node is the root of the main content nodes. We can observe that
there are two “DIV” nodes between them (those “DIV” nodes with white
background) that do not belong to the template nor to the main content.

Another example of DOM nodes that belong to none of both, template
and main content, are the DOM nodes that are not part of the template
and can not be considered relevant. For instance, if we consider a blog
with comments enabled for the entries, most users do not consider those
comments as relevant since, in most cases, they are not. Figure 4.1 also
shows an example of this phenomenon. On the left, we can observe a group
of three DOM nodes with white background that are descendants of another
node with white background. That group of DOM nodes, as well as their
parent, do not belong to the template nor to the main content.

For those reasons, despite sometimes they are complementary, in this
thesis we do not consider template and main content nodes as complemen-
tary.

4.4 Evaluation metrics

Authors from block detection techniques use a wide variety of criteria to
compute the metrics they use to measure and compare their algorithms.
Some of the metrics are based on counting retrieved text words [114, 113],
retrieved text characters [61], retrieved DOM nodes [10], retrieved text
blocks [101, 115], etc. Other authors (e.g., [106, 122]), however, propose
more complex metrics, such as computing the common longest subsequence
(LCS) between the retrieved text and the gold standard3.

Regarding this thesis, our metrics are based on the retrieved DOM
nodes, the retrieved text words, or both, depending on the technique. These
metrics are:

Recall: represents (in percentage) the number of DOM nodes (or text
words) correctly retrieved divided by the number of DOM nodes (or
text words) in the gold standard.

recall = number of correctly retrieved
number in gold standard

3The gold standard is the perfect result. In our context, it specifies what parts
(measured in DOM nodes, text, etc. depending on the context) form the template,
what parts form the main content, or which DOM node represents the main menu.

4.4. Evaluation metrics 77

Precision: shows (in percentage) the number of DOM nodes (or text
words) that have been retrieved correctly divided by the number of
retrieved DOM nodes (or text words).

precision = number of correctly retrieved
number of retrieved

F1: is computed using the precision and the recall as:

F1 = 2∗recall∗precision
recall+precision

As we can observe in the following chapters, the value of these metrics
is expressed in percentage.

Part III

Page-level Block Detection
Algorithms

79

Chapter 5

Page-level Menu Detection

A web page menu or just a menu is an essential block in a website that
provides navigation among a subset of web pages from the website. This
subset usually includes the most important web pages on the website. As a
web page, a menu can be defined as a set of DOM nodes, inasmuch as it is a
block from the web page. From a functional point of view, a menu provides
valuable information about the website, especially about its structure, since
it includes its key sections and implicit information about its sitemap. As
a result, web page menus are also significant for crawlers and indexers.

The description of all the links of a website can be useful for search en-
gine optimization (SEO) tasks in order to improve its positioning. Namely,
web developers usually use an XML file called “sitemap.xml” that describes
the structure of the website and helps to improve its positioning. This file
is used by crawlers and indexers to infer the structure of the website. A
sitemap containing the main web pages of a website can be built without
having to follow all its links by identifying the menu.

Given a web page, the main menu is always found inside its template.
Templates typically contain one or several pagelets [26, 19] (i.e., separated
logical regions with a well-defined topic or functionality) where the main
content is located. Therefore, the process of detecting the menu of a web
page could be a helpful tool in the template detection process.

Some aspects taken into account by indexers and crawlers to evaluate
the relevance of a web page are the distribution and frequency of hyper-
links and terms. As templates contain a significant number of common
hyperlinks and terms appearing on several web pages from the same web-
site, relevance may lead to an inaccurate result (see, e.g., [19, 120, 114]).
Consequently, the detection of the template is helpful for indexers in the
task of identifying the main content of the web page.

This Chapter proposes a page-level technique (MenEx) that detects and
isolates the menu of a web page.

81

82 Chapter 5. Page-level Menu Detection

5.1 Related Work

As stated in Chapter 2, Menu Detection, Content Extraction, and Tem-
plate Detection are directly related disciplines. Since Template Detection
attempts to isolate the template of the web page, Content Extraction at-
tempts to infer its main content, and Menu Detection attempts to discover
its main menu. These disciplines are an instance of a broader discipline
called Block Detection that tries to identify and isolate every pagelet in a
web page. Most of Block Detection papers are related to Content Extrac-
tion or Template Detection (see, e.g., [46, 117, 24, 51, 18, 115, 66, 123]).
Moreover, there are some papers in the literature quite related to Menu
Detection. For instance, in [28], authors proposed a technique that detects
the web page structure and adapts it to small screens. The algorithm an-
alyzes the structure of the web page and splits it into small and logically
related units that fit into the screen of a mobile device. This process in-
volves the detection of several blocks, including header, footer, sidebars,
etc. Therefore, the main menu will be included in one of the blocks de-
tected by the algorithm. Feng et al. [37] combined two machine learning
algorithms (Adaboost and SVMs) to partition the text on a web page into
information blocks and identify their semantic categories. One of the twelve
semantic categories defined by authors is Menu, therefore the menu of the
web page can be identified by their algorithm.

As well as other block detection techniques, Menu Detection techniques
could be classified depending on the number of web pages they analyse as
page-level and site-level techniques. As described in Chapter 2, the objec-
tive is the same, detecting the menus of a given web page; but they use
different information. While page-level techniques only use the informa-
tion contained in the target web page, site-level techniques also use the
information contained in other web pages, typically of the same website.

Furthermore, as other Block Detection techniques, Menu Detection tech-
niques could also be classified depending on the way they solve the problem,
concretely, (i) using textual information of the web page (i.e., the HTML
code) [38, 62, 68], (ii) using a rendered view of the web page in the browser
[22, 61, 53], and (iii) using the DOM tree of the web page [120, 114, 122].

A web page menu has a well-defined functionality not shared with other
regions of the web page. Pagelets were defined in [19] as a region of a
web page that (1) has a single well-defined topic or functionality, and (2)
is not nested within another region that has exactly the same topic or
functionality. Despite the fact that in some web pages the menu links also
appear in the footer, the main menu is considered a pagelet.

5.2. Menu detection algorithm 83

5.2 Menu detection algorithm

This technique, also known as MenEx, is a page-level technique because it
only analyzes the information contained in the target web page. The tech-
nique receives a web page as input and provides its main menu as output.
Since the algorithm uses the DOM tree of the web page, and because of the
DOM tree properties, the menu of the web page can be represented using
one unique DOM node, that is, the minimum node whose subtree contains
the whole menu. First, our algorithm identifies a set of DOM nodes that
contain the menu with high probability, called candidate nodes. Then, it
explores and analyzes those nodes to select the best candidate as the node
that contains the menu.

The technique is divided into three stages:

i. First, the algorithm explores the web page (all its DOM nodes) and,
for each DOM node except for the leaves, a weight is computed and
assigned. Finally, with those nodes with a higher weight, it builds
a set of DOM nodes. It is assumed that the menu of the web page
belongs to that set or is an ancestor of one of the nodes in the set.

ii. Second, the algorithm explores each node in the set, it checks its
ancestors and evaluates their weight. When a computed value is
lower than the weight of an ancestor, the DOM node in the set is
replaced with its ancestor.

iii. Finally, the node which represents the menu is detected by comparing
the nodes in the set of selected DOM nodes. For each node in the set,
an algorithm computes the average weight of its descendants whose
weight is over a specified threshold. The node with the best average
weight represents the menu node.

5.2.1 Rating DOM nodes

The metric proposed in this section is applied to the DOM nodes of the web
page in order to obtain a set of nodes that with high probability represent
the main menu or contain a part of it. Therefore, the described algorithm
explores the DOM tree of the web page and assigns a weight to each DOM
node that meets the following criteria:

i. It is not a leaf of the DOM tree.

ii. It is an element node. Any other types are not considered (e.g.,
comments, text nodes, etc.).

84 Chapter 5. Page-level Menu Detection

BODY

P

DIV
DIV

P
DIV

…#text

…DIV

H1

…

A

LI

UL UL…

… LI

LI LI

A

LILI

DIV

TABLE

…

…

#text

…

… … …

…

DIV

…

……

#text…

A

#text

LI

UL

Figure 5.1: Example of a DOM tree where the gray node is the menu

The definition of web page menu (see Definition 4.3.1) uses some of the
formal definitions also proposed in Chapter 4: web page (4.1.1), website
(4.1.7), hyperlink (4.1.5) and node’s hyperlinks (4.1.6).

As stated in Chapter 4, a web page menu can be represented as a
DOM node whose subtree is the smallest subtree that contains at least
two hyperlinks pointing to web pages from the same website. In addition,
the same menu must appear on at least another web page of the website,
because the main purpose of a menu is to provide navigation to the website.

On the one hand, an HTML link tag “A” cannot be a leaf node because
the element which contains the text of the link has to be a descendant from
it. On the other hand, a web page menu contains DOM nodes that are
hyperlinks to other web pages. Therefore, the menu of a web page is not
a leaf node. Moreover, the only kind of DOM node that is able to contain
groups of hyperlinks is the element node. Hence, the menu of a web page
must be an internal DOM node whose type is element.

Among the main features of a web page template, one of the most im-
portant is to provide navigation to the web page, therefore most of the

5.2. Menu detection algorithm 85

hyperlinks of a web page menu are shared by all web pages implementing
the same template. Hence, the identification of those DOM nodes which
concentrate a high amount of hyperlinks between their descendants is key
to identifying the web page menu. Figure 5.1 shows a web page repre-
sented with its DOM tree where the menu node is the “UL” node with
gray background. Note that the menu is formed by the “UL” node and all
its descendants.

The detection of the DOM nodes with a high hyperlink density is es-
sential to identify web page menus, but it is not the only property that
helps in this task. In the following we describe several additional proper-
ties that must be considered in order to identify the menus accurately [3,
2]. Additionally, we indicate how to label nodes with a weight based on the
properties. All the properties are objectively quantifiable and, once they
are combined, they provide a weighting that is able to uniquely identify
web page menus.

Definition 5.2.1 (Node properties) In a web page P = (N,A), every
node n ∈ N ∧ descendants(n) 6= ∅ is rated according to the following
properties [3]:

Node amplitude: The amplitude of a node n is computed considering its
number of children. It is defined as:

Node amplitude(n)= 1− (1/childNodes(n))

Link ratio: The link ratio of n ∈ N is computed with the following func-
tion:

Link ratio(n) ={
0 if |hyperlinks(n)| < 2
(|hyperlinks(n)|+ descendants(n))/2 ∗ descendants(n) if |hyperlinks(n)| ≥ 2

UL ratio: It checks whether the HTML tagName of the node is “ul” or
not.

UL ratio(n) =

{
0 if n.tagName 6= “ul”
1 if n.tagName = “ul”

86 Chapter 5. Page-level Menu Detection

Text ratio: It is computed considering the amount of characters of a DOM
node and its descendants:

text ratio(n)= 1− (characters(n)/
√

characters(P))

where characters(n) is the amount of text contained in a node and
characters(W) is the amount of text of the full web page. Function
characters is defined as follows:

characters(n) =

{
chars(n) if childNodes(n) = ∅∑

characters(nc)
nc∈childNodes(n)

otherwise

where function chars(n) returns the number of characters in a DOM
text node n.

Representative tag: It evaluates some attributes of the node:

UL tag(n) =

1 if n.tagName = “nav”
1 if n.className = “menu”
1 if n.className = “nav”
1 if n.id = “menu”
1 if n.id = “nav”
0 otherwise

Node position: The position of n in the web page P is evaluated using
this function:

Node position(n)= 1− (position(n)/|N |)

where function position(n) is the position of node n in P , if all nodes
are sorted with a depth-first traversal.

The Node amplitude property considers the number of children of the
DOM nodes. The more children a DOM node has, the higher the proba-
bility that the node is part of the menu. Typically, the nodes representing
the menu of a web page contain a high number of children that can be ei-
ther ‘link’ nodes or ‘element’ nodes that contain ‘link’ nodes between their

5.2. Menu detection algorithm 87

descendants. Node amplitude gives importance to the nodes with more chil-
dren and, consequently, penalizes the nodes with fewer children. Thus, the
Node amplitude value assigned to a node that contains a significant number
of children will be close to 1, while the value assigned to a node without or
with few children will be close to 0.

The Link ratio property sums the number of hyperlinks contained in
the descendants of a DOM node. The more percentage of hyperlinks with
respect to the number of descendants, the higher the link ratio. This met-
ric is computed by counting the number of hyperlink nodes between the
descendants of a DOM node.

The Text ratio property computes the amount of text a DOM node has
between its descendants in comparison to the total amount of text of the
whole web page. The nodes that represent the menu and their descendants
do not use to contain text excluding the text of the hyperlinks. Hence,
the text of the hyperlinks is not considered when computing the text ratio.
Furthermore, as menu nodes and their descendants usually do not contain
text, the nodes which contain more text (excluding the hyperlinks) are
penalized by the text ratio metric.

The UL ratio property promotes those element nodes with the HTML
tag UL1 because web page menus are usually built using lists of links that
commonly are constructed using this HTML tag. It should be noted that
in approximately 50% of the websites in the TeCo benchmark suite (see
Chapter 13) the UL HTML tag is used for the node that contains the
menu.

The Representative tag property promotes the use of several particular
HTML tags or attributes. UL HTML tag is commonly used for the node
that contains the menu, but we observed some other attributes and HTML
tags that are often used in the nodes that represent the menu. Nevertheless,
they have not been considered together with the UL HTML tag because
they are not so common. These HTML attributes are:

• Nav tag: HTML (since version HTML5) describes the NAV tag,
which is a specific tag that defines a section with a set of navigation
links. Despite its use has increased over the last years, most website
developers continue using the UL tag, or a combination of both. 2

• Node’s id: Some web developers represent the menu using the nav or
menu identifier. For instance, id=“nav” or id=”menu”.

1HTML Unordered List.
2The nav tag is the specific tag (and recommendation) in HTML5 for representing

menus.

88 Chapter 5. Page-level Menu Detection

• Node’s className: The menu is often represented using a node whose
className contains the nav or menu classes.

The Node position property assumes that menus are commonly posi-
tioned at the top or in the top left corner of the web page. Therefore, the
DOM node representing the menu should be located in the first nodes of
the DOM tree. The Node position metric establishes a ponderation that
gives more value to the first nodes of the DOM tree (those with a higher
probability of being in the visible area) and less value to the last ones (those
with a lower probability of being in the visible area).

The combination of these properties provides a weight that can be as-
signed to each node in the DOM tree and denotes the probability that the
node represents the main menu of the web page. Since certainly all the
properties do not have the same impact in the computation of the weight,
the optimal ponderation to combine all of them must be established using
empirical evaluation. Section 5.3.1 discusses in detail the determination
process of the best ponderation for the metrics.

5.2.2 Selection of candidates

Once the weight of all the nodes that meet the criteria in 5.2.1 have been
computed, the nodes with higher weights are selected. These selected nodes
are deemed as ‘candidates’ because the node representing the main menu is
among them. This process of selecting the candidate nodes is trivial: an al-
gorithm visits all the weighted nodes of the DOM tree, checks their weights,
and selects those nodes with a weight over a specified threshold. The value
of the threshold, which has been calculated based on experimentation, is
equal to 0.85 multiplied by the maximum weight of all nodes.

The result of this process is a set of DOM nodes that are candidates to
be the menu or part of the menu.

5.2.3 Selection of root nodes

The output of the previous phase is the set of candidate nodes. Those
nodes have most probably a high concentration of links with little or no
text, but this fact does not guarantee that they form essentially a menu.
In fact, they are frequently only part of the menu. For instance, it can
be observed in the menu of Figure 5.2 that the DOM node representing
the menu option “Staff picks” includes a submenu with a high density of
hyperlinks. For this reason, it is identified by our technique as a candidate
node.

5.2. Menu detection algorithm 89

Figure 5.2: Example of menu node with a high density of hyperlinks

In many cases, the DOM node that represents the menu is not selected
in the set of candidate nodes. The real menu is usually an ancestor of one of
the selected candidates because it is usually a combination of two or more
candidates probably with other additional nodes such as images, etc. This
phenomenon is more likely to happen in large or complex menus. For in-
stance, in menus that contain several submenus, the selection of candidates
often identifies only one of the submenus.

For each candidate node, Algorithm 1 explores its ancestors to search
the node that in fact represents the entire menu. Given a candidate node,
the algorithm recursively explores its ancestors and checks if over half of
their children have a weight higher than the product of the weight of the
candidate node by a given threshold t, which is called root threshold. When
the algorithm finds a node that does not satisfy this criterion, the algorithm
stops selecting the last ancestor as the menu node.

Example 5.2.2 Consider the DOM tree in Figure 5.3, which is a subtree
of the DOM tree of a web page. The “UL” node with a dotted border belongs
to the candidate nodes set because its weight is 0.87, which is higher than
the root threshold. Even so, this node does not represent the whole main
menu, it only represents a portion of it, so its ancestors have to be analyzed
in order to identify the root node of the main menu.

90 Chapter 5. Page-level Menu Detection

Algorithm 1 Selection of the root node

Input: A DOM node n and a threshold t.
Output: A DOM node menuNode representing a candidate to be the whole
menu.

begin
menuNode = n;
currentNode = n;
baseWeight = n.weight ;
found = false;
while (∃ currentNode.parentNode ∧ found == false)

parent = currentNode.parentNode
nodeCount = |{node | node ∈ parent .children ∧ node.weight > t ∗

baseWeight}|;
if (2 ∗ nodeCount > |parent .children|)

currentNode = parent ;
if (parent .children > 1)

menuNode = parent ;
else found = true

return menuNode;
end

Algorithm 1 first visits its parent node, which is the dotted “LI” node,
and explores its children to check that more than half of them have a weight
higher than the product of the weight of the candidate node “UL” by the
root threshold, so the algorithm can continue exploring its ancestors. Sub-
sequently, the “UL” node with a dark background, which is the parent of
the “LI” node, is explored. Then, the algorithm checks again that over half
of its children have a weight higher than the product of the weight of the
candidate node “UL” by the root threshold, so its parent can be explored.
Afterwards, the same process is repeated with the parent of the “UL” node
(a “DIV” node with a dashed shape). Again, the algorithm keeps exploring
the parent, but as the “DIV” node only has one child, it leaves a pointer to
the “UL” node as the menu node. Then, the parent of the “DIV” node with
a dashed shape is explored. It is a “DIV” node with two children, one of
them is the “DIV” node with a dashed shape and the other is a “P” node.
In this case, the weight of both nodes is lower than the weight of the candi-
date node “UL” multiplied by the root threshold, so the “DIV” node does
not satisfy the criterion. Finally, the algorithm returns the “UL” node with
dark background as the root node because it is the last node that satisfies
the condition.

5.2. Menu detection algorithm 91

DIV
0.17

P
0.12

A
0.38

LI
0.62

UL
0.86

UL
0.87

…

…
LI
0.87

LI
0.38

LI
0.37

A
0.37

LI
0.37

LI
0.37#text

…

… … …

…

DIV
0.45

…

……

#text

A
0.39

#text

LI
0.39

UL
0.85

Figure 5.3: Example of the selection of root node candidates

5.2.4 Selection of the menu node

When the number of candidate nodes is greater than one, the application
of Algorithm 1 to each node from the set of candidate nodes sometimes
produces another set of nodes as output. Due to the fact that there are
often several candidates, an algorithm to choose one node from the set of
candidate nodes is required. Consequently, this technique needs an algo-
rithm to determine which node from the set of candidate nodes is the real
menu of the web page. Algorithm 2 implements this mechanism. This al-
gorithm takes each node in the set and counts the number of descendants
whose weight is over a specified threshold, called menu threshold. Then, it
computes the average weight of those nodes. Finally, the algorithm selects
as the menu of the web page the node with the highest average weight. The
reason for establishing this criterion is that the menu node is often formed
by nodes with a high weight.

92 Chapter 5. Page-level Menu Detection

Algorithm 2 Menu node selection

Input: A set of DOM nodes N and a threshold weight.
Output: A DOM node menuNode representing the main menu.

begin
max = 0;
bestWeight = 0;
foreach (n ∈ N)

heavyChildren = {child | child ∈ n.children ∧ child .weight > weight};
nodeCount = |heavyChildren|;
nodeWeight =

∑
child∈heavyChildren child.weight;

if (nodeWeight/nodeCount > bestWeight)
menuNode = n;
bestWeight = nodeWeight/nodeCount ;

return menuNode;
end

5.3 Implementation

This technique and all its algorithms have been implemented as a WebEx-
tension which is compatible with a wide range of browsers, such as Firefox-
based browsers and Chromium-based browsers. When using the tool, users
can browse the Internet as usual. Then, if they desire to extract the menu
of the loaded web page, they only need to click on the “Extract Menu” but-
ton and the add-on automatically does the required actions (DOM nodes
rating, DOM nodes analyzing, and menu node selection). Finally, the web-
site gets hidden except for the menu which remains on the browser in its
place.

Example 5.3.1 Figure 5.4 shows a real example of the use of the tool with
a web page. The image on the left is the main web page of the www.upv.es
website. The image on the right is the output of extracting its menu.

5.3.1 Empirical evaluation

The theoretical formalization of the technique reveals some parameters of
the algorithms that have been left open. This section describes the com-
putation of the value of these parameters based on experimental analysis.

First of all, a weighting must be defined to combine the computed val-
ues for the properties proposed in Definition 5.2.1. Then, the nodes with a
weight higher than 0.85 are added to a set of candidate nodes. This value

5.3. Implementation 93

Figure 5.4: Example of the detection of a web page menu

(0.85) has been computed based on experimentation. Our experiments re-
vealed that a value higher than 0.85 produced that, in several benchmarks,
the menu node was not added to the set of candidate nodes, while a value
lower than 0.85 produced that too many nodes were added to the set, and
the process to select the menu node became less accurate.

Subsequently, Algorithm 1 determines which node is a candidate to be
the web page menu by exploring the ancestors of a node. The stop condition
of this algorithm is a parameter called root threshold. Finally, a parameter
that selects the menu node among all the potential candidates was estab-
lished. Algorithm 2 examines the menu nodes in the set of candidate nodes
and, for each one, it checks the number of children whose weight is greater
than a specified threshold called menu threshold.

Determining the root threshold parameter

Algorithm 1 examines the parent nodes of each candidate node and
selects the node that more likely represents the web page menu.
The algorithm explores recursively the ancestors of a candidate node and,
for each one, it checks if more than half of its children have a node ratio
higher than a specified threshold. The algorithm stops when it finds a node
that does not meet this criterion. As previously explained, this process
tries to avoid selecting only a submenu or a part of the menu. Therefore,
it explores the ancestors of the node to detect if they belong to the menu.

On the one hand, the higher the threshold is, the fewer ancestors are
explored. So it will be more difficult to detect nodes from the menu be-
tween the ancestors. On the other hand, a low threshold could include the
possible nodes of the menu and other nodes that do not really belong to
the menu. This means that a high threshold probably increases the recall
of the technique, and a low threshold increases the precision.

94 Chapter 5. Page-level Menu Detection

Determining the menu threshold parameter

Algorithm 2 explores all the nodes in the set of possible menu nodes
and determines which node represents the menu of the web page. This
algorithm explores all the nodes in the set and, for each one, checks the ratio
of all its descendants. The node with more descendants over an established
threshold is considered the menu node.

Menu nodes have a big concentration of nodes with a high ratio, so we
could think that establishing a high threshold could guarantee the detection
of the menu. But, establishing an excessively high threshold could produce
the algorithm not selecting any node because none of them has nodes over
the threshold. On the other hand, establishing a low threshold could pro-
duce the algorithm to select as the menu the node with more descendants,
because almost all its descendants would have a ratio over the threshold.

Determining the weights of the features

The first step in the technique is to rate the DOM nodes (5.2.1). A
weight is assigned to each node in order to evaluate if it belongs to the
menu of the web page. This weight depends on some features of the nodes.
The technique establishes that 6 features are needed to compute the weight
of a node. Not all these features have the same value, some of them are
more relevant than others. Hence, we have to determine the value of these
features in the nodes’ rating process.

Computing the parameters

The best combination of values for the weighting of node properties and
the two thresholds (root threshold and menu threshold) was computed. The
method approximated those values following these steps:

i. First, as TeCo benchmark suite is prepared for menu detection (see
Chapter 13), we used the training subset of TeCo (105 web pages) as
input and we executed our system for several combinations of param-
eters.

ii. Next, for each different combination of values for the properties and
thresholds, the precision and recall were measured. More than 9 mil-
lion experiments were performed, with a computing time equivalent
to 107 days using an Intel i9 9900k processor.

5.3. Implementation 95

iii. Finally, the best possible combination of thresholds and properties
was selected and evaluated against the evaluation subset of the TeCo
benchmark suite.

To measure the technique, we performed several experiments against
the training subset of the TeCo benchmark suite. Once the menu was
detected, it was manually compared to the real menu to compute the pre-
cision, recall and F1 scores of the algorithm. The final weight of each node
was computed with the evaluation of different weightings (NodeWeight =
W1 ∗Node amplitude +W2 ∗Link ratio +W3 ∗Text ratio + ..., where W1 +
W2 +W3 + ... = 1). All the experiments were repeated using these possible
values for the weightings used:

Node amplitude: [0.00− 0.35] in steps of 0.05.
Link ratio: [0.05− 0.35] in steps of 0.05.
Text ratio: [0.20− 0.60] in steps of 0.05.
UL ratio: [0.00− 0.35] in steps of 0.05.
Representative tag: [0.00− 0.25] in steps of 0.05.
Node position: [0.00− 0.25] in steps of 0.05.

In addition, the Root threshold and the Menu threshold were also evaluated
for each possible weighting using the following values:

Menu threshold: [0.70− 0.95] in steps of 0.05.
Root threshold: [0.50− 0.90] in steps of 0.10.

Table 5.1 presents the best 20 computed combinations after evaluating
all possible combinations against all the benchmarks. It summarizes many
experiments since each row in the table represents the average of 105 menu
detections from 105 different web pages. It should be noted that each
row is the result of computing the experiments with one of the possible
combinations of the properties and thresholds described in Section 5.2.

As the first row in the table is the fastest combination that produces the
best F1 metric, it was selected as the optimum combination of parameters
for the technique:

96 Chapter 5. Page-level Menu Detection

Menu th. Root th. Amplit. Link Text UL Repres. Position Recall Precision F1 Time (ms.)

0.85 0.90 0.30 0.05 0.10 0.15 0.15 0.25 85.30 % 87.26 % 84.91 % 985 ms.
0.90 0.90 0.30 0.05 0.10 0.15 0.15 0.25 85.30 % 87.26 % 84.91 % 1003 ms.
0.90 0.90 0.35 0.05 0.10 0.15 0.05 0.30 85.30 % 87.14 % 84.85 % 991 ms.
0.90 0.90 0.35 0.05 0.15 0.15 0.00 0.30 85.30 % 87.14 % 84.85 % 1021 ms.
0.80 0.90 0.30 0.05 0.15 0.20 0.05 0.25 85.07 % 87.04 % 84.64 % 1015 ms.
0.80 0.90 0.35 0.00 0.10 0.20 0.05 0.30 84.89 % 87.04 % 84.54 % 981 ms.
0.80 0.90 0.35 0.00 0.15 0.20 0.00 0.30 84.89 % 87.04 % 84.54 % 1019 ms.
0.85 0.90 0.30 0.05 0.15 0.20 0.05 0.25 84.94 % 87.04 % 84.52 % 1050 ms.
0.85 0.90 0.35 0.05 0.10 0.20 0.00 0.30 84.75 % 87.14 % 84.47 % 1024 ms.
0.85 0.90 0.35 0.00 0.10 0.20 0.05 0.30 84.75 % 87.04 % 84.42 % 1007 ms.
0.85 0.90 0.35 0.00 0.15 0.20 0.00 0.30 84.75 % 87.04 % 84.42 % 1030 ms.
0.90 0.90 0.35 0.00 0.10 0.15 0.10 0.30 85.30 % 85.82 % 84.36 % 989 ms.
0.85 0.90 0.35 0.00 0.10 0.15 0.10 0.30 85.30 % 85.82 % 84.36 % 1000 ms.
0.90 0.90 0.40 0.05 0.15 0.15 0.05 0.20 84.59 % 87.14 % 84.35 % 989 ms.
0.90 0.90 0.40 0.00 0.10 0.15 0.00 0.35 85.30 % 85.75 % 84.32 % 995 ms.
0.90 0.90 0.40 0.05 0.10 0.15 0.05 0.25 84.34 % 86.58 % 84.15 % 992 ms.
0.90 0.90 0.40 0.05 0.10 0.15 0.10 0.20 84.23 % 86.58 % 84.08 % 991 ms.
0.85 0.90 0.30 0.00 0.10 0.15 0.20 0.25 84.75 % 86.48 % 84.02 % 1023 ms.
0.85 0.90 0.30 0.00 0.15 0.15 0.05 0.30 84.71 % 86.58 % 84.02 % 1033 ms.
0.90 0.90 0.30 0.00 0.15 0.15 0.05 0.30 84.71 % 86.58 % 84.02 % 1041 ms.

Table 5.1: Determining the best values of the thresholds and node proper-
ties

Node amplitude: 0.30.
Link ratio: 0.05.
Text ratio: 0.10.
UL ratio: 0.15.
Representative tag: 0.15.
Node position: 0.25.
Menu threshold (t): 0.85.
Root threshold: 0.90.

Algorithm evaluation

Once the best combination in the training phase was obtained, the
technique was evaluated using the evaluation set of TeCo benchmark suite
(see Chapter 13). As stated in Section 13.3, the evaluation set is formed
by 45 randomly selected benchmarks, concretely 9 benchmarks from each
group. Table 5.2 outlines the results obtained for the performed experi-
ments. The first column shows the domains of the evaluation web pages.
Column Nodes shows the total DOM nodes that form the web page; column
Links reflects the total number of hyperlinks contained in the menu; col-
umn Detected specifies the number of hyperlinks detected by the technique
that belong to the menu; column Retrieved indicates the total number of
hyperlinks retrieved by the algorithm; column Recall shows the ratio be-
tween the number of correctly retrieved hyperlinks and the total number of
hyperlinks in the menu; column Precision specifies the ratio between the

5.3. Implementation 97

Domain Nodes Links Detected Retrieved Recall Precision F1 Runtime

www.jdi.org.za 619 10 10 10 100.00 % 100.00 % 100.00 % 292 ms.
www.premiere-urgence.org 480 30 30 30 100.00 % 100.00 % 100.00 % 52 ms.
www.indiangaming.org 575 7 7 7 100.00 % 100.00 % 100.00 % 83 ms.
hispalinux.es 501 32 6 6 18.75 % 100.00 % 31.58 % 52 ms.
www.gktw.org 767 8 8 8 100.00 % 100.00 % 100.00 % 63 ms.
www.apnic.net 598 59 59 59 100.00 % 100.00 % 100.00 % 67 ms.
www.unicef.org 1037 4 0 26 0.00 % 0.00 % 0.00 % 131 ms.
www.klimabuendnis.org 851 75 75 75 100.00 % 100.00 % 100.00 % 102 ms.
www.isoc-es.org 259 17 17 17 100.00 % 100.00 % 100.00 % 16 ms.
biztechmagazine.com 1892 97 34 34 35.05 % 100.00 % 51.91 % 638 ms.
www.eeo.com.cn 834 11 11 11 100.00 % 100.00 % 100.00 % 101 ms.
www.wishtv.com 2167 77 77 77 100.00 % 100.00 % 100.00 % 956 ms.
news.mit.edu 2117 8 8 8 100.00 % 100.00 % 100.00 % 527 ms.
asia.nikkei.com 869 42 40 40 95.24 % 100.00 % 97.56 % 126 ms.
www.rcnky.com 1738 17 17 17 100.00 % 100.00 % 100.00 % 2214 ms.
news.discovery.com 2826 68 6 6 8.82 % 100.00 % 16.22 % 1837 ms.
www.kathimerini.gr 1825 83 83 83 100.00 % 100.00 % 100.00 % 331 ms.
news.un.org 1726 42 42 42 100.00 % 100.00 % 100.00 % 536 ms.
frances.forosactivos.net 785 9 9 9 100.00 % 100.00 % 100.00 % 157 ms.
www.wysiwygwebbuilder.com 3936 7 7 11 100.00 % 63.64 % 77.78 % 1336 ms.
www.3dprintforums.com 1040 8 8 8 100.00 % 100.00 % 100.00 % 218 ms.
www.strangehorizons.com 631 23 23 23 100.00 % 100.00 % 100.00 % 72 ms.
communities.apple.com 3136 10 10 10 100.00 % 100.00 % 100.00 % 807 ms.
www.sloweurope.com 4193 29 22 22 75.86 % 100.00 % 86.27 % 3581 ms.
community.ricksteves.com 2057 9 9 9 100.00 % 100.00 % 100.00 % 362 ms.
hackercombat.com 1711 6 6 6 100.00 % 100.00 % 100.00 % 465 ms.
www.scbwi.org 876 6 4 4 66.67 % 100.00 % 80.00 % 106 ms.
johngardnerathome.info 395 21 0 1 0.00 % 0.00 % 0.00 % 38 ms.
www.annmalaspina.com 392 8 8 8 100.00 % 100.00 % 100.00 % 43 ms.
foodsense.is 330 5 5 5 100.00 % 100.00 % 100.00 % 17 ms.
sites.google.com 372 32 32 32 100.00 % 100.00 % 100.00 % 119 ms.
whatever.scalzi.com 1648 11 11 11 100.00 % 100.00 % 100.00 % 206 ms.
www.javiercelaya.es 740 12 12 12 100.00 % 100.00 % 100.00 % 254 ms.
diarium.usal.es 604 3 3 3 100.00 % 100.00 % 100.00 % 88 ms.
www.jameslovelock.org 653 20 20 20 100.00 % 100.00 % 100.00 % 92 ms.
www.cipri.info 933 27 27 27 100.00 % 100.00 % 100.00 % 203 ms.
naranjascarcaixent.com 290 6 6 14 100.00 % 42.86 % 60.00 % 34 ms.
www.technicalbookstoreonline.com 2959 12 6 6 50.00 % 100.00 % 66.67 % 1662 ms.
www.floridarealestatecollege.com 1023 29 29 29 100.00 % 100.00 % 100.00 % 936 ms.
www.basf.com 827 12 2 2 16.67 % 100.00 % 28.57 % 95 ms.
www.mcphersonoil.com 831 34 34 34 100.00 % 100.00 % 100.00 % 163 ms.
www.thirteenhou.com 1217 4 4 5 100.00 % 80.00 % 88.89 % 350 ms.
www.embalajesterra.com 2342 106 106 106 100.00 % 100.00 % 100.00 % 845 ms.
www.crypto.ch 338 3 3 3 100.00 % 100.00 % 100.00 % 32 ms.
www.shopbookshop.com 1727 9 9 9 100.00 % 100.00 % 100.00 % 292 ms.

Average 1281.49 25.51 21.00 21.89 85.93 % 93.03 % 86.34 % 460 ms.

Table 5.2: Results of the performed experiments

number of correctly retrieved hyperlinks and the number of retrieved hy-
perlinks; column F1 shows the F1 metric (see Section 4.4); finally, column
Runtime indicates the computing time of the algorithm (in milliseconds)
for that benchmark.

In most of the experiments (more than 70%) the menu was precisely
detected (F1=100%). Sometimes, the technique retrieves only a part of
the whole menu (a subset of the hyperlinks of the menu). Therefore the
recall is low due to the fact that only a part of the menu was detected,
and the precision is high (in all cases 100%) because the detected subset
of hyperlinks belongs to the menu. In addition, we can observe that there
are 2 benchmarks with a F1 value of 0%. This result was obtained because
the retrieved DOM node did not contain any hyperlink of the main menu.
In both cases the technique retrieves one or more hyperlinks, but none of

98 Chapter 5. Page-level Menu Detection

Benchmark type Recall Precision F1 Time (ms.)

Institutions / Associations 79.86 % 88.89 % 81.29 % 95 ms.
Media / Communication 82.12 % 100.00 % 85.08 % 807 ms.
Forums / Social 93.61 % 95.96 % 93.78 % 789 ms.
Personal websites / Blogs 88.89 % 88.89 % 88.89 % 118 ms.
Companies / Shops 85.19 % 91.43 % 82.68 % 490 ms.

Table 5.3: Results of the performed experiments grouped by benchmark
type

them belongs to the main menu. Therefore, in these cases, the precision,
the recall, and the F1 are 0%.

The last row of the table shows that the obtained average F1 is higher
than 86%, while the average precision is higher than 93%. In addition, it
can be observed that the average runtime of the algorithm is 0.46 seconds.
This fact is due that the algorithm only needs to load the web page whose
menu has to be extracted because it is a page-level technique. Loading and
analyzing more web pages would involve a higher runtime.

The obtained results grouped by benchmark type are shown in Ta-
ble 5.3. For each benchmark type, the table shows the average recall,
precision, F1, and runtime. We can observe that the best results are ob-
tained by the benchmarks that belong to the Forums / Social category
since they obtain an average recall, precision, and F1 higher than 93%. In
addition, the results obtained by the Personal websites / Blogs benchmarks
are significantly high, close to 90%. It should be noted that the Media /
Communication benchmarks obtain an average precision of 100%. Regard-
ing the runtime, the benchmarks with lower average runtime are those that
belong to Institutions / Associations and Personal websites / Blogs, whose
average runtime is significantly lower than other categories. By contrast, it
can be observed that the benchmarks that belong to the Media / Commu-
nication category have a runtime considerably higher than the benchmarks
from other categories. For instance, their average runtime is more than 8
times higher than the average runtime of the benchmarks that belong to
the Institutions / Associations category.

Runtime analysis

Figure 5.5 presents the relationship between the number of DOM nodes
of the key page and the time (in milliseconds) needed to extract the menu
for each web page using the evaluation subset of the TeCo benchmark suite
(see Chapter 13). It should be noted that about 89% of the benchmarks

5.3. Implementation 99

Figure 5.5: Relation between the size of the web page and the runtime

took less than one second, while more than 50% of them took less than 200
milliseconds. The average runtime of the benchmarks was 460 milliseconds.

The figure shows that the highest runtimes correspond to those web
pages with the higher number of DOM nodes; however, there are a few
benchmarks that do not obtain the expected runtime according to their
size. Hence, we decided to explore other variables that, in our opinion,
could be related to the runtime of the algorithm.

For this purpose, we computed a statistical analysis of the following
variables:

• The number of rated DOM nodes. The choice of this variable is
based on the assumption that the cost of computing the weights
assigned to the DOM nodes is significant for the overall runtime.
Therefore, the more weighted nodes, the more runtime.

• The average amount of text per rated DOM node (measured in
chars). This variable was selected because the computation of the
text ratio is the most complex of the 6 node properties. Therefore,
we supposed that computing the text ratio of the nodes with more
text would affect the runtime significantly.

We used a software called IBM SPSS Statistics3 to analyze the rela-
tionship between these variables. We performed the analysis using the test

3https://www.ibm.com/analytics/spss-statistics-software

100 Chapter 5. Page-level Menu Detection

Kolmogorov-Smirnova Shapiro-Wilk

Estadístico gl Sig. Estadístico gl Sig.

Time

Rated nodes

Avg. Chars

,352 105 ,000 ,392 105 ,000

,228 105 ,000 ,767 105 ,000

,494 105 ,000 ,081 105 ,000

Corrección de significación de Lillieforsa.

Figure 5.6: Result of the normality test for MenEx

subset of the TeCo benchmark suite, formed by 105 web pages (see Chapter
13). First, we checked if the data were normally distributed. Therefore,
we computed Table 5.6. As we can observe in the table, the sample size

(column gl) is 105, in consequence, the appropriate test is Kolmogorov-
Smirnov.

When the significance (column Sig.) is less than 0.05, the variable
is not distributed normally, hence, the correlation coefficient can be com-
puted through the Spearman test. Figure 5.7 shows the result of the Spear-
man test for the variables. The correlation coefficient between both vari-
ables and the runtime can be observed in the first row of the table. As
the correlation coefficient for the number of rated DOM nodes variable is
close to 1, this variable has a very strong relationship with the runtime of
the algorithm. In addition, we can observe that the correlation coefficient
between the average amount of text per rated DOM node variable and
the runtime is around −0.4, which does not denote a relationship as strong
as the number of rated DOM nodes variable, but shows a relationship be-
tween both variables. The negative sign of the correlation coefficient means
that both variables tend to move in opposite directions, while the average
text of the DOM nodes increases the runtime decreases. Surprisingly, as
argued above, this is the opposite of what we thought when we selected this
variable. Our argument to select it was based on that computing the text

ratio of the nodes with more text would increase the runtime significantly.

5.4 Conclusions

Detecting the main menu is a task used by many systems, such as indexers
or crawlers. It contributes to the identification of the topology of a website
by analyzing the navigational information that is contained in its hyper-
links. It is possible to build an overall sitemap of a website only through the
analysis of the navigational information provided by the menu of its web
pages. Menu Detection is also useful for Template Detection since most

5.4. Conclusions 101

Figure 5.7: Result of the Spearman test for MenEx

Template detection techniques use the web page menu for the detection of
the web pages on a website that implement the same template.

This chapter presents a new page-level technique for Menu Detection.
However, the described algorithms only load and analyze one single web
page (the web page whose menu wants to be extracted). This positively
affects the performance of the technique because loading several web pages
is costly.

A set of features useful in the menu detection process were defined and
empirically evaluated in order to define the weighting used. The obtained
results reveal that almost three-quarters of the experiments precisely re-
trieved the menu of the web page. The obtained average precision is 93.03%,
and the average F1 metric is 86.34%.

As the present technique is useful to detect the topology of a website, it
is able to provide navigational information to other extraction techniques,
especially site-level techniques which obtain information by loading several
pages from the website. This means that this menu detection technique
can be used in combination with other techniques, specially site-level tech-
niques, such as some template detection and content extraction techniques.
Table 7.6 in Section 7.3 shows a comparison of several candidate selection
methods for our site-level template detection algorithm (TemEx). One of
the compared techniques consists in selecting as candidates only hyperlinks
from the main menu. First, the technique infers the main menu, and then
extracts its hyperlinks.

102 Chapter 5. Page-level Menu Detection

5.5 Contributions

The menu detection technique described in this chapter provides several
contributions that can be used by many systems, such as other block de-
tection techniques, indexers and crawlers, etc.

It establishes a new ponderation system that determines with precision
the nodes that more likely belong to the main menu of a web page.

An algorithm that infers the main menu is also provided. The algo-
rithm selects the node that most likely implements the menu based on the
ponderation system described before.

Another contribution is a functional implementation of the technique
as a WebExtension, which is also officially published by Mozilla in their
Firefox browser add-ons website.

Chapter 6

Page-level Content Extraction

Previous chapters provide a classification of the information contained in a
web page according to the user’s needs. It is classified as relevant or irrel-
evant content. Therefore, the extraction of information (relevant or irrele-
vant) from web pages is not only a productive task for computer systems,
but also for humans. Chapter 1 refers to the relevant content in a web page
as main content [10, 17, 22, 70, 120]. The main content is not only formed
from text, it is also formed from images, videos, and any other multime-
dia. It should be highlighted that the main content is usually surrounded
by or even mixed with a boilerplate. As defined in previous chapters, a
boilerplate is a noisy information such as headers, menus, banners, foot-
ers, advertisements, etc. This irrelevant information should be removed in
order to infer the relevant data for the user (see, e.g., Figure 6.1).

As all the techniques proposed in this thesis, this algorithm is focused on
HTML-structured web pages, therefore, web pages built with alternative
technologies are ignored. From an engineering perspective, a web page
is formed by a set of Document Object Model (DOM) nodes [29]. As a
consequence, the main content can be defined as a subset of those nodes
that contain the relevant information of a web page.

Since the web pages on the World Wide Web are extremely hetero-
geneous, even in web pages using the same content management system
(CMS), the task of extracting information blocks (main content, menu,
template, etc.) is a challenging task.

As described in Chapter 1, the main content is a key element for indexers
and crawlers, and its isolation helps indexers and crawlers to focus on the
most relevant information. The main purpose of indexers and crawlers is
to provide users with only relevant information. Therefore, extracting the
main content is an essential task in order to preprocess that information.

To put the technique in a nutshell: given an arbitrary web page, (1)
a set of weights are first assigned to several features of its DOM nodes.
This provides a way to (2) represent the DOM nodes of the web page as

103

104 Chapter 6. Page-level Content Extraction

Figure 6.1: Web page of www.lemonde.fr’s website and its main content
(extracted with our web content extraction tool)

points in a four-dimensional Euclidean space R4, and then (3) the Euclidean
distance between the points is computed. Those nodes further away than
the median are isolated because they probably contain the main content.
Finally, (4) the isolated DOM nodes are analyzed in order to identify the
DOM subtree that represents the web page’s main content.

6.1 Related Work

This technique takes an arbitrary web page (the key page) as input and
outputs a set of DOM nodes that correspond to the main content.

As introduced in previous chapters, Content Extraction, Template De-
tection, Menu Detection, etc. are interesting Block Detection topics due to
their relation to web mining, searching, indexing, and web development.

Chapter 2 introduces the concept of pagelet. Bar-Youssef et al. [19]
defined a pagelet as a self-contained logical region within a page that has
a well-defined topic or functionality. While Content Extraction tries to
detect and isolate the main content pagelets of the web page, Template
Detection tries to isolate the template. Therefore, as explained in Section
4.3.5, both techniques are closely related because they are almost comple-
mentary: detecting and removing the template of the web page leaves the
main content, or the main content plus maybe another functional block
such as comments, sub-menus, etc.

The last block detection techniques, as those described in this thesis,
use a DOM tree for the representation of a web page. In 2002, Bar-Yossef
et al. [19] proposed a method that infers information from the web page’s
DOM tree and computes the frequent pagelet sets. Yi et al. [120], Vieira
et al. [114] and Alarte et al. [10] also proposed template detection tech-
niques that use the DOM tree representation of the web page. Roughly,

6.2. Main content extraction 105

these techniques identify the template by finding common DOM subtrees
in different web pages of a website. Moong [80] developed an algorithm
that matches DOM trees to classify which nodes are noises and which are
contents and, after classification, they are clustered into their group respec-
tively. The algorithm extracts from the web page only the content group.
Sun et al. [106] proposed a general method for extracting content from
diverse web pages. It introduces two concepts to measure the importance
of nodes: Text Density and Composite Text Density. Insa et al. [51] used
a similar notion of density that, for each DOM node, computes the relation
between the number of words and leaves in its subtree. Then, among the
nodes with a higher density of the text, they identify the most relevant
node (the main content). Yu and Jin [122] proposed a page-level content
extraction algorithm that can adapt to the heterogeneity and variability of
web pages, and is based on DOM structure. The algorithm divides a web
page into several blocks, and then it performs the extraction of content
blocks based on statistical information.

Most recent techniques are based on Machine Learning. Vogels et al.
[115] describe a sequence labelling technique to classify all text blocks in
an HTML page as either main content or boilerplate. Leonhardt et al.
[66] propose a neural sequence labelling method for boilerplate removal
that is not based on any hand-crafted features and only takes as input the
HTML tags and words. Morbieu et al. [81] developed an unsupervised
learning method that extracts the textual main content of a web page.
The method is divided into three stages: a clustering phase of text blocks,
another phase that selects the clusters associated with the main content,
and finally a classification phase whose input is the labeled data from the
two previous steps. Yu et al. [121] proposed a text extraction algorithm
that uses a small neural network which, taking multiple features of DOM
nodes as input, predicts whether the nodes contain text information.

6.2 Main content extraction

This content extraction technique, also known as page-level ConEx, rates
the DOM nodes of a web page with values for different features in order
to isolate the main content of the web page. The input of the technique
is a web page, while the output is a set of DOM nodes that represent the
main content. It should be noted that the technique is page-level, so it only
needs to load and analyze the source web page to isolate its main content.
As described in previous chapters, this is especially important because the

106 Chapter 6. Page-level Content Extraction

fact of loading and analyzing only the source web page produces an speed
increment and a better use of resources.

The technique is divided into four phases:

i. Some DOM nodes of the web page are selected by the algorithm and,
for each one, it computes four weights: position ratio, word ratio,
children ratio, and hyperlink ratio.

ii. Then, an algorithm standardizes the value of the assigned weights.

iii. After standardizing the weights, each node is considered a point in
R4. Then, an algorithm explores all these nodes (points in R4) and
computes the centroid. Subsequently, it builds the set of candidate
nodes, which are those that include the DOM nodes (points) located
farther than the centroid.

iv. Then, an algorithm analyzes the nodes in the set of candidate nodes
in the following way:

• It removes those nodes which are descendants of other nodes
in the set if they share exactly the same text nodes as their
ancestors.

• For each node in the set of candidate nodes, it computes the
ratio between words and tags. The algorithm selects as the main
content the node with a higher ratio together with its siblings
that belong to the set of candidate nodes.

v. Finally, as a post process, an algorithm analyzes the obtained main
content node or nodes and removes groups of links that do not belong
to the main content.

The definition of the main content and the four phases are described in
the following sections.

6.2.1 The web page’s main content

There might be discrepancies between two people in the identification of the
main content in a rendered image of a web page. Despite that, it is usually
an easy and trivial task for humans. However, in a web page represented
with a DOM tree, there are usually several nodes whose subtree contains the
nodes that correspond to the main content. In many cases, the hierarchy
of the DOM nodes produces that one node and some of its descendants

6.2. Main content extraction 107

contain exactly the same text, images, etc. (e.g., a “DIV” element with
only one child). In this case, a question is raised: which node should be
chosen? This question can be answered based on a design policy.

The definitions of web page (4.1.1) and website (4.1.7) provided in
Chapter 4 allow us to establish a definition for the main content.

Roughly, the main content can be defined as the information given by
a web page except for the web template, metadata, and side information
like advertisements or comments. Nevertheless, it should be highlighted
that the main content of a web page has a subjective nature. A clear
illustration of this subjectivity can be found in the web pages that include
news articles with readers’ comments: the comments of the readers can be
considered main content by some people, while others can consider them
as not belonging to the main content. Hence, establishing a definition of
the main content is a controversial issue.

In some approaches (see, e.g., [17, 51]), the main content of a web page
is represented with a DOM node whose subtree is the smallest subtree that
contains all the relevant nodes of the web page. However, this can be very
imprecise because it can happen that the relevant nodes are distributed and
mixed with other boilerplate subtrees (for instance, consider three sibling
subtrees where two of them contain relevant content and the third is part of
the template). Therefore, we consider the main content of a web page (see
Definition 4.3.3) as a set of DOM nodes where the union of their subtrees
contain all the relevant content, and they do not contain irrelevant content.

That definition is independent of any technique. It assumes the ex-
istence of a labelling relevant(n) applied to the DOM tree leaves. The
purpose of the labelling is to identify those leave nodes in the web page
that should belong to the main content.

When the relevant labelling is provided, Definition 4.3.3 is particularly
useful. For instance, when benchmarks are evaluated. Alternatively, in the
case that the relevant labelling is not available, it must be approximated.
The rest of the chapter proposes a method that creates an approximation
of the relevant labelling automatically.

6.2.2 Weighting DOM nodes

This section proposes a metric that identifies the DOM nodes that with
high probability are the root nodes of the web page’s main content. All the
ideas used to develop the following properties have been empirically checked
and validated with the training set of 105 web pages from the TeCo suite
of benchmarks (see Chapter 13 for details).

108 Chapter 6. Page-level Content Extraction

Initially, an algorithm explores the DOM tree of the web page to com-
pute and assign a weight to each DOM node that meets these criteria:

i. The DOM node is not a leaf node of the DOM tree.

ii. The type of the DOM node is an element1 and its tagName prop-
erty is not one of the following: “A”, “BODY”, “BR”, “EM”, “H1”,
“H2”, “H3”, “H4”, “H5”, “HEADER”, “HR”, “IFRAME”, “NAV”,
“SPAN”, “SCRIPT”, and “UNDEFINED”. The algorithm does not
consider nodes of a type different from element (e.g., text nodes, com-
ment nodes, attribute nodes, etc.).

iii. If the number of children of the “BODY” DOM node (measured as the
number of element nodes with their tagName not listed in bullet 2) is
larger than or equal to the depth of the web page from the “BODY”
DOM node (following the same criterion), the main content of the
web page is the union of the children of the “BODY” DOM node. It
was not possible to validate this idea using the training set of 105 web
pages from the TeCo benchmark suite because none of the selected
web pages met the criterion. Thus, a set of 65 random web pages
from the CleanEval dataset was selected. Eleven of the sixty five
web pages met the criterion. Then, the percentage of the text of the
whole web page that also belongs to the main content was measured.
The average value obtained was 91.07%, that is, practically the main
content of that web pages corresponds to the whole web page. It
should be noted that this phenomenon was only observed in old web
pages (more than 10 years old).

These criteria are based on the fact that, in the DOM model, text nodes
are always inside element nodes, and also they are always leaves. Hence,
a text (or image, etc.) can be always accessed by selecting the element
node that contains it. In addition, it should be highlighted that there is no
visible information (text, images, animations, etc.) contained in element
nodes that are leaves. Thus, it is always possible to select the main content
with an element node that is not a leaf. For this reason, leaves and nodes
that are not elements are discarded. Besides, the tagNames listed above
(bullet 2) and other tags subsuming them are discarded because they cannot
be the main content. Finally, the last criterion is only applied to very wide
web pages, namely web pages whose content is distributed between several
branches. The determination of this criterion was done empirically, and

1http://www.w3.org/TR/domcore/#interface-element

6.2. Main content extraction 109

it avoids selecting a branch of the DOM tree with a small concentration
of text. It is important to note that the application of this criterion does
not mean that the main content node has at most a third of the text of
the whole web page, because the algorithm can select the parent node.
This just discards the nodes which contain small amounts of text. It has
been proved by empirical evaluation that the application of this criterion
increases the precision by 1-5% (see Section 6.3.1).

It is a fact (see, e.g., [117]) that there is usually a high density of text and
images in the main content of a website; however, in general, this density
does not entail by itself the detection of the main content [51]. Definition
6.2.1 introduces several properties that, in combination with the text and
image density, must be considered for proper detection of the main content.
The combination of all these properties, which are objectively quantified,
form a weighting that is able to identify the DOM nodes that form the
main content.

Definition 6.2.1 (Node properties) Given a web page P = (N,A), ev-
ery node n ∈ N with descendants(n) 6= ∅ is rated according to the following
properties:

Word ratio: It considers the number of words not included in a hyperlink
and their depth. The algorithm assigns a higher value to the words
nearer the node:

wordRatio(n) =
∑

k∈leaves(n) words(k)/distance(k, n)

where parent(k).tagName 6= “A”

Hyperlink ratio: It is computed considering the number of hyperlinks
contained in the descendants of a node n:

hyperlinkRatio(n) =

{
1 if links = 0
1/links if links > 0

where links = hyperlinks(subtree(n))

Children ratio: It checks whether a node n has more than two children:

childrenRatio(n) =

{
0 if childNodes(n) ≤ 2
1 if childNodes(n) > 2

110 Chapter 6. Page-level Content Extraction

Position ratio: It is computed using the following function:

positionRatio(n,P) ={
depth(n) if depth(n) ≤ maxDepth(P)/2
maxDepth(p) - depth(n) if depth(n) > maxDepth(P)/2

The Word ratio property defines a metric that takes account of the
number of text words contained by a DOM node and its descendants. The
word ratio of a node n subsumes the value of all its descendants. It is
computed for each descendant as the number of text words it contains
divided by the distance from the node to n. Hence, this metric promotes
those DOM nodes with a high amount of text in their closer descendants.
The closer the text is to a DOM node, the higher its word ratio is, and vice
versa. Our experiments demonstrate that, on average, main content nodes
contain 5.25 times more words than non-main content nodes. On average,
main content nodes contain 3.01 words outside hyperlinks, while non-main
content nodes contain 0.57 words.

The Hyperlink ratio property measures the number of hyperlinks con-
tained in a DOM node and all its descendants. The rationale for this metric
is that the main content of a web page usually contains fewer hyperlinks
than other blocks in the web page, such as the footer, the main menu, etc.
Hence, the hyperlink ratio promotes those DOM nodes with few hyperlinks
among their descendants. The experiments carried out reveal that, on av-
erage, 71.89 % of the hyperlinks of a web page do not belong to the main
content.

The Children ratio property encourages those nodes that contain more
than two children. Typically, the main content in a web page contains
several element nodes with text nodes between their descendants. In con-
sequence, those DOM nodes with more than two children are assigned a
higher value because they more likely contain text nodes between their de-
scendants. Our experiments show that, as an average, 95.56 % of the main
content nodes have more than 2 children.

The Position ratio property defines a metric to account for the depth
of a DOM node in the DOM tree. The rationale behind this metric is that
the main content of a web page is often positioned in the middle of the
DOM tree. Thus, this metric stepwise penalizes those DOM nodes located
at the top or the bottom of the DOM tree. Our experiments reveal that,
in 60% of the web pages, the root node of the main content is located in
the second tertile of the depth of the DOM tree.

6.2. Main content extraction 111

After these properties are computed, they are assigned to each node
in the DOM tree except for the tagNames listed in Section 6.2.2 (bullet
2). Higher values for these properties indicate that the DOM node more
likely contains the main content of the web page. Since the properties are
dissimilar from each other, they are not combined in one single ponderation.
However, this chapter illustrates a novel method that compares the rated
DOM nodes in order to determine which ones contain the main content
of the web page with high probability. The technique is described in the
following subsections.

6.2.3 Properties standardization

This page-level content extraction algorithm exposes a novel method to
compute the differences between two DOM nodes. The comparison between
two DOM nodes is based on the four ratios presented in Definition 6.2.1.
These ratios represent a DOM node as a point in R4 (a four-dimensional
Euclidean space). Hence, the comparison between the DOM nodes can be
computed through the relative Euclidean distance between the points in R4

that represent the DOM nodes. The four ratios have been defined to ensure
the differentiation of the main content nodes from the non-main content
nodes. Therefore, in R4 the non-main content nodes will be relatively close
to each other, while a DOM node containing the main content should be
located farther from the other nodes.

This assumption is validated through empirical evaluation (see Sec-
tion 6.3.1) and is based on the fact that the value of the four properties
presented in Definition 6.2.1 is significantly different in main content nodes
than in non-main content nodes. Note that a main content node usually
contains a considerable amount of text between its descendants, a low num-
ber of hyperlinks between its descendants, several children, and it is usually
positioned in the first half of the DOM tree. As most of the nodes in the
DOM tree are not-main content nodes, most likely they do not meet these
properties, thus the centroid of all the nodes of the DOM tree is located
with high probability near them in R4 and, therefore, it is located far from
the main content nodes.

In order to ensure that the impact of the four ratios in Section 6.2.2
is the same on the distance measurement, they must be standardized [70].
The standardization process is done by replacing the value of a ratio with
the difference between that value and the average of the values taken by it
divided by the standard deviation.

112 Chapter 6. Page-level Content Extraction

Definition 6.2.2 (Node standardization) The different ratios of a node
r are standardized with the following formula:

ri = (ri − ri)/sri (6.1)

where ri is the average of the values taken by ri, and sri is the standard
deviation.

In the following, DOM nodes are represented as points in R4.

Definition 6.2.3 (DOM nodes representation in R4) A DOM node A
is represented in a Euclidean space R4 with a quadruple (a, b, c, d), where
a, b, c, d are the four ratios assigned in Definition 6.2.1. Two nodes A =
(a, b, c, d) and A′ = (a′, b′, c′, d′) are the same node if and only if a = a′∧b =
b′ ∧ c = c′ ∧ d = d′.

The implementation of the DOM nodes as points in R4 based on the
ratios affords interesting advantages compared to other perspectives. For
instance, the page-level menu detection technique described in Chapter 5
proposes several ratios to identify the DOM node that corresponds to the
menu, but the importance of a DOM node is computed with the sum of its
ratios. This approach does not allow us to distinguish between two DOM
nodes, i.e., (4, 3, 2, 1) = (1, 2, 3, 4) because 4 + 3 + 2 + 1 = 1 + 2 + 3 + 4. In
contrast, the representation of the DOM nodes as points in the Euclidean
space actually allows us to distinguish between any combination of ratios.
In addition, it defines a distance between the DOM nodes: the Euclidean
distance.

Definition 6.2.4 (Euclidean distance) The Euclidean distance between
a node A and a node B for n ratios (in Rn) is computed with the following
formula:

eucli distance(A,B) =

√√√√ n∑
i=0

(A.ratio[i]−B.ratio[i])2 (6.2)

The use of the Euclidean distance also provides a significant advantage:
it allows us to determine how far is one point from another although they
have the same values for different ratios. This feature significantly reduces
the number of experiments needed to train the algorithm. In contrast, the
menu detection technique described in Chapter 5 has to limit the number
of experiments because it produces a combinatorial explosion, e.g., 0.1 ∗
ratio1 + 0.2 ∗ ratio2 + ..., with 0.2 ∗ ratio1 + 0.2 ∗ ratio2 + ..., and so on.

6.2. Main content extraction 113

6.2.4 c−SET computation

Th c−SET process described in this section is similar to a clustering tech-
nique. Bing [70] describes a clustering technique as a process that orga-
nizes data instances into similarity groups, called clusters such that the
data instances in the same cluster are similar to each other. In this case,
the algorithm only creates one cluster (c−SET), which is formed with the
DOM nodes that more likely contain the main content of the web page.
Then, the algorithm analyzes the c−SET to identify which DOM nodes
contain the main content.

In the first step, the centroid of the nodes is computed. For the rated
DOM nodes, the centroid corresponds to the arithmetic mean position of
all the points in R4 represented by them.

The computation of the centroid of all the rated nodes is described in Al-
gorithm 3. The centroid is a DOM node surrounded (in R4) by other nodes
that are probably non-main content nodes. Note that, for non-content
nodes, the value of their properties (see Definition 6.2.1) is close to zero,
so with high probability they must be located near the coordinate axes.
In consequence, the DOM nodes in the set of candidate nodes (c−SET)
are those DOM nodes located farther from the centroid in R4, because the
value of their properties is substantially high. The c−SET is built by Algo-
rithm 4 by measuring the distance to the centroid from all the rated DOM
nodes in the web page. Then, it selects the c nodes farther from it. The
value of c has been determined with an empirical evaluation (see Section
6.3.1).

In subsequent phases, the nodes that form the c−SET must be analyzed
to select the node that more likely contains the main content.

Algorithm 3 Centroid computation

Input: A set of rated DOM nodes ratedNodes = {n1 . . . ni}
Output: The centroid c of ratedNodes

begin
for prop = 0 to 3

c.ratio[prop] = (
∑i

node=1 nnode.ratio[prop])/i;
return c;

end

114 Chapter 6. Page-level Content Extraction

Algorithm 4 c−SET computation

Input: A set of rated DOM nodes ratedNodes, its centroid cent , and its size c
Output: A set of DOM nodes c−SET

begin
foreach (n1 in ratedNodes)

sum = 0;
for i = 0 to 3

sum = sum + (n1.ratio[i]− cent .ratio[i])2;
n1.distance =

√
sum;

c−SET = ∅
for i = 1 to c

node = n ∈ ratedNodes . 6 ∃n′ ∈ ratedNodes, n′.distance > n.distance;
ratedNodes = ratedNodes\{n};
c−SET = c−SET ∪ {n};

return c−SET ;
end

Algorithm 5 c−SET reduction

Input: A set of candidate DOM nodes c−SET
Output: A set of candidate DOM nodes c−SET

begin
foreach (n1 in c−SET)

foreach (n2 in c−SET)
if n1.innerText == n2.innerText and n1 ∈ ancestors(n2)

c−SET = c−SET\{n2};
return c−SET ;

end

6.2.5 Selecting the main content nodes

In this section, the nodes of the c−SET are analyzed in order to identify
the main content nodes.

First of all, a reduction of the number of elements in the c−SET is
performed. Algorithm 5 explores the c−SET and checks whether two or
more nodes contain the same text nodes. If this happens, one node is a
descendant of the other. Given two nodes in the c−SET , one of them
is removed if it is a descendant from the other and both contain exactly
the same text nodes between their descendants. The aim of selecting the
ancestor (and consequently removing the descendant) is to avoid missing
non-textual information, such as animations, images, etc. that surround
the text nodes.

6.2. Main content extraction 115

Algorithm 5 explores the c−SET and checks whether there are pairs of
nodes (where one is an ancestor from the other) that contain exactly the
same text nodes. If this happens, the algorithm removes the descendant
node. Then, the remaining DOM nodes in the c−SET are explored by
Algorithm 6 to select the nodes that correspond to the main content as
follows:

• It computes the ratio between text words and tags for all the nodes
in the c−SET .

• It selects as the main content node the node with the highest ratio
if it does not have any siblings that belong to the c−SET . If there
is a tie between several nodes, all of them are selected as the main
content nodes.

• If there are siblings of the node with the highest ratio in the c−SET ,
then the algorithm selects all of them as the main content nodes.

Algorithm 6 Main content selection

Input: A set of candidate DOM nodes c−SET
Output: A set of DOM nodes mainContent

begin
maxRatio = 0;
maxNode = null;
foreach (n in c−SET)

n.textPond = |n.innerText |/|n.tags|;
if n.textPond > maxRatio

maxRatio = n.textPond ;
maxNode = n;

siblings = getSiblings(maxNode, c−SET);
if siblings == ∅

mainContent = maxNode;
else

mainContent = {n} ∪ siblings;
return mainContent ;

end

Function getSiblings(n, set) of Algorithm 6 returns the sibling nodes of
n that belong to the set of nodes set.

6.2.6 Final post-process

We observed in our experiments that, in around 5% of the web pages, the
resulting main content includes groups of links that should not have been

116 Chapter 6. Page-level Content Extraction

extracted because they do not belong to the main content of the web page
(e.g., links to other sections of the website, breadcrumbs, etc.). With a
quite cheap post-process, those groups of links can be removed, resulting in
a precision improvement. The main content nodes returned by Algorithm 6
are explored by Algorithm 7, which removes the groups of links that do not
belong to the main content, if any. The process is done in the following
way:

• For all the hyperlink nodes in the mainContent set, the algorithm
checks whether they do not have sibling nodes and whether the num-
ber of words of their descendants is lower than a specified threshold
called max words.

• Then, for the nodes that fulfil those conditions, the algorithm checks
if the siblings of their parent nodes share the same structure.

• Finally, the nodes found in the previous step that share the same
structure are removed from the main content set.

Algorithm 7 Post-process

Input: A set of DOM nodes mainContent , and a max words threshold mw
Output: A set of DOM nodes mainContent excluding some groups of links

begin
foreach (n in mainContent)

if (n.tagName == “A”)
if (getWords(n) < mw and |n.parentNode.children| == 1)

found = false;
siblings = getSiblings(n.parentNode,mainContent);
foreach (i in siblings)

if (|i .children| == 1)
if (i.tagName == n.parentNode.tagName)

if (i.children[0].tagName == “A”)
found = true;
mainContent = mainContent − {i};

if (found == true)
mainContent = mainContent − {n.parentNode};

return mainContent ;
end
function getWords(n)

return n.textContent .split(/ \s+/).length;
end function

6.3. Implementation 117

6.3 Implementation

This technique, as all the techniques presented in this thesis, has been
implemented as a WebExtension, which is compatible with Mozilla-based
and Chromium-based browsers, among others. The add-on shows a single
button in the browser. When that button is pressed, it does the required ac-
tions and extracts the main content of the web page loaded by the browser,
which is automatically displayed2 (and it can be saved). If the button is
pressed again, the original web page is displayed.

The evaluation of the method was done using the TeCo benchmark suite
(see Chapter 13). As it is a suite of real and heterogeneous benchmarks with
different layouts and page structures, it is an optimum tool to evaluate the
technique. Moreover, it not only consists of textual information but also
includes pictures, animations, embedded media, etc. In the experiments,
we used 45 web pages (the TeCo subset of evaluation) to evaluate the
technique. We also used 15 benchmarks from the TeCo training subset
(105 web pages) to compute the optimal size of the c−SET . Another 15
web pages of the TeCo training subset were used to evaluate the post-
process phase. Additionally, the remaining 75 web pages from the training
subset were used to evaluate the metrics proposed in Section 6.2.2.

Most content extraction techniques in the literature use recall, precision,
and F1 metrics of the retrieved words. This is somehow limited because
it assumes that the main content of the web page is only text. In our
evaluation, we overcome this limitation by measuring the retrieved DOM
nodes. Therefore, we perform an evaluation that considers that the main
content can include text, video, images, animations, and any other content.
Moreover, in order to compare our technique with the related work, we
have also evaluated the technique using retrieved words as metric. Besides
retrieved words, a wide range of different metrics (see, e.g., [15, 20, 106,
115]) are used for the evaluation and comparison of content extraction
algorithms. Therefore, to perform a proper comparison of our technique
with other mainstream algorithms, we also adopted and implemented some
of these metrics. The obtained results of this comparison are detailed in
Chapter 12.

2The nodes that do not belong to the main content are properly hidden by changing
their visibility and display attributes to hidden or none, respectively. Hence, the result
is the isolation of the main content, which appears in the same place as on the original
web page.

118 Chapter 6. Page-level Content Extraction

DOM nodes Words

Size Recall Precision F1 Recall Precision F1 Avg. nodes Runtime

1 76.65 % 82.85 % 74.47 % 85.47 % 84.62 % 83.15 % 0.93 333 ms.
2 87.59 % 87.58 % 83.22 % 96.53 % 91.27 % 92.60 % 1.00 327 ms.
3 87.54 % 91.60 % 85.75 % 96.32 % 94.49 % 94.59 % 1.00 330 ms.
4 77.83 % 93.69 % 79.30 % 90.07 % 95.33 % 90.88 % 1.00 326 ms.
5 62.64 % 96.00 % 66.41 % 76.86 % 96.75 % 80.56 % 1.00 338 ms.
6 58.51 % 96.00 % 62.36 % 75.36 % 96.75 % 79.57 % 1.13 339 ms.
7 54.89 % 93.77 % 56.94 % 68.56 % 96.37 % 74.26 % 1.27 340 ms.
8 48.21 % 87.11 % 49.45 % 63.93 % 89.70 % 68.79 % 1.33 339 ms.

Table 6.1: Determining the optimal size of the c−SET

6.3.1 Empirical evaluation

First, it should be determined the optimal size of the set of candidate nodes
(the c value of the c−SET . See Section 6.2.4). Several c−SET sizes were
tested using the training subset of the TeCo benchmark suite.

Table 6.1 shows the obtained results of the experiments with a c−
SET size from 1 to 8. Each row of the table shows the average Recall,
Precision, and F1 of executing the algorithm for all the benchmarks in
the training subset of the TeCo benchmark suite with a different value for
c in the c−SET . The table also contains the obtained average results for
both, retrieved DOM nodes and retrieved text words.

As shown in Table 6.1, best results are produced using an n−SET with
n=3, as this value obtains the best F1 value in both, retrieved DOM nodes
(85.75 %) and retrieved words (94.59 %). Hence, even though the size of
the n−SET is configurable, a 3−SET has been used by default.

It can be observed that the size of the c−SET has a significant impact
on recall and precision. On the other hand, it has almost no impact on
the performance, since the average runtimes are similar for all the tested
c−SETs (e.g., the average runtime of the 1−SET and the average runtime
of the 8−SET only differ in 6 milliseconds).

Moreover, it can be observed that bigger c−SETs do not necessarily
obtain higher F1 values. This occurs because an increment of the size of
the c-SET also increases the probability of selecting one or several nodes
that are descendants from the main content root node or nodes. Thus, there
are more possible nodes that Algorithm 4 can select. In some benchmarks it
can select descendants from the root node or nodes, so the recall decreases.

Besides, the impact of the post-process phase was also evaluated using
a 3−SET for the training subset of the TeCo benchmark suite. The best
values for the max. words threshold were determined using values from 1

6.3. Implementation 119

to 8. For each max. words value, the best F1 results were selected for both,
DOM nodes and retrieved text words.

The results of the experiments conducted to determine the max. words

threshold can be observed in Table 6.2. Each row represents the best com-
bination of results for each max. words value. It can be observed the minor
impact of the post-process phase in both, retrieved DOM nodes and re-
trieved words. A max. words value equal to 1 improves the F1 value in 0.02
% for retrieved DOM nodes, while a max. words value equal to 3 improves
the F1 value in 0.12 % for retrieved words. It is not a substantial gain,
but the post-process phase especially improves the precision of the algo-
rithm. It should be highlighted that the runtime of the algorithm is not
significantly increased by the post-process phase.

DOM nodes Words

Max. Words Recall Precision F1 Recall Precision F1 Runtime

1 87.61 % 91.57 % 85.77 % 96.53 % 94.30 % 94.55 % 340 ms.
2 87.55 % 91.59 % 85.76 % 96.37 % 94.42 % 94.56 % 339 ms.
3 87.54 % 91.60 % 85.75 % 96.32 % 94.49 % 94.59 % 330 ms.
4 87.52 % 91.59 % 85.74 % 96.24 % 94.48 % 94.55 % 338 ms.
5 87.50 % 91.60 % 85.74 % 96.14 % 94.53 % 94.54 % 329 ms.
6 87.48 % 91.59 % 85.73 % 95.82 % 94.48 % 94.37 % 333 ms.
7 87.48 % 91.59 % 85.73 % 95.82 % 94.48 % 94.37 % 326 ms.
8 87.48 % 91.59 % 85.73 % 95.82 % 94.48 % 94.37 % 335 ms.
No post-process 87.61 % 91.54 % 85.75 % 96.53 % 94.17 % 94.47 % 327 ms.

Table 6.2: Determining max. words threshold

Algorithm evaluation
As mentioned above, to evaluate the technique, several experiments

were performed with the 45 benchmarks of the evaluation subset of the
TeCo benchmark suite (see Chapter 13). For each benchmark, the algo-
rithm computed the number of retrieved DOM nodes and the number of
DOM nodes correctly classified as the main content. It also computed the
Recall, Precision, and F1 of the retrieved DOM nodes and the retrieved
words. Additionally, the Runtime in seconds was also registered.

In Table 6.3, column Total shows the total number of DOM nodes of
the key page; column Gold indicates the number of DOM nodes of the gold
standard; column Retr. is the number of retrieved DOM nodes; column
Correct represents the number of retrieved DOM nodes that belong to the
gold standard; columns Rec., Prec., and F1 are the recall, precision, and
F1 respectively. In Table 6.4, column Gold shows the total number of words
on the key page; column Retr. is the number of retrieved words; column
Correct indicates the number of retrieved words that belong to the gold

120 Chapter 6. Page-level Content Extraction

standard; columns Rec., Prec., and F1 are the recall, precision, and F1
respectively. In both tables, column Runtime represents the runtime for
that benchmark (in milliseconds).

Number of nodes DOM nodes
Benchmark Total Gold Retr. Correct Rec. Prec. F1 Runtime

www.jdi.org.za 619 199 225 134 67.34 % 59.56 % 63.21 % 55 ms.
www.premiere-urgence.org 480 32 31 31 96.88 % 100.00 % 98.42 % 15 ms.
www.indiangaming.org 575 148 147 147 99.32 % 100.00 % 99.66 % 18 ms.
hispalinux.es 501 144 143 143 99.31 % 100.00 % 99.65 % 25 ms.
www.gktw.org 767 130 20 20 15.38 % 100.00 % 26.66 % 47 ms.
www.apnic.net 598 79 75 75 94.94 % 100.00 % 97.40 % 12 ms.
www.unicef.org 1037 381 381 378 99.21 % 99.21 % 99.21 % 54 ms.
www.klimabuendnis.org 851 134 133 133 99.25 % 100.00 % 99.62 % 28 ms.
www.isoc-es.org 259 56 43 43 76.79 % 100.00 % 86.87 % 6 ms.
biztechmagazine.com 1892 454 109 109 24.01 % 100.00 % 38.72 % 119 ms.
www.eeo.com.cn 834 119 247 118 99.16 % 47.77 % 64.48 % 52 ms.
www.wishtv.com 2167 343 345 342 99.71 % 99.13 % 99.42 % 89 ms.
news.mit.edu 2117 128 133 127 99.22 % 95.49 % 97.32 % 212 ms.
asia.nikkei.com 869 116 57 57 49.14 % 100.00 % 65.90 % 69 ms.
www.rcnky.com 1738 112 104 104 92.86 % 100.00 % 96.30 % 208 ms.
news.discovery.com 2826 791 165 165 20.86 % 100.00 % 34.52 % 458 ms.
www.kathimerini.gr 1825 117 113 113 96.58 % 100.00 % 98.26 % 61 ms.
news.un.org 1726 59 58 58 98.31 % 100.00 % 99.15 % 98 ms.
frances.forosactivos.net 785 495 636 494 99.80 % 77.67 % 87.36 % 58 ms.
www.wysiwygwebbuilder.com 3936 3201 3197 3197 99.88 % 100.00 % 99.94 % 745 ms.
www.3dprintforums.com 1040 748 570 570 76.20 % 100.00 % 86.49 % 62 ms.
www.strangehorizons.com 631 403 402 402 99.75 % 100.00 % 99.87 % 48 ms.
communities.apple.com 3136 1306 2643 1305 99.92 % 49.38 % 66.10 % 280 ms.
www.sloweurope.com 4193 2789 2785 2785 99.86 % 100.00 % 99.93 % 1018 ms.
community.ricksteves.com 2057 1177 1176 1176 99.92 % 100.00 % 99.96 % 412 ms.
hackercombat.com 1711 698 913 697 99.86 % 76.34 % 86.53 % 231 ms.
www.scbwi.org 876 506 505 505 99.80 % 100.00 % 99.90 % 44 ms.
johngardnerathome.info 395 188 187 187 99.47 % 100.00 % 99.73 % 13 ms.
www.annmalaspina.com 392 84 13 13 15.48 % 100.00 % 26.81 % 19 ms.
foodsense.is 330 192 229 190 98.96 % 82.97 % 90.26 % 16 ms.
sites.google.com 372 85 87 84 98.82 % 96.55 % 97.67 % 35 ms.
whatever.scalzi.com 1648 243 242 242 99.59 % 100.00 % 99.79 % 221 ms.
www.javiercelaya.es 740 57 49 49 85.96 % 100.00 % 92.45 % 64 ms.
diarium.usal.es 604 524 523 523 99.81 % 100.00 % 99.90 % 29 ms.
www.jameslovelock.org 653 174 185 173 99.43 % 93.51 % 96.38 % 21 ms.
www.cipri.info 933 556 401 401 72.12 % 100.00 % 83.80 % 67 ms.
naranjascarcaixent.com 290 141 147 140 99.29 % 95.24 % 97.22 % 10 ms.
www.technicalbookstoreonline.com 2959 2002 2273 2001 99.95 % 88.03 % 93.61 % 402 ms.
www.floridarealestatecollege.com 1023 65 35 35 53.85 % 100.00 % 70.00 % 180 ms.
www.basf.com 827 62 814 61 98.39 % 7.49 % 13.92 % 22 ms.
www.mcphersonoil.com 831 225 10 10 4.44 % 100.00 % 8.51 % 36 ms.
www.thirteenhou.com 1217 1073 1083 1072 99.91 % 98.98 % 99.44 % 100 ms.
www.embalajesterra.com 2342 470 702 469 99.79 % 66.81 % 80.04 % 114 ms.
www.crypto.ch 338 68 92 65 95.59 % 70.65 % 81.25 % 9 ms.
www.shopbookshop.com 1727 387 1008 382 98.71 % 37.90 % 54.77 % 124 ms.
Average 1281.49 476.91 520.80 433.89 84.95 % 89.84 % 81.70 % 133 ms.

Table 6.3: Evaluation of the precision, recall, F1, and runtime for retrieved
DOM nodes

The experiments reveal an average F1 of 81.69% for retrieved DOM
nodes, and an average F1 of 92.45% for retrieved words3.

3The average F1 on the bottom of the table represents the average of the values in
column F1, and not the F1 computed using the average precision and the average recall.

6.3. Implementation 121

Number of words Words
Benchmark Gold Retr. Correct Rec. Prec. F1 Runtime

www.jdi.org.za 313 301 284 90.73 % 94.35 % 92.50 % 55 ms.
www.premiere-urgence.org 134 134 134 100.00 % 100.00 % 100.00 % 15 ms.
www.indiangaming.org 145 145 145 100.00 % 100.00 % 100.00 % 18 ms.
hispalinux.es 514 514 514 100.00 % 100.00 % 100.00 % 25 ms.
www.gktw.org 478 178 178 37.24 % 100.00 % 54.27 % 47 ms.
www.apnic.net 245 245 245 100.00 % 100.00 % 100.00 % 12 ms.
www.unicef.org 120 118 118 98.33 % 100.00 % 99.16 % 54 ms.
www.klimabuendnis.org 258 258 258 100.00 % 100.00 % 100.00 % 28 ms.
www.isoc-es.org 69 64 64 92.75 % 100.00 % 96.24 % 6 ms.
biztechmagazine.com 815 538 538 66.01 % 100.00 % 79.53 % 119 ms.
www.eeo.com.cn 43 59 43 100.00 % 72.88 % 84.31 % 52 ms.
www.wishtv.com 786 786 786 100.00 % 100.00 % 100.00 % 89 ms.
news.mit.edu 1000 1000 1000 100.00 % 100.00 % 100.00 % 212 ms.
asia.nikkei.com 642 587 587 91.43 % 100.00 % 95.52 % 69 ms.
www.rcnky.com 935 935 935 100.00 % 100.00 % 100.00 % 208 ms.
news.discovery.com 767 622 622 81.10 % 100.00 % 89.56 % 458 ms.
www.kathimerini.gr 737 734 734 99.59 % 100.00 % 99.79 % 61 ms.
news.un.org 303 303 303 100.00 % 100.00 % 100.00 % 98 ms.
frances.forosactivos.net 169 255 169 100.00 % 66.27 % 79.71 % 58 ms.
www.wysiwygwebbuilder.com 2115 2115 2115 100.00 % 100.00 % 100.00 % 745 ms.
www.3dprintforums.com 347 270 270 77.81 % 100.00 % 87.52 % 62 ms.
www.strangehorizons.com 3559 3559 3559 100.00 % 100.00 % 100.00 % 48 ms.
communities.apple.com 608 1216 608 100.00 % 50.00 % 66.67 % 280 ms.
www.sloweurope.com 804 804 804 100.00 % 100.00 % 100.00 % 1018 ms.
community.ricksteves.com 589 589 589 100.00 % 100.00 % 100.00 % 412 ms.
hackercombat.com 383 442 383 100.00 % 86.65 % 92.85 % 231 ms.
www.scbwi.org 247 247 247 100.00 % 100.00 % 100.00 % 44 ms.
johngardnerathome.info 1375 1375 1375 100.00 % 100.00 % 100.00 % 13 ms.
www.annmalaspina.com 114 113 113 99.12 % 100.00 % 99.56 % 19 ms.
foodsense.is 442 493 442 100.00 % 89.66 % 94.55 % 16 ms.
sites.google.com 54 54 54 100.00 % 100.00 % 100.00 % 35 ms.
whatever.scalzi.com 1151 1151 1151 100.00 % 100.00 % 100.00 % 221 ms.
www.javiercelaya.es 359 357 357 99.44 % 100.00 % 99.72 % 64 ms.
diarium.usal.es 869 869 869 100.00 % 100.00 % 100.00 % 29 ms.
www.jameslovelock.org 1308 1310 1308 100.00 % 99.85 % 99.92 % 21 ms.
www.cipri.info 1281 1221 1221 95.32 % 100.00 % 97.60 % 67 ms.
naranjascarcaixent.com 73 73 73 100.00 % 100.00 % 100.00 % 10 ms.
www.technicalbookstoreonline.com 873 942 873 100.00 % 92.68 % 96.20 % 402 ms.
www.floridarealestatecollege.com 310 301 301 97.10 % 100.00 % 98.53 % 180 ms.
www.basf.com 128 237 128 100.00 % 54.01 % 70.14 % 22 ms.
www.mcphersonoil.com 319 96 96 30.09 % 100.00 % 46.26 % 36 ms.
www.thirteenhou.com 1337 1337 1337 100.00 % 100.00 % 100.00 % 100 ms.
www.embalajesterra.com 111 203 111 100.00 % 54.68 % 70.70 % 114 ms.
www.crypto.ch 185 186 185 100.00 % 99.46 % 99.73 % 9 ms.
www.shopbookshop.com 241 385 241 100.00 % 62.60 % 77.00 % 124 ms.
Average 614.56 616.02 588.16 94.58 % 93.85 % 92.61 % 133 ms.

Table 6.4: Evaluation of the precision, recall, F1, and runtime for retrieved
words

Other techniques that used heterogeneous websites for evaluation ob-
tained the following F1 results for retrieved words: Insa et al. obtain 74 %
[51], Gottron et al. 77 % [46], and Shanchan et al. 82 % [118]. By contrast,
other techniques have been evaluated using prepared datasets [85] (MSS),

122 Chapter 6. Page-level Content Extraction

DOM nodes Words

Benchmark type Recall Precision F1 Recall Precision F1 Runtime

Institutions / Associations 83.50 % 95.42 % 85.81 % 91.01 % 99.37 % 93.57 % 29 ms.
Media /Communication 75.55 % 93.06 % 76.62 % 93.13 % 99.42 % 95.75 % 152 ms.
Forum / Social 97.22 % 89.20 % 91.74 % 97.53 % 87.90 % 91.05 % 322 ms.
Personal websites / Blogs 85.52 % 97.00 % 87.42 % 99.32 % 98.83 % 99.04 % 54 ms.
Companies / Shops 83.32 % 73.90 % 66.53 % 91.91 % 84.83 % 84.28 % 111 ms.

Table 6.5: Results of the performed experiments grouped by benchmark
type

RSS feeds, or prepared websites4. Unfortunately, a fair comparison of dif-
ferent techniques is not possible if they use different evaluation datasets or
if the structure of the website is known before extracting the content. For
instance, techniques that evaluated prepared websites usually reported high
F1 values (Zhao et al. 88 % [69], Adam et al. obtain 93 % [1], Qureshi et al.
94 % [92], and Pasternack et al. 95 % [85]). However, these F1 results are
substantially reduced if heterogeneous websites are used. We performed a
comparison of several content extractors in the literature using the same
benchmark suite and the same metrics. It is presented in Section 12.4.

Table 6.5 shows the average results grouped by benchmark type. We
can observe that the results may differ substantially depending on the
type of benchmark. For instance, the average F1 obtained for retrieved
DOM nodes by the Forum / Social benchmarks is almost 25% higher
than the average F1 obtained by the Companies / Shops benchmarks.
On the other hand, for retrieved words, the average F1 obtained is fairly
high for all benchmark types. The lowest value is the 84.28% obtained by
the Companies / Shops benchmarks. It should be highlighted that the
average precision obtained by the Institutions / Associations, Media
/ Communication, and Personal websites / Blogs benchmarks is close
to 100% for both, retrieved DOM nodes and retrieved words. Regard-
ing the runtime, we can observe significant differences between the differ-
ent benchmark types. While the average runtime of the Institutions /

Associations is around 30 ms. on average, the runtime of the Forum /

Social benchmarks is higher than 300 ms.

Runtime analysis

For each web page in the evaluation subset of the TeCo benchmark suite,
Figure 6.2 presents the relationship between the number of DOM nodes of
the key page and the time (in milliseconds) needed to extract the main

4web pages that were generated automatically and share the same template.

6.3. Implementation 123

Figure 6.2: Relation between the size of the web page and the runtime

content. More than half of the runtime (approximately 56%) is used by
Algorithm 3, whose asymptotic cost is O(n2), being n the number of rated
DOM nodes. Additionally, more than 27% of the runtime is used by the
node properties computation algorithms. Hence, the rest of the algorithms
described in this chapter use a small fraction of the runtime (between 3%
and 5% each).

It should be highlighted that more than 95% of the benchmarks took
less than half a second, while 66% of them took less than 100 milliseconds.
There was only one benchmark whose runtime took more than 1 second.

As can be noted in Figure 6.2, for most web pages, the tool extracts
the main content in less than 200 milliseconds.

It can be observed in the figure that usually the highest runtimes cor-
respond to the web pages with the higher number of DOM nodes, however,
some benchmarks do not obtain the runtime expected according to their
size. For this reason, we explored other variables that could be related to
the runtime of the algorithm.

Hence, we computed a statistical analysis of some variables that, in our
opinion, could also be related to the runtime. The analyzed variables are:

• The number of rated DOM nodes (see Section 6.2.1). The choice of
this variable, as in Chapter 5, is based on the assumption that the cost
of computing the weights assigned to the DOM nodes is significant
for the runtime. Thus, the more weighted nodes, the higher runtime.

124 Chapter 6. Page-level Content Extraction

Kolmogorov-Smirnova Shapiro-Wilk

Estadístico gl Sig. Estadístico gl Sig.

Runtime

Rated nodes

Hyperlinks

Avg. words

,300 105 ,000 ,517 105 ,000

,230 105 ,000 ,754 105 ,000

,259 105 ,000 ,675 105 ,000

,317 105 ,000 ,397 105 ,000

Corrección de significación de Lillieforsa.

Figure 6.3: Result of the normality test for page-level ConEx

• The number of hyperlinks in the retrieved main content be-
fore the final post-process phase. This variable is based on the as-
sumption that the final post-process phase is relevant to the total
runtime of the technique. As this phase only affects the hyperlink
nodes, the number of hyperlinks could increase the runtime.

• The average amount of text words per weighted DOM node (mea-
sured in words). This variable was selected because the computation
of the word ratio is the most complex of the 4 node properties.
Therefore, we supposed that computing the word ratio of the nodes
with more text would affect the runtime significantly.

As in Chapter 5, we used IBM SPSS Statistics to analyze the relation-
ship between these variables. We also conducted the analysis using the test
subset of the TeCo benchmark suite, formed by 105 web pages (see Chap-
ter 13). First of all, we computed Table 6.3 to check whether the variables
were normally distributed. As we can observe in the table, the sample

size (column gl) is 105, thus, the appropriate test is Kolmogorov-Smirnov.

In this case, the significance (column Sig.) of all variables is less
than 0.05; therefore, the correlation coefficient can be computed through
the Spearman test because the variables are not distributed normally. Fig-
ure 6.4 shows the result of the Spearman test for these variables. We can
observe the correlation coefficient between all the variables and the runtime
in the first row of the table. As in the case of the menu detection algo-
rithm (see Chapter 5), the correlation coefficient of the number of rated

DOM nodes variable is close to 1. Therefore, this variable has a very strong
relationship with the runtime of the algorithm. Moreover, we can ob-
serve that the correlation coefficient between the number of hyperlinks

in the retrieved main content variable and the runtime is close to 0.7,
which denotes also a strong relationship between them. The correlation co-
efficient value of the third variable, average amount of text words per

6.4. Conclusions 125

Figure 6.4: Result of the Spearman test for page-level ConEx

weighted DOM node is close to 0, therefore, this variable does not have a
significant relationship with the runtime.

6.4 Conclusions

This chapter describes a novel page-level content extraction technique from
heterogeneous web pages. The technique shows high precision and a low
runtime compared to other block detection techniques (see Chapter 12)
because it is page-level, so it only needs to load one web page to infer
the main content. The main innovation of the technique is the way in
which the DOM node features are represented, as points in a 4-dimensional
Euclidean space R4, and how the main content is detected in such a space.
The features on which the metrics are based and their ranked values have
demonstrated to be accurate in the isolation of the nodes that contain the
main content. For that reason, the main content information is contained
with high probability in those DOM nodes whose features are significantly
different to most of the nodes. Representing the features of the DOM nodes
as points in R4 is useful to quickly and easily identify the candidate nodes
by means of the standard Euclidean distance between the points.

The main content of the websites can be formed by several different
elements apart from text, such as images, animations, videos, embedded
content, etc. Usually, the main content is formed by text combined with
other elements. One of the main benefits of this technique is that, as it

126 Chapter 6. Page-level Content Extraction

is based on DOM nodes and analyzes other features apart from text-based
attributes, it not only extracts the text as the main content but also other
main content elements. Therefore, the algorithm outputs one or several
DOM nodes and their subtrees as the main content of the analyzed website.

6.5 Contributions

The page-level content extraction technique presented in this chapter pro-
vides several contributions that can be implemented by many systems, es-
pecially by other block detection techniques.

It describes a set of features (on which the metrics are based) that have
been demonstrated to be accurate to differentiate between main content
nodes and the rest of the nodes. Based on this set of features, the technique
introduces the representation of a DOM node as a point in a 4-dimensional
Euclidean space R4. This representation has been demonstrated to be
useful to easily compare DOM nodes.

An algorithm that infers the main content is also provided. The algo-
rithm selects the node or nodes that most likely include the main content
based on the Euclidean distance between a set of DOM nodes represented
as points in a 4-dimensional Euclidean space R4.

The functional implementation of the technique as a WebExtension is
also an important contribution. In addition, the WebExtension is also
officially published by Mozilla in their Firefox browser add-ons website.

Part IV

Site-level Block Detection
Algorithms

127

Chapter 7

Candidates selection algorithms

As introduced in Chapter 2, site-level block detection techniques, such as
content extraction or template detection techniques, need to load and an-
alyze several web pages in order to detect the information blocks. Given
a web page w, this chapter and the following propose two steps for these
algorithms:1

i. Detection of a set S of web pages from the same website which share
the same template than w.

ii. Analysis of all web pages in S ∪ {w} to obtain the required informa-
tion.

This chapter proposes a new technique for detecting a set of web pages
from the same website that share the same template by analyzing the hy-
perlinks.

The technique analyzes all the links in a given web page and sorts them
based on certain criteria defined to promote the web pages that probably
share the same template. Once the hyperlinks are sorted, the first ones
form a set of web pages if they are pairwise and mutually linked. This
set of web pages probably implements the same template. In consequence,
one of the main benefits of the technique is that it only needs to analyze a
reduced set of web pages. This contrasts with other techniques that analyze
large sets of web pages [120, 116, 113].

It is evident that all web pages in a website do not necessarily share the
same template. Usually, a website implements several templates, especially
large websites. As a result, the algorithm has two seemingly contradictory
goals: (i) the selected web pages must be as similar as possible to the target
one, therefore it is easy to infer the template, and (ii) the selected web pages
must be as different as possible between them so that the set of web pages
is as heterogeneous as possible and they implement different templates.

1These two steps are not necessarily sequential, indeed, they are often interlaced.

129

130 Chapter 7. Candidates selection algorithms

7.1 Related Work

Chapter 2 categorizes block detection techniques into two groups: site-
level and page-level. In both cases, their aim is to obtain information from
web pages, but using different information. On the one hand, page-level
techniques only obtain information from the target web page. On the other
hand, site-level techniques also obtain information from other web pages,
usually on the same website.

Site-level block detection techniques are often divided into two phases
that are not necessarily independent. First, they build a set of web pages
from which they (hopefully) extract the necessary information to achieve
their objective. Finally, they extract the desired block by comparing the
target web page with the web pages in the set. This technique automates
the first step. It should be emphasized that very few techniques in the
literature describe the web page candidates detection procedure. On many
occasions, this process is done manually or authors do not explain how it
is done.

In some cases, programmers prepare the input with sets of web pages se-
lected by them. For instance, in the content extraction algorithm presented
in [83], and the template extractor proposed in [54].

The template extraction technique described in [120] inputs a set of
web pages to build the Site Style Tree structure. They do not use a specific
technique to select the web pages, but they prepare the input by randomly
sampling 500 web pages.

The template extraction technique in [114] is based on discovering opti-
mal mappings between the DOM trees of different web pages from the same
website. The technique picks the web pages randomly until a threshold is
reached. The authors describe the threshold as a few dozen of web pages.
In fact, their technique needs to load 25 web pages to reach an F1 measure
of 0.95. On the other hand, the technique presented in this chapter does
not choose the web pages randomly, given that the hyperlinks of the web
pages are analyzed in order to select them. It manages to build a set of
candidates that implement the template by exploring only a few web pages.
In contrast, many techniques such as [114, 113], assume that all web pages
on the same website always share the same template, an assumption that
many websites do not accomplish.

Other techniques like [95] assume that those web pages located in the
same directory share the same template. Their algorithm uses as web
page candidates other pages stored in the same directory as the target web
page. Part of our algorithm exploits this idea, but it is not restricted to

7.2. Identifying web pages that implement the same template 131

Figure 7.1: Web pages of LiveScience sharing a template

one directory, because it establishes an order of relevance which uses the
tree of directories through a definition of distance between directories.

7.2 Identifying web pages that implement the same
template

Templates usually provide enough information to infer the different web-
page blocks since almost always they consist of a set of pagelets, such as
the menu, advertisements, etc. Obtaining a set of web pages from the same
website that share the template is useful to infer both, the template and the
main content, by comparing those web pages between them [4]. Figure 7.1
shows two web pages from the LiveScience website. At the top of the web
pages, below the advertisement area, we can observe the main menu con-
taining links to all LiveScience principal topics. The left web page belongs
to the “Coronavirus” section, while the right web page belongs to a story
called “DeepMind cracks ‘knot’ conjecture that bedevilled mathematicians
for decades”. Both share the same menu, the bar on the right, and the gen-
eral structure. In both web pages, the pagelet in the dashed square defines
the main content, i.e., the news. Furthermore, both web pages contain a
common pagelet which includes links to some relevant topics, another one
for subscribing to the newsletter, and another that compiles the most read
and the most shared news. Additionally, there is a common footer at the
bottom of all web pages.

The technique described in this chapter gets a web page (called key
page in the following) as input and returns a set of web pages of the same
website that implement the template (or part of it). A complete subdigraph

132 Chapter 7. Candidates selection algorithms

is identified in the website topology in order to discover the web pages that
implement the template.

7.2.1 Complete subdigraphs

A complete subdigraph (CS) in a website topology is a set of web pages that
are pairwise mutually linked [9]. Thus, an n-complete subdigraph (n-CS)
is a CS formed by n nodes.

It has been observed that, usually, the web pages linked by the items
in a menu form a CS. Therefore it can be used to identify web pages that
contain the menu. In addition, we can observe that these web pages are
usually the roots of the various sections linked by the menu. The following
idea is based on these observations:

Idea 7.2.1 Those web pages pointed out by the links in the menu of the
template probably share the template, because they are the main web pages
of each section of the website.

Idea 7.2.2 Those web pages pointed out by the links of a menu and that
contain the menu form a complete subdigraph in the website topology because
they all are mutually linked.

Example 7.2.3 illustrates why menus provide useful information about
the interconnectivity of the different web pages in a given website.

Example 7.2.3 Consider the LiveScience website. Figure 7.1 shows two
of its web pages. All web pages on this website share the same template,
and this template contains the main menu that obviously appears on all web
pages, an advertisement area, and a “Most Popular” news area. The site
map of the LiveScience website can be described with the topology shown in
Figure 7.2.

In Figure 7.2 nodes represent web pages and edges represent links be-
tween two web pages. For simplicity, we only draw some of the nodes and
some of the edges. Note that solid edges are bidirectional while dotted and
dashed edges are directed arcs. Web pages pointed by the main menu are
represented by black nodes. In addition, black nodes are web pages pointed
by the main menu links. Obviously, the main menu appears on all web
pages, so all nodes are connected to all black nodes. Given that the set of
black nodes forms a complete graph, therefore there is an edge connecting
each pair of black nodes. Grey nodes also form a complete graph because
they are web pages pointed by a submenu. On the other hand, white nodes

7.2. Identifying web pages that implement the same template 133

Main menu

Secondary menu

livescience.com

External domain

External domain

Figure 7.2: LiveScience Website topology

do not form a complete graph because they correspond to web pages inside
one section of the submenu.

It is important to emphasize that not all web pages in a website share
the same template, while some web pages only implement a subset of a
template, others extend the template by adding new pagelets. Therefore,
one of the main problems of site-level block detection techniques is deciding
which web pages should be analyzed. It is very important to minimize the
number of analyzed web pages in order to reduce computation resources.
This technique lays out a new idea to identify which web pages must be
analyzed: it analyzes and sorts the links in the key page that form a CS.
Note that only the web pages pointed by the key page are analyzed. If a
web page pointed by the key page does not have any mutual link (pointing
to the key page), it is discarded.

It must be highlighted that not all the links that form a CS produce
equally good CSs. If we consider the topology shown in Figure 7.2 and we
suppose that the key page corresponds to one of the white nodes, then, it is
better to form a CS using the grey nodes (the submenu) than with the black
nodes (the main menu). Note that the submenu is a common substructure
shared by all white and grey nodes. This fact justifies establishing an order
to the links of the CS. In the example, the white nodes belong to one of
the items in the submenu, so they are probably more related in semantic
terms and, with a high probability, they share more syntax components.

134 Chapter 7. Candidates selection algorithms

7.2.2 Hyperlink analysis

The selection of the links in the key page that most likely produce the best
CS can be done via a hyperlink analysis strategy. This leads to increased
performance because the strategy avoids analyzing all links on the key page.
The links that should be analyzed are identified by examining the structure
of the website since the URLs of the links provide valuable information
about the structure of the website.

Idea 7.2.4 In a website, those web pages located in the same folder probably
share the same template. The probability of two web pages sharing the same
template can be approximated based on the distance between them in the tree
of directories.

Example 7.2.5 Consider a key page P whose URL is:
www. springer. com/ gp/ computer-science/ become-an-author

Consider that P contains four links pointing to the following URLs:

• URL 1 = www. springernature. com

• URL 2 = www. springer. com/ gp/ computer-science/ stay-informed

• URL 3 = www. springer. com

• URL 4 = www. springer. com/ gp/ engineering/ contact-us

URL 1 points to another domain. The pointed web page is located in a
different domain. Thus, the template of the pointed web page and
the template of the key page is with a very high probability entirely
different.

URL 2 points to a web page which is located in the same directory as the
key page. Consequently, both web pages very likely belong to the same
section in the hierarchy of the website, hence they probably share the
same template.

URL 3 points to the main web page of the website, which is located inside a
directory that is two levels above the directory of the key page. Hence,
the layout of the key page and the web page pointed out by URL 3
are arguably different, and probably they only share a fraction of their
templates.

www.springer.com/gp/computer-science/become-an-author
www.springernature.com
www.springer.com/gp/computer-science/stay-informed
www.springer.com
www.springer.com/gp/engineering/contact-us

7.2. Identifying web pages that implement the same template 135

URL 4 points to a web page that is located inside a directory at the same
level as the reference directory. With high probability, it points to
another section of the website (e.g., to another subject in the main
menu called engineering).

There are also other (infinite) options. For instance, consider a web
page located in a subdirectory inside the directory of the key page. This
web page is most probably semantically related to the key page, and it
probably extends its template adding complementary information.

Consequently, the analysis of the links in the key page can lead to an
order of relevance (see Algorithm 8). The definition of partial order uses the
definition of the length of a DOM path (4.2.3), the definition of hyperlink
(4.1.5), and the definition of distance between hyperlinks (4.2.1).

It must be emphasized that the name of the resource pointed out by
the URL is ignored by the proposed definition of hyperlink. Thus, it only
considers the domains and directories (structure).

It is just enough to include the URLs such as www.springer.com/,
gp/computer−science/ and gp/computer−science/information−systems−
and− applications/.

In the following, function head is used to select the first word (i.e.,
directory) of a hyperlink:

head(directory1/directory2/directory3/) = directory1.

Definition 4.2.1 develops the notion of distance between two URLs.
Note that the order of the parameters is important because the distance
can be positive or negative. Therefore, the distance between two hyperlinks
is defined from the first hyperlink to the second one.

Figure 7.3 represents a tree of directories containing web pages from a
website. We can observe the distance from all web pages to a web page
located in the gray directory.

Example 7.2.6 Consider the following URLs from the Springer’s website:

(1) gp/ computer-science/

(2) gp/ computer-science/ information-systems-and-applications/

(3) gp/

(4) gp/ engineering/

(5) www. springer. com/ gp/

gp/computer-science/
gp/computer-science/information-systems-and-applications/
gp/
gp/engineering/
www.springer.com/gp/

136 Chapter 7. Candidates selection algorithms

The following URL distances are computed:

hDistance(1, 1) = 0

hDistance(1, 2) = +1

hDistance(1, 3) = −1

hDistance(1, 4) = −1

hDistance(1, 5) = −2

J

E H

K
G

L

M

B

F

D

/

A

C I
N

1

0

-1-2
2

Figure 7.3: Hyperlink distance

Idea 7.2.7 Those links located closer in the DOM tree are more likely to be
semantically related, particularly if they belong to the same block. Thus, the
distance between two links in the DOM tree is an indicator of the semantical
relation among the linked web pages.

We can observe that a distance of 0 between two given links, h1 and
h2, means that they point to the same directory of the website. Even so, a
positive distance between two links, h1 and h2, means that h2 points to a
subdirectory of the directory pointed by h1. Likewise, a negative distance
between two links, h1 and h2, means that h2 points to a directory located
outside of the directory pointed by h1. This directory pointed by h2 can
either be an ancestor of the directory pointed by h1 or not.

The links in the key page are analyzed and their distances in reference to
the directory where the URL of the key page points are computed. The best
links are those with a distance of 0. Then, those with a positive distance.
Finally, the links with a negative distance. Note that the hyperlink distance
defines a partial order (see Definition 4.2.1). Therefore, the case of a draw

7.2. Identifying web pages that implement the same template 137

should be taken into account, since it is very common to find an equal
distance from two different links to a third link.

In the case of a draw, based on the idea 7.2.7, another algorithm is used
to determine which link is better. That algorithm analyzes the position of
the link nodes in the DOM tree. Usually, pagelets agglutinate semantically
related information, therefore, the information is distributed in pagelets, so
two links belonging to different pagelets should point to web pages whose
content differs semantically. This is particularly important given that site-
level block detection techniques analyze the differences between the selected
web pages to detect the desired information (template, main content, etc.).

Example 7.2.8 Consider the menu of a University web page. Probably, we
can find a set of links pointing to the different Bachelor’s degrees provided
by the University. Often, those web pages share the same template, which is
filled with information about the different Bachelor’s degrees. Therefore, it
is possible that block detection algorithms confuse some of the information
because it can appear repeated on several web pages. A template detection
algorithm could identify some of the information (main content) repeated in
many web pages as template information. Hence, site-level block detection
algorithms should prevent analyzing these web pages because they do not
contain enough information to compare them.

Consequently, in case of a draw, it is preferable to first select the links
further away from the already selected links in the DOM tree. Therefore, for
the links with the same hyperlink distance, the partial order gives preference
to the links located further away from the already selected links, that is,
the links with (probably) different semantic information from the ones that
are already selected. In conclusion, the order of relevance establishes an
order to the links of the key page choosing first the ones that implement
the same template (using the hyperlink distance) but being as distinct as
possible (based on their position in the DOM tree). As a consequence,
in case of a draw, we prefer those links that are as separated as possible
from the other already selected links in the DOM tree. In this way, we
give preference to links with (probably) different semantic information. In
summary, observe that we obtain web pages that share the same template
(using the hyperlink distance) but are as different as possible (using their
position in the DOM tree of the key page).

Figure 7.2.2 shows part of a web page’s DOM tree. The DOM tree
contains two link nodes, and we can observe some examples of hyperlink
distance and DOM distance.

138 Chapter 7. Candidates selection algorithms

BODY

DIV

TABLE’

TABLE

A

DIV HR

A’

HTML

link(A) = www.upv.es
link(A′) = www.upv.es/organizacion/la-institucion/index-en.html
path(A) = HTML BODY DIV A
path(A′) = HTML BODY TABLE A’
dDistance(A,A′) = 4 // DIV BODY TABLE A’
dDistance(A′, A) = 4 // TABLE BODY DIV A
hDistance(link(A), link(A′)) = 2
hDistance(link(A′), link(A)) = -2

Figure 7.4: Hyperlink and DOM distance examples

The position in the DOM tree of two links is measured by comparing
the length of both paths. Note that path(n) represents the DOM path of
a node n, namely, the path from the root of the DOM tree to that node.

Definition 4.2.4 determines the distance between two nodes in the DOM
tree. It should be noted that the DOM distance of two links (or DOM
nodes) is zero if and only if they are exactly the same link (or DOM node).
Otherwise, two different links have imperatively a positive DOM distance,
even if they have the same URL, and consequently the same hyperlink
distance. In this case, the DOM distance is computed as the length of
the DOM path from the first node to the root node plus the length of the
DOM path from the root node to the second node. Note that the length of
a DOM path is computed using Definition 4.2.3.

7.2. Identifying web pages that implement the same template 139

Once hyperlink distance and DOM distance algorithms have been de-
termined, an order for the links in a web page can be defined. It promotes
the links that should be explored by site-level block detection algorithms.
This order combines two orders, both proposed in [5]: link relevance and
DOM relevance. Link relevance (see Definition 4.2.5) order (≤h

link) uses the
link distance algorithm (see Definition 4.2.1), and establishes an order for a
set of hyperlinks based on the hyperlink distance definition. On the other
hand, DOM relevance (see Definition 4.2.6) order (≤N

DOM) uses the DOM
distance algorithm (see Definition 4.2.4), and establishes an order based on
the DOM distance between the DOM nodes.

7.2.3 Finding web page candidates in a website

The application of both orders, link relevance and DOM relevance, is used
to choose the links that must be explored first in order to find a CS from
the web pages pointed by them. This process is done by Algorithm 8.

Algorithm 8 Sort links

Input: A set of hyperlink nodes links and a reference hyperlink h.
Output: A sorted list of links with respect to the preorders ≤h

link and
≤N

DOM .

begin
sortedLinks = [];
while (links 6= ∅)

links ′ = {l ∈ links | @l ′ ∈ links ∧ l ′ <h
link l};

links = links\links ′;
sortedLinks ′ = [];
while (links ′ 6= ∅)

link = l ∈ links ′ | @l ′ ∈ links ′ ∧ l′ <sortedLinks′
DOM l;

links ′ = links ′\{link};
sortedLinks ′ = sortedLinks ′ ++ [link];

sortedLinks = sortedLinks ++ sortedLinks ′;
return sortedLinks;

end

Algorithm 8 combines link relevance and DOM relevance algorithms to
sort the links in the key page. First, it sorts the links in the order obtained
from the link relevance algorithm. Then, it uses the DOM relevance to sort
each set of links with the same link relevance value. The resulting order is
the concatenation of each sorted set.

140 Chapter 7. Candidates selection algorithms

Table 7.1 contains the links obtained from the news web page2 from the
Caltech University website. Note that their order is random because they
have been obtained with the links read-only property of de Document inter-
face3. Table 7.2 shows the result of sorting the same links with Algorithm 8.
Column Link d. shows the value obtained for hyperlink distance, while
Column DOM d. refers to the value obtained for DOM distance. Note that
they are sorted using hyperlink distance, obtaining 3 sets of links. Then,
the links in each of the sets are sorted using the DOM distance. As we can
observe in the table, the combination of both sorting algorithms produces
the final order of the links. For instance, all the links with a hyperlink
distance equal to 0 are then ordered based on their DOM distance, in order
from highest to lowest. This is then repeated for the links with positive hy-
perlink distance, and finally for those with negative hyperlink distance. As
we can observe in the table, the first URL of each hyperlink distance group
has no value for its DOM distance. This is produced because, as stated
before, the DOM distance is computed as the distance from a hyperlink to
the other already sorted links of the same hyperlink distance group. When
the number of sorted links of each hyperlink distance group is zero, it is not
possible to compute the distance between each link and the already sorted
links. Therefore, the first link of each hyperlink distance group is selected
randomly. Then, when a hyperlink distance group has one or more sorted
links, the following links are sorted using the DOM distance.

Algorithm 9 explores the links in the key page following the order ob-
tained by Algorithm 8 to find a CS. Function loadWebPage(link) is a triv-
ial function that, given the input link, it loads and returns the web page
it points to, while getLinks(webpage) returns a set of non-repeated links4

in the input web page (without considering self-links). The algorithm it-
eratively explores the links contained in the set sortedLinks, which is the
result of sorting the links in the key page using link relevance and DOM
relevance. When a n-CS is found the algorithm stops. It is important to
remark that only the web pages processed until the n-CS is completed are
loaded. The following mathematical expression is the key of the algorithm:

CS = {ls ∈ P(processedLinks) | link ∈ ls ∧ ∀l, l′ ∈ ls . (l→ l′), (l′ → l) ∈
connections}

where P(X) returns all possible non-empty partitions of set X.

2https://www.caltech.edu/about/news
3https://developer.mozilla.org/en-US/docs/Web/API/Document/links
4In our implementation, those links pointing to other domains or subdomains were

removed because they have a very low probability of containing the same template.

7.2. Identifying web pages that implement the same template 141

Hyperlink

https://www.caltech.org/about/visit/plan-your-visit
https://www.caltech.org/quick-links-faculty
https://www.caltech.org/quick-links-students
https://www.caltech.org/quick-links-staff
https://www.caltech.org/quick-links-alumni
https://www.caltech.org/campus-life-events/caltech-today
https://www.caltech.org/
https://www.caltech.org/about
https://www.caltech.org/about/at-a-glance
https://www.caltech.org/about/legacy/history-milestones
https://www.caltech.org/about/legacy/historic-awards-honors
https://www.caltech.org/map/history
https://www.caltech.org/about/visit/directions
https://www.caltech.org/about/visit/campus-maps
https://www.caltech.org/about/visit/tours
https://www.caltech.org/about/offices-departments
https://www.caltech.org/research
https://www.caltech.org/research/jpl
https://www.caltech.org/research/centers-institutes
https://www.caltech.org/research/research-facilities
https://www.caltech.org/research/faculty-listing
https://www.caltech.org/academics
https://www.caltech.org/academics/resources/academic-calendar
https://www.caltech.org/admissions-aid
https://www.caltech.org/campus-life-events
https://www.caltech.org/campus-life-events/master-calendar
https://www.caltech.org/campus-life-events/emergency-information
https://www.caltech.org/media-contacts
https://www.caltech.org/rssfeeds
https://www.caltech.org/about/news/caltech-mourns-passing-manuel-manny-soriaga
https://www.caltech.org/about/news/what-it-be-caltech-seismologist-during-big-quake
https://www.caltech.org/about/news/caltechs-apollo-connection
https://www.caltech.org/about/news/performing-chemistry-floating-droplets
https://www.caltech.org/about/news/bronner-named-director-beckman-institute
https://www.caltech.org/about/news/hima-vatti-tapped-to-lead-caltechs-equity-and-title-ix-office
https://www.caltech.org/about/news/three-caltech-professors-receive-presidential-early-career-awards
https://www.caltech.org/about/news/ztf-spots-asteroid-shortest-year
https://www.caltech.org/about/news/edge-philosophy-and-physics
https://www.caltech.org/about/news/bioengineers-guide-design
https://www.caltech.org/about/news/seeing-farther-and-deeper-interview-katie-bouman
https://www.caltech.org/about/caltech-media
https://www.caltech.org/contact
https://www.caltech.org/claimed-copyright-infringement
https://www.caltech.org/privacy-notice

Table 7.1: Links obtained from a Caltech’s web page

Algorithm 9 uses this instruction to compute the set of all CS that can
be built using the current link. To ensure that we make progress, that is,
we do not repeat the same search of the previous iteration, the current link
must belong to the CS (link ∈ ls). Intuitively, if we find a n-CS without
the current link, then it implies that we have already found a n-CS in the
previous iteration. Therefore, we can avoid the sets of P(processedLinks)
that do not contain link because these sets were discarded in previous
iterations. Furthermore, as the CS is built incrementally, the statement

if |maximalCS | = n then return maximalCS

ensures that as long as an n-CS is built, it is returned.

142 Chapter 7. Candidates selection algorithms

Order Hyperlink Link d. DOM d.

1 https://www.caltech.org/about/at-a-glance 0 -
2 https://www.caltech.org/about/caltech-media 0 13
3 https://www.caltech.org/about/offices-departments 0 4
4 https://www.caltech.org/about/news/caltech-mourns-passing-manuel-manny-soriaga 1 -
5 https://www.caltech.org/about/legacy/history-milestones 1 17
6 https://www.caltech.org/about/visit/plan-your-visit 1 10
7 https://www.caltech.org/about/news/what-it-be-caltech-seismologist-during-big-quake 1 6
8 https://www.caltech.org/about/news/caltechs-apollo-connection 1 6
9 https://www.caltech.org/about/news/performing-chemistry-floating-droplets 1 6
10 https://www.caltech.org/about/news/bronner-named-director-beckman-institute 1 6
11 https://www.caltech.org/about/news/hima-vatti-tapped-to-lead-caltechs-equity-and-title-ix-office 1 6
12 https://www.caltech.org/about/news/three-caltech-professors-receive-presidential-early-career-awards 1 6
13 https://www.caltech.org/about/news/ztf-spots-asteroid-shortest-year 1 6
14 https://www.caltech.org/about/news/edge-philosophy-and-physics 1 6
15 https://www.caltech.org/about/news/bioengineers-guide-design 1 6
16 https://www.caltech.org/about/news/seeing-farther-and-deeper-interview-katie-bouman 1 6
17 https://www.caltech.org/about/visit/directions 1 6
18 https://www.caltech.org/about/legacy/historic-awards-honors 1 2
19 https://www.caltech.org/about/visit/campus-maps 1 2
20 https://www.caltech.org/about/visit/tours 1 2
21 https://www.caltech.org/quick-links-faculty -1 -
22 https://www.caltech.org/media-contacts -1 12
23 https://www.caltech.org/map/history -1 11
24 https://www.caltech.org/contact -1 10
25 https://www.caltech.org/academics/resources/academic-calendar -1 10
26 https://www.caltech.org/research/jpl -1 9
27 https://www.caltech.org/campus-life-events/master-calendar -1 8
28 https://www.caltech.org/admissions-aid -1 6
29 https://www.caltech.org/ -1 5
30 https://www.caltech.org/about -1 4
31 https://www.caltech.org/research -1 4
32 https://www.caltech.org/academics -1 4
33 https://www.caltech.org/campus-life-events -1 4
34 https://www.caltech.org/research/centers-institutes -1 4
35 https://www.caltech.org/research/research-facilities -1 4
36 https://www.caltech.org/research/faculty-listing -1 4
37 https://www.caltech.org/campus-life-events/caltech-today -1 4
38 https://www.caltech.org/campus-life-events/emergency-information -1 4
39 https://www.caltech.org/quick-links-students -1 2
40 https://www.caltech.org/quick-links-staff -1 2
41 https://www.caltech.org/quick-links-alumni -1 2
42 https://www.caltech.org/rssfeeds -1 2
43 https://www.caltech.org/claimed-copyright-infringement -1 2
44 https://www.caltech.org/privacy-notice -1 2

Table 7.2: Order obtained from a Caltech’s web page

Figure 7.5 shows the news web page from the Caltech University website
and the result of computing a complete subdigraph of size 4 (4-CS). The
links that form the 4-CS are:

• https://www.caltech.org/about/at-a-glance

• https://www.caltech.org/about/offices-departments

• https://www.caltech.org/about/legacy/history-milestones

• https://www.caltech.org/about/visit/plan-your-visit

Note that the links are located at the top positions in Table 7.2, con-
cretely they are located at the first 6 positions. This means that it has
been possible to build a 4-CS with the first 6 links in Table 7.2. There are
2 links in those first 6 positions that do not form a complete subdigraph
with the others. Despite the fact that from the web pages pointed by those

7.3. Implementation 143

Algorithm 9 Extract an n-CS from a website

Input: An initialLink that points to a web page and the expected size
n of the CS.
Output: A set of links to web pages that together form an n-CS.

If an n-CS cannot be formed, then they form the biggest m-CS
with m < n.

begin
keyPage = loadWebPage(initialLink);
reachableLinks = getLinks(keyPage);
processedLinks = ∅;
connections = ∅;
bestCS = ∅;
sortedLinks = sortLinks(reachableLinks, initialLink);
foreach (link in sortedLinks)

webPage = loadWebPage(link);
existingLinks = getLinks(webPage) ∩ reachableLinks;
processedLinks = processedLinks ∪ {link};
connections = connections ∪{(link → existingLink) | existingLink ∈

existingLinks};
CS = {ls ∈ P(processedLinks) | link ∈ ls∧∀l, l′ ∈ ls . (l→ l′), (l′ →

l) ∈ connections};
maximalCS = cs ∈ CS such that ∀cs′ ∈ CS . |cs| ≥ |cs′|;
if |maximalCS | = n then return maximalCS ;
if |maximalCS | > |bestCS | then bestCS = maximalCS ;

return bestCS ;
end

2 links all the web pages in the 4-CS can be reached, the web pages in the
4-CS do not contain any link to them, so they can not form a CS.

7.3 Implementation

As with the rest of the techniques presented in this thesis, this technique
for candidates selection (including all its algorithms) has been implemented
as a WebExtension. The extension is implemented in JavaScript and it
contains about 2500 LOC.

Section 12.2 introduces a workbench for Template Detection. It pro-
vides four common modules that can be used by any template detection

144 Chapter 7. Candidates selection algorithms

Figure 7.5: Key page (left) and a CS set of web pages (right) automatically
identified with the tool

algorithm if needed. Two of those modules are the hyperlink analysis and
complete subdigraph extraction algorithms described in this chapter. As
we can observe in Figure 12.2, the algorithms presented in this chapter
form the detection of candidates phase of the workbench. The input of this
phase is the key page and the web pages pointed by its hyperlinks, while
the output is the complete subdigraph.

7.3.1 Empirical evaluation

This chapter presents the candidates selection technique in an abstract
way. Some ideas and definitions such as DOM distance, hyperlink distance
and the influence of the main menu links in sharing the template can be
demonstrated empirically. In addition, other features, such as the size of the
CS, are parameters of some algorithms. For instance, the computation of a
CS (Algorithm 9) can be done of any specified size if there exist enough web
pages mutually linked. This section empirically validates some premises
used to develop the algorithms. Moreover, the optimal size of the CS is
determined based on the empirical evaluation.

It should be highlighted that some restrictions have been applied to
the domain boundaries of the analyzed websites. It is usual to find web
pages of different domains, from the same or different organizations, mu-
tually linked. In this case, the templates are often different. Note that the
algorithm cannot find the same template across different domains. Hence,
external domains have been omitted when computing the CS.

To validate the proposed statements and determine the parameters the
training subset of the TeCo benchmark suite (formed by 105 websites) has

7.3. Implementation 145

been used. As Chapter 13 describes and Table 5.3 shows, this training sub-
set consists of 21 randomly selected benchmarks from 5 different categories.

Main menu links influence

Idea 7.2.1 was validated using the training dataset to compute the sim-
ilarity between the key page’s template and the template of each web page
pointed and not pointed by the main menu. The total sample was formed
from 1838 web pages pointed from the menu and 2944 web pages not
pointed from the menu of their respective key page. It should be high-
lighted that we selected a maximum of 40 web pages of each type (pointed
or not pointed by the menu) per benchmark. The achieved results are
shown in Figure 7.6.

Figure 7.6: Similarity between the key page and the web pages pointed and
not pointed by the menu

The chart illustrates that the web pages pointed by the main menu more
likely share the template with the key page. The bars represent the recall,
which is the average number of DOM nodes in the key page’s template that
appear in the explored web pages. The average recall obtained by the web
pages pointed by the menu was 87.88%, while the average recall obtained
by the web pages not pointed by the menu was 85.09%.

Table 7.3 shows the results grouped by benchmark type. In the table,
column Benchmark type shows the corresponding benchmark type. Col-
umn Recall is the average recall computed for all the pointed web pages of
each benchmark type. Finally, column Avg. web pages shows the average
number of web pages analyzed for each benchmark.

146 Chapter 7. Candidates selection algorithms

Menu Not menu
Benchmark type Recall Avg. web pages Recall Avg. web pages

Institutions / Associations 93.67 % 22.05 90.19 % 13.77
Media / Communication 82.44 % 22.59 87.51 % 26.67
Forums /Social 79.78 % 22.00 80.12 % 108.90
Personal websites / Blogs 90.98 % 11.82 81.01 % 10.00
Companies / Shops 91.83 % 23.05 88.80 % 19.77

Table 7.3: Menu links influence by benchmark type

It can be observed that for the Media / Communication and Forums
/ Social benchmark types, the web pages not pointed by the main menu
more likely share the template with the key page. On the other side, for
the rest of the benchmark types, the web pages pointed by the main menu
more likely share their template with the key page.

Web page location influence

Idea 7.2.4 was also validated using the TeCo training dataset. A maxi-
mum of 40 hyperlinks per benchmark were selected, and then, the mapping
between the key page of each website and the web pages pointed by its
links was computed. In Table 7.4 and Figure 7.7 we can observe the rela-
tion between the hyperlink distance and the recall. In the table, column
URL distance ranges between -7 and 5, however, URL distances lower than
-4 are not representative because very few benchmarks contain web pages
with such URL distances. For each URL distance value, column Recall

represents the average recall computed for all the web pages with such
value. Finally, column #Benchmarks shows the number of benchmarks that
contains analyzed hyperlinks of each URL distance.

We can observe in the chart (Figure 7.7) that the recall is higher for
the positive values than for the negative ones, except for the URL distance
value of -3. This fact validates the Idea 7.2.4 which asserts that web pages
located in the same folder probably share the same template. The case of
the URL distance value of -3 is not as representative as the URL distances
that range between -2 and 3, because it is computed only with web pages
from 6 benchmarks, while the values that range between -2 and 3 are based
on at least 2.5 times more web pages.

DOM distance influence

The TeCo training dataset was also used to validate Idea 7.2.7. We
selected a maximum of 40 hyperlink DOM nodes from each key page in

7.3. Implementation 147

URL distance Recall #Benchmarks

-7 0.64% 1
-6 78.00% 1
-5 45.40% 2
-4 74.86% 4
-3 96.17% 6
-2 68.45% 21
-1 82.07% 43
0 89.17% 65
1 82.15% 31
2 86.36% 23
3 83.81% 16
4 83.99% 4
5 86.38% 5

Table 7.4: Relationship between hyperlink distance and recall

Figure 7.7: Graphical representation of Table 7.4

the dataset, and for each benchmark, we measured the Recall obtained by
mapping its key page with each web page pointed by each hyperlink.

Table 7.5 and Figure 7.8 present the results of the experiment. In the
table, column Distance shows the DOM distance. Column Recall is the
average recall computed for all the pointed web pages of each benchmark
type. Finally, column #Benchmarks shows the total number of benchmarks
where we found hyperlink DOM nodes with that DOM distance. Note that,
as commented above, a maximum of 40 hyperlink DOM nodes per key page
were selected.

The chart on Figure 7.8 shows that, despite there are no relevant dif-
ferences between the obtained recall values, higher DOM distance values
have slightly higher recall values than lower DOM distance values. There-
fore, the similarities between the template implemented by the web pages

148 Chapter 7. Candidates selection algorithms

pointed by two hyperlinks are accentuated by the DOM distance between
them.

Distance Recall #Benchmarks

2 63.87% 2
4 89.09% 11
5 96.07% 6
6 96.93% 9
7 97.57% 6
8 99.55% 8
9 81.46% 7
10 97.10% 11
11 93.85% 7
12 88.71% 10
13 83.80% 6
14 72.76% 8
15 89.89% 11
16 84.72% 7
17 84.23% 5
18 95.98% 2
19 98.00% 1
20 82.37% 2
21 83.08% 4
22 98.00% 1
23 98.00% 1
27 100.00% 1
29 98.00% 1
34 98.00% 1

Table 7.5: Relationship between DOM distance and template distance

Comparison with other candidates selection methods

As stated in Section 10.1, there are several approaches to build the
set of web pages from which the site-level techniques extract the necessary
information to achieve their objective. For instance, some programmers
input the web pages manually ([83, 54]), other techniques use random web
pages as input ([114, 120]), etc. In addition, we have demonstrated that
the web pages linked from the main menu of the web page more likely
implement the template (Idea 7.2.1). Therefore, we implemented several
different methods for selecting the set of web pages in order to compare
with them the hyperlink analysis technique described in this chapter. The
implemented methods are:

• Selecting the candidate web pages randomly.

• Selecting as candidates only web pages that belong to the main menu.

7.3. Implementation 149

Figure 7.8: Graphical representation of Table 7.5

• Selecting as candidates web pages that do not belong to the main
menu.

• Selecting the candidates using our hyperlink analysis algorithm.

We evaluated the different candidate selection methods with our tem-
plate detection algorithm (see Chapter 9) using the 105 benchmarks of the
TeCo benchmark suite (see Chapter 13). The obtained results are pre-
sented in Table 7.6. We can observe that our hyperlink analysis method
obtains the best recall and the best F1 value, while selecting random links
obtain the best precision. From the table we can also infer that a candi-
dates selection technique has to combine both, links from the main menu
and links that do not belong to it, because selecting only links that belong
to the main menu or only links that do not belong to it are the methods
that obtain the worse results.

Determining the size of the complete subdigraph

It is important to determine the optimal size of the CS computed by
Algorithm 9. On the one hand, we could think that the bigger the CS

150 Chapter 7. Candidates selection algorithms

Method Recall Precision F1

Random links 87.64 % 90.74 % 85.31 %
Links from menu 87.04 % 87.49 % 83.69 %
Links not from menu 86.10 % 88.11 % 82.56 %
Hyperlink analysis 92.16 % 90.21 % 88.66 %

Table 7.6: Comparison of different candidate selection methods

is, the better because it provides more information since it contains more
web pages. On the other hand, the cost of computing the maximal CS is
exponential in the worst case5, so it is important to determine an optimal
CS size. In addition, experiments reveal that an increase in the CS size
does not imply obtaining better precision or recall. Therefore, it is more
convenient to find a CS of a big enough size to ensure good precision, but
small enough to ensure good performance.

It should be highlighted that the optimum CS size also depends on the
block detection algorithm that uses it, e.g. a template detection algorithm
can obtain better results with a CS of size 3, while another can obtain
better results with a CS of size 4.

We performed several experiments to determine the optimum CS size for
the template detection algorithm described in Chapter 9, which implements
this technique to select the candidate web pages. In order to determine the
best value, the experiments were repeated with different CS sizes (from 1
to 8). Table 7.7 presents the obtained results.

Size Recall Precision F1 Loads Runtime

1 83.69 % 82.59 % 76.21 % 2.00 1303 ms.
2 91.92 % 83.69 % 84.45 % 8.86 2305 ms.
3 91.14 % 94.37 % 91.33 % 12.63 3378 ms.
4 91.67 % 93.51 % 91.15 % 18.11 4555 ms.
5 91.23 % 94.13 % 91.25 % 26.74 6467 ms.
6 91.39 % 93.92 % 91.22 % 28.66 6998 ms.
7 90.57 % 94.52 % 91.06 % 30.11 7596 ms.
8 91.99 % 93.06 % 91.37 % 32.71 7851 ms.

Table 7.7: Determining the size of the complete subdigraph

To perform the experiments, we selected 35 benchmarks (7 from each
category) from the training subset of the TeCo benchmark suite (see Chap-

5Even though the worst case complexity is of exponential order; in practice, most web
pages contain menus that form CSs and that are easy to discover. For this reason, in
Table 7.7 we can observe a linear increment in the performance.

7.4. Conclusions 151

ter 13). In Table 7.7, each row is the average of 35 template extractions
from the selected training dataset with a different value for n in the n-CS
computed by Algorithm 9.

The meaning of each column is:

Size: indicates the size of the CS computed by Algorithm 9 in the websites
of the training dataset. It is possible that a CS of the searched size
does not exist. In this case, as described in Algorithm 9, the algorithm
computes the largest CS with a size under the specified size.

Recall: shows the result of dividing the number of correctly retrieved
nodes by the number of nodes in the gold standard.

Precision: shows the result of dividing the number of correctly retrieved
nodes by the number of retrieved nodes.

F1: shows the F1 metric.

Loads: represents how many web pages were loaded in average to build
the n-CS. This value also includes the load of the key page.

Runtime: shows the runtime of the template extraction algorithm with
that complete subdigraph.

We can observe that the F1 grows until it gets stabilized at a value
of 91% approximately for a CS of size 3. The F1 values for a CS of size
greater than 3 are very similar, so the increment of the size of the CS
does not necessarily increase the F1 value, but contrarily, it increases the
number of web pages loaded to build the CS and thus, the computation
time, as we can observe in the table. Consequently, the optimal size for a
complete subdigraph is 3 because it obtains almost the best F1 value while
its computation time is efficient. Note that the algorithm needs to load
potentially fewer web pages than in a size bigger than 3. Note that for a
CS size of 8 the F1 is 0.04 % higher, but the runtime is also more than 2
times higher so a CS of size 3 is more convenient.

7.4 Conclusions

Site-level block detection algorithms are widely used. This chapter presents
a new technique for detecting the candidate web pages that should be
analyzed to extract the desired information. A set of web pages from a
website sharing the same template is a very valuable source of information

152 Chapter 7. Candidates selection algorithms

not only for template extraction techniques but also for content extraction
or another kind of block detection techniques. Given a web page, it is
important to select a set of web pages that very likely implement the same
template. The described technique proposes a new method to build a set of
candidate web pages that provides the relevant information needed by site-
level block detection techniques. In addition, for performance reasons, the
number of loaded web pages to build the set of candidate web pages must be
reduced as much as possible. The technique was evaluated with the TeCo
training set of benchmarks (see Chapter 13). The empirical evaluation
concluded that building a complete subdigraph of size 3 is optimal for
the template detection algorithm in Chapter 9 since a greater complete
subdigraph does not obtain significantly better metric values and has a
higher runtime.

For future work, a strategy to further reduce the number of web pages
loaded with the technique could be investigated. The combination of this
technique with the menu detection technique presented in Chapter 5 is
an interesting research opportunity. Despite we have demonstrated that a
candidates selection strategy based only on the links from the main menu
is not the best option, a combination of both techniques could achieve
good results with a reduced computational cost since the presented menu
detection technique is page-level while the obtained set of web pages is a
complete subdigraph.

7.5 Contributions

The candidate selection algorithms presented in this chapter provide several
contributions that can be included in many systems, especially in site-level
block detection techniques.

This chapter describes the hyperlink distance and DOM distance al-
gorithms, which have been demonstrated to be accurate to establish an
order of relevance of the links of a web page (the key page). Namely, the
order of relevance sorts the links of a web page based on the probability of
the pointed web pages implementing the same template of the key page.
This has been evaluated with an empirical evaluation of both algorithms,
hyperlink distance and DOM distance.

The implementation of the proposed technique as an independent mod-
ule is also an important contribution. The module is part of a block de-
tection architecture, so it can be used by many site-level block detection
techniques.

Chapter 8

Equal Top-Down Mapping

As described in Chapter 7, in site-level block detection techniques, the infor-
mation identified by canditates selection algorithms needs to be analyzed to
extract the desired block, normally the template or the main content. This
information consists of a set of web pages from a website that implement
the same template.

The obtained set of web pages is processed in order to identify the
desired block (normally the template implemented by them). Usually, the
analysis of the set of web pages is done by comparing their DOM nodes
to identify those which are repeated in several web pages. It should be
highlighted that both techniques (the algorithm described in Chapter 7
and this one) are not always sequential, indeed, they are often interlaced.

This chapter defines a mapping algorithm that compares the DOM trees
of the web pages identified by a candidates selection algorithm to identify
the template.

8.1 Related Work

Site-level block detection techniques in literature implement several ways
to infer the desired information block from the set of web pages obtained by
the candidates’ selection algorithm. However, not all of them are based on
comparing the DOM nodes of the web pages in the set. For instance, some
of them analyze the DOM tree with heuristics [19], while others analyze the
DOM trees of a collection of web pages in the website to detect common
subtrees [120, 114].

Authors in [120] build a data structure called Site Style Tree (SST)
to analyze a set of DOM trees obtained from several web pages from the
same website. An SST collects data from all the DOM nodes of the analyzed
DOM trees. The SST is similar to a DOM tree; but, in contrast, it contains
all the DOM nodes of the analyzed web pages. A node in the SST includes

153

154 Chapter 8. Equal Top-Down Mapping

counters to identify repeated nodes in the DOM trees. In a nutshell, it is a
kind of summary of the set of DOM trees. As the SST contains information
about the most repeated nodes in a website, and the most repeated nodes
in all the analyzed web pages most likely belong to the template, the most
repeated nodes in the SST form the noisy information to be removed.

The described technique is similar to [114]. They perform mappings
between several DOM trees corresponding to a set of web pages from a
website. The main purpose of their mappings is to identify repeated nodes
in several web pages. They use an algorithm called RTDM-TD that com-
putes a mapping called restricted top-down mapping [94] between several
web pages from the same website. There exist some differences between
their technique and the technique presented in this chapter. The main dif-
ference is that their mapping does not force all nodes that form pairs in
the mapping to be equal, so it is less restrictive.

The evolution of [114] is a mapping called RBM-TD proposed in [113]
by the same authors. This mapping is similar to RTDM-TD, but the main
difference is that it is a bottom-up mapping and RTDM-TD is top-down.
One of the new features of this mapping is that it considers that the subtrees
which are repeated in all web pages have to be exactly in the same position,
that is, the DOM path from the root node to them must be the same for
all web pages.

8.2 Comparing DOM nodes

Chapter 7 describes a technique that, given a web page called key page,
analyzes a website and builds a set of web pages that share the whole
template or part of it. This set of web pages forms a complete subdigraph.

Site-level block detection techniques obtain valuable information by
comparing the DOM nodes of the set of selected web pages. For instance,
a DOM node from the key page that appears in all web pages of the set
probably belongs to the template of the website. In contrast, a node from
the key page that only appears on it has a high probability of being a main
content node.

8.2.1 Template extraction from a complete subdigraph

The DOM nodes in the DOM trees that form the CS must be compared in
order to identify which of them appear in several DOM trees. This compar-
ison is based on the notion of mapping. A mapping states a correspondence
between the nodes of two DOM trees.

8.2. Comparing DOM nodes 155

The following mapping, named equal top-down mapping (ETDM) (see
Figure 8.1), is defined to perform the comparison of the DOM nodes in the
DOM trees.

BODY

TABLE

TABLE

P

DIV

P

HTML

BODY

TABLE

TABLE

P

DIV

P

HTML

Figure 8.1: Equal top-down mapping between DOM trees

Definition 4.2.7 corresponds to the ETDM. It should be noted that the
definition is parametric with respect to the equality relation , because the
relation is open to cover any possible implementation. Thus, this relation
is not a simple standard equality (=). This technique introduces a complex
notion of node equality that performs the comparison of two DOM nodes
by considering the following properties:

• HTML tagName: The algorithm checks if both DOM nodes contain
the same HTML tagName. If they share the same HTML tagName,
the rest of the properties can be evaluated. Otherwise, both nodes
can not be mapped.

• Node class names: The classes (HTML attribute class) of both DOM
nodes are analyzed to compute the percentage they both share. For
instance, if the node n1 shares half of its classes with n2, the value of
this property is 0.5.

• Node position: The position of both nodes, n1 and n2, in the DOM
tree is compared. The value of this property is 1 if both nodes are
located at the same position and it decreases to 0 the further they
are in the DOM tree.

Example 8.2.1 Figure 8.2 shows two DOM nodes, A and B, with
the same amount of children. The position computation algorithm for

156 Chapter 8. Equal Top-Down Mapping

their child nodes will obtain the values shown in Table 8.1.

A

A2 A3A1A0 A4

B

B2 B3B1B0 B4

Figure 8.2: Nodes with the same amount of children

Node A0 A1 A2 A3 A4

B0 1 0.8 0.6 0.4 0.2

B1 0.8 1 0.8 0.6 0.4

B2 0.6 0.8 1 0.8 0.6

B3 0.4 0.6 0.8 1 0.8

B4 0.2 0.4 0.6 0.8 1

Table 8.1: Position value when nodes have the same number of siblings

Example 8.2.2 Figure 8.3 shows two DOM nodes, A and B. DOM
node A has 5 children while DOM node B has 4. The position com-
putation algorithm for their child nodes will obtain the values shown
in Table 8.2.

A

A2 A3A1A0 A4

B

B2 B3B1B0

Figure 8.3: Node A with more children than B

Example 8.2.3 Figure 8.4 shows two DOM nodes, A and B. DOM
node B has 4 children while DOM node B has 5. The position com-
putation algorithm for their child nodes will obtain the values shown
in Table 8.3.

8.2. Comparing DOM nodes 157

Node A0 A1 A2 A3 A4

B0 0.8 0.8 0.8 0.6 0.4

B1 0.6 0.6 0.8 0.8 0.6

B2 0.4 0.4 0.6 0.8 0.8

B3 0.2 0.2 0.4 0.6 0.8

Table 8.2: Position value when DOM node A has more children

A

A2 A3A1A0

B

B2 B3B1B0 B4

Figure 8.4: Node B with more children than A

Node A0 A1 A2 A3

B0 1 0.75 0.5 0.25

B1 1 1 0.75 0.5

B2 0.75 1 1 0.75

B3 0.5 0.75 1 1

B4 0.25 0.5 0.75 1

Table 8.3: Position value when DOM node B has more children

• HTML attributes: The percentage of HTML attributes shared by
both DOM nodes is computed. For instance, if all the attributes of
node n1 are contained by node n2, the value of this property is 1.

• Node children: The algorithm counts the number of children of both
nodes to compute a relation between them. For instance, if n1 has
4 children and n2 has 2 children, as n2 has half of the children of n1

the value of this property is 0.5.

The value of the equality relation , between two DOM nodes is com-
puted using the combination of the values obtained for each property, ex-
cept for the HTML tagName, which has to be the same in both DOM nodes.
However, it is possible that not all the properties have the same weight in

158 Chapter 8. Equal Top-Down Mapping

the relation ,, a ponderation based on experimentation should be estab-
lished for each of the 4 last properties (all except HTML tagName). Then,
the sum of the pondered values produces a value between 0 and 1 for the
relation ,, which is also a parameter. Therefore, in the comparison of two
DOM nodes, n1 and n2, a threshold should be established for the value of
the relation ,. The template extraction experiments described in Section
8.3 show the values obtained for the 4 properties and for the relation ,.

Compared to other mapping algorithms such as, e.g., the restricted top-
down mapping (RTDM) described in [94], this mapping is more restrictive.
For example, while RTDM can map different nodes (e.g., a node with the
tagName div with a node with the tagName section), the pairwise mapped
nodes with ETDM are forced to have the same tagName.

For instance, the example in Figure 8.1 shows an ETDM which uses:
n , n′ based only on the tagName of n and n′.

Once the CS is built, the algorithm identifies an ETDM between the
key page and the web pages from the CS. This process considers that the
template is initially empty. Then, the ETDM is iteratively computed be-
tween the key page and v web pages in the CS, being v the number of votes
which are needed to consider a node as part of the template. Note that
the maximum number in the CS is n, that is, n ≤ v. Finally, the obtained
DOM tree is a template that includes all those nodes of the key page which
appear in at least v other web pages of the CS. The described process is
formalized in Algorithm 10, which computes the biggest ETDM between a
set of DOM trees through the function ETDM . The algorithm contains a
loop (foreach ({p1 . . . pv} in P)) that iterates over all the partitions of P
that can be formed with v pages. Then, the algorithm computes an ETDM
between the key page and those web pages. Note that the recursive func-
tion ETDM traverses the DOM trees top-down selecting all those nodes
computed as equal using the equality relation ,. It should be highlighted
that, given two web pages, function ETDM maps only one node from the
first web page with one node of the second. That is, given two web pages
p1 = (N1, A1), p2 = (N2, A2), only one node n1 ∈ N1 satisfies n1 , n2 for a
given n2 ∈ N2. In the case that ∃ n1, n

′
1 ∈ N1, n2 ∈ N2 . n1 , n2 ∧ n′1 , n2,

then, the algorithm should implement an additional mechanism to ensure
the selection of only one node (either n1 or n′1).

As stated above and in Definition 4.2.7, the equality relation , in Algo-
rithm 10 has been left as a parameter. Therefore, researchers can establish
the relation of equality between two DOM nodes depending on their needs.
For instance, a researcher can establish that two nodes are the same if they
share the same tagName and position, while another researcher can en-

8.3. Implementation 159

Algorithm 10 Extract a template from a set of web pages

Input: A key page pk = (N,A), a set P of n web pages, and the number
of votes v needed for a node to be considered template.
Output: A template for pk with respect to P and v.

begin
template = (Nt, At) = (∅, ∅);
foreach ({p1 . . . pv} in P)

if root(pk) , root(p1) , . . . , root(pv)
(N ′, A′) = ETDM (pk, p1, . . . , pv);
(Nt, At) = (Nt ∪N ′, At ∪A′);
template = (Nt, At);

return template;
end

function ETDM (tree T0 = (N0, A0), tree T1 = (N1, A1), . . . , tree Tv =
(Nv, Av))
r0 = root(T0); r1 = root(T1); . . . ; rv = root(Tv);
nodes = {r0};
edges = ∅;
foreach n0 ∈ N0, . . ., nv ∈ Nv . n0 , . . . , nv, (r0, n0) ∈ A0, . . .,

(rv, nv) ∈ Av

(nodes st, edges st) = ETDM (subtree(n0), . . . , subtree(nv));
nodes = nodes ∪ nodes st;
edges = edges ∪ edges st ∪ {(r0, n0)};

return (nodes, edges);
end function

hance the restriction by considering also the className of the DOM node.
Besides, the configuration of the equality relation , has an impact on the
recall and the precision of the technique. In fact, the more restrictive the
equality relation , is, the more precision (and less recall).

8.3 Implementation

This mapping algorithm has been implemented as a module of the block
detection architecture described in Section 12.2, which includes the building
of a CS, the ETDM algorithm, etc. The mapping module can be used by
any block detection technique to infer the desired block. For instance, it is

160 Chapter 8. Equal Top-Down Mapping

used by the template detection technique described in Chapter 9 (TemEx),
and the content extraction technique explained in Chapter 10 (ConEx).

As shown by the following 2 chapters, both techniques (TemEx and
ConEx) include the ETDM and have been implemented as a WebExtension.

The empirical evaluation of the ETDM in this chapter refers to the
template detection algorithm in Chapter 9. The content extraction algo-
rithm in Chapter 10 also includes the empirical evaluation of the ETDM
(see Section 10.3.1).

8.3.1 Empirical evaluation

The theoretical formalization of the algorithm reveals some parameters that
have been left open (the size of the CS, the number of votes, the weight
of the properties of the equality relation ,, and the threshold of the value
of the equality relation ,). This section computes the value of all these
parameters based on experimental analysis.

First of all, the parameter n as the optimal size of the CS, and the
parameter v as the number of votes needed to state a node as part of the
template should be computed. Once the values n and v are computed, the
weight of the different properties that form the equality relation , has to
be estimated. Finally, a value is needed to determine the threshold t of the
equality relation ,. Then, if n1 , n2 ≥ t both nodes are equal.

Determining the values of n and v

Algorithm 9 in Chapter 7 explores the sorted list of hyperlinks on the
key page (output of Algorithm 8) to extract an n-CS containing n mutually
linked web pages. As stated in Chapter 7, it is important to determine the
optimal size of n because the larger the CS is, the more time is needed
to compute the CS and execute the ETDM. In addition, experiments in
Section 8.3 of Chapter 7 reveal that a larger CS does not guarantee better
template extraction results.

On the other hand, the number of web pages that must contain a DOM
node to consider it as part of the template (parameter v) has to be com-
puted. The value of v is highly related to n. That is, a high value of v, near
to n is probably excessively restrictive due to it forces a node to appear in
almost all web pages of the CS to consider it as a template node. However,
a low value of v could be insufficient due to it can consider almost all nodes
in all web pages of the CS as template nodes.

8.3. Implementation 161

Determining the values of the properties of the equality relation

Section 8.2 considers 5 properties of the DOM nodes whose combination
produces a value for the equality relation ,. Not all these properties have
the same value. For instance, HTML tagName is a required property. That
is, both nodes must share their tagName in order to be mapped. The rest of
the properties are ponderated through experimentation to determine their
weight in the equality relation ,. That is, the sum of the 4 ponderated
values establishes another value corresponding to the equality relation ,.

Determining the equality relation threshold parameter

Function ETDM in Algorithm 9 computes the equality relation , of
the nodes of the DOM trees that belong to the CS. It explores top-down
the DOM trees of the web pages in the CS and compares their nodes with
the nodes in the DOM tree. The equality relation , of two nodes n1 and
n2 considers that both nodes are equal if n1 , n2 ≥ t, being t a threshold
parameter, which takes a value between 0 and 1. If t is not a parameter,
both nodes would need to have exactly the same properties to be equal.
For instance, to be equal, two nodes n1 and n2 would need to have the
same HTML tagName, node position, node class names, number of children
and HTML attributes (considering that all properties are relevant for the
algorithm).

Computing the parameters

The best combination of values was computed for all the parameters of
the algorithm: the values of n, v and t, and the weight of the properties
that form the equality relation ,. For this, the training method followed
these steps:

i. First, the training subset of 105 web pages of the TeCo benchmark
suite (see Chapter 13) was selected as input. Concretely the same
subset that was used in other algorithms (see, e.g., Chapters 5, 6,
and 10). Note that the benchmark suite is prepared for template
detection, among others. Then, the system was executed for several
combinations of parameters.

ii. Next, we proved the ETDM by performing several experiments with
the template extractor described in Chapter 9 which implements this
technique. The recall and precision were measured for each different
possible combination of values for the thresholds and properties.

162 Chapter 8. Equal Top-Down Mapping

iii. Finally, the best combination of thresholds and properties was se-
lected and evaluated against the evaluation subset of 45 web pages of
the benchmark suite.

As the benchmark suite is prepared for template detection, each bench-
mark is labelled with some HTML classes that indicate which parts of the
web page do not belong to the template. Therefore, any technique can
automatically validate its recall and precision.

First of all, the ideal size of the CS and the number of web pages
that must contain a DOM node to consider it as part of the template
were evaluated empirically. As in Section 8.3 of Chapter 7, we selected
35 benchmarks (7 from each category) from the 105 benchmarks of the
training subset of the TeCo benchmark suite (see Chapter 13). Results are
shown in Table 8.4. Note that it is the same table as Table 7.7, but it also
includes the Votes value.

Size Votes Recall Precision F1 Loads Runtime

1 1 83.69 % 82.59 % 76.21 % 1 1303 ms.
2 2 91.92 % 83.69 % 84.45 % 8.86 2035 ms.
3 2 91.14 % 94.37 % 91.33 % 12.63 3378 ms.
4 2 91.67 % 93.51 % 91.15 % 18.11 3309 ms.
5 3 91.23 % 94.13 % 91.25 % 26.74 6467 ms.
6 3 91.39 % 93.92 % 91.22 % 28.66 6998 ms.
7 4 90.57 % 94.52 % 91.06 % 30.11 7596 ms.
8 4 91.99 % 93.06 % 91.37 % 32.71 7851 ms.

Table 8.4: Determining the optimum size of the complete subdigraph

Each row in the table shows the average of the repetition of all the
experiments in the training subset of the benchmark suite using a different
value for n in the n-CS obtained by the algorithm, and using a different
value for all v < n. Thus, it summarizes the evaluation of all possible
combinations. Column Size is the parameter n (the size of the CS), and
column Votes is the best parameter v computed for each CS size. It is
possible that a CS of the searched size does not exist for some websites, in
that case the algorithm uses the biggest CS that can be built with a size
under the specified size. Column Loads is the average number of web pages
that need to be loaded to extract the template. It should be noted that it
includes the load of the key page. Column Runtime shows the runtime of
the algorithm relative to the selected options.

Table 8.4 shows that the best value for the size of the complete subdi-
graph is 3 (parameter n), because it gets almost the best F1 value while it

8.3. Implementation 163

is very efficient (it only needs to load 10 web pages in average to extract
the template). This result was also obtained in the empirical evaluation of
the candidates selection algorithms (see Section 7.3.1). For a n value of 3,
the best result is obtained with v equal to 2.

Then, the weight of each property of the equality relation , was com-
puted (, = A∗Node position +B∗Node class names +C ∗Node children +
D ∗ HTML attributes), where A + B + C + D = 1). All the experiments
were repeated with the following possible values for the weightings used:

Node position: [0.00− 1.00] in steps of 0.1.
Node class names: [0.00− 1.00] in steps of 0.1.
Node children: [0.00− 1.00] in steps of 0.1.
HTML attributes: [0.00− 1.00] in steps of 0.1.

In addition, the threshold of the equality relation , (t) was also evaluated
for each possible weighting with the following values:

, t: [0.10− 1.00] in steps of 0.10.

Finally, it should be highlighted that the computation of the Node position
value can be done in four ways:

• Option 1: Once the mapping algorithm maps two nodes, the Node
position value of their sibling nodes is computed again. In addition,
this option considers the position of the matched nodes in the com-
putation of the Node position values for their sibling nodes, namely,
it two nodes n0 and n1 have been paired, it is not possible to pair a
sibling node located on the left side of n0 with a sibling node located
on the right side of n1 (and vice versa). This process is repeated until
there is not possibility of match with the remaining nodes.

• Option 2: This option is similar to Option 1, that is, once two DOM
nodes are mapped, the Node position value of their sibling nodes is
computed again. In this case, the position of the matched nodes is
considered in the computation of the Node position values for their
siblings even if it is not restrictive. Hence, if two nodes n0 and n1

have been paired, it is possible to pair a sibling node located on the
left side of n0 with a sibling node located on the right side of n1 (and
vice versa), but their Node position value is equal to 0. This process
is also repeated until it is not possible to obtain a match with the
remaining nodes.

164 Chapter 8. Equal Top-Down Mapping

• Option 3: In this option, after the mapping of two nodes, the al-
gorithm recomputes the Node position value for their sibling nodes,
but in this case, their Node position value is not influenced by their
position with respect to the previously mapped nodes. For instance,
if two nodes n0 and n1 have been paired, the Node position value
of their sibling nodes is normally computed, regardless their relative
position to n0 and n1. This process is repeated after each mapping
until there is not possibility of match with the remaining nodes.

• Option 4: The last option does not consider the previously mapped
nodes in the computation of the Node position value. In this case,
when the algorithm starts the mapping process, it computes the Node
position value of the nodes, and the obtained number is not changed
during the mapping process despite the obtained pairs. For instance,
if the algorithm has to map the children of a DOM node n0 with the
children of another node n1, it will initially compute the Node position
value that will not be recalculated during the mapping process.

Note that the attribute HTML tagName has not been included in the list
because both nodes have to share the same HTML tag name to be mapped.
Table 8.5 presents the best 20 computed combinations after evaluating all
possibilities against the training subset of the TeCo benchmark suite (see
Chapter 13). It summarizes many experiments, since each row in the table
corresponds to the average of 105 template extractions from 105 different
web pages. The first 4 columns correspond to the weight of the 4 previously
described properties (Node position, Node class names, Node children, and
HTML attributes). Column , thres. shows the threshold of the equality
relation ,; column Option represents how the Node position value is com-
puted; columns Recall, Precision, and F1 are the recall, precision, and
F1 respectively. Finally, column Time indicates the average runtime of the
algorithm for this combination of parameters.

The combination of all parameters produced a total of 1201200 exper-
iments, which were performed to build the table with a total computing
time of approximately 63 days using an Intel i9 9900k.

The first row in the table was selected as the optimum combination of
parameters for the equality relation ,, as it is the fastest combination that
obtains the best F1 metric.

Finally, the following table summarizes the optimal parameters obtained
empirically:

8.4. Conclusions 165

Node class. Node pos. HTML att. Node ch. , thres. Option Recall Precision F1 Time

0.1 0.1 0.5 0.3 0.7 2 92.16 % 90.21 % 88.66 % 6870 ms.
0.1 0.4 0.0 0.5 0.9 3 90.44 % 92.07 % 88.64 % 9154 ms.
0.1 0.5 0.0 0.4 0.9 3 90.60 % 91.80 % 88.56 % 7955 ms.
0.1 0.5 0.1 0.3 0.9 3 90.60 % 91.72 % 88.47 % 8628 ms.
0.1 0.4 0.0 0.5 0.9 4 90.53 % 91.71 % 88.45 % 2865 ms.
0.1 0.5 0.0 0.4 0.9 4 90.69 % 91.45 % 88.38 % 2534 ms.
0.1 0.1 0.0 0.8 0.8 4 90.70 % 91.39 % 88.32 % 2510 ms.
0.1 0.1 0.2 0.6 0.8 4 90.70 % 91.41 % 88.31 % 2607 ms.
0.1 0.0 0.0 0.9 0.8 4 90.48 % 91.54 % 88.30 % 2798 ms.
0.1 0.5 0.1 0.3 0.9 4 90.67 % 91.38 % 88.30 % 3170 ms.
0.1 0.1 0.0 0.8 0.8 3 90.70 % 91.37 % 88.30 % 6609 ms.
0.1 0.0 0.0 0.9 0.8 2 90.48 % 91.54 % 88.30 % 7124 ms.
0.1 0.0 0.0 0.9 0.8 3 90.48 % 91.54 % 88.30 % 7996 ms.
0.1 0.1 0.2 0.6 0.8 3 90.69 % 91.37 % 88.29 % 6273 ms.
0.0 0.6 0.0 0.4 0.9 4 90.62 % 91.44 % 88.25 % 2581 ms.
0.1 0.0 0.4 0.5 0.8 4 90.47 % 91.47 % 88.23 % 3348 ms.
0.1 0.0 0.1 0.8 0.8 4 90.48 % 91.47 % 88.23 % 3353 ms.
0.1 0.0 0.4 0.5 0.8 3 90.47 % 91.47 % 88.23 % 6429 ms.
0.1 0.0 0.1 0.8 0.8 3 90.48 % 91.47 % 88.23 % 6780 ms.
0.1 0.0 0.4 0.5 0.8 2 90.47 % 91.47 % 88.23 % 6986 ms.

Table 8.5: Determining the best values of the equality relation , properties

CS size (n): 3.
Number of votes (v): 2.
Node class names: 0.10.
Node position: 0.10.
HTML attributes: 0.50.
Node children: 0.30.

, threshold (t): 0.70.
Option: 2.

Note that these parameters were obtained for both techniques (candi-
dates selection and ETDM) applied to template extraction. For content
extraction or other block detection techniques, as demonstrated in Sec-
tion 10.3.1, they could be different.

8.4 Conclusions

Site-level block detection algorithms obtain valuable information from com-
paring DOM nodes from different web pages from the same website. This
Chapter presents a new mapping called Equal Top-Down Mapping (ETDM)
useful to check whether two DOM nodes in two different web pages are the
same or not. Two DOM nodes are equal if they meet two conditions: they
are equal regarding the equality relation ,, and all their ancestors are
equal. In addition, it should be highlighted that the notion of node equal-
ity is based in some properties of the DOM nodes, such as their HTML
tagName, their position in the DOM tree, their class names, the number of
children they have, and their HTML properties. The combination of these

166 Chapter 8. Equal Top-Down Mapping

properties, as a sum of pondered values, produces a value for the equality
relation ,, which is also a parameter.

8.5 Contributions

The Equal Top-Down Mapping described in this chapter provide several
contributions that can be included in site-level block detection systems.

The chapter introduces the concept of ETDM, where two nodes are
considered equal if they and their ancestors meet the equality relation ,.

Another contribution of this chapter is the equality relation ,, which
is not a simple equality relation (=). The equality relation , is based on
the following properties: the HTML tagName, the class names of the DOM
node, the node position, the HTML attributes, and the number of children
a node has.

The functional implementation of this mapping as a module is also an
important contribution. The module is part of a block detection architec-
ture, so it can be used by many site-level block detection techniques.

Chapter 9

Site-level Template Detection

Template detection is a topic highly related to web development, web min-
ing, indexing, and searching. Over the last 15 years, many approaches have
tried to address this challenging problem. Gibson et al. [44] studied and
measured web templates and concluded that they account for between 40%
and 50% of data on the Web, which means that templates include approx-
imately 30% of the visible terms and hyperlinks. This fact gives relevance
to template removal techniques [120, 114] for tasks such as web mining,
searching, indexing, etc.

Some boilerplate removal techniques were developed in the context of
CleanEval [20], which was a periodical competition that proposed a suite of
benchmarks and their corresponding gold standard that provided a frame-
work to assess the techniques.

As stated in Chapter 2, Content Extraction and Template Detection
are very close disciplines. They both belong to a more general discipline
called Block Detection which attempts to isolate the pagelets in a web
page. On the one hand, content extraction attempts to detect and isolate
the pagelets with the main content of the web page. On the other hand,
template detection tries to detect (or detect and remove) the template of
the web page, which, in most cases corresponds to the part of the web page
that is not the main content (they are often complementary). There are
many content extraction techniques (see, e.g., [46, 117, 24, 51]), which are
all closely related to Template Detection.

This chapter describes a site-level technique (TemEx) that detects and
isolates the template of a web page.

9.1 Related work

Chapter 2 describes the three main approaches in the Block Detection area,
concretely, (i) using the textual information provided by the web page, (ii)

167

168 Chapter 9. Site-level Template Detection

based on the rendered image of the web page, and (iii) analyzing the DOM
tree of the web page.

This technique is based on the third approach, namely, it obtains the
information needed to infer the template from the DOM tree. Some works
in literature try to identify pagelets using heuristics to analyze the DOM
tree [19], while others are based on the detection of common subtrees in the
DOM trees of a set of web pages from the website [120, 114]. The technique
described in this chapter is similar to these last two works.

The technique presented in [120] is not a template extraction algorithm;
even so, its aim is to remove redundant parts of a website. As explained
in Section 8.1, their algorithm analyzes a set of DOM trees obtained from
several web pages from the same website, and it builds a data structure
called Site Style Tree (SST). An SST gathers information about all the
DOM nodes from the analyzed DOM trees so that it uses counters to iden-
tify repeated nodes in the DOM trees. The resulting structure is a kind of
summary of the set of DOM trees. Once the SST is built, it contains data
about the most repeated nodes on the website. As the most repeated DOM
nodes in all the analyzed web pages most likely belong to the template, the
most repeated DOM nodes in the SST form the noisy information to be
removed.

Other approaches like [114], as this technique, perform mappings be-
tween several DOM trees obtained from a set of web pages from a website.
The final goal of these mappings is to identify repeated nodes in several
web pages. Their technique uses an algorithm called RTDM-TD that com-
putes a mapping called restricted top-down mapping [94] between several
web pages of the same website. Even though their objective is also template
extraction, there exist significant differences with the technique presented
in this chapter. On the one hand, their mapping is less restrictive because
all paired nodes in the mapping are not required to be equal. On the other
hand, their technique selects the web pages that should be mapped ran-
domly, limited by a predefined threshold. They define such threshold as a
few dozen of web pages. Therefore, they assume that the same template
is shared by all the web pages that form the website, which is a severe
limitation for many websites, particularly for large websites.

The authors of [114] proposed an algorithm called RBM-TD in [113],
which is an approach similar to RTDM-TD that uses a bottom-up alterna-
tive of their mapping (contrary to the top-down variant they use in [114]).
One of the innovations of this approach is that it describes a constraint to
classify a common subtree between several DOM trees as part of the tem-
plate: those subtrees that can be found in all web pages must be located

9.1. Related work 169

exactly in the same position (i.e., the path in the DOM tree from the root
to them must be exactly the same for all web pages).

Other approaches like [116] analyze the web pages and divide their
DOM trees into several subtrees. The root nodes of the obtained subtrees
are DOM nodes related to concrete HTML tags (i.e., DIV, UL, TABLE,
etc.). Hence, the algorithm extracts the DOM nodes of type #text (text
segments) of the subtrees and compares them with those of all web pages.

Authors of [60] propose a quantitative analysis of Web content based
upon techniques from the field of Quantitative Linguistics. They argue
that the text corpus exposes two fuzzy classes of text: covering full text
and navigational information. Template text can be divided into these
classes: noisy (short navigational text), and frequently used (full-text).

Sivakumar [103] presented a main content extraction algorithm based
on removing several kinds of noises from the web page. The noises are
removed by performing three operations. First, the algorithm removes pri-
mary noises and partitions the useful text contents into blocks. Then, the
duplicate blocks are removed to obtain the distinct blocks. Finally, the al-
gorithm computes the importance of each block based on three parameters.
The important blocks are selected based on a threshold value. Saravanan
and Bama [100] developed a technique similar to [103] that extracts useful
content from web pages by removing noise and duplicates. The technique
is also divided into three steps. First, the algorithm divides the web page
into several blocks and the block that is considered as noise is removed.
Then, the algorithm performs the elimination of redundant blocks. Finally,
the algorithm computes several parameters from the remaining blocks to
decide whether a block is main content or not.

Aslam et al. [18] extended the Boilerpipe algorithm [63] with their
Web-AM algorithm. The authors detected that Boilerpipe has very good
performance in main content extraction, but that performance decreased
while filtering the noise in the main article. First, their algorithm extracts
the main article from the web page using Boilerpipe. Then, they remove
the noise retrieved by Boilerpipe using a rule-based algorithm.

Most recent techniques are based on Machine Learning. Vogels et al.
[115] use a technique based on convolutional neural networks to classify all
text blocks in an HTML page as either boilerplate or main content. In [66],
authors propose a machine learning model that removes the boilerplate
by taking as input only the HTML tags and words that appear on a web
page. Zhang and Wang [123] developed SemText, a hierarchical neural
network model that detects web page boilerplate using a novel semantic
representation of text blocks.

170 Chapter 9. Site-level Template Detection

9.2 Template detection

The presented template detection approach (TemEx) takes as input a web-
page (the key page) and outputs its template. As it is a site-level technique,
it identifies, loads, and analyzes several web pages from the website to infer
the template. The main ideas introduced by this technique are:

• To increase the performance, the number of web pages loaded and
analyzed should be minimum. This technique analyzes the links in the
key page and identifies a complete subdigraph in the website topology
(see Chapter 7).

• The conflicts between web pages implementing different templates
should be solved efficiently. For this, the algorithm establishes a
voting system for the web pages in the complete subdigraph.

• The template is detected and extracted by comparing the web pages
in the complete subdigraph. For that, it uses the mapping described
in Chapter 8, called equal top-down mapping.

The technique consists of a three-step approach:

i. Based on the candidates selection algorithms described in Chapter 7,
a set of web pages from the same website of the key page is selected.

ii. Then, an algorithm explores each web page in the set and computes
an equal top-down mapping (see Chapter 8) between its DOM nodes
and the DOM nodes of the key page. When it finds that a DOM node
of the key page is repeated in any web page of the set, it updates a
counter that reflects the number of times each node is repeated in
other web pages.

iii. Finally, an algorithm explores the DOM tree and those nodes whose
counter is higher than a specified threshold are selected as template
nodes.

9.2.1 The web page’s template

When we observe the rendered image of a web page it is trivial for us,
humans, to identify the template with accuracy despite not comparing the
web page with other web pages from the same website. However, we can
infer the template with more accuracy by comparing the web page with
other web pages from the same website. Then, we can observe the part of

9.2. Template detection 171

the web page repeated in other web pages, so we can state that the repeated
parts of the web page belong to the template with high probability.

The same reasoning may be applied to automatic template detection.
The web page can be represented as a DOM tree that can be compared
with other DOM trees from other web pages from the same website. The
DOM nodes repeated in several web pages can be considered part of the
template.

A definition of a template, independent of any detection method, can
be provided based on the repetition of a set of DOM nodes through dif-
ferent web pages of the same website. The formal definition of the main
content (see Definition 4.3.2) is based on the definition of a web page (see
Definition 4.1.1) and the definition of a website (see Definition 4.1.7). This
definition of the template of a web page P = (N,A) is based on the follow-
ing assumptions:

• There exist other web pages from the same websites different to P .

• The set of DOM nodes considered as the template is repeated in other
web pages from the same website.

Example 9.2.1 In Figure 9.1, we can observe part of three DOM trees
from three different web pages that belong to the same website. The DOM
tree on the left belongs to the key page while the other two DOM trees belong
to two other web pages. Note that the DOM nodes with a dark background
are repeated in the three web pages. Based on the definition of template,
those DOM nodes would form the template of the key page because they are
equal and repeated in several different web pages. Note that in this example
we have considered a DOM node as part of the template if it appears on the
three web pages.

9.2.2 Building a complete subdigraph

First, a set of web pages sharing their template should be identified. This
phase is an independent process described in Chapter 7 which can be used
in combination with any block detection technique.

It can be observed, by analyzing the menu of several websites, that mu-
tually linked web pages from the same domain very likely share a common
template. This phase identifies a set of mutually linked web pages which
share their template with the key page. The web pages in this set are pair-
wise and mutually linked. Therefore, they form an n-complete subdigraph
(n-CS), consisting of n nodes.

172 Chapter 9. Site-level Template Detection

BODY

TABLE

DIV

A

DIV DIV

A

HTML

A

BODY

TABLE

DIV

A

DIV HR

A

HTML

BODY

DIV

DIV

A

DIV

A

HTML

key page web page 1 web page 2

Figure 9.1: Example of DOM nodes repeated in several web pages

Figure 9.2: Web pages of Polithecnical University of Valencia sharing a
template

Example 9.2.2 In Figure 9.2, we can observe two web pages of the Poly-
technical University of Valencia that implement the same template. The
website on the left can be reached from the menu option “Research”. The
web page on the right can be reached from the menu option “Admission”. In
both cases, the main content is located at the bottom of the web page. Both
web pages share their header, menu, and footer. In addition, they form a
2-CS. Likewise, the rest of the web pages from the same domain linked by
the menu located at the top form a complete subdigraph, and they all share
the whole template. The candidates selection technique identifies this set of
web pages as candidates.

As explained in Chapter 7, this candidate selection technique improves
the quality of the candidates because they share more template nodes with

9.2. Template detection 173

the key page. Moreover, the performance is also improved because only a
reduced subset of web pages linked from the key page is analyzed. Chapter
7 also describes other approaches for selecting the candidate web pages
[83, 120, 114]. Some of them use random web pages obtained from the
website, while others take as input a set of web pages directly provided by
the programmer.

Additionally, Chapter 7 describes several steps to build an n-CS. The
hyperlinks in the key page are analyzed to select those that produce a com-
plete subdigraph with high probability. The hyperlink analysis establishes
an order of relevance using two algorithms: hyperlink distance, and DOM
distance. Once the order of relevance is established, it is iteratively ex-
plored until the web pages pointed by the links in it form an n-CS. The
order is the following: First, those links with zero hyperlink distance; then,
those links that are closer to the key page with a positive distance; and
finally those links that are closer to the key page with a negative distance.
In the three cases, if a draw occurs, then, the draw is broken using the
DOM distance: those links that are farther from the already selected links
are collected.

9.2.3 Web pages implementing several templates

Most of the techniques found in the literature assume that a website has a
unique template. Nevertheless, it should be noted that, usually, a website
implements several templates, including subsets of different templates. The
following example describes that issue.

Example 9.2.3 Figure 9.3 shows the DOM tree of three web pages: the
key page and two web pages that provide information to extract its template.
Both web pages that provide information about the template extraction pro-
cess implement different templates, and they are disjoint except for their
root node. Therefore, if we suppose that the same template is implemented
by all web pages in the website, the template extraction process will only
extract the root node because it is the only node that the three web pages
share. On the other hand, if we assume the existence of several templates,
we can observe that the template of the key page is built with a part of the
template of one web page, and a part of the template of the other web page,
being the template represented with the gray nodes. Thus, despite being
disjoint, both web page candidates can contribute to the template.

Example 9.2.3 shows that it is not necessary that all web pages share a
node to consider it as part of the template. Based on experimentation, we

174 Chapter 9. Site-level Template Detection

Figure 9.3: Template extracted from web pages implementing different tem-
plates

can state that the number of web pages that must share a node to consider
it as part of the template depends on the size of the CS. Table 8.4 in Section
8.3.1 summarizes the experiments conducted to obtain the optimal number
of web pages that must share a node for each CS size. For instance, for a
CS of size 7, it is optimal to consider the nodes repeated in 4 web pages as
part of the template to get the best F1. Consequently, the algorithm takes
both, the size of the CS, and the number of web pages that must share a
node, in the following votes, as parameters. Therefore, it can be configured
for different CS sizes and different number of votes, if needed.

9.2.4 Template detection from a complete subdigraph

The DOM nodes in the DOM trees that form the CS must be compared
in order to identify which of them appear in several DOM trees. This
comparison is based on the equal top-down mapping (ETDM) described
in Chapter 8, which, given two DOM trees, establishes a correspondence
between their nodes.

The definition of ETDM is parametric with respect to the equality rela-
tion , (see Section 8.2.1). Therefore, this notion of equality is more general
than the standard equality (=). It considers several DOM node properties
in order to compare two nodes, such as their class names, HTML tagName,
number of children, HTML attributes, and their relative position in the
DOM tree.

Once the complete subdigraph is built, an ETDM is computed between
the key page and each web page in the complete subdigraph. The DOM
trees are compared by traversing them top-down starting from the root. As
shown in Figure 8.1 and described in Section 8.2.1, the ETDM is computed
iteratively between the key page and the web pages that belong to the CS.
Two nodes n1 and n2 can be mapped if they are equal (n1 , n2). Then,

9.3. Implementation 175

the algorithm recursively continues by trying to map the children of both
mapped nodes. It should be noted that when it is not possible to map
a node, the algorithm does not explore its descendants. A DOM node is
considered to belong to the template when it appears in v web pages of
the CS, so v is the number of votes needed to consider a node as part of
the template. Note that n ≤ v, being n the number of web pages in the
complete subdigraph (n-CS). When the process finishes, the template is
the obtained DOM tree, which is formed by DOM nodes from the key page
that, at least, appear in v other web pages of the CS.

9.3 Implementation

This technique, as the rest of the techniques in this thesis, has been imple-
mented as a WebExtension compatible with Firefox and Chromium-based
browsers. As in the rest of the techniques, users browse on the Internet as
usual, and then, when they want to extract the template of the web page
loaded in the browser, they only have to press the “Extract Template” but-
ton. Then, the add-on automatically does the required actions and shows
the template of the web page. Therefore, the nodes of the web page that
do not belong to the template are hidden.

Example 9.3.1 Figure 9.4 shows a real example of the use of the template
detection tool with a web page. The image on the left is a web page of the
www.jdi.org.za website. The image on the right is the output of extracting
its template.

Figure 9.4: Example of the detection of a web page template

9.3.1 Empirical evaluation

The theoretical formalization of the algorithms in Chapter 7 and Chapter 8
reveals some parameters that have been left open (size of the CS, number

176 Chapter 9. Site-level Template Detection

of votes, the weight of the properties of the equality relation ,, and the
threshold of the value of the equality relation ,).

The value of these parameters is computed based on an experimental
analysis in the empirical evaluation section of both chapters (Chapter 7
and Chapter 8). The computation of the parameters was done using this
technique, that is, combining both techniques (candidates selection and
ETDM) for template detection.

As described in Chapter 7 and Chapter 8, the parameter n is the optimal
size of the CS and the parameter v is the number of votes needed to mark a
node as part of the template should be computed. Once the values n and v
were computed, the weight of the different properties that form the equality
relation , was estimated. Then, a final value was computed to determine
the threshold t of the equality relation ,. Therefore, if n1 , n2 ≥ t both
nodes are equal.

As stated in previous chapters, it is important to determine the optimal
size of n because the CS size is directly proportional to the time needed to
compute it. In addition, Section 7.3.1 of Chapter 7 concludes that larger
CS sizes do not always obtain better template detection results.

Algorithm evaluation

To measure the technique, several experiments were performed using
the 45 evaluation benchmarks of the TeCo benchmark suite (see Chapter
13). Once the template was detected, it was compared real template to
compute the precision, recall and F1 scores of the algorithm.

Table 9.1 shows the results obtained for all the executed benchmarks
with the optimal parameters obtained empirically in Chapter 8:

CS size (n): 3.
Number of votes (v): 2.
Node class names: 0.10.
Node position: 0.10.
HTML attributes: 0.50.
Node children: 0.30.

, threshold (t): 0.70.
Option: 2.

The first column of the table shows the URLs of the website domains.
For each benchmark, column Nodes shows the total number of DOM nodes
contained in the DOM tree of the key page; column Templ. represents the
number of DOM nodes in the gold standard (template); column Retr. in-
dicates the number of DOM nodes detected by the tool as template nodes;

9.3. Implementation 177

Benchmark Nodes Templ. Retr. Correct Recall Precision F1 Load Rt. Rt. opt.

www.jdi.org.za 619 394 566 394 100.00 % 69.61 % 82.08 % 6 253 ms. 274 ms.
www.premiere-urgence.org 480 438 443 430 98.17 % 97.07 % 97.62 % 4 202 ms. 213 ms.
www.indiangaming.org 575 201 199 199 99.00 % 100.00 % 99.50 % 4 57 ms. 64 ms.
hispalinux.es 501 345 363 345 100.00 % 95.04 % 97.46 % 4 126 ms. 152 ms.
www.gktw.org 767 637 682 637 100.00 % 93.40 % 96.59 % 5 431 ms. 463 ms.
www.apnic.net 598 453 517 453 100.00 % 87.62 % 93.40 % 4 201 ms. 236 ms.
www.unicef.org 1037 656 656 656 100.00 % 100.00 % 100.00 % 5 223 ms. 264 ms.
www.klimabuendnis.org 851 525 495 491 93.52 % 99.19 % 96.27 % 4 238 ms. 264 ms.
www.isoc-es.org 259 159 164 159 100.00 % 96.95 % 98.45 % 6 112 ms. 128 ms.
biztechmagazine.com 1892 1053 1794 1053 100.00 % 58.70 % 73.98 % 6 771 ms. 845 ms.
www.eeo.com.cn 834 626 648 596 95.21 % 91.98 % 93.57 % 13 369 ms. 442 ms.
www.wishtv.com 2167 1811 1535 1535 84.76 % 100.00 % 91.75 % 5 5940 ms. 5846 ms.
news.mit.edu 2117 1041 1853 1041 100.00 % 56.18 % 71.94 % 4 1755 ms. 1790 ms.
asia.nikkei.com 869 662 661 660 99.70 % 99.85 % 99.77 % 6 540 ms. 526 ms.
www.rcnky.com 1738 1425 1635 1425 100.00 % 87.16 % 93.14 % 4 629 ms. 773 ms.
news.discovery.com 2826 1161 2424 1156 99.57 % 47.69 % 64.49 % 5 1241 ms. 1377 ms.
www.kathimerini.gr 1825 1541 1259 1259 81.70 % 100.00 % 89.93 % 12 837 ms. 983 ms.
news.un.org 1726 1252 1175 1095 87.46 % 93.19 % 90.23 % 6 530 ms. 569 ms.
frances.forosactivos.net 785 290 164 163 56.21 % 99.39 % 71.81 % 26 156 ms. 157 ms.
www.wysiwygwebbuilder.com 3936 735 315 287 39.05 % 91.11 % 54.67 % 143 4036 ms. 4066 ms.
www.3dprintforums.com 1040 276 267 267 96.74 % 100.00 % 98.34 % 6 271 ms. 264 ms.
www.strangehorizons.com 631 146 164 146 100.00 % 89.02 % 94.19 % 7 2238 ms. 125 ms.
communities.apple.com 3136 368 2351 368 100.00 % 15.65 % 27.06 % 5 930 ms. 1016 ms.
www.sloweurope.com 4193 514 498 491 95.53 % 98.59 % 97.04 % 5 216 ms. 242 ms.
community.ricksteves.com 2057 384 2057 384 100.00 % 18.67 % 31.47 % 7 3568 ms. 3702 ms.
hackercombat.com 1711 794 1006 792 99.75 % 78.73 % 88.00 % 16 1120 ms. 1138 ms.
www.scbwi.org 876 216 202 202 93.52 % 100.00 % 96.65 % 37 303 ms. 305 ms.
johngardnerathome.info 395 176 37 29 16.48 % 78.38 % 27.23 % 4 413 ms. 388 ms.
www.annmalaspina.com 392 182 228 182 100.00 % 79.82 % 88.78 % 4 73 ms. 73 ms.
foodsense.is 330 100 122 100 100.00 % 81.97 % 90.09 % 4 54 ms. 57 ms.
sites.google.com 372 287 334 286 99.65 % 85.63 % 92.11 % 4 140 ms. 123 ms.
whatever.scalzi.com 1648 1405 1423 1405 100.00 % 98.74 % 99.37 % 13 190421 ms. 5444 ms.
www.javiercelaya.es 740 668 444 433 64.82 % 97.52 % 77.88 % 4 143 ms. 133 ms.
diarium.usal.es 604 80 79 76 95.00 % 96.20 % 95.60 % 4 855 ms. 779 ms.
www.jameslovelock.org 653 458 498 458 100.00 % 91.97 % 95.82 % 5 2309 ms. 2118 ms.
www.cipri.info 933 377 375 375 99.47 % 100.00 % 99.73 % 4 199 ms. 225 ms.
naranjascarcaixent.com 290 148 151 147 99.32 % 97.35 % 98.33 % 5 61 ms. 74 ms.
www.technicalbookstoreonline.com 2959 386 367 367 95.08 % 100.00 % 97.48 % 32 430 ms. 472 ms.
www.floridarealestatecollege.com 1023 528 545 528 100.00 % 96.88 % 98.42 % 4 135 ms. 159 ms.
www.basf.com 827 762 792 762 100.00 % 96.21 % 98.07 % 4 211 ms. 246 ms.
www.mcphersonoil.com 831 600 624 600 100.00 % 96.15 % 98.04 % 4 464 ms. 427 ms.
www.thirteenhou.com 1217 133 136 132 99.25 % 97.06 % 98.14 % 4 41 ms. 51 ms.
www.embalajesterra.com 2342 1677 1783 1677 100.00 % 94.05 % 96.93 % 4 505 ms. 546 ms.
www.crypto.ch 338 248 258 248 100.00 % 96.12 % 98.02 % 4 194 ms. 208 ms.
www.shopbookshop.com 1727 1310 1313 1310 100.00 % 99.77 % 99.88 % 4 5500 ms. 5040 ms.

Average 1281.49 613.96 746.71 573.31 93.09 % 87.75 % 87.54 % 10.36 5099 ms. 951 ms.

Table 9.1: Experimental evaluation results

column Correct shows the number of correct DOM nodes detected by the
tool; column Recall represents (in percentage) the number of DOM nodes
correctly retrieved divided by the number of DOM nodes in the gold stan-
dard; column Precision shows (in percentage) the number of DOM nodes
that have been retrieved correctly divided by the number of retrieved DOM
nodes; column F1 reveals the F1 metric; column Load indicates the total
number of web pages loaded by the technique; column Rt. contains the
total time used to compute the template (in milliseconds); finally, column
Rt. opt. shows the total time used to compute the template implementing
the runtime improvement described subsequently in this section.

It can be observed in Table 9.1 that experiments obtain an average
recall higher than 93%, and an average precision and F1 higher than 87%.
On average, the algorithm needed to load 10 web pages approximately from
each website. However, as we can observe in the table, in almost half of
the benchmarks the algorithm only needed to load 4 web pages (the key

178 Chapter 9. Site-level Template Detection

Benchmark category Recall Precision F1 Load Rt. Rt. opt.

Institutions / Associations 98.97 % 93.21 % 95.71 % 4.67 205 ms. 229 ms.
Media / Communication 94.27 % 81.64 % 85.42 % 6.78 1401 ms. 1461 ms.
Forums / Social 86.76 % 76.80 % 73.25 % 28.00 1426 ms. 1224 ms.
Personal websites / Blogs 86.16 % 90.03 % 85.18 % 5.11 21623 ms. 1038 ms.
Companies / Shops 99.29 % 97.07 % 98.15 % 7.22 838 ms. 803 ms.

Table 9.2: Experimental evaluation results grouped by category

page and 3 web pages to build the complete subdigraph). Regarding the
runtime of the algorithm, the table shows an average runtime of more than
five seconds. However, when the runtime improvement is used, the average
runtime is reduced from 5 to less than 1 second. We can observe that, for
most of the benchmarks, the runtime is similar whether using the runtime
improvement or not. Nevertheless, there is one benchmark that reduces its
runtime from more than 3 minutes to almost 5 seconds.

Table 9.2 shows the obtained results grouped by benchmark category
(see Chapter 13). We can observe that Institutions / Associations

and Companies / Blogs categories obtain very high F1 values (higher than
95%), while the Forums / Social category obtains a lower F1 value (about
73%). This result obtained for the Forums / Social category is consistent
with the technique since we observed that in most cases the complete sub-
digraph for websites of this category includes web pages quite different
from each other. For instance, in most forums, the complete subdigraph is
formed by a web page with a list of discussions, a web page with a discus-
sion thread, and another with a single message. This fact makes it difficult
to obtain a good outcome when mapping the key page with the pages of
the complete subdigraph.

Runtime improvement

Table 9.1 shows 3 benchmarks with a runtime higher than 5 seconds.
Moreover, it should be noted that the runtime of one of the benchmarks is
almost 190 seconds. This phenomenon occurs in some web pages and it is
due to the runtime of the mapping phase, which is its main bottleneck.

We observed that the mapping of two nodes when they have a large
number of children takes excessive time. This is due to the fact that when
the position property value for two nodes with a large number of children is
computed, each child of one node has to be compared with all the children
of the other node. When two children are mapped, the position property
value of the remaining children has to be computed, and so on. It should be

9.3. Implementation 179

highlighted that for more than 200 children, the runtime of the algorithm
grows exponentially.

DIV

DIV TABLEPDIV DIVDIV DIV PDIVDIV DIVDIV

DIV

DIV TABLEPDIV DIVDIV DIV PDIVDIV DIVDIV

DIV DIV

Figure 9.5: Transformation of a DOM node for runtime improvement

The reduction of the number of children of some nodes and thus, the
reduction of the mapping runtime, is done by inserting some artificial (and
temporary) nodes between the parent and the children. These temporary
nodes group the children in a way that the number of children of a node is
limited. For instance, if a node has 200 children, we can insert 4 temporary
nodes between the parent and the children and each temporary node will
have 50 children. This way, we have 4 parents with 50 children each instead
of one parent with 200 children. It should be noted that the addition of
the temporary DOM nodes does not affect the layout of the web pages.

Example 9.3.2 Figure 9.5 shows, at the top, a “DIV” DOM node with 10
children. At the bottom, we can find the same “DIV” node and the same
10 children, but between them, there are 2 temporary “DIV” nodes. These
nodes group the original children into two groups of 5 children each. This
way, the maximum number of children of that DOM subtree is 5.

To measure the gain obtained by applying the runtime improvement
algorithm, we defined two parameters:

180 Chapter 9. Site-level Template Detection

• Group: It determines the maximum number of child nodes of the
temporary DOM nodes. In other words, it is the maximum size of
the groups formed with the child nodes of the original node.

• Childnodes: It defines a threshold that corresponds to the number of
children a DOM node should have for applying the runtime improve-
ment algorithm.

It should be highlighted that, in some cases, the results obtained by the
runtime improvement algorithm can be slightly different than the expected
results. This is because the mapping of two temporary nodes could be
different than expected if their parent nodes did not have exactly the same
children. However, the impact of the runtime improvement is minimum.
In fact, we used 3 decimal places for the Group and Childnodes values
because for most of the combinations the obtained results are the same
with 2 decimal places.

To test the algorithm, we performed several experiments using the 105
training benchmarks of the TeCo benchmark suite (see Chapter 13). We
computed the Recall, Precision, F1, and Runtime of the mapping phase
for Group values ranging from 25 to 125, and Childnodes values ranging
from 100 to 350.

Table 9.3 shows the results obtained by different combinations of Group
and Childnodes values. First, it can be observed that the Runtime of ap-
plying the improvement algorithm is significantly lower in all cases. Then,
we can observe that the Recall is roughly the same for all combinations,
but the Precision varies. For a Childnodes value equal or higher to 200,
the results are repeated depending on the Group value while the Runtime

grows. For this reason, we selected a Group value of 100, and a Childnodes

value of 200, since the variation of the F1 score is less than 0.001 % and it
is the combination with less Runtime that obtains such F1.

Runtime analysis

Figure 9.6 shows the relation between the runtime of the algorithm and
the number of DOM nodes of the key page. It can be observed that despite
the highest runtimes correspond to web pages with a higher number of DOM
nodes, there is no direct clear relationship between these two variables.

In order to draw conclusions about the variables directly related to the
runtime of the algorithm, we decided to perform a statistical analysis of
some variables that we thought could be directly related to the runtime.
The analyzed variables were:

9.3. Implementation 181

Group Childnodes Recall Precision F1 Runtime

25 100 90.297 % 90.321 % 87.101 % 896 ms.
50 100 90.953 % 90.248 % 87.591 % 950 ms.
75 100 91.204 % 90.244 % 87.729 % 1017 ms.

100 100 89.850 % 90.178 % 86.549 % 979 ms.
125 100 89.896 % 90.173 % 86.613 % 1190 ms.
25 150 91.463 % 90.307 % 88.165 % 1038 ms.
50 150 92.120 % 90.227 % 88.653 % 1087 ms.
75 150 92.126 % 90.228 % 88.657 % 1137 ms.

100 150 92.149 % 90.230 % 88.669 % 1018 ms.
125 150 92.494 % 90.312 % 88.206 % 1164 ms.
25 200 92.159 % 90.205 % 88.660 % 1215 ms.
50 200 92.159 % 90.209 % 88.662 % 1285 ms.
75 200 92.159 % 90.210 % 88.663 % 1295 ms.

100 200 92.159 % 90.211 % 88.663 % 1133 ms.
125 200 92.159 % 90.211 % 88.663 % 1258 ms.
25 250 92.159 % 90.205 % 88.660 % 1334 ms.
50 250 92.159 % 90.209 % 88.662 % 1357 ms.
75 250 92.159 % 90.210 % 88.663 % 1405 ms.

100 250 92.159 % 90.211 % 88.663 % 1261 ms.
125 250 92.159 % 90.211 % 88.663 % 1347 ms.
25 300 92.159 % 90.205 % 88.660 % 1329 ms.
50 300 92.159 % 90.209 % 88.662 % 1372 ms.
75 300 92.159 % 90.210 % 88.663 % 1418 ms.

100 300 92.159 % 90.211 % 88.663 % 1289 ms.
125 300 92.159 % 90.211 % 88.663 % 1370 ms.
25 350 92.159 % 90.203 % 88.659 % 1840 ms.
50 350 92.159 % 90.208 % 88.661 % 1749 ms.
75 350 92.159 % 90.209 % 88.662 % 1830 ms.

100 350 92.159 % 90.210 % 88.663 % 1872 ms.
125 350 92.159 % 90.211 % 88.663 % 2050 ms.

No improvement 92.159 % 90.213 % 88.664 % 6870 ms.

Table 9.3: Results obtained for different Group and Childnodes parameters

• The size of the template measured in number of template DOM

nodes. The choice of this variable is based on the assumption that
the technique performs a mapping between several web pages to infer
the template of the key page. Therefore, the size of the real template
with high probability is related to the runtime.

• The number of loaded web pages. This variable is selected because
the technique needs to load several web pages to build the complete
subdigraph. The more web pages it loads, the more runtime.

• The standard deviation of the number of children of the

element DOM nodes. The choice of this variable is due to the fact
that, as stated above, the mapping process of DOM nodes with a high
amount of children has a direct influence on the runtime, making it

182 Chapter 9. Site-level Template Detection

Figure 9.6: Relation between the size of the web page and the runtime

grow exponentially. The standard deviation of the number of children
can indicate if there are DOM nodes with a high amount of children.

• The average number of children of the element DOM nodes.
This variable is selected because the runtime of the algorithm grows
exponentially due to DOM nodes with a high amount of children.

• The depth of the DOM tree of the key page. The choice of this
variable is based on the assumption that, with high probability, the
mapping of deeper DOM trees takes more runtime.

• The maximum depth reached by the mapping. In this case, the
variable is selected because probably the more depth reached by the
mapping involves more runtime.

It should be noted that this statistical analysis was performed to the
technique using the runtime improvement algorithm, therefore, the DOM
tree of the key page and the web pages that belong to the complete sub-
digraph are optimized for the mapping. As in Chapters 5 and 6 , we used
IBM SPSS Statistics to analyze the relationship between these variables.
We performed the analysis using the 105 benchmarks of the test subset
of the TeCo benchmark suite (see Chapter 13). First, we had to check if
the data were normally distributed, therefore, we computed Table 9.7. We

9.4. Conclusions 183

Kolmogorov-Smirnova Shapiro-Wilk

Estadístico gl Sig. Estadístico gl Sig.

Runtime

Templ. Nodes

Loaded

Desv. st.

Children avg.

Depth

Mapping depth

,321 105 ,000 ,558 105 ,000

,230 105 ,000 ,705 105 ,000

,444 105 ,000 ,253 105 ,000

,118 105 ,001 ,881 105 ,000

,528 105 ,000 ,073 105 ,000

,156 105 ,000 ,921 105 ,000

,147 105 ,000 ,873 105 ,000

Corrección de significación de Lillieforsa.

Figure 9.7: Result of the normality test for TemEx

can observe in the table that the sample size (column gl) is 105, so the
appropriate test is Kolmogorov-Smirnov.

When the significance (column Sig.) is less than 0.05, the variable
is not distributed normally, hence, the correlation coefficient can be com-
puted through the Spearman test. We can observe in Figure 9.8 the result
of the Spearman test for all variables. The first row shows the correla-
tion coefficient between all the variables and the runtime. The correlation
coefficient of the number of template DOM nodes variable is higher than
0.6, while the correlation coefficient of the standard deviation of the

number of children variable is higher than 0.4. These values denote a
clear relationship between these variables and the runtime of the algo-
rithm. The correlation coefficient value for the variable maximum depth

reached by the mapping is close to 0, therefore, it is a fact that this
variable has no relationship with the runtime. On the other hand, Fig-
ure 9.8 also shows low values of the correlation coefficient for the vari-
ables average number of children of the element DOM nodes, depth
of the DOM tree of the key page, and number of loaded web pages.
These low values indicate that there is not a clear relationship between them
and the runtime of the algorithm.

9.4 Conclusions

This chapter describes a new site-level template extraction technique. It
sorts the hyperlinks in the key page using a hyperlink analysis technique.
Once sorted, the technique selects a set of web pages pointed by those
hyperlinks that form a CS and, consequently, they probably implement
the same template. The DOM trees of the web pages in the CS are com-
pared with the DOM tree of the key page using a mapping called ETDM

184 Chapter 9. Site-level Template Detection

Figure 9.8: Result of the Spearman test for TemEx

that identifies the blocks that are common to the DOM trees. Some of
the parameters have been approximated empirically: the size of the CS,
the number of votes needed by a DOM node to be considered template,
the properties that form the equality relation ,, and the equality relation
threshold. To the best of our knowledge, using a hyperlink analysis tech-
nique to select the web pages from the website that more likely implement
the same template is new, and it quickly allows us to find a set of reliable
web pages from which the template can be extracted. This is a key benefit
for performance, since loading and analyzing web pages is expensive, and
the presented technique minimizes this process. With the optimal parame-
ters, this technique only loads 10 pages on average to extract the template.
As a consequence, the runtime of the overall template extraction process is
less than 1 second on average.

9.5 Contributions

The template detection technique described in this chapter provides several
contributions that can be exploited by many systems, especially indexers
and crawlers.

9.5. Contributions 185

It describes the combination of two techniques in order to infer the
template of a web page. The technique combines building a complete sub-
digraph with the web pages that more likely implement the template, with
the comparison of those web pages through a mapping called equal top-
down mapping.

Another important contribution of the chapter is a functional imple-
mentation of the technique as a WebExtension1, which is compatible with
Mozilla-based and Chromium-based browsers and is also officially published
by Mozilla in their Firefox browser add-ons website2.

1http://personales.upv.es/josilga/retrieval/Web-TemEx/index.html
2https://addons.mozilla.org/es/firefox/addon/template-extractor/

Chapter 10

Site-level Content Extraction

When we surf the Web, our attention is mainly focused on the main content
of the web pages, which contain the useful information. Besides, extract-
ing information from web pages is not only useful for humans, but also for
many different systems. In a web page, the pagelet that contains the most
relevant information is the main content. Nevertheless, this pagelet is often
surrounded by other noisy elements such as main menus, footers, advertise-
ments, banners, etc. Extracting the main content of a web page involves
the isolation of the useful information from other elements by removing the
useless elements (see, e.g., Figure 10.1).

The main content is important for indexers and crawlers because pro-
cessing the boilerplate of web pages may cause a waste of resources, such as
bandwidth, storage, and time. Hence, indexers and crawlers preprocess the
web pages to extract the main content and isolate it from the boilerplate.
Moreover, the main purpose of indexers and crawlers is to provide users
with only the relevant information. Therefore, extracting the main content
is an essential task in order to preprocess that information. Gibson et al.
[44] determined that boilerplate represents between 40% and 50% of all the
data on the Web. As a result, it is mandatory to use techniques, such as
main content extraction [117, 115] or template detection [120, 114], as a
preprocessing method.

This chapter defines a site-level technique (site-level ConEx) that de-
tects and extracts the main content of a web page.

10.1 Related work

As stated in previous chapters, content extraction, just as template detec-
tion, menu detection, and other block detection techniques, is an interesting
topic due to its relation to web mining, searching and indexing.

Many content extraction techniques can be found in the literature (see,

187

188 Chapter 10. Site-level Content Extraction

Figure 10.1: Main content of IEEE’s ‘mission and vision’ web page ex-
tracted with the site-level content extraction tool

e.g., [118, 46, 117, 24, 106, 51]). Even a web cleaning competition [20],
called CleanEval, was proposed. This competition included a collection of
examples to be analyzed, prepared for content extraction and boilerplate
removal, and their respective gold standard.

As described in Chapter 2, there are three main approaches in the area
of block detection, namely, (i) using the textual information provided by
the web page, (ii) based on the rendered image of the web page, and (iii)
analyzing the DOM tree of the web page.

Several techniques analyze a rendered image of the web page on the
browser. In [22], authors propose a technique based on the assumption
that the main content of a web page is usually visible without scrolling and
located in the central part of the web page. The authors of [61] analyzed
this kind of technique and concluded that they are not widely used because
rendering web pages for classification is computationally expensive.

Other techniques use the textual information of the website by analyzing
its HTML code. For instance, the technique proposed in [24] extracts struc-
tural properties and visual presentation information from the web pages.
Then the extracted information is used to train a machine-learning model
that classifies the DOM nodes in main content or noise. The authors of
[46] propose an algorithm called content code blurring to decide whether a
token (word or tag) is part of the main content or code. The technique de-
scribed in [117] compute a ratio called CETR for all the lines of the HTML
code. The group of lines where the higher CETR is concentrated is the
main content of the web page. Nevertheless, the code distribution between
the lines of a web page is not always what the user expects. HTML code
can be written in many ways, so it can be completely unbalanced (i.e.,

10.1. Related work 189

without tabulations, spaces or even carriage returns), mostly when it is
automatically generated. A typical example of this is the source code of
the main Google’s web page. At the moment of writing these lines, the
whole code of the web page takes up only a few lines, and it does not have
any legible structure. It should be noted that CETR is useless on this kind
of web pages. Li et al. [68] proposed an algorithm called NBCE that uses
the HTML source code to build a tree structure (different from the DOM
tree). It performs the extraction of triples from the HTML, which are used
to construct a graph based on neo4j database. Finally, an algorithm decides
whether a node is the main content node or not.

Some approaches, based on DOM trees, develop multiple DOM node
features utilizing the DOM tree node properties. Moong [80] presented a
site-level content extraction algorithm that matches DOM trees to classify
which nodes are contents and which are noises and, after classification,
they are clustered into their group respectively. Finally, the algorithm
only extracts the content group from the web page. Yang et al. [119]
combine page-level with the site-level knowledge to extract structured data
from web forum websites. Authors use Markov logic networks (MLNs) to
integrate all useful evidences by learning their importance automatically.
In [118], authors propose to compute several DOM node features to train
a machine learning model that obtains the node or nodes that contain the
main content. There are also techniques based on DOM trees that are based
on computing a node ratio. For instance, [51] computes a ratio called WLR
for all DOM nodes in the web page. This ratio is based on dividing the
number of words in the DOM node between its number of leaves. The
subtree whose root is the best node is selected as the main content of the
web page. In [106], authors define a DOM node ratio called Text Density
which is computed by dividing the number of chars under a node between
the number of tags under it. Then, a threshold is used to infer whether
a DOM node is part of the main content or noise. Saravanan and Bama
[100] developed a 3-phase method for content extraction. The first 2 phases
remove the primary and secondary “noises”, while the third phase extracts
the main content using a weighted block score mechanism. Gong et al.
[45] developed a text extraction technique that combines a site-level noise
reduction based on hashtree with a page-level noise reduction based on
linked clusters. This combination eliminates noise in web articles.

In recent years, most of the techniques are based on Machine Learning.
Vogels et al. [115] use a convolutional neural networks-based technique to
classify all text blocks in an HTML page as either main content or boil-
erplate. Leonhardt et al. [66] propose a neural sequence labelling method

190 Chapter 10. Site-level Content Extraction

for boilerplate removal that only takes as input the HTML tags and words.
Morbieu et al. developed an unsupervised learning method divided in three
stages that extracts the textual main content of a web page. First, it clus-
ters text blocks. Then, it selects the clusters associated with the main
content, and finally it performs a classification phase whose input is the la-
beled data from the two previous steps. Yu et al. [121] propose a web page
text extraction algorithm based on multi-feature fusion. The algorithm es-
tablishes a small neural network that takes several features of DOM nodes
as input, and then predicts whether the nodes contain text information.

10.2 Main content extraction

The proposed content extraction technique (site-level ConEx) takes as input
an arbitrary web page (the key page) and outputs a set of DOM nodes that
correspond to the main content. The technique is site-level, that is, it loads
and analyzes several web pages from the same website to infer the main
content. As with the rest of the techniques in this thesis, the technique
works at the level of DOM, and because of the DOM tree properties, the
main content of a web page can be identified with one or more DOM nodes.

The technique consists of a three-step approach:

i. A set of web pages from the same website of the key page is selected.

ii. An algorithm explores each web page in the set and computes a map-
ping between its DOM nodes and the DOM nodes of the key page.
When it finds that a DOM node of the key page is repeated in any
web page of the set, it updates a counter that reflects the number of
times each node is repeated in other web pages.

iii. A set of candidate nodes is built with all the DOM nodes in the key
page that do not appear on other web pages. Then, this set of nodes
is reduced in the following way:

• Those DOM nodes that do not have ancestors in the set are
removed from it. The remaining nodes form the reduced set of
candidate nodes.

• At this step, if the reduced set of candidate nodes only contains
one DOM node, the main content of the web page is formed by
that DOM node and all its descendants. Nevertheless, if the set
includes more than one node:

10.2. Main content extraction 191

– An algorithm analyzes each candidate node in order to infer
the branch of the DOM tree that contains the main content
with a higher probability.

– Then, the algorithm selects all the DOM nodes that belong
to both, the set of candidate nodes and the main content
branch.

The three phases above are detailed in the following sections.

10.2.1 The web page’s main content

DIV

DIV

P

#text

DIV

DIV

A

DIV

#text

#text#text

DIV

DIV

P

DIV

#text

P

#text

Figure 10.2: Main content DOM nodes example

It is often trivial for humans to identify the main content given a ren-
dered image of a web page. However, when a web page is represented as
a DOM tree, usually we can identify several nodes whose subtree includes
the main content. Frequently, DOM nodes in a DOM tree form a com-
plex hierarchy and, one node and some of its ancestors contain the same
text and/or other content. So, which node should be chosen as the main
content? This question can be answered according to a design policy.

On a web page, the “interesting” is clearly subjective. Unfortunately,
even if we know that the main content can be defined as the information
that can be found on a web page excluding template data, side informa-
tion like comments or advertisements, and metadata like publication date,

192 Chapter 10. Site-level Content Extraction

the main content may be also subjective. A clear example happens in a
web page that displays a news article: the comments of the readers are
considered main content by some people (thus, they should be extracted
together with the new), while others consider that this part does not belong
to the new (and thus they should not be extracted). Therefore, providing
a definition of main content is controversial.

An objective definition of the main content, independent of any detec-
tion method, can be provided based on the structure of the web page if we
assume that a labelling exists indicating the relevant and irrelevant con-
tent of the web page. For a web page P = (N,A), it can be assumed the
existence of the following labelling:

• relevant(n), which identifies those leaf DOM nodes that should be-
long to the main content of the web page.

• irrelevant(n), which identifies the rest of the leaf DOM nodes, be-
cause they do not belong to the main content.

Some techniques (e.g., [51, 17]) represent the main content of the web-
page as a single DOM node whose subtree is the smallest containing all the
relevant nodes in a web page. However, this definition can be inaccurate
because sometimes the relevant nodes are mixed with irrelevant nodes and
boilerplate elements. For instance, consider a DOM subtree whose root
node has three children nodes. The first and the third children contain
relevant content (i.e. some paragraphs from a blog post), and the second
one contains irrelevant content (i.e. a block of advertisements). Hence, the
main content of a web page can be defined as a set of DOM nodes where
the union of their subtrees contain all the relevant content, and they do
not contain irrelevant content.

The formal definition of the main content (see Definition 4.3.3) is based
on the definition of a web page (see Definition 4.1.1) and the definition of
a website (see Definition 4.1.7). This definition is based on the following
assumptions:

• All relevant nodes belong to the subtrees of the main content nodes.

• All nodes that belong to the subtrees of the main content nodes are
relevant.

• The set of main content nodes is minimal.

Mainly, the main content is the minimal set of DOM nodes that contain
all the relevant nodes.

10.2. Main content extraction 193

DIV

DIV

P

#text

DIV

DIV

P

DIV

#text

IMG#text

DIV

A

#text

DIV

P

#text

#text #text

A

Figure 10.3: Main content with irrelevant DOM nodes example

Example 10.2.1 Consider the DOM tree in Figure 10.2. The relevant
nodes are the leaf nodes represented with a dotted border. According to
definition 4.3.3, the main content is the “DIV” node with a dark background
because it represents the smallest set of nodes that contains all the relevant
nodes. We should not select one of its ancestors as the main content node,
e.g, the “DIV” node with a dashed shape because in such a case we break
the third condition: the set of main content nodes would not be minimal.

Example 10.2.2 Consider the DOM tree in Figure 10.3. The relevant
nodes are the leaf nodes represented with a dotted border. Contrary to
example 10.2.1 where all the leaves are relevant nodes, in this case, not
all the text nodes are relevant. According to definition 4.3.3, the main
content is the union of nodes with a dark background because it represents
the smallest set of nodes that contains all the relevant nodes.

Definition 4.3.3 can be used to unify criteria in which DOM nodes should
be selected when providing the relevant labelling; for instance, when build-
ing a suite of benchmarks (see Chapter 13). However, in automatic content
extraction tasks, the relevant labelling is not available, therefore it must
be approximated. The following subsections provide a technique to auto-
matically identify the relevant nodes.

194 Chapter 10. Site-level Content Extraction

10.2.2 Set of web pages selection

Similarly to the template detection technique presented in Chapter 9, a
set of web pages from the same website of the key page that share their
template with high probability should be identified. This phase, proposed
in [5], is described in Chapter 7 as an independent process. Note that it
can be used by any site-level block detection technique.

As stated in Chapter 9, it can be observed that mutually linked web-
pages from the same domain very likely share their template, and con-
sequently, they very likely share the main content location. This phase
identifies a set of mutually linked web pages that implement the same tem-
plate as the key page. The web pages of this set are pairwise and mutually
linked. Therefore, they form an n-complete subdigraph (n-CS), made up
of n nodes.

Example 10.2.3 Figure 10.4 shows two web pages of IEEE’s website that
implement the same template. The web page on the left can be reached
from the menu option “About”. The web page on the right can be reached
from the menu option “Membership”. On both web pages, the main content
is located at the bottom-left of the web page. Both web pages share several
elements: a header, a menu, a footer, and a right panel with complementary
information. As they are mutually linked they form a 2-CS. In the same
way, most of the web pages from the same domain linked by the menu located
at the top form a complete subdigraph and implement the entire template.
The candidates selection technique identifies them as candidate web pages.

As outlined in previous chapters, other candidate selection techniques
use random web pages from the website [114] or take web pages provided
by the programmer as input [120]. However, the technique described in
Chapter 7 obtains higher quality candidates because the amount of tem-
plate implemented shared by the candidates is maximized. Therefore, as

Figure 10.4: Web pages of IEEE’s website sharing the template

10.2. Main content extraction 195

the amount of template is maximized, the main content can be identified
more accurately.

Roughly, the technique described in Chapter 7 analyzes the hyperlinks
in the key page in order to select those that with high probability produce a
complete subdigraph. An order of relevance is established by the hyperlink
analysis by using two algorithms: hyperlink distance and DOM distance.
Finally, the order of relevance is iteratively explored until the web pages
pointed by the links in it form a n-CS.

10.2.3 Web pages mapping

The identification of the DOM nodes of the key page repeated in other
web pages of the n-CS is done using the equal top-down mapping algo-
rithm (ETDM) defined in 8.2.1. This mapping compares two DOM trees
establishing a correspondence between their nodes (see Figure 8.1).

As stated in Section 8.2.1, the definition of ETDM is parametric with
respect to the equality relation ,. This notion of equality is more general
than the standard equality (=). It makes the comparison of two nodes by
considering their HTML tagName, HTML attributes, class names, number
of children, and their relative position in the DOM tree.

Once the set of web pages (n-CS) is built, an ETDM is computed be-
tween each web page in the n-CS and the key page. The algorithm compares
the DOM trees by traversing them top-down. It starts at the root and be-
gins mapping each node of the key page with the nodes located at the same
depth in the other web pages. The algorithm maintains an attribute called
occurrences that acts as a counter on each node of the key page. That
attribute stores the number of times a node from the key page is found
in the web pages of the n-CS. When two nodes can be mapped, they are
equal (n1 , n2), and therefore the occurrences attribute of the node in the
key page is updated by incrementing it in one unit. Then, the algorithm
recursively continues trying to map the children of both mapped nodes. It
should be noted that when it is not possible to map a node, the algorithm
does not explore its descendants.

Algorithm 11 takes as input a key page and a set of web pages from the
same website (n-CS), and it outputs the same key page including the value
of the occurrences attribute for each node. This attribute contains the
number of times a node from the key page is found in the web pages of the
n-CS. Then, nodes that belong to the template of the key page are identified
using this attribute in the following way: those nodes whose occurrences
attribute is higher than zero (because they appear in other web pages of

196 Chapter 10. Site-level Content Extraction

Algorithm 11 Compute the number of occurrences of each node in the
key page

Input: A key page pk = (N1, A1) and a set of n web pages P .
Output: The key page pk equipped with a variable occurrences for each
node.
Initialization: ∀n ∈ N1 . n.occurrences = 0.

begin
r1 = root(pk);
foreach (p = (N2, A2) in P)

r2 = root(p);
if (r1 , r2)

r1 .occurrences = r1 .occurrences + 1 ;
assignOccurrences(r1 , r2);

return pk ;
end

procedure assignOccurrences(node r1 ∈ N1, node r2 ∈ N2)
foreach (n1 ∈ N1, n2 ∈ N2 . n1 , n2, (r1, n1) ∈ A1 and (r2, n2) ∈ A2)

n1 .occurrences = n1 .occurrences + 1 ;
assignOccurrences(n1 ,n2);

end procedure

the website) will probably belong to the template of the web page. On the
other hand, the nodes with occurrences = 0 will high probability form the
main content of the web page.

When it finishes, the algorithm returns a set of candidate nodes as
output. For instance, the grey nodes in Figure 10.5 are the candidate
nodes. As the candidate nodes only appear on the key page and do not
appear in other web pages of the n-CS, therefore all of them or just a subset
corresponds to the main content.

10.2.4 Candidate set reduction

The set of candidate nodes obtained in the previous subsection contains
DOM nodes that are ancestors of other nodes from the set. This is due
to the fact that when a node in the key page does not belong to any web
page from the n-CS, its ancestors neither belong to any web page from the
n-CS, so all of them are included in the set of candidate nodes. As a result,

10.2. Main content extraction 197

BODY

DIV

DIV

DIV

DIV

P

…

…

A

#text

P A

#text

PP

DIV

DIV

P

P

#text #text #text

…

DIV

IMG…

…

IMGPDIV

…

DIVIMG P

#text

DIV

A A P

A P#text #text

#text #text

#text

……

IMG

DIV

DIV

DIV

DIV

Figure 10.5: Set of candidate nodes

a set of candidate nodes can be represented using the roots of the different
subtrees of candidate nodes. It can be observed in Figure 10.5, where
all the nodes from the set of candidate nodes are represented with a grey
background, that the four subtrees of candidate nodes can be simplified
with the four nodes with a bold border. Then, the resulting set of nodes,
which computation is based on Theorem 10.2.4, is called the reduced set of
candidate nodes.

Theorem 10.2.4 (parent-child relation of candidate nodes) Let P =
(N,A) be a web page and let C ⊆ N be the set of all candidate nodes of P .
Then,

n ∈ C =⇒ ∀n′, (n, n′) ∈ A∗ . n′ ∈ C

Proof. First, if |descendants(n)| = 0 the claim follows trivially. We prove
the case when |descendants(n)| ≥ 0 by contradiction. We assume that
n ∈ C ∧ ∃n′, (n, n′) ∈ A∗ . n′ 6∈ C. Because n′ 6∈ C, there must exist
a web page P ′ with an ETDM mapping M and (n′, n′′) ∈ M (for some
n′′). Moreover, according to the top-down property of Definition 4.2.7, all
ancestors of n′ also belong to the ETDM mapping M , and therefore, all

198 Chapter 10. Site-level Content Extraction

ancestors of n′ (including n) are not candidates: n 6∈ C. But this is a
contradiction with the premise n ∈ C. 2

Algorithm 12 computes the reduced set of candidate nodes based on
Theorem 10.2.4. The algorithm gets a set of candidate nodes as input,
and, for each node, it examines its ancestors. Then, the algorithm adds to
the reduced set of candidate nodes the ancestors with lower depth on the
DOM tree that belong to the set of candidate nodes. Figure 10.6 shows
the result of applying this algorithm to the example in Figure 10.5. The
dark gray nodes are the root nodes of all the nodes in the set of candidates.
These root nodes must belong to the original set of candidates.

When the reduced set of candidates is only formed by one node, that
node corresponds to the main content of the web page. In this case, the
algorithm finishes and the following phases are not executed. The node is
returned as the main content.

Algorithm 12 Candidate set reduction

Input: A set of DOM nodes candidatesSet
Output: A reduced set of DOM nodes reducedSet

that includes only the nodes at a higher level.
Initialization: reducedSet = {}.

begin
foreach (node in candidatesSet)

candidate = node;
while (parent(candidate) ∈ candidatesSet)

candidate = parent(candidate);
candidatesSet = candidatesSet \

subtree(candidate);
reducedSet = reducedSet ∪ candidate;

return reducedSet ;
end

10.2.5 Main content branch detection

In the case that the reduced set of candidate nodes contains more than one
node, the DOM tree should be analyzed in order to remove those nodes not
belonging to the main content.

For each node in the reduced set of candidate nodes, an algorithm ana-
lyzes its parent and counts its number of descendants, storing the obtained

10.2. Main content extraction 199

BODY

DIV

DIV

DIV

DIV

P

…

…

A

#text

P A

#text

PP

DIV

DIV

P

P

#text #text #text

…

DIV

IMG…

…

IMGPDIV

…

DIVIMG P

#text

DIV

A A P

A P#text #text

#text #text

#text

……

IMG

DIV

DIV

DIV

DIV

Figure 10.6: Candidate set reduction

value. Then, the node with more descendants is set as the root node of
the branch of the DOM tree that corresponds to the main content. It is
very difficult (but possible) to obtain a draw. If it happens, the algorithm
selects as the root node of the main content branch the first one in a deep
first traversal. The reason for this is that the first node in a deep traversal
appears on the screen without scrolling with a higher probability.

This phase explores and selects the parent of each DOM node in the
reduced set of candidate nodes because they are also found on other web
pages, for that reason they probably belong to the template of the website
or at least they are located in the boundary between the main content and
the template. It should be noted that Theorem 10.2.4 states that all the
descendants of the selected parent nodes are candidate nodes and thus,
they can not be found on other web pages.

The process of selecting the root node corresponding to the main con-
tent branch of a web page is performed by Algorithm 13. The root node of
the main content branch indicates the subtree (branch) of the DOM tree
containing the main content. Hence, all nodes located outside the main
content branch have to be discarded, as described in the following subsec-

200 Chapter 10. Site-level Content Extraction

tion. Often, the selected main content branch includes several candidates,
and therefore they have to be processed in order to obtain the set of main
content nodes, as detailed below.

Algorithm 13 Main content branch detection

Input: A key page pk , and a set reducedSet
of DOM nodes in pk

Output: A DOM node branch.

begin
count = 0;
foreach (n in reducedSet)

node = parent(n);
if |subtree(node)| > count

branch = node;
count = |subtree(node)|;

return branch;
end

Example 10.2.5 In Figure 10.7, the “DIV” with a dashed shape is the
root node of the main content branch. This “DIV” node has 3 children that
belong to the reduced set of candidate nodes.

10.2.6 Discarding candidates

Once the algorithm founds the branch containing the main content, it has
to remove the nodes not belonging to it from the reduced set of candidate
nodes. The process is simple, an algorithm checks whether the main content
branch contains each node in the reduced set of candidate nodes. The nodes
that do not belong to the main content branch are removed from the set.

Algorithm 14 explores the reduced set of candidate nodes and removes
from it the nodes that do not belong to the main content branch.

Example 10.2.6 In Figure 10.8, Algorithm 14 discards the grey node at
the top-right of the tree (and removes it from the reduced set of candidate
nodes) because it is not a descendant of the branch node.

10.2. Main content extraction 201

BODY

DIV

DIV

DIV

DIV

P

…

…

A

#text

P A

#text

PP

DIV

P

P

#text #text #text

…

DIV

IMG…

…

IMGPDIV

…

DIVIMG P

#text

DIV

A A P

A P#text #text

#text #text

#text

……

IMG

DIV

DIV DIV

DIV

DIV

Figure 10.7: Main content branch detection

Algorithm 14 Candidate set reduction

Input: A set of DOM nodes reducedSet , and
the branch node branch

Output: A set of DOM nodes finalReducedSet
that does not include nodes not
belonging to the main content branch

begin
foreach (node in reducedSet)

if (branch 6∈ ancestors(node))
reducedSet = reducedSet \ {node}

return reducedSet ;
end

10.2.7 Main content selection

Once Algorithm 14 has discarded the candidate nodes not belonging to the
main content branch, the remaining candidate nodes are considered main
content. Nevertheless, often these nodes can be grouped in the following

202 Chapter 10. Site-level Content Extraction

BODY

DIV

DIV

DIV

DIV

P

…

…

A

#text

P A

#text

PP

P

P

#text #text #text

…

DIV

IMG…

…

IMGPDIV

…

DIVIMG P

#text

DIV

A A P

A P#text #text

#text #text

#text

……

IMG

DIV

DIV DIV

DIV

DIV

DIV

Figure 10.8: Discarding candidates

way: if two or more candidates are sibling nodes (as the “DIV” nodes with
gray background in Figure 10.8), they are replaced recursively by their
parent. Algorithm 15 computes this process.

Algorithm 15 Main content selection

Input: A set of DOM nodes reducedSet
Output: A set of DOM nodes mainContent .

begin
mainContent = reducedSet ;
foreach (n1, n2 in mainContent with
parent(n1) == parent(n2))

mainContent = (mainContent \ {n1, n2})
∪{parent(n1)}

return mainContent ;
end

Example 10.2.7 In Figure 10.8, after the removal of the grey node lo-
cated at the top right, the reduced set of candidates is formed from only

10.3. Implementation 203

BODY

DIV

DIV

DIV

DIV

P

DIV

…

…

A

#text

P A

#text

PP

DIV

P

P

#text #text #text

…

DIV

IMG…

…

IMGPDIV

…

DIVIMG P

#text

DIV

A A P

A P#text #text

#text #text

#text

……

IMG

DIV

DIV

DIV

DIV

Figure 10.9: Discarding candidates

three nodes: the three grey background sibling nodes. In Figure 10.9, based
on Algorithm 15, the “DIV” node with grey background is the final main
content of the web page, because it replaces its three children.

10.3 Implementation

This technique, as the rest of the techniques described in this thesis, has
been implemented as a WebExtension compatible with Mozilla-based and
Chromium-based browsers. When users browsing on the Internet want to
extract the main content of the web page loaded in the browser, they press
on the “Extract Content” button and the add-on automatically does the
required actions and shows the main content of the web page. Therefore,
the nodes that do not belong to the main content of the web page are
hidden.

204 Chapter 10. Site-level Content Extraction

10.3.1 Empirical evaluation

Section 8.3 estimates the value of the open parameters relative to the CS
and the equality relation ,. These parameters were the size of the CS, the
number of votes, the weight of the properties of the equality relation ,,
and the threshold of the value of the equality relation ,).

Moreover, Section 8.3 also determined the values of the parameter n
as the optimal size of the CS and the parameter v as the number of votes
needed to consider a node as part of the template should be computed.
Since this content extraction technique, as described in Section 10.2, states
that a node belongs to the set of candidate nodes if it is not repeated in
several web pages, the parameter v should be equal to zero. Therefore, the
only parameter that needs to be computed is n (the optimal size of the CS),
because it may occur that a value is optimal for template detection but not
for content extraction, thus it has to be determined for content extraction.

It should be underlined that, as stated in Chapter 7, it is important
to determine the optimal size of n because the larger the CS is, the more
time is needed to compute the CS and to execute the ETDM. Moreover,
experiments taken in Section 7.3.1 of Chapter 7 reveal that larger CS sizes
do not always obtain better template detection results, so maybe the same
could happen in content extraction.

Therefore, the size of the set of web pages (the n value of the n-CS)
needed by Algorithm 11 had to be determined. The parameter n (the
optimum size of the CS) was determined by measuring the recall, precision
and F1 of the retrieved text words and DOM nodes for different CS sizes.

Table 10.1 shows the obtained results of the performed evaluation ex-
periments, with an n-CS size from 1 to 8, and with the training subset of
TeCo benchmark suite (see Chapter 13). Each row is the average of repeat-
ing all the experiments for the 105 benchmarks with a different value for n
in the n-CS. Column Size represents the size of the n-CS. Moreover, the
table shows, for the retrieved DOM nodes and the retrieved text words, the
average Recall, Precision, and F1. The last column shows the Runtime

in milliseconds needed to obtain the main content.

We can observe that a set of web pages of size 4 (4-CS) is the best
option because it obtains the best F1 value in retrieved words (91.71%),
while it obtains one of the best results in retrieved DOM nodes (84.52%).
Table 10.1 shows that sets containing 1 web page (1-CS) obtain the lowest
F1 values (around 75%), and sets of web pages containing 5 or more web
pages obtain similar F1 values. In addition, as stated in Chapter 7, the
size of the set directly affects the performance. The greater the set size,

10.3. Implementation 205

DOM nodes Words
Size Recall Precision F1 Recall Precision F1 Loads Runtime

1 90.02 % 74.46 % 75.17 % 92.39 % 83.28 % 84.82 % 1 303 ms.
2 94.54 % 78.36 % 81.99 % 96.50 % 84.53 % 88.73 % 7.86 654 ms.
3 92.80 % 84.00 % 83.50 % 96.17 % 88.52 % 89.84 % 11.63 874 ms.
4 95.33 % 82.16 % 84.52 % 98.50 % 88.32 % 91.71 % 17.11 1213 ms.
5 94.68 % 82.50 % 84.48 % 97.95 % 88.47 % 91.53 % 25.74 1738 ms.
6 94.56 % 83.23 % 84.50 % 97.86 % 88.72 % 91.56 % 27.66 2545 ms.
7 94.56 % 83.34 % 84.55 % 97.86 % 88.76 % 91.58 % 29.11 2805 ms.
8 94.56 % 83.34 % 84.55 % 97.86 % 88.76 % 91.58 % 31.71 3280 ms.

Table 10.1: Determining the optimal size of the n-CS

the more web pages must be loaded, and more ETDM mappings must be
calculated. This is also a compelling reason to select the 4-CS.

The parameters relative to the equality relation , are used by the
ETDM algorithms to discern whether two nodes that belong to two dif-
ferent web pages are the same node or not, so that if n1 , n2 ≥ t both
nodes are equal. Section 8.3.1 of Chapter 8 computes the weight of each
property of the equality relation , for the site-level template detection
algorithm (TemEx) with a complete subdigraph of size 3. In order to ob-
tain the optimal results, we computed again the parameters for the content
extraction algorithm described in this chapter (site-level ConEx). As in
Section 8.3.1 of Chapter 8, the weight of each property of the equality re-
lation , was computed (,= A ∗ Node position + B ∗ Node class names +
C ∗ Node children + D ∗ HTML attributes), where A + B + C + D = 1).
Therefore, all the experiments were repeated with the following possible
values for the weightings used:

Node position: [0.00− 1.00] in steps of 0.1.
Node class names: [0.00− 1.00] in steps of 0.1.
Node children: [0.00− 1.00] in steps of 0.1.
HTML attributes: [0.00− 1.00] in steps of 0.1.

Moreover, the threshold of the equality relation , t was also evaluated for
each possible weighting with the following values:

, threshold (t): [0.10− 1.00] in steps of 0.10.

Finally, it should be noted that the computation of the Node position value
can be done in four ways. They are described in Section 8.3.1 of Chapter
8.

We also want to highlight that, as in Chapter 8, the attribute HTML tag-
Name has not been included in the list because to map two nodes it is

206 Chapter 10. Site-level Content Extraction

mandatory that both share the same HTML tag name. Table 10.2 shows
the best 20 computed combinations after evaluating all possible combina-
tions against the 105 benchmarks training subset of the TeCo benchmark
suite (see Chapter 13). Specifically, it summarizes the repetition of the
experiments with all the possible combinations of the properties that form
the equality relation , (first 4 columns of Table 10.2), the threshold ,
(t) (fifth column of the table), and the Node position computation method
(sixth column of the table). Columns Recall, Precision, and F1 are the
recall, precision, and F1 respectively for both, retrieved DOM nodes and
retrieved words. Finally, column Runtime indicates the average runtime of
the algorithm for this combination of parameters. It shoud be noted that,
each row in the table corresponds to the average of 105 template extractions
from 105 different web pages.

To build the table, all the necessary combinations of the parameters
involved the computation of 1201200 experiments, which were performed
with a total computing time of approximately 57 days using an Intel i9
9900k.

DOM nodes Words

Class. Pos. Attr. Child. , thres. Opt. Recall Precision F1 Recall Precision F1 Runtime

0.1 0.0 0.2 0.7 0.9 4 89.92 % 76.80 % 79.04 % 92.34 % 85.31 % 87.14 % 2417 ms.
0.1 0.0 0.2 0.7 0.9 3 89.92 % 76.80 % 79.04 % 92.34 % 85.31 % 87.14 % 5076 ms.
0.1 0.0 0.2 0.7 0.9 2 89.92 % 76.80 % 79.04 % 92.34 % 85.31 % 87.14 % 5765 ms.
0.2 0.0 0.1 0.7 0.9 4 89.01 % 76.38 % 78.82 % 91.09 % 84.67 % 86.28 % 2195 ms.
0.2 0.0 0.1 0.7 0.9 3 89.01 % 76.38 % 78.82 % 91.09 % 84.67 % 86.28 % 4752 ms.
0.2 0.0 0.1 0.7 0.9 2 89.01 % 76.38 % 78.82 % 91.09 % 84.67 % 86.28 % 5712 ms.
0.0 0.0 0.5 0.5 0.8 4 89.52 % 77.58 % 78.74 % 91.45 % 84.87 % 86.23 % 2547 ms.
0.0 0.0 0.5 0.5 0.8 3 89.52 % 77.58 % 78.74 % 91.45 % 84.87 % 86.23 % 5678 ms.
0.0 0.0 0.5 0.5 0.8 2 89.52 % 77.58 % 78.74 % 91.45 % 84.87 % 86.23 % 5991 ms.
0.0 0.0 0.2 0.8 0.9 4 89.13 % 77.23 % 78.70 % 90.88 % 84.58 % 85.90 % 2326 ms.
0.0 0.0 0.2 0.8 0.9 2 89.13 % 77.23 % 78.70 % 90.88 % 84.58 % 85.90 % 4852 ms.
0.0 0.0 0.2 0.8 0.9 3 89.13 % 77.23 % 78.70 % 90.88 % 84.58 % 85.90 % 5352 ms.
0.1 0.1 0.2 0.6 0.8 2 88.80 % 77.57 % 78.64 % 90.65 % 85.50 % 85.66 % 5140 ms.
0.1 0.2 0.2 0.5 0.9 4 89.32 % 76.02 % 78.58 % 91.64 % 84.54 % 86.45 % 2613 ms.
0.2 0.1 0.1 0.6 0.9 4 88.97 % 75.90 % 78.53 % 90.96 % 84.14 % 85.95 % 2763 ms.
0.2 0.1 0.1 0.6 0.9 3 88.97 % 75.90 % 78.53 % 90.96 % 84.14 % 85.95 % 5335 ms.
0.0 0.0 0.4 0.6 0.8 4 88.20 % 76.79 % 78.15 % 90.25 % 84.17 % 85.30 % 2848 ms.
0.0 0.0 0.4 0.6 0.8 2 88.20 % 76.79 % 78.15 % 90.25 % 84.17 % 85.30 % 4806 ms.
0.0 0.0 0.4 0.6 0.8 3 88.20 % 76.79 % 78.15 % 90.25 % 84.17 % 85.30 % 5514 ms.
0.1 0.0 0.1 0.8 0.9 4 88.15 % 76.82 % 78.07 % 90.06 % 85.10 % 85.41 % 2409 ms.

Table 10.2: Determining the best values of the equality relation , proper-
ties for site-level ConEx

The first row in the table was selected as the optimum combination of
parameters for the equality relation , because it is the fastest combination
that obtains the best F1 metric. Note that, for most combinations of the
properties that form the equality relation , and the , threshold (t), the
results obtained for different Node position computation methods (column
Option of the table) are equal. In that case, the rows are ordered by column
Runtime, placing the faster combinations first.

10.3. Implementation 207

Finally, the following table summarizes the optimal parameters obtained
empirically:

CS size (n): 4.
Node class names: 0.10.
Node position: 0.00.
HTML attributes: 0.20.
Node children: 0.70.

, threshold (t): 0.90.
Option: 4.

Note that these parameters were obtained for content extraction, and
they are different from the parameters obtained for template detection (See
Chapter 8).

Algorithm evaluation

In order to evaluate the technique, several experiments were performed
with the 45 evaluation benchmarks of the TeCo benchmark suite (see Chap-
ter 13). For all the benchmarks in the evaluation subset, we computed the
Recall, Precision, and F1 of the retrieved DOM nodes and the retrieved
words. Additionally, we computed the Runtime in milliseconds. The re-
sults, that were computed with a 4-CS, are shown in Tables 10.3 and 10.5.

In Table 10.3, column Total shows the total number of DOM nodes of
the key page; column Gold indicates the number of DOM nodes of the gold
standard; column Retr. is the number of retrieved DOM nodes; column
Correct represents the number of retrieved DOM nodes that belong to the
gold standard; columns Rec., Prec., and F1 are the recall, precision, and
F1 respectively. In Table 10.5, column Gold shows the total number of
words on the key page; column Retr. is the number of retrieved words;
column Corr. indicates the number of retrieved words that belong to the
gold standard; columns Rec., Prec., and F1 are the recall, precision, and
F1 respectively. In both tables, column Load shows the number of web
pages loaded by the technique; column Rt. represents the runtime used
to compute the main content (in milliseconds); and column Rt. opt.

represents the runtime used to compute the main content implementing
the runtime improvement algorithm described subsequently in this section.

It can be observed that the algorithm obtains an average F1 over 80%
for retrieved DOM nodes and an average F1 over 90% for retrieved words.
In addition, for retrieved words, one third of the benchmarks obtain an F1
of 100%, that is, the algorithm extracts exactly the text that forms the
main content. As it is a site-level algorithm, it needs to load on average

208 Chapter 10. Site-level Content Extraction

Number of nodes DOM nodes

Benchmark Total Gold Retr. Corr. Rec. Prec. F1

www.jdi.org.za 619 199 207 137 68.84 % 66.18 % 67.49 %
www.premiere-urgence.org 480 32 32 32 100.00 % 100.00 % 100.00 %
www.indiangaming.org 575 148 375 148 100.00 % 39.47 % 56.60 %
hispalinux.es 501 144 138 138 95.83 % 100.00 % 97.87 %
www.gktw.org 767 130 86 86 66.15 % 100.00 % 79.63 %
www.apnic.net 598 79 69 69 87.34 % 100.00 % 93.24 %
www.unicef.org 1037 381 386 381 100.00 % 98.70 % 99.35 %
www.klimabuendnis.org 851 134 352 134 100.00 % 38.07 % 55.14 %
www.isoc-es.org 259 56 100 56 100.00 % 56.00 % 71.79 %
biztechmagazine.com 1892 454 235 29 6.39 % 12.34 % 8.42 %
www.eeo.com.cn 834 119 119 119 100.00 % 100.00 % 100.00 %
www.wishtv.com 2167 343 356 343 100.00 % 96.35 % 98.14 %
news.mit.edu 2117 128 355 128 100.00 % 36.06 % 53.00 %
asia.nikkei.com 869 116 206 116 100.00 % 56.31 % 72.05 %
www.rcnky.com 1738 112 103 103 91.96 % 100.00 % 95.81 %
news.discovery.com 2826 791 791 791 100.00 % 100.00 % 100.00 %
www.kathimerini.gr 1825 117 562 117 100.00 % 20.82 % 34.46 %
news.un.org 1726 59 57 57 96.61 % 100.00 % 98.28 %
frances.forosactivos.net 785 495 632 495 100.00 % 78.32 % 87.84 %
www.wysiwygwebbuilder.com 3936 3201 3686 3201 100.00 % 86.84 % 92.96 %
www.3dprintforums.com 1040 748 754 748 100.00 % 99.20 % 99.60 %
www.strangehorizons.com 631 403 436 400 99.26 % 91.74 % 95.35 %
communities.apple.com 3136 1306 81 0 0.00 % 0.00 % 0.00 %
www.sloweurope.com 4193 2789 3684 2786 99.89 % 75.62 % 86.08 %
community.ricksteves.com 2057 1177 1858 1177 100.00 % 63.35 % 77.56 %
hackercombat.com 1711 698 707 698 100.00 % 98.73 % 99.36 %
www.scbwi.org 876 506 662 506 100.00 % 76.44 % 86.64 %
johngardnerathome.info 395 188 353 188 100.00 % 53.26 % 69.50 %
www.annmalaspina.com 392 84 105 68 80.95 % 64.76 % 71.96 %
foodsense.is 330 192 217 184 95.83 % 84.79 % 89.98 %
sites.google.com 372 85 44 41 48.24 % 93.18 % 63.57 %
whatever.scalzi.com 1648 243 225 225 92.59 % 100.00 % 96.15 %
www.javiercelaya.es 740 57 305 57 100.00 % 18.69 % 31.49 %
diarium.usal.es 604 524 513 513 97.90 % 100.00 % 98.94 %
www.jameslovelock.org 653 174 174 174 100.00 % 100.00 % 100.00 %
www.cipri.info 933 556 559 556 100.00 % 99.46 % 99.73 %
naranjascarcaixent.com 290 141 145 141 100.00 % 97.24 % 98.60 %
www.technicalbookstoreonline.com 2959 2002 2453 2002 100.00 % 81.61 % 89.88 %
www.floridarealestatecollege.com 1023 65 502 65 100.00 % 12.95 % 22.93 %
www.basf.com 827 62 62 62 100.00 % 100.00 % 100.00 %
www.mcphersonoil.com 831 225 231 225 100.00 % 97.40 % 98.68 %
www.thirteenhou.com 1217 1073 1080 1073 100.00 % 99.35 % 99.67 %
www.embalajesterra.com 2342 470 470 470 100.00 % 100.00 % 100.00 %
www.crypto.ch 338 68 50 50 73.53 % 100.00 % 84.75 %
www.shopbookshop.com 1727 387 414 387 100.00 % 93.48 % 96.63 %

Average 1281.49 476.91 554.02 432.80 91.14 % 77.48 % 80.43 %

Table 10.3: Evaluation of the precision, recall, F1, and runtime for retrieved
DOM nodes

around 12 web pages from the same website to infer the main content. How-
ever, in approximately 40% of the benchmarks, the algorithm only loaded

10.3. Implementation 209

Benchmark Load Rt. Rt. opt.

www.jdi.org.za 9 135 ms. 140 ms.
www.premiere-urgence.org 5 225 ms. 241 ms.
www.indiangaming.org 5 65 ms. 68 ms.
hispalinux.es 5 153 ms. 169 ms.
www.gktw.org 6 351 ms. 324 ms.
www.apnic.net 5 279 ms. 258 ms.
www.unicef.org 6 310 ms. 309 ms.
www.klimabuendnis.org 5 1474 ms. 1611 ms.
www.isoc-es.org 7 98 ms. 94 ms.
biztechmagazine.com 7 700 ms. 723 ms.
www.eeo.com.cn 14 1275 ms. 1185 ms.
www.wishtv.com 7 3474 ms. 3286 ms.
news.mit.edu 5 1491 ms. 1555 ms.
asia.nikkei.com 8 575 ms. 608 ms.
www.rcnky.com 5 829 ms. 798 ms.
news.discovery.com 6 917 ms. 946 ms.
www.kathimerini.gr 14 957 ms. 932 ms.
news.un.org 8 803 ms. 801 ms.
frances.forosactivos.net 39 170 ms. 170 ms.
www.wysiwygwebbuilder.com 143 1757 ms. 1754 ms.
www.3dprintforums.com 7 259 ms. 380 ms.
www.strangehorizons.com 8 291 ms. 281 ms.
communities.apple.com 8 476 ms. 475 ms.
www.sloweurope.com 6 231 ms. 234 ms.
community.ricksteves.com 8 112 ms. 96 ms.
hackercombat.com 17 774 ms. 858 ms.
www.scbwi.org 37 149 ms. 124 ms.
johngardnerathome.info 6 40 ms. 36 ms.
www.annmalaspina.com 5 90 ms. 88 ms.
foodsense.is 5 60 ms. 57 ms.
sites.google.com 5 149 ms. 149 ms.
whatever.scalzi.com 14 106781 ms. 3916 ms.
www.javiercelaya.es 5 160 ms. 164 ms.
diarium.usal.es 5 37 ms. 44 ms.
www.jameslovelock.org 6 1816 ms. 1482 ms.
www.cipri.info 5 242 ms. 249 ms.
naranjascarcaixent.com 6 71 ms. 73 ms.
www.technicalbookstoreonline.com 33 370 ms. 407 ms.
www.floridarealestatecollege.com 5 182 ms. 197 ms.
www.basf.com 5 230 ms. 237 ms.
www.mcphersonoil.com 5 400 ms. 384 ms.
www.thirteenhou.com 5 54 ms. 59 ms.
www.embalajesterra.com 6 770 ms. 885 ms.
www.crypto.ch 5 168 ms. 159 ms.
www.shopbookshop.com 6 4319 ms. 3301 ms.

Average 11.82 2984 ms. 673 ms.

Table 10.4: Evaluation of the precision, recall, F1, and runtime for retrieved
DOM nodes (cont.)

5 web pages (the key page and 4 web pages more to form the complete sub-
digraph). Regarding the runtime, we can observe that for approximately
80% of the benchmarks it is less than 1 second, but there is a benchmark
whose runtime is higher than 100 seconds. The average runtime is close

210 Chapter 10. Site-level Content Extraction

Number of words Words

Benchmark Gold Retr. Corr. Rec. Prec. F1

www.jdi.org.za 313 300 284 90.73 % 94.67 % 92.66 %
www.premiere-urgence.org 134 134 134 100.00 % 100.00 % 100.00 %
www.indiangaming.org 145 294 145 100.00 % 49.32 % 66.06 %
hispalinux.es 514 514 514 100.00 % 100.00 % 100.00 %
www.gktw.org 478 461 461 96.44 % 100.00 % 98.19 %
www.apnic.net 245 242 242 98.78 % 100.00 % 99.38 %
www.unicef.org 120 123 120 100.00 % 97.56 % 98.77 %
www.klimabuendnis.org 258 334 258 100.00 % 77.25 % 87.16 %
www.isoc-es.org 69 97 69 100.00 % 71.13 % 83.13 %
biztechmagazine.com 815 201 121 14.85 % 60.20 % 23.82 %
www.eeo.com.cn 43 43 43 100.00 % 100.00 % 100.00 %
www.wishtv.com 786 786 786 100.00 % 100.00 % 100.00 %
news.mit.edu 1000 1105 1000 100.00 % 90.50 % 95.01 %
asia.nikkei.com 642 701 642 100.00 % 91.58 % 95.61 %
www.rcnky.com 935 935 935 100.00 % 100.00 % 100.00 %
news.discovery.com 767 767 767 100.00 % 100.00 % 100.00 %
www.kathimerini.gr 737 833 737 100.00 % 88.48 % 93.89 %
news.un.org 303 303 303 100.00 % 100.00 % 100.00 %
frances.forosactivos.net 169 256 169 100.00 % 66.02 % 79.53 %
www.wysiwygwebbuilder.com 2115 2343 2115 100.00 % 90.27 % 94.89 %
www.3dprintforums.com 347 347 347 100.00 % 100.00 % 100.00 %
www.strangehorizons.com 3559 3700 3559 100.00 % 96.19 % 98.06 %
communities.apple.com 608 157 0 0.00 % 0.00 % 0.00 %
www.sloweurope.com 804 1041 804 100.00 % 77.23 % 87.15 %
community.ricksteves.com 589 866 589 100.00 % 68.01 % 80.96 %
hackercombat.com 383 384 383 100.00 % 99.74 % 99.87 %
www.scbwi.org 247 343 247 100.00 % 72.01 % 83.73 %
johngardnerathome.info 1375 1469 1375 100.00 % 93.60 % 96.69 %
www.annmalaspina.com 114 152 114 100.00 % 75.00 % 85.71 %
foodsense.is 442 458 407 92.08 % 88.86 % 90.44 %
sites.google.com 54 50 48 88.89 % 96.00 % 92.31 %
whatever.scalzi.com 1151 1141 1141 99.13 % 100.00 % 99.56 %
www.javiercelaya.es 359 402 359 100.00 % 89.30 % 94.35 %
diarium.usal.es 869 863 863 99.31 % 100.00 % 99.65 %
www.jameslovelock.org 1308 1308 1308 100.00 % 100.00 % 100.00 %
www.cipri.info 1281 1282 1281 100.00 % 99.92 % 99.96 %
naranjascarcaixent.com 73 73 73 100.00 % 100.00 % 100.00 %
www.technicalbookstoreonline.com 873 999 873 100.00 % 87.39 % 93.27 %
www.floridarealestatecollege.com 310 728 310 100.00 % 42.58 % 59.73 %
www.basf.com 128 128 128 100.00 % 100.00 % 100.00 %
www.mcphersonoil.com 319 319 319 100.00 % 100.00 % 100.00 %
www.thirteenhou.com 1337 1337 1337 100.00 % 100.00 % 100.00 %
www.embalajesterra.com 111 111 111 100.00 % 100.00 % 100.00 %
www.crypto.ch 185 181 181 97.84 % 100.00 % 98.91 %
www.shopbookshop.com 241 241 241 100.00 % 100.00 % 100.00 %

Average 614.56 641.16 583.18 95.07 % 88.06 % 90.41 %

Table 10.5: Evaluation of the precision, recall, F1, and runtime for retrieved
words

10.3. Implementation 211

Benchmark Load Rt. Rt. opt.

www.jdi.org.za 9 135 ms. 140 ms.
www.premiere-urgence.org 5 225 ms. 241 ms.
www.indiangaming.org 5 65 ms. 68 ms.
hispalinux.es 5 153 ms. 169 ms.
www.gktw.org 6 351 ms. 324 ms.
www.apnic.net 5 279 ms. 258 ms.
www.unicef.org 6 310 ms. 309 ms.
www.klimabuendnis.org 5 1474 ms. 1611 ms.
www.isoc-es.org 7 98 ms. 94 ms.
biztechmagazine.com 7 700 ms. 723 ms.
www.eeo.com.cn 14 1275 ms. 1185 ms.
www.wishtv.com 7 3474 ms. 3286 ms.
news.mit.edu 5 1481 ms. 1555 ms.
asia.nikkei.com 8 575 ms. 608 ms.
www.rcnky.com 5 829 ms. 798 ms.
news.discovery.com 6 917 ms. 946 ms.
www.kathimerini.gr 14 957 ms. 932 ms.
news.un.org 8 803 ms. 801 ms.
frances.forosactivos.net 39 170 ms. 170 ms.
www.wysiwygwebbuilder.com 143 1757 ms. 1754 ms.
www.3dprintforums.com 7 259 ms. 380 ms.
www.strangehorizons.com 8 291 ms. 281 ms.
communities.apple.com 8 476 ms. 475 ms.
www.sloweurope.com 6 231 ms. 234 ms.
community.ricksteves.com 8 112 ms. 96 ms.
hackercombat.com 17 774 ms. 858 ms.
www.scbwi.org 37 149 ms. 124 ms.
johngardnerathome.info 6 40 ms. 36 ms.
www.annmalaspina.com 5 90 ms. 88 ms.
foodsense.is 5 60 ms. 57 ms.
sites.google.com 5 149 ms. 149 ms.
whatever.scalzi.com 14 106781 ms. 3916 ms.
www.javiercelaya.es 5 160 ms. 164 ms.
diarium.usal.es 5 37 ms. 44 ms.
www.jameslovelock.org 6 1816 ms. 1482 ms.
www.cipri.info 5 242 ms. 249 ms.
naranjascarcaixent.com 6 71 ms. 73 ms.
www.technicalbookstoreonline.com 33 370 ms. 407 ms.
www.floridarealestatecollege.com 5 182 ms. 197 ms.
www.basf.com 5 230 ms. 237 ms.
www.mcphersonoil.com 5 400 ms. 384 ms.
www.thirteenhou.com 5 54 ms. 59 ms.
www.embalajesterra.com 6 770 ms. 885 ms.
www.crypto.ch 5 168 ms. 159 ms.
www.shopbookshop.com 6 4319 ms. 3301 ms.

Average 11.82 2984 ms. 673 ms.

Table 10.6: Evaluation of the precision, recall, F1, and runtime for retrieved
words (cont.)

212 Chapter 10. Site-level Content Extraction

to 3 seconds. However, implementing the runtime improvement algorithm
described subsequently, the average runtime decreases up to nearly 700 ms.
especially due to the reduction of the runtime of one benchmark which is
reduced from 106 seconds to 4 seconds.

Other similar techniques that also use heterogeneous websites declare
the following results: Shanchan et al. obtain an F1 of 82% [118], Gottron
et al. 77% [46], and Insa et al. 74% [51]. However, other techniques
are based on evaluating prepared datasets such as Cleaneval [20], MSS
[86], L3S-GN1 [61], etc. Even some techniques evaluate RSS feeds, or
prepared websites (collections of automatically generated web pages that
share the same template). For that reason, they usually obtain high F1
values: Pasternack et al. obtain an F1 value of 95% [86], Qureshi et al.
94% [92], Adam et al. 93% [1], and Zhao et al. 88% [69]. Hence, different
techniques should not be compared using different datasets because we may
obtain inaccurate conclusions.

Chapter 12 contains different comparisons of different content extrac-
tion and template detection techniques using the same benchmark suites.
Unfortunately, the suites of benchmarks used to compare the main content
extraction techniques in Chapter 12 are only prepared for page-level tech-
niques. However, as both techniques have been evaluated with the TeCo
benchmark suite, this site-level content extraction technique can be com-
pared with our page-level content extraction technique described in Chap-
ter 6. We can observe by comparing Tables 10.3, 10.4, 10.5, and 10.6 with
Tables 6.3 and 6.4 that the page-level content extraction technique is better
for both, retrieved DOM nodes and retrieved words. The differences for the
F1 are not significant, about 1% for retrieved DOM nodes and about 2% for
retrieved words. However, the Recall is higher in the site-level technique
for both, retrieved DOM nodes and retrieved words. Therefore, in scenar-
ios where the extracted main content should be maximized, it is preferable
to use the site-level technique. Regarding the Runtime, as expected, the
page-level technique is faster than the site-level technique, 133 ms. versus
673 ms. in average.

Table 10.7 shows the obtained results grouped by benchmark category
(see Chapter 13). We can observe that the Companies / Shops category
obtains very high F1 values (almost 88% for retrieved DOM nodes), while
the Media / Communications category obtains the lowest F1 value (about
73% for retrieved DOM nodes). Regarding the optimized runtime, for the
Media / Communication category the technique is about 4 times slower
than for the Institutions / Associations category.

10.3. Implementation 213

DOM nodes Words
Benchmark type Recall Precision F1 Recall Precision F1

Institutions / Associations 90.91 % 77.60 % 80.12 % 98.44 % 87.77 % 91.71 %
Media / Communication 88.13 % 69.10 % 73.35 % 90.54 % 92.31 % 89.81 %
Forum / Social 88.79 % 74.47 % 80.60 % 88.89 % 74.39 % 80.47 %
Personal websites / Blogs 90.61 % 79.35 % 80.15 % 97.71 % 93.63 % 95.41 %
Companies / Shops 97.06 % 86.89 % 87.90 % 99.76 % 92.22 % 94.66 %

Benchmark type Load Rt. Rt. opt.

Institutions / Associations 5.89 343 ms. 357 ms.
Media / Communication 8.22 1223 ms. 1204 ms.
Forum / Social 30.33 469 ms. 486 ms.
Personal websites / Blogs 6.22 12153 ms. 687 ms.
Companies / Shops 8.44 729 ms. 634 ms.

Table 10.7: Results of the performed experiments grouped by category

Runtime improvement

As in the site-level template detection technique (TemEx) described
in Chapter 9, the runtime can be improved by inserting temporary DOM
nodes in order to reduce the number of children of some nodes. As explained
in Section 9.3.1, the mapping of two nodes when they have a large number
of children takes excessive time. When the position property value for two
nodes with a large number of children is computed, each child of one node
needs to be compared with all the children of the other node. When two
children are mapped, the position property value of the remaining children
has to be computed, and so on. This involves a significant growth of the
runtime for nodes with more than 200 children.

As described in Section 9.3.1, the number of children of some DOM
nodes and thus, the mapping runtime, can be reduced by inserting some
temporary nodes between the parent and the children. These temporary
nodes group the children in a way that the maximum number of children of
a node is limited. For instance, in the case of a node with 320 children, we
can insert 8 temporary nodes between the parent and the children, so each
temporary node will have 40 children. This way, we obtain 8 parents with
40 children each instead of one parent with 320 children. The addition of
those temporary DOM nodes does not affect the layout of the web pages.

As in Section 9.3.1, two parameters were defined to measure the gain
obtained by applying the runtime improvement algorithm:

• Group: It represents the maximum number of child nodes of the
temporary DOM nodes. Namely, it is the maximum size of the groups
formed with the child nodes of the original node.

• Childnodes: It establishes the number of children a DOM node should
have for applying the runtime improvement algorithm.

214 Chapter 10. Site-level Content Extraction

It should be noted that, in some cases, the results achieved by the
runtime improvement algorithm might differ from the expected results. The
reason is that the mapping of two temporary nodes could be different than
expected if their parent nodes did not have exactly the same children.
Nevertheless, this only happens in a few cases, and it depends on the Group
and Childnodes values.

To test the runtime improvement, we performed several experiments
using the 105 training benchmarks of the TeCo benchmark suite (see Chap-
ter 13). As in Section 9.3.1, we computed the Recall, Precision, F1, and
Runtime of the mapping phase for Group values ranging from 25 to 125,
and Childnodes values ranging from 100 to 350.

Table 10.8 shows the results obtained by different combinations of Group
and Childnodes values. On the one hand, we can observe that the Runtime
of applying the improvement algorithm is substantially lower in all cases.
On the other hand, the table shows that the obtained results for retrieved
words are the same for all combinations with a Childnodes value higher or
equal to 200. Finally, we selected a Group value of 100, and a Childnodes

value of 300, since the Recall and F1 score for both, retrieved DOM nodes
and retrieved words, are exactly the same as without runtime improvement,
and the Runtime is more than two and a half times faster than without this
improvement. Note that the Precision is 0.001 lower than without the
improvement for retrieved DOM nodes, however, this is not significative
since the obtained F1 values are equal. It should be highlighted that other
combinations of Group and Childnodes obtain the same results, but their
Runtime is higher. Note that the Recall, Precision, and F1 values have
been expressed with three decimal places because of the similarity of the
obtained results for almost all combinations.

Runtime analysis

Figure 10.10, based on Column Rt. opt. in Table 10.4, shows the
relation between the total time needed to extract the main content and the
size of the key page, for the benchmarks in the evaluation subset. We can
observe that more than 80% of the benchmarks took less than 1 second. On
the other hand, only 3 benchmarks took more than 3 seconds. It should
be noted that for around 65% of the benchmarks the runtime took less
than half a second. By analyzing Figure 10.10, we can infer that larger
(considering the number of DOM nodes) web pages usually take the larger
runtime, but sometimes there are large websites whose runtime is really
low.

10.3. Implementation 215

DOM nodes Words
Group Childnodes Recall Precision F1 Recall Precision F1 Runtime

25 100 90.556 % 76.100 % 78.988 % 92.711 % 85.069 % 87.237 % 643 ms.
50 100 89.945 % 76.280 % 78.772 % 92.129 % 84.895 % 86.681 % 679 ms.
75 100 89.945 % 76.784 % 79.119 % 92.129 % 85.301 % 86.949 % 718 ms.

100 100 90.518 % 75.719 % 78.633 % 92.711 % 84.825 % 87.092 % 844 ms.
125 100 89.557 % 75.097 % 77.875 % 91.758 % 84.140 % 86.295 % 897 ms.
25 150 90.556 % 76.066 % 78.916 % 92.711 % 85.070 % 87.236 % 697 ms.
50 150 89.935 % 76.727 % 79.040 % 92.129 % 85.306 % 86.951 % 729 ms.
75 150 89.935 % 76.750 % 79.045 % 92.129 % 85.306 % 86.951 % 767 ms.

100 150 90.558 % 76.801 % 79.515 % 92.711 % 85.306 % 87.370 % 923 ms.
125 150 90.559 % 76.070 % 78.922 % 92.711 % 85.070 % 87.236 % 1011 ms.
25 200 89.919 % 76.797 % 79.034 % 92.337 % 85.306 % 87.139 % 813 ms.
50 200 89.921 % 76.799 % 79.038 % 92.337 % 85.306 % 87.139 % 820 ms.
75 200 89.921 % 76.800 % 79.038 % 92.337 % 85.306 % 87.139 % 864 ms.

100 200 89.922 % 76.800 % 79.039 % 92.337 % 85.306 % 87.139 % 1038 ms.
125 200 89.922 % 76.801 % 79.040 % 92.337 % 85.306 % 87.139 % 1039 ms.
25 250 89.923 % 76.799 % 79.039 % 92.337 % 85.306 % 87.139 % 889 ms.
50 250 89.923 % 76.800 % 79.040 % 92.337 % 85.306 % 87.139 % 869 ms.
75 250 89.923 % 76.801 % 79.040 % 92.337 % 85.306 % 87.139 % 908 ms.

100 250 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 961 ms.
125 250 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 1088 ms.
25 300 89.923 % 76.799 % 79.039 % 92.337 % 85.306 % 87.139 % 734 ms.
50 300 89.923 % 76.800 % 79.040 % 92.337 % 85.306 % 87.139 % 743 ms.
75 300 89.923 % 76.801 % 79.040 % 92.337 % 85.306 % 87.139 % 793 ms.

100 300 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 946 ms.
125 300 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 1087 ms.
25 350 89.923 % 76.799 % 79.039 % 92.337 % 85.306 % 87.139 % 1125 ms.
50 350 89.923 % 76.800 % 79.040 % 92.337 % 85.306 % 87.139 % 1120 ms.
75 350 89.923 % 76.801 % 79.040 % 92.337 % 85.306 % 87.139 % 1101 ms.

100 350 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 1361 ms.
125 350 89.923 % 76.801 % 79.041 % 92.337 % 85.306 % 87.139 % 1496 ms.

No improvement 89.923 % 76.802 % 79.041 % 92.337 % 85.306 % 87.139 % 2984 ms.

Table 10.8: Results obtained for different Group and Childnodes parame-
ters

Figure 10.10: Relation between the size of the web page and the runtime

216 Chapter 10. Site-level Content Extraction

Hence, there is not a clear relationship between the size of the key page
and the runtime of the algorithm, so we decided to explore other variables
to check which are really related to the runtime of the algorithm. As in
Chapter 9, the technique is site-level, and it is also based on the candidates
selection and ETDM algorithms. Therefore, we computed the statistical
analysis using essentially the same variables we used in that chapter, which
are:

• The size of the main content measured in number of content DOM

nodes. The choice of this variable is based on the assumption that
the technique performs a mapping between several web pages to infer
the main content of the key page. Therefore, the size of the real main
content with high probability is related to the runtime.

• The number of loaded web pages. The selection of this variable is
based on the fact that the technique needs to load several web pages
to build the complete subdigraph. The more web pages it loads, the
more runtime.

• The standard deviation of the number of children of the

element DOM nodes. This variable was selected because, as stated
above, the mapping process of DOM nodes with a high amount of
children has a direct influence on the runtime, making it grow expo-
nentially. This variable can evidence if there are nodes with a high
amount of children.

• The average number of children of the element DOM nodes.
As in the previous variable, this variable is also selected because the
runtime of the algorithm grows due to the DOM nodes with a high
amount of children.

• The depth of the DOM tree of the key page. The choice of this
variable is based on the assumption that probably the mapping of
deeper DOM trees takes more runtime.

• The maximum depth reached by the mapping. In this case, the
variable is selected because probably the more depth reached by the
mapping involves more runtime.

It should be highlighted that this statistical analysis was performed to
the technique using the runtime improvement algorithm, therefore, the
DOM tree of the key page and the web pages that belong to the complete

10.3. Implementation 217

Kolmogorov-Smirnova Shapiro-Wilk

Estadístico gl Sig. Estadístico gl Sig.

Runtime

Content nodes

Loaded

Desv. st.

Children avg.

Depth

Mapping depth

,335 105 ,000 ,592 105 ,000

,248 105 ,000 ,655 105 ,000

,418 105 ,000 ,290 105 ,000

,128 105 ,000 ,867 105 ,000

,528 105 ,000 ,073 105 ,000

,155 105 ,000 ,920 105 ,000

,155 105 ,000 ,922 105 ,000

Corrección de significación de Lillieforsa.

Figure 10.11: Result of the normality test for site-level ConEx

subdigraph are optimized for the mapping. As in previous chapters, we used
IBM SPSS Statistics to analyze the relationship between these variables.
We also conducted the analysis using the test subset of the TeCo benchmark
suite, formed by 105 web pages (see Chapter 13). First of all, we computed
Table 10.11 to check whether the data were normally distributed. As we can
observe in the table, the sample size (column gl) is 105, in consequence,
the appropriate test to check the normality of the variables is Kolmogorov-
Smirnov.

The table shows that the significance (column Sig.) of all variables
is less than 0.05, therefore, the correlation coefficient can be computed
through the Spearman test because the variables are not distributed nor-
mally. Figure 10.12 shows the result of the Spearman test for these vari-
ables. We can observe the correlation coefficient between all the variables
and the runtime in the first row of the table.

The correlation coefficient of the number of content DOM nodes vari-
able is higher than 0.4, while the correlation coefficient of the standard

deviation of the number of children of the element DOM nodes is
close to 0.35. These values state a clear relationship of these variables
with the runtime of the algorithm. On the other hand, the correlation co-
efficient value for the variables maximum depth reached by the mapping

and average number of children of the element DOM nodes are close
to 0, therefore, these variables have no relationship with the runtime. Fig-
ure 9.8 also shows low values of the correlation coefficient for the variables
depth of the DOM tree of the key page, and number of loaded web

pages. These low values indicate that there is not a clear relationship
between them and the runtime of the algorithm.

218 Chapter 10. Site-level Content Extraction

Figure 10.12: Result of the Spearman test for site-level ConEx

10.4 Conclusions

This chapter describes a new technique for content extraction from hetero-
geneous websites. It is a site-level technique, so it loads several web pages
and uses their information to extract the main content. Concretely, given
the key page, the technique analyzes it and extracts its hyperlinks. Then,
the hyperlinks are sorted in order to select the web pages that are more
likely to provide valuable information about the main content of the key
page. As demonstrated by empirical evaluation, a set of 4 web pages (4-
CS) obtains the best values of F1 for both, retrieved words and retrieved
DOM nodes. The comparison of the DOM nodes from the set of web pages
is done using an ETDM mapping. The comparison of the different web
pages provides information about the number of times each DOM node is
repeated in them. The technique considers that a DOM node that only ap-
pears on the key page and it is not repeated in others more likely belongs
to its main content.

In essence, the algorithm maps the DOM nodes of the key page with
several web pages from the same website in order to infer the branch of the
DOM tree that probably contains the main content. The main idea is that
usually the main content of a web page is not repeated on other web pages

10.5. Contributions 219

of the same website, that is, finding the non-repeated nodes may lead us to
find the main content. In addition, the main content is usually condensed
in the same part of the DOM tree, so the identification of the main content
branch relies on this idea.

10.5 Contributions

The site-level content extraction technique described in this chapter pro-
vides several contributions that can be exploited by both, final users and
many systems, such as indexers and crawlers.

The main contribution of the technique is that it is based on the com-
bination of two techniques in order to infer the main content of a web
page. The technique combines building a complete subdigraph with sev-
eral web pages from the same website, with the comparison of those web
pages through a mapping called equal top-down mapping. The nodes that
only appear on the key page are considered possible main content nodes
because they are not repeated in other web pages (set of candidate nodes).

Other important contributions are the algorithms that infer the tem-
plate from the set of candidate nodes: first, an algorithm reduces the set
of nodes to its minimal equivalent expression; finally, another algorithm
detects the main content branch of the DOM tree, which corresponds to
the main content.

As with the rest of the algorithms in this thesis, we implemented the
technique as a WebExtension, which is compatible with Mozilla-based and
Chromium-based browsers and is also officially published by Mozilla in their
Firefox browser add-ons website.

Chapter 11

Hybrid Technique for Template
Detection

Previous chapters introduce several block detection techniques (menu de-
tection, template detection, and content extraction). As stated while de-
scribing those techniques, the main content of a web page is usually a
pagelet which contains the most relevant information and is always sur-
rounded by other noisy elements. This common distribution of web pages
is really relevant for indexers and crawlers, because processing the noisy
information may produce a waste of resources, such as storage, bandwidth,
and time. Therefore, indexers and crawlers preprocess the web pages in or-
der to extract the relevant information (main content) and isolate it from
the noisy information (template or boilerplate). Moreover, there could be
elements in a web page that are not part of the template because they are
only repeated in a few web pages, but they can be detected as part of the
main content. Adding a preprocess to remove the main content of the web
page before computing the template is an interesting idea, because these
elements that do not belong to the template, in some situations, can be
detected as part of the template because sometimes they appear in several
web pages.

Hence, as we had developed several template detection and content ex-
traction techniques, and the main content and the template are not always
complementary, we decided to implement a hybrid technique which com-
bined two of our techniques. The key idea is to add a preprocess to our
site-level template detection technique in Chapter 9 (TemEx) by removing
the main content inferred by our page-level content extraction technique
in Chapter 6 (page-level ConEx). Therefore, page-level ConEx works as
a preprocess for TemEx. Obviously, adding this new phase to the TemEx
algorithm would increase its runtime, however, it would not be especially
significant because page-level ConEx is a page-level technique. The ratio-
nale behind this idea is that removing the main content would facilitate the

221

222 Chapter 11. Hybrid Technique for Template Detection

template detection process because the web page would have none or less
relevant information that can appear on several web pages, and therefore,
be considered as a template. In conclusion, the technique described in this
chapter (HybEx) would be more accurate than TemEx.

11.1 Related work

The template elements in a web page were measured by Gibson et al. [44]
which estimated that they represent between 40% and 50% of all the data
on the Web. Templates are important for the block detection discipline for
many reasons. For instance, template detection is a discipline that depends
on block detection. In addition, menu detection techniques are related to
templates because the main menu of a web page is always located in the
template. Furthermore, main content extraction techniques have to focus
on the relevant data (main content) removing the non-relevant data.

As stated in previous chapters, it is possible to find in literature many
block detection techniques (see, e.g., [120, 114, 116, 113, 24, 115, 66, 123,
90, 121]), especially main content extraction techniques (see, e.g., [46, 117,
106, 51, 118, 110, 78, 11, 81, 121]). However, despite that many researchers
have been working in the field of template detection for the last 15 years, it
is difficult to find hybrid algorithms that combine several block detection
techniques, such as template detection and content extraction. Not even
the latest block detection techniques (see, e.g., [115, 110, 124, 66, 123, 121,
53, 81]) implement another block detection phase as a preprocess. Many
techniques implement simple preprocess methods such as removing nodes
that surely do not have any content to extract (see, e.g., [115, 90, 110]) or
standardizing the HTML code and precleaning it (see, e.g., [105, 79]).

However, Aslam et al. proposed a boilerplate removal technique called
Web-AM [18] that combines the main content extraction algorithm Boiler-
pipe [63] with an algorithm that removes the noise of the web page. First,
Boilerpipe extracts the main content of the web page. As the output given
by Boilerpipe usually contains noise, then, the algorithm selects a seed-
node and some cluster-nodes to detect the main content of the web page.
Finally, the content extraction is performed by extracting text from the
seed-node and the cluster-nodes. On the other hand, despite not combin-
ing several block detection techniques, some authors based their techniques
on the combination of several methods or several kinds of information. For
instance, Song et al. [104] propose a hybrid content extraction approach
based on the combination of their measure of the text density (called textual

11.2. Hybrid template detection 223

information), and a visual measure for the evaluation of tags in web pages
(called visual importance). Uzun et al. [111] proposed a hybrid method
for extracting relevant content which is divided into two phases: the first
one uses a machine learning method to discover informative content from
the web page, while the second step extracts the relevant content using the
rules obtained in the first step. This chapter presents a novel technique for
template detection that combines the page-level ConEx content extractor
(see Chapter 6) and the TemEx template detector (see Chapter 9).

11.2 Hybrid template detection

As TemEx, described in Chapter 9, this technique (HybEx) takes as input
an arbitrary web page (the key page) and outputs a DOM tree that corre-
sponds to its template. The technique is hybrid, that is, it combines two
block detection techniques in order to detect the template. The basis of
this technique is to use our page-level content extraction technique (page-
level ConEx) as a preprocess of our template detection technique (TemEx).
Inasmuch as page-level ConEx is a page-level technique, executing it as a
preprocess of TemEx does not significantly affect its performance.

As with the rest of the techniques described in this thesis, this technique
works at the level of DOM, and because of the DOM tree properties, the
template of a web page can be identified with one or several DOM nodes.

PL ConEx

Domain’s
hierarchy

Complete
Subdigraph

Template’s
DOM tree

Website

A
P
I

Web pages’
HTML code

Key page’s
main content

Key page

HTML

HTML

HTML

Hyperlink
Analysis

HTML
to DOM

CS
Extrac�on

PL ConEx

HTML
HTMLHTML

ETDM

A P I

TemEx

HTML
to DOM

Key page’s
DOM tree Web pages’

DOM trees

Figure 11.1: Hybrid template detection technique scheme

224 Chapter 11. Hybrid Technique for Template Detection

The technique, as Figure 11.1 shows, consists in a six-step approach:

i. An algorithm converts the HTML of the key page into its correspond-
ing DOM tree.

ii. The page-level ConEx algorithm gets as input the DOM tree of the
key page and performs all the steps described in Section 6.2. The
output of this algorithm is the DOM tree of the main content.

iii. The hyperlink analysis algorithm selects a set of web pages from the
same key page’s website.

iv. A complete subdigraph is computed from the selected set of web
pages.

v. An algorithm converts the HTML of all the web pages in the complete
subdigraph into their corresponding DOM tree.

vi. Finally, the DOM tree of the key page is modified by removing the
main content detected in step 2. Then, each web page in the complete
subdigraph is explored by an algorithm that computes a mapping
between its DOM nodes and the DOM nodes of the modified key
page. When it finds that a DOM node of the modified key page
is repeated in any web page of the complete subdigraph, it updates
a counter that reflects the number of times each node is repeated
in other web pages. When the number of times a node is repeated
is equal to a specified threshold, the node belongs to the template.
Finally, the algorithm returns the template.

The first 2 steps belong to page-level ConEx, while the last 4 steps
correspond to the TemEx algorithm. It should be highlighted that step 1
is part of step 5 because step 5 converts the key page and other web pages
from HTML to DOM. In addition, steps 1 and 2, and steps 3, 4, and 5 can
be executed concurrently because the output of step 2 is the input of step
6. The 6 steps are described in the following sections.

11.2.1 HTML to DOM corresponding to page-level ConEx

All the techniques described in this thesis are based on DOM trees. As
stated in Chapter 2, the representation of a web page as a DOM tree is the
most extended approach (see e.g., [19, 120, 114, 80, 10, 125, 124, 90]).

As detailed in previous chapters, using DOM trees to represent web-
pages has many benefits for block detection techniques. In particular, it
provides two main benefits to this hybrid content extraction technique:

11.2. Hybrid template detection 225

• Due to the properties of DOM trees, the algorithm can return as
output one or several DOM nodes. This is because a DOM node
contains all its descendants and their information.

• Returning one or several DOM nodes as output (and not just text as
most of the algorithms) allows the technique to output other kinds of
content, such as images, animations, videos, etc.

This phase converts the HTML file corresponding to the key page into
its DOM tree, which is used as input for both, page-level ConEx and TemEx
algorithms.

11.2.2 Content extraction

This phase corresponds to the page-level content extraction algorithm (page-
level ConEx) described in Chapter 6. The input of this phase is the DOM
tree of the key page. As described in Chapter 6, page-level ConEx algorithm
is divided into four stages:

i. The algorithm selects some DOM nodes of the DOM tree of the key
page (which meet the criteria in Section 6.2) and, for each one, it
computes several weights described in Definition 6.2.1: position ratio,
children ratio, word ratio, and hyperlink ratio.

ii. Then, the value of the weights computed in the previous stage is
standardized using the formula in Definition 6.2.2.

iii. Once the value of the weights has been standardized, the algorithm
considers each node as a point in R4. Then, these DOM nodes (points
in R4) are explored by an algorithm that computes the centroid. Once
the centroid is computed, an algorithm builds the set of candidate
nodes which includes the DOM nodes (points in R4) located farther
than the centroid. Note that the distance between two points in R4

is computed using the Euclidean distance, shown in Definition 6.2.4.

iv. Finally, the set of candidate nodes is analyzed by an algorithm in the
following way:

• Those nodes which are descendants of other nodes in the set
are removed if they share exactly the same text nodes as their
ancestors.

226 Chapter 11. Hybrid Technique for Template Detection

• Then, for each remaining node in the set of candidate nodes, the
algorithm computes the ratio between its words and its tags. It
selects as the main content the node with a higher ratio together
with its siblings that belong to the set of candidate nodes.

In addition to these stages, the page-level ConEx algorithm includes
a final post-process that removes remaining groups of links that do not
belong to the main content, such as links to other sections of the website,
breadcrumbs, etc. This algorithm is detailed in Section 6.2. The output of
these stages is one or several DOM nodes that represent the main content
of the key page.

11.2.3 Hyperlink analysis

The first step of the template detection algorithm (TemEx), described in
Chapter 9, is to identify a set of web pages from the same website of the
key page that share their template with high probability. This phase is
described in Chapter 7 as an independent process and can be used by any
site-level block detection technique.

As it is detailed in Idea 7.2.4, the rationale behind the hyperlink

analysis is that, in a website, those web pages located in the same folder
probably share their template. The development of this idea leads to the
need for establishing an order to sort the links of a web page, based on
the link relevance (see Definition 4.2.5) and the DOM relevance (see
Definition 4.2.6) orders.

As stated in Chapter 7, link relevance establishes an order to the
links of a given web page based on the hyperlink distance, which is a
metric that assigns a value corresponding to the distance from one directory
of the website to another. See e.g., Example 7.2.6 which illustrates the
process to compute the hyperlink distance. With high probability, there
are many draws in the link relevance order. Therefore, another order
is required to solve these draws. This order is called DOM relevance and
it is based on the idea that hyperlinks located near others maybe contain
repeated information apart from the template. This is not recommended
for template detection because an algorithm could detect main content
information as part of the template. Hence, in case of a draw, it is preferable
to first select the links further away from the already selected links in the
DOM tree.

Once link relevance and DOM relevance have been defined, an or-
der for the links in a web page can be established. It promotes the links

11.2. Hybrid template detection 227

that should be explored by the template detection algorithm. This order
combines both orders. First, the link relevance order (≤h

link), which uses
the link distance algorithm to order the links of the web page. In case of
a draw, the links with the same link relevance are ordered with the DOM
relevance order (≤N

DOM), which uses the DOM distance algorithm.

In conclusion, the combination of both sorting algorithms produces the
final order of the links. For instance, all the links with a hyperlink dis-
tance equal to 0 are then ordered based on their DOM distance (in order
from highest to lowest). Then, this is repeated for the links with positive
hyperlink distance, and finally for those with negative hyperlink distance.

11.2.4 Complete subdigraph extraction

As stated in Section 7.2, a complete subdigraph (CS) is a set of web pages
that are pairwise and mutually linked. Therefore, an n-complete subdi-
graph (n-CS) is a CS formed by n nodes (web pages).

Once the hyperlinks of the web page have been ordered using the link

relevance and the DOM relevance orders, Algorithm 9 explores them fol-
lowing the resulting order to find a CS in the website. The algorithm
iteratively explores the links. When an n-CS is found the algorithm stops.
It should be highlighted that the algorithm stops loading web pages when
the n-CS is completed.

The output of this phase is a set of web pages that belong to the same
website as the key page, and with high probability share the same template
because all of them are pairwise and mutually linked.

11.2.5 HTML to DOM corresponding to TemEx

As described in phase 11.2.1, this algorithm converts an HTML web page
into its corresponding DOM tree. In this case, it converts the HTML files
corresponding to the web pages of the CS into DOM trees that are the
input for the TemEx algorithm. Note that it is not necessary to convert
the HTML file corresponding to the key page in its DOM tree because it
has been converted in phase 11.2.1.

11.2.6 Template detection

As can be observed in Figure 11.1, the input of this phase is the DOM tree of
the key page, the main content of the key page (computed in phase 11.2.2),
and the DOM trees of the web pages that form the complete subdigraph.

228 Chapter 11. Hybrid Technique for Template Detection

In this case, it should be added a previous additional stage to remove
the main content detected in phase 11.2.2 from the DOM tree of the key
page. Hence, the TemEx algorithm will compute the template from the key
page excluding its main content. This fact produces that the key page has
no or less relevant content, thus the algorithm can compute the template
with more accuracy.

Then, the DOM trees of the web pages that form the CS must be
compared to the DOM tree of the key page (without the main content
inferred in phase 11.2.2) in order to identify which DOM nodes they share.
This comparison is carried out by the equal top-down mapping described
in Chapter 8, which establishes a correspondence between the nodes of two
given DOM trees.

As stated in Chapter 8.2.1, the definition of equal top-down mapping
(ETDM) is parametric with respect to the equality relation ,. Hence, it
is more general than the standard equality (=). Concretely, it compares
two DOM nodes by considering several properties, such as their HTML
tagName, class names, HTML attributes, number of children, and their
relative position in the DOM tree.

As mentioned above, an ETDM is computed between the DOM tree
of the key page (excluding the main content inferred in phase 11.2.2) and
each DOM tree of the web pages in the CS. The comparison is performed
by traversing the DOM trees top-down starting from the root. Two DOM
nodes n1 and n2 can be mapped if they are equal (n1 , n2). If so, the algo-
rithm recursively continues by trying to map the children of both mapped
nodes. Note that when the algorithm cannot map a DOM node, it does
not continue exploring its descendants. As stated in Chapter 8, we consider
that a DOM node belongs to the template when it appears in v web pages
of the CS. It should be highlighted that n ≤ v, being n the size of the
complete subdigraph (n-CS).

The output of this phase is the DOM tree that corresponds to the
template of the key page. Note that this is the last phase of the hybrid
template detection algorithm.

11.3 Implementation

As with all the techniques presented in this thesis, this hybrid template
detection technique has been implemented as a WebExtension, which is
compatible with Mozilla-based and Chromium-based browsers, among oth-
ers (see Chapter 14). The add-on consists of a single button located on

11.3. Implementation 229

the upper right of the browser window. When it is pressed, it performs the
actions described in the previous section and extracts the template of the
web page loaded by the browser, which is automatically displayed. If the
button is pressed again, the original web page is displayed.

The evaluation of the technique, as the rest of the techniques in this
thesis, has been performed using the Template detection and Content ex-
traction Benchmark Suite (TeCo), described in Chapter 13. For the eval-
uation, we used the evaluation subset of TeCo, formed by 45 benchmarks.
We computed the recall, precision, and F1 for retrieved DOM nodes. In
addition, we also measured the runtime.

Example 11.3.1 Figure 11.2 shows a real example of the use of the hybrid
template detection tool with a web page. The image on the left is a web
page of the www.bbc.com website. The image on the right is the output
of extracting its template.

Figure 11.2: Example of the detection of a web page template

11.3.1 Empirical evaluation

As stated in previous chapters, both algorithms (page-level ConEx and
TemEx) contain some parameters that have been left open. On the one
hand, in the case of page-level ConEx these parameters are c−SET size,
and max. words. On the other hand, the open parameters of TemEx are
the size of the CS, the number of votes, the weight of the properties of the
equality relation ,, and the threshold of the value of the equality relation
,).

With respect to the page-level ConEx technique, as described in Chap-
ter 6, the c−SET parameter corresponds to the optimal size of the set of
candidate nodes while, for the hyperlink nodes in the main content, the
max.words parameter corresponds to the maximum number of words of
their descendants.

230 Chapter 11. Hybrid Technique for Template Detection

Regarding TemEx technique, as described in Chapters 7, 8, and 9, the
parameter n corresponds to the optimal size of the CS and the parameter
v is the number of votes required by a node to be considered as part of
the template. In addition, Chapter 8 estimates the weight of the different
properties that form the equality relation ,. Finally, the threshold t of the
equality relation , was estimated (if n1 , n2 ≥ t both nodes are equal).

The value of these parameters is computed based on an experimental
analysis in the empirical evaluation section of Chapters 6, 7, and 8. The
optimal values are:

c-SET: 3.
max. words: 3.
CS size (n): 3.
Number of votes (v): 2.
Node class names: 0.10.
Node position: 0.10.
HTML attributes: 0.50.
Node children: 0.30.

, threshold (t): 0.70.
Option: 2.

Algorithm evaluation

As stated above, to measure the technique several experiments were per-
formed with the 45 web pages of the evaluation set of the TeCo benchmark
suite (see Chapter 13). Once the template was detected, it was compared
to the real template to compute the recall, precision, and F1 scores of the
algorithm.

Table 11.1 shows the results obtained for all the executed benchmarks
with the optimal parameters obtained empirically in Chapter 6, Chapter 7,
and Chapter 8:

The first column of the table contains the URLs of the website domains.
For each benchmark, column Nodes shows the total number of DOM nodes
contained by the DOM tree of the key page; column Templ. contains the
number of DOM nodes in the gold standard (template); column Retr.

shows the number of DOM nodes detected by the tool as template nodes;
column Correct contains the number of DOM nodes detected correctly
by the tool; column Recall shows (in percentage) the number of DOM
nodes retrieved correctly divided by the number of DOM nodes in the
gold standard; column Precision contains (in percentage) the number of

11.3. Implementation 231

Benchmark Nodes Templ. Retr. Correct Recall Precision F1 Load Runtime

www.jdi.org.za 619 394 388 388 98.48 % 100.00 % 99.23 % 6 259 ms.
www.premiere-urgence.org 480 438 439 429 97.95 % 97.72 % 97.83 % 4 173 ms.
www.indiangaming.org 575 201 199 199 99.00 % 100.00 % 99.50 % 4 56 ms.
hispalinux.es 501 345 355 343 99.42 % 96.62 % 98.00 % 4 119 ms.
www.gktw.org 767 637 682 637 100.00 % 93.40 % 96.59 % 5 424 ms.
www.apnic.net 598 453 516 452 99.78 % 87.60 % 93.29 % 4 196 ms.
www.unicef.org 1037 656 648 648 98.78 % 100.00 % 99.39 % 5 237 ms.
www.klimabuendnis.org 851 525 499 491 93.52 % 98.40 % 95.90 % 4 238 ms.
www.isoc-es.org 259 159 164 159 100.00 % 96.95 % 98.45 % 6 124 ms.
biztechmagazine.com 1892 1053 1757 1053 100.00 % 59.93 % 74.95 % 6 804 ms.
www.eeo.com.cn 834 626 647 596 95.21 % 92.12 % 93.64 % 13 1436 ms.
www.wishtv.com 2167 1811 1535 1535 84.76 % 100.00 % 91.75 % 5 6112 ms.
news.mit.edu 2117 1041 1828 1041 100.00 % 56.95 % 72.57 % 4 1660 ms.
asia.nikkei.com 869 662 608 607 91.69 % 99.84 % 95.59 % 6 556 ms.
www.rcnky.com 1738 1425 1627 1419 99.58 % 87.22 % 92.99 % 4 645 ms.
news.discovery.com 2826 1161 2424 1156 99.57 % 47.69 % 64.49 % 5 1267 ms.
www.kathimerini.gr 1825 1541 1257 1257 81.57 % 100.00 % 89.85 % 12 796 ms.
news.un.org 1726 1252 1175 1095 87.46 % 93.19 % 90.23 % 6 540 ms.
frances.forosactivos.net 785 290 140 140 48.28 % 100.00 % 65.12 % 26 159 ms.
www.wysiwygwebbuilder.com 3936 735 290 287 39.05 % 98.97 % 56.00 % 143 4160 ms.
www.3dprintforums.com 1040 276 267 267 96.74 % 100.00 % 98.34 % 6 263 ms.
www.strangehorizons.com 631 146 151 146 100.00 % 96.69 % 98.32 % 7 133 ms.
communities.apple.com 3136 368 1830 368 100.00 % 20.11 % 33.49 % 5 866 ms.
www.sloweurope.com 4193 514 498 491 95.53 % 98.59 % 97.04 % 5 224 ms.
community.ricksteves.com 2057 384 880 384 100.00 % 43.64 % 60.76 % 7 3840 ms.
hackercombat.com 1711 794 793 792 99.75 % 99.87 % 99.81 % 16 1156 ms.
www.scbwi.org 876 216 202 202 93.52 % 100.00 % 96.65 % 37 298 ms.
johngardnerathome.info 395 176 37 29 16.48 % 78.38 % 27.23 % 4 421 ms.
www.annmalaspina.com 392 182 228 182 100.00 % 79.82 % 88.78 % 4 67 ms.
foodsense.is 330 100 122 100 100.00 % 81.97 % 90.09 % 4 55 ms.
sites.google.com 372 287 125 125 43.55 % 100.00 % 60.68 % 4 123 ms.
whatever.scalzi.com 1648 1405 1405 1405 100.00 % 100.00 % 100.00 % 13 9106 ms.
www.javiercelaya.es 740 668 443 432 64.67 % 97.52 % 77.77 % 4 126 ms.
diarium.usal.es 604 80 76 76 95.00 % 100.00 % 97.44 % 4 868 ms.
www.jameslovelock.org 653 458 467 458 100.00 % 98.07 % 99.03 % 5 2282 ms.
www.cipri.info 933 377 375 375 99.47 % 100.00 % 99.73 % 4 212 ms.
naranjascarcaixent.com 290 148 144 144 97.30 % 100.00 % 98.63 % 5 70 ms.
www.technicalbookstoreonline.com 2959 386 367 367 95.08 % 100.00 % 97.48 % 32 458 ms.
www.floridarealestatecollege.com 1023 528 521 504 95.45 % 96.74 % 96.09 % 4 136 ms.
www.basf.com 827 762 792 762 100.00 % 96.21 % 98.07 % 4 228 ms.
www.mcphersonoil.com 831 600 620 596 99.33 % 96.13 % 97.70 % 4 407 ms.
www.thirteenhou.com 1217 133 135 131 98.50 % 97.04 % 97.76 % 4 44 ms.
www.embalajesterra.com 2342 1677 1774 1671 99.64 % 94.19 % 96.84 % 4 524 ms.
www.crypto.ch 338 248 248 248 100.00 % 100.00 % 100.00 % 4 217 ms.
www.shopbookshop.com 1727 1310 1313 1310 100.00 % 99.77 % 99.88 % 4 5822 ms.

Average 1281.49 613.96 688.69 566.60 91.20 % 90.70 % 88.29 % 10.36 1065 ms.

Table 11.1: Experimental evaluation results of the hybrid template detec-
tion algorithm

DOM nodes that have been retrieved correctly divided by the number of
retrieved DOM nodes; column F1 reveals the F1 metric and R the recall;
column Load shows the number of DOM web pages loaded to compute the
complete subdigraph; finally, column Runtime contains the total time used
to compute the template (in milliseconds).

As Table 11.1 shows, the experiments obtain an average precision higher
than 90%, an average recall higher than 91%, and an average F1 of about
87%. Compared to the results of TemEx (see Table 9.1), this hybrid algo-
rithm improves its precision but it decreases its recall. With respect to the
F1, the hybrid template detection technique obtains a value 0.75% higher
than the TemEx technique.

232 Chapter 11. Hybrid Technique for Template Detection

Benchmark category Recall Precision F1 Load Runtime

Institutions / Associations 98.55 % 96.74 % 97.58 % 4.67 217 ms.
Media / Communication 93.32 % 81.88 % 85.12 % 6.78 1854 ms.
Forums / Social 85.87 % 84.21 % 78.39 % 28.00 1441 ms.
Personal websites / Blogs 79.69 % 92.86 % 82.20 % 5.11 3792 ms.
Companies / Shops 98.37 % 97.79 % 98.05 % 7.22 1128 ms.

Table 11.2: Experimental evaluation of the hybrid template extraction al-
gorithm grouped by category

It can be observed in both tables that the CS Extraction algorithm
needed to load 10.36 web pages on average to build the complete subdi-
graph. However, this value is due to a few benchmarks. Note that in 37
benchmarks the algorithm needed to load less than 10 web pages, therefore
only in 8 benchmarks it needed to load more than 10. In particular, there
is 1 benchmark where the algorithm needed to load more than 100 web
pages to build the complete subdigraph.

With respect to the runtime, the hybrid template detection technique
takes about 110 ms. more on average. This is because of the execution of
the page-level ConEx algorithm as a preprocess of the template detection
algorithm. However, it should be noted that the runtime of both algorithms
is very similar. On the one hand, the runtime of the page-level content
extraction algorithm implemented as a preprocess is low because it is a
page-level algorithm. On the other hand, as the mapping is performed
with fewer DOM nodes than the original TemEx technique (see Chapter
9), the runtime of this mapping is lower on average than the runtime of
TemEx for the same benchmarks. These two factors explain the similarity
between the runtime of this hybrid algorithm and the runtime of TemEx.

Table 11.2 shows the results of the evaluation grouped by benchmark
category. It can be observed that Institutions / Associations and Compa-
nies / Shops obtain high F1 values. Compared to the values obtained by
the TemEx algorithm in Chapter 9 (see Table 9.1), we can observe that the
hybrid algorithm obtains higher F1 values for the categories Institutions /
Associations, and Forums / Social, while the TemEx algorithm obtains bet-
ter F1 values for Personal websites / Blogs, Media / Communication, and
Companies / Blogs. However, the obtained results for Media / Commu-
nication and Companies / Blogs are nearly the same for both algorithms.
It should be highlighted that the precision obtained with the hybrid algo-
rithm is higher than the precision obtained by TemEx for all benchmark
categories. Likewise, the recall obtained by TemEx is higher than the recall
obtained by the hybrid algorithm for all benchmark categories.

11.4. Conclusions 233

11.4 Conclusions

This chapter describes a new technique for template detection from het-
erogeneous websites. As it is a site-level technique, it has to load several
web pages from the same website to infer the template. The technique
is a combination of the page-level content extraction technique (page-level
ConEx) described in Chapter 6, and the site-level template detection tech-
nique (TemEx) presented in Chapter 9. Therefore, it is a hybrid template
detection technique.

First, given the key page, the page-level ConEx algorithm extracts its
main content. Then, the algorithm continues with the TemEx algorithm
as usual. The technique analyzes the key page and extracts its hyperlinks.
Once the hyperlinks are sorted, the algorithm computes a complete subdi-
graph of size 3 (3-CS). Then, the web pages from the complete subdigraph
are converted from HTML to DOM trees, and they are the input of the
ETDM. Subsequently, the algorithm removes the detected main content
from the DOM tree of the key page and computes the ETDM between this
modified key page with the DOM trees of the web pages in the complete
subdigraph. Thus, it identifies the blocks that are common to those DOM
trees, which correspond to the template of the key page. The parameters of
both algorithms (page-level ConEx and TemEx) were computed empirically
in their corresponding chapters.

As we can observe in the results of the empirical evaluation, this hybrid
template detection algorithm improves the results obtained by the original
TemEx algorithm (see Section 9.3.1). The F1 value obtained by this hybrid
template detection algorithm is 0.75% higher than the value obtained by
the original TemEx algorithm. By contrast, this algorithm is, on average,
about 110 ms. slower than TemEx.

11.5 Contributions

The hybrid template detection technique described in this chapter provides
several contributions that can be exploited by many systems, especially
indexers and crawlers.

The main contribution of the technique is that it combines two block
detection techniques in order to detect the template of a web page. The key
idea is to combine a main content extraction technique (page-level ConEx)
with a template detection technique (TemEx). The main content inferred
by the main content extraction technique is removed from the key page.

234 Chapter 11. Hybrid Technique for Template Detection

Then, the key page is compared with other web pages from the same website
in order to infer the template.

We implemented this technique as a WebExtension, which is compati-
ble with Chromium-based and Mozilla-based browsers and is also officially
published by Mozilla in their Firefox browser add-ons website.

Part V

Comparison with the State
of the Art

235

Chapter 12

Comparison with the State of the
Art

The specifications of a template detector or a content extractor depend on
the intended use and the system where it will be inserted. While some
systems require high recall, others require high precision, and others de-
mand high efficiency. An analysis of the state of the art reveals that there
exist several approaches in the literature. Each technique reports its own
results, but it is not possible to find a fair comparison of techniques be-
cause each of them used different metrics and different benchmarks in their
research. A process of literature review can produce a table containing the
precision, recall, F1, efficiency, runtime, asymptotic cost, etc. reported by
the authors of each technique. However, unfortunately, this information is
not useful because the comparison would be unfear, imprecise, biased, and
inaccurate. On the one hand, each technique has been implemented using
a different technology which affects the efficiency. On the other hand, each
author has evaluated its technique using different evaluation criteria (e.g.,
counting retrieved words [114, 113] vs. characters [61] vs. DOM nodes
[10, 6] vs. text blocks [101, 115]), and using a different set of benchmarks.
Using different collections of benchmarks to compare template detectors
or content extractors is highly inaccurate because some techniques used
artificial benchmarks [25] (automatically generated web pages that share
exactly the same template) while others used real heterogenous web pages
implemented by different designers [114, 10, 6]. In the same way, some au-
thors selected the web pages randomly [120, 116, 50] possibly implementing
different templates, while others manually provided web pages that imple-
ment exactly the same template [114, 113]. Finally, other authors used
well-known benchmark suites such as CleanEval [20] benchmark suite [115,
99], MSS (Myriad 40 and Big 5) [85], L3S-GN1 [61], etc. In addition, it
should be noted that for some techniques, the language of the web page
can affect the performance. For instance, Jung et al. [53] demonstrated

237

238 Chapter 12. Comparison with the State of the Art

that some techniques such as web2text [115] may vary their performance
depending on the language of the web page.

Nowadays there is no objective evidence, empirical data, or a widely
accepted (subjective) consensus about template extraction or content de-
tection tools (regarding the recall, precision, F1, performance, accuracy,
scalability, and accepted technologies; i.e., HTML, CSS, JavaScript, etc.).
Therefore, the results reported by different authors are not comparable.

Nevertheless, we can find several comparisons in the literature (e.g.,
[106, 115]) for content extraction techniques using the same metrics and the
same sets of benchmarks. Unfortunately, however, we could not find in the
literature fair comparisons for template detection techniques using the same
metrics and benchmarks. The only way to fairly compare TemEx (described
in Chapter 9) with other state-of-the-art techniques was to evaluate all of
them using the same dataset, the same metrics, and in the same context (to
properly compare runtimes). Therefore, we made a systematic review to
select several template detection techniques and then we compared them.
Once the techniques were selected [120, 114, 116, 113, 8], we tried to find
their implementation, but it was not possible to compare them using the
same benchmarks and the same accuracy measures, because it was not
possible to access the implementation of any tool even though some of
them were reported to be free. In addition, authors were asked to share
their tools with very few positive answers. To solve this, we decided to
reimplement them from scratch1.

In order to integrate the implementations of the selected detection sys-
tems, a workbench for template detection has been created. This work-
bench is able to work offline (using a repository of websites) and online (it
is integrated into the browser as a WebExtension that allows us to extract
the template of a given website). One interesting property is that the load-
ing of the web pages, the transformation from HTML to DOM trees, the
renderization, etc. is orthogonal to the analysis of the web pages. Hence,
all these features can be shared by different template detection algorithms.
The use of this workbench to compare template detection algorithms pro-
duces a common evaluation criterion, so elements such as technology or
loading time do not affect the comparison.

This chapter describes the process used to select, implement, and com-
pare the selected template extraction and content detection techniques, as
well as the obtained results.

1All of them are published, so they are open-source and publicly available at http:

//personales.upv.es/josilga/retrieval/Web-TemEx/

http://personales.upv.es/josilga/retrieval/Web-TemEx/
http://personales.upv.es/josilga/retrieval/Web-TemEx/

12.1. Selection and description of web template detectors 239

Contrarily to template detection, we could find a WebExtension based
framework for assessing main content extraction methods [52]. The ex-
tension has several functionalities, such as creating a dataset, curating
data, executing JavaScript/TypeScript extraction algorithms, and evalu-
ating those algorithms using multiple measures. Additionally, we found in
the literature several systematic reviews [98, 89] and comparisons [106, 115]
of content extraction algorithms. We used the datasets and metrics pro-
posed by those comparisons to evaluate our page-level content extraction
algorithm so we could compare the obtained results with them.

12.1 Selection and description of web template
detectors

12.1.1 Methodology for the selection of template detectors

This section describes the process followed to identify and select the tem-
plate detectors that we compared to the template detection algorithm de-
scribed in Chapter 9 (TemEx).

The process starts with the formulation of the research questions and
the definition of the inclusion and exclusion criteria. Then, the processes
of searching and screening primary studies are described.

i. Research questions. The identification of the current state of the art
in boilerplate removal and template detection methods was achieved
by the formulation of two research questions.

• RQ1: What methods for template detection and boilerplate re-
moval have been developed? The purpose of this research ques-
tion is to obtain an overall perspective of the existing boilerplate
removal and template detection methods, focusing on those that
have been developed in the last 20 years.

• RQ2: Which are the main characteristics of each template de-
tection and boilerplate removal method? This question is an
enhancement of the previous one since it broadens the knowl-
edge of boilerplate removal and template detection methods.

ii. Search process. The main purpose of the conducted search process
was to assess the body of knowledge related to template extraction
and systematically answer to the research questions. The process was
strict and unbiased, and it was carried out using the most relevant

240 Chapter 12. Comparison with the State of the Art

databases in the computer science area: Web of Science, Scopus, Sci-
ence Direct, ACM Digital Library, IEEE Explore, Springer Computer
Science, Citeseer X, Google Scholar, and Arxiv.

The following search string was created for the search:

(template OR boilerplate OR noise)
AND (detection OR extraction OR removal OR cleaning)

AND (”web page” OR webpage)

The creation of the search string was based on the analysis of several
keywords obtained from relevant literature, which was found by ex-
ploring relevant articles and by reviewing their related bibliography.

Since the query resulted extremely wide (e.g., ScienceDirect returned
nearly 9000 documents), the results were filtered by refining the search
string:

((”template detection” OR ”noise elimination”) AND web) OR ”cleaning

web page” [Title/abstract/keywords]

Finally, 297 studies were obtained as the result of the search process.
Once we discarded unavailable, duplicated, and non-related to the
topic results, 50 papers were obtained.

iii. Inclusion and exclusion criteria. The following inclusion and exclu-
sion criteria were defined to deal with the research questions:

• IC1: Those papers where the web pages are represented as DOM
trees.

• IC2: Those papers that have been published in a conference with
at least an A rating in the GGS Conference Rating2.

• EC1: Those papers with less than 15 cites.3

• EC2: Those papers that report a F1 less than 50%.

iv. Quality assessment. We evaluated each paper using our own adap-
tation of a quality checklist that is used across multiple study types,
which was proposed in [58] (see Table 7.3). We defined our 6 assess-
ment criteria based on the 11 original quality assessment questions
proposed by the authors:

2http://gii-grin-scie-rating.scie.es/
3The number of cites was extracted from the corresponding editorial where the paper

was published (e.g., ACM). If the number of cites was not available, then it was extracted
from Google Scholar.

12.1. Selection and description of web template detectors 241

• AC1: Is the paper based on research?

• AC2: Is there a clear statement of the aims of the research?

• AC3: Was the research design appropriate to address the aims
of the research?

• AC4: Was the data collected in a way that addressed the re-
search issue?

• AC5: Is there a clear statement of findings?

• AC6: Is the study of value for research or practice?

Springer

Computer
Science
n=13505

Web of

Science
n=136

Scopus

n=425

IEEE Xplore

n=125
CiteSeerX

n=18

ACM

Digital
Library
n=7569

Arxiv

n=22

Google

Scholar
n=28000

Query tune up: (("template detection" OR "noise

elimination") AND web) OR "cleaning web page"
n=5562

Screening on titles and abstracts

n=297

Excluding unavailable, duplicated and non-related to

the topic results
n=50

Literature search

Databases: Web of Science, Scopus,
ScienceDirect, ACM Digital Library , IEEE

Xplore, Springer Computer Science,
CiteSeerX, Google Scholar , Arxiv

Search results combined: n=58654

ScienceDirect

n=8854

Figure 12.1: QUORUM flow chart

12.1.2 Search results

After the primary screening process, a total of 50 papers were selected and
247 were excluded from the 9 sources. Figure 12.1 shows the QUORUM
flow chart of the reviewing process. The list of selected papers, including
the metadata analyzed in the selection process, is shown in Table 12.1.
The full text of each selected paper was read in order to decide if it had to
be included in our study (and, thus, implemented it). Then, we selected
the papers that met the inclusion criteria without meeting the exclusion
criteria. Finally, a total of 4 papers were selected. Additionally, we added

242 Chapter 12. Comparison with the State of the Art

the template detection method described in Chapter 9 to compare it with
the selected techniques. The result of the selection is shown as the rows with
grey background in Table 12.1. All the selected techniques are described
below:

Article Year Venue Core LS MA JCR Cites DOM P-L/S-L
[19] 2002 WWW A++ A++ A++ - 438 No S-L
[120] 2003 SIGKDD A++ A++ A++ - 581 Yes S-L
[114] 2006 CIKM A A++ A+ - 131 Yes S-L
[72] 2006 CSCWD B B C - 5 No S-L
[67] 2006 DEXA B - B - 30 Yes S-L
[55] 2006 IKE C - - - 11 No S-L
[27] 2006 SAC B - - - 78 Yes S-L
[25] 2007 WWW A++ A++ A++ - 134 Yes P-L
[59] 2007 PKDD A A A+ - 12 No* S-L
[77] 2007 WAC5 - - - - 43 No P-L
[36] 2008 LREC C A A - 64 No P-L
[20] 2008 LREC C A A - 149 No N/A
[116] 2008 WWW A++ A++ A++ - 25 Yes S-L
[60] 2009 WWW A++ A++ A++ - 41 No P-L
[83] 2009 KSE B - - - 11 No S-L
[113] 2009 WWW A++ A++ A++ - 28 Yes S-L
[61] 2010 WSDM A++ A+ A+ - 643 No P-L
[43] 2011 IC3K C C - - 2 No S-L
[91] 2011 ICCSIT - - C - 4 Yes P-L
[57] 2011 TKDE - - - Q1 83 No S-L
[54] 2012 IJCSE - - - - 8 Yes S-L
[74] 2012 IJACR - - - - 4 Yes S-L
[16] 2013 Inf. sci. - - - Q1 8 Yes S-L
[111] 2013 Inf. proc. & man. - - - Q1 76 No P-L
[93] 2013 IJCA - - - - 6 No P-L
[84] 2013 IJRTE - - - - 16 Yes P-L
[75] 2013 ICGCE - - - - 3 Yes S-L
[65] 2014 App. mech. & mat. - - - Q4 1 Yes S-L
[103] 2014 Wir. per. comm. - - - Q3 16 No P-L
[41] 2014 ICDM A++ A++ A - 5 Yes S-L
[34] 2014 ICACNI - - - - 7 Yes S-L
[33] 2014 ICACCI - - - - 9 No S-L
[50] 2014 IJCA - - - - 6 Yes S-L
[108] 2015 IJCA - - - - 7 Yes S-L
[35] 2015 IJCA - - - 9 No P-L
[32] 2015 IJETCR - - - - 3 Yes S-L
[8] 2015 WWW A++ A++ A++ - 10 Yes S-L
[49] 2017 GJPAM - - - Q4 11 Yes S-L
[109] 2018 Cluster computing - - - Q2 11 No P-L
[15] 2018 WISE A B B - 2 Yes S-L
[115] 2018 ECIR A A B - 33 Yes P-L
[125] 2018 WISE A B B - 3 Yes P-L
[18] 2019 FIT - - - - 3 Yes P-L
[112] 2019 ICWE B B C - 2 No P-L
[45] 2020 ACCESS - - - Q1 1 Yes Both
[66] 2020 WWW A++ A++ A++ - 15 No P-L
[100] 2020 JESTR - - - Q3 2 Yes P-L
[40] 2021 ICAIS C C - - 0 Yes S-L
[11] 2021 TKDD - - - Q1 4 Yes S-L
[12] 2022 WWW A++ A++ A++ - 0 Yes S-L

Table 12.1: Selected papers that describe web template extraction tools

12.1. Selection and description of web template detectors 243

SST (2003) [120]: This site-level technique describes a structure called
Site Style Tree (SST) to represent a set of web pages. In essence,
the SST is the union of all DOM trees from all web pages it repre-
sents. DOM nodes of a web page are represented in the SST in the
same position as they appear, and also the brotherhood relations are
kept so that the SST represents groups of sibling nodes explicitly.
When groups of nodes are repeated on several web pages, they are
represented in the SST with a counter. Therefore, the SST stores
the information about the number of times a group of nodes is re-
peated. The most repeated groups of nodes belong to the template
with a higher probability. Those groups of nodes are selected using
a threshold. The authors used 5 commercial websites to carry out
the evaluation experiments producing an F1 of 75.1 %. They do not
provide any information about the measurement unit used.

• Main goal : Removing noisy blocks from web pages. Authors
define ‘noisy blocks’ as not main content blocks, such as adver-
tisements, navigation pans, copyright and privacy notices, etc.

• Technologies used : Authors do not give specific details on the
programming language used, technologies, or layouts accepted
by the tool.

• Benchmarks used in their evaluation: They used real web pages
from 5 commercial websites: Amazon, CNet, J&R, PCMag, and
ZDnet.

• Limitations/Problems: The main constraint of this technique is
that it needs a large number of web pages (authors specify 500)
to build the SST of each website. In addition, the technique was
evaluated using homogeneous websites.

RTDM-TD (2006) [114]: This site-level algorithm takes as input a set
of web pages and identifies which parts of their DOM trees are exactly
equal. The template corresponds to those DOM nodes repeated in
all web pages. The technique uses a top-down variant of the tree edit
distance (TED) algorithm to compare a set of DOM trees. The tech-
nique randomly selects two web pages and computes their TED. All
mapped nodes (they appear in both DOM trees) represent the current
template. Then, the algorithm iteratively computes the TED between
the current template and another randomly selected web page from
the same website until a predefined number of web pages have been
processed. The authors carried out the evaluation experiments using

244 Chapter 12. Comparison with the State of the Art

“a few dozen” manually selected web pages. They report an F1 with
10 websites “higher than 95%” in 9 out of 10 websites, and “above
85%” in the other one. The computation of the metric was based on
the number of correctly retrieved words from the template.

• Main goal : Removing templates from collections of web pages
in order to enhance web information retrieval and web mining
methods. Initially, the template of a small set of sample web
pages is detected. Then, the algorithm removes the previously
computed template from the remaining web pages in the collec-
tion.

• Technologies used : Not reported by authors.

• Benchmarks used in their evaluation: Authors used real web-
pages obtained from 10 websites: the 5 websites used in [120]
(Amazon, CNet, J&R, PCMag, and ZDnet), and other 5 well-
known websites (CNN, E-Jazz, Encyclopedia Mythica, UBL, and
Wikipedia).

• Limitations/Problems: The main limitation of the technique is
the number of web pages that have to be analyzed to achieve a
high F1 value. To obtain an F1 value near 95% they used 25
web pages. The computation of a top-down mapping between
the DOM trees of 25 or more web pages can take a long time,
although it depends on the amount of DOM nodes of the web
pages. Moreover, the evaluation of the technique was done using
only 10 websites.

IWPTD (2008) [116]: This site-level technique splits the DOM tree of
the web pages into several subtrees whose root nodes correspond to
DOM nodes associated with concrete HTML tags (i.e., UL, DIV,
TABLE, etc.). Then, it extracts the text segments (DOM nodes of
type #text) from the subtrees of all web pages and compares them.
If a text segment belongs to 5 or more web pages, it is regarded as
a template segment. Finally, the algorithm analyzes all the subtrees.
It considers a subtree as part of the template if the quotient between
the length of all its template segments and all its text segments is
higher than 0.7. The authors carried out the evaluation experiments
using 5 websites and 400 random web pages from each website. They
obtained a precision of 98% and a recall of 80%. They do not provide
any information about how their measures are computed.

12.1. Selection and description of web template detectors 245

• Main goal : Detecting templates in which a web page is pro-
cessed as soon as it has been crawled. A framework detects the
templates incrementally.

• Technologies used : Not reported by authors.

• Benchmarks used in their evaluation: Authors selected 5 web-
sites from the dataset used in [73] and sampled 400 web pages
from each. They do not mention which web pages from the
dataset were selected.

• Limitations/Problems: The main constraint of the technique is
that the evaluation was done using only 5 websites.

RBM-TD (2009) [113]: This technique is broadly similar to the RTDM-
TD approach, but the authors introduce a bottom-up variant of the
TED algorithm (instead of the top-down variant). During the DOM
trees comparison, the algorithm introduces a restriction that allows
us to classify a common subtree as part of the template: the position
of a subtree repeated in all web pages must be exactly the same.
Note that, for example, the position of a subtree can be computed
as the path from the root to it, which has to be the same on all web
pages. The authors carried out the evaluation experiments using 10
websites and manually selecting 24 web pages that implemented the
same template from each. They report an F1 close to 90%, computed
with 10 websites. The computation of the metric was based on the
number of correctly retrieved words from the template.

• Main goal : Removing the template of the web page in order to
improve its indexing and processing.

• Technologies used : Not reported by authors.

• Benchmarks used in their evaluation: Authors selected the same
10 websites used in [114]: Amazon, CNet, CNN, E-Jazz, Ency-
clopedia Mythica, J&R, PCMag, UBL, Wikipedia, and ZDnet.

• Limitations/Problems: The main constraint of the technique is
that the evaluation was done using only 10 websites. In addition,
the 24 web pages from each website used were not randomly
selected, but all of them implemented the template, which is the
easiest scenario for a template extractor.

TemEx (2015) [8]: As described in Chapter 9, this algorithm is in line
with RTDM-TD and RBM-TD regarding the use of a mapping to

246 Chapter 12. Comparison with the State of the Art

determine what nodes belong to all web pages. In the case of TemEx,
a template DOM node does not have to belong necessarily to all web-
pages, only to a subset, as in SST. Therefore, it is a more democratic
algorithm since it uses a threshold (number of votes) to determine
whether a DOM node is repeated in enough web pages to be consid-
ered from the template. This fact allows us to classify a set of DOM
nodes as template nodes even if they are web pages that do not con-
tain them. In some cases, this can reduce precision, however, it often
increases recall, which uses to be the main handicap of all techniques.
Chapter 9 reports an F1 with 45 websites of 87.57 %.

• Main goal : The technique allows website developers to reuse
templates.

• Technologies used : Implemented with JavaScript and distributed
as a WebExtension.

• Benchmarks used in their evaluation: 45 real heterogeneous web-
sites. In addition, 105 additional heterogeneous websites were
used to train the algorithm.

• Limitations/Problems: The main problem of the algorithm was
the execution time of the mapping, which was its bottleneck.
The problem has been solved with the runtime improvement
algorithm described in Section 9.3.1.

It should be noted that it is not possible to compare the different F1
values reported by each tool. On the one hand, they were evaluated using
different evaluation sets. On the other hand, some techniques do not specify
the metric they used. Section 12.3 provides a fair comparison of these
techniques.

12.2 A workbench for template detection

As stated at the beginning of the chapter, we had to implement the tech-
niques selected in Section 12.1 [120, 114, 116, 113] from scratch. The im-
plementation of the algorithms is included in a workbech4 which provides
several features for template detection.

The main benefit of this workbench is that it is parametric with respect
to the algorithm used, namely, it contains an API so that a template de-

4It is available at http://personales.upv.es/josilga/retrieval/Web-TemEx/.

http://personales.upv.es/josilga/retrieval/Web-TemEx/

12.2. A workbench for template detection 247

tection algorithm can access all the resources provided by the workbench.
The architecture of the workbench is shown in Figure 12.2.

Domain’s
hierarchy

Complete
Subdigraph

Key page’s
DOM tree

Website

A
P

I Web pages’
HTML code

Key page

HTML

HTML

HTML

Hyperlink
Analysis

HTML
to DOM

CS
Extrac�on

HTML
HTMLHTML

Extract
Template

A P I

TemEx

Web pages’
DOM trees

RBM-TDIWPTDRTDM-TDSST

Detec�on of candidates Evalua�on Toggle view

Evalua�on

HTML to DOM

Toggle
View

Template’s
DOM tree

Figure 12.2: Workbench architecture

As can be noted from the figure, each module is represented using a
squared dark gray shape, and its input and output are connected to it
using dashed arrows. For instance, the HTML to DOM module inputs the
web page’s HTML code, and it outputs the DOM trees of those web pages.

It can be observed that modules are organized in four light gray areas
which implement a particular functionality. Those areas are: Detection of

candidates, HTML to DOM, Toggle View, and Evaluation. The Extract

Template module implements the template extraction functionality, there-
fore, it has to be replaced with one concrete template detection algorithm,
for example, one of the five already implemented that appear at the top of
the figure. The lines below describe each area separately:

Detection of candidates: As stated in Chapter 7, a site-level template
detector typically receives a web page as input and it outputs its
template because it performs a comparison between that web page
and other web pages from the same website that implement the same
template. Thus, the template detection process is divided into two
different stages: (1) Exploring the website and identifying web pages
that probably implement the same template (web page candidates),

248 Chapter 12. Comparison with the State of the Art

and (2) comparing the web page with the web page candidates iden-
tified.

However, none of the algorithms selected and described in Section 12.1
(except for TemEx) takes account of this first phase. The descrip-
tion of their experiments shows that web page candidates were se-
lected randomly from the website (IWPTD [116]), randomly from
a predefined set of web pages that implemented the same template
(SST [120]), or manually, all of them implementing the same template
(RBM-TD [114], RTDM-TD [113]).

In contrast, the template detection workbench uses the hyperlink
analysis algorithm described in Chapter 7 to automatically identify
web pages that implement the web template with a high probability.

When comparing hyperlink analysis with a random selection of web
pages, hyperlink analysis significantly improves the precision and re-
call of the second phase (for all algorithms). In addition, when com-
pared to the manual selection, it has the advantage of being automatic
because it just needs an URL to follow the links and automatically
explore the website. It should be highlighted that the performance is
significantly improved in this phase because the number of candidates
needed to find the template is reduced. Another interesting aspect
is that it is orthogonal to the second phase, so it can be used by all
algorithms, thus the workbench performs this phase for all template
detection algorithms.

HTML to DOM: Two main problems appear when researchers want to
compare the results from different tools. On the one hand, almost ev-
ery technique is evaluated with its own criteria. On the other hand,
the authors do not provide any information about the evaluation cri-
terion [120, 116]. Both situations make difficult a comparison between
different techniques. Authors from papers in template detection liter-
ature usually evaluate how good its algorithm is using two measures:
text or DOM nodes retrieved. The precision, recall, etc. can be sig-
nificantly different if it is measured using the number of extracted
template chars, the number of text words, the number of HTML
tags, etc. Hence, it is essential to determine the evaluation criterion
in order to compare the tools.

In addition, those papers that measure their techniques (precision,
recall, etc.) using text can be further classified: those that measure
chars, those that measure text words, and those that measure para-

12.2. A workbench for template detection 249

graphs. On this basis, it is reasonable to think that words are better
than paragraphs, and chars are better than words because, e.g., if
a technique measures words, it can detect that a word that should
have been retrieved is missing in a paragraph, but this situation is
impossible if the technique is measuring paragraphs (complete para-
graphs would be marked as retrieved or not). The same situation
would happen with words and chars.

Nevertheless, usually, extracting a subset of the chars in a word
does not make sense. Besides, the measurement of retrieved chars
is strongly dependent on the number of chars a word has. For in-
stance, if the template word “publications” is not retrieved, it would
produce a higher penalty than if the template word “about” is not
retrieved, since “publications” has more chars. This may distort the
measures.

The problems described above related to text can usually be solved by
using DOM nodes instead of text to evaluate the techniques because
that way each individual block of text that appears in the HTML
code is represented with a #text DOM node. Thus, the use of DOM
nodes instead of text to evaluate the template detection techniques is
especially interesting for template extraction because templates reuse
HTML labels and their blocks of text. It is not usual to find a tem-
plate that does not reuse the whole text in a #text DOM node. For
that reason, it is more appropriate to use DOM nodes to evaluate
template detectors. Therefore, the workbench automatically trans-
forms every web page to its associated DOM tree.

Toggle View: Before extracting the web page template, the workbench
shows it directly on the browser and allows us to toggle the view by
swapping from the extracted template to the original web page and
vice versa. The template detection architecture in Figure 12.2 has a
module that allows us to swap between the original DOM tree and
the template’s DOM tree. In our WebExtensions, when the template
is extracted, a button allows the user to swap between the original
web page and the template.

Evaluation: The workbench also includes a module for the evaluation of
the produced template (precision, recall, F1, and runtime). Once the
algorithms have generated the template, the workbench compares
that template with the gold standard and shows the results in a re-
port.

250 Chapter 12. Comparison with the State of the Art

Runtime of each module

We computed the average runtime of each module using the test sub-
set of the TeCo benchmark suite, formed by 105 web pages (see Chapter
13). Note that the module Detection of candidates has been divided
into Hyperlink analysis and CS extraction. Table 12.2 shows the aver-
age runtime obtained by each module. Analyzing the obtained results, we
observed that the runtimes of Hyperlink analysis and CS extraction

modules are far greater than the runtimes of those modules for the evalu-
ation subset of the TeCo benchmark suite, formed by 45 web pages. This
phenomenon occurs when the module Detection of candidates has to
load and analyze a large number of web pages in order to build the Com-
plete Subdigraph. For instance, for 7 benchmarks in the test subset of the
TeCo benchmark suite, the algorithm loads and analyzes more than 50 web
pages. If those 7 benchmarks are removed from the experiment, the av-
erage runtime of the Hyperlink analysis module is 53 milliseconds, and
the runtime of the CS extraction module is less than half millisecond. In
fact, the computation of the Complete Subdigraph for a benchmark that
has to load 392 web pages takes almost 380 seconds.

Despite the split of the TeCo benchmark suite (into a test subset and
an evaluation subset) was performed randomly, the evaluation subset has
only one benchmark for which the module Detection of candidates has
to load more than 50 web pages (see e.g., Table 9.1). This means that
the average runtime of the module Detection of candidates is signifi-
cantly lower for the evaluation subset than for the test subset of the TeCo
benchmark suite.

Module Runtime

Hyperlink Analysis 129 ms.
CS Extraction 4668 ms.
HTML to DOM 0 ms.
Evaluation (TemEx) 1133 ms.

Table 12.2: Runtime of each module

12.3 Comparison of template detectors

The comparison of the selected template detectors and TemEx (described
in Chapter 9) was carried out using the workbench for template detection

12.3. Comparison of template detectors 251

described in Section 12.2). As detailed in the previous section, the work-
bench provides several features that allow researchers to fairly compare
template detection techniques.

To ensure the heterogeneity of the web pages used in the comparison,
we used the 45 evaluation web pages from the TeCo benchmark suite (de-
scribed in Chapter 13). Table 12.3 shows the obtained comparison results
of the accuracy and performance with the evaluation set of benchmarks.
Column Algorithm indicates the algorithm used in the experiments; col-
umn Recall represents (in percentage) the number of DOM nodes correctly
retrieved divided by the number of DOM nodes in the gold standard; col-
umn Precision shows (in percentage) the number of DOM nodes that have
been retrieved correctly divided by the number of retrieved DOM nodes;
column F1 reveals the F1 metric which is computed as (2 ∗P ∗R)/(P +R)
where P the precision and R the recall; column Load indicates the total
number of web pages loaded by the technique; column Runtime contains
the total time used to compute the template (in milliseconds) As can be
observed, our template detection algorithm (TemEx) achieves the best F1

values. It also obtains the best precision of all algorithms. In addition,
its performance is quite good compared to the other algorithms. It also
obtains the best average runtime of all algorithms, just ahead of IWPTD
([116]).

Algorithm Recall Precision F1 Runtime

SST (2003) [120] 37.54 % 58.03 % 41.90 % 1725 ms.
RTDM-TD (2006) [114] 15.94 % 98.15 % 16.53 % 2795 ms.
IWPTD (2008) [116] 75.80 % 65.65 % 65.17 % 601 ms.
RBM-TD (2009) [113] 40.68 % 100.00 % 51.52 % 1181 ms.
TemEx (2015) [10] 93.09 % 87.75 % 87.54 % 951 ms.

Table 12.3: Empirical evaluation and comparison with five site-level web
template detection algorithms

A fair comparison of runtimes was ensured because the experiments
were performed with the same computer, software configuration, and load.
As all the techniques are integrated into the template detection workbench,
they all use the same technology (WebExtensions). It should be noted that
the first iteration was always discarded in order to provide more indepen-
dence to the experiments, trying to avoid the impact of aspects such as
the influence of dynamically loaded libraries persisting in physical memory,
data persisting in the disk cache, etc. Moreover, for each technique and
benchmark, we repeated the experiments until a standard deviation under

252 Chapter 12. Comparison with the State of the Art

10% of the sample average was obtained in a window of ten executions.
The returned statistic value was the average of the window.

TemEx clearly obtains the best F1 value. The rest of the algorithms
obtain noticeably lower values: between 16% and 65%. It should be noted
that RBM-TD and RTDM-TD are focused on precision. RBM-TD obtained
100% precision in all experiments, while RTDM-TD obtained an average
precision of 98.15%. In consequence, when it is required to retrieve only
the template without noisy elements, both algorithms are valid. However,
RBM-TD is better due to its higher F1. The table shows that the lowest
F1 values are obtained by RTDM-TD. With respect to RBM-TD and SST,
they achieve similar F1 values. Finally, IWPTD obtains a F1 value of 65%,
while SST obtains an F1 value close to 42%.

Based on the obtained results, TemEx should be used if precision or both
precision and recall are crucial. On the other side, RBM-TD or RTDM-TD
should be used if the recall needs to be maximized.

12.3.1 Computation time

Despite that all the algorithms use the same workbench, computation times
must be analyzed in detail. The computation time of the Candidates

selection phase varies depending on the algorithm because not all al-
gorithms need the same number of web pages as input nor a complete
subdigraph.

On the other hand, the algorithm’s computation time is substantially
different in all tools. While IWPTD and TemEx are the quickest algo-
rithms, SST and RTDM-TD are significantly slower. Table 12.3 shows the
mean of the execution time of each algorithm for the 45 evaluation bench-
marks. IWPTD has the lowest runtime, which is about 600 milliseconds.
TemEx only takes an average runtime of about 1 second per benchmark,
while RBM-TD takes about 1.2 seconds per benchmark. However, SST is
about 3 times slower than IWPTD, while RTDM-TD is significantly slower,
nearly 5 times slower than IWPTD.

12.3.2 Scalability

The evaluation of the scalability has been performed by measuring the evo-
lution of the runtime with regard to the increase in the number of nodes
of the DOM trees. Figure 12.3 shows that TemEx and IWPTD are signif-
icantly better than RBM-TD, SST, and RTDM-TD. The figure draws the
runtime trendline of each algorithm with respect to the number of DOM

12.3. Comparison of template detectors 253

Figure 12.3: Runtime trendlines associated with DOM tree sizes

nodes on the key page. It can be observed that the trendlines of RBM-
TD, SST, and particularly RTDM-TD are quadratic, while the trendlines
of TemEx and IWPTD are linear with a slight incline. Hence, regarding
scalability, TemEx and IWPTD are better than the rest of the algorithms.

12.3.3 Asymptotic costs

From a theoretical perspective, as we reimplemented the algorithms, we can
study their scalability. Namely, we analyzed their asymptotic costs based
on their source codes. We obtained the following measures:

• SST [120] ∈ O(W ∗ (n2 + T)), being n the number of DOM nodes of
the key page, W the maximum width (in the number of nodes) of the
Site Style Tree and T the size (in the number of nodes) of the Site
Style Tree.

• RTDM-TD [114] ∈ O(n2), being n the number of DOM nodes of the
key page.

• IWPTD [116] ∈ O(n + T log T), being n the number of DOM nodes
of the key page and T the amount of text segments extracted.

• RBM-TD [113] ∈ O(n2), being n the number DOM of nodes of the
key page.

254 Chapter 12. Comparison with the State of the Art

• TemEx [10] ∈ O(n ∗W), being n the number of DOM nodes of the
key page and W the maximum width of the DOM tree.

The analysis of the asymptotic costs confirms the obtained empirical results.
While TemEx and IWPTD have linear growth, RBM-TD, RTDM-TD, and
SST have quadratic growth. The best cost is the cost of IWPTD. It is
practically O(n) due to the fact that the amount of obtained text segments
is always significantly lower than the number of DOM nodes. The growth
of TemEx is also linear. The cost of the rest of the algorithms (RBM-TD,
RTDM-TD, and SST) is quadratic, being the asymptotic cost of RTDM-TD
and RBM-TD O(n2), which is better than the asymptotic cost of SST.

12.4 Comparison of content extractors

In contrast to template detection techniques, many content extraction algo-
rithms have been compared using publicly available datasets (i.e., Cleaneval
[20]).

Figure 12.4: Image gallery from NASAS’s website extracted with our web
content extraction tool

Unfortunately, these datasets are only prepared for page-level tech-
niques, so they facilitate the comparison of our page-level content extraction
technique described in Chapter 6 (page-level ConEx). In contrast, we were
unable to compare our site-level content extraction technique (site-level
ConEx) with theirs.

It should be noted that, usually, each technique uses its own metric to
measure the retrieved content. Therefore, we used the metrics and datasets
introduced by the authors of those techniques in order to fairly compare
our technique with the results reported by others.

First of all, we used the datasets and metrics proposed in [106]. Au-
thors use 3 well-known and publicly available datasets (CleanEval; Big

12.4. Comparison of content extractors 255

5, which contains sets of web pages from Ars Technica, BBC, New York
Times, Yahoo, and Wikipedia; and Chaos, which contains web pages from
Blogger, Google News, and WordPress). First, we evaluated our page-level
content extraction technique using their evaluation datasets and then, we
used their metrics to compute the recall, precision, and F1. We compared
our page-level ConEx algorithm with the algorithms included in [106] plus
CEHTD-DS (which is a CETD variant). Table 12.4 reveals that CECTD-
DS obtains the best F1 for most of the datasets. It also achieves the best
precision and recall from several datasets and the best average F1. More-
over, other variants of the CETD algorithm (CETD-DS, CECTD-S and
CEHTD-DS) achieve high average F1 values (over 90%). Our page-level
algorithm achieves the best recall for the Yahoo dataset. The remaining
algorithms (BTE, DSC, FE, K-FE, LQF and CCB) obtain lower F1 values,
between 68% and 86% on average, except for FE, which achieves an average
F1 of around 9%.

CleanEval NYTimes
Algorithm Prec. Rec. F1 Prec. Rec. F1

BTE (2001) [39] 88.87% 95.83% 92.22% 62.22% 98.38% 76.23%
DSC (2002) [88] 91.94% 62.01% 74.07% 98.58% 85.67% 91.68%
FE (2005) [30] 73.87% 9.97% 17.56% 97.51% 3.62% 6.98%
K-FE (2005) [31] 79.28% 69.61% 74.13% 73.82% 71.35% 72.56%
LQF (2005) [76] 88.60% 94.02% 91.23% 90.02% 97.10% 93.42%
CCB (2008) [46] 80.61% 92.71% 86.24% 57.61% 96.09% 72.03%
CETR (2010) [117] 91.26% 86.08% 88.59% 85.19% 90.58% 87.80%
CETD-DS (2011) [106] 92.96% 94.52% 93.73% 98.38% 95.84% 97.09%
CECTD-S (2011) [106] 90.35% 92.60% 91.46% 96.72% 96.56% 96.64%
CECTD-DS (2011) [106] 95.87% 97.15% 96.51% 99.69% 98.16% 98.92%
CEHTD-DS (2015) [104] 94.97% 94.07% 94.52% 99.72% 95.96% 97.80%
Page-level ConEx [11] 92.79% 92.35% 92.57% 98.55% 87.68% 92.79%

Yahoo Wikipedia
Algorithm Prec. Rec. F1 Prec. Rec. F1

BTE (2001) [39] 54.94% 95.06% 69.64% 83.91% 81.60% 82.74%
DSC (2002) [88] 96.54% 73.14% 83.23% 81.67% 34.61% 48.62%
FE (2005) [30] 99.08% 4.94% 9.41% 98.79% 1.48% 2.91%
K-FE (2005) [31] 69.49% 56.97% 62.61% 73.76% 44.60% 55.59%
LQF (2005) [76] 64.54% 90.65% 75.40% 83.60% 76.41% 79.85%
CCB (2008) [46] 46.90% 93.45% 62.46% 63.22% 73.14% 67.82%
CETR (2010) [117] 69.36% 77.65% 73.27% 94.69% 72.77% 82.30%
CETD-DS (2011) [106] 83.16% 85.90% 84.51% 98.31% 97.22% 97.77%
CECTD-S (2011) [106] 80.33% 93.34% 86.35% 98.02% 97.61% 97.81%
CECTD-DS (2011) [106] 84.59% 93.99% 89.04% 98.25% 92.77% 95.43%
CEHTD-DS (2015) [104] 91.99% 88.59% 90.26% 96.58% 90.41% 93.39%
Page-level ConEx [11] 67.16% 97.29% 79.47% 98.90% 94.61% 96.71%

It should be highlighted that all the CETD variants are only based on
the text contained by the DOM nodes. Hence, in contrast to our techniques,
all those algorithms ignore main content elements such as animations, im-
ages, video, and other media.

256 Chapter 12. Comparison with the State of the Art

BBC Ars Technica
Algorithm Prec. Rec. F1 Prec. Rec. F1

BTE (2001) [39] 69.09% 97.09% 80.73% 68.25% 97.91% 80.44%
DSC (2002) [88] 89.27% 78.89% 83.76% 95.82% 90.52% 93.09%
FE (2005) [30] 98.95% 3.71% 7.15% 0.01% 0.00% 0.00%
K-FE (2005) [31] 63.84% 65.02% 64.43% 81.35% 82.73% 82.03%
LQF (2005) [76] 77.03% 92.17% 83.93% 88.40% 98.43% 93.15%
CCB (2008) [46] 53.52% 92.19% 67.72% 64.05% 96.27% 76.92%
CETR (2010) [117] 68.93% 86.58% 76.76% 83.06% 93.93% 88.16%
CETD-DS (2011) [106] 84.39% 95.21% 89.48% 97.81% 98.85% 98.33%
CECTD-S (2011) [106] 82.55% 93.77% 87.80% 94.61% 93.56% 94.08%
CECTD-DS (2011) [106] 86.15% 97.95% 91.67% 98.04% 99.51% 98.77%
CEHTD-DS (2015) [104] 95.55% 96.46% 96.00% 98.12% 98.83% 98.48%
Page-level ConEx [11] 93.15% 91.42% 92.28% 97.81% 97.03% 97.42%

Chaos Average
Algorithm Prec. Rec. F1 Prec. Rec. F1

BTE (2001) [39] 76.36% 92.80% 83.78% 71.95% 94.10% 80.83%
DSC (2002) [88] 94.45% 80.27% 86.79% 92.61% 72.16% 80.17%
FE (2005) [30] 72.59% 6.22% 11.46% 77.26% 4.28% 8.97%
K-FE (2005) [31] 73.97% 66.04% 69.78% 73.64% 65.19% 68.73%
LQF (2005) [76] 82.76% 93.98% 88.01% 82.14% 91.82% 86.42%
CCB (2008) [46] 64.45% 91.05% 75.47% 61.48% 90.70% 72.66%
CETR (2010) [117] 78.75% 86.92% 82.63% 81.61% 84.93% 82.78%
CETD-DS (2011) [106] 93.59% 94.99% 93.59% 92.66% 94.65% 93.50%
CECTD-S (2011) [106] 89.64% 91.22% 91.22% 90.33% 93.97% 92.24%
CECTD-DS (2011) [106] 96.21% 96.10% 96.15% 94.11% 96.52% 95.21%
CEHTD-DS (2015) [104] 94.74% 96.42% 95.57% 95.95% 94.39% 95.15%
Page-level ConEx [11] 95.01% 91.88% 93.42% 91.91% 93.18% 92.09%

Table 12.4: Empirical evaluation with CETD’s metrics

To compare our page-level content extraction algorithm with the algo-
rithms included in [106] we had to use the metrics proposed by them. They
use the longest common subsequence algorithm (LCS): if a represents the
text extracted and b represents the text in the gold standard, they com-
pute the precision as the length of the LCS between a and b divided by the
length of a, and they compute de recall as the length of the LCS between a
and b divided by the length of b. As stated in Section 4.4, F1 is computed
as (2∗P ∗R)/(P +R) where P is the precision and R is the recall. It is a fact
that the use of these metrics (proposed by themselves and used in Table
12.4) favours all CETD variants because using the largest subsequence of
text that is common to two strings only considers the text content of the
web page, and not any other type of content.

Furthermore, we also evaluated our page-level content extraction tech-
nique with the metrics proposed in [115], which uses the CleanEval dataset.
This allowed us to compare our algorithm with the algorithms included in
their paper. The authors added one stage before computing their metrics.
A dynamic programming algorithm finds the optimal alignment between
the original HTML web page and the CleanEval gold standard. In ad-
dition, they align the obtained main content text with the text from the

12.4. Comparison of content extractors 257

CleanEval gold standard. Finally, they compute their metrics performing
a comparison between both aligned texts. In order to decide if an obtained
DOM node belongs to the main content or not, they use heuristics: if 2/3
of the retrieved node’s content also belongs to the gold standard at the
same location, the node is marked as “content”. It should be noted that
the authors use two datasets to evaluate their technique and to compare
with others. On the one hand, they use the original CleanEval dataset. On
the other hand, they use a reduced version of the CleanEval dataset which
includes only 148 web pages selected by them.

Cleaneval test Web2text’s test
Method Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Runtime

BTE (2001) [39] 79% 79% 89% 83% 75% 76% 84% 80% 0.08 s.
CRF (2008) [105] 82% 87% 81% 84% 82% 88% 81% 84% 0.13 s.
Default-ext (2010) [63] 80% 89% 75% 81% 79% 89% 74% 81% 0.05 s.
Article-ext (2010) [63] 72% 91% 59% 71% 67% 89% 50% 64% 0.05 s.
Largest-ext (2010) [63] 60% 83% 36% 52% 59% 93% 33% 48% 0.05 s.
Unfluff (2014) [42] 71% 90% 57% 70% 68% 90% 51% 65% 0.52 s.
Web2text (2018) [115] 84% 88% 85% 86% 86% 87% 90% 88% 0.05 s.

Page-level ConEx [11] 83% 83% 90% 87% 84% 83% 92% 87% 0.27 s.

Table 12.5: Empirical evaluation with Web2text’s metrics

The comparison results can be observed in Table 12.5. Page-level ConEx
algorithm obtains the highest F1 value for the CleanEval dataset (87%),
and the highest recall for both datasets, the original CleanEval test dataset
(90%), and the CleanEval web2text’s test dataset (92%). The best accuracy
for both datasets is obtained by Web2text. In addition, the best precision
for both datasets is obtained by Boilerpipe. We also obtained the publicly
available implementation of the algorithms proposed in [115] and evaluated
their performance. There are significant differences between the runtimes,
as can be observed in Column Runtime of Table 12.5. This occurs because
the algorithms are implemented with different technologies, such as Java,
Python, Perl, Scala, etc.

It should be highlighted that all the content extraction algorithms in
this section focus on text extraction. This is evidenced by the fact that most
authors use metrics that only consider the extracted text. On the other
hand, as Figure 12.4 shows, our both content extraction algorithms extract
the main content of the web pages regardless of its type (it not only extracts
text but also animations, images, videos, etc.). Therefore, the metrics used
in this section to evaluate the algorithms (those proposed by the other
techniques) influence our technique, because the non-textual information

258 Chapter 12. Comparison with the State of the Art

extracted by our algorithms (such as images, videos, animations, etc.) is
not considered.

In addition, it should be highlighted that many block detection tech-
niques compute the average F1 as (2∗P ∗R)/(P +R), being R the average
recall, and P the average precision of all benchmarks (see e.g. [115, 104,
117, 106, 66]). In contrast, we measured the average F1 of our techniques
in the same way as the average recall and the average precision, computing
the average of the F1 obtained by each benchmark (see e.g. Table 5.2,
Table 6.3, Table 6.4, etc.). Computing the average F1 using the average
recall and the average precision distorts the obtained results. As for each
benchmark, the F1 is always less or equal to the average of the recall and
the precision, computing the average F1 of all benchmarks using the aver-
age recall and the average precision will most likely lead to a higher value
than the real average F1.

12.5 Conclusions

The evaluation and comparison of our template detection and content ex-
traction algorithms with other state-of-the-art techniques revealed that
they obtain the best results in various datasets.

On the one hand, we compared our site-level template detection algo-
rithm (TemEx) with several well-known template detection techniques. As
we could not find in the literature fair comparisons for template detection
techniques using the same metrics and benchmarks, we made a systematic
review to select several template detection techniques and then compared
them. It was not possible to access the implementation of any of the se-
lected techniques, so we had to implement them from scratch (now they
are open-source and publicly available). We included the implementation
of the algorithms in a workbench that includes several features for template
detection.

On the other hand, we compared our page-level content extraction tech-
nique (page-level ConEx) with other well-known content extraction tech-
niques using different datasets and metrics. In this case, we did not have to
make a systematic review to select the techniques, nor implement the tech-
niques from scratch. We compared our technique with several well-known
techniques from the state-of-the-art using their datasets and metrics. As a
result, to the best of our knowledge, we offered a general view of the strong
and weak points of several content extraction techniques. In addition, we
identified the best tool for different possible scenarios. From the compari-

12.6. Contributions 259

son, we concluded that most techniques are only focused on text extraction.
In contrast, our two content extraction techniques are able to extract the
main content regardless of its type, so they not only extract text, but also
animations, images, videos, etc.

12.6 Contributions

This chapter provides several contributions that can be exploited by re-
searchers in order to evaluate and compare their block detection techniques
with the techniques in the state of the art.

The main contribution of the chapter is the workbench for template de-
tection. It is parametric with respect to the algorithm used, so any template
detection algorithm can access to all resources it provides. It implements
four common modules that can be used by any template detection algo-
rithm if needed: Detection of Candidates, HTML to DOM, Toggle View,
and Evaluation. The Extract Template module has to be implemented
depending on the template extraction algorithm, so it corresponds to de
algorithm itself.

Another important contribution of the chapter is the implementation
of 5 template extraction algorithms. In addition to our template detection
algorithm (TemEx [10]), we implemented from scratch 4 well-known tem-
plate extractors: SST [120], RTDM-TD [114], IWPTD [116], and RBM-TD
[113]. As with the rest of the algorithms in this thesis, the template detec-
tion workbench and the techniques were implemented as a WebExtension,
which is compatible with Mozilla-based and Chromium-based browsers.

Finally, the chapter provides several comparisons of template detection
and content extraction algorithms using the same metrics. This contribu-
tion allows researchers to fairly compare their techniques with some well-
known block detection techniques in the literature.

Part VI

Implementations

261

Chapter 13

TeCo Benchmark Suite

As stated in previous chapters, block detection disciplines such as template
detection, content extraction, menu detection, etc. are important tools
for website developers, website analyzers such as crawlers, and also for
many other information processing tasks applied to web pages. In the
last fifteen years, there have been important improvements that produced
several techniques for block detection disciplines. For the tasks of testing,
comparing and tuning these techniques, researchers need:

• sets of heterogeneous benchmarks (that guarantee generality of the
techniques) and

• a gold standard (that ensures the same evaluation criteria).

Benchmark suites are extremely significant to measure the performance
of block detection techniques, as well as to compare them with previous
approaches. They are used both in the testing phase and in the evaluation
phase. First, the testing phase is where parameters are adjusted in order
to optimize the techniques. Then, the evaluation phase obtains the perfor-
mance of the technique using objective measures. Nevertheless, one cannot
overlook the fact that the same set of benchmarks cannot be used in the
testing phase and in the evaluation phase, that is, they need disjoint sets
of web pages.

This chapter presents a benchmark suite together with a gold standard
that is useful for several block detection techniques, such as menu detec-
tion, template detection, and content extraction. The key page of every
benchmark has been labelled so that a block detection technique can find
out whether a DOM node represents the main menu, whether it should be
classified as part of the template or not, or whether it should be classified
as main content or not.

TeCo benchmark suite is the result of a research project. It started
from a technique for content extraction [51] and another technique for tem-

263

264 Chapter 13. TeCo Benchmark Suite

Date May 14 Jun 16 Nov 17 Dec 18 Jun 21

Version 1.0 2.0 3.0 4.0 5.0

Benchmarks 40 50 100 130 150

Table 13.1: Number of benchmarks of each TeCo version

plate detection [14]. At first, in the evaluation phase, we tried to use a
public benchmark suite. CleanEval [20] seemed a good option because it
has been widely used in literature, but unfortunately, it is not prepared for
site-level techniques nor it is not prepared for template detection. Then,
we contacted the authors of other techniques that had used benchmarks of
heterogeneous web pages to evaluate them. Nevertheless, we could not use
those benchmarks for several reasons, such as privacy issues (they belonged
to a project or a company whose results were private), unavailability (they
had been lost), and copyright (they were not publicly available). In other
cases, when the benchmarks were available, additional problems arose. For
instance, some benchmark suites were only prepared for page-level tech-
niques, others included only a few web pages, etc. So, finally, we built
our own benchmark suite which we made free and publicly available. The
first version [7] contained 40 benchmarks. Later, with the development of
a new menu detection technique [3], we updated the benchmark suite by
labelling the DOM nodes that represent the main menu of the website. So
we added 10 new benchmarks to the suite, for a total of 50. Then, with
the publication of [13], we doubled the number of benchmarks, for a total
of 100. Later, we added 30 more benchmarks for a total of 130. Finally, 20
more benchmarks were added, thus now our benchmark suite is formed by
150 websites. Table 13.1 shows the approximate date of each TeCo version
and the number of benchmarks included in it.

13.1 Benchmark suite’s structure

TeCo (Template detection and Content extraction benchmark suite) was
specifically created as a benchmark suite for block detection techniques,
specifically for template detection, menu detection, and content extraction.
It can be used in both, the testing and the evaluation phase of these tech-
niques. It contains 150 real websites downloaded from the Internet. We
selected and downloaded real heterogeneous websites with different layouts
and page structures such as blogs, shops, company websites, forums, news-
papers, personal websites, sports websites, etc.

13.1. Benchmark suite’s structure 265

The language of the websites is also heterogeneous. Despite the dom-
inant language being English, benchmarks include many other languages
such as Spanish, French, German, Italian, Japanese, Chinese, etc. Some of
them are well-known websites, like the FIFA website or the BBC website.
On the other hand, others are less known like personal blogs or websites
from small companies. The downloading of the web pages was done using
the Linux command wget.

The Linux terminal command used to download the websites using wget

was the following:

$ wget --convert-links --no-clobber --random-wait -r -l 2

-p -E -e robots = off -U mozilla --reject pdf, mp4, zip

http://www.example.org

The meaning of the flags used is:

• --convert-links: Converts links so they can work locally.

• --no-clobber: Do not overwrite any existing file.

• --random-wait: Random waits between downloads.

• -r: Recursive downloading.

• -l 2: Limit the recursive downloading up to 2 levels of links.

• -p: Downloads everything.

• -E: Get the right file extension.

• -e robots = off: Act as not being a robot.

• -U mozilla: Identify as a Mozilla browser.

• --reject pdf, mp4, zip: Rejects files with these extensions.

The composition of each benchmark is:

• A main web page, called key page. This is the target web page from
which the block detection techniques should extract the desired block
(main menu, template, or main content). It should be noted that this
is not necessarily the main web page of the website (e.g., index.html),
it could be any web page from the website.

• A set of web pages that are reachable recursively (up to 2 levels of
links) from the key page. Moreover, they belong to the same website

266 Chapter 13. TeCo Benchmark Suite

as the key page. Note that, usually, this set of web pages does not
contain all the web pages from the website, only in the case of small
websites.

13.2 Producing the gold standard

TeCo benchmark suite includes a gold standard that serves as a reference to
compare different block detection techniques. For each key page, the gold
standard specifies what parts form the template, what parts form the main
content, or which DOM node represents the main menu. This attribute
is included in the own web page through the use of HTML classes that
indicate, for instance, which elements are classified as mainContent, which
are classified as notTemplate, and which are classified as mainMenu. This
gold standard has been produced manually by several people who carefully
inspected the websites.

Specifically, before downloading all the websites (the key page and re-
cursively two levels of linked web pages that belong to the same website),
four different engineers did the following procedures independently:

• They manually inspected the key page and the web pages reachable
from it to decide which part of the web page is the main content,
which part is the template, and which is the main content.

• They printed a snapshot of the blocks they defined in the previous
step (main content, template, and main menu).

Subsequently, the four engineers had a meeting and performed again
these two procedures, but now sharing their individual opinions. With
the conclusions of this agreement, each website was prepared for template
detection, content extraction, and menu detection. On the one hand, an
HTML class called TECO notTemplate was used to include all the DOM
nodes from the key page that did not belong to the template. This allows a
template extraction tool to perform a comparison between its output and
the nodes not belonging to the TECO notTemplate class. On the other
hand, an HTML class called TECO mainContent was used to include all
the DOM nodes belonging to the main content of the key page. Hence, a
content extraction tool can easily perform a comparison between its output
and the nodes that belong to that class. In addition, an HTML class called
TECO mainMenu was used to include the DOM node that represented the
main menu of the key page. In consequence, a menu extraction tool can

13.3. Benchmark details 267

perform a comparison between its output and the nodes that belong to that
class.

13.3 Benchmark details

TeCo benchmark suite also provides a classification of the benchmarks,
which could be useful depending on the application and the technique that
is being tested or evaluated. Different classifications are provided according
to the properties and purpose of the benchmarks. All the benchmarks are
classified into five categories:

• Companies / Shops.

• Forums / Social.

• Personal websites / Blogs.

• Media / Communication.

• Institutions / Associations.

This classification and the URLs of the websites that belong to each
category can be observed in the following tables:

• Table 13.2 for the benchmarks that belong to the Institutions / As-
sociations category.

• Table 13.3 for the benchmarks that belong to the Media / Commu-
nication category.

• Table 13.4 for the benchmarks that belong to the Forums / Social
category.

• Table 13.5 for the benchmarks that belong to the Personal / Blogs
category.

• Table 13.6 for the benchmarks that belong to the Companies / Shops
category.

We randomly selected 9 benchmarks of each category as evaluation
benchmarks, while the remaining 21 benchmarks of each category form
the training subset of benchmarks. Therefore, considering the 5 categories

268 Chapter 13. TeCo Benchmark Suite

Id Original URL of the web page

1 web.mit.edu/institute-events/visitor/
2 www.museodelprado.es
3 www.u-tokyo.ac.jp/en/about/history.html
4 www.savethechildren.net/what-we-do/our-humanitarian-work/
5 college.harvard.edu/financial-aid/
6 www.linuxfoundation.org/about/
7 clinicaltrials.gov/ct2/search/index/
8 cordis.europa.eu/fp7/ict/fire.html
9 parents.berkeley.edu/advice/babies/laundry.html
10 www.mit.edu/campus-life
11 cpoepalencia.es/federaciones-y-asociaciones-confederadas-

asociaciones/
12 www.icann.org/history.html
13 www.gip-jci-justice.fr/en/about-us/support-council/
14 www.einstein.yu.edu/leadership/
15 www.americanacademy.de/about/
16 www.mensa.es/cms/pages/%C2%BFqu%C3%A9-es-mensa.html
17 www.bcrf.org/breast-cancer-research.html
18 www.ielts.org/what-is-ielts/ielts-introduction.html
19 fr.unesco.org/about-us/introducing-unesco.html
20 www.ccbe.eu/about/who-we-are/
21 www.fraud.org/get involved.html
22 www.jdi.org.za
23 www.premiere-urgence.org/qui-sommes-nous/
24 www.indiangaming.org
25 hispalinux.es/QuienesSomos
26 www.gktw.org/about/
27 www.apnic.net/about-apnic/organization/vision-mission-objectives/
28 www.unicef.org/where-we-work.html
29 www.klimabuendnis.org/home.html
30 www.isoc-es.org

Table 13.2: Sources of the Institutions / Associations benchmarks

of benchmarks, the evaluation subset is formed by a total of 45 bench-
marks while the training subset is formed by the remaining 105 bench-
marks. These 2 subsets of the TeCo benchmark suite have been used to
train and evaluate all the algorithms in this thesis.

Table 13.7 shows some properties of each benchmark. Here, column
Benchmark’s domain is the domain of the website’s key page, column
Type indicates whether the benchmark is a training benchmark (T) or an
evaluation benchmark (E), column Nodes shows the total number of DOM
nodes of the key page, column T. Nodes refers to the number of DOM
nodes of the template, column M.C. Nodes indicates the total number of

13.3. Benchmark details 269

Id Original URL of the web page

31 edition.cnn.com
32 www.neoteo.com/star-wars-the-force-awakens-el-regreso-de-viejos-

personajes/
33 riotimesonline.com
34 www.turfparadise.com
35 www.cleanclothes.org
36 www.afp.com/es/contact/
37 www.history.com
38 detroit.cbslocal.com/2018/12/04/high-school-newspaper-suspended-

after-publishing-disruptive-investigation/
39 www.rocklists.com/91x-1983.html
40 www.lashorasperdidas.com
41 www.journalism.org/2014/03/13/social-search-direct/
42 www.socialmediatoday.com/news/facebook-adds-new-features-for-

instant-articles-including-links-to-more-pu/569786/
43 www.diariodeburgos.es/Noticia/Z1C5D6DE9-D1E6-B03A-

61236AF21520B8B2/202002/Un-programa-verde-dedicado-a-Felix-
Rodriguez-de-la-Fuente.html

44 wordofmouthmendo.com/word-of-mouth-stories/2018/5/31/travellers-
fare.html

45 www.usine-digitale.fr/article/la-start-up-americaine-clearview-ai-
illustre-deja-les-derives-de-la-reconnaissance-faciale.N921119.html

46 1015fm.com.au/2020/02/steve-mickenbecker-interest-rates-on-hold-
2020-02-07/

47 www.dw.com/de/lebron-james-vom-pflegekind-zum-basketball-
superstar/a-52088565.html

48 www.theday.com/movies–tv/20200203/super-bowl-ads-dialed-up-fun-
as-antidote-to-politics.html

49 nltimes.nl/2019/12/16/chocolate-spread-babies-wins-misleading-
product-award.html

50 www.bbc.co.uk/news/
51 techcrunch.com/gadgets/
52 biztechmagazine.com/article/2019/12/why-byod-makes-endpoint-

security-crucial-small-businesses.html
53 www.eeo.com.cn/2022/0506/533366.shtml
54 www.wishtv.com/news/flu-is-widespread-across-the-us/
55 news.mit.edu/2021/grand-decoding-data-0909.html
56 asia.nikkei.com/Spotlight/Sharing-Economy/New-Tokyo-homes-ditch-

parking-spaces-but-offer-car-sharing
57 www.rcnky.com/articles/2021/09/12/ft-mitchell-reflects-life-age-

104.html
58 news.discovery.com/tech/robotics/artificial-intelligences-hawkings-

fears-stir-debate-141206.htm
59 www.kathimerini.gr/society/561833251/koronoios-arsi-metron-i-

megali-prova-kanonikotitas-enopsei-toy-kalokairioy/
60 news.un.org/en/content/navigate-news

Table 13.3: Sources of the Media / Communication benchmarks

270 Chapter 13. TeCo Benchmark Suite

Id Original URL of the web page

61 es.sharelatex.com/learn/Uploading a project
62 github.com/DawidStankiewicz/forum
63 en.citizendium.org
64 www.filmaffinity.com/es/
65 www.meneame.net/faq-es/
66 www.accountkiller.com/en/delete-activision-account
67 study.com/learn/science-questions-and-answers.html
68 c.mi.com/it/
69 alumni.harvard.edu/help/message-board/
70 www.spacetimestudios.com/forumdisplay.php?29-Websites-and-

Forum-Discussion
71 www.gimpforum.de
72 www.emaildiscussions.com
73 forums.debian.net/viewforum.php?f=5
74 forums.mozillazine.org/viewforum.php?f=23
75 forums.tomsguide.com/forums/laptop-general-discussion.15/
76 forums.mysql.com/list.php?21
77 lawstudents.ca/forums.html
78 www.japanesepod101.com/forum/viewforum.php?f=26
79 forum.skyscraperpage.com
80 forums.opera.com
81 forums.linuxmint.com/viewforum.php?f=72
82 frances.forosactivos.net
83 www.wysiwygwebbuilder.com/forum/viewforum.php?f=10
84 www.3dprintforums.com
85 www.strangehorizons.com/2004/20040906/greenglass-f.shtml
86 communities.apple.com/es/community/mac os/os x el capitan.html
87 www.sloweurope.com/community/
88 community.ricksteves.com/travel-forum/spain.html
89 hackercombat.com/forum/
90 www.scbwi.org/boards/index.php?board=62.0

Table 13.4: Sources of the Forums / Social benchmarks

DOM nodes of the main content, and column Links represents the number
of links contained in the main menu. Note that, as stated in previous
chapters, the number of template nodes and the number of main content
nodes are not necessarily complementary. I.e., usually, we can find DOM
nodes in many web pages that do not belong to the template nor to the
main content. For instance, web pages typically contain irrelevant (not
main content) information that only appears on that web page, such as
blocks from social networks, submenus, sliders, etc.

13.4. Guidelines for using the suite 271

Id Original URL of the web page

91 www.cocinaconmarta.com/2015/04/empanadillas-chinas-de-gambas-y-
verduras.html

92 www.trendencias.com
93 googleblog.blogspot.com.es
94 www.robyncarr.com/qa/
95 users.dsic.upv.es/∼jsilva/wwv2013/index2.html
96 www.folj.com/puzzles/difficult-logic-problems.htm
97 oneminutelist.com/16-browser-alternatives-to-desktop-programs/
98 artsonline.uwaterloo.ca/jburbidg/index.html
99 benjamincongdon.me/blog.html
100 michael.tsikerdekis.com
101 www.beeorganisee.com/reprendre-en-main-le-nettoyage/
102 www.danielgrindrod.com/about.html
103 ofdollarsanddata.com
104 blog.mint.com/updates/enter-our-newdecadenewyou-meme-

sweepstakes-for-a-chance-to-win-5000/
105 elainesir.com/best-korean-beauty-blogs-bloggers-follow/
106 www.vindame.com.br/semana-riesling/uva-riesling/
107 www.rosamontero.es/obra-rosa-montero.html
108 www.almezzer.com/libros/literatura-infantil/a-partir-de-4-anos/
109 markahall.blogspot.com.es
110 johnboyne.com/about/
111 users.dsic.upv.es/∼dinsa/en/
112 johngardnerathome.info
113 www.annmalaspina.com
114 foodsense.is/a-list.html
115 sites.google.com/a/ciencias.unam.mx/pagina-ana-meda/
116 whatever.scalzi.com/about/interviews-appearances-articles-and-etc/
117 www.javiercelaya.es
118 diarium.usal.es/lguich/pagina-personal-de-luis-arturo-guichard/
119 www.jameslovelock.org/scientific-papers/
120 www.cipri.info

Table 13.5: Sources of the Personal / Blogs benchmarks

13.4 Guidelines for using the suite

13.4.1 Downloading and configuring the suite

TeCo is distributed free and can be downloaded from the following URL:

http://personales.upv.es/josilga/retrieval/teco/

The suite is distributed in 5 separated zip files, one for each benchmarks
category. Each zip file, once downloaded and decompressed, creates 30

272 Chapter 13. TeCo Benchmark Suite

Id Original URL of the web page

121 today.java.net/pub/a/today/2004/07/06/3ddesktop.html
122 clotheshor.se
123 www.raspberrypi.org/resources/teach/
124 doodle.com/online-calendar/
125 www.newprosoft.com/web-content-extractor.htm
126 worryfreelabs.com/about/
127 www.intelligencetest.com
128 www.ikea.com/gb/
129 www.nubbeo.com.ar
130 www.mulberry.com/es/shop/sale/sale-mens-accessories.html
131 www.tous.com/es-es/novedades/relojes/c/59.html
132 preferenceweb.com/collections/all-sneakers.html
133 www.trekbikes.com/us/en US/bikes/mountain-bikes/electric-

mountain-bikes/c/B512/
134 addons.prestashop.com/es/2-modulos.html
135 us.pandora.net/en/charm-bracelets/pandora-moments/pandora-

moments-bracelets/
136 kawaiipenshop.com
137 www.vam.ac.uk/shop/lindsay-philip-butterfield-blue-flower-silk-

scarf.html
138 shop.fendt.com/kids-toys/clothing/shirts.html
139 www.euroholds.com/it/29-prese-arrampicata.html
140 www.emmaclothes.com
141 www.arduino.cc/en/Main/Software/
142 naranjascarcaixent.com/tienda.html
143 www.technicalbookstoreonline.com/new-arrivals.php
144 www.floridarealestatecollege.com
145 www.basf.com/nl/nl/who-we-are/BASF-in-Nederland.html
146 www.mcphersonoil.com
147 www.thirteenhou.com/menu.php
148 wwww.embalajesterra.com/precintadoras-manuales-168
149 www.crypto.ch/en/about
150 www.shopbookshop.com

Table 13.6: Sources of the Companies / Shops benchmarks

folders, one for each benchmark. The name of each folder corresponds to
the domain name of its key page. Additionally, the compressed file also
contains a text file in its root folder with some useful information, such as
the path to the key page of each benchmark. Table 13.8 includes the path
to the key page of each benchmark as well as the zip file that contains that
benchmark.

13.4. Guidelines for using the suite 273

Id Benchmark’s domain Type Nodes T. Nodes M.C. Nodes Links

1 web.mit.edu T 424 252 141 9
2 www.museodelprado.es T 639 148 168 7
3 www.u-tokyo.ac.jp T 614 499 97 30
4 www.savethechildren.net T 763 690 54 21
5 college.harvard.edu T 1098 669 397 5
6 www.linuxfoundation.org T 597 534 38 118
7 clinicaltrials.gov T 545 424 101 37
8 cordis.europa.eu T 980 335 164 19
9 parents.berkeley.edu T 287 99 180 8
10 www.mit.edu T 1290 472 809 13
11 cpoepalencia.es T 719 644 73 51
12 www.icann.org T 492 397 90 46
13 www.gip-jci-justice.fr T 887 680 137 28
14 www.einstein.yu.edu T 1168 815 187 29
15 www.americanacademy.de T 746 670 14 37
16 www.mensa.es T 422 354 37 10
17 www.bcrf.org T 917 587 294 6
18 www.ielts.org T 761 605 150 43
19 fr.unesco.org T 957 615 308 73
20 www.ccbe.eu T 1003 783 177 33
21 www.fraud.org T 558 321 61 16
22 www.jdi.org.za E 661 401 199 10
23 www.premiere-urgence.org E 502 457 32 30
24 www.indiangaming.org E 594 209 148 7
25 hispalinux.es E 515 347 144 32
26 www.gktw.org E 793 646 130 8
27 www.apnic.net E 650 461 79 59
28 www.unicef.org E 1057 671 381 4
29 www.klimabuendnis.org E 892 536 134 75
30 www.isoc-es.org E 279 171 56 17
31 edition.cnn.com T 3980 192 877 15
32 www.neoteo.com T 1051 636 388 18
33 riotimesonline.com T 2115 1094 743 23
34 www.turfparadise.com T 1072 838 205 98
35 www.cleanclothes.org T 1358 266 932 7
36 www.afp.com T 1208 404 789 16
37 www.history.com T 1324 673 260 12
38 detroit.cbslocal.com T 1261 1004 96 65
39 www.rocklists.com T 783 533 184 6
40 www.lashorasperdidas.com T 1924 554 683 12
41 www.journalism.org T 830 459 86 10
42 www.socialmediatoday.com T 1288 666 149 8
43 www.diariodeburgos.es T 606 384 69 9
44 wordofmouthmendo.com T 916 668 26 26
45 www.usine-digitale.fr T 994 259 124 18
46 1015fm.com.au T 1041 835 65 28
47 www.dw.com T 2593 1596 470 135
48 www.theday.com T 2147 933 456 86
49 nltimes.nl T 588 115 164 10
50 www.bbc.co.uk T 3029 573 1195 22
51 techcrunch.com T 2612 1891 586 35
52 biztechmagazine.com E 1950 1057 454 97
53 www.eeo.com.cn E 936 676 119 11
54 www.wishtv.com E 2380 1993 343 77
55 news.mit.edu E 2122 1045 128 8

274 Chapter 13. TeCo Benchmark Suite

Id Benchmark’s domain Type Nodes T. Nodes M.C. Nodes Links

56 asia.nikkei.com E 886 671 116 42
57 www.rcnky.com E 1771 1435 112 17
58 news.discovery.com E 2926 1209 791 68
59 www.kathimerini.gr E 1897 1606 117 83
60 news.un.org E 1809 1258 59 42
61 es.sharelatex.com T 1100 877 214 6
62 github.com T 1242 453 783 5
63 en.citizendium.org T 1092 415 633 35
64 www.filmaffinity.com T 1337 352 972 32
65 www.meneame.net T 769 207 423 11
66 www.accountkiller.com T 510 222 273 8
67 study.com T 7328 1897 5433 74
68 c.mi.com T 3506 2949 541 37
69 alumni.harvard.edu T 2026 1785 219 40
70 www.spacetimestudios.com T 5049 1387 3500 47
71 www.gimpforum.de T 2058 457 1300 6
72 www.emaildiscussions.com T 1129 239 674 7
73 forums.debian.net T 2766 150 2327 7
74 forums.mozillazine.org T 2023 235 1411 4
75 forums.tomsguide.com T 7911 992 5064 22
76 forums.mysql.com T 4493 430 3950 10
77 lawstudents.ca T 3563 949 1935 11
78 www.japanesepod101.com T 1574 924 434 36
79 forum.skyscraperpage.com T 3410 146 1676 6
80 forums.opera.com T 1456 617 829 7
81 forums.linuxmint.com T 5079 327 3872 7
82 frances.forosactivos.net E 814 318 495 9
83 www.wysiwygwebbuilder.com E 3941 739 3201 7
84 www.3dprintforums.com E 1125 312 748 8
85 www.strangehorizons.com E 643 149 406 23
86 communities.apple.com E 3144 375 1306 10
87 www.sloweurope.com E 4208 526 2789 29
88 community.ricksteves.com E 2061 386 1177 9
89 hackercombat.com E 1828 828 698 6
90 www.scbwi.org E 892 219 506 6
91 www.cocinaconmarta.com T 4154 3404 307 9
92 www.trendencias.com T 2503 1139 1040 7
93 googleblog.blogspot.com.es T 5096 3574 1494 343
94 www.robyncarr.com T 292 92 200 4
95 users.dsic.upv.es T 207 170 34 14
96 www.folj.com T 567 176 384 4
97 oneminutelist.com T 503 276 211 5
98 artsonline.uwaterloo.ca T 413 164 240 4
99 benjamincongdon.me T 329 55 274 4
100 michael.tsikerdekis.com T 577 124 95 7
101 www.beeorganisee.com T 840 494 303 18
102 www.danielgrindrod.com T 424 395 29 4
103 ofdollarsanddata.com T 1075 365 651 5
104 blog.mint.com T 872 442 129 44
105 elainesir.com T 1383 523 636 26
106 www.vindame.com.br T 667 546 104 20
107 www.rosamontero.es T 808 89 717 9
108 www.almezzer.com T 1121 516 416 23
109 markahall.blogspot.com.es T 3144 697 2437 22
110 johnboyne.com T 690 214 185 8

13.4. Guidelines for using the suite 275

Id Benchmark’s domain Type Nodes T. Nodes M.C. Nodes Links

111 users.dsic.upv.es T 243 75 160 5
112 johngardnerathome.info E 397 176 188 21
113 www.annmalaspina.com E 403 190 84 8
114 foodsense.is E 339 104 192 5
115 sites.google.com E 405 320 85 32
116 whatever.scalzi.com E 1693 1434 243 11
117 www.javiercelaya.es E 763 682 57 12
118 diarium.usal.es E 625 82 524 3
119 www.jameslovelock.org E 679 465 174 20
120 www.cipri.info E 955 387 556 27
121 today.java.net T 733 342 354 6
122 clotheshor.se T 465 232 228 8
123 www.raspberrypi.org T 398 143 209 14
124 doodle.com T 580 491 82 5
125 www.newprosoft.com T 833 151 679 6
126 worryfreelabs.com T 514 321 190 7
127 www.intelligencetest.com T 595 323 263 18
128 www.ikea.com T 1556 407 985 10
129 www.nubbeo.com.ar T 1642 605 975 7
130 www.mulberry.com T 8506 3943 4203 152
131 www.tous.com T 5109 3010 1056 216
132 preferenceweb.com T 2279 725 1322 17
133 www.trekbikes.com T 5698 1924 3760 15
134 addons.prestashop.com T 8062 2333 3382 5
135 us.pandora.net T 6375 2011 3376 142
136 kawaiipenshop.com T 1237 821 403 26
137 www.vam.ac.uk T 1595 1186 392 61
138 shop.fendt.com T 2278 1433 640 55
139 www.euroholds.com T 4923 843 3490 89
140 www.emmaclothes.com T 1088 374 705 8
141 www.arduino.cc T 854 490 336 26
142 naranjascarcaixent.com E 321 172 141 6
143 www.technicalbookstoreonline.com E 2971 391 2002 12
144 www.floridarealestatecollege.com E 1069 556 65 29
145 www.basf.com E 845 776 62 12
146 www.mcphersonoil.com E 891 628 225 34
147 www.thirteenhou.com E 1226 137 1073 4
148 www.embalajesterra.com E 2360 1694 470 106
149 www.crypto.ch E 346 249 68 3
150 www.shopbookshop.com E 1743 1314 387 9

Table 13.7: Benchmark properties

13.4.2 Rules for using the suite and report

As stated in previous sections of this chapter, TeCo was created to provide
researchers with a wide collection of heterogeneous benchmarks useful for
several block detection disciplines. When we tried to find collections of
benchmarks used in previously published techniques, we encountered sev-
eral problems. Some of the benchmark suites, such as CleanEval [20] and

276 Chapter 13. TeCo Benchmark Suite

Id Zip file Path to the key page

1 Institutions.zip web.mit.edu/institute-events/visitor
2 Institutions.zip www.museodelprado.es/index.html
3 Institutions.zip www.u-tokyo.ac.jp/en/about/history.html
4 Institutions.zip www.savethechildren.net/what-we-do/our-humanitarian-work.html
5 Institutions.zip college.harvard.edu/financial-aid.html
6 Institutions.zip www.linuxfoundation.org/about.1.html
7 Institutions.zip clinicaltrials.gov/ct2/search/index/index.html
8 Institutions.zip cordis.europa.eu/fp7/ict/fire.html
9 Institutions.zip parents.berkeley.edu/advice/babies/laundry.html
10 Institutions.zip www.mit.edu/campus-life.1.html
11 Institutions.zip cpoepalencia.es/federaciones-y-asociaciones-confederadas-

asociaciones/index.html
12 Institutions.zip www.icann.org/history.html
13 Institutions.zip www.gip-jci-justice.fr/en/about-us/support-council/index.html
14 Institutions.zip www.einstein.yu.edu/leadership/index.html
15 Institutions.zip www.americanacademy.de/about/index.html
16 Institutions.zip www.mensa.es/cms/pages/¿qué-es-mensa.html
17 Institutions.zip www.bcrf.org/breast-cancer-research.html
18 Institutions.zip www.ielts.org/what-is-ielts/ielts-introduction.html
19 Institutions.zip fr.unesco.org/about-us/introducing-unesco.html
20 Institutions.zip www.ccbe.eu/about/who-we-are/index.html
21 Institutions.zip www.fraud.org/get involved.html
22 Institutions.zip www.jdi.org.za/index.html
23 Institutions.zip www.premiere-urgence.org/qui-sommes-nous/index.html
24 Institutions.zip www.indiangaming.org/index.html
25 Institutions.zip hispalinux.es/QuienesSomos.html
26 Institutions.zip www.gktw.org/about/index.html
27 Institutions.zip www.apnic.net/about-apnic/organization/vision-mission-

objectives/index.html
28 Institutions.zip www.unicef.org/where-we-work.html
29 Institutions.zip www.klimabuendnis.org/home.html
30 Institutions.zip www.isoc-es.org
31 Media.zip edition.cnn.com/index.html
32 Media.zip www.neoteo.com/star-wars-the-force-awakens-el-regreso-de-viejos-

personajes/
33 Media.zip riotimesonline.com/index.html
34 Media.zip www.turfparadise.com/index.html
35 Media.zip www.cleanclothes.org/index.html
36 Media.zip www.afp.com/es/contact.html
37 Media.zip www.history.com/index.html
38 Media.zip detroit.cbslocal.com/2018/12/04/high-school-newspaper-

suspended-after-publishing-disruptive-investigation/index.html
39 Media.zip www.rocklists.com/91x-1983.html
40 Media.zip www.lashorasperdidas.com/index.html

13.4. Guidelines for using the suite 277

Id Zip file Path to the key page

41 Media.zip www.journalism.org/2014/03/13/social-search-direct/index.html
42 Media.zip www.socialmediatoday.com/news/facebook-adds-new-features-for-

instant-articles-including-links-to-more-pu/569786/index.html
43 Media.zip www.diariodeburgos.es/Noticia/Z1C5D6DE9-D1E6-B03A-

61236AF21520B8B2/202002/Un-programa-verde-dedicado-a-
Felix-Rodriguez-de-la-Fuente.html

44 Media.zip wordofmouthmendo.com/word-of-mouth-
stories/2018/5/31/travellers-fare.html

45 Media.zip www.usine-digitale.fr/article/la-start-up-americaine-clearview-ai-
illustre-deja-les-derives-de-la-reconnaissance-faciale.N921119.html

46 Media.zip 1015fm.com.au/2020/02/steve-mickenbecker-interest-rates-on-
hold-2020-02-07/index.html

47 Media.zip www.dw.com/de/lebron-james-vom-pflegekind-zum-basketball-
superstar/a-52088565.html

48 Media.zip www.theday.com/movies–tv/20200203/super-bowl-ads-dialed-up-
fun-as-antidote-to-politics.html

49 Media.zip nltimes.nl/2019/12/16/chocolate-spread-babies-wins-misleading-
product-award.html

50 Media.zip www.bbc.co.uk/news/index.html
51 Media.zip techcrunch.com/gadgets
52 Media.zip biztechmagazine.com/article/2019/12/why-byod-makes-endpoint-

security-crucial-small-businesses.html
53 Media.zip www.eeo.com.cn/2022/0506/533366.shtml.html
54 Media.zip www.wishtv.com/news/flu-is-widespread-across-the-us/index.html
55 Media.zip news.mit.edu/2021/grand-decoding-data-0909.html
56 Media.zip asia.nikkei.com/Spotlight/Sharing-Economy/New-Tokyo-homes-

ditch-parking-spaces-but-offer-car-sharing.html
57 Media.zip www.rcnky.com/articles/2021/09/12/ft-mitchell-reflects-life-age-

104.html
58 Media.zip news.discovery.com/tech/robotics/artificial-intelligences-hawkings-

fears-stir-debate-141206.htm
59 Media.zip www.kathimerini.gr/society/561833251/koronoios-arsi-metron-i-

megali-prova-kanonikotitas-enopsei-toy-kalokairioy/index.html
60 Media.zip news.un.org/en/content/navigate-news.html
61 Forum.zip es.sharelatex.com/learn/Uploading a project
62 Forum.zip github.com/DawidStankiewicz/forum.1
63 Forum.zip en.citizendium.org/index.html
64 Forum.zip www.filmaffinity.com/es/main.html
65 Forum.zip www.meneame.net/faq-es.html
66 Forum.zip www.accountkiller.com/en/delete-activision-account.html
67 Forum.zip study.com/learn/science-questions-and-answers.html
68 Forum.zip c.mi.com/it/index.html
69 Forum.zip alumni.harvard.edu/help/message-board.html

278 Chapter 13. TeCo Benchmark Suite

Id Zip file Path to the key page

70 Forum.zip www.spacetimestudios.com/forumdisplay.php?29-Websites-and-
Forum-Discussion.html

71 Forum.zip www.gimpforum.de/index.html
72 Forum.zip www.emaildiscussions.com/index.html
73 Forum.zip forums.debian.net/viewforum.php?f=5.html
74 Forum.zip forums.mozillazine.org/viewforum.php?f=23.html
75 Forum.zip forums.tomsguide.com/forums/laptop-general-

discussion.15/index.html
76 Forum.zip forums.mysql.com/list.php?21.html
77 Forum.zip lawstudents.ca/forums.html
78 Forum.zip www.japanesepod101.com/forum/viewforum.php?f=26.html
79 Forum.zip forum.skyscraperpage.com/index.html
80 Forum.zip forums.opera.com/index.html
81 Forum.zip forums.linuxmint.com/viewforum.php?f=72.html
82 Forum.zip frances.forosactivos.net/index.html
83 Forum.zip www.wysiwygwebbuilder.com/forum/viewforum.php?f=10.html
84 Forum.zip www.3dprintforums.com/index.html
85 Forum.zip www.strangehorizons.com/2004/20040906/greenglass-f.shtml.html
86 Forum.zip communities.apple.com/es/community/mac os/os x el capi-

tan.html
87 Forum.zip www.sloweurope.com/community/index.html
88 Forum.zip community.ricksteves.com/travel-forum/spain.html
89 Forum.zip hackercombat.com/forum/index.html
90 Forum.zip www.scbwi.org/boards/index.php?board=62.0.html
91 Personal.zip www.cocinaconmarta.com/2015/04/empanadillas-chinas-de-

gambas-y-verduras.html
92 Personal.zip www.trendencias.com
93 Personal.zip googleblog.blogspot.com.es
94 Personal.zip www.robyncarr.com/qa.html
95 Personal.zip users.dsic.upv.es/∼jsilva/wwv2013/index2.html
96 Personal.zip www.folj.com/puzzles/difficult-logic-problems.htm
97 Personal.zip oneminutelist.com/16-browser-alternatives-to-desktop-

programs/index.html
98 Personal.zip artsonline.uwaterloo.ca/jburbidg/index.html
99 Personal.zip benjamincongdon.me/blog.html
100 Personal.zip michael.tsikerdekis.com/index.html
101 Personal.zip www.beeorganisee.com/reprendre-en-main-le-

nettoyage/index.html
102 Personal.zip www.danielgrindrod.com/about.html
103 Personal.zip ofdollarsanddata.com/index.html
104 Personal.zip blog.mint.com/updates/enter-our-newdecadenewyou-meme-

sweepstakes-for-a-chance-to-win-5000/index.html
105 Personal.zip elainesir.com/best-korean-beauty-blogs-bloggers-follow/index.html
106 Personal.zip www.vindame.com.br/semana-riesling/uva-riesling/index.html
107 Personal.zip www.rosamontero.es/obra-rosa-montero.html

13.4. Guidelines for using the suite 279

Id Zip file Path to the key page

108 Personal.zip www.almezzer.com/libros/literatura-infantil/a-partir-de-4-
anos/index.html

109 Personal.zip markahall.blogspot.com.es
110 Personal.zip johnboyne.com/about/index.html
111 Personal.zip users.dsic.upv.es/∼dinsa/en/index.html
112 Personal.zip johngardnerathome.info/index.htm
113 Personal.zip www.annmalaspina.com/index.html
114 Personal.zip foodsense.is/a-list.html
115 Personal.zip sites.google.com/a/ciencias.unam.mx/pagina-ana-

meda/index.html
116 Personal.zip whatever.scalzi.com/about/interviews-appearances-articles-and-

etc/index.html
117 Personal.zip www.javiercelaya.es/index.html
118 Personal.zip diarium.usal.es/lguich/pagina-personal-de-luis-arturo-guichard
119 Personal.zip www.jameslovelock.org/scientific-papers/index.html
120 Personal.zip www.cipri.info/index.html
121 Companies.zip today.java.net/pub/a/today/2004/07/06/3ddesktop.html
122 Companies.zip clotheshor.se/index.html
123 Companies.zip www.raspberrypi.org/resources/teach/index.html
124 Companies.zip doodle.com/online-calendar.html
125 Companies.zip www.newprosoft.com/web-content-extractor.htm
126 Companies.zip worryfreelabs.com/about.1.html
127 Companies.zip www.intelligencetest.com/index.htm
128 Companies.zip www.ikea.com/gb/en.html
129 Companies.zip www.nubbeo.com.ar/index.html
130 Companies.zip www.mulberry.com/es/shop/sale/sale-mens-accessories.html
131 Companies.zip www.tous.com/es-es/novedades/relojes/c/59.html
132 Companies.zip preferenceweb.com/collections/all-sneakers.html
133 Companies.zip www.trekbikes.com/us/en US/bikes/mountain-bikes/electric-

mountain-bikes/c/B512/index.html
134 Companies.zip addons.prestashop.com/es/2-modulos.html
135 Companies.zip us.pandora.net/en/charm-bracelets/pandora-moments/pandora-

moments-bracelets/index.html
136 Companies.zip kawaiipenshop.com/index.html
137 Companies.zip www.vam.ac.uk/shop/lindsay-philip-butterfield-blue-flower-silk-

scarf.html
138 Companies.zip shop.fendt.com/kids-toys/clothing/shirts.html
139 Companies.zip www.euroholds.com/it/29-prese-arrampicata.html
140 Companies.zip www.emmaclothes.com/index.html
141 Companies.zip www.arduino.cc/en/Main/Software.html
142 Companies.zip naranjascarcaixent.com/tienda.html
143 Companies.zip www.technicalbookstoreonline.com/new-arrivals.php.html
144 Companies.zip www.floridarealestatecollege.com/index.html
145 Companies.zip www.basf.com/nl/nl/who-we-are/BASF-in-Nederland.html
146 Companies.zip www.mcphersonoil.com/index.html
147 Companies.zip www.thirteenhou.com/menu.php.html

280 Chapter 13. TeCo Benchmark Suite

Id Zip file Path to the key page

148 Companies.zip www.embalajesterra.com/precintadoras-manuales-168.html
149 Companies.zip www.crypto.ch/en/about.html
150 Companies.zip www.shopbookshop.com/index.htm

Table 13.8: Path to the key page of each benchmark

L3S-GN1 [61], were only prepared for page-level techniques or were only
prepared for content extraction. Others, such as MSS [85], were restricted
to only one of the 5 benchmark categories we defined, or their number
of different domains was poor. Finally, other benchmark suites were not
publicly available due to privacy restrictions, copyright, unavailability, etc.
Therefore, we decided to create a publicly available benchmark suite for
block detection techniques.

For the reasons given above, we urge all researchers and developers that
use TeCo to follow two basic principles:

i. They must publish their results so that they are publicly available.

ii. They must provide enough information so that anyone can easily
duplicate their experiments.

13.5 Conclusions

This chapter describes a benchmark suite (TeCo) composed of 150 hetero-
geneous websites. This benchmark suite can be used to evaluate or test
any block detection technique, but it is especially useful for menu detec-
tion, content extraction, and template detection because the included gold
standard is prepared for them. Specifically, the gold standard identifies
the main menu, the template, and the main content of each benchmark.
Therefore, it can be used to test, evaluate, and compare techniques and im-
plementations of these block detection disciplines. It is important to note
that, unlike other benchmark suites, TeCo can be used by both, page-level
and site-level techniques.

The effectiveness of TeCo has been widely demonstrated because it has
been used to test and evaluate all the block detection techniques described
in this thesis.

Finally, it should be highlighted that TeCo is publicly available and
free.

13.6. Contributions 281

13.6 Contributions

This chapter provides several contributions that can be exploited by re-
searchers in order to train and evaluate their block detection techniques.

The main contribution of the chapter is a benchmark suite labelled for
template detection, content extraction, and menu detection. The suite is
formed by 150 heterogeneous websites from 5 main categories (Companies
/ Shops, Forums / Social, Personal websites / Blogs, Media / Communica-
tion, and Institutions / Associations.

Another important contribution of the chapter is the information about
the creation of the benchmark suite. The chapter details which tool was
used and how the set of benchmarks was created. In addition, it describes
the benchmark’s labelling method.

Chapter 14

Implementation

In this chapter, we describe the current state of the art in the implemen-
tation of the different WebExtensions. As commented in several chapters,
all the techniques explained in this thesis have been implemented as We-
bExtensions, and in addition, those WebExtensions have been officially
published by Mozilla in their Firefox browser add-ons website.

14.1 WebExtensions’ implementation

All the described techniques (MenEx, page-level ConEx, TemEx, site-level
ConEx, and Hybrid technique) share most of their features, i.e., they are
based on DOM trees, they all have been implemented using JavaScript, they
share the same architecture, they are compatible with the same browsers,
etc. Hence, all of them have been implemented as WebExtensions using a
common architecture.

14.1.1 Architecture

As all the proposed techniques are based on DOM trees, they share the ba-
sis of their architecture, which is very similar to the architecture explained
in Chapter 12, in the description of the workbench for template detection.
Figure 14.1 shows a common architecture scheme for all the techniques’
WebExtensions. The diagram outlines the 5 phases into which each tech-
nique can be divided. However, all the phases are not required for all the
techniques, i.e., the Detection of candidates phase only makes sense for
site-level techniques, so it is not useful for MenEx and page-level ConEx.
This architecture is shared by all the WebExtensions published by Mozilla
in their Firefox browser add-ons website, as well as the WebExtensions
used for training and evaluating each technique. The main modules of the
WebExtensions’ architecture are:

283

284 Chapter 14. Implementation

• Detection of candidates: The main difference between the architec-
ture of the various implementations is this module. Since the page-
level techniques do not need to extract any information from other
web pages from the website, it does not make sense to perform the
Detection of candidates phase. Therefore, this phase is optional
depending on the technique to be applied. As previously detailed in
Chapter 7, this module is divided into two different stages: (1) de-
tecting the links in the key page that most likely produce a complete
subdigraph (hyperlink analysis), and (2) sorting the links detected in
the previous phase to choose the links that must be explored first in
order to find an optimal CS (CS extraction). Note that, as stated in
Section 9.2, not all the links that form a CS produce equally good CS.
The input of the Hyperlink analysis stage is the key page, while
its output is a set of links that can form a CS. This set of links is the
input of the CS extraction stage, while its output is the CS.

• HTML to DOM: As can be observed in Figure 14.1, this module con-
verts the web pages’ HTML code into their corresponding DOM tree.
This is a trivial conversion since it is the process that web browsers
perform in order to represent an HTML web page. The input of this
module is a set of web pages corresponding to the links that form the
CS. Once processed, the output of the module is a set of DOM trees
corresponding to those web pages. Note that the execution of this
module is mandatory since all the presented techniques are based on
DOM trees.

• Block detection: The block detection module implements the desired
technique (MenEx, page-level ConEx, TemEx, site-level ConEx, and
Hybrid algorithm). Depending on the implemented technique and the
operation mode (evaluation or test), this module calls the required
modules and performs the operation. As described in Section 12.2,
other block detection algorithms can be added to this architecture,
i.e., SST [120], RTDM-TD [114], IWPTD [116], RBM-TD [113], etc.
This module receives as input one or several DOM trees (depending
on whether it corresponds to a page-level or a site-level technique),
and returns as output the DOM tree corresponding to the detected
block.

• Evaluation: As described in Section 12.2, this module allows us to ob-
tain an evaluation (precision, recall, F1, and runtime) of the executed
algorithm, since it performs a comparison between the obtained block

14.1. WebExtensions’ implementation 285

Detec�on of candidates Toggle view

Domain’s
hierarchy

Complete
Subdigraph

Detected
block’s

DOM tree

Website

A
P
I Web pages’

DOM trees
Web pages’
HTML code

HTML to DOM

Evalua�on

Key page’s
DOM tree

MenEx
Page-level

ConEx
TemEx

Site-level
ConEx

HybEx

Key page

HTML

HTML

HTML

Hyperlink
Analysis

HTML
to DOM

CS
Extrac�on

Evalua�on

Toggle
View

HTML
HTMLHTML

Block
Detec�on

Block detec�on

A P I

Key page’s
gold standard

DB

Figure 14.1: Architecture of the WebExtensions

and a previously provided gold standard. This module is completely
optional, it makes sense when one is evaluating or testing a technique
with a benchmark suite. On the other hand, when one is extracting a
block from a single random web page this module makes no sense be-
cause the gold standard from that website with high probability is not
available. This module receives as input the detected block’s DOM
tree and the gold standard of the web page. Then, it uses a REST
web service to store the evaluation result in a MySQL database.

Figure 14.2 represents the entity-relationship model of the MySQL
database. It can be observed that there are 3 entities. An algorithm
at least executes 1 experiment, and a maximum of n experiments,
while an experiment is executed only by one algorithm. Accordingly,
an experiment uses only 1 benchmark, while a benchmark could be
used by between 0 and n experiments. This entity-relationship model
has been implemented as a MySQL database which contains 3 tables,
one for each of the three entities. However, the REST web service
that performs the insertion in the database only needs to insert in
the “Experiment” table.

Figure 14.3 shows the scheme of the REST web service. It uses a
PUT request to send the data to the server.

286 Chapter 14. Implementation

Algorithm Experiment

Benchmark

Executes

Uses

(1,1) (1,n)

(0,n)

(1,1)

1:N

N:1

id name

id

…

id

url

Figure 14.2: Entity-relationship model of the database

WebExtension Server

PUT h�p://localhost/registerBenchmark.php
Insert

experiment
into database

response

Figure 14.3: REST web service scheme

The process of inserting the experiments into the database is the
following:

i. The WebExtension organizes the data in a two-dimensional ar-
ray with 200 experiments (if possible).

ii. The WebExtension creates an XMLHttpRequest object, opens
the URL of the web service, and sends the PUT request includ-
ing a JSON string which corresponds to the array of the experi-
ments stringified1. Figure 14.4 show the JavaScript source code
of this step. The first line of the code creates a new XMLHttpRe-
quest object. Then, in line 2, the open() method initializes
a newly-created request, or re-initializes an existing one. The

1The JSON.stringify() method converts a JavaScript object or value to a JSON string.

14.1. WebExtensions’ implementation 287

HTTP request method is “POST”, the URL of the web service
is “http://localhost/registerBenchmark.php”, and the third pa-
rameter indicates that the request is asynchronous. In the third
line, the setRequestHeader() method sets the header “Content-
type” to “application/x-www-form-urlencoded”. Finally, the re-
quest is sent to the server with the JSON string that corresponds
to the stringified array.

xmlhttp = new XMLHttpRequest;

xmlhttp.open("POST", "http :// localhost/registerBenchmark.php", true);

xmlhttp.setRequestHeader("Content -type", "application/x-www -form -

urlencoded");

xmlhttp.send(’experiments =’ + JSON.stringify(data));

Figure 14.4: REST web service request from the WebExtension

iii. The web service decodes the JSON string and converts it to the
original two-dimensional array that contained the experiments.

iv. An algorithm explores iteratively the array and inserts the ex-
periments into the database.

It should be highlighted that the data was organized in arrays of 200
experiments because it is more efficient to make requests with blocks
of several experiments than one by one. For instance, Chromium-
based browsers had memory problems if they request the web service
with one experiment at a time despite closing the connection and
destroying the object.

• Toggle view: This module is also described in Section 12.2. Contrary
to the evaluation module, this module makes sense when one is not
testing or evaluating a technique. This module receives as input the
key page’s DOM tree and the detected block’s DOM tree. When one
wants to extract a block from a web page, the result of the extraction
is shown in the user’s browser. The user can use the Toggle view

function to switch the web browser content between the original web
page and the extracted block.

14.1.2 Structure

Browser extensions or add-ons are used to enhance or modify the capabil-
ity of a web browser. Actually, Mozilla-based extensions are implemented
using the WebExtensions API cross-browser technology. This technology

288 Chapter 14. Implementation

manifest.json

Background scripts

Content scripts

Browser ac�on

Background.js

Icon.png

Background.js
Background.jsjs

Figure 14.5: Structure of the WebExtensions

is largely compatible with the extension API2 supported by Chromium-
based browsers (such as Google Chrome, Microsoft Edge, Vivaldi, Opera,
etc.). In addition, WebExtensions are also compatible with the W3C draft
community group report3.

A WebExtension consists of a set of files, packaged in a particular way
for its distribution and installation. Figure 14.5 shows the structure of our
WebExtensions, which is an instance of a more complex scheme (the general
structure for WebExtensions). It can be observed that a file called “mani-
fest.json” is mandatory. That file must be present in any WebExtension. It
contains basic metadata related to the extension, such as its name, version,
required permissions, default locale, etc. The file also contains pointers to
other files in the WebExtension:

• Background scripts: Usually, WebExtensions need to maintain a long-
term state or execute long-term operations regardless of the lifetime
of any particular loaded web page or browser window. That long-
running logic is defined in background scripts, which are loaded as
soon as the extension is loaded and they remain loaded until the ex-
tension is disabled or uninstalled. In the case of our WebExtensions,
this section of the “manifest.json” file contains a pointer to the back-
ground script, called “background.js”, which includes functions such
as the initial listener that starts to work when the user press the ex-
tension’s button, error treatment functions, the operations that have
to be done once the block is extracted, etc.

2https://developer.chrome.com/docs/extensions/reference/
3https://browserext.github.io/browserext/

14.1. WebExtensions’ implementation 289

• Content scripts: This section from the “manifest.json” file contains
pointers to the scripts that contain the WebExtension operation.
Those scripts can access and manipulate web pages because they are
loaded into the web pages and they run in the context of them. In
the case of our block detection WebExtensions, this section contains
pointers to all the JavaScript files needed to implement the modules
described in the previous subsection and Figure 14.1. In addition to
the JavaScript classes corresponding to the techniques (block detec-
tion module of Figure 14.1), it includes many other JavaScript classes,
such as the classes that implement all the operations of the rest of
the modules in Figure 14.1, classes for time measuring, hash table
implementations, etc.

• Browser action: This part from the “manifest.json” file includes point-
ers to the icons used by the WebExtension. In the case of our We-
bExtensions, it points to the “png” file that contains both icons, the
primary icon and the “toggle view” icon.

14.1.3 Evaluation environment

In previous chapters, mainly in Chapters 5, 8, and 10, we conducted mil-
lions of experiments to evaluate the algorithms. Those experiments were
performed using the architecture described in Section 14.1.1.

To execute the WebExtensions that conducted the experiments, we pre-
pared a dedicated server in the following way:

• We hired a dedicated server in a data centre. The server was equipped
with an 8-core Intel i9 9900k processor and 64 Gb of DDR4 RAM. It
was running Ubuntu Desktop4. As the testing phase of all algorithms
was going to take several months, we chose a server in an external
data centre in order to maximize the availability.

• Then, we connected the server using SSH and installed MySQL and
Apache. Once installed, we also installed phpMyAdmin to handle the
administration of the database over the Web.

• Subsequently, we also installed Anydesk5 to remotely access the op-
erating system GUI.

4https://ubuntu.com
5https://anydesk.com

290 Chapter 14. Implementation

• Finally, we installed the web browsers that executed the WebExten-
sions. As the server had an 8-core processor, we decided to execute
8 instances of the WebExtension at the same time. Therefore, we in-
stalled 8 Chromium-based browsers. The installed web browsers were:
Chromium6, Google Chrome7, Brave8, Opera9, Microsoft Edge10, Vi-
valdi11, Slimjet12, and SRWare Iron13.

Once the environment was ready, we connected the server via Anydesk.
Then, we uploaded and executed the different WebExtensions. We could
follow the execution by connecting to the server at any time (via Anydesk
or by browsing the database with phpMyAdmin). Once the experiments
of an algorithm were finished, we executed the necessary SQL sentences to
obtain the results.

More than 11.5 million experiments were conducted to evaluate the
algorithms. The computing time was approximately 227 days using an
Intel i9 9900k.

14.2 Usage scenario

This section describes a typical usage scenario of any of the WebExtensions,
since all of them are used likewise. A scenario in which the user decides to
extract a block from a web page is described.

Step 1: The first step is to load into the web browser the web page from
which the user wants to extract the desired block (i.e., the main menu,
the main content, or the template). Figure 14.6 shows the main web
page of the VRAIN’s website loaded into Mozilla Firefox.

Step 2: Once the web page has been loaded, the user has to press the
button located on the upper right of the browser window. The button
is different for each WebExtension. Concretely, it is a “T” letter in
a square for the TemEx WebExtension, a “M” letter for the MenEx
Webextension, a “C” letter for both ConEx WebExtensions, and a

6https://www.chromium.org
7https://www.google.com/intl/es˙es/chrome
8https://brave.com
9https://www.opera.com

10https://www.microsoft.com/es-es/edge
11https://vivaldi.com
12https://www.slimjet.com
13https://www.srware.net/iron

14.2. Usage scenario 291

Figure 14.6: VRAIN’s web page loaded into the browser

“H” letter for the Hybrid technique WebExtension. For instance,
Figure 14.7 shows the MenEx button.

Figure 14.7: MenEx button

Step 3: After the user has pressed the button, the WebExtension per-
forms all the required operations to extract the desired block and
shows it in the browser window. The nodes that do not belong to
the desired block are properly hidden by changing their visibility and
display attributes to hidden or none, respectively. Hence, the result
is the isolation of the block, which appears in the same place as on
the original web page. Figure 14.8 shows the browser window after
extracting the main menu of VRAIN’s website14 with MenEx.

Step 4: As stated in Section 14.1, once the block has been extracted,
the user can switch the web browser between the original web page
and the extracted block. This can be done using the button shown
in Figure 14.9.

14https://vrain.upv.es/

292 Chapter 14. Implementation

Figure 14.8: VRAIN’s web page main menu extracted with MenEx

Figure 14.9: Toggle view button

14.3 Tools information

As stated previously in this chapter, we have implemented 5 different We-
bExtensions, one for each technique: MenEx, page-level ConEx, TemEx,
site-level ConEx, and HybEx. Each WebExtension contains between 2500
and 4200 LOC and they are fully implemented in JavaScript. As they are
implemented using the WebExtensions API cross-browser technology, they
are compatible with Mozilla-based, Chromium-based browsers, and other
browsers compatible with the W3C draft community group report. The
last release of all the WebExtensions is distributed in English, Spanish,
French, and German.

We also implemented the template detection workbench described in
Section 12.2. The WebExtension includes the 5 template detection algo-
rithms described in Section 12.1.

It should be highlighted that all the functionalities described in this the-
sis are completely implemented in the last releases of the WebExtensions.

14.3. Tools information 293

These tools and the template detection workbench described in Chapter 12
are open and publicly available at:

http://personales.upv.es/josilga/retrieval/

14.3.1 Differences between different browsers

Despite we could think that a WebExtension works in exactly the same
manner in all browsers, this is not always true. We observed that there are
significant differences in two aspects:

• The number of DOM nodes created by the HTML to DOM module.
The DOM trees created by the Chromium-based browsers and the
Mozilla-based browsers are slightly different because the number of
nodes they use to represent the HTML web page is different.

DOM nodes Words
Browser Kp nodes Mc nodes Recall Precision F1 Recall Precision F1
Chromium-based 1613.65 714.71 90.29 % 77.01 % 79.46 % 93.16 % 86.13 % 88.12 %
Mozilla-based 1613.37 714.78 90.29 % 77.01 % 79.46 % 93.16 % 86.13 % 88.12 %

Table 14.1: Results of Mozilla-based and Chromium-based browsers

We performed a comparison experiment using the 150 benchmarks
of the TeCo benchmark suite (see Chapter 13). The result of the
experiment can be observed in Table 14.1, which shows a compari-
son between Chromium-based browsers and Mozilla-based browsers
for the site-level ConEx algorithm in Chapter 10. Column Browser

shows the browser (Chromium-based or Mozilla-based); column Kp

nodes corresponds to the nodes of the key page computed by the
browser; column Mc nodes shows the number of nodes of the main
content computed by the browser. the rest of the columns correspond
to the Recall, Precision, and F1 for both, retrieved DOM nodes and
retrieved text words. As Table 14.1 shows, Chromium-based browsers
created more key page’s DOM nodes on average, while Mozilla-based
browsers created more main content DOM nodes on average. With
respect to the Recall, Precision, and F1, we can observe that both
algorithms obtain the same values. However, if we use 4 decimal
places or more, the Recall, Precision, and F1 values for retrieved
DOM nodes are slightly different due to the fact that browsers use
a different number of DOM nodes to represent the DOM tree. This
phenomenon does not occur for retrieved text words because the ob-
tained text is the same in both browser types.

http://personales.upv.es/josilga/retrieval/

294 Chapter 14. Implementation

• The runtime of the algorithms is also significantly different. Some
techniques are more than two times faster when executed in a Chromium-
based browser than in a Mozilla-based browser.

Browser TemEx SL ConEx PL ConEx HybEx MenEx
Chromium-based 1326 ms. 909 ms. 289 ms. 1406 ms. 784 ms.
Mozilla-based 2973 ms. 2392 ms. 3473 ms. 2952 ms. 1751 ms.

Table 14.2: Runtimes of Mozilla-based and Chromium-based browsers

When comparing the amount of DOM nodes created by Chromium-
browsers and Mozilla-browsers, we performed another comparison ex-
periment using the 150 benchmarks of the TeCo benchmark suite (see
Chapter 13) to check the runtime of the 5 block detection techniques
described in this thesis on different browsers. Table 14.2 shows the re-
sults of the comparison. Each column shows, for both browser types,
the average runtimes of each technique for the 150 benchmarks. We
can observe that, in general, the runtime of Chromium-based browsers
is two times faster than the runtime of Mozilla-based browsers. How-
ever, it should be noted that the runtime of page-level ConEx is about
12 times faster for Chromium-based browsers.

14.4 Conclusions

This chapter describes the implementation and usage scenario of the We-
bExtensions created to evaluate and test the different algorithms presented
in this thesis.

The main functional blocks of the architecture are described, relating
them to the algorithms detailed in previous chapters. In particular, the
chapter emphasizes the evaluation module developed to train the different
algorithms. For the evaluation phase of the algorithms, more than 11 mil-
lion experiments were conducted. We also developed a web service to store
the obtained results in a MySQL database. In addition, the evaluation
environment created to perform the training experiments is also described.

The chapter also defines the structure of the WebExtensions, the tech-
nology used to develop them, and their compatibility with different browsers.

Finally, the chapter shows a usage scenario of one WebExtension and
presents the differences observed running the WebExtensions in different
browsers.

14.5. Contributions 295

14.5 Contributions

This chapter provides several contributions that can be exploited by re-
searchers in order to implement or evaluate their block detection techniques.

The chapter introduces an architecture proposal for DOM-based block
detection WebExtensions. It is divided into several phases and it can be
adapted to any block detection algorithm. It also includes an Evaluation

phase to train the techniques which store the experiment results in a MySQL
database using a REST web service.

Another contribution of the chapter is the description of the structure
of the developed WebExtensions. It also outlines the environment created
to test the techniques and the statistics about the performed experiments.

The chapter also describes a usage scenario which is representative for
any of the WebExtensions in the thesis.

Part VII

Conclusions and Future
Work

297

Chapter 15

Conclusions

Block detection techniques are a Web Mining discipline used to extract
information from web pages. Depending on the purpose, there are several
different blocks of information that we can extract, e.g., the template, the
main content, the menu, comments, etc. Given that the web pages on
the World Wide Web are extremely heterogeneous, despite the existence
of several content management systems (CMS) used by many websites,
the task of extracting information pagelets (main content, menu, template,
etc.) is a challenging task. These Web Mining techniques are useful for
humans and for many different systems.

The most important block of information in a web page is the main
content because it contains really relevant information. However, the main
content is almost always next to other elements such as banners, footers,
main menus, advertisements, etc. The task of extracting the main content
from a web page consists in isolating the useful information and removing
those elements that do not contain useful knowledge for the user. However,
it should be highlighted the importance of extracting other blocks that do
not contain relevant information, such as the template of the web page or
the main menu.

On the one hand, block detection techniques provide interesting benefits
for humans. Block detection techniques provide numerous advantages to
people with disabilities. For instance, visually impaired people can take
benefit from menu detection techniques or content extraction techniques
since web pages are simplified and they can have a better experience surfing
the Web. In addition, among other things, template detection techniques
can help developers and designers reuse web templates or check easily the
template differences among several web pages.

On the other hand, block detection techniques are also important for
many systems. Today, the terms in a web page are treated differently
by crawlers and indexers depending on their functionality. Usually, they
preprocess the web pages in order to identify the template or the main

299

300 Chapter 15. Conclusions

content. This is due to the fact that template extraction allows crawlers
and indexers the identification of those pagelets that only include noisy
information such as banners and advertisements. Likewise, the isolation of
the main content helps indexers and crawlers to focus on the most relevant
information. The main purpose of indexers and crawlers is to provide users
with only relevant information. Therefore, extracting the main content
is an essential task to preprocess that information. Gibson et al. [44]
determined that template elements represent between 40% and 50% of all
the data on the Web. This fact justifies the importance of using techniques
such as main content extraction, or template extraction [120, 114] as a
preprocessing method. Hence, the irrelevant content should not be indexed
similarly to the relevant content, because the indexation of the non-content
part of templates usually affects accuracy and performance; and it also
can lead to a waste of time, bandwidth, storage space, etc. In addition,
for crawlers and indexers, identifying the main menu plays an important
role in inferring the structure of the website. The basis of the structure of
the website can be inferred from the main menu since it always contains
hyperlinks to the most important web pages of the website.

This thesis is focused on HTML-structured web pages, which nowadays
are by far the great majority. From an engineering point of view, a web page
is a set of Document Object Model (DOM) nodes [29]. All the techniques
described in this thesis use the representation of a web page as a DOM tree.
The use of DOM trees has many advantages for block detection techniques.
For instance, as the main content is not only formed by text, it allows con-
tent extraction techniques to extract not only text content but also other
information such as images, videos, animations, etc. Another important
benefit is that the representation of web pages as DOM trees allows us to
easily carry out operations with DOM nodes, e.g., insert, delete, traverse,
search, etc. Besides, the representation of web pages as DOM trees is a
significant advantage for the implementation of block detection techniques
as browser extensions, because the extracted blocks are displayed on the
users’ browser keeping their format and style. However, not all block detec-
tion techniques internally represent web pages as their corresponding DOM
trees. In fact, researchers use three main different approaches to solve the
problem:

i. Using the textual information of the web page (i.e., the HTML code).
These techniques are based on the idea that the main content on a
web page has more density of text while it has fewer labels [38, 117,
62, 60].

301

ii. Using the rendered image of the web page in the browser. The main
idea of these techniques is that the main content of a web page is
typically located in the central part of the screen and it is often visible
without scrolling [22].

iii. Using the DOM tree of the web page. Most of the current block
detection techniques are based on the representation of the web pages
as DOM trees [19, 120, 114, 10]. As pointed out above, this approach
provides several benefits to the techniques.

Block detection techniques can be also classified depending on the num-
ber of web pages they can access:

• Page-level techniques. They only use the information contained on the
target web page. These techniques are usually faster than the site-
level block detection techniques. The menu detection technique de-
scribed in Chapter 5, and the content extraction technique described
in Chapter 6 are examples of page-level block detection techniques.

• Site-level techniques. They use the information contained on several
web pages (often from the same website). These techniques compare
the information extracted from the set of web pages in order to infer
the desired block. The template detection techniques in Chapters
9 and 11, and the content extraction technique in Chapter 10 are
examples of site-level block detection techniques.

On the one hand, the main advantage of page-level techniques against site-
level techniques is that page-level techniques are faster because they only
have to load and analyze one web page, whereas site-level techniques have
to load and analyze more web pages to extract the desired information. On
the other hand, site-level techniques are usually more accurate because they
can obtain more information due to the fact that they load and compare
several different web pages from the website.

In this thesis, we have developed some block detection techniques for
template detection, content extraction, and menu detection; with the aim
of producing usable implementations of them. We also compared these
techniques with several well-known techniques in the state-of-the-art. In
addition, we built a template detection workbench, and a set of benchmarks
to test and evaluate any technique. The main contributions of this thesis
have been summarized below:

302 Chapter 15. Conclusions

i. Block detection techniques.
Since the early 2000s, many block detection techniques have been
proposed. The main purposes of almost all the techniques have been
template detection and content extraction. Researchers have devel-
oped their techniques in many different ways. Some techniques have
been designed as page-level, others as site-level, some of them repre-
sent web pages as DOM trees, others are based on textual information,
etc. Our site-level block detection techniques (site-level template de-
tection in Chapter 9, and site-level content extraction in Chapter 10),
are based on two key ideas: the construction of a complete subdigraph
(CS), and the use of an equal top-down mapping of the DOM trees
for their comparison. The combination of these two key ideas is the
basis of both site-level block detection algorithms. Regarding our
page-level block detection techniques (page-level menu detection in
Chapter 5, and page-level content extraction in Chapter 6), despite
they are rather different, both techniques are based on the pondera-
tion of several properties related to the DOM nodes. In addition, our
hybrid template detection technique (see Chapter 11) was developed
by combining page-level content extraction with site-level template
detection techniques.

ii. Comparison of techniques.
The comparison of block detection techniques is an important issue,
not only to check how good are our techniques but also to help re-
searchers choose among several techniques. We reviewed the state-
of-the-art to find fair block detection technique comparisons. Un-
fortunately, for template detection, we did not find any valid com-
parison, and it was impossible to compare several techniques with
the results published by the authors. First, each technique was im-
plemented using a different technology which affects the efficiency.
Then, each author evaluated her technique using different evaluation
criteria, such as counting retrieved words [114, 113], characters [61],
DOM nodes [10], text blocks [101, 115], etc. In addition, not all
techniques used the same set of benchmarks. We decided to perform
a systematic review to select several template detection techniques
and, thus, implement the selected techniques from scratch. Once im-
plemented, we compared them with our site-level template detection
and hybrid template detection techniques. For content extraction we
found two interesting comparisons [106, 115], despite the compared
algorithms being only prepared for extracting text. Hence, we eval-

303

uated our page-level content extraction algorithm and compared it
to the algorithms evaluated in [106, 115] using the same benchmarks
and metrics.

iii. Benchmark suite.
When we tried to compare our block detection techniques with those
in the state-of-the-art, we found that, in most cases, it was not pos-
sible because using different sets of benchmarks to compare different
techniques is highly inaccurate. Regarding the template detection
techniques, we found in the literature, some of them used artificial
benchmarks [25], while others used real heterogeneous web pages [114,
10]. Similarly, some authors selected the input web pages randomly
[120, 116, 50], while others provided the input web pages manually
[114, 113]. Finally, regarding the block detection techniques, we found
authors that used well-known benchmark suites such as CleanEval
[20] benchmark suite [115, 99], MSS [85], L3S-GN1 [61], etc. How-
ever, most of these benchmark suites are more than 15 years old, and
we consider they have a lack of heterogeneity. To solve these prob-
lems, we built our TeCo suite of benchmarks (see Chapter 13). TeCo
is formed of 150 heterogeneous benchmarks and it is prepared for
several block detection disciplines, such as template detection, con-
tent extraction, and menu detection. TeCo is an important resource
for researchers to evaluate, test, and compare their block detection
techniques.

iv. Implementations.
We had to implement several template detection algorithms from
scratch. In order to compare them with our template detection tech-
niques, we developed a workbench for template detection. This work-
bench can integrate any template detection technique based on DOM.
Hence, it allows us to easily test, evaluate, and compare different
template detection techniques. In addition to the template detection
workbench, as stated in previous chapters, all the techniques devel-
oped in this thesis have been implemented as WebExtensions. More-
over, they have been published by Mozilla in their Firefox browser
add-ons website. These WebExtensions are completely integrated
into the user’s browser, so when the user presses the extension’s but-
ton, the algorithm extracts the corresponding block. It should be
noted that all these implementations are free and available for down-
load.

304 Chapter 15. Conclusions

As a result of this thesis, researchers can access several block detection
techniques in order to enhance their own techniques by reusing some of
our algorithms, definitions, metrics, or ideas. Moreover, a fair comparison
of both, template detection and content extraction techniques with several
important techniques in the state-of-the-art is provided. Researchers are
also able to test, evaluate, and compare their block detection techniques
using a heterogeneous set of benchmarks formed by 150 real websites. Fi-
nally, the implementation of all the developed techniques and the template
detection workbench are publicly available for download. More than 11 mil-
lion experiments were needed to train the algorithms, therefore we hired a
dedicated server in a data centre. The server was running Ubuntu Desk-
top, and was equipped with an 8-core Intel i9 9900k processor and 64 Gb
of DDR4 RAM. We executed 8 instances of the algorithms simultaneously
using 8 different web browsers. The computing time was approximately
227 days using an Intel i9 9900k.

Chapter 16

Open Lines of Research

There exist several aspects in which Block Detection can be improved. We
list some of them in the following points:

Techniques The Menu Detection technique shown in Chapter 5 assigns
a weight to each node depending on the value of some node prop-
erties. However, the distinction between two DOM nodes cannot be
computed by comparing the sum of their respective ratios because
different combinations produce the same value for the sum. This al-
gorithm can be enhanced with a mechanism to distinguish between
any combination of ratios, which can be achieved by using the Eu-
clidean Distance as in the Page-level Template Detection technique
described in Chapter 6. Concerning the equal top-down mapping used
by all the site-level block detection techniques in the thesis, the evalu-
ation of the position of two nodes represents almost all the runtime of
the mapping. Despite the Runtime improvement algorithm described
in sections 9.3 and 10.3 significantly reduces the runtime of the map-
ping with a minimum impact on the evaluation results, it is necessary
to develop a DOM tree transformation algorithm that does not af-
fect the evaluation results of the algorithm. Regarding the Template
Detection algorithms implemented from scratch (see Chapter 12), to
obtain the fairest and most reliable comparison possible, runtime op-
timization processes are necessary. TemEx (see Chapter 9) has been
optimized for years to obtain the lowest runtime possible. However,
to be fairly comparable with TemEx, the rest of the Template De-
tection algorithms should be also optimized. We are also working on
a page-level Template Detection algorithm based on the page-level
ConEx algorithm described in Chapter 6. As it is a page-level al-
gorithm, we expect that it will significantly reduce the runtime of
TemEx. Moreover, we plan to develop algorithms for other Block De-
tection disciplines, such as Comments Extraction and Advertisement

305

306 Chapter 16. Open Lines of Research

Detection. On the one hand, Comments Extraction techniques are
very valuable for webshops and manufacturers since they allow them
to collect information about their products from several websites. On
the other hand, Advertisement Detection techniques are interesting
for users when they surf the Internet as the advertisements are some-
times excessive.

Workbench The Template Detection Workbench presented in Section 12.2
implements several well-known Template Detection techniques. More-
over, the process to integrate another Template Detection technique
is easy because it provides several modules useful for Template De-
tection, such as Detection of Candidates, HTML to DOM, Evalua-
tion, and Toggle View. However, to provide more possibilities to
researchers, it must be updated adding the possibility of integrating
other Block Detection techniques, such as Content Extraction and
Menu Detection techniques.

Benchmark suite The TeCo Benchmark Suite described in Chapter 13
is formed by 150 heterogeneous benchmarks, and it is ready for Tem-
plate Detection, Content Extraction, and Menu Detection. The first
TeCo version (1.0) was formed of 30 benchmarks, while the current
version (5.0) is formed by 150 benchmarks. Moreover, the first TeCo
version was only prepared for Template Detection. For future ver-
sions, we plan to increase the number of benchmarks and to include
other Block Detection disciplines, e.g., Advertisement Detection and
Comments Extraction. In addition, TeCo Benchmark Suite should be
updated by removing the older websites and adding more up-to-date
ones. This will make TeCo more reliable since it will represent the
Web more accurately.

Implementations All the Block Detection techniques in the thesis have
been implemented as WebExtensions and are publicly available for
download. Moreover, they have been officially published by Mozilla
in their Firefox browser add-ons website. However, it would be in-
teresting to integrate all the techniques in a unique WebExtension.
The user just might have to choose the desired technique and press
the “Extract” button. Then, the extracted block would appear on
the browser’s screen and the rest of the web page would be hidden.
This integration would allow users to easily check different techniques
on the same website and compare the obtained results. Moreover, a
unique WebExtension is easier to maintain. Additionally, our future

307

WebExtensions will be based on Manifest v31. In fact, they are Man-
ifest v3 ready but, at the time of writing these lines, Mozilla does not
support it in Firefox.

1Manifest v3 is the new API developed by Google for Chromium-based browsers. It
establishes how WebExtensions interact with the browser.

Bibliography

[1] George Adam, Christos Bouras, and Vassilis Poulopoulos. “CUTER:
An Efficient Useful Text Extraction Mechanism”. In: 2009 Interna-
tional Conference on Advanced Information Networking and Appli-
cations Workshops. 2009, pp. 703–708. doi: 10.1109/WAINA.2009.
60.

[2] Julián Alarte, David Insa, and Josep Silva. “Page-Level Webpage
Menu Detection”. In: XVI Jornadas sobre Programación y Lenguajes
(PROLE 2016). 2016, pp. 134–147.

[3] Julián Alarte, David Insa, and Josep Silva. “Webpage Menu De-
tection Based on DOM”. In: SOFSEM 2017: Theory and Practice
of Computer Science - 43rd International Conference on Current
Trends in Theory and Practice of Computer Science, Limerick, Ire-
land, January 16-20, 2017, Proceedings. 2017, pp. 411–422. doi:
10.1007/978-3-319-51963-0_32.

[4] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Auto-
matic detection of webpages that share the same web template”. In:
Electronic Proceedings in Theoretical Computer Science 163 (2014),
pp. 2–15.

[5] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Auto-
matic Detection of Webpages that Share the Same Web Template”.
In: Proceedings of the 10th International Workshop on Automated
Specification and Verification of Web Systems (WWV 14). Ed. by
Maurice H. ter Beek and António Ravara. Vol. 163. Electronic Pro-
ceedings in Theoretical Computer Science. Vienna (Austria): Open
Publishing Association, 2014, pp. 2–15. doi: 10.4204/EPTCS.163.2.

[6] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Site-
Level Template Extraction Based on Hyperlink Analysis”. In: XIV

309

https://doi.org/10.1109/WAINA.2009.60
https://doi.org/10.1109/WAINA.2009.60
https://doi.org/10.1007/978-3-319-51963-0_32
https://doi.org/10.4204/EPTCS.163.2

310 Bibliography

Jornadas sobre Programación y Lenguajes (PROLE 2014). 2014,
pp. 23–35.

[7] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “A
Collection of Website Benchmarks Labelled for Template Detection
and Content Extraction”. In: XV Jornadas sobre Programación y
Lenguajes (PROLE 2015). 2015. doi: 11705/PROLE/2015/009.

[8] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “TeMex:
The Web Template Extractor”. In: Proceedings of the 24th Inter-
national Conference on World Wide Web. WWW ’15 Companion.
Florence, Italy: ACM, 2015, pp. 155–158. isbn: 978-1-4503-3473-0.
doi: 10.1145/2740908.2742835.

[9] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Web
template extraction based on hyperlink analysis”. In: Electronic Pro-
ceedings in Theoretical Computer Science 173 (2015), pp. 16–26.

[10] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Site-
Level Web Template Extraction Based on DOM Analysis”. In: Per-
spectives of System Informatics. Ed. by Manuel Mazzara and An-
drei Voronkov. PSI 2015. Cham: Springer International Publishing,
2016, pp. 36–49. isbn: 978-3-319-41579-6. doi: 10.1007/978-3-
319-41579-6_4.

[11] Julián Alarte and Josep Silva. “Page-Level Main Content Extraction
From Heterogeneous Webpages”. In: ACM Transactions on Knowl-
edge Discovery from Data 15.6 (2021). issn: 1556-4681. doi: 10.

1145/3451168.

[12] Julián Alarte and Josep Silva. “HybEx: A Hybrid Tool for Tem-
plate Extraction”. In: Companion Proceedings of the Web Confer-
ence 2022. WWW ’22. Virtual Event, Lyon, France: Association for
Computing Machinery, 2022, 205–209. isbn: 9781450391306. doi:
10.1145/3487553.3524242.

[13] Julián Alarte, Josep Silva, and Salvador Tamarit. “What Web Tem-
plate Extractor Should I Use? A Benchmarking and Comparison for
Five Template Extractors”. In: ACM Transactions on the Web 13.2
(Mar. 2019). issn: 1559-1131. doi: 10.1145/3316810.

[14] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Tem-
plate Extraction Based on Menu Information”. In: Proceedings of the
9th International Workshop on Automated Specification and Verifi-
cation of Web Systems (WWV 13). Ed. by Josep Silva and António

https://doi.org/11705/PROLE/2015/009
https://doi.org/10.1145/2740908.2742835
https://doi.org/10.1007/978-3-319-41579-6_4
https://doi.org/10.1007/978-3-319-41579-6_4
https://doi.org/10.1145/3451168
https://doi.org/10.1145/3451168
https://doi.org/10.1145/3487553.3524242
https://doi.org/10.1145/3316810

Bibliography 311

Ravara. Electronic Proceedings in Theoretical Computer Science.
Firenze (Italy): Open Publishing Association, 2013, pp. 71–80. doi:
10.4204/EPTCS.123.

[15] Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. “Main
Content Extraction from Heterogeneous Webpages”. In: Web Infor-
mation Systems Engineering – WISE 2018. Ed. by Hakim Hacid,
Wojciech Cellary, Hua Wang, Hye-Young Paik, and Rui Zhou. Cham:
Springer International Publishing, 2018, pp. 393–407. isbn: 978-3-
030-02922-7. doi: 10.1007/978-3-030-02922-7_27.

[16] Derar Alassi and Reda Alhajj. “Effectiveness of template detection
on noise reduction and websites summarization”. In: Information
Sciences 219 (2013), pp. 41 –72. issn: 0020-0255. doi: https://
doi.org/10.1016/j.ins.2012.07.022.

[17] Mohsen Asfia, Mir Mohsen Pedram, and Amir Masoud Rahmani.
“Main content extraction from detailed web pages”. In: International
Journal of Computer Applications 4.11 (2010), pp. 18–21. doi: 10.
5120/869-1219.

[18] Naseer Aslam, Bilal Tahir, Hafiz Muhammad Shafiq, and Muham-
mad Amir Mehmood. “Web-AM: An efficient boilerplate removal
algorithm for Web articles”. In: 2019 International Conference on
Frontiers of Information Technology (FIT). IEEE. 2019, pp. 287–
2875. doi: 10.1109/FIT47737.2019.00061.

[19] Ziv Bar-Yossef and Sridhar Rajagopalan. “Template detection via
data mining and its applications”. In: Proceedings of the 11th In-
ternational Conference on World Wide Web (WWW’02). Honolulu,
Hawaii, USA: ACM, 2002, pp. 580–591. isbn: 1-58113-449-5. doi:
10.1145/511446.511522.

[20] Marco Baroni, Francis Chantree, Adam Kilgarriff, and Serge Sharoff.
“Cleaneval: a Competition for Cleaning Web Pages”. In: Proceed-
ings of the International Conference on Language Resources and
Evaluation (LREC’08). Marrakech, Morocco: European Language
Resources Association, 2008, pp. 638–643.

[21] Jan Berg. Improve content extraction in web pages for browser reader
modes. English. Bachelor Thesis: University of Stuttgart, Institute
of Architecture of Application Systems. Bachelor Thesis. 2020. doi:
10.18419/opus-11033.

https://doi.org/10.4204/EPTCS.123
https://doi.org/10.1007/978-3-030-02922-7_27
https://doi.org/https://doi.org/10.1016/j.ins.2012.07.022
https://doi.org/https://doi.org/10.1016/j.ins.2012.07.022
https://doi.org/10.5120/869-1219
https://doi.org/10.5120/869-1219
https://doi.org/10.1109/FIT47737.2019.00061
https://doi.org/10.1145/511446.511522
https://doi.org/10.18419/opus-11033

312 Bibliography

[22] Radek Burget and Ivana Rudolfova. “Web Page Element Classifi-
cation Based on Visual Features”. In: Proceedings of the 1st Asian
Conference on Intelligent Information and Database Systems (ACI-
IDS’09). Washington, DC, USA: IEEE Computer Society, 2009,
pp. 67–72. isbn: 978-0-7695-3580-7. doi: 10.1109/ACIIDS.2009.71.

[23] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. “Extract-
ing Content Structure for Web Pages Based on Visual Represen-
tation”. In: Web Technologies and Applications. Ed. by Xiaofang
Zhou, Maria E. Orlowska, and Yanchun Zhang. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 406–417. isbn: 978-3-540-36901-
1. doi: 10.1007/3-540-36901-5_42.

[24] Eduardo Cardoso, Iam Jabour, Eduardo Laber, Rogério Rodrigues,
and Pedro Cardoso. “An Efficient Language-Independent Method to
Extract Content from News Webpages”. In: Proceedings of the 11th
ACM symposium on Document Engineering (DocEng’11). Mountain
View, California, USA: ACM, 2011, pp. 121–128. isbn: 978-1-4503-
0863-2. doi: 10.1145/2034691.2034720.

[25] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. “Page-level
Template Detection via Isotonic Smoothing”. In: Proceedings of the
16th International Conference on World Wide Web. WWW ’07.
Banff, Alberta, Canada: ACM, 2007, pp. 61–70. isbn: 978-1-59593-
654-7. doi: 10.1145/1242572.1242582.

[26] Soumen Chakrabarti. “Integrating the Document Object Model with
hyperlinks for enhanced topic distillation and information extrac-
tion”. In: Proceedings of the 10th International Conference on World
Wide Web (WWW’01). Hong Kong, Hong Kong: ACM, 2001, pp. 211–
220. isbn: 1-58113-348-0. doi: 10.1145/371920.372054.

[27] Liang Chen, Shaozhi Ye, and Xing Li. “Template Detection for Large
Scale Search Engines”. In: Proceedings of the 2006 ACM Sympo-
sium on Applied Computing. SAC ’06. Dijon, France: ACM, 2006,
pp. 1094–1098. isbn: 1-59593-108-2. doi: 10.1145/1141277.1141534.

[28] Yu Chen, Wei-Ying Ma, and Hong-Jiang Zhang. “Detecting Web
Page Structure for Adaptive Viewing on Small Form Factor De-
vices”. In: Proceedings of the 12th International Conference on World
Wide Web. WWW ’03. Budapest, Hungary: Association for Com-
puting Machinery, 2003, 225–233. isbn: 1581136803. doi: 10.1145/
775152.775184.

https://doi.org/10.1109/ACIIDS.2009.71
https://doi.org/10.1007/3-540-36901-5_42
https://doi.org/10.1145/2034691.2034720
https://doi.org/10.1145/1242572.1242582
https://doi.org/10.1145/371920.372054
https://doi.org/10.1145/1141277.1141534
https://doi.org/10.1145/775152.775184
https://doi.org/10.1145/775152.775184

Bibliography 313

[29] W3C Consortium. Document Object Model (DOM). Available from
URL: https://dom.spec.whatwg.org/. 2019.

[30] Sandip Debnath, Prasenjit Mitra, and C. Lee Giles. “Automatic Ex-
traction of Informative Blocks from Webpages”. In: Proceedings of
the 2005 ACM Symposium on Applied Computing. SAC ’05. Santa
Fe, New Mexico: Association for Computing Machinery, 2005, 1722–1726.
isbn: 1581139640. doi: 10.1145/1066677.1067065.

[31] Sandip Debnath, Prasenjit Mitra, and C. Lee Giles. “Identifying
Content Blocks from Web Documents”. In: Foundations of Intelli-
gent Systems. Ed. by Mohand-Said Hacid, Neil V. Murray, Zbig-
niew W. Raś, and Shusaku Tsumoto. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 285–293. isbn: 978-3-540-31949-8. doi:
10.1007/11425274_30.

[32] R. Deepa and D.R. Nirmala. “Noisy elimination for web mining
based on style tree approach”. In: International Journal of Engi-
neering Technology and Computer Research 3.2 (2015). issn: 2348
-2117. url: https://ijetcr.org/index.php/ijetcr/article/
view/126.

[33] Amit Dutta, Sudipta Paria, Tanmoy Golui, and Dipak K. Kole.
“Structural analysis and regular expressions based noise elimination
from web pages for web content mining”. In: 2014 International
Conference on Advances in Computing, Communications and In-
formatics (ICACCI). 2014, pp. 1445–1451. doi: 10.1109/ICACCI.
2014.6968377.

[34] Amit Dutta, Sudipta Paria, Tanmoy Golui, and Dipak Kumar Kole.
“Noise Elimination from Web Page Based on Regular Expressions
for Web Content Mining”. In: Advanced Computing, Networking and
Informatics- Volume 1. Ed. by Malay Kumar Kundu, Durga Prasad
Mohapatra, Amit Konar, and Aruna Chakraborty. Cham: Springer
International Publishing, 2014, pp. 545–554. isbn: 978-3-319-07353-
8. doi: 10.1007/978-3-319-07353-8_63.

[35] Hassan F. Eldirdiery and A.H. Ahmed. “Detecting and removing
noisy data on web document using text density approach”. In: In-
ternational Journal of Computer Applications 112.5 (2015). doi:
10.5120/19663-1328.

https://dom.spec.whatwg.org/
https://doi.org/10.1145/1066677.1067065
https://doi.org/10.1007/11425274_30
https://ijetcr.org/index.php/ijetcr/article/view/126
https://ijetcr.org/index.php/ijetcr/article/view/126
https://doi.org/10.1109/ICACCI.2014.6968377
https://doi.org/10.1109/ICACCI.2014.6968377
https://doi.org/10.1007/978-3-319-07353-8_63
https://doi.org/10.5120/19663-1328

314 Bibliography

[36] Stefan Evert. “A Lightweight and Efficient Tool for Cleaning Web
Pages”. In: Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08). Ed. by Nicoletta
Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, and Daniel Tapias. Marrakech,
Morocco: European Language Resources Association (ELRA), 2008.
isbn: 2-9517408-4-0. url: http://www.lrec-conf.org/proceedings/
lrec2008/summaries/885.html.

[37] Junlan Feng, Patrick Haffner, and Mazin Gilbert. “A learning ap-
proach to discovering Web page semantic structures”. In: Eighth In-
ternational Conference on Document Analysis and Recognition (IC-
DAR’05). 2005, 1055–1059 Vol. 2. doi: 10.1109/ICDAR.2005.19.

[38] Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernar-
dini. “Introducing and evaluating ukWaC, a very large web-derived
corpus of english”. In: Proceedings of the 4th Web as Corpus Work-
shop (WAC-4). 2008, pp. 47–54. url: https://www.researchgate.
net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_

2_a_linguistic_search_engine_for_RSS- based_corpora/

links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-

search-engine-for-RSS-based-corpora.pdf#page=53.

[39] Aidan Finn, Nicholas Kushmerick, and Barry Smyth. “Fact or Fic-
tion: Content Classification for Digital Libraries”. In: DELOS Work-
shop: Personalisation and Recommender Systems in Digital Libraries.
Dublin (Ireland), 2001, pp. 1–6. url: http://www.ercim.org/

publication/ws-proceedings/DelNoe02/AidanFinn.pdf.

[40] S. Ganeshmoorthy and R. Priya. “Eliminating the Web Noise by
Text Categorization and Optimization Algorithm”. In: 2021 Inter-
national Conference on Artificial Intelligence and Smart Systems
(ICAIS). 2021, pp. 586–593. doi: 10 . 1109 / ICAIS50930 . 2021 .

9396020.

[41] Bo Gao and Qifeng Fan. “Multiple Template Detection Based on
Segments”. In: Advances in Data Mining. Applications and Theo-
retical Aspects. Ed. by Petra Perner. Cham: Springer International
Publishing, 2014, pp. 24–38. isbn: 978-3-319-08976-8. doi: 10.1007/
978-3-319-08976-8_3.

[42] Albert Geitgey. “Unfluff - an automatic web page content extractor
for node.js!” In: GitHub repository (2014). url: https://github.
com/ageitgey/node-unfluff.

http://www.lrec-conf.org/proceedings/lrec2008/summaries/885.html
http://www.lrec-conf.org/proceedings/lrec2008/summaries/885.html
https://doi.org/10.1109/ICDAR.2005.19
https://www.researchgate.net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_2_a_linguistic_search_engine_for_RSS-based_corpora/links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-search-engine-for-RSS-based-corpora.pdf#page=53
https://www.researchgate.net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_2_a_linguistic_search_engine_for_RSS-based_corpora/links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-search-engine-for-RSS-based-corpora.pdf#page=53
https://www.researchgate.net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_2_a_linguistic_search_engine_for_RSS-based_corpora/links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-search-engine-for-RSS-based-corpora.pdf#page=53
https://www.researchgate.net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_2_a_linguistic_search_engine_for_RSS-based_corpora/links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-search-engine-for-RSS-based-corpora.pdf#page=53
https://www.researchgate.net/profile/Cedrick-Fairon/publication/200823227_GlossaNet_2_a_linguistic_search_engine_for_RSS-based_corpora/links/0fcfd50be620a1a614000000/GlossaNet-2-a-linguistic-search-engine-for-RSS-based-corpora.pdf#page=53
http://www.ercim.org/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
http://www.ercim.org/publication/ws-proceedings/DelNoe02/AidanFinn.pdf
https://doi.org/10.1109/ICAIS50930.2021.9396020
https://doi.org/10.1109/ICAIS50930.2021.9396020
https://doi.org/10.1007/978-3-319-08976-8_3
https://doi.org/10.1007/978-3-319-08976-8_3
https://github.com/ageitgey/node-unfluff
https://github.com/ageitgey/node-unfluff

Bibliography 315

[43] Filippo Geraci and Marco Maggini. “A multi-sequence alignment al-
gorithm for Web template detection”. In: KDIR 2011 - Proceedings
of the International Conference on Knowledge Discovery and Infor-
mation Retrieval (Jan. 2011), pp. 121–128. url: https://www.

scitepress.org/Papers/2011/37128/37128.pdf.

[44] David Gibson, Kunal Punera, and Andrew Tomkins. “The volume
and evolution of web page templates”. In: Proceedings of the 14th In-
ternational Conference on World Wide Web (WWW’05). Ed. by Al-
lan Ellis and Tatsuya Hagino. Chiba (Japan): ACM, 2005, pp. 830–
839. isbn: 1-59593-051-5. doi: 10.1145/1062745.1062763.

[45] Jibing Gong, Hekai Zhang, Weixia Du, Huanhuan Li, and Hong-
nian Wen. “VB-PTC: Visual Block Multi-Record Text Extraction
Based on Sensor Network Page Type Conversion”. In: IEEE Access
8 (2020), pp. 167900–167913. doi: 10.1109/ACCESS.2020.3024194.

[46] Thomas Gottron. “Content Code Blurring: A New Approach to Con-
tent Extraction”. In: 2008 19th International Workshop on Database
and Expert Systems Applications. 2008, pp. 29–33. doi: 10.1109/
DEXA.2008.43.

[47] Ilya Grigorik. Render-tree Construction, Layout, and Paint. Avail-
able from URL: https://web.dev/critical-rendering-path-
constructing-the-object-model/. 2018.

[48] Ilya Grigorik. Constructing the Object Model. Available from URL:
https://web.dev/critical-rendering-path-constructing-

the-object-model/. 2019.

[49] Gaurav Gupta and Indu Chhabra. “Optimized Template Detec-
tion and Extraction Algorithm for Web Scraping of Dynamic Web
Pages”. In: Global Journal of Pure and Applied Mathematics 13.2
(2017), pp. 719–732. issn: 0973-1768. url: https://www.ripublication.
com/gjpam17/gjpamv13n2_43.pdf.

[50] Kulkarni A. H. and Patil B. M. “Template Extraction from Hetero-
geneous Web Pages with Cosine Similarity”. In: International Jour-
nal of Computer Applications 87.3 (2014), pp. 4–8. issn: 0975-8887.
url: https://research.ijcaonline.org/volume87/number3/
pxc3893546.pdf.

https://www.scitepress.org/Papers/2011/37128/37128.pdf
https://www.scitepress.org/Papers/2011/37128/37128.pdf
https://doi.org/10.1145/1062745.1062763
https://doi.org/10.1109/ACCESS.2020.3024194
https://doi.org/10.1109/DEXA.2008.43
https://doi.org/10.1109/DEXA.2008.43
https://web.dev/critical-rendering-path-constructing-the-object-model/
https://web.dev/critical-rendering-path-constructing-the-object-model/
https://web.dev/critical-rendering-path-constructing-the-object-model/
https://web.dev/critical-rendering-path-constructing-the-object-model/
https://www.ripublication.com/gjpam17/gjpamv13n2_43.pdf
https://www.ripublication.com/gjpam17/gjpamv13n2_43.pdf
https://research.ijcaonline.org/volume87/number3/pxc3893546.pdf
https://research.ijcaonline.org/volume87/number3/pxc3893546.pdf

316 Bibliography

[51] David Insa, Josep Silva, and Salvador Tamarit. “Using the word-
s/leafs ratio in the DOM tree for content extraction”. In: The Jour-
nal of Logic and Algebraic Programming 82.8 (2013), pp. 311–325.
issn: 1567-8326. doi: 10.1016/j.jlap.2013.01.002.

[52] Geunseong Jung and Jaehyuk Cha. “A Webextension Based Frame-
work for the Assessment of Main Content Extraction Methods from
Web Pages”. In: Available at SSRN 4127824 (2022). url: https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=4127824.

[53] Geunseong Jung, Sungjae Han, Hansung Kim, Kwanguk Kim, and
Jaehyuk Cha. “Don’t read, just look: Main content extraction from
web pages using visual features”. In: arXiv preprint arXiv:2110.14164
(2021).

[54] Vidya Kadam and Prakash R. Devale. “A Methodology for Template
Extraction from Heterogeneous Web Pages”. In: Indian Journal of
Computer Science and Engineering (IJCSE) 3.3 (2012). issn: 0976-
5166. url: http://www.ijcse.com/docs/INDJCSE12- 03- 03-

101.pdf.

[55] Byeong Ho Kang and Yang Sok Kim. “Noise Elimination from the
Web Documents by Using URL Paths and Information Redundancy”.
In: Proceedings of the 2006 International Conference on Informa-
tion & Knowledge Engineering, IKE 2006, Las Vegas, Nevada, USA,
June 26-29, 2006. Ed. by Hamid R. Arabnia and Ray R. Hashemi.
CSREA Press, 2006, pp. 135–141. url: https://eprints.utas.
edu.au/723/.

[56] Jeremy Keith. DOM Scripting: Web Design with JavaScript and the
Document Object Model. friends of ED, 2005. isbn: 9781590595336.

[57] C. Kim and K. Shim. “TEXT: Automatic Template Extraction from
Heterogeneous Web Pages”. In: IEEE Transactions on Knowledge
and Data Engineering 23.4 (2011), pp. 612–626. issn: 1041-4347.
doi: 10.1109/TKDE.2010.140.

[58] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. Evidence-
Based Software Engineering and Systematic Reviews. Chapman &
Hall/CRC, 2015. isbn: 1482228653, 9781482228656.

[59] Aleksander Kocz and Wen-tau Yih. “Site-Independent Template-
Block Detection”. In: Knowledge Discovery in Databases: PKDD
2007. Ed. by Joost N. Kok, Jacek Koronacki, Ramon Lopez de
Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron.

https://doi.org/10.1016/j.jlap.2013.01.002
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4127824
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4127824
http://www.ijcse.com/docs/INDJCSE12-03-03-101.pdf
http://www.ijcse.com/docs/INDJCSE12-03-03-101.pdf
https://eprints.utas.edu.au/723/
https://eprints.utas.edu.au/723/
https://doi.org/10.1109/TKDE.2010.140

Bibliography 317

Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 152–163.
isbn: 978-3-540-74976-9. doi: 10.1007/978-3-540-74976-9_17.

[60] Christian Kohlschütter. “A densitometric analysis of web template
content”. In: Proceedings of the 18th International Conference on
World Wide Web (WWW’09). Ed. by Juan Quemada, Gonzalo León,
Yoëlle S. Maarek, and Wolfgang Nejdl. Madrid (Spain): ACM, 2009,
pp. 1165–1166. isbn: 978-1-60558-487-4. doi: 10.1145/1526709.
1526909.

[61] Christian Kohlschütter, Peter Fankhauser, and Wolfgang Nejdl. “Boil-
erplate detection using shallow text features”. In: Proceedings of the
3th International Conference on Web Search and Web Data Mining
(WSDM’10). Ed. by Brian D. Davison, Torsten Suel, Nick Craswell,
and Bing Liu. New York (New York / USA): ACM, 2010, pp. 441–
450. isbn: 978-1-60558-889-6. doi: 10.1145/1718487.1718542.

[62] Christian Kohlschütter and Wolfgang Nejdl. “A densitometric ap-
proach to web page segmentation”. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management (CIKM’08).
Ed. by James G. Shanahan, Sihem Amer-Yahia, Ioana Manolescu,
Yi Zhang, David A. Evans, Aleksander Kolcz, Key-Sun Choi, and
Abdur Chowdhury. Napa Valley (California / USA): ACM, 2008,
pp. 1173–1182. isbn: 978-1-59593-991-3. doi: 10.1145/1458082.
1458237.

[63] Christian Kohlschütter et al. “Boilerpipe–boilerplate removal and
fulltext extraction from HTML pages”. In: GitHub repository (2010).
url: https://github.com/kohlschutter/boilerpipe.

[64] Anurendra Kumar, Keval Morabia, William Wang, Kevin Chang,
and Alex Schwing. “CoVA: Context-aware Visual Attention for Web-
page Information Extraction”. In: Proceedings of the Fifth Work-
shop on e-Commerce and NLP (ECNLP 5). Dublin, Ireland: Asso-
ciation for Computational Linguistics, May 2022, pp. 80–90. doi:
10.18653/v1/2022.ecnlp-1.11.

[65] Xiao Yan Le. “A Web text de-noising algorithm based on machine
learning”. In: Applied Mechanics and Materials. Vol. 536. Trans Tech
Publications. 2014, pp. 516–519.

[66] Jurek Leonhardt, Avishek Anand, and Megha Khosla. “Boilerplate
Removal Using a Neural Sequence Labeling Model”. In: New York,
NY, USA: Association for Computing Machinery, 2020, 226–229.
isbn: 9781450370240. doi: 10.1145/3366424.3383547.

https://doi.org/10.1007/978-3-540-74976-9_17
https://doi.org/10.1145/1526709.1526909
https://doi.org/10.1145/1526709.1526909
https://doi.org/10.1145/1718487.1718542
https://doi.org/10.1145/1458082.1458237
https://doi.org/10.1145/1458082.1458237
https://github.com/kohlschutter/boilerpipe
https://doi.org/10.18653/v1/2022.ecnlp-1.11
https://doi.org/10.1145/3366424.3383547

318 Bibliography

[67] Jing Li and C. I. Ezeife. “Cleaning Web Pages for Effective Web Con-
tent Mining”. In: Database and Expert Systems Applications. Ed. by
Stéphane Bressan, Josef Küng, and Roland Wagner. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 560–571. isbn: 978-3-
540-37872-3. doi: 10.1007/11827405_55.

[68] Xiaoyan Li, Mengming Li, Rongfeng Zheng, Anmin Zhou, and Liang
Liu. “NBCE: A Neo4j-Based Content Extraction Algorithm in Threat
Intelligence Web Pages”. In: 2020 International Conference on Com-
puter, Network, Communication and Information Systems (CNCI
2020). 2020. isbn: 978-1-989348-56-7. doi: 10.23977/CNCI2020040.

[69] Zhao Li, Wee Keong Ng, and Aixin Sun. “Web data extraction based
on structural similarity”. In: Knowledge and Information Systems
8.4 (2005), pp. 438–461. issn: 0219-3116. doi: 10.1007/s10115-
004-0188-z.

[70] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and
Usage Data (Data-Centric Systems and Applications). Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2006. isbn: 3540378812.

[71] Jiaying Liu, Xiangjie Kong, Xinyu Zhou, Lei Wang, Da Zhang, Ivan
Lee, Bo Xu, and Feng Xia. “Data Mining and Information Retrieval
in the 21st century: A bibliographic review”. In: Computer Science
Review 34 (2019), p. 100193. issn: 1574-0137. doi: 10.1016/j.

cosrev.2019.100193.

[72] Lawrence Lo, Vincent To-yee Ng, Patrick Ng, and Stephen Cf Chan.
“Automatic Template Detection for Structured Web Pages”. In:
2006 10th International Conference on Computer Supported Coop-
erative Work in Design. 2006, pp. 1–6. doi: 10.1109/CSCWD.2006.
253257.

[73] Ling Ma, Nazli Goharian, Abdur Chowdhury, and Misun Chung.
“Extracting Unstructured Data from Template Generated Web Doc-
uments”. In: Proceedings of the Twelfth International Conference
on Information and Knowledge Management. CIKM ’03. New Or-
leans, LA, USA: ACM, 2003, pp. 512–515. isbn: 1-58113-723-0. doi:
10.1145/956863.956961.

[74] Trupti B. Mane and Girish P. Potdar. “Template extraction from
heterogeneous Web pages”. In: International Journal of Advanced
Computer Research 2.4 (2012), p. 197. issn: 2277-7970. url: https:
/ / www . accentsjournals . org / PaperDirectory / Conference /

ICETT-2012/35.pdf.

https://doi.org/10.1007/11827405_55
https://doi.org/10.23977/CNCI2020040
https://doi.org/10.1007/s10115-004-0188-z
https://doi.org/10.1007/s10115-004-0188-z
https://doi.org/10.1016/j.cosrev.2019.100193
https://doi.org/10.1016/j.cosrev.2019.100193
https://doi.org/10.1109/CSCWD.2006.253257
https://doi.org/10.1109/CSCWD.2006.253257
https://doi.org/10.1145/956863.956961
https://www.accentsjournals.org/PaperDirectory/Conference/ICETT-2012/35.pdf
https://www.accentsjournals.org/PaperDirectory/Conference/ICETT-2012/35.pdf
https://www.accentsjournals.org/PaperDirectory/Conference/ICETT-2012/35.pdf

Bibliography 319

[75] R. Manjula and A. Chilambuchelvan. “Extracting templates from
Web pages”. In: 2013 International Conference on Green Comput-
ing, Communication and Conservation of Energy (ICGCE). 2013,
pp. 788–791. doi: 10.1109/ICGCE.2013.6823541.

[76] Constantine Mantratzis, Mehmet Orgun, and Steve Cassidy. “Sepa-
rating XHTML Content from Navigation Clutter Using DOM-Structure
Block Analysis”. In: Proceedings of the Sixteenth ACM Conference
on Hypertext and Hypermedia. HYPERTEXT ’05. Salzburg, Aus-
tria: Association for Computing Machinery, 2005, 145–147. isbn:
1595931686. doi: 10.1145/1083356.1083384.

[77] Michal Marek, Pavel Pecina, and Miroslav Spousta. “Web page
cleaning with conditional random fields”. In: Building and Exploring
Web Corpora: Proceedings of the Fifth Web as Corpus Workshop, In-
corporationg CleanEval (WAC3), Belgium. 2007, pp. 155–162. url:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=

pdf&doi=91454cc9f2833f9bc4957a001441b69c99fe5d10.

[78] Sangita S. Modi and Sudhir B. Jagtap. “Multimodal Web Content
Mining to Filter Non-learning Sites Using NLP”. In: Proceeding of
the International Conference on Computer Networks, Big Data and
IoT (ICCBI - 2018). Ed. by A.Pasumpon Pandian, Tomonobu Sen-
jyu, Syed Mohammed Shamsul Islam, and Haoxiang Wang. Cham:
Springer International Publishing, 2020, pp. 23–30. isbn: 978-3-030-
24643-3. doi: 10.1007/978-3-030-24643-3_3.

[79] Mahdi Mohammadi, Mohammad Javad Shayegan, and Nima Latifi.
“Web Content Extraction by Weighing the Fundamental Contextual
Rules”. In: 2021 7th International Conference on Signal Processing
and Intelligent Systems (ICSPIS). 2021, pp. 01–08. doi: 10.1109/
ICSPIS54653.2021.9729342.

[80] Nang Kham Line Moong. “Constructing and Implementing a New
DOM-based Content Extraction Algorithm”. PhD thesis. MERAL
Portal, 2009.

[81] Stanislas Morbieu, Guillaume Bruneval, Mohamed Lacarne, Mo-
hamed Kone, and François-Xavier Bois. “Main Content Extraction
from Web Pages”. In: 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA). 2020, pp. 1002–1005.
doi: 10.1109/ICMLA51294.2020.00162.

https://doi.org/10.1109/ICGCE.2013.6823541
https://doi.org/10.1145/1083356.1083384
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=91454cc9f2833f9bc4957a001441b69c99fe5d10
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=91454cc9f2833f9bc4957a001441b69c99fe5d10
https://doi.org/10.1007/978-3-030-24643-3_3
https://doi.org/10.1109/ICSPIS54653.2021.9729342
https://doi.org/10.1109/ICSPIS54653.2021.9729342
https://doi.org/10.1109/ICMLA51294.2020.00162

320 Bibliography

[82] Ranjani Murali. “An intelligent web spider for online e-commerce
data extraction”. In: 2018 Second International Conference on Green
Computing and Internet of Things (ICGCIoT). 2018, pp. 332–339.
doi: 10.1109/ICGCIoT.2018.8753071.

[83] Dat Quoc Nguyen, Dai Quoc Nguyen, Son Bao Pham, and The Duy
Bui. “A Fast Template-Based Approach to Automatically Identify
Primary Text Content of a Web Page”. In: Proceedings of the 2009
International Conference on Knowledge and Systems Engineering.
KSE 2009. IEEE Computer Society, 2009, pp. 232–236. doi: 10.
1109/KSE.2009.39.

[84] Alpa K Oza and Shailendra Mishra. “Elimination of noisy informa-
tion from web pages”. In: International Journal of Recent Technol-
ogy and Engineering 2.1 (2013), pp. 115–117. issn: 2277-3878. url:
https://citeseerx.ist.psu.edu/document?repid=rep1&type=

pdf&doi=be66ef066f05ef213f01487129e40d79076e0684.

[85] Jeff Pasternack and Dan Roth. “Extracting Article Text from the
Web with Maximum Subsequence Segmentation”. In: Proceedings of
the 18th International Conference on World Wide Web. WWW ’09.
Madrid, Spain: ACM, 2009, pp. 971–980. isbn: 978-1-60558-487-4.
doi: 10.1145/1526709.1526840. url: https://doi.acm.org/10.
1145/1526709.1526840.

[86] Jeff Pasternack and Dan Roth. “Extracting Article Text from the
Web with Maximum Subsequence Segmentation”. In: Proceedings
of the 18th International Conference on World Wide Web. WWW
’09. Madrid, Spain: Association for Computing Machinery, 2009,
971–980. isbn: 9781605584874. doi: 10.1145/1526709.1526840.

[87] Gregory Piatetsky-Shapiro and William Frawley, eds. Knowledge
discovery in databases. en. AAAI Press. London, England: MIT
Press, Dec. 1991.

[88] David Pinto, Michael Branstein, Ryan Coleman, W. Bruce Croft,
Matthew King, Wei Li, and Xing Wei. “QuASM: A System for Ques-
tion Answering Using Semi-Structured Data”. In: Proceedings of the
2nd ACM/IEEE-CS Joint Conference on Digital Libraries. JCDL
’02. Portland, Oregon, USA: Association for Computing Machinery,
2002, 46–55. isbn: 1581135130. doi: 10.1145/544220.544228.

https://doi.org/10.1109/ICGCIoT.2018.8753071
https://doi.org/10.1109/KSE.2009.39
https://doi.org/10.1109/KSE.2009.39
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=be66ef066f05ef213f01487129e40d79076e0684
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=be66ef066f05ef213f01487129e40d79076e0684
https://doi.org/10.1145/1526709.1526840
https://doi.acm.org/10.1145/1526709.1526840
https://doi.acm.org/10.1145/1526709.1526840
https://doi.org/10.1145/1526709.1526840
https://doi.org/10.1145/544220.544228

Bibliography 321

[89] Manjunath Pujar and Monica R Mundada. “A Systematic Review
Web Content Mining Tools and its Applications”. In: International
Journal of Advanced Computer Science and Applications 12.8 (2021).
url: https://www.academia.edu/download/69949991/Paper_
86-A_Systematic_Review_Web_Content_Mining_Tools.pdf.

[90] Gusti Lanang Putra Eka Prismana. “Automatic Web News Content
Extraction”. In: Journal Research of Social, Science, Economics,
and Management 1.7 (2022), 785–794. doi: 10 . 36418 / jrssem .

v1i7.107.

[91] Xin Qi and JianPeng Sun. “Eliminating Noisy Information in Web-
page through Heuristic Rules”. In: 2011 International Conference
on Computer Science and Information Technology. 2011.

[92] Pir Abdul Rasool Qureshi and Nasrullah Memon. “Hybrid Model of
Content Extraction”. In: Journal of Computer and System Sciences
78.4 (July 2012), pp. 1248–1257. issn: 0022-0000. doi: 10.1016/j.
jcss.2011.10.012.

[93] Neeraj Raheja and VK Katiyar. “A Noise Reduction Approach based
on NX 1 Table and XSL Display Method for Efficient Web Data Ex-
traction”. In: International Journal of Computer Applications 64.11
(2013). doi: 10.5120/10677-5552.

[94] Davi de Castro Reis, Paulo Braz Golgher, Altigran Soares Silva,
and Alberto Henrique Frade Laender. “Automatic web news extrac-
tion using tree edit distance”. In: Proceedings of the 13th Interna-
tional Conference on World Wide Web (WWW’04). New York, NY,
USA: ACM, 2004, pp. 502–511. isbn: 1-58113-844-X. doi: 10.1145/
988672.988740.

[95] Tom Rowlands, Paul Thomas, and Stephen Wan. “Web indexing
on a diet: Template removal with the sandwich algorithm”. In: Pro-
ceedings of the 14th Australasian Document Computing Symposium.
Sydney, Australia, 2009. url: http://es.csiro.au/adcs2009/
proceedings/poster-presentation/06-rowlands.pdf.

[96] Lassri Safae, Benlahmar El Habib, and Tragha Abderrahim. “A Re-
view of Machine Learning Algorithms for Web Page Classification”.
In: 2018 IEEE 5th International Congress on Information Science
and Technology (CiSt). 2018, pp. 220–226. doi: 10.1109/CIST.

2018.8596420.

https://www.academia.edu/download/69949991/Paper_86-A_Systematic_Review_Web_Content_Mining_Tools.pdf
https://www.academia.edu/download/69949991/Paper_86-A_Systematic_Review_Web_Content_Mining_Tools.pdf
https://doi.org/10.36418/jrssem.v1i7.107
https://doi.org/10.36418/jrssem.v1i7.107
https://doi.org/10.1016/j.jcss.2011.10.012
https://doi.org/10.1016/j.jcss.2011.10.012
https://doi.org/10.5120/10677-5552
https://doi.org/10.1145/988672.988740
https://doi.org/10.1145/988672.988740
http://es.csiro.au/adcs2009/proceedings/poster-presentation/06-rowlands.pdf
http://es.csiro.au/adcs2009/proceedings/poster-presentation/06-rowlands.pdf
https://doi.org/10.1109/CIST.2018.8596420
https://doi.org/10.1109/CIST.2018.8596420

322 Bibliography

[97] Gerard Salton and Donna Harman. “Information Retrieval”. In: En-
cyclopedia of Computer Science. GBR: John Wiley and Sons Ltd.,
2003, 858–863. isbn: 0470864125.

[98] Makinde Opeyemi Samuel, Afolabi Ibukun Tolulope, and Oladipupo
Olufunke Oyejoke. “A Systematic Review of Current Trends in Web
Content Mining”. In: Journal of Physics: Conference Series 1299.1
(2019), p. 012040. doi: 10.1088/1742-6596/1299/1/012040.

[99] Pan Ei San. “Boilerplate Removal and Content Extraction from
Dynamic Web Pages”. In: International Journal of Computer Sci-
ence, Engineering and Applications 4.6 (2014), p. 27. url: https:
//meral.edu.mm/record/4270/files/Boilerplate%20removal%

20and%20content%20extraction(ijren).pdf.

[100] A Saravanan and S Sathya Bama. “Extraction of Core Web Content
from Web Pages using Noise Elimination”. In: Journal of Engineer-
ing Science & Technology Review 13.4 (2020). url: http://www.
jestr . org / downloads / Volume13Issue4 / fulltext171342020 .

pdf.

[101] Roland Schäfer. “Accurate and efficient general-purpose boilerplate
detection for crawled web corpora”. In: Language Resources and
Evaluation 51.3 (2017), pp. 873–889. issn: 1574-0218. doi: 10.1007/
s10579-016-9359-2.

[102] Dipali Shete, Sachin Bojewar, and Ankit Sanghvi. “Survey Paper
on Web Content Extraction & Classification”. In: 2021 6th Inter-
national Conference for Convergence in Technology (I2CT). 2021,
pp. 1–6. doi: 10.1109/I2CT51068.2021.9417947.

[103] P. Sivakumar. “Effectual Web Content Mining using Noise Removal
from Web Pages”. In: Wireless Personal Communications 84.1 (2015),
pp. 99–121. issn: 1572-834X. doi: 10.1007/s11277-015-2596-7.

[104] Dandan Song, Fei Sun, and Lejian Liao. “A hybrid approach for
content extraction with text density and visual importance of DOM
nodes”. In: Knowledge and Information Systems 42.1 (2015), pp. 75–
96. issn: 0219-3116. doi: 10.1007/s10115-013-0687-x.

[105] Miroslav Spousta, Michal Marek, and Pavel Pecina. “Victor: the
web-page cleaning tool”. In: 4th Web as Corpus Workshop (WAC-
4)-Can we beat Google. 2008, pp. 12–17. url: https://www.academia.
edu/download/1435992/57hiyya85c1m7631.pdf#page=18.

https://doi.org/10.1088/1742-6596/1299/1/012040
https://meral.edu.mm/record/4270/files/Boilerplate%20removal%20and%20content%20extraction(ijren).pdf
https://meral.edu.mm/record/4270/files/Boilerplate%20removal%20and%20content%20extraction(ijren).pdf
https://meral.edu.mm/record/4270/files/Boilerplate%20removal%20and%20content%20extraction(ijren).pdf
http://www.jestr.org/downloads/Volume13Issue4/fulltext171342020.pdf
http://www.jestr.org/downloads/Volume13Issue4/fulltext171342020.pdf
http://www.jestr.org/downloads/Volume13Issue4/fulltext171342020.pdf
https://doi.org/10.1007/s10579-016-9359-2
https://doi.org/10.1007/s10579-016-9359-2
https://doi.org/10.1109/I2CT51068.2021.9417947
https://doi.org/10.1007/s11277-015-2596-7
https://doi.org/10.1007/s10115-013-0687-x
https://www.academia.edu/download/1435992/57hiyya85c1m7631.pdf#page=18
https://www.academia.edu/download/1435992/57hiyya85c1m7631.pdf#page=18

Bibliography 323

[106] Fei Sun, Dandan Song, and Lejian Liao. “DOM Based Content Ex-
traction via Text Density”. In: Proceedings of the 34th International
ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval. SIGIR ’11. Beijing, China: ACM, 2011, pp. 245–254.
isbn: 978-1-4503-0757-4. doi: 10.1145/2009916.2009952.

[107] Karthikeyan T, Sekaran K, Ranjith D, Vinoth kumar V, and Bala-
jee J.M. “Personalized Content Extraction and Text Classification
Using Effective Web Scraping Techniques”. In: International Jour-
nal of Web Portals 11.2 (2019), pp. 41 –52. issn: 1938-0194. doi:
10.4018/IJWP.2019070103.

[108] Rashmi D Thakare and Manisha R Patil. “Extraction of Template
using Clustering from Heterogeneous Web Documents”. In: Inter-
national Journal of Computer Applications 119.11 (2015). doi: 10.
5120/21112-3906.

[109] R. Uma and B. Latha. “Noise elimination from web pages for effi-
cacious information retrieval”. In: Cluster Computing (2018). issn:
1573-7543. doi: 10.1007/s10586-018-2366-x.

[110] Nichita Utiu and Vlad-Sebastian Ionescu. “Learning Web Content
Extraction with DOM Features”. In: 2018 IEEE 14th International
Conference on Intelligent Computer Communication and Processing
(ICCP). 2018, pp. 5–11. doi: 10.1109/ICCP.2018.8516632.

[111] Erdinç Uzun, Hayri Volkan Agun, and Tarik Yerlikaya. “A hybrid
approach for extracting informative content from web pages”. In:
Information Processing and Management 49.4 (2013), pp. 928 –944.
issn: 0306-4573. doi: 10.1016/j.ipm.2013.02.005.

[112] Roberto Panerai Velloso and Carina F. Dorneles. “Web Page Struc-
tured Content Detection Using Supervised Machine Learning”. In:
Web Engineering. Ed. by Maxim Bakaev, Flavius Frasincar, and In-
Young Ko. Cham: Springer International Publishing, 2019, pp. 3–18.
isbn: 978-3-030-19274-7. doi: 10.1007/978-3-030-19274-7_1.

[113] Karane Vieira, André Luiz da Costa Carvalho, Klessius Berlt, Edleno
S. de Moura, Altigran S. da Silva, and Juliana Freire. “On Finding
Templates on Web Collections”. In: World Wide Web 12.2 (2009),
pp. 171–211. issn: 1386-145X. doi: 10.1007/s11280-009-0059-3.

https://doi.org/10.1145/2009916.2009952
https://doi.org/10.4018/IJWP.2019070103
https://doi.org/10.5120/21112-3906
https://doi.org/10.5120/21112-3906
https://doi.org/10.1007/s10586-018-2366-x
https://doi.org/10.1109/ICCP.2018.8516632
https://doi.org/10.1016/j.ipm.2013.02.005
https://doi.org/10.1007/978-3-030-19274-7_1
https://doi.org/10.1007/s11280-009-0059-3

324 Bibliography

[114] Karane Vieira, Altigran S. da Silva, Nick Pinto, Edleno S. de Moura,
João M. B. Cavalcanti, and Juliana Freire. “A fast and robust method
for web page template detection and removal”. In: Proceedings of the
15th ACM International Conference on Information and Knowledge
Management (CIKM’06). Arlington, Virginia, USA: ACM, 2006,
pp. 258–267. isbn: 1-59593-433-2. doi: 10.1145/1183614.1183654.

[115] Thijs Vogels, Octavian-Eugen Ganea, and Carsten Eickhoff. “Web2Text:
Deep Structured Boilerplate Removal”. In: Advances in Information
Retrieval. Ed. by Gabriella Pasi, Benjamin Piwowarski, Leif Az-
zopardi, and Allan Hanbury. Cham: Springer International Publish-
ing, 2018, pp. 167–179. isbn: 978-3-319-76941-7. doi: 10.1007/978-
3-319-76941-7_13.

[116] Yu Wang, Bingxing Fang, Xueqi Cheng, Li Guo, and Hongbo Xu.
“Incremental Web Page Template Detection”. In: Proceedings of the
17th International Conference on World Wide Web (WWW ’08).
Beijing, China: ACM, 2008, pp. 1247–1248. isbn: 978-1-60558-085-
2. doi: 10.1145/1367497.1367749.

[117] Tim Weninger, William Henry Hsu, and Jiawei Han. “CETR: Con-
tent Extraction via Tag Ratios”. In: Proceedings of the 19th Interna-
tional Conference on World Wide Web (WWW’10). Ed. by Michael
Rappa, Paul Jones, Juliana Freire, and Soumen Chakrabarti. Raleigh
(North Carolina / USA): ACM, 2010, pp. 971–980. isbn: 978-1-
60558-799-8. doi: 10.1145/1772690.1772789.

[118] Shanchan Wu, Jerry Liu, and Jian Fan. “Automatic Web Content
Extraction by Combination of Learning and Grouping”. In: Pro-
ceedings of the 24th International Conference on World Wide Web.
WWW ’15. Florence, Italy: International World Wide Web Confer-
ences Steering Committee, 2015, pp. 1264–1274. isbn: 978-1-4503-
3469-3. doi: 10.1145/2736277.2741659.

[119] Jiang-Ming Yang, Rui Cai, Yida Wang, Jun Zhu, Lei Zhang, and
Wei-Ying Ma. “Incorporating Site-Level Knowledge to Extract Struc-
tured Data from Web Forums”. In: Proceedings of the 18th In-
ternational Conference on World Wide Web. WWW ’09. Madrid,
Spain: Association for Computing Machinery, 2009, 181–190. isbn:
9781605584874. doi: 10.1145/1526709.1526735.

[120] Lan Yi, Bing Liu, and Xiaoli Li. “Eliminating noisy information
in Web pages for data mining”. In: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data

https://doi.org/10.1145/1183614.1183654
https://doi.org/10.1007/978-3-319-76941-7_13
https://doi.org/10.1007/978-3-319-76941-7_13
https://doi.org/10.1145/1367497.1367749
https://doi.org/10.1145/1772690.1772789
https://doi.org/10.1145/2736277.2741659
https://doi.org/10.1145/1526709.1526735

Bibliography 325

mining (KDD’03). Washington, D.C.: ACM, 2003, pp. 296–305. isbn:
1-58113-737-0. doi: 10.1145/956750.956785.

[121] Bowen Yu, Junping Du, and Yingxia Shao. Web Page Content Ex-
traction Based on Multi-feature Fusion. 2022. doi: 10.48550/ARXIV.
2203.12591.

[122] Xin Yu and Zhengping Jin. “Web content information extraction
based on DOM tree and statistical information”. In: 2017 IEEE 17th
International Conference on Communication Technology (ICCT).
2017, pp. 1308–1311. doi: 10.1109/ICCT.2017.8359846.

[123] Hao Zhang and Jie Wang. “Boilerplate Detection via Semantic Clas-
sification of TextBlocks”. In: 2021 International Joint Conference on
Neural Networks (IJCNN). 2021, pp. 1–8. doi: 10.1109/IJCNN52387.
2021.9534308.

[124] Shengnan Zhang, Jiawei Wu, and Kun Yang. “A Webpage Segmen-
tation Method Based on Node Information Entropy of DOM Tree”.
In: Journal of Physics: Conference Series 1624.3 (2020), p. 032023.
doi: 10.1088/1742-6596/1624/3/032023.

[125] Chenxu Zhao, Rui Zhang, and Jianzhong Qi. “Web Page Template
and Data Separation for Better Maintainability”. In: Web Informa-
tion Systems Engineering – WISE 2018. Ed. by Hakim Hacid, Wo-
jciech Cellary, Hua Wang, Hye-Young Paik, and Rui Zhou. Cham:
Springer International Publishing, 2018, pp. 439–449. isbn: 978-3-
030-02922-7. doi: 10.1007/978-3-030-02922-7_30.

https://doi.org/10.1145/956750.956785
https://doi.org/10.48550/ARXIV.2203.12591
https://doi.org/10.48550/ARXIV.2203.12591
https://doi.org/10.1109/ICCT.2017.8359846
https://doi.org/10.1109/IJCNN52387.2021.9534308
https://doi.org/10.1109/IJCNN52387.2021.9534308
https://doi.org/10.1088/1742-6596/1624/3/032023
https://doi.org/10.1007/978-3-030-02922-7_30

Appendices

327

Appendix A

Glossary of Acronyms

AC (Assessment Criteria): Criteria used to check the quality of a paper
based on several quality assessment questions.

ACM (Association for Computing Machinery): A global scientific and
educational organization which aims to advance the art, engineering,
science, and application of computing, serving public and professional
interests (definition extracted from the official website).

API (Application Programming Interface): A way to enable two or
more software components to communicate with each other using a
set of predefined definitions and protocols (definition extracted from
Amazon AWS).

CMS (Content Management System): An application that allows us
to manage the creation, update, and publication of digital content
(definition extracted from Wikipedia).

CRP (Critical Rendering Path): The step sequence performed by the
browser to convert the HTML code, CSS code, and JavaScript into a
rendered image of the web page on the screen.

CS (Complete Subdigraph): A set of nodes for which all the nodes are
connected to each other.

CSS (Cascade Style Sheet): The language used to provide style to an
HTML document. It describes how to display the HTML elements.

CSSOM (Cascade Style Sheet Object Model): A set of APIs for the
manipulation of CSS. It is similar to the DOM, but for the CSS rather
than the HTML (definition extracted from Mozilla).

DDR (Double Data Rate): A form of computer memory that uses a
computer bus operating with a double data rate, which transfers data

329

330 Appendix A. Glossary of Acronyms

on both, the rising and falling edges of the clock signal (definition
extracted from Wikipedia).

DHTML (Dynamic HyperText Markup Language): A term that de-
scribes the combination of HTML, style sheets and client-side scripts
(VBScript, JavaScript, etc.) to enable the development of interactive
and animated documents (definition extracted from Wikipedia).

DOM (Document Object Model): A programming API for XML and
HTML documents. It defines the documents with a tree structure
whose nodes are objects representing a part of the document (defini-
tion extracted from Wikipedia).

EC (Exclusion Criteria): Criteria used to exclude a paper from the se-
lection results of a systematic review.

ETDM (Equal Top-Down Mapping): A mapping between two DOM
trees that is used in several site-level block detection techniques.

GGS (GII-GRIN-SCIE): A committee formed by GII (Group of Italian
Professors of Computer Engineering), GRIN (Group of Italian Pro-
fessors of Computer Science), and SCIE (Spanish Computer-Science
Society). They publish the GGS Conference Rating.

GUI (Graphical User Interface): A kind of user interface that allows
users to interact with a program using graphical icons and visual
indicators (definition extracted from Wikipedia).

HTML (HyperText Markup Language): The standard markup lan-
guage to produce documents designed to be opened in a web browser.
Hence, it defines the meaning and structure of web content (definition
extracted from Wikipedia).

HTTP (HyperText Transmission Protocol): An application layer pro-
tocol that allows information transfer through the World Wide Web
(definition extracted from Wikipedia).

IC (Inclusion Criteria): Criteria used to include a paper into the selec-
tion results of a systematic review.

IEEE (Institute of Electrical and Electronics Engineers): An orga-
nization dedicated to advancing technology for the benefit of human-
ity (definition extracted from the official website).

331

JS (JavaScript): A programming language which, combined with HTML
and CSS, forms the core technologies of the World Wide Web (defi-
nition extracted from Wikipedia).

JSON (JavaScript Object Notation): An open standard format for
both, files and data interchange, that is based on human-readable
text and consists of attribute-value pairs and arrays (definition ex-
tracted from Wikipedia).

KDD (Knowledge Discovery in Databases): A subfield of Machine
Learning related to discovering information from large amounts of
possible uncertain data.

LCS (Longest Common Subsequence): The longest subsequence which
is common to all sequences in a set of sequences.

LOC (Lines Of Code): A software metric that measures the size of a
computer program through the number of lines in the text of its
source code (definition extracted from Wikipedia).

PL (Page-Level): A block detection technique that only uses the key
page to infer the block.

QUORUM (QUality Of Reporting Of Meta-analyses): An interna-
tional conference convened in 1996 to establish standards for improv-
ing the report of meta-analyses of clinical randomized controlled tri-
als. The result of the conference was the QUORUM checklist and a
flow diagram, which define the sections of a report of a systematic
review or a meta-analysis (definition extracted from Wikipedia).

RAM (Random Access Memory): A kind of computer memory which
can be read and changed in any order (definition extracted from
Wikipedia).

REST (REpresentational State Transfer): An API between software
components that uses HTTP to obtain or manipulate data.

RQ (Research Question): A specific question that the research intends
to answer.

RSS (Really Simple Syndication): An XML format that provides a
standardized format to users and applications to access website up-
dates (definition extracted from Wikipedia).

332 Appendix A. Glossary of Acronyms

SEO (Search Engine Optimization): The process of improving a web-
site in order to increase its visibility in search engines. The visibility
is directly related to the pagerank of a website in a search engine. The
pagerank determines the importance of this web page in a search.

SL (Site-Level): A block detection technique that uses the key page and
several web pages from the same website to infer the block.

SQL (Structured Query Language): A domain-specific language used
to manage data from relational databases.

SSH (Secure SHell): A network protocol that operates network services
with security over an unsecured network (definition extracted from
Wikipedia).

TED (Tree Edit Distance): A sequence of operations with the mini-
mum cost that transforms one tree into another.

URI (Uniform Resource Locator): A unique string that allows us to
identify a resource, physical or logical, used in a network.

URL (Uniform Resource Identifier): A reference to a given unique
web resource on the Web (definition extracted from Mozilla).

VRAIN (Valencian Research Institute for Artificial Intelligence):
A research institute of the Universitat Politècnica de València, which
is composed of researchers belonging to 7 research groups: Lan-
guage Engineering and Pattern Recognition (ELiRF), Automata, For-
mal Languages and its Applications (ALFA), Extensions of Logic
Programming (ELP), Machine Learning and Language Processing
(MLLP), Computer Technology and Artificial Intelligence (GTIIA)
and Multiparadigm Software Technology (MIST), Interactive Tech-
nologies Lab (VertexLit), and the Research Center on Software Pro-
duction Methods (PROS) of the Universitat Politècnica de València
(definition extracted from the official website).

W3C (World Wide Web Consortium): An international community
which is responsible for developing Web standards (definition ex-
tracted from the official website).

XML (eXtensible Markup Language): A machine-readable and human-
readable markup language which defines a set of rules for encoding
arbitrary data (definition extracted from Wikipedia).

Appendix B

Scientific Contributions

This appendix presents all the contributions related to this thesis where
the author has actively participated. The author has contributed in all
the mentioned research papers in different ways: participating actively in
the brainstorming sessions where the algorithms and models were defined,
collaborating in the definition and proof of formal aspects like lemmas or
theorems, and as an active part of the implementation and empirical eval-
uation of all the WebExtensions and tools described in every paper.

B.1 Conference papers

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Tem-
plate Extraction Based on Menu Information. 9th International Work-
shop on Automated Specification and Verification of Web Systems
(WWV 13). Proceedings of WWV 2013, pages 71-80, 2013.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Auto-
matic Detection of Webpage Candidates for Site-Level Web Template
Extraction. 10th International Workshop on Automated Specification
and Verification of Web Systems (WWV 14), 2014.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Site-
Level Template Extraction Based on Hyperlink Analysis. XIV Jor-
nadas sobre Programación y Lenguajes (PROLE 2014). Proceedings
of PROLE 2014, pages 23-36, 2014.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. TeMex:
The Web Template Extractor. 24th International Conference on
World Wide Web (WWW 2015). Companion: Proceedings of the
24th International Conference on World Wide Web, pages 155–158,
2015.

333

334 Appendix B. Scientific Contributions

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. A Col-
lection of Website Benchmarks Labelled for Template Detection and
Content Extraction. XV Jornadas sobre Programación y Lenguajes
(PROLE 2015). Proceedings of PROLE 2015, 2015.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Site-
Level Web Template Extraction Based on DOM Analysis. 10th In-
ternational Andrei Ershov Informatics Conference (PSI 2015). Pub-
lished on Springer Lecture Notes in Computer Science Vol 9609, pages
36-49, 2016.

• Julián Alarte, David Insa, and Josep Silva. Page-Level Webpage
Menu Detection. XVI Jornadas sobre Programación y Lenguajes
(PROLE 2016). Proceedings of PROLE 2016, pages 134-147, 2016.

• Julián Alarte, David Insa, and Josep Silva. Webpage Menu Detection
Based on DOM. 43rd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2017). Pub-
lished on Springer Lecture Notes in Computer Science Vol 10139,
pages 411-422, 2017.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Main
Content Extraction from Heterogeneous Webpages. Web Information
Systems Engineering (WISE 2018). Published on Springer Lecture
Notes in Computer Science Vol 11233, pages 393-407, 2018.

• Julián Alarte and Josep Silva. HybEx: A Hybrid Tool for Template
Extraction. The Web Conference 2022 (WWW 2022). Companion:
Proceedings of the Web Conference 2022, pages 205–209, 2022.

B.2 Journal Publications

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Au-
tomatic Detection of Webpages that Share the Same Web Template.
Electronic Proceedings in Theoretical Computer Science 163, pages
2-15, 2014.

• Julián Alarte, David Insa, Josep Silva, and Salvador Tamarit. Web
Template Extraction Based on Hyperlink Analysis. Electronic Pro-
ceedings in Theoretical Computer Science 173, pages 16-26, 2015.

B.2. Journal Publications 335

• Julián Alarte, Josep Silva, and Salvador Tamarit. What Web Tem-
plate Extractor Should I Use? A Benchmarking and Comparison for
Five Template Extractors. ACM Transactions on the Web Vol. 13
Iss. 2 Num. 9: 1-19, 2019.

• Julián Alarte and Josep Silva. Page-Level Main Content Extraction
From Heterogeneous Webpages. ACM Transactions on Knowledge
Discovery from Data Vol. 15 Iss. 6 Num. 105: 1-21, 2021.

3
3
6

A
p

p
en

d
ix

B
.

S
cien

tifi
c

C
on

trib
u

tion
s

B.3 List of derived artifacts

Resource Name Type URL

Web information retrieval Web page http://personales.upv.es/josilga/retrieval/

TeCo Benchmark suite http://personales.upv.es/josilga/retrieval/teco/

TemEx
Web page https://personales.upv.es/josilga/retrieval/Web-TemEx/

Firefox add-ons version https://addons.mozilla.org/en-US/firefox/addon/template-extractor/

MenEx
Web page https://personales.upv.es/josilga/retrieval/Web-MenEx/

Firefox add-ons version https://addons.mozilla.org/es/firefox/addon/menex/

Site-level ConEx
Web page https://personales.upv.es/josilga/retrieval/Web-ConEx/

Firefox add-ons version https://addons.mozilla.org/es/firefox/addon/conex-web-content-extractor/

Page-level ConEx
Web page https://personales.upv.es/josilga/retrieval/Web-ConEx/

Firefox add-ons version https://addons.mozilla.org/es/firefox/addon/page-level-content-extractor/

HybEx
Web page https://personales.upv.es/josilga/retrieval/Web-HybEx/

Firefox add-ons version https://addons.mozilla.org/es/firefox/addon/hybrid-template-extractor/

SST WebExtension http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/SST.zip

RTDM-TD WebExtension http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/RTDMTD.zip

RBM-TD WebExtension http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/RBMTD.zip

IWPTD WebExtension http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/Incremental.zip

http://personales.upv.es/josilga/retrieval/
http://personales.upv.es/josilga/retrieval/teco/
https://personales.upv.es/josilga/retrieval/Web-TemEx/
https://addons.mozilla.org/en-US/firefox/addon/template-extractor/
https://personales.upv.es/josilga/retrieval/Web-MenEx/
https://addons.mozilla.org/es/firefox/addon/menex/
https://personales.upv.es/josilga/retrieval/Web-ConEx/
https://addons.mozilla.org/es/firefox/addon/conex-web-content-extractor/
https://personales.upv.es/josilga/retrieval/Web-ConEx/
https://addons.mozilla.org/es/firefox/addon/page-level-content-extractor/
https://personales.upv.es/josilga/retrieval/Web-HybEx/
https://addons.mozilla.org/es/firefox/addon/hybrid-template-extractor/
http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/SST.zip
http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/RTDMTD.zip
http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/RBMTD.zip
http://personales.upv.es/josilga/retrieval/Web-TemEx/downloads/Extractors/Incremental.zip

	Table of Contents
	List of Figures
	List of Tables
	I Introduction
	Preamble
	Motivation
	Contributions of the thesis
	Structure of the thesis

	Block Detection Techniques
	Data Mining
	Web Mining
	Web Content Classification
	Wrappers and Unsupervised Learning
	Block Detection
	Conclusions

	II Foundations
	The DOM tree
	Brief history of DOM
	Main characteristics of DOM
	From the document to the browser's screen
	Conclusions

	Preliminary Definitions and Notation
	Basic definitions
	Site-level techniques
	Candidates selection
	Mapping

	Web page blocks
	Web page menu
	Template
	Main content
	Relationship between web page menu and template
	Relationship between the template and the main content

	Evaluation metrics

	III Page-level Block Detection Algorithms
	Page-level Menu Detection
	Related Work
	Menu detection algorithm
	Rating DOM nodes
	Selection of candidates
	Selection of root nodes
	Selection of the menu node

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	Page-level Content Extraction
	Related Work
	Main content extraction
	The web page's main content
	Weighting DOM nodes
	Properties standardization
	c-SET computation
	Selecting the main content nodes
	Final post-process

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	IV Site-level Block Detection Algorithms
	Candidates selection algorithms
	Related Work
	Identifying web pages that implement the same template
	Complete subdigraphs
	Hyperlink analysis
	Finding web page candidates in a website

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	Equal Top-Down Mapping
	Related Work
	Comparing DOM nodes
	Template extraction from a complete subdigraph

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	Site-level Template Detection
	Related work
	Template detection
	The web page's template
	Building a complete subdigraph
	Web pages implementing several templates
	Template detection from a complete subdigraph

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	Site-level Content Extraction
	Related work
	Main content extraction
	The web page's main content
	Set of web pages selection
	Web pages mapping
	Candidate set reduction
	Main content branch detection
	Discarding candidates
	Main content selection

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	Hybrid Technique for Template Detection
	Related work
	Hybrid template detection
	HTML to DOM corresponding to page-level ConEx
	Content extraction
	Hyperlink analysis
	Complete subdigraph extraction
	HTML to DOM corresponding to TemEx
	Template detection

	Implementation
	Empirical evaluation

	Conclusions
	Contributions

	V Comparison with the State of the Art
	Comparison with the State of the Art
	Selection and description of web template detectors
	Methodology for the selection of template detectors
	Search results

	A workbench for template detection
	Comparison of template detectors
	Computation time
	Scalability
	Asymptotic costs

	Comparison of content extractors
	Conclusions
	Contributions

	VI Implementations
	TeCo Benchmark Suite
	Benchmark suite's structure
	Producing the gold standard
	Benchmark details
	Guidelines for using the suite
	Downloading and configuring the suite
	Rules for using the suite and report

	Conclusions
	Contributions

	Implementation
	WebExtensions' implementation
	Architecture
	Structure
	Evaluation environment

	Usage scenario
	Tools information
	Differences between different browsers

	Conclusions
	Contributions

	VII Conclusions and Future Work
	Conclusions
	Open Lines of Research
	Bibliography
	Glossary of Acronyms
	Scientific Contributions
	Conference papers
	Journal Publications
	List of derived artifacts

