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A B S T R A C T

We evolve PyDTNN, a framework for distributed parallel training of Deep Neural Networks (DNNs), into
an efficient inference tool for convolutional neural networks. Our optimization process on multicore ARM
processors involves several high-level transformations of the original framework, such as the development and
integration of Cython routines to exploit thread-level parallelism; the design and development of micro-kernels
for the matrix multiplication, vectorized with ARM’s NEON intrinsics, that can accommodate layer fusion; and
the appropriate selection of several cache configuration parameters tailored to the memory hierarchy of the
target ARM processors.

Our experiments evaluate both inference throughput (measured in processed images/s) and inference
latency (i.e., time-to-response) as well as energy consumption per image when varying the level of thread
parallelism and the processor power modes. The experiments with the new inference engine are reported for
the ResNet50 v1.5 model on the ImageNet dataset from the MLPerf suite using the ARM v8.2 cores in the
NVIDIA Jetson AGX Xavier board. These results show superior performance compared with the well-spread
TFLite from Google and slightly inferior results when compared with ArmNN, the native library from ARM for
DNN inference.
1. Introduction

Information technology companies are nowadays strongly interested
in running deep learning (DL) models at the edge to improve security
(safety and privacy), to accelerate the time-to-response (i.e., latency)
experienced by the end-user, and to reduce the energy consumption for
IoT (Internet-of-Things) applications [1–4]. The deployment of these
trained DL models, known as inference, is often performed on a wide
variety of user appliances, ranging from drones and mobile phones to
wearables and IoT sensors [1–3]. In this scenarios, the inference process
is computationally less expensive than the prior training stage, but
often presents strict response time and/or energy constraints and has
to be performed on devices with limited computational and memory
capacities, as well as constraints in power supply.

In this paper, we investigate the efficient realization of an inference
module for multicore ARM processors, extending our prior work in [5]
to make the following contributions:

• Starting from the PyDTNN framework for distributed DNN train-
ing on clusters of computers [6], we obtain a basic module

∗ Corresponding author.
E-mail address: adcastel@disca.upv.es (A. Castelló).

1 https://mlperf.org/inference-overview.

for inference based on the forward pass stage of the original
framework, enhanced with some preliminary optimizations that
replace a few key Python routines with efficient Cython-based
counterparts parallelized with OpenMP directives.

• For the convolution layers, we follow our work in [7] to adopt
a blocked variant of the im2col transform [8] that casts this
operation into a matrix multiplication (gemm) while eliminating
the high memory costs of its conventional formulation. This is
achieved via careful utilization of the packing routines in the
BLIS [9] realization of the matrix multiplication kernel.

• We optimize the BLIS gemm kernel with a dynamic mechanism
to utilize architecture-specific cache configuration parameters. In
addition, we expand the realization of gemm in BLIS with a variant
that targets the convolution operators to the most appropriate
level of the cache.

• We develop a new micro-kernel for the BLIS realization of gemm
using NEON vector intrinsics for ARM processors. This opens
the door to fuse (i.e., merge) consecutive layers, reducing the
overhead of memory access for some DNN models.
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• We conduct a complete, incremental evaluation of the impact
of each one of these contributions, using a standard use case
from the MLPerf benchmark suite (v1.0)1 for inference, on the
ARM v8.2 Carmel processor embedded in the NVIDIA Jetson AGX
Xavier board.

• Finally, we evaluate the performance of an alternative parallel
scheme that prioritizes inference throughput versus latency. In
addition, we complete the experimental analysis with a study of
the energy consumption of these solutions, as this is a critical
metric for many embedded devices.

In summary, our work demonstrates that using well-known, general
high performance techniques one can attain a level of performance that
is comparable to that of an architecture-specific solution as ArmNN,
which exploits hardware details at very low level, or the state-of-the art
inference module in Google TensorFlow Lite. We believe that sacrificing
a small margin of performance in exchange for higher portability is
a big contribution of our work. In this sense, our generic target is a
‘‘conventional’’ multicore processor. This decision is supported by the
existence of a good number of devices in the market equipped with this
type of processors but without GPU support.

The rest of the paper is structured as follows. In Section 2 we review
and evaluate the prototype inference module obtained by applying a
few basic optimizations to the code for the forward pass in PyDTNN.
In Section 3 we describe several advanced optimizations introduced in
this basic module. Next, in Section 4, we analyze other parallelization
alternatives as well as energy consumption. Finally, in Section 5, we
close the paper with a summarizing discussion and few concluding
remarks.

2. Basic module for DL inference

In contrast with the training stage, the inference process is consid-
erably less expensive though, when performed on edge devices, may
present severe constraints in the response time, energy consumption,
and/or memory requirements. In this section we describe our initial
work to adapt the PyDTNN framework to common inference scenar-
ios, targeting low power ARM-based architectures. To illustrate this
process, we leverage the ResNet50 v1.5 model+ImageNet benchmark
included in the MLPerf inference suite, focusing on the Carmel multi-
core processor (ARM v8.2) embedded in NVIDIA’s Jetson AGX Xavier
development kit.

2.1. The PyDTNN framework for DL

PyDTNN,2 is a framework for distributed training of DNNs on
clusters of computers, written in Python, that is designed as a research-
oriented tool with a low learning curve. PyDTNN prioritizes simplicity
o facilitate that users can adapt the framework to prototype research
xploration; exposes an interface akin to that of popular DL pack-
ges such as Keras; and supports a significant part of common DNN
odels such as multi-layer perceptrons (MLPs), convolutional neural
etworks (CNNs), residual networks (ResNets), and transformers for
atural language processing. In addition, PyDTNN offers validation
ccuracy and parallel performance, for DL training, on par with those
ttained by Google’s TensorFlow [6]. To attain this, PyDTNN leverages
igh performance computational and communication libraries such as,
or example, Intel’s MKL; NVIDIA’s cuDNN, cuBLAS and NCCL; as well
s specialized implementations of MPI.

2 The PyDTNN framework is available at https://github.com/hpca-uji/
yDTNN/ under a GNU General Public License v3.0.
2

c

2.2. ResNet50 v1.5 and ImageNet

CNNs are especially appropriate DL technologies for image recog-
nition, recommendation systems, image classification, medical image
analysis, natural language processing, brain–computer interfaces, fi-
nancial time series, etc. The importance of CNNs is recognized by
the MLPerf suite v1.0, which includes the ResNet50 v1.5 CNN model
combined with the ImageNet (224 × 224) dataset as one of its six
benchmarks. This model consists of 176 layers, comprising a large
number of four types of transforms: 53 convolutions, 48 non-linear
(ReLU) functions, 52 batch normalizations, and 2 pooling operators;
see [10] for details.

2.3. Jetson AGX Xavier

The NVIDIA Xavier board embeds an ARM Carmel 8-core CPU
(with the ARMv8.2-FP16 extension), an NVIDIA 512-CUDA core Volta
GPU, and 32GiB of main memory. (As the target of this work is the
optimization of inference on ARM architectures, we will not consider
the GPU hereafter.) On the software side, the board runs under the
Ubuntu Linux distribution 18.04.4, and includes the GNU C compiler
gcc 10.0 and BLIS 0.7.0 for the linear algebra kernels.

For the experiments in this section, we employ all 8 ARM-based
Carmel cores of the platform. Furthermore, we set the MAXN power
mode available in the nvpmodel power/performance management util-
ity included in the NVIDIA Jetson AGX Xavier. This mode activates all 8
Carmel cores and sets their frequency to 2.3GHz. This permits an easier
evaluation of the multi-threaded parallelization, as it avoids side effects
that would occur if the system was allowed to automatically adjust the
core frequencies depending on the workload and the number of active
cores.

All tests in the paper employ IEEE 32-bit floating-point arithmetic
(FP32). Furthermore, the tests were executed 20 times and the results
were averaged to smooth out system load effects in the measurements.
The variations observed between different executions were, in general,
rather small.

2.4. Baseline inference

As a starting point for our work, we obtained a baseline module
for inference (hereafter referred to as base) by simply utilizing the
Python routine in PyDTNN for the training forward pass [11,12]. This
prototype module presents the following features:

– The convolutions are cast in terms of gemm kernels via an im2col
re-organization of the activation inputs that constructs a large
augmented matrix before invoking gemm [8].

– The gemm operation is realized via NumPy, which is linked against
the ARM-optimized realization of this kernel in the BLIS frame-
work [9]. This linear algebra library leverages multi-threaded
parallelism using OpenMP and exploits the vector units in the
ARM processor via an assembly-encoded micro-kernel with vector
instructions. (BLIS is described in more detail in Section 3.)

– The batch normalizations are implemented as Python routines.
– The elementwise ReLU functions are encoded as Cython routines

parallelized with OpenMP.
– The pooling layers are implemented as Cython routines that

parallelize the im2col transform using OpenMP directives.

We first offer an analysis of the time costs of the inference process
using the prototype inference module; see the column labeled as base
n Table 1. Given the large number of transforms comprised by the
esNet50 v1.5 model (more than 150), we group the costs in the

able into the four main types of transforms: 2D convolutions, batch
ormalizations, ReLU activation functions, and pooling operators. The

osts reported there correspond to the seconds that are necessary to

https://github.com/hpca-uji/PyDTNN/
https://github.com/hpca-uji/PyDTNN/
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Table 1
Cost analysis of the inference variants derived from PyDTNN when applied to ResNet50
v1.5+ImageNet and batch size 𝑡 = 128 using the full 8 Carmel cores of NVIDIA’s Jetson
AGX Xavier. The individual cost is displayed only for the major components.

Type of Basic module (Section 2) gemm optimizations (Section 3)

transform base cython conv-opt cache-opt fuse

Conv2D 10.81 10.81 8.37 7.92 7.78
(44.82%) (81.34%) (77.14%) (78.49%) (87.21%)

Batch 10.58 0.55 0.55 0.55 –
norm. (43.86%) (4.14%) (5.07%) (5.45%)
ReLU 1.36 1.36 1.36 1.36 0.75

(5.64%) (10.23%) (12.53%) (13.47%) (8.41%)
Pooling 1.08 0.26 0.26 0.26 0.26

(4.48%) (1.96%) (2.40%) (2.57%) (2.91%)

Time (s) 24.08 13.63 10.85 10.09 8.92
Images/s 5.31 9.38 11.80 12.68 14.34

process a batch consisting of 𝑡 = 128 images and the global throughput
s also measured in number of images per second.

CNNs avoid overfitting by taking advantage of the hierarchical
tructure of the data. This is achieved via convolutional layers, which
n general concentrate a significant fraction of the computational cost
or CNNs. This expectation is confirmed only partially by the results
n Table 1, which show that the convolutions consume 44.82% of the
xecution time of the initial base module. However, the Python realiza-
ion of the batch normalizations is almost as expensive (43.86%). From
his analysis, it is clear that, for this particular testbed (ResNet50 v1.5
ith ImageNet and NVIDIA’s Carmel processor), we should consider

he convolutions and batch normalizations as the two first targets in
he optimization of the baseline inference module.

.5. Batch normalization

A primary optimization target corresponds to the batch normaliza-
ions, which, surprisingly, were responsible for almost 44% of the exe-
ution time in the base variant. An inspection of the Python code for the
ealization of this transform in PyDTNN, together with some additional
xperiments, guided us to conduct the following optimizations:

– Elimination of code invariants in this type of transforms, in
particular, the calculation of the standard deviation and mean,
which can be directly obtained from the prior training process.
(This unnecessary recalculation was due to this routine being
used for the training forward pass in PyDTNN, where these two
parameters must be computed for each new batch.)

– Replacement of the Python code for this calculation with a Cython
routine that is parallelized (via OpenMP) and vectorized (using
the appropriate compiler directives).

– Avoidance of unnecessary accesses to large data arrays thanks to
a more careful use of temporary variables.

– Adoption of column-major storage for the data arrays that con-
form to the accesses to these structures to favor a more efficient,
vectorized data retrieval.

Fig. 1 illustrates the considerable benefits attained by the optimized
ealization versus the original one (respectively labeled as PYTH and
YTH in the figure). These results motivated us to apply a similar re-

ormulation of the Cython-based pooling transforms in the ResNet50
1.5 model, which were responsible for 4.48% of the total cost in the
ase module. (There exists a second pooling transform in the final layers
odel, but its cost is negligible.)

The positive impact of these optimizations is confirmed in the
olumn labeled as cython in Table 1, which shows that the time spent
or the batch normalizations and pooling transforms is reduced from
0.58 s and 1.08 s in the base module to 0.55 s and 0.26 s, respectively, in

the cython module. As a result, in the new cython variant, the batch
normalization and pooling transforms contribute with much lower
3

costs to the total execution time: 4.14% and 1.96%, respectively. The
global outcome of this optimization is an acceleration of the processing
throughput from 5.31 images∕s for the former to 9.38 images∕s for the
atter (a speed-up of 1.76).

. Optimization of GEMM-based convolutions for inference

After the initial optimization proposed in the cython variant, the
revious section identified the convolution as the key contributor to
he practical cost of the inference module when applied to ResNet50
1.5 in the target Jetson AGX Xavier platform. In this section, we
escribe some ARM architecture-aware optimization techniques that
ignificantly reduce the cost of this operator. Prior to this, we open the
ection with a short review of the BLIS approach to obtain a portable,
igh-performance realization of gemm.

.1. BLIS: Open and portable kernels for dense linear algebra

Consider the gemm operation 𝐶 += 𝐴 ⋅ 𝐵, where 𝐶 → 𝑚 × 𝑛,
→ 𝑚 × 𝑘, and 𝐵 → 𝑘 × 𝑛. BLIS mimics GotoBLAS [13] to implement

his kernel as three nested loops around a macro-kernel plus two packing
outines. From that point, BLIS differs from GotoBLAS by decomposing
he macro-kernel to expose two more loops around a micro-kernel;
ee Fig. 2 and [9] for details.

The architecture-specific optimization of the BLIS kernel requires
selection of the loop strides 𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐 that matches the cache or-

ganization of the target processor [14] (plus the development of a
vectorized version of the micro-kernel, to be discussed later). In some
detail, the loop ordering in the BLIS realization of gemm, together with
the packing routines, and a proper selection of the cache configuration
parameters/loop strides (𝑛𝑐 , 𝑘𝑐 , 𝑚𝑐), orchestrate a regular pattern of
data transfers, as illustrated in Fig. 3. Concretely, packing 𝐵 into 𝐵𝑐
inside loop L2 of the BLIS kernel in Fig. 2 makes a copy of these
data into the L3 cache, and the re-use of this particular buffer for all
iterations of the subsequent loop, L3, favors that this buffer persists in
that level of the cache. Similarly, packing 𝐴 into 𝐴𝑐 in Loop L3 copies
these data into the L2 cache and the repeated access to this buffer in
loop L4 preserves it in that level. For a detailed discussion, see [9,14].

The development of an NVIDIA Carmel-specific micro-kernel using
assembly code was done as part of the work in [15]. For a multi-
threaded execution of the BLIS realization, the loops of the gemm kernel
to be parallelized can be selected at execution time. The OpenMP-based
parallelization of the BLIS gemm kernel has been previously analyzed
for conventional multicore processors [16], modern many-threaded
architectures [17], and low-power (asymmetric) ARM-based processors
in [15].

3.2. Convolution via convgemm

One major goal of packing in BLIS is to arrange the entries of 𝐴 and
𝐵 into 𝐴𝑐 and 𝐵𝑐 , respectively, so that the elements of these buffers
are accessed with unit stride when executing the micro-kernel [9].
In practice, provided 𝑚 is large enough, the cost of the packing for
𝐵𝑐 is negligible compared with the number of flops performed inside
Loop L3. (A similar reasoning applies to the overhead due to the
packing for 𝐴𝑐 and the value of 𝑛𝑐 .)

In [7] we integrated the convolution within the BLIS [9] realization
of gemm, obtaining a convgemm routine that reduces the considerable
memory requirements of the full im2col transform. To attain this,
the convgemm realization assembles the augmented activation matrix
by blocks with the novelty that, for performance reasons, the block
dimensions are adjusted to the internal buffers utilized by BLIS gemm
to avoid the usage of extra memory while efficiently accommodating
the data in the processor cache hierarchy; see [7] for the full details.

Fig. 4 displays the impact on performance when using the convgemm
routine versus the full-im2col approach for the convolutions appearing
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Fig. 1. Performance of the two options for batch normalization when applied to ResNet50 v1.5+ImageNet and batch size 𝑡 = 128 using the full 8 Carmel cores of NVIDIA’s Jetson
AGX Xavier.
Fig. 2. High performance implementation of gemm in BLIS. 𝐶𝑐 ≡ 𝐶(𝑖𝑐 ∶ 𝑖𝑐 + 𝑚𝑐 − 1, 𝑗𝑐 ∶ 𝑗𝑐 + 𝑛𝑐 − 1) is a notation artifact, introduced to ease the presentation of the algorithm. In
contrast, 𝐴𝑐 , 𝐵𝑐 denote buffers that are involved in data copies. For simplicity, we consider that 𝑚, 𝑛, 𝑘 are integer multiples of 𝑚𝑐 , 𝑛𝑐 , 𝑘𝑐 respectively, and 𝑚𝑐 , 𝑛𝑐 are integer multiples
of 𝑚𝑟 , 𝑛𝑟 respectively.
Fig. 3. Data movement in the BLIS implementation of gemm.

in the testbed that is targeted in this section. Performance is measured
there in terms of billions of floating-point operations, abbreviated as
4

flops, per second (GFLOPS), taking into account the dimensions of
the gemm that is computed at each layer. For the two realizations
of the convolution evaluated in the figure, IM2COL+GEMM employs
the full im2col transform followed by an invocation to gemm whereas
CONVGEMM directly calls the convgemm routine that integrates the
memory-saving blockwise variant of im2col. In addition, for each layer,
we include the GFLOPS attained by a direct invocation to gemm (with
operands of the same dimensions) that does not perform any type of
im2col transform. This last rate offers an estimation of the overhead
present in the realizations based on the full- and block-wise im2col. In
an independent experiment, we could confirm that, in the latter case,
this overhead is mostly due to some data re-organizations which are
necessary to call convgemm, not to the block-wise im2col itself.

The results in Fig. 4 expose that the best realization largely depends
on the layer specifications (number of channels, number of filters, filter
size, strides, etc.). The largest speed-up is achieved for layer 12 (1.68)
with IM2COL+GEMM, while the smallest one is observed for layer 9
(1.02) when CONVGEMM is selected.

In general, those transforms for which both the kernel size and
the number of channels are small (e.g., 1 × 1 kernels and 128 output
channels), tend to favor IM2COL+GEMM while in the remaining cases
CONVGEMM should be preferred. To accommodate this, in variant
conv-opt we fix the realization to utilize the most efficient option on
a per-transform (layer) basis.

The column labeled as conv-opt in Table 1 reports the perfor-
mance of this second variant, which employs the best realization
(IM2COL+GEMM or direct CONVGEMM) for each convolution trans-
form of ResNet50 v1.5, showing a considerable increase in the pro-
cessing throughput with respect to the cython variant, from 9.63 to
11.80 images∕s. This represents a speed-up of 1.22.
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Fig. 4. Performance of the two options for the convolution when applied to ResNet50 v1.5+ImageNet and batch size 𝑡 = 128 using the full 8 Carmel cores of NVIDIA’s Jetson
AGX Xavier.
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3.3. Optimization of cache usage for gemm

For performance and portability reasons, the values for the cache
onfiguration parameters 𝑛𝑐 , 𝑘𝑐 , 𝑚𝑐 should be adjusted to the target
rocessor cache hierarchy. This is done, in general, as part of an offline
ptimization process that prioritizes performance for moderate to large,

‘squarish’’ problems, with 𝑚 = 𝑛 = 𝑘 ∈ 𝑂(103). For the NVIDIA Carmel
processor and FP32 arithmetic, this experimental optimization process
in BLIS yields a selection of 𝑚𝑐 = 560, 𝑛𝑐 = 3, 072, 𝑘𝑐 = 368. These values
ensure that 𝐴𝑐 fits into the L2 cache, and a panel of 𝐵𝑐 fits into the L1
cache. Furthermore, taking into account the associativity of these two
cache levels, this selection aims to reduce the risk of evicting them from
the corresponding level during the access to other data [14]. (At this
point, we recall that the NVIDIA Carmel processor does not have an L3
cache.)

Unfortunately, many of the gemm operations that are associated with
the convolutions appearing in practical CNNs are far from presenting
such ‘‘ideal’’ dimensions. Concretely, when tackled via the im2col trans-
form, most of the initial convolutions in the target ResNet50 v1.5 model
involve a matrix multiplication where 𝑚, 𝑘 are small (and equal), usu-
ally in {64, 128, 256}, while 𝑛 is much larger, of 𝑂(104 −105). The result
is a suboptimal utilization of the cache memories and, in consequence,
low performance. For example, for the matrix multiplication in the first
convolution of ResNet50 v1.5, 𝑚 = 𝑘 = 64 while 𝑛 ≈ 140𝐾. Therefore,
𝐴𝑐 is a small 64 × 64 matrix, which occupies only a minor fraction of
the target 2-MiB L2 cache of the NVIDIA Carmel processor: Indeed, less
than 1%!

To tackle this problem, we implemented our realization of the
gemm kernel, which follows the BLIS cache optimization principles, but
allows a dynamic selection of 𝑛𝑐 , 𝑚𝑐 , 𝑘𝑐 , at execution time, depending
on the dimensions of the matrix multiplication appearing in each
particular layer. In addition, we implemented a variant of the BLIS
kernel that ‘‘swaps’’ the target cache levels for 𝐴𝑐 and 𝐵𝑐 (see Fig. 3),
y interchanging loop L1 with L3, and loop L4 with L5 of the BLIS
ernel. This favors that a panel of 𝐴𝑐 resides in the L1 cache while 𝐵𝑐
ies in the L2 cache. The purpose of this variant is to maximize the
enefits of accessing data in the L2 cache. Finally, we performed an
xtensive experimental analysis to select the optimal values of these
ache configuration parameters for the NVIDIA Carmel processor; and
ixed the PyDTNN-based inference module to utilize the most efficient
ption on a per-transform (layer) basis.

Fig. 5 reports the performance, in GFLOPS, of the original version
f BLIS, labeled as BLIS-BASE there, compared with those of the two
ew variants that dynamically adjust the cache parameters taking into
ccount the parameters of each layer, with 𝐴𝑐 in the L2 cache and
part of) 𝐵𝑐 in the L1 cache (as in the original version of BLIS) or
5

ice-versa. We identify these two variants in the figure as A2B1 and t
2A1, respectively. In general, we observe that the best variant is
ighly dependent on the layer characteristics, with A2B1 offering a
etter option in more cases. The results also demonstrate that a careful
election of the variant outperforms the BLIS default option (BLIS-
ASE) by a visible margin. The largest gain is observed for the second

ayer, where variant B2A1 yields a speed-up of 1.69 over BLIS-BASE,
hile the smallest gain appears in the penultimate layer, with a speed-
p of less than 1.02. On average, the speed-up is 1.18 (arithmetic mean)
nd the weighted average speed-up is 1.21.

The global effect of the cache optimization techniques on the in-
erence module is reported in the column labeled as cache-opt of
able 1. The results for the grouped Conv2D layers show a reduction
f execution time from 8.37 s for conv-opt to 7.92 s for cache-opt. This
s lower than we could have estimated from the gains for gemm due to
he cache optimizations. To explain this, we note that the acceleration
eported in Fig. 5 was observed for a standalone execution of the matrix
ultiplication kernel, that is, without the data reorganization that is
ecessary for the preparation of the im2col transform. In contrast, when
hese complete data transforms are taken into account, the overall gain
ue to this optimization is smaller, yielding a speed-up of 1.07, and an
ncrease in the throughput rate from 11.80 to 12.68 images∕s.

.4. High-level micro-kernels for the NVIDIA Carmel processor

Let us now turn our attention to the micro-kernel. As shown in
ig. 2, this operation is responsible for performing the tiny matrix
ultiplication 𝐶𝑟 += 𝐴𝑟 ⋅ 𝐵𝑟, where 𝐶𝑟 = 𝐶𝑐 (𝑖𝑟 ∶ 𝑖𝑟 + 𝑚𝑟 − 1, 𝑗𝑟 ∶

𝑗𝑟 + 𝑛𝑟 − 1) → 𝑚𝑟 × 𝑛𝑟; 𝐴𝑟 = 𝐴𝑐 (𝑖𝑟 ∶ 𝑖𝑟 + 𝑚𝑟 − 1, 0 ∶ 𝑘𝑐 − 1) → 𝑚𝑟 × 𝑘𝑐 ; and
𝑟 = 𝐵𝑐 (0 ∶ 𝑘𝑐 −1, 𝑗𝑟 ∶ 𝑗𝑟+𝑛𝑟−1) → 𝑘𝑐 ×𝑛𝑟. In practice, the micro-kernel

is implemented as a simple loop along the 𝑘𝑐 dimension of the product
that updates 𝐶𝑟 with the outer product of one column of 𝐴𝑟 and one
row of 𝐵𝑟 per iteration:

𝐟𝐨𝐫 𝑘 = 0,… , 𝑘𝑐 − 1 𝐢𝐧 𝐬𝐭𝐞𝐩𝐬 𝐨𝐟 1 Micro-kernel
𝐶𝑟 += 𝐴𝑟(∶, 𝑘) ⋅ 𝐵𝑟(𝑘, ∶)

All routines of the BLIS-inspired realization of gemm are encoded
n plain C except for the micro-kernel. This enhances portability as
igrating the kernel to a particular processor architecture only needs

o develop an efficient realization of that component for the target pro-
essor. The micro-kernel is usually vectorized using either architecture-
ependent assembly instructions or vector intrinsics [9]. As a rule of
humb, 𝑚𝑟, 𝑛𝑟 are selected so that 𝐶𝑟, a column of 𝐴𝑟, and a row of 𝐵𝑟
ccupy a significant fraction of the processor (vector) registers. Besides,
𝑐 is set so that the cost of loading 𝐶𝑟 into the processor registers
before the loop commences) and writing back the updated block into

he main memory (once the loop is completed) is amortized over a
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Fig. 5. Performance of the matrix multiplications appearing in the convolution layers of ResNet50 v1.5+ImageNet with batch size 𝑡 = 128 using the full 8 Carmel cores of NVIDIA’s
Jetson AGX Xavier.
sufficient amount of flops; see [14]. These conditions usually imply that
𝑚𝑟, 𝑛𝑟 ∈ 𝑂(10) and 𝑘𝑐 ∈ 𝑂(100).

For the ARM-based processors targeted in our work, we developed
several implementations of the micro-kernel using ARM NEON intrin-
sics. The best results were in general obtained for a micro-kernel with
𝑚𝑟 × 𝑛𝑟 = 8 × 8, which loads the full 𝐶𝑟 into 16 vector registers
(with 4 FP32 elements per 128-bit vector register). In addition, the
implementation integrates data pre-fetching [18] by loading the first
column/row of 𝐴𝑟∕𝐵𝑟 into 2 + 2 vector registers before the micro-
kernel loop commences. Then, at each iteration of the loop, say 𝑘, the
micro-kernel prefetches the (𝑘 + 1)-th column/row of 𝐴𝑟∕𝐵𝑟 into 2 +
2 additional vector registers, to then proceed to accumulate in 𝐶𝑟 the
product involving the 𝑘th column/row using vector instructions.

Our NEON-based implementation of the micro-kernel compiled with
GNU gcc-10 and the appropriate optimization flags delivered a sus-
tained performance that is similar to that of the original assembly-
encoded micro-kernel in BLIS for ARM architectures.

The key observation though is that a ‘‘high-level’’ implementation of
the micro-kernel, using plain C code plus ARM NEON intrinsics, paves
the road to an efficient fusion of different types of layers, as described
in the following subsection.

3.5. Layer fusion

The ReLU function is a simple test-and-set operator that is applied
element-wise to the activations of a layer, setting to zero all neg-
ative values and leaving the remaining ones unchanged. The batch
normalization involves a couple of shift and scale arithmetic opera-
tions involving mean and standard deviation parameters. From the
computational point of view, the arithmetic cost of these two types of
transforms is low compared with the convolution itself. Therefore, their
contribution to the total time in Table 1 seems excessive, especially
when considering the Cythonized, parallelized, and vectorized version
of the kernels.

Some additional experiments allowed us to identify that these costs
are mostly due to memory accesses. To tackle this, when possible, we
fuse (i.e., merge) the application of the batch normalization and ReLU
with a previous convolution into a single ‘‘multi-layer operation’’. For
this purpose, we take advantage of the high-level implementation of
the micro-kernel (using C code enhanced with ARM NEON intrinsics)
to integrate the ReLU function and batch normalization as part of the
micro-kernel code. For the ReLU function, this is straightforward as
this transform is applied element-wise. For the batch normalization, the
fusion is more involved as the 2D output of the matrix multiplication
needs to be mapped into the 4D result of the convolution as part of the
fused normalization.

From the implementation point of view, the specialized case of the
micro-kernel with fused layers is invoked from gemm to update matrix
6

𝐶 during the final iteration of the loop that traverses the 𝑘-dimension
of the problem (indexed by 𝑝𝑐); see Fig. 2. For the remaining iterations
of that loop, the gemm realization invokes the regular (i.e., non-fused)
micro-kernel.

The fuse column in Table 1 shows a cost for the fused Conv2D
operations of 7.78 s only, which is even lower than that of the non-fused
operations in cache-opt. This is due to the use of the new micro-
kernel, with vector intrinsics. This reduction is even more notable
if we consider that this micro-kernel not only performs the Conv2D
operations but also all the batch normalizations as well as the ReLU
functions which could be fused (about half of them). As a result, we
obtain a raise in the throughput rate from 12.68 s for cache-opt to 14.34 s
for fuse, which corresponds to a speed-up of 1.13.

4. General evaluation

4.1. Comparison with other frameworks

The global result of the multi-step optimization process described in
the previous sections shows an increase in the processing rate from the
original 5.31 images∕s with the prototype inference module derived from
PyDTNN up to 14.34 images∕s, which yields a global speed-up of 2.70
over the original solution.

Table 2 compares the throughput of the optimized inference module
based on PyDTNN with the state-of-the-art results reported in the latest
release of the MLPerf benchmark (1.0) using the Carmel processor
in the NVIDIA’s Jetson AGX Xavier platform.3 Overall, (one instance
of) PyDTNN outperforms TFLite while being slower than the native
ArmNN. At this point though, we would like to remark that the op-
timization of PyDTNN was achieved via high-level transformations of
the original Python code for PyDTNN, the development of some high-
level Cython routines, the encoding of a NEON-based micro-kernel with
fused layers, and the appropriate selection of some configuration pa-
rameters. Therefore, we believe that our techniques are quite general,
yielding a moderately portable inference engine to different platforms
from NVIDIA/ARM as well as from other vendors.

4.2. Real-time inference and alternative parallelization schemes

In time-constrained scenarios, raw inference throughput (i.e., pro-
cessed images/s) is a secondary figure-of-merit and the evaluation
should be instead focused on the time-to-response. The plot in the top-
left of Fig. 6 reports the time to process a batch consisting of a varying
number of images, from 𝑡 = 1 to 128, using the full eight ARM cores

3 https://mlperf.org/inference-results/.

https://mlperf.org/inference-results/
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Fig. 6. Maximum inference time (for all instances) and throughput (in images/s) when running 1, 2, 4, and 8 concurrent instances of PyDTNN respectively using 8, 4, 2, and 1
threads each (top-left, top-right, bottom-left, and bottom-right, respectively).
Table 2
Throughput comparison of inference frameworks using the full 8 Carmel cores of
NVIDIA’s Jetson AGX Xavier.

Framework Version Images/s MLPerf Batch size (images)

TFLite 2.4.1 (ruy) 13 1.0 Unknown
ArmNN 21.02 (Neon) 18 1.0 Unknown
PyDTNN (1 instance) 1.0 14.34 – 128
PyDTNN (4 instances) 1.0 16.40 – 32/instance
PyDTNN (8 instances) 1.0 16.56 – 16/instance

in the NVIDIA Jetson board. This experiment shows that increasing
the batch size gradually improves the throughput (images/s) of the
inference engine, especially for small values of 𝑡, but also augments
the total execution time for the batch. Thus, depending on the specific
constraint determined by a given application on the time-to-response,
the results identify the maximum batch size that can be used while still
meeting that threshold and maximizing productivity. For instance, an
upper bound of 2 s in the time-to-response is met for a batch with 𝑡 = 16,
but not for 𝑡 = 32.

Related to the time-to-response versus throughput balance, there
is an alternative parallelization scheme that is worth investigating:
concretely, instead of executing a single instance of PyDTNN that
utilizes all 8 platform cores (via multi-threading), we can run multiple
instances of the inference engine, each mapped to a distinct subset
of the platform cores and working with a separate batch of images
(provided the memory capacity allows to replicate the model). The rest
of the plots in Fig. 6 show the results for this experiment using 2, 4, and
8 instances of PyDTNN, which respectively utilize 4, 2, and 1 distinct
core(s) each, thus involving the full 8 ARM cores of the platform. This
7

experiment offers a few interesting insights:
1. The global throughput of this alternative scheme offers higher
performance than the option that runs a single instance of Py-
DTNN. Specifically, compared with the 14.34 images∕s of the
conventional parallelization approach, running 2 concurrent in-
stances of PyDTNN delivers 15 images/s, 4 concurrent instances
achieves 16.4 images/s, and scaling up to 8 instances provides
16.56 images∕s, standing rather close to the 18 images/s delivered
by ArmNN. In consequence, provided a large number of images
are available at an ‘‘input inference queue’’, we may want to
process them using multiple instances of the inference engine.
Also, this parallelization scheme is particularly interesting in
ensemble learning, where the predictions from multiple DNNs
trained on different initial conditions (e.g. weights initialization)
are combined to reduce the variance and generalization error
of the predictions. Notice that in this scenario the same batch
of images is simultaneously passed for inference to the different
DNNs in the ensemble.

2. All instances mostly deliver the same throughput, which demon-
strates that the overheads due to the concurrent execution of
multiple concurrent instances are negligible. These are good
news for multi-model scenarios as those arising in autonomous
vehicles.

3. For real-time scenarios, increasing the number of concurrent
instances of PyDTNN penalizes the time-to-response of a single
batch. For example, a batch 𝐵1, consisting of 16 images, is
processed in 1.4 s when executed using a single instance of
PyDTNN using the full board resources. In comparison, the same
batch 𝐵1 takes 2.14 s to process when there are two running
instances of PyDTNN, one working on this batch and a second
one processing a different batch 𝐵2. When the number of in-
stances of PyDTNN is raised to 4, the time is almost doubled,
and it takes 4.11 s to process 𝐵1. In the latter case, when 8
instances are concurrently launched, the processing of the batch
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Fig. 7. Inference energy consumption per image and throughput (in images/s) when running 1 instance of PyDTNN with the NVIDIA Jetson AGX Xavier in two power modes,
30 W ALL and MAXN (top-left and top-right, respectively) using 1–8 cores; and using the 30 W × C power modes which deactivate some of the socket cores (8 − 𝗑) versus the
MAXN power mode.
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takes 7.8 s. This was about to be expected as, in the latter case,
the amount of resources dedicated to processing that particular
batch is divided by 8, 4 or 2, compared with the single-instance,
2-instance, and 4-instance execution, respectively.

4.3. Energy consumption, power modes, and performance

Energy consumption is a relevant metric for energy-constrained
platforms, such as battery-powered embedded devices. In the following
experiment, we evaluate the energy consumption per image attained
with the most significant power modes in the Jetson AGX Xavier board:
30 W ALL and MAXN. In the former case, the operating system regu-
lates the hardware elements in the board (in particular, the frequency of
the CPU cores and the GPU) to ensure that the system does not exceed
a threshold power dissipation of 30watts. In practice, we observed that,
for example, this results in the processor frequency for the ARM cores
being set to 1.2GHz when all 8 cores are utilized. In the latter power
mode, the frequency is set to 2.3GHz for all ARM cores.

The top two plots in Fig. 7 show the energy consumption per image
when running a single instance of PyDTNN that processes a batch of
𝑡 = 128 images using an increasing number of threads, from 1 to 8,
with the board operating in the 30 W ALL or MAXN power modes. We
can observe the significant impact of the power modes on the inference
throughput, which is roughly multiplied by two for MAXN compared
with 30 W ALL. This is natural if we take into account the increase
of the CPU frequency which is also mostly doubled from 1.2GHz to
2.3GHz. However, the performance boost comes at the cost of some
energy efficiency loss, as the plots show that, for example, 8 threads
running in 30 W ALL consume about 1.2 joules∕image while the same
cores in MAXN increase energy consumption to 1.5 joules∕image.

To close the analysis of energy consumption, the bottom plot in
8

Fig. 7 reports the energy consumption per image and throughput when t
we employ the alternative 30 W xC power mode, where x specifies the
number of active cores while the remaining 8 − 𝗑 cores are switched
off. Note that this is different from the 30 W ALL power mode as in
this later configuration all cores are turned on, though some of them
may be idle (C state) because they do not intervene in the execution
of the inference module. Due to that, the CPU frequency of the active
cores can be raised beyond 1.2GHz up to a higher clock rate, without
exceeding the power budget of 30W. For instance, comparing the
energy consumption (per image) of the 30 W 2C power mode with that
observed for the execution using two cores in 30 W ALL power mode,
we can appreciate a slightly higher consumption for the latter, which
was to be expected as idle cores still consume some energy. Given
the CPU frequency increase in 30 W 2C, the inference throughput of
2.4 images∕s using 2 cores in the 30 W ALL mode is almost doubled to
4.5 images∕s in 30 W 2C.

5. General discussion and concluding remarks

In this paper, we have evolved PyDTNN, a framework for dis-
ributed parallel training of Deep Neural Networks (DNNs), to effi-
iently perform inference with convolutional neural networks on multi-
ore ARM processors. This new inference engine inherits the appealing
eatures of the ancestor PyDTNN training framework in terms of sim-
licity, user-friendly interface, and support for popular DNNs such as
LPs, CNNs, ResNets, and transformers. In addition, this inference tool

pplies some general-purpose high performance techniques as well as a
ew architecture-specific optimizations to deliver inference throughput
hat is competitive with that observed for popular frameworks, such
s TF Lite, as well as highly architecture-dependent counterparts for
RM-based processors such as ArmNN.

Our work incrementally introduces the following (mostly
rchitecture-agnostic) optimizations to the baseline implementation of

he inference module in PyDTNN:
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1. Replace Python with Cython-accelerated code for certain
compute-intensive routines.

2. Replace the conventional IM2COL+GEMM convolution with an
alternative that embeds the IM2COL transform within the pack-
ing (re-organization) that is implicitly done in the BLIS realiza-
tion of GEMM.

3. Adjust the cache configuration parameters for the BLIS realiza-
tion of GEMM to better match the dimensions of the matrix
multiplications arising in the Resnet50 v1.5 model.

4. Fuse convolution layers with subsequent ReLU transforms and
batch normalizations.

Among these, the first optimization does not necessarily improve cache
usage while the second, third and fourth ones improve performance by
reducing the number of memory accesses and better utilizing the cache
hierarchy [14].

We note that a major part of the optimization techniques described
in this paper are portable to other computer architectures (and are
applicable to other DNN models). BLIS itself is highly portable as well
as it is composed of C code except for a small micro-kernel, which
can be encoded directly in assembly or in C using vector intrinsics for
high performance, and there exist high performance realizations of the
micro-kernel for many of the current multicore processors.

Also, the results for the multi-instance parallelization scenario
demonstrate the relative importance of the batch size in the time-
to-response versus raw throughput (images/s). Also, the experiments
evaluating the energy consumption in the different modes reveal that
a higher throughput comes at the cost of higher energy consumption.
However, disabling cores helps to increase the throughput at a constant
power budget.
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