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Abstract: Sepsis management remains one of the most important challenges in modern clinical
practice. Rapid progression from sepsis to septic shock is practically unpredictable, hence the
critical need for sepsis biomarkers that can help clinicians in the management of patients to reduce
the probability of a fatal outcome. Circulating nucleoproteins released during the inflammatory
response to infection, including neutrophil extracellular traps, nucleosomes, and histones, and
nuclear proteins like HMGB1, have been proposed as markers of disease progression since they are
related to inflammation, oxidative stress, endothelial damage, and impairment of the coagulation
response, among other pathological features. The aim of this work was to evaluate the actual
potential for decision making/outcome prediction of the most commonly proposed chromatin-
related biomarkers (i.e., nucleosomes, citrullinated H3, and HMGB1). To do this, we compared
different ELISA measuring methods for quantifying plasma nucleoproteins in a cohort of critically
ill patients diagnosed with sepsis or septic shock compared to nonseptic patients admitted to the
intensive care unit (ICU), as well as to healthy subjects. Our results show that all studied biomarkers
can be used to monitor sepsis progression, although they vary in their effectiveness to separate sepsis
and septic shock patients. Our data suggest that HMGB1/citrullinated H3 determination in plasma
is potentially the most promising clinical tool for the monitoring and stratification of septic patients.

Keywords: sepsis; septic shock; circulating histones; nucleosomes; HMGB1; biomarkers; ELISA

1. Introduction

Management of sepsis remains a worldwide challenge due to the difficulty in early
recognition of symptoms to facilitate stratification and accurate/proper treatment of septic
patients [1]. For instance, progression from sepsis to septic shock is currently unpredictable
and depends on predisposing factors of the patient, the severity of the infection, and the
response to therapy, as well as the degree of organ dysfunction. Thus, clinicians face a
complex diagnostic landscape in which early, quick, and efficient intervention remains a
critical necessity.
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In this regard, the detailed study of the complex molecular abnormalities underlying
sepsis might provide interesting and promising molecular candidates to be used as sepsis
progression biomarkers that can help define the process of septic staging, which is currently
considered a clinical demand at intensive care units (ICUs). Inflammatory response-related
molecules secreted in response to pathogens, together with the molecules and signaling
cascades related to the immune system and coagulation factor activation, interact with
the host’s cells to configure a complex network of molecules populating the blood of
patients, which have been designated as pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs). Among the latter, we find nuclear
elements released to the bloodstream in different ways: first, as part of the process known as
NETosis, the formation of neutrophil extracellular traps (NETs), wherein neutrophils release
a mesh of altered chromatin and nuclear proteins during the innate immune response,
which opsonizes and compromises pathogenic cell viability. Nuclear elements released
from NETs affect neighboring cells, promoting endothelial cell necrosis and apoptosis
and, hence, increasing the release of more nuclear content to the bloodstream via a second
pathway which, in the end, leads to a positive feedback process that establishes a correlation
between the increase in the release of nuclear content and disease progression. Given the
tight relationship that exists between the production of free radicals and the generation
of oxidative stress resulting from endothelial cell dysfunction, especially in the context
of sepsis progression, focusing on the molecular features of nuclear elements released to
the bloodstream is a source of substantial potential clinical interest [2]. Nuclear factors
typically found in the bloodstream of sepsis patients include free DNA, mono-, di-, and
oligo-nucleosomes, and free histone proteins, among other chromatin-derived elements;
thus, these factors are acquiring increasing relevance as DAMPs. This has given rise to
a rich field of research into the definition disease biomarkers [3–9]; however, the lack of
performance when using any of these molecules on their own to discriminate between
sepsis and other inflammation-related pathologies highlights the necessity of new and
more specific biomarkers, which should also be preferentially used in combination [10].
The release of nuclear content has been documented as part of the inflammatory NETosis
response and as a result of organ injury during sepsis progression [8,11]. In summary,
histone proteins, either in form of NETs, nucleosomes, or as individual proteins, are
responsible for endothelial cell damage by means of several transduction pathways which
are not fully understood [12–16]. The cell death consequences of the presence of histones
in blood suggest that they could be used as disease progression biomarkers [17,18]. In this
regard, there is also evidence for the participation of another nuclear protein, High-Mobility
Group Box-1 (HMGB1), as part of the cytokine storm triggered during the inflammatory
response to infection [19]. HMGB1 contributes to the pro-inflammatory state, and several
works have shown that extracellular HMGB1 levels correlate with disease progression
and participate in cell death processes tightly linked to pyroptosis and endotoxemia [20];
however, many details regarding the specific kinetics of its release and clearance from
the bloodstream are still partly unknown. Since HMGB1 can be found in differentially
oxidized forms and has been reported to influence the activity of endothelial eNOS and
ROS pathways [21], studying its presence in the bloodstreams of sepsis patients in relation
to the impairment of clinical parameters could provide important clues regarding the
regulation of antioxidant response homeostasis and sepsis progression.

Correlations between blood levels of nucleoproteins and disease severity [17,22,23]
set the basis for detecting their circulating levels in the blood as a parameter that could
predict the onset of sepsis in patients. Several detection methods to measure circulating
histones, nucleosomes, and nucleoproteins have been developed in order to use these
parameters as effective, time-saving biomarkers that could avoid the striking consequences
of permanent histone levels in the blood or that could, at least, differentiate between those
patients that should receive more aggressive treatments or earlier fluid resuscitation in
order to avoid a fatal outcome. Most widely used methodologies involve immunoassays,
generally in the form of enzyme-linked immunosorbent assay (herein, ELISA) kits. For
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example, one of the most used kits for the evaluation of circulating chromatin-derived
molecules, Cell Death detection ELISAPLUS kit (Roche), consists of the detection of mono-
and oligo-nucleosomes, but not cell-free circulating histones. Another similar parameter
for which immunoassays have been developed is citrullinated histone H3, a specific post-
translational modification that has been related to the correct and appropriate production of
NETs during the innate immunity response as well as in the particular context of sepsis [24].

In the present work, we sought to evaluate the actual potential for decision mak-
ing/outcome prediction of the most commonly proposed chromatin-related biomarkers
(i.e., nucleosomes, citrullinated H3, and HMGB1) in a pilot study to differentiate between
sepsis and septic shock patients in reference to controls, which included both healthy
subjects and, importantly, critically ill nonseptic patients from the ICU who had suffered
spontaneous intracerebral hemorrhage. To do so, we compare the results of quantification of
these biomarkers obtained using different ELISA methods, including our own home-made
nucleoprotein-detection ELISA kit, and analyzed the capacity of the different methods
to discriminate between groups. Finally, we provide a series of correlation analyses be-
tween the aforementioned biomarkers and clinical parameters relevant to the monitoring
sepsis and septic shock progression, emphasizing the use of specific chromatin-derived
biomarkers for the particular subtypes of septic patients analyzed herein.

2. Results
2.1. Development of a Home-Made Immunoassay for Detection of Nucleoproteins in Plasma

In order to evaluate the potential of nucleoprotein detection in plasma as a sepsis
biomarker, a home-made enzyme-linked immunosorbent assay (ELISA) based on mon-
oclonal antibodies was developed. To this end, spleen cells from MRL-lpr/lpr mice that
spontaneously produced antinucleoprotein antibodies were used to obtain monoclonal
antibodies by applying the hybridoma technology. After fusions, clone selection was
based on recognition of histone complexes as a protein core or as nucleosomes isolated
from HeLa cells. Finally, 12 hybridomas were cloned and stabilized. Their corresponding
monoclonal antibodies (MAb) were assayed for specificity towards HeLa nucleoproteins.
Approximately half of the MAbs recognized both core histones and nucleosomes, while the
other half were highly specific for nucleosomes. Next, MAbs displaying the highest titers
for nucleoproteins were conjugated to peroxidase. After a thorough MAb examination in a
sandwich ELISA format, a pair of MAbs showing high specificity to nucleosomes was se-
lected for the immunoassay. The specificity of capture MAb L1–4 and detection MAb L2.14
is shown in Figure 1. As shown, the capture antibody recognized core histones, whereas the
detection antibody was specific for nucleosomes. Next, immunoassay conditions such as
immunoreagent concentrations, incubation times, and assay buffer were optimized. Finally,
the optimized ELISA was evaluated in terms of sensitivity and reproducibility. A limit
of detection (LOD) of 20 ng nucleosomes/ml was obtained (see Appendix A), with intra-
and interassay coefficients of variation below 10%. As expected, the ELISA recognition
pattern was that provided by the detection antibody (MAb L2–14), characterized by the
specific recognition of nucleosomes and the lack of recognition of different combinations
of histones, complex histone extracts, and DNA from different sources (Figure 1b). These
results prompted us to test the kit using plasma samples from ICU patients, including
patients with intracerebral hemorrhage (critically ill patients without sepsis), sepsis and
septic shock patients, and healthy subjects, to validate the potential use of the tool for
sepsis and septic shock progression monitoring.
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Figure 1. Specificity patterns of the monoclonal antibodies selected for the nucleoprotein sandwich
ELISA. (a) The MAb L1–4 capture antibody recognized all histone fractions from human origin.
(b) In contrast, the MAb L2–14 detection antibody showed a reaction only to HeLa nucleosomes
(BPS Bioscience). Data represent mean values +/− SD (n = 2). H1, H1.0, H2A, H2B, H3, and HeLA
core correspond to histones from human origin; DNA to calf thymus DNA; BSA-Met to albumin
methylated from bovine serum; and OVA to albumin from chicken egg. See Appendix A for more
details on the proteins assayed.

2.2. Analysis of Nucleoprotein Levels in a Cohort of Sepsis and Septic Shock Patients

Fifty-three samples of blood from subjects of four different groups were analyzed
using two different ELISA kits, as described in the Methods section. Clinical characteristics
of the three groups of clinically ill subjects are described in Table 1. In general, the most
significant clinical differences in Table 1 were found between control nonseptic patients
and septic shock patients in all standard parameters. The measurements with statistically
significant differences among groups were C-reactive protein (p > 0.0001), activated partial
thromboplastin time (APTT) (p = 0.014), and the clinical APACHE II and SOFA scores
(p > 0.03 and p < 0.001, respectively). It was noteworthy that mortality and ICU stay, and
other classical biochemical biomarkers (i.e., lactate and PCT) did not show statistically
significant differences between sepsis and septic shock patients. Interestingly, in the case of
circulating nucleoproteins, the highest plasma levels were found in the septic shock group,
followed by the sepsis group, when samples were analyzed utilizing both our home-made
immunoassay (hereafter, Nucleosome kit 1) and the commercial Cell Death detection kit
(Roche) (hereafter, Nucleosome kit 2) (Figure 2).

Table 1. Baseline clinical features of the septic patients and ICU controls at admission 1.

Control
Nonseptic ICU

(n = 9)

Septic ICU
(n = 10)

Septic Shock ICU
(n = 17) p Value

Demographics and clinical indexes

Age (years) (mean ± SD) 64.38 ± 8.31 65.10 ± 13.10 66.18 ± 11.60 ns
Male gender (%) 6 (66.7) 7 (70.8) 10 (58.8) ns

APACHE II score (mean ± SD) 15.11 ± 4.80 15.80 ± 4.90 22.12 ± 9.07 0.03
SOFA (mean ± SD) 3.44 ± 3.09 5.00 ± 2.21 9.65 ± 3.43 <0.0001

Organ support therapy (1st day)

Vasopressor therapy (%) 1 (11.1) 2 (20.0) 16 (94.1) <0.0001
CRRT (%) 0 0 2 (11.76) ns

Mechanical ventilation (%) 3 (33.3) 0 3 (21.4) ns

Inflammatory parameters

White blood cells (mean ± SD) 10,603 ± 4939 12,977 ± 11,589 16,395 ± 9612 ns
CRP (mg/L) (mean ± SD) 25.14 ± 26.31 250.20 ± 133.46 339.35 ± 189.72 <0.0001
PCT (ng/mL) (mean ± SD 0.06 ± 0.07 2.21 ± 3.08 1.52 ± 2.29 ns
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Table 1. Cont.

Control
Nonseptic ICU

(n = 9)

Septic ICU
(n = 10)

Septic Shock ICU
(n = 17) p Value

Lactate

Lactate 1st hour (mmol/L)
(mean ± SD) 1.61 ± 6.98 1.91 ± 1.25 1.81 ± 1.99 ns

Coagulopathy parameters

Platelets count/L (mean ± SD) 240.4 × 103 ± 89.3 × 103 229.6 × 103 ± 147.36 × 103 169.4 × 103 ± 122.8 × 103 n.s
APTT (seconds) (mean ± SD) 29.67 ± 2.88 99.833 ± 118.82 117.43 ± 154.83 0.014

Outcome

ICU LOS (days) (mean ± SD) 5.9 ± 6.6 12.6 ± 15.62 9.47 ± 8.61 ns
Hospital LOS (days) (mean ±

SD) 15.4 ± 14.6 20.6 ± 13.1 19.88 ± 17.8 ns

ICU Mortality (%) 2 (22.2) 2 (20.0) 4 (23.5) ns
1 ICU: intensive care unit. APACHEII: Acute Physiology and Chronic Health Evaluation score during the 1st day of ICU admittance. SOFA
score: Sequential Organ Failure Assessment score during the 1st day of ICU admittance. CRRT: continuous renal replacement therapy.
CRP: C-reactive protein. PCT: procalcitonin. APTT: activated partial thromboplastin time. LOS: length of stay. Significant differences
(p value < 0.05) between groups.

Figure 2. Measurement of nucleoproteins using ELISA kits. Plasma samples were analyzed using
a home-made ELISA kit, Nucleosome kit 1 (a) and a commercial ELISA kit (Cell Death Detection
ELISAPLUS kit; see Methods), Nucleosome kit 2 (b) specific for mono- and oligo-nucleosomes.
Horizontal lines represent average values for each group, and bars represent standard deviation.
Numerical values are summarized in (c). (**** p < 0.0001; ** p > 0.01).

In order to compare the levels observed in the different groups, we performed non-
parametric Kruskal–Wallis tests. For the Nucleosome kit 1, the differences between groups
were statistically significant only between both control groups and septic shock patients
(p < 0.01) (Figure 2a); the Nucleosome kit 2 differentiated healthy and septic shock sub-
jects with the same statistical strength, but it reached greater statistical significance when
separating healthy subjects and septic shock patients (p < 0.0001).
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2.3. Citrullinated Histone H3 and HMGB1 Levels in Sepsis and Septic Shock Patients

Among the PAMPs and DAMPs associated with the challenging septic response,
citrullinated histone H3 and HMGB1 have been suggested as potential sepsis biomarkers.
Hence, we decided to use a second set of commercial kits for the determination of these
molecules in the same samples from the four cohorts. As found with the other kits used
in this work, the highest citrullinated H3 levels were observed for septic shock cases
(Figure 3a). Differences were statistically significant between healthy subjects and ICU
controls and septic shock (p < 0.0001), and between healthy subjects and ICU controls
and sepsis (p < 0.05). Regarding determination of HMGB1 levels, and in contrast to the
previous results, these were not significantly higher exclusively in septic shock patients;
in fact, significance between healthy subjects and sepsis was higher than between healthy
subjects and septic shock patients (p < 0.0001 vs. p < 0.001); when comparing ICU controls
and both groups of patients, again the highest statistical significance was found between
ICU controls and sepsis patients (p < 0.001). In contrast, ICU controls and septic shock
patients were differentiated with p < 0.01 (Figure 3b). It should be noted that although all
previously analyzed molecules exhibited the highest levels in the group of septic shock
patients, in the case of HMGB1, the levels were comparable in sepsis and septic shock
patients, and it was the only case in which the mean value was higher in the sepsis group
as compared to the septic shock group (Figure 3c).

Figure 3. Measurement of citrullinated histone H3 levels (CitH3) (a) and HMGB1 (b) in plasma samples using commercial
ELISA kits (see Materials and Methods for details). Horizontal lines represent the average values for each group, and bars
represent standard deviation. Numerical values for both parameters are summarized in (c) (**** p > 0.0001; *** p < 0.001;
** p > 0.01; * p < 0.005).

2.4. Comparative Analysis of the Diagnostic Potential of Chromatin-Delivered Biomarkers

In order to further compare the different ELISA methods, a ROC curve analysis
was performed to evaluate the diagnostic power of the levels of nuclear proteins and
citrullinated histone H3 as relevant biomarkers to distinguish septic shock or sepsis cases
from critically ill ICU patients suffering not from infectious processes, but from spontaneous
intracerebral hemorrhage (Figure 4). The AUCs (areas under ROC curves), standard
error, confidence interval (CI), optimal concentration cut-off value, and sensitivity and
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specificity percentages for each kit were calculated to differentiate between controls and
cases (sepsis and septic shock patients together) (see table in Figure 4b). Interestingly,
levels of HMGB1 stood out with a 100.0% sensitivity and 90.0% specificity to differentiate
between control and case groups, indicating that the presence of HMGB1 is a reliable
biomarker for the septic state as compared to critically ill noninfected individuals from
ICU, and thus supporting its use as an early marker of sepsis. Citrullinated histone H3 also
provided a good sensitivity (81.5%) and as much specificity (100.0%) as the nucleosome-
based detection methods, although the latter failed in terms of sensitivity, which was
below 80% for both nucleosome kits. It should be pointed out that the highest statistical
confidence was found for citrullinated histone H3 and HMGB1 (p < 0.0001).

Figure 4. Diagnostic capacity of ELISA methods to differentiate control and septic cases. (a) ROC curves for nucleoproteins,
HMGB1, and citrullinated H3 levels, measured using the three different ELISA approaches, as biomarkers for diagnosis of
septic processes. ICU controls were compared to septic patients (sepsis patients plus septic shock patients). (b) Parameters
and statistical significance obtained for the different ROC curves.

2.5. Correlation with Clinical Parameters in Sepsis Patients Varies between Nucleosomes,
Citrullinated Histone H3, and HMGB1

Extracellular histones have been previously related to sepsis progression and organ
failure, specifically linked to proinflammatory and prothrombotic effects [18,25–27]. It has
also been suggested that HMGB1 could be used as a late marker of sepsis [28], although our
results showed increased levels of HMGB1 not only in septic shock but in sepsis patients.
In order to extract as much information as possible about the differential behaviors of
chromatin-delivered biomarkers during sepsis progression, we calculated the correlation
coefficients between each of the biomarkers in our study and clinically relevant parameters
of the studied cohorts (see Supplementary Table S1 for a complete correlation matrix). The
higher number of correlations was found among the group of sepsis patients (Figure 5).
Interestingly, the pattern of positive and negative correlations was relatively similar for both
nucleosome-specific kits and the CitH3 kit, and slightly different from the pattern observed
for HMGB1. When analyzing the specific significance of these correlations, differences were
highlighted among all kits, providing specific positive and negative correlations: we found
very strong correlations between CitH3, total SOFA score, and MAP; and between HMGB1
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and other important clinical parameters like ICU LOS and DD (Figure 5a). These results,
taken together with the previous analysis of diagnostic capacity and mean values found
in plasma from the different groups of patients, highlight that CitH3 and HMGB1 levels
stand out as the most informative biomarkers in terms of stage of the sepsis process and
relevant clinical parameters related to sepsis management, with CitH3 being a potential
better biomarker for the diagnostic of septic shock and HMGB1 a more prognostic one;
in fact, we generated ROC curves to evaluate the predictive potential of HMGB1 levels
for ICU stays longer than 5 days, obtaining an AUC value of 0.9583 and a specificity and
sensitivity of 83.33% and 100%, respectively, for levels higher than 15.27 ng/ in sepsis, but
no significant cut-off value was obtained for its use as a reliable predictor in the group
of septic shock patients (Figure 5b). Finally, it was noteworthy that the only biomarker
significantly increased in the specific subset of nonsurviving patients was citrullinated H3
(14.11 ng/ in surviving patients versus 19.00 ng/ in nonsurvivors; p = 0.03); this allowed us
to create a ROC curve using citrullinated H3 level as a criterion to differentiate surviving
sepsis and septic shock patients from those nonsurviving, obtaining an AUC of 0.897
with an standard error of 0.062, a CI95% of 0.7745 to 1.000, and sensitivity and specificity
values of 83.3% and 81.0%, respectively, using a cut-off value of 14.81 ng/(p value = 0.003)
(Figure 5c).

Figure 5. (a) Correlation between biomarker levels measured using the different ELISA kits and clinical parameters.
Nonparametric Spearman correlation coefficients were calculated among the different variables: blue cells represent positive
correlations and red cells represent negative correlations (see graphic legend); white dots indicate r values higher than
0.6, which reached the minimum significance (p ≤ 0.05). The top correlations most significant for CitH3 and HMGB1 are
shown in detail. ICU LOS: ICU length-of-stay; SOFA: total SOFA score; SAP: systolic arterial pressure; MAP: mean arterial
pressure; RF: respiratory frequency; AP: alkaline phosphatase; BIL: total bilirubin; GLUC: glucose; aPTT: activated partial
thromboplastin time; Fibrin: fibrinogen; DD: D-dimer; NtProBNP: amino-terminal fragment of the pro-natriuretic peptide
type B. All clinical parameters represent values at day 1. See Supplementary Table S1 for detail on the complete r and p
values for each correlation. (b) ROC curves obtained using HMGB1 levels to predict ICU stays longer than 5 days in sepsis
(left) and septic shock patients (right). (c) ROC curve obtained using CitH3 levels to predict fatal outcomes for sepsis and
septic shock patients.
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3. Discussion

Sepsis management remains a worldwide critical healthcare problem, despite striking
advances in diagnostic and pharmacological interventions that have lowered the incidence
during the last twenty years [29]. Nonetheless, deaths by sepsis are usually underestimated
given the high burden of the disease in low-income countries, where documentation of cases
remains uncertain or incomplete. In this particular context, the capacity to distinguish the
cryptic first signs of septic processes from other conditions and, significantly, to predict if a
septic process is on the verge of becoming a septic shock, constitutes a hotspot in the clinical
management of the critically ill patient. The presence of extracellular nucleoproteins, either
as free histones or in the form of nucleosomes, has been shown to correlate with disease
severity and to participate actively in the pathogenicity, being critical determinants of organ
failure and hence indicators of bad prognosis [25,30]. The use of histone-based biomarkers,
however, has never been standardized and incorporated into clinical routine, although
novel methods based either in immunological detection [15,25] or in mass-spectrometry
detection, as we have previously published [22], are currently available [31].

In this work, we evaluated the potential of several markers based on different chromatin-
delivered analytes to differentiate sepsis and septic shock patients, compared to healthy
individuals and critically ill nonseptic control patients from ICU. One of the immunoassays
most commonly found in the literature is the Cell Death Detection ELISAplus, previously
used to assess nucleosome levels in critically ill patients [23,30]. However, this kit does
not provide a standard curve to obtain objective quantification of plasma circulating
nucleoproteins, unlike our home-made ELISA kit with high specificity towards human
nucleosomes. Nonetheless, neither of both tests showed the capacity to differentiate
between sepsis and septic shock patients. Similarly, we detected significantly higher CitH3
levels in septic shock patients as compared to both control groups; this is of especial
relevance since a previous work by Li et al. identified high blood levels of citrullinated
H3 after lipopolysaccharide injection in a rodent model to produce septic shock [24].
Interestingly, when we measured the protein HMGB1 in human plasma, we found the
maximum increase in the group of sepsis patients. Although no statistical significance was
found between sepsis and septic shock patients, mean values were higher in the sepsis
group. HMGB1, released to the bloodstream during the initial inflammatory cascade, has
been postulated as a pro-inflammatory cytokine that could serve as an early biomarker in
sepsis. However, its differential functions regarding oxidation status, cellular localization,
and release to the bloodstream make it a difficult target for therapeutic intervention [20,28].
To assess the feasibility of the methods herein assayed for use with diagnostic or prognostic
objectives, we performed ROC curve analysis to obtain specificity and sensitivity values
for all ELISA kits. The test which showed the best performance to differentiate all control
individuals from sepsis and septic shock patients was the analysis of HMGB1, with a
specificity of 81.8% and a specificity of 96.0%, in agreement with the highest levels found
in both groups of patients as compared to the rest of biomarkers assayed. These results
are interesting given that the groups of clinically ill patients did not differ strikingly in the
levels of classical sepsis biomarkers like lactate or PCT, and the fact that mortality rates were
also quite similar. However, diagnostic and/or prognostic potential of biomarkers relies
strongly upon the correlation between their levels and the different clinical parameters
that allow monitoring of disease progression and severity; in our study, we found a strong
correlation between all chromatin-delivered biomarkers and relevant clinical parameters,
but especially important are those high and significant correlations found between CitH3,
total SOFA score, and MAP, and between HMGB1, ICU LOS, and DD. Previous works
support the relationship between HMGB1 levels and cardiovascular impairment [32–34]. It
is interesting to point out that the levels detected in our results were significantly higher
in septic patients even when using the group of ICU patients suffering from spontaneous
intracerebral hemorrhage as a control group. It is noteworthy that HMGB1 has been shown
to be present in differentially oxidized and reduced forms [21,28], but little information has
been provided regarding the inflammatory properties of the different forms when found in
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the extracellular milieu and in the context of sepsis progression, where oxidation conditions
are significantly increased; thus, further investigation will be required to ascertain the
usefulness of the analysis of specific forms of HMGB1 as well as the therapeutic potential of
antioxidant therapies in mitigating the deleterious effects associated with increased plasma
levels of HMGB1. Although the correlation between HMGB1 levels and sepsis progression
is not novel in itself, as shown by Karlsson and collaborators [35], there have been very
few works, to our knowledge, that compare the levels of this biomarker among patients
classified according to the latest SEPSIS-3 diagnostic criteria (i.e., sepsis vs. septic shock)
and, importantly, compared to both healthy individuals and noninfected ICU patients.
In our work, plasma samples were collected from patients at 24 h after ICU admittance,
in contrast to the cohort analyzed in [35] which were collected at 48 h post-admission,
probably explaining the lack of correlation of HMGB1 with the outcome in their results.
Finally, our work compared in parallel the levels of three different types of chromatin-
related biomarkers.

Taken together, these results seem to suggest that the kinetics of release and pres-
ence in the bloodstream for HMGB1 and histone-related molecules (i.e., nucleosomes and
citrullinated H3) are different, and point to a landscape in which monitoring of HMGB1
levels is more useful for earlier stages of sepsis diagnosis and to predict long ICU stays,
whereas increased levels of CitH3 would be more reliable for monitoring and prediction
of septic shock onset, organ failure, and death. It should be noted that, given the limi-
tations of our work (reduced sample number), the actual values of circulating histones
and nucleoproteins should be further calculated with more quantitative techniques; in this
regard, mass-spectrometry-based technologies constitute a promising path to follow, as we
previously proposed [22]. However, the present results point to a relevant usefulness of
the measurement of CitH3 and HMGB1 by ELISA methods, which are more accessible to
low-income facilities, which could also benefit from home-made immunoassays addressed
to detect nucleoproteins, as we have shown.

In conclusion, these results suggest that all biomarkers analyzed show a very similar
distribution pattern, with HMGB1 showing the highest levels in sepsis patients as com-
pared to septic shock ones. All in all, the presence of nucleosomes and specific modified
forms of histone proteins together with other chromatin-derived nuclear proteins involved
in inflammation rise as relevant markers of disease severity, and refinement of their de-
tection and quantification methods would be of capital relevance towards their future
incorporation into the clinical routine.

4. Materials and Methods
4.1. Production of Monoclonal Antinucleoprotein Antibodies

MRL-lpr/lpr female mice (9 weeks old) were from Harlan Laboratories. These mice
spontaneously develop an autoimmune disease characterized by circulating antinuclear
antibodies and immune complex glomerulonephritis (see Appendix A for details). Animal
manipulation was carried out following the Spanish regulations currently in force and
under the approval of the Ethical Committee for Research of Universitat Politècnica de
València, and all methods were carried out according to their corresponding guidelines
and regulations.

4.2. Home-Made Nucleosome ELISA

The immunoassay consisted of a sandwich format using MAb L1–4 as the capture
antibody and MAb L2–14 as the detection antibody. For this purpose, MAb L2–14 was
previously conjugated to peroxidase using the HRP Conjugation Kit (Abcam, Cambridge,
UK), following the manufacturer’s instructions. For the immunoassay, a volume of 100 µL
per well was used for all assay steps. After each incubation time, plates were washed four
times with washing buffer (PBS containing 0.05 Tween 20). First, ELISA plates (Costar
#3590, Corning, NY, USA) were coated overnight at room temperature with MAb L1–4 at
2 µg/ in 50 mM carbonate buffer (pH 9.6). Next, plasma samples diluted 1:5 in assay buffer



Int. J. Mol. Sci. 2021, 22, 9935 11 of 15

and controls were added and plates were incubated for 1 h. After washing, HRP-MAb
L2–14 at 0.5 µg/ in assay buffer was added and incubated for 1 h. Finally, peroxidase
activity was determined by adding the substrate solution (2 mg/o-phenylenediamine and
0.012% H2O2 in 25 mM citrate-62 mM phosphate, pH 5.3). After 10 min, the reaction was
stopped with 2.5 M sulfuric acid and the absorbance at 490 nm was read and recorded with
a SpectraMax 190 microplate reader (Molecular Devices, San José, CA, USA). Proteins and
combination of proteins plus DNA used to test the specificity of the ELISA are described in
Appendix A.

4.3. Commercial ELISA Kits

The commercial ELISA kits used in this work were as follows: Cell Death Detec-
tion ELISAPLUS kit (Roche, Basel, Switzerland) for photometric determination of mono-
and oligonucleosomes by combining an anti-histone-biotin-antibody and an anti-DNA-
peroxidase antibody; EpiQuickTM Circulating Histone H3 Citrullination ELISA kit (Epi-
Gentek, Farmingdale, NY, USA), in which histone proteins contained in plasma samples
are captured on strips coated with anticitrullinated histone H3 antibody, detected by col-
orimetry and quantified thanks to an internal standard curve; and HMGB1 ELISA (IBL
International, Hamburg, Germany), with strips coated with anti-HMGB1 purified antibody,
detected by colorimetry and quantified thanks to an internal standard curve. Assays were
performed following manufacturers’ instructions, using 20 µL of plasma (1/4 dilution) for
the Cell Death Detection kit, 30 µL of plasma for the citrullinated H3 detection kit, and
70 µL of plasma for the HMGB1 detection kit. Read-outs of the plates was obtained by mea-
suring absorbance at 405 nm and 450 nm, respectively, using a SpectraMax 190 microplate
reader (Molecular Devices, San José, CA, USA).

4.4. Selection of the Cohorts and Blood Collection

To provide an accurate evaluation and comparison for the usefulness of the three
studied ELISA kits in the classification of sepsis and septic shock patients, we selected a
cohort of individuals (n = 53) divided into four different groups. All of the subjects partic-
ipating in this project signed the informed consent form. The first group was of healthy
subjects (n = 17), a group in which no significant presence of nucleoproteins in plasma
should be expected, composed of 10 male and 7 female volunteers (age: 49.76 ± 5.18 years);
next, a cohort of control nonseptic patients (n = 9) from the ICU of the Clinical University
Hospital of Valencia (HCUV) who were not affected by infection, autoimmune disease,
or polytrauma injury but by spontaneous intracerebral hemorrhage, were set as a control
group in which a certain level of nucleoproteins, free DNA, and histones could be present
due to organ injury. Finally, two different cohorts including sepsis (n = 10) and septic
shock patients (n = 17) with confirmed bacteremia (microbiological blood positive culture
at 48 h) were included, all from the same ICU as the previously mentioned control group
(see Appendix A for details on exclusion criteria).

Peripheral blood samples were collected using EDTA tubes from both healthy controls
and ICU patients. In the latter, blood samples were collected within the first 6 h after being
admitted to ICU. Each sample was centrifuged at 2500 rpm for 10 min at room temperature
(RT) to separate plasma. Aliquots were then stored at −80 ◦C until analysis.

4.5. Statistical Analysis

Descriptive analysis was performed by calculating parameters such as mean, median,
standard deviation, and confidence intervals. Kruskal–Wallis and post hoc tests were used
for comparisons between groups. ROC analyses were performed by calculating AUCs
(areas under ROC curves), standard error, confidence interval (CI), optimal concentration
cut-off value, and sensitivity and specificity percentages for each kit with diagnostic and
stratification purposes. p values of < 0.05 were regarded as being statistically significant.
All the analyses were conducted using SPSS, v.24 (IBM Corporation, Armonk, NY, USA).
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Appendix A

Appendix A.1 Purification and Isolation of Monoclonal Antibodies

Mouse plasmas were assayed for antinucleoprotein antibodies at two-week intervals
by indirect ELISA. Briefly, ELISA plates were coated with native nucleosomes purified
from human HeLa cells (BPS Bioscience) and histones isolated from HeLa cells (see next
subsection). After adding plasma dilutions in assay buffer (PBS containing 0.05% Tween-20
and 5 mg/ BSA), peroxidase-labeled rabbit antimouse immunoglobulins (Dako) were used
as detection antibodies at a 1:2000 dilution in assay buffer. Once a high titer of circulating
antinucleoprotein antibodies was demonstrated (22 weeks), mice were used as spleen cell
donors for fusions. MRL-lpr/lpr spleen cells were fused to the nonsecreting myeloma cell
line P3-X63-Ag8.653 according to established protocols. One week after fusion, hybridoma
culture supernatants were doubly screened by indirect ELISA with nucleosomes and
histones from HeLa cells as antigens. Positive hybridomas for at least one antigen were

https://www.mdpi.com/article/10.3390/ijms22189935/s1
https://www.mdpi.com/article/10.3390/ijms22189935/s1
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subsequently cloned by limiting dilution. Stable antibody-producing clones were expanded
and cryopreserved in liquid nitrogen. Monoclonal antibodies were purified on a small
scale directly from late-stationary-phase culture supernatants by affinity chromatography
on a Hytrap protein G column (GE Healthcare). MAbs were characterized to select the
most suitable for use as immunoreagents for subsequent immunoassay development.

Appendix A.2 Purification of Histones

Histones were purified from HeLa cells. Cells were grown in Dulbecco’s modified
Eagle medium, high glucose (Gibco), supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin at 37 ◦C and 5% CO2. After reaching confluence, cells were lysed
using the acid extraction protocol previously described by Shechter et al. (1) Briefly, cell
nuclei were isolated by hypotonic lysis in buffer containing 10 mM Tris-HCl, pH 8.0, 1 mM
KCl, 1.5 mM MgCl2, 1 mM dithiothreitol, 0.4 mM phenylmethylsulfonyl fluoride, 1 mM
orthovanadate, and 1 µg/of protease inhibitors (Roche Diagnostics) in constant rotation
during 1 h. Afterwards, pelleted nuclei were acid-extracted using 0.4 N sulfuric acid
overnight at 4 ◦C, precipitated with 99% trichloroacetic acid, washed with cold acetone,
and resuspended in bi-distilled water. Protein concentration was calculated using the
Bradford method. (2) Total histone extracts were further purified by Fast Protein Liquid
Chromatography (FPLC) using the ÄKTATM Pure system and a SOURCETM 15RPC ST
4.6/100 reverse-phase chromatography column (GE Healthcare). Fractions were separated
by acetonitrile–trifluoroacetic gradient, and enrichment in specific histone proteins was
determined by SDS-PAGE, Coomassie staining, and Western blot. Antibodies used were
anti-H1, anti-H2A (Cell Signalling), and anti-H3 (Merck Millipore).

Appendix A.3 Analytes Used in the Specificity Tests for Home-Made ELISA and Standard Curve

H1, H1.0, H2A, H2B, and H3 histone fractions were isolated from HeLa cells; Bovine
H3: commercial purified histone H3 from bovine tissue (Mybiosource); Bovine Core:
commercial histones purified from calf thymus (Sigma); HeLa Core: purified combination
of total core histone proteins from HeLa cells; HeLa nucleosomes: purified nucleosomes
obtained after treatment of nuclear chromatin extracts from HeLa cell cultures (see section
Appendix A.3) with micrococcal nuclease (MNase); DNA was from calf thymus (Sigma);
BSA-Met: albumin methylated from bovine serum (Sigma); OVA: albumin from chicken
egg (Sigma).

A standard curve was prepared with increasing concentrations of nucleosomes pu-
rified from HeLa cells to test the sensitivity of the developed ELISA sandwich method;
detection limit (LD) was defined as the analyte concentration that provides a signal which
equals the signal of the blank plus four times the signal of the blank’s standard deviation.

Appendix A.4 Exclusion Criteria for the Cohorts and Results for Hemoculture

The exclusion criteria for ICU controls and sepsis and septic shock cases were: (i) pa-
tients with a life expectancy under 24 h; (ii) patients beyond the age range of 18–85 years;
(iii) patients with an active neoplastic process or treated with antioxidants; (iv) patients
with a stay in hospital ward prior to ICU admission longer than 24 h or transferred from an-
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other hospital; (v) surgical patients. Those patients in a post-cardiopulmonary resuscitation
state or with suspected viral infection, as well as pregnant women and patients who did
not provide consent, were excluded. Informed consent was obtained from all participants.

Regarding the focus of infection in sepsis and septic shock patients, cultures resulted
positive for Gram-negative bacteria in 3 sepsis patients and 11 septic shock patients; Gram-
positive bacteria were detected in 2 sepsis and 2 septic shock patients; and cultures resulted
negative for 9 sepsis and 6 septic shock patients.
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