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A B S T R A C T   

The correct assessment and characterization of heart anatomy and functionality is usually done through in
spection of magnetic resonance image cine sequences. In the clinical setting it is especially important to deter
mine the state of the left ventricle. This requires the measurement of its volume in the end-diastolic and end- 
systolic frames within the sequence trough segmentation methods. However, the first step required for this 
analysis before any segmentation is the detection of the end-systolic and end-diastolic frames within the image 
acquisition. In this work we present a fully convolutional neural network that makes use of dilated convolutions 
to encode and process the temporal information of the sequences in contrast to the more widespread use of 
recurrent networks that are usually employed for problems involving temporal information. We trained the 
network in two different settings employing different loss functions to train the network: the classical weighted 
cross-entropy, and the weighted Dice loss. We had access to a database comprising a total of 397 cases. Out of 
this dataset we used 98 cases as test set to validate our network performance. The final classification on the test 
set yielded a mean frame distance of 0 for the end-diastolic frame (i.e.: the selected frame was the correct one in 
all images of the test set) and 1.242 (relative frame distance of 0.036) for the end-systolic frame employing the 
optimum setting, which involved training the neural network with the Dice loss. Our neural network is capable of 
classifying each frame and enables the detection of the end-systolic and end-diastolic frames in short axis cine 
MRI sequences with high accuracy.   

1. Introduction 

Cardiovascular diseases are one of the main causes of death in 
developed countries (Townsend et al., 2016; Lopez et al., 2021). In the 
clinical setting, the most reliable and accurate imaging technique for 
correctly assessing cardiac function is cardiac magnetic resonance 
(CMR), specifically with cine sequences which can show the motion of 
the entire heart. The cardiac short-axis sequences have shown to be 
accurate and reproducible for the assessment of the main biomarkers to 
characterize the function of the heart (Childs et al., 2011). 

In the clinical setting, several parameters are used to characterize the 
left ventricle (LV), specifically its volume in end-diastole (ED), which 
corresponds to the state of maximum relaxation, and in end-systole (ES) 
which corresponds to the state of maximum contraction. Using these two 

values the ejection fraction can then be derived. In this context, some 
work has been done in the automation of LV segmentation in the end- 
systolic and end-diastolic frames, where convolution neural networks 
have shown especially good results (Poudel et al., 2017; Abdelmaguid 
et al., 2018; Tao et al., 2019; Tong et al., 2019; Chen et al., 2020; 
Perez-Pelegri et al., 2020; Pérez-Pelegrí et al., 2021). Still, the previous 
step of automatically detecting these frames, which is a required prior 
step, has not been studied so extensively and it is usually done manually, 
increasing the time required for the whole diagnosis. 

Several works have addressed the issue of ED and ES detection in 
echocardiography imaging (Dominguez et al., 2005; Gifani et al., 2010; 
Shalbaf et al., 2011; Zolgharni et al., 2017; Meidellfiorito et al., 2018), 
but little work has been done with CMR. In the work of Kong et al. 
(2016) a convolutional neural network was used to extract spatial 

* Correspondence to: Department of Cardiology, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibanez 17, 46010 Valencia, Spain. 
** Correspondence to: Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera, s/n, 46022 Valencia, Spain. 
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features from the images followed by the Long-Short-Term-Memory 
layers (LSTM) to encode the temporal information. Other works have 
focused on segmenting the entire LV and measuring its main parameters, 
such as volume (Hsin and Danner, 2016) or its location with respect a 
reference point (Yang et al., 2017) to determine ED and ES. 

We now aim to design a fully convolutional neural network capable 
of detecting the ED and ES frames in a short-axis stack of cine CMR 
sequences with both an arbitrary number of frames and of slices per 
frame. The network uses dilated convolutions which have been applied 
to multiple deep learning tasks, especially in segmentation problems (Yu 
and Koltun, 2015; Chen et al., 2017, 2018). We based their use on the 
paradigm shift caused by the development of wavenet described by Oord 
et al. (2016) which demonstrated that the use of dilated convolutions 
could be used to encode temporal information and can surpass the 
different recurrent neural network layers usually employed to tackle 
temporal sequences. 

2. Materials and methods 

2.1. Image dataset 

All patients gave written informed consent and the study was 
approved by the Institutional Review Board of our hospital. Our dataset 
consisted of 397 short-axis stacks of CMR cine sequences covering both 
the right and left ventricles along the whole cardiac cycle. This dataset 
comprised a total of 397 patients (270 men, 127 women), with age 64.53 
± 12.35 years (63.27 ± 11.98 years for men, 67.42 ± 12.75 years for 
women) (mean ± standard deviation), with both cardiac patients and 
healthy subjects. Main CMR findings of the patients were presence of 
myocardial fibrosis, necrosis, ischemia and LV systolic dysfunction 
(ejection fraction lower than normal and/or regional wall motion ab
normalities). This is summarized in Table 1. CMR imaging was per
formed using a 1.5 T MRI scanner (Sonata Magnetom Siemens, Erlangen, 
Germany). All the acquisitions were done in end-inspiration during a 
breath-hold with the following typical sequence parameters: flip angle: 
58◦, repetition time: 52.92 ms, echo time: 1.25 ms. The in-plane reso
lution varied across the cases, ranging from 0.57 × 0.57 mm2 to 1.09 ×
1.09 mm2. The slice thickness and spacing between slices was constant 
in all cases, 7 mm and 3 mm respectively. The resulting image sizes 
varied from 144 × 144–256 × 256 and the number of slices ranged from 
8 to 14. The number of temporal frames in each sequence also varied in 
the dataset, the great majority included 35 frames (364 cases, 95% of the 
dataset). The remaining cases ranged from 14 to 25 frames. In all cases 
the sequence encompassed a single cardiac cycle. The time resolution 
between frames was of 0.023 s for the cases with 35 frames and varied 
from 0.062 to 0.078 s for the remaining cases. 

The dataset included the labels for the frames corresponding to ES 
and ED. This classification was done manually by mutual consensus of 
two expert cardiologists with more than 15 years of experience. For each 
image acquisition the two cardiologist discussed until reaching an 
agreement on the best labeling. For the majority of cases the time 
required for the labelling took around 2–3 min, which included the 
exploration of the images and the selection of the ES and ED, with little 
discussion and easy agreement. However, we note that some cases 
required a more profound discussion among them with longer decision 
times, this happened only for ES frames and the disagreement in frame 
distance was not larger than 1 frame. For these harder cases the addi
tional required time was variable reaching up to around 5 min. 

Every case of the entire dataset was categorized in one of the 11 
categories corresponding to the diagnosis (see Table 1) in order to 
ensure that the split between training, validation and test sets had 
similar distribution with respect to diagnosis. Finally, all cases were 
randomly grouped in a training set (259 cases, 65%), validation set (40 
cases, 10%) and test set (98 cases, 25%). 

2.2. Image pre-processing 

Prior to training the network the dataset was modified to reduce the 
problem complexity and to normalize the dataset. All the images were 
resampled to a constant in-plane resolution of 1 mm2 and the image size 
was set to 176 × 176 pixels. Some images were cropped around the 
borders and others were zero-padded but in all cases the entire heart 
remained within the central region of the image. The z-axis and the time 
axis were left untouched. The intensity values for every volume stack 
was also normalized to a range of 0 and 1 using min-max normalization. 

Additionally, the 4D stacks were not directly used as inputs for the 
network, due to the excessive memory consumption that this would 
require. Instead, we converted each 3D volume within the sequence to a 
single image. In order to do this, we applied the median value between 
the second and penultimate slice along the z-axis to generate a single 
image that represented the entire volume at each time frame. As a 
general rule, we did not include the first and last short axis slices since, 
usually, the LV is not fully present in all the frames along the cardiac 
cycle and also because these slices increased noise in the final image. 
This process modified our dataset from 4D stacks to 3D stacks, where the 
slices are the median representation of the volumes at specific frames 
and the z-axis represents the frames of the sequence. With this, memory 
requirements were reduced significantly while the information 
regarding cardiac contraction remained within the data. An example of 
the median images obtained in a sequence can be observed in Fig. 1 
where the contraction and motility of the tissue is visually perceptible. 

2.3. Neural network architecture 

The architecture employed takes as input arrays of 176 × 176 × n 
being n the number of frames (time axis) and a variable number. The 
neural network initially applies several 2D convolutions using ReLU 
activation functions and max-pooling operations to extract the spatial 
features of the images and reduces their dimensions. These operations 
are implemented as 3D convolution of size 3 × 3 × 1 (equivalent to a 2D 
convolution) since the inputs are 3D arrays. Each convolution is always 
followed by batch-normalization (Ioffe and Szegedy, 2015; Santurkar 
et al., 2018) to improve the training speed and performance. After 4 
steps of convolutions and downsampling, the result is a stack of channels 
of size 11 × 11 which are then collapsed to a single channel (using a 
1 ×1 ×1 convolution). We then added different convolution paths 
which apply the operation to the time dimension as well. This is done 
with variable kernel sizes using 3D convolutions (3 × 3 × 3, 3 × 3 × 5 
and 3 × 3 × 7) combined with different dilation rates of 1, 2 and 4 in the 
third axis. This makes a total of 9 paths, each one giving one channel as 
output. The combinations ensure that the field of view for the time 
dimension ranges from short term (minimum field of view of 3 frames) 

Table 1 
Classification of the dataset in categories according to its clinical diagnosis.  

Categories Number of 
cases 

Normal cases, no pathology 48 
Presence of necrosis 14 
Presence of fibrosis 12 
Presence of ischemia 10 
Functional affection of LV (ejection fraction lower than normal 

and/or affected segmental contractility) 
23 

Functional affection of RV (ejection fraction lower than normal 
and/or affected segmental contractility) 

2 

Functional affection of LV and RV 135 
Functional affection of LV and presence of fibrosis/necrosis/ 

ischemia 
45 

Functional affection of RV and presence of fibrosis/necrosis/ 
ischemia 

4 

Functional affection of RV and LV and presence of fibrosis/ 
necrosis/ischemia 

95 

Other cases that do not fall in any other category 9  
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Fig. 1. Example of a sequence of the median representations of the volumes in each frame. The order is from left to right and from top to bottom. It can be seen that 
the contractility of the left ventricle is clearly visible. The ellipsis points at the right side indicate that the sequence continues. The end-systolic and end-diastolic 
frame are indicated above the images. 

Fig. 2. Neural network architecture design. The first part of the network consists of several convolution layers and max pooling operations that process the spatial 
information. After this section a 1 × 1 × 1 convolution collapses the previous feature maps to one single feature map. This is then passed to the second section with 
different dilated convolution paths. The dilation is applied only to the temporal dimension (third dimension) and each path produces one single feature map. The 
resulting feature maps are concatenated and a final convolution layer collapses the size to a single value per frame which is finally given a probability through a 
softmax activation function. 
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to long term (maximum field of view of 25 frames). 
The core idea of using as much as 4 downsampling steps prior to the 

time-axis analysis is based on the fact that the heart occupies a large 
amount of space within the image in the more relaxed states (see Fig. 1) 
and thus the more downsampling steps applied the larger the spatial 
field of view the network can use in the temporal analysis. Additionally, 
we applied up to 4 steps in order for the feature maps to remain with an 
even matrix size and avoid using padding or cropping steps in the 
architecture. 

Finally, the resulting outputs are concatenated and a last 
11 × 11 × 1 convolution followed by a softmax activation function is 
applied. The softmax outputs 3 classes which gives the probability of 
each frame being the end-systole frame, end-diastole frame or none of 
them (a background frame). These three probabilities always add up to 
1. The entire architecture is schematized in Fig. 2. This architecture had 
a total of 4.7 million parameters and occupied 54 MB in HDF5 format. 

2.4. Frame classification 

The neural network outputs a list containing for all the frames a 
probability associated to each category: ES, ED or none. However, the 
neural network tended to give outputs where there were multiple frames 
with high probabilities of being ES and ED near those frames. This is 
explained by the fact that the differences in the contraction between 
adjacent frames is very subtle, and as such it is easy for the network to 
give high probabilities to frames that are close to the ED and ES. How
ever, only one frame must be classified as ED or ES. We tested two 
classification methods to select one frame as ED and another for ES. The 
first one classified as ED or ES the frames with the highest probability 
assigned to those categories (naïve method). The second method took all 
the frames with a high probability of being ED or ES and then classified 
the central frame amongst those as the ED or ES (central method). The 
central method used a probability threshold of 90% to select candidate 
frames to be classified as either ES or ED. Fig. 3 shows a schematic of 
how the central method works. 

2.5. Data augmentation 

The training dataset employed was increased through data 
augmentation methods. We increased the total amount of cases by a 
factor of 7 (comprising a total of 1813 cases to train with). The dataset 
was increased applying random rotations around the image center (be
tween +20 and − 20 degrees), random shear (between 10 and − 10 

degrees) and random translations in both x and y axis (between 44 and 
− 44 pixels). When applying these transformations, the images were 
zero-padded or cropped as needed in order to maintain the image di
mensions to feed the neural network. We also applied a random delay in 
the time sequence to displace the location of the end-systolic and end- 
diastolic frames within the sequence (the delay was randomly applied 
between 0% and 40% of the number of frames within the sequence). 

2.6. Choice of loss functions 

The network was trained in two settings employing two different loss 
functions. The first one was a weighted sum of the categorical cross 
entropy of the classified frames (Eq. 1). In order to achieve acceptable 
results, we gave a big weight to the cross entropy given by the frames 
corresponding to systole and diastole. All the frames were given a weight 
of 1 and the systolic and diastolic frames were given a weight of 100 to 
help the network focus on correctly classifying those 2 frames. We tested 
with different weights but only achieved satisfactory results with these 
settings. This loss function is presented in Eq. 1. In the formulae Y is the 
hot-encoded categorical vector for the frame (with a value of 1 for the 
category it pertains and 0 for the remaining), P is the probability vector 
predicted by the network for the frame, NF is the number of frames of the 
sequence, and C is the number of classes (in our case 3 classes for 
background, ED and ES). w is the weight associated to each frame, where 
it has a value of 100 for ED and ES and 1 for the rest. 

WCCE = −
∑NF

i=1
wi

∑C

c=1
Yiclog (Pic) (1) 

The second loss function used was the generalized Dice loss intro
duced by Sudre et al. (2017) which employs the Dice coefficient (Eq. 2), 
a parameter that measures the degree of overlap between two sets. The 
Dice coefficient is usually employed as a means of evaluating segmen
tation (Zou et al., 2004; Crum et al., 2006) and has also been employed 
as a loss function for segmentation problems with great results in the 
work of Milletari et al. (2016). The Dice loss has been speculated to be of 
use in this type of time series classification by Roald (2018) for its ability 
to target both sensibility and specificity. Furthermore, it has shown good 
results in problems like natural language processing (Li et al., 2019) 
which is a type of time-sequence problem. In this case the Dice is 
calculated between two vectors with three possible labels rather than 
two images. In the case of the Dice loss we applied a weight of 0.45 for 
the ES and ED categories, and 0.1 for the background category in order 
to force the network focus more in correctly detecting the ES and ED. 

Fig. 3. Training and validation losses across epochs for the two tested loss functions. Both reached a plateau mid-training in the training loss. For the weighted cross 
entropy (b) the validation loss started with some fluctuation before stabilizing and finally reached a plateau without showing signs of overfitting. In contrast the 
weighted Dice validation loss (a) showed a more stable behavior throughout all the training, but started to get higher values around epoch 60, which indicate the 
beginning of a slight overfitting. 
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This loss function is presented in Eq. 2 where all variables have the same 
meaning as in Eq. 1 except w. In this case w represents the weight 
associated for each class, with fixed value of 0.45 for ED and ES and 0.1 
for the background. 

GDSC loss = 1 − 2
∑C

c=1
wc

∑NF

i=1
PicYic

∑NF

i=1
Pic + Yic

(2)  

2.7. Implementation details 

The network was implemented in Python 3.7.6 using tensorflow 2.1 
(www.tensorflow.org, Google Brain, Mountain View, CA) using its Keras 
API. The hardware used comprised a GPU RTX 2080 Ti with 11 Gb of 
RAM (Nvidia Corporation, Santa Clara, CA) CPU i9 9900 K (3.6 GHz) 
and 64 GB of RAM, running on Windows 10 operating system. The 
network was trained for 100 epochs using both the training dataset and 
the validation dataset. After some testing the training was set up using 
ADAM optimizer with a learning rate of 1e− 5 and a batch size of 2. This 
learning rate was the one that showed best performance during training 
and the batch size was limited to 2 due to memory limitations. 

3. Results 

We present the results offered by the network trained with the two 
loss functions and using the two classification methods on the test set. 
Furthermore, we analyze the performance of the training by checking 
the validation and training loss across epochs. 

3.1. Training performance 

The training and validation loss records are depicted in Fig. 4. For the 
network trained with the weighted cross-entropy, the training loss 
decreased continually during all the epochs, starting to reach a plateau 
around epoch 60. In contrast, the validation loss was slightly erratic in 
the first epochs but it stabilized quickly around epoch 20. From this 
point the validation loss kept unchanged during the remaining epochs. It 

is important to note that the validation loss was lower than the training 
loss during all the training process (with some minor epoch points). The 
whole training process took 22 h to complete. The network we finally 
used was the one after the complete training, since we did not see any 
indications of overfitting at any point. 

For the network trained with the weighted Dice loss, the training loss 
decreased continually during all the epochs, reaching a plateau around 
epoch 40. The validation loss followed a similar trend but with lower 
loss values. However, around epoch 60 a slight increase in the validation 
loss was detected that increased slowly across epochs, likely indicating a 
slight overfitting at that point. This training process took 22 h to com
plete, the same as with the cross-entropy loss setting. The network we 
finally used with this setting was the one obtained after epoch 60, since 
from that point the resulting networks seemed to lose quality. 

3.2. Frame detection 

We evaluated the quality of the network applying it to the test set 
comprising a total of 98 cases. The test set included 95 cases with 35 
frames, 2 cases with 25 frames and 1 case with 22 frames. To evaluate 
the trained neural network, we employed the frame difference in the 
same way as Kong et al. (2016). Though in this previous work, the focus 
was on the average value, we now think it is important to know the 
distribution of the frame difference, so we provide the standard devia
tion as well. The frame difference for both ES and ED is the absolute 
difference in the position of the true frame to the one selected by the 
method (naïve or central method) after obtaining the probabilities by 
the neural network. We additionally computed the frame difference 
error normalized to the number of frames in the sequence, in order to 
have a better metric to compare against other methods which could 
employ sequences of different length. 

The results for both methods applied to the two trained neural net
works are presented in Table 2. The results clearly show that the central 
method and the Dice loss training perform better in all cases. The best 
results are those obtained by the network trained with the weighted Dice 
loss and using the central method. This scheme achieves a perfect result 
for ED, while for ES an average error of 1.24 frames (average relative 
error of 0.03) was obtained. We additionally observed that the great 

Fig. 4. Scheme of the central method for final ES and ED classification. The representation shows an example applied to the ES frame selection. The upper values of 
the images represent the frame number (being N an arbitrary location within the sequence), and the lower values represent the probabilities (p) of being ES given by 
the neural network. Only the frames with a probability higher than 90% are first selected, and then the final selection is done by taking the central frame among the 
selected ones even if its associated probability is lower than another. 
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majority of cases had a frame difference error of either 0 or 1 (65% of the 
cases), with the remaining being between 2 and 4 with a decreasing 
number of cases the bigger the error. There were not any noticeable 
differences between the cases with 35 frames and the remaining ones 
(the cases with a lower number of frames had errors of 1 frame in 2 cases 
and one case had an error of 0 for the ES detection). 

Finally, the time required for the network to process a single case 
using our hardware was on average 0.1 s, and the network provided the 
outputs for the entire test set in 10.2 s (employing a batch of 1 in order to 
average the time required for independent estimations by the network). 

4. Discussion 

We describe a methodology employing a fully convolutional neural 
network capable of classifying the frames within a short-axis stack of 
CMR cine sequences in order to detect ED and ES. The neural network is 
characterized by the use of dilated convolutions with different dilation 
rates in order to process temporal information. 

Although the detection of the ES and ED frames is a prerequisite to 
measure several cardiac parameters, this has not been extensively 
addressed in CMR postprocessing compared to the ventricular segmen
tation. While it is true that manual segmentation is the more time- 
consuming task, the manual labeling to select the frames to apply the 
segmentation is still required. In this work the expert cardiologist that 
labeled the dataset needed around 2–3 min in easy cases, but the harder 
cases could take them around 5 min when agreement was not that clear 
between cardiologists. It is not far-fetched to think this time could also 
be slightly longer for less experienced cardiologists or radiologists. In a 
radiological setting when lots of patients require fast diagnosis, saving 
this time can further improve the workflow of the clinical experts. 

When comparing our results to others we have that in the work of 
Kong et al. (2016) a convolutional neural network with a LSTM module 
was used to process temporal information. The authors obtained a frame 
difference average error of 0.38 and 0.44 for ED and ES respectively on a 
dataset comprising 420 sequences using 4-fold cross-validation. Note
worthy, the authors employed cine acquisitions with only one slice and a 
constant number of frames of 20, lower than our average number of 
frames of 35. Hsin and Danner (2016) reported a method for deter
mining ES and ED with segmentation convolutional neural networks by 
selecting the frames with the lower and higher left ventricular seg
mentation area, no information regarding the error in this selection was 
reported. We note that this approach can be problematic as it would 
need a high quality segmentation in all frames, requiring a prior manual 
segmentation in all the frames prior to train the algorithm. Yang et al. 
(2017) used a neural network to segment the left ventricle in sequences 
of 1 slice with a higher duration. These sequences included a constant 
number of 84 frames. The authors used the relative location of the 
segmented left ventricle to determine ES and ED in 10 cases with 10 
different sequences, each covering different regions of the heart which 

were used to validate their results. In this study an accuracy of 75% in 
the classification was obtained that increased to 95% when only mid 
region slices were analyzed. 

Our approach is similar to the work of Kong et al. (2016), but instead 
of using recurrent layers like LSTM or GRU (gated recurrent unit) we 
used dilated convolutions to address the treatment of the temporal in
formation. LSTM and GRU are types of layers that have been very suc
cessful at addressing time-related issues as described by Yu et al. (2019), 
however they are also difficult to train and are more unstable during 
training compared to convolutional layers (Pascanu et al., 2013; Hou 
et al., 2019). Additionally, the use of dilated convolutions has been 
shown to be very efficient in both quality and training performance, and 
has demonstrated to be capable of using longer-term information 
compared to recurrent layers (Oord et al., 2016). 

The neural network was trained with two different loss functions: the 
classical weighted cross-entropy and the weighted Dice loss. The chosen 
weights for both loss functions were chosen based on our specific 
dataset, but we expect that with a dataset where the number of frames is 
dramatically different these weights would need to be adjusted in a 
different manner. Among the two loss functions, the Dice loss obtained 
the best results. The Dice loss tries to optimize the overlap between the 
real sequence and the predicted one, which means that the loss uses the 
information of the sequence as a whole, compared to the cross-entropy 
where each frame loss is computed independently and then averaged. 
This property and the results obtained in this work and in other works 
treating with sequential data as in Li et al. (2019) further indicate that 
using the Dice loss is more suited for this type of scenarios when training 
neural networks. 

Due to memory limitations, the number of layers and parameters we 
used in the dilated convolutions was low (1 channel per path, with 9 
different paths). Noteworthy, neural networks usually perform better 
with higher number of parameters. Memory limitations were caused by 
the large size of the inputs processed by the network (arrays of size 
176 ×176 ×35 in most cases) which forced the design of the network to 
be of smaller size. Notwithstanding this limitation, the results offered by 
the network have shown to be highly accurate in the best training 
setting, with a perfect ED detection and a frame difference of 1.2 for ES 
in the test set. Additionally, even if there was a limited number of 
samples with a lower number of frames than the majority of 35, the test 
set included some cases with a significantly lower number of frames (22 
and 25) and in these cases the frame difference for the ES was still either 
0 or 1 and 0 for the ED. This shows that the network is capable of 
working with similar quality with different number of frames. Although 
the latter is true we also note that the number of samples with less than 
35 frames is still small, and increasing the dataset with more of these 
cases could further prove these findings. The relative frame difference 
error employed helps to determine the true impact of the error in rela
tion to the entire cardiac cycle. In this work the relative average dif
ference error was of 0.03 for the ES which indicates that with respect to 
the entire cardiac cycle the error in frames corresponds to 3% of its 
length. The clinical impact of this error can be assumed to be low as 
adjacent frames in the sequences employed implied very small 
contraction differences. 

An additional point of consideration is that our work focuses on 
finding the sequence volumes corresponding to ED and ES as a whole, 
but the different heart regions (basal, mid and apical regions) can 
slightly differ in their specific ED and ES as the motion is not perfectly 
simultaneous along these regions. The proposed neural network should 
be capable of working with lone heart slices or a limited number of slices 
covering a specific heart region. A future line of work is to test this 
methodology in such settings. 

In conclusion, the results obtained are promising. The higher error 
obtained for ES detection indicate that this is more difficult to determine 
compared to ED. This was also true for the manual labelling done by the 
expert cardiologist, where some disagreements that required further 
discussion happened for some ES frames. By analyzing the images, it can 

Table 2 
Frame difference error (number of frames) for the ES and ED detection with the 
different settings employed. The normalized values of the error are indicated 
below the absolute error values in parentheses. The best score is indicated in 
bold.   

ES 
(naïve 
method) 

ES 
(central 
method) 

ED 
(naïve 
method) 

ED 
(central 
method) 

Weighted cross- 
entropy 

3.121 
± 3.500 
(0.090 
± 0.101) 

2.505 
± 2.249 
(0.072 
± 0.065) 

0.141 
± 0.619 
(0.005 
± 0.018) 

0.141 
± 0.619 
(0.005 
± 0.018) 

Weighted Dice 1.747 
± 1.849 
(0.051 
± 0.053) 

1.242 
± 1.45 
(0.036 
± 0.042) 

0 ± 0 
(0 ± 0) 

0 ± 0 
(0 ± 0)  
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be seen how the left ventricle has a more regular shape (circular) 
compared to the ES. Additionally, the differences in contraction state are 
more apparent between adjacent frames close to the ED compared to the 
ES (see Fig. 1). These characteristics could explain why ED is harder to 
detect. These findings are consistent with the results reported by Kong 
et al. (2016). We hypothesize that employing a larger number of layers 
in the dilated convolution blocks could yield improved results. Addi
tionally, newer architectures that work with temporal sequences have 
been developed in recent years. Specifically, the transformer architec
ture described in the work of Vaswani et al. (2017) has shown good 
results at generating text sequences as reported by Brown et al. (2020). 
Studying these novel types of architectures for the problem described in 
this work could provide a promising future line of work. Furthermore, 
considering the quality of the results obtained a full system including the 
first step for frame classification followed with another neural network 
to segment the regions of the heart (which is a well-studied and stab
lished problem with existing solutions) could be developed to make the 
whole analysis process automatic. 

5. Conclusions 

We have presented a fully convolutional neural network for the 
classification of the end-systolic and end-diastolic frames in short axis 
CMR cine sequences. The neural network employs dilated convolutions 
to encode the temporal features instead of the more widespread recur
rent layers. This approach allows the network to require a lesser number 
of parameters and facilitates its training. 

Our network has shown promising results that could allow its use in 
the clinical setting and save time in the diagnostic workflow. The 
detection of ED was perfect and the error for ES was very small when 
trained with the weighted Dice loss and applying the central method. 
Applying other settings like the weighted cross-entropy loss for training 
or selecting the frames with the highest probability of being ES and ED 
produced worse results. 

We are aware of the limitations of our neural network, mainly the 
number of channels included in the dilated convolution operations was 
very limited (1 channel per path). This could be the reason why it has 
more difficulties in correctly classifying the end-systole. However, even 
in this situation, the classified frames are close to the right ones. This 
further proves that dilated convolution has great potential in time- 
sequence analysis. With higher hardware resources, a neural network 
with more depth in the dilated convolution paths could get even better 
results for classifying ES and ED employing the same type of 
architecture. 
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