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ABSTRACT
Introduction  Meal composition is known to affect 
glycemic variability and glucose control in type 1 
diabetes. The objective of this work was to evaluate the 
effect of high carbohydrate meals of different nutritional 
composition and alcohol on the postprandial glucose 
response in patients with type 1 diabetes.
Research design and methods  Twelve participants were 
recruited to this randomized crossover trial. Following a 4-
week run-in period, participants received a mixed meal on 
three occasions with the same carbohydrate content but 
different macronutrient composition: high protein-high fat 
with alcohol (0.7g/kg body weight, beer), high protein-high 
fat without alcohol, and low protein-low fat without alcohol 
at 2-week intervals. Plasma and interstitial glucose, 
insulin, glucagon, growth hormone, cortisol, alcohol, free 
fatty acids, lactate, and pH concentrations were measured 
during 6 hours. A statistical analysis was then carried out 
to determine significant differences between studies.
Results  Significantly higher late postprandial glucose 
was observed in studies with higher content of fats and 
proteins (p=0.0088). This was associated with lower time 
in hypoglycemia as compared with the low protein and fat 
study (p=0.0179), at least partially due to greater glucagon 
concentration in the same period (p=0.04). Alcohol 
significantly increased lactate, decreased pH and growth 
hormone, and maintained free fatty acids suppressed 
during the late postprandial phase (p<0.001), without 
significant changes in plasma glucose.
Conclusions  Our data suggest that the addition of 
proteins and fats to carbohydrates increases late 
postprandial blood glucose. Moreover, alcohol consumption 
together with a mixed meal has relevant metabolic effects 
without any increase in the risk of hypoglycemia, at least 
6 hours postprandially.
Trial registration number  NCT03320993.

INTRODUCTION
Glycemic variability, especially in the post-
prandial state, is one of the most challenging 
issues of blood glucose control in subjects with 
type 1 diabetes (T1D). It can have profound 
implications for both patients and health-
care providers. For the former, glycemic vari-
ability implies a greater risk of unexpected 

Significance of this study

What is already known about this subject?
	► In subjects with type 1 diabetes, increasing the pro-
tein or the protein and fat content of a mixed meal 
is associated with greater postprandial glucose as 
compared with meals with an identical carbohydrate 
content; however, the findings are heterogeneous 
and obtained mostly with relatively low carbohydrate 
meals (30–50 g).

	► Data regarding the effect of alcohol on postprandi-
al glycemic response in type 1 diabetes are scarce 
and contrasting, showing either an increased risk 
of hypoglycemia or a trend toward greater plasma 
glucose.

What are the new findings?
	► Increasing the content of proteins (and fats) in a 
meal with a high content (≈100 g) of carbohydrates 
results in slightly greater late postprandial blood glu-
cose concentrations and lower risk of hypoglycemia, 
as compared with a meal with the same carbohy-
drates but lower proteins and fats; however, the net 
contribution of proteins appears lower than in meals 
with low/medium carbohydrate content.

	► Alcohol consumption (0.7 g of alcohol per kg of body 
weight, given as beer) with a mixed meal does not 
seem to increase the risk of postprandial hypoglyce-
mia during at least 6 hours post ingestion.

	► Ingestion of approximately 1.5 pints of a medium-
high alcoholic strength beer lowers plasma pH 
significantly and might contribute to late post-
prandial hyperglycemia, likely increasing insulin 
resistance.

How might these results change the focus of 
research or clinical practice?

	► Diabetes care professionals and patients should be 
instructed about the complexity of postprandial glu-
cose response as a function of the carbohydrate to 
protein ratio, with an increased risk of hypoglycemia 
with low protein meals. They should also be aware of 
alcohol-induced insulin resistance and the potential 
risk of metabolic acidosis, especially under condi-
tions of poor glycemic control.
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hyperglycemia or hypoglycemia and may represent a 
psychological burden since it is related to a poor quality 
of sleep and probably to a worse quality of life.1–3

Meal composition is certainly one of the most important 
determinants of both intraday and interday within-
subject postprandial variability.4–6 Additionally, there 
is evidence of intersubject variability in the response to 
identical meals.7 Nevertheless, carbohydrate intake is the 
main driver of postprandial glucose (PPG) elevation, and 
despite accurate carbohydrate counting and new tech-
nologies it remains one of the most challenging aspects 
of diabetes care.8–11 Protein and fat intake likely plays a 
role on PPG, but findings are heterogeneous. Indeed, 
while some studies observed a significant increase in 
mean glucose area under the curve (AUC) (or in insulin 
needed to maintain the same glucose control) with the 
addition of proteins and/or fats in the meal,12–15 others 
failed to demonstrate it.16 17 Moreover, the magnitude of 
the effect varies greatly among studies, and most impor-
tantly, majority of them used relatively low amount of 
carbohydrates (30–50 g).12 14 18

Another possible source of PPG variability is alcohol 
consumption. However, data regarding the role of alcohol 
in the context of a mixed meal are scarce. This issue is 
relevant, since ethanol consumption among subjects with 
T1D is similar to that of the general population19 20 and it 
could significantly affect blood glucose control through 
direct and indirect pathways.21–25 The literature is even 
poorer about the effect of beer, despite it being the most 
consumed alcoholic drink in the vast majority of coun-
tries in the world.26

The objective of the present study was to investigate the 
effect of high carbohydrate meals of different composi-
tions, with or without ethanol, on the PPG response in 
adult subjects with T1D.

RESEARCH DESIGN AND METHODS
Subjects
Twelve subjects with T1D were recruited among those 
attending the outpatient clinic of the Francesc de 
Borja Hospital, Gandía, Spain. They were studied after 
receiving ethics approval and giving informed written 
consent, provided they  were >18 years old but <65 years, 
with a disease duration >1 year, a hemoglobin A1c >6.5% 
(48 mmol/mol) and <8.5% (69 mmol/mol), and a body 
mass index (BMI) between 18 kg/m2 and 35 kg/m2. 
They were all on a basal-bolus insulin regimen and free 
of significant microvascular (proliferative or severe non-
proliferative retinopathy, macroalbuminuria, clinically 
detectable autonomic or peripheral neuropathy) and 
macrovascular complications.

Study design
The study had a randomized, crossover, open design. 
Following a 4-week run-in period, during which the basal-
bolus treatment was optimized, each subject received 
a mixed meal on three different occasions at 2-week 

intervals. The carbohydrate content of the meals was 
nearly the same, but the macronutrient composition and 
energetic content were different (online supplemental 
table 1):
1.	 High protein, high fat meal, with alcohol (HPHF-A): 

120 g of white bread, with 227 g of turkey breast cold 
cuts, 20.8 mL of olive oil, and 150 g of grated tomato 
(corresponding to 70 g of carbohydrates, 52.5 g of pro-
teins, and 23.3 g of fats), plus a volume of beer calcu-
lated to administrate 0.7 g of alcohol per kilogram of 
weight.

2.	 High protein, high fat meal, without alcohol 
(HPHF-W): the same meal as meal 1, with nearly iden-
tical volume of non-alcoholic beer.

3.	 Low protein, low fat meal, without alcohol (LPLF-W): 
the same amount of bread given in meals 1 and 2, 232 g 
of grated tomato, and 6 mL of olive oil (corresponding 
to 70 g of carbohydrates, 7.5 g of proteins, and 7.0 g 
of fats), with the same volume of non-alcoholic beer 
given in the HPHF-W study.

Randomization followed a 3×3 Latin square design, 
with the subjects assigned to receive each meal according 
to one of the following sequences (four subjects each 
sequence):

	► S1: LPLF-W, HPHF-W, HPHF-A.
	► S2: HPHF-W, HPHF-A, LPLF-W.
	► S3: HPHF-A, LPLF-W, HPHF-W.
The basal insulin dose, optimized during the run-in 

phase, was maintained fixed during the study period. The 
decision of the prandial insulin dose to be administered 
at each mixed meal test was shared with the subjects, who 
were informed about the composition of the meal and 
the volume of beer (along with its carbohydrate content 
per 100 mL) they would receive. Although the carbohy-
drate of the solid component of the meal was identical 
in the three studies, the carbohydrate content of the 
non-alcoholic beer was slightly greater (1.3 g/100 mL) as 
compared with the alcoholic one. Despite this difference, 
the decision was to maintain the same prandial insulin 
dose in all of the studies for the following reasons: to 
follow the usual clinical practice of the patients, who 
seldom perform fine-tuning of insulin dose (ie, they 
inject extra insulin per bottle of beer, and not per milli-
liter or per type of beer); to avoid the confounding factor 
of the metabolic effect of (yet slightly) different insulin 
doses; and to maintain the same volume of beer, ruling 
out the possible effect of fluid intake-induced variability 
of gastrointestinal clearance and of different mealtime 
periods.

Study procedures
The subjects came to the hospital at 08:00 in the morning 
in fasting state. Two venous lines were cannulated: the 
cubital vein for insulin or glucose infusion, if needed, to 
standardize blood glucose concentration around 100 mg/
dL prior to the meal test, and the distal vein of the contra-
lateral arm for arterialized venous blood sampling. The 
latter was placed in a heated box to obtain arterialized 
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venous blood. At 10:30, just prior to meal consumption, 
prandial insulin aspart was injected in a periumbilical 
skinfold.

Blood samples for determination of hormones and 
metabolites were drawn from 30 min before meal-
time (time −30 min) until the termination of the study 
at time  +360 min. During the first 2 hours after meal 
(time +120 min), the samples were taken at 30 min inter-
vals. Then, from time +120 min to the end, samples were 
taken each 60 min.

In case of postprandial hypoglycemia, defined as plasma 
glucose below 70 mg/dL confirmed in two subsequent 
determinations at 15 min intervals, 15 g of glucose were 
given orally every 15 min until recovery of euglycemia.

The last sample was collected at 16:30. At 17:00, 
patients were free to leave the hospital, but on days with 
alcohol it was recommended to do it with an accompa-
nying person. The week of the meal study, patients also 
wore a continuous glucose monitor (CGM; Dexcom G5) 
so that the evening, nocturnal and next morning glucose 
data were available.

Analytical methods
Plasma glucose was measured in arterialized venous 
blood, centrifuged immediately after the extraction, and 
analyzed in duplicate using YSI 2300 STAT Plus Analyzer 
(Yellow Springs Instruments, Yellow Springs, Ohio).

Insulin concentration was measured by a commercial 
chemiluminescent immunoassay (Abbott Architect), 
with a good cross-reactivity for both human and insulin 
analogs,27 28 after polyethylene glycol extraction of anti-
bodies from the serum.29 Plasma glucagon was measured 
by a quantitative sandwich enzyme immunoassay tech-
nique (Quantikine ELISA, R&D Systems, with a mean 
minimum detectable dose of 6.37 pg/mL), growth 
hormone (GH) and cortisol by electrochemilumines-
cence immunoassay, ethanol by an enzymatic method 
with alcohol dehydrogenase, and pH and lactate by an 
ion-selective electrode potentiometry method (Roche 
Diagnostics SLU). Free fatty acids were measured by 
an enzymatic endpoint method with a lower limit of 
detection of 0.01 mmol/L (DiaSys Diagnostic Systems, 
Germany).

Endpoints and statistical analysis
The primary endpoint was plasma glucose concentration 
in the 6-hour postprandial period. Other outcomes were 
the time spent in hypoglycemia, the plasma concentra-
tion of free fatty acids, lactate and counter-regulatory 
hormones, and pH.

Previous to data analysis, the following data prepro-
cessing was carried out: (1) in case of hypoglycemia, the 
last value before oral glucose administration was carried 
forward until the end of the study at time +360 min; and 
(2) samples with a high level of hemolysis (>100 units) 
were discarded and their values were linearly interpolated.

Data were analyzed through analysis of variance 
(ANOVA) for repeated measures (with Huynh-Feldt 

correction for non-sphericity, when needed) after 
Napierian logarithmic (Ln) transformation to achieve 
normally distributed data. In this analysis, patients 
were included as random factors and study and time as 
fixed ones. When normal distribution was not achieved, 
non-parametric analysis by the Kruskal-Wallis one-way 
ANOVA on ranks was carried out on non-transformed 
data. Post-hoc analysis was performed with Fisher’s Least 
Significant Difference multiple comparison to assess 
all pairwise differences between the means (LPLF-W vs 
HPHF-W, LPLF-W vs HPHF-A, and HPHF-W vs HPHF-A) 
and, when the interaction between study and time was 
significant, to pinpoint differences between studies at 
specific time points. When Ln-transformed, differences 
between studies are given as ratios obtained from the 
antilogged difference between study conditions.

Data are presented as mean±SD and, since most of the 
non-transformed data are not normal, also as median 
and IQR.

RESULTS
All of the 12 recruited subjects completed the study. 
Their characteristics and main treatment parameters, as 
well as insulin dose and amount of carbohydrates given 
the day of the studies, are given in table 1.

The mean insulin concentration was similar in the 
HPHF studies as compared with the LPLF-W study (+8% 

Table 1  Mean±SD and range of the characteristics of 
subjects who participated in the study, and mean±SD and 
range of the main treatment parameters, insulin dose, 
amount of carbohydrates, and beer volume given at each 
type of the study

Mean±SD Range

Sex (male/female) 7/5

Diabetes duration (years) 16.8±11.5 2–38

BMI (kg/m2) 26.7±3.5 23.5–32.4

Weight (kg) 79.2±13.8 61.5–109.8

Basal insulin dose (U/day) 25.5±11.3 9–44

Prandial insulin dose (U/day) 21.8±10.4 10–40

Insulin to carbohydrate ratio (U/10 g) 1.0±0.5 0.3–2.2

Sensitivity factor (mg/dL/U) 46.3±21.0 23–72

Prandial insulin (U) LPLF-W study 10.6±5.3 3–24

HPHF-W study 10.6±5.3 3–24

HPHF-A study 10.6±5.3 3–24

Carbohydrate 
content (g)

LPLF-W study 104±6 97–117

HPHF-W study 105±6 97–118

HPHF-A study 94±4 89–103

Beer volume (mL) LPLF-W study 801±139 622–1093

HPHF-W study 803±141 622–1095

HPHF-A study 803±139 619–1095

BMI, body mass index; HPHF-A, high protein, high fat meal, 
with alcohol; HPHF-W, high protein, high fat meal, without 
alcohol; LPLF-W, low protein, low fat meal, without alcohol.
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in HPHF-A vs LPLF-W, 95% CI 0.93 to 1.25;   +9% in 
HPHF-W vs LPLF-W, 95% CI 0.94 to 1.27), without any 
significant interaction with time (p value for difference 
between studies=0.2969; figure 1).

The mean glucose concentration was also similar in 
the HPHF studies as compared with the LPLF-W study 
(+6% in the HPHF-A study vs the LPLF-W study, 95% CI 
0.95 to 1.18; +1% in the HPHF-W study vs the LPLF-W 
study, 95% CI 0.91 to 1.13). Nevertheless, time signifi-
cantly affected the differences between studies (Huynh-
Feldt adjusted p=0.0088), where the mean glucose in the 
HPHF-A and HPHF-W studies was higher than the glucose 
in the LPLF-W study at time 240, 300 and 360 min: 27%, 
24%, and 42% greater in HPHF-A; 30%, 17%, and 29% 
greater in HPHF-W (figure 1). Greater BMI resulted in 
greater PPG but without significant interaction with the 
study factor (online supplemental figure 1), while sex did 
not seem to have any effect (online supplemental figure 
2). Hypoglycemia in the first 6 hours of the postprandial 
period was much more frequent in the LPLF-W study 
(7 of 12 subjects) as compared with HPHF-W (3 of 12 
subjects) and HPHF-A (1 of 12 subjects). Accordingly, 

time in hypoglycemia was significantly greater in the 
LPLF-W study (71.6±6.1 min; 54.5 (0, 150) min) than in 
the HPHF-W (20.0±3.1 min; 0.0 (0, 45) min) and in the 
HPHF-A (10.0±2.9 min; 0 (0, 0) min) conditions (LPLF-W 
vs HPHF-W, 95% CI −103.3 to 0.1; LPLF-W vs HPHF-A, 
95% CI −113.3 to −9.9; p=0.0179). In contrast, CGM data 
showed no difference between studies in the incidence 
and duration of hypoglycemia from 1 hour after termi-
nation of the meal test until the next morning at 10:30 
(online supplemental figure 3).

Plasma alcohol concentration was undetectable in the 
HPHF-W and LPLF-W studies. In the HPHF-A studies, 
ethanol increased rapidly after ingestion, peaked 
at +60 min, and plateauing until +120 min when it started 
to decline at approximately 0.1 mg/dL/hour, being still 
significantly above baseline at the study end (figure 2).

Lactate was greater in the HPHF-A study as compared 
with the other two studies (a mean of 44% higher than 
HPHF-W (95% CI 1.31 to 1.59) and 41% than LPLF-W 
(95% CI 1.28 to 1.55), p<0.0001), the difference being 
significant from time 60 min until the end of the study. 
This was paralleled by a significant reduction of plasma 
pH, with a mean difference of 0.016 units (p=0.0023) 
(figure  2), and the HPHF-A to HPHF-W ratio and the 
HPHF-A to LPLF-W ratio being both 0.998 (95% CI 0.996 
to 0.999).

Free fatty acids decreased postprandially from basal 
values in all studies with a nadir at time 180 (antilipo-
lytic effect of insulin). It then started to increase toward 
preprandial values in the HPHF-W and LPLF-W studies, 
whereas it remained significantly more suppressed in 
the HPHF-A study (corrected p=0.000023 for interaction 
between study and time; figure 2).

The mean glucagon concentration was slightly but not 
significantly greater in the HPHF studies as compared 
with the LPLF-W study (+8% in HPHF-A, 95% CI 0.84 to 
1.37; +9% in HPHF-W, 95% CI 0.86 to 1.40). However, 
paralleling what was observed with glucose, time signifi-
cantly affected the differences between studies (p=0.040) 
and glucagon appeared to be greater in the late post-
prandial phase in the HPHF studies, regardless of alcohol 
administration (figure 3).

GH was significantly lower in the HPHF-A study as 
compared with the other two studies: a mean of 39% 
lower than HPHF-W (95% CI 0.43 to 0.87) and 45% lower 
than LPLF (95% CI 0.39 to 0.68) (p=0.000621). Time 
significantly affected the differences between studies 
(p<0.0001), with post-hoc analysis indicating a significant 
difference from time +180 min until the end of the study 
(figure 3).

No difference in cortisol concentration was observed 
between studies (p=0.754).

CONCLUSIONS
This study confirms that the addition of proteins and 
fats to carbohydrates increases late postprandial blood 
glucose and that alcohol consumed as beer with a mixed 

Figure 1  Mean glucose and insulin concentration profiles 
during the studies. Meal is given at time 0. (A) Mean and 
SE of insulin concentration during the studies. Interaction 
between time and study condition was not significant 
(p=0.178). (B) Mean and SE of glucose concentration during 
the studies. *Different from the other two studies (post-hoc 
analysis on significant interaction between time and study 
condition, p=0.0088). HPHF-A, high protein, high fat meal, 
with alcohol; HPHF-W, high protein, high fat meal, without 
alcohol; LPLF-W, low protein, low fat meal, without alcohol.
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meal has profound metabolic effects but with small posi-
tive net contribution to the plasma glucose pool. Then, 
in similar basal conditions, the risk of postprandial hypo-
glycemia is lower in case of meals with higher protein and 
fat composition and not increased by the concomitant 
alcohol consumption.

Regarding the impact of adding proteins and fats to 
carbohydrates, our results are qualitatively in line with 
those from other authors, demonstrating significant 
greater glucose values as compared with an LPLF meal 
starting from time 240 min post-meal.

Both proteins and fats have shown to significantly 
affect PPG. Proteins seem to increase ‘per se’ the AUC of 
PPG only at high amounts (≥75 g),30 whereas the impact 
in the context of a mixed meal may be apparent at lower 
doses, although with some degree of variability. Indeed, 
in crossover randomized studies in children/adoles-
cents, a protein content of 26.6 g in one study18 and of 
40 g in another14 increased mean glucose (19.8 mg/dL/
hour over 10 hours),18 as compared with a meal with an 
identical carbohydrate but lower protein content (the 
difference being, respectively, of 16 g and 35 g); when 
the amount of protein was greater (110 g vs 28 g, along 
with 52 g vs 19 g of fats),15 the difference in glucose 

concentration increased accordingly (a mean of 47.3 mg/
dL over 12 hours). The figure seems to be the same in 
adults, as in a study,12 where the protein content was 36 g, 
accompanied by 44 g of fats, and the incremental AUC of 
PPG was doubled as compared with the LPLF meal (the 
differences in protein and fat content being, respectively, 
of 27 and 40 g). In contrast, others failed to find signif-
icant differences in mean blood glucose over the study 
period.17 Nevertheless, all studies showed a significant 
interaction between plasma glucose concentration and 
time, with higher protein meals producing a significant 
increase as compared with lower ones, starting from 150 
min to 180 min post ingestion until the end of the obser-
vation (range 5–12 hours).12 14 15 17 18 30–32

The best evidence regarding the impact of the amount 
of fats on PPG after a mixed meal has been given by 
Bell et al,16 who showed that, independent of the type 
of fat, increasing its content from 20 g to 40 g and 60 g 
did not affect the mean incremental AUC_PG0–5 hours as 
compared with carbohydrates only (45 g), but resulted in 
a significantly different shape of glucose time series with 
proportionally lower concentration in the 0–120 min 
period and greater values in the late postprandial phase 
(from 120 min until the end of the study at 5 hours). The 

Figure 2  Mean and SE of alcohol (A), free fatty acids (B), lactate (C), and pH (D) profiles during the studies. *Different from 
the other two studies; #different from the HPHF-A study (post-hoc analysis on significant interaction between time and study 
condition, p<0.0001). FFA, free fatty acids; HPHF-A, high protein, high fat meal, with alcohol; HPHF-W, high protein, high fat 
meal, without alcohol; LPLF-W, low protein, low fat meal, without alcohol.
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same finding (same AUC but lower early PPG) has been 
confirmed in a slightly shorter study (4-hour duration, 
60 g carbohydrates, 15 g proteins, 2 g vs 38 g fats).33 In 
contrast, findings from other authors seem to indicate 
that fats increase insulin requirements13 and that the 
effect of fats and protein may be additive in terms of 
glucose response,14 although the use of monounsatu-
rated fats (extra virgin olive oil) instead of saturated ones 

(butter) may blunt the PPG response to meals with other-
wise nearly identical macronutrient composition.34

In our study, the fat content in the HPHF meal was 
modest (23.3 g) and the difference between the two 
meals was relatively small (16 g). Although an additive 
effect with the protein component cannot be excluded, 
its net contribution to the late postprandial hypergly-
cemia was likely minimal (as shown by Bell et al16 with 
20 g) and perhaps reduced by the use of monounsat-
urated fats.34 However, the difference in the protein 
content (45 g) between the high protein and the low 
protein meal is in line or even slightly greater than in 
all,12 14 17 31 but one,15 of the other crossover mixed meal 
studies. Nevertheless, the impact on late PPG was quan-
titatively lower, being 24 mg/dL at 6 hours post ingestion 
as compared with ≈100 mg/dL at 5 hours in one study14 
and at 6 hours in others.12 15 Although this difference 
may be partly explained by the greater increment of 
fat content in all of the cited studies (respectively, 40 g, 
31.2 g, and 33 g vs 16 g in ours)12 14 15 and much greater 
protein content in one of them,15 another possibility is 
that the impact of proteins and fats on PPG is a function 
not only of its absolute content but also of the absolute 
amount of carbohydrates or the ratio between carbohy-
drate/protein or carbohydrate/(protein  +fat). Indeed, 
the carbohydrate content in our study was two to three 
times greater than that administered in most of the other 
studies. The only significant exception is the experi-
ment by Borie-Swinburne et al,17 who administered 87 g 
of carbohydrate and, like us, found no difference in the 
early PPG concentration and smaller although significant 
differences 2.5–5 hours after meal. With respect to the 
mechanism through which proteins exert their positive 
effect on plasma glucose, our study also indicates a signif-
icant contribution from greater glucagon concentration 
(20%–40% higher than the LPLF-W study, starting from 
time 180 min). Besides, a direct contribution to glucone-
ogenesis from greater plasma amino acids concentration 
cannot be ruled out, as supported by data in the litera-
ture.35 36 On the other hand, free fatty acids were similar 
in the HPHF-W and LPLF-W studies and likely did not 
play any role.

Regarding the effect of alcohol in subjects with 
T1D, a few randomized controlled trials have evalu-
ated its impact on PPG when consumed with a mixed 
meal,22 25 37 38 but none with beer.23 Our results confirm 
the findings from Koivisto et al37 and Kerr et al,25 who, 
giving ethanol amounts slightly greater than (1 g/
kg/body weight) or similar to us (48 g women, 64 g men), 
respectively, did not find any difference in plasma PPG25 37 
or in the following morning.37 Additionally, no hypogly-
cemic episodes ensued during the former study, while 
PPG at 4 hours (end of study) in the latter was 29 mg/
dL greater in the ethanol arm (similarly to our results). 
In contrast, a small study (n=6) where ethanol (0.75 g/
kg/body weight) was given 3 hours after dinner22 showed 
similar plasma PPG but lower values the next day (both 
fasting and post breakfast) with increased incidence of 

Figure 3  Mean glucagon, GH, and cortisol profiles during 
the studies. Meal is given at time 0. (A) Mean and SE of 
glucagon concentration during the studies. *Different from 
the other two studies; #different from the HPHF-A study; 
$different from the HPHF-W study (post-hoc analysis on 
significant interaction between time and study condition, 
p<0.0001). (B) Mean and SE of GH concentration during 
the studies. *Different from the other two studies (post-
hoc analysis on significant interaction between time and 
study condition, p<0.0001). (C) Mean and SE of cortisol 
concentration during the studies. Interaction between time 
and study condition was not significant (p=0.464). GH, 
growth hormone; HPHF-A, high protein, high fat meal, 
with alcohol; HPHF-W, high protein, high fat meal, without 
alcohol; LPLF-W, low protein, low fat meal, without alcohol.
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late-morning hypoglycemia. Partially in accordance, 
Richardson et al38 showed lower mean interstitial glucose 
(21.6 mg/dL over 24 hours), the greatest visual differ-
ence being 2–5 hours post meal, when ethanol (0.85 g/
kg/body weight) was given at dinner. Moreover, the 
incidence of self-reported symptomatic hypoglycemia 
was twice greater as compared with placebo (range 0–4 
vs 0–2). However, that was a non-controlled, free-living 
conditions study where plasma insulin was not measured 
and old CGM systems, known to have low accuracy, were 
used. Additionally, the number of patients experiencing 
hypoglycemia was not reported and the range of daily 
carbohydrate consumption was unusually wide and high 
(195–1350 g in the ethanol group). Therefore, the contri-
bution of other factors like exercise or random variations 
in insulin absorption to the observed difference cannot 
be ruled out.

In our study, despite the lower carbohydrate content 
of the HPHF-A study (10.5±1.9 g) due to the unavoidable 
slight mismatch with non-alcoholic beer, PPG was not 
lower than the HPHF-W condition. Additionally, none 
but one patient experienced hypoglycemia (that patient 
was overdosed, since he/she had hypoglycemia under all 
study conditions). Importantly, this occurred with similar 
plasma insulin, but lower free fatty acids and GH concen-
trations, as seen by others.22 Thus, the observed PPG 
differences are probably underestimated and support the 
predominance of alcohol-induced insulin resistance25 39 
and overinhibition of gluconeogenesis and lipolysis, at 
least in the 6 hours postprandial state. Additionally, a 
delayed alcohol effect promoting a greater incidence of 
nocturnal or next-morning hypoglycemia has been ruled 
out by CGM data (although data must be interpreted with 
caution due to uncontrolled conditions and the small 
sample size). This is in line with one study in adolescents, 
where alcohol consumption in the context of meals and 
sweetened mixers resulted in significantly less time spent 
in hypoglycemia than an alcohol-free evening.40

Importantly, we have shown that alcohol consumption 
was followed by a significant decrease in pH level, likely 
due to the known increase of beta-hydroxybutyrate (not 
measured) and specular to the increase in lactate concen-
tration (resulting from inhibition of its peripheral conver-
sion into pyruvate). Although the difference may seem 
small in absolute terms, it should be remembered that 
pH is tightly regulated and that in some patients pH fell 
below 7.35 despite high plasma insulin and suppressed 
lipolysis. This may have clinically relevant implications, 
especially in the context of inadequate prandial insulin 
titration.

The strengths of our study include the measurement 
of glucose in plasma instead of capillary blood or inter-
stitial fluid, which reduces bias and the expected greater 
variance from a less accurate method; the measurement 
of plasma insulin, which excludes observed differences 
in plasma glucose that are affected by variability in 
insulin absorption; and the virtually identical normogly-
cemic values across patients and studies achieved with 

standardization of the preprandial glucose by means of 
an insulin feedback. Another strong point is the assess-
ment of hormonal and metabolic concentrations since 
this allows a deeper explanation of our findings. Besides, 
the crossover design minimizes the risk of confounding 
factors.

The main weaknesses of our study are the relatively short 
duration, the use of only one type of alcoholic drink, and 
the small number of participants, which may not allow 
recognition of significant differences with respect to the 
mean incremental AUC_PPG. However, the study does 
include the entire duration of most postprandial periods 
since the interval between meals usually prolongs over 
6 hours only during the night. Another limitation is the 
unblinded composition of the meal, since it could theo-
retically influence patients’ behavior or decisions (insulin 
dose, time of meal consumption, etc). However, blinding 
was not considered since the patients could easily identify 
the meal and non-alcoholic/alcoholic beer by the taste.

In summary, we can conclude that meal composition 
affects PPG response, the latter being greater when the 
fat-protein content increases, and probably in part medi-
ated by glucagon increase. However, the absolute contri-
bution of proteins to PPG seems to be attenuated when 
the carbohydrate content of the meal is high. Ethanol has 
relevant metabolic and hormonal effects (suppression of 
GH, increase of lactate, reduction of pH, and reduction 
of free fatty acids) with contrasting effects on glucose 
metabolism. Nevertheless, contrary to the widespread 
belief, when consumed as beer and with HPHF meals, 
its net balance in the postprandial state seems in favor 
of insulin resistance, without any increase in the risk of 
hypoglycemia, at least during the 6-hour postprandial 
period.
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