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a b s t r a c t 

Generalized Spatial Modulation (GSM) is a recent Multiple-Input Multiple-Output (MIMO) scheme, which 

achieves high spectral and energy efficiencies. Specifically, soft-output detectors have a key role in achiev- 

ing the highest coding gain when an error-correcting code (ECC) is used. Nowadays, soft-output Maxi- 

mum Likelihood (ML) detection in MIMO-GSM systems leads to a computational complexity that is un- 

feasible for real applications; however, it is important to develop low-complexity decoding algorithms 

that provide a reasonable computational simulation time in order to make a performance benchmark 

available in MIMO-GSM systems. This paper presents three algorithms that achieve ML performance. In 

the first algorithm, different strategies are implemented, such as a preprocessing sorting step in order to 

avoid an exhaustive search. In addition, clipping of the extrinsic log-likelihood ratios (LLRs) can be incor- 

porating to this algorithm to give a lower cost version. The other two proposed algorithms can only be 

used with clipping and the results show a significant saving in computational cost. Furthermore clipping 

allows a wide-trade-off between performance and complexity by only adjusting the clipping parameter. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Multiple-Input Multiple-Output (MIMO) systems have been 

idely used because of their remarkable capacity to improve 

he transmission rate and reliability of wireless communications 

1,2] . More recently, a concept known as Spatial Modulation (SM) 

3,4] has emerged, which is a promising digital modulation tech- 

ology to achieve an attractive tradeoff between spectral efficiency 

nd energy efficiency. The SM technique uses the spatial domain to 

ransmit information in addition to classical signal constellations, 

ctivating only one transmit antenna per channel usage. Based on 

M, many different works have been proposed [5–9] . SM can be 

urther generalized as the Generalized Spatial Modulation (GSM) 

10–12] , which is capable of achieving higher spectral efficiency 

ompared to the conventional SM. GSM activates more than one 

ransmit antenna in each time slot, achieving higher transmission 

ates that grow considerably faster with the increase in the num- 

er of transmit antennas. 

GSM uses a subset of Transmit Antennas (TAs) in each time slot, 

o the information bits are split into two parts: the first part se- 

ects the subset of activated TAs, and the second part generates the 
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odulation symbols that are transmitted by the active antennas. 

hus, the detection process on the receiver side becomes compli- 

ated because both the subset of the TAs as well as the symbol 

ector have to be estimated. 

Several hard-output detectors have been proposed for MIMO- 

SM systems [13–17] . Some of them use different strategies that 

re aided by successive sphere decoders that achieve fast ML de- 

ection. Examples of detectors of this type are the Sorting As- 

isted Successive Sphere Decoding Algorithm (SA-SSDA) [14] and 

he Box Optimization Hard Decoder aided by Box-Optimization 

ound (BOHD) [16] . In practice, almost all wireless communica- 

ions systems use an error-correcting code (ECC) to enhance data 

eliability, which requires soft-output demodulation algorithms to 

chieve the highest coding gain. To this end, several soft-output 

etectors have been proposed for MIMO-GSM systems. The op- 

imal Maximum Likelihood (ML) soft-output decoder for MIMO- 

SM systems requires an exhaustive search over all active antenna 

nd modulated symbol combinations, making it impractical for 

ost applications. To reduce the computational cost, several low- 

omplexity soft-output ML implementations have been reported 

or MIMO-GSM systems where different meaningful strategies have 

een employed [18–21] . 

As discussed above, the soft-output ML detection becomes im- 

ractical for MIMO-GSM, especially when the number of possi- 

le TA combinations or the number of transmit antennas is large. 

n the other hand, since the computation complexity of soft- 

utput ML detectors for MIMO-GSM is too high, the use of clip- 

https://doi.org/10.1016/j.sigpro.2022.108509
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108509&domain=pdf
mailto:mdesiha@iteam.upv.es
mailto:vmgarcia@dsic.upv.es
mailto:fjmartin@dcom.upv.es
mailto:agonzal@iteam.upv.es
https://doi.org/10.1016/j.sigpro.2022.108509


M. Ángeles Simarro, V.M. García-Mollá, F.J. Martínez-Zaldívar et al. Signal Processing 196 (2022) 108509 

p

c

c

l

t

a

d

m

c

i

t

p

b

s

m

t

t

d

o

t

t

a

t

t

v

t

a

t

f

p

d

t

c

D

d

c

S

d

f

M

m

o

r

t

2

m

t  

a

p

s

a  

[  

w  

r

b

T

N

u

(

T  

d  

s

l

a

t

 

n

b  

s

s

f

y

w  

s  

s

i

f

b  

d

m

L

L

w

s  

r

a

c

e

E

t  

t

L

[

L

t

a

T

d

w

{
b

c

b

L

c

u

S

(

ing [22] allows the detection performance and complexity to be 

onveniently adjusted, making the algorithms suitable for practi- 

al applications. Hence, one of the main challenges is to provide 

ow-complexity detectors with negligible performance loss. Even 

hough this task has been widely discussed in the literature, it is 

lso necessary to provide fast decoders to perform soft-output ML 

etection in MIMO-GSM systems. Among other uses, researchers 

ust have a benchmark bit error rate (BER) with a reasonable 

omputational cost in order to reduce the simulation time when 

nvestigating their MIMO-GSM proposals. To the best of the au- 

hors’ knowledge, none of the soft-output detectors already pro- 

osed address the issue of optimal ML detection. 

In this context, this work aims to provide meaningful contri- 

utions to the design of soft-output ML detectors for MIMO-GSM 

ystems, presenting three algorithms that achieve the ML perfor- 

ance. The first one can work with and without clipping, whereas 

he other two can be used only for the clipped case. Throughout 

his work, we reformulate the MIMO-GSM problem for soft-output 

etection, and we apply several strategies that are used in hard- 

utput detection [14,16] in order to provide soft-output ML detec- 

ion with manageable computational cost. 

In the first proposed algorithm, a sorting step is carried out first 

o sort the TA combinations. Also, the log-likelihood ratios (LLRs) 

re suboptimally calculated at this stage to reduce the computa- 

ional complexity. In the second stage, the LLRs are updated to 

heir optimal values through recursive tree searches. A modified 

ersion of the Single Tree Search (STS) algorithm [23] is used for 

his purpose. Note that the target of the proposed algorithm is to 

chieve the soft-output ML solution with an manageable computa- 

ional cost. In addition, the clipping of the LLRs in the tree search 

or optimal solutions has been incorporated in this algorithm. 

The two alternative proposals have been developed using clip- 

ing. Both algorithms are based on the Double Tree Search (DTS) 

etector proposed in [24] for MIMO systems. This detector achieves 

he clipped soft-output ML solution at a reduced computational 

ost because it takes advantage of the fast Box Optimization Hard 

etector (BOHD) algorithm [25] . The results show that these two 

ifferent proposals are very effective in reducing the computational 

omplexity. 

The remainder of this paper is organized as follows. 

ection 2 presents the system model and the soft-output ML 

etection for MIMO-GSM. Section 3 explains the method proposed 

or reducing the computational complexity of the soft-output 

L detection without clipping. Section 4 describes the proposed 

ethod when clipping is used. Two additional methods are also 

utlined for the clipping case. Section 5 presents the experimental 

esults of applying the proposed algorithms for different simula- 

ion setups. Finally, the conclusions are presented in Section 6 . 

. MIMO-GSM with soft-output ML detection 

Consider a MIMO-GSM system equipped with N t and N r trans- 

it and receive antennas, respectively. At each slot time, only N a 

ransmit antennas are activated, where N r ≥ N a and N t > N a > 1 are

ssumed without loss of generality. Therefore, the total number of 

ossible TA combinations is 
(

N t 
N a 

)
. Nevertheless, not all of the pos- 

ible combinations are valid. 

The block diagrams of the MIMO-GSM transmitter and receiver 

re shown in Fig. 1 . A data frame of source information bits b =
 b 1 , b 2 , . . . , b B ] is encoded by a channel code to generate a code-

ord c = [ c 1 , c 2 , . . . , c N ] . Then, the codeword is interleaved with a

andom bit interleaver. Afterwards, n = n 1 + n 2 interleaved coded 

its are used for each transmission and divided into two parts. 

he first part (composed by n 1 bits) is used to activate certain 

 a antennas of N t . Thus, of the total number of possible config- 

rations only N c = 2 n 1 TA combinations are permitted. Let � = 
2 
ζ1 , ζ2 , . . . , ζN c ) be the set of valid TA combinations. Each valid ζk 

A configuration, for k = 1 , . . . , N c , can be described as a set of in-

ices, ζk = { i k 1 , i k 2 . . . , i k N a } with 1 ≤ i k j ≤ N t and j = 1 , . . . , N a . The

econd part (composed of n 2 = N a log 2 (M) bits) is used to modu- 

ate the N a modulation symbols to be transmitted by the activated 

ntennas. The symbols are taken from a M-ary Quadrature Ampli- 

ude Modulation (M-QAM) denoted as �. 

Let H ∈ C 

N r ×N t and v ∈ C 

N r ×1 be the MIMO channel matrix and

oise vector, whose elements follow the complex Gaussian distri- 

ution with CN (0 , 1) and CN (0 , σ 2 ) , respectively. If the transmis-

ion is carried out through the ζ th 
k 

valid TA combination, the corre- 

ponding channel submatrix can be defined as H ζk 
∈ C 

N r ×N a . There- 

ore, the receiver signal y ∈ C 

N r ×1 is given by 

 = Hx + v = H ζk 
s + v , (1) 

here x = [ . . . , 0 , s 1 , . . . , 0 , s 2 , . . . , 0 , s N a , 0 , . . . ] T is the transmitted

ymbol vector and s = [ s 1 , . . . , s N a ] 
T is the transmitted M-QAM

ymbol vector, which corresponds to the ζk antenna configuration 

ndices. 

On the receiver side, soft information in the form of LLRs is sent 

rom the soft-output demodulator to the channel decoder, as can 

e observed in Fig. 1 . In this work, we focus on the design of this

emodulator. Given the received signal vector, the soft-output de- 

odulator can compute the LLRs of the encoded bits denoted as 

 e (c u ) for u = 1 , . . . , n as 

 e (c u ) = ln 

[ ∑ 

χ∈ χu 
1 

exp (−|| y −Hx || 2 
σ 2 − ∑ 

j � = u c j L a (c j )) ∑ 

χ∈ χu 
0 

exp (−|| y −Hx || 2 
σ 2 − ∑ 

j � = u c j L a (c j )) 

] 

(2) 

here χu 
1 

and χu 
0 

are the subsets of the MIMO-GSM signal χ of 

ize �N t , fulfilling χu 
1 

= { x ∈ χ : c u = 1 } and χu 
0 

= { x ∈ χ : c u = 0 } ,
espectively. L a (c j ) represents the a priori information. Since we 

ssume that no prior information is available in the detection pro- 

ess, all valid TAs and all constellation points are considered to be 

qually likely. Thus, the term 

∑ 

j � = u c j L a (c j ) can be omitted from 

q. (2) . Omitting this term and denoting the metric corresponding 

o the x MIMO-GSM vector as d u = 

|| y −Hx || 2 
σ 2 , Eq. (2) can be rewrit-

en as 

 e (c u ) = ln 

[∑ 

χ∈ χu 
1 

exp (−d u ) ∑ 

χ∈ χu 
0 

exp (−d u ) 

]
(3) 

Furthermore, the well-known Max-Log MAP detection rule 

26] can be applied and (3) can be simplified as 

 e (c u ) = min ∑ 

χ∈ χu 
1 

(d u ) − min ∑ 

χ∈ χu 
0 

(d u ) . (4) 

For each bit c u , one of the two minima in (4) corresponds 

o the hard-output MAP detection problem expressed by ˆ x ML = 

rg min x ∈ χ || y −Hx || 2 
σ 2 with the associated distance d ML = 

|| y −H ̂ x ML || 2 
σ 2 . 

hus, the second minimum in (4) can be obtained as 

 ̄

u = min 

x ∈ χu 

c̄ ML 
u 

|| y − Hx || 2 
σ 2 

, (5) 

here χu 
c̄ ML 

u 
is the set of the MIMO-GSM signal χ , fulfilling χu 

c̄ ML 
u 

= 

 x ∈ χ : c u = c̄ ML 
u } , with c̄ ML 

u being the binary complement of the c u 
it of the ML solution. We call these other minimum distances as 

ounter-hypothesis distances d̄ u [23] . Therefore, the LLR in (4) can 

e computed as 

 e (c u ) = (d ML − d̄ u )(1 − 2 c ML 
u ) . (6) 

A trivial approach for solving (6) would be to use an extended 

onstellation, using ”0” for the detection of inactive antennas and 

sing a standard soft-output ML detector such as the Single Tree 

earch (STS) [23] or the Box Optimization Repeated Tree Search 

BORTS) [24] . However, the search complexity of these algorithms 
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Fig. 1. LDPC coded MIMO-GSM system. 
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ill become prohibitively high when N t or M increases. Further- 

ore, these methods cannot be easily applied when N t > N r be- 

ause it is not possible to compute the required triangular factor- 

zation of the channel matrix which is needed for the tree detec- 

ion. 

. The proposed ML strategy for soft-output detection without 

lipping 

The excessive complexity of the MIMO-GSM soft-output ML de- 

ection limits its application. To reduce the complexity while main- 

aining optimal performance, we propose a new two-stage algo- 

ithm. The main idea, which is also used by some hard-output de- 

ection algorithms such as SA-SSDA [14] or BOHD [16] , is to split 

he problem into N c subproblems. Thus, for each valid TA config- 

ration, we can obtain a smaller problem to solve. To do this, we 

ust reformulate the soft-output MIMO-GSM detection problem. 

According to (1) and assuming equally likely a priori values, the 

etrics d u in (4) depend on the ζk combination and can also be 

alculated as 

 

u 
ζk 

= 

|| y − H ζk 
s || 2 

2 
. (7) 
σ

3 
Then, the LLRs of the bits that select the TA combination L e (c t )

ith t = (1 , . . . , n 1 ) can be computed as 

 e (c t ) = min 

ζk ∈ �k 
1 
, s ∈ S 

(d t ζk 
) − min 

ζk ∈ �k 
0 
, s ∈ S 

(d t ζk 
) (8) 

here �k 
1 

and �k 
0 

represent a subspace of the total TA combina- 

ions � of size N c , fulfilling that �k 
1 

= { ζk ∈ � : c t = 1 } and �k 
0 

=
 ζk ∈ � : c t = 0 } , respectively. 

Likewise, the LLRs of the n 2 modulated bits, L e (c r ) with r =
n 1 + 1 , . . . , n ) can be computed as 

 e (c r ) = min 

ζk ∈ �, s ∈ S r 
1 

(d r ζk 
) − min 

ζk ∈ �, s ∈ S r 
0 

(d r ζk 
) (9) 

here S r 
1 

and S 
r 
0 

represent a subspace of the set signalling S of size
N a , fulfilling that S r 1 = { s ∈ S : c r = 1 } and S 

r 
0 = { s ∈ S : c r = 0 } , re-

pectively. 

As in (4) , for each bit c t and c r , one of the two minima in (9)

nd (8) corresponds to the hard-output MAP detection problem. 

 ̂

 ζk 

ML 
, ̂  s ML ) = arg min 

ζk ∈ �, s ∈ S 
|| y − H ζk 

s || 2 
σ 2 

(10) 

 

ML = 

|| y − H ˆ ζ ML 
k 

ˆ s ML || 2 
2 

. (11) 

σ
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Fig. 2. Illustration of the procedure of the OSTS algorithm. 
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Algorithm 1: The proposed Ordered Single Tree Search for 

GSM Algorithm (OSTS). 

Input : y , H ζk 
, Q ζk 

, R ζk 
, ∀ k , �

Output : L e (c u ) ∀ n 

/* Stage A */ 
1 for k = 1 : N c do 

2 z ζk 
= Q ζ k y 

3 ˆ z ζk 
= Q 

(
R ζk 

−1 z ζk 

)
4 d ζk 

= ‖ y − H ζ k ̂
 z ζ k 

‖ 2 
5 d = [ d ζ 1 

, d ζ 2 
, . . . , d ζN c 

] 

6 [ ω 1 , ω 2 , . . . , ω N c ] = arg sort (d ) ; 

7 ˆ ζk 

ML = ω 1 ; d ML = d (ω 1 ) ; ˆ s ML = ̂  z 
ˆ ζk 

ML 

8 d̄ t = min 

c̄ ML 
t 

(d ) ∀ t 

9 d̄ r = min 

c̄ ML 
r 

(d ) ∀ r 

/* Stage B */ 
10 for i = 1 : N c do 

11 [ d ML , ˆ ζk 

ML 
, ̂  s ML , ̄d t , d̄ r ]= STS_G( z ω i , R ω i , d 

ML , ˆ ζk 

ML 
, ̂  s ML , ̄d t , 

d̄ r , ζk ) 

12 L e (c t ) = (d ML − d̄ t )(1 − 2 c ML 
t ) ∀ t 

13 L e (c r ) = (d ML − d̄ r )(1 − 2 c ML 
r ) ∀ r 

3

3

a

c

s

fi

p

Thus, by denoting c ML 
t as the tth bit used to select the ˆ ζk 

ML 
TA 

ombination, (8) can be computed as 

 e (c t ) = (d ML − d̄ t )(1 − 2 c ML 
t ) . (12) 

Likewise, by denoting c ML 
r as rth bit in the ˆ s ML solution, (9) can 

e computed as 

 e (c r ) = (d ML − d̄ r )(1 − 2 c ML 
r ) , (13) 

With d̄ t and d̄ r in (12) and (13) being the counter-hypothesis 

istances associated with the TA combination and the transmitted 

ymbol, respectively. These counter-hypothesis distances are calcu- 

ated as: 

 ̄

t = min 

ζk ∈ �t 

c̄ ML 
t 

, s ∈ S 

|| y − H ζk 
s || 2 

σ 2 
(14) 

 ̄

r = min 

ζk ∈ �, s ∈ S r 
c̄ ML 
r 

|| y − H ζk 
s || 2 

σ 2 
. (15) 

In the counter-hypothesis distances, c̄ ML 
t and c̄ ML 

r denote the bi- 

ary complement of the c t and c r bit in the label of ˆ ζ ML 
k 

and 

ˆ s ML ,

espectively. 

Thus, the detection process computes the values of d ML , ˆ ζk 

ML 
, 

 

 

ML , d̄ t ∀ t , and d̄ r ∀ r. These values could be solved for each an-

enna configuration ζk . Then, by comparing the solutions of all TA 

onfigurations, we can calculate Eqs. (12) and (13) . To solve each 

ubproblem, the STS algorithm can be considered a suitable de- 

ector. It ensures that each node in the tree search is visited only 

nce when searching for the ML solution and all the distances of 

he counter-hypotheses simultaneously. The number of calculated 

odes of the STS compared to other algorithms (such as the RTS) 

s significantly lower. However, applying the STS algorithm for each 

ubproblem ζk can be computationally expensive because N c dif- 

erent subproblems must be totally solved. To further reduce the 

etection complexity, the proposed algorithm (called Ordered Sin- 

le Tree Search (OSTS)) applies different strategies in two stages. 

he procedure of the algorithm is illustrated in Fig. 2 , and its pseu-

ocode implementation is given in Algorithm 1 . 
4 
.1. Description of the OSTS algorithm 

.1.1. Stage A: Sorting and initializing step 

In hard-output detection [14,16] , the use of an adjustable radius 

cross all of the subproblems and the reordering of the different ζk 

onfigurations achieves a large reduction in complexity. A similar 

trategy is implemented in the proposed soft-output detector. 

First, the configurations must be sorted so that the correct con- 

guration is detected in the first positions. The sorting method 

roposed in [14] uses the matrix Q ζ of each configuration ζk 
k 2 
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hich is obtained after the QR-decomposition of the channel ma- 

rix H ζk 
. The QR decomposition gives a unitary matrix Q ζk 

∈ C 

N r xN r 

nd an upper triangular matrix R ζk 
∈ C 

N r xN a . Given that the last 

 r − N a rows of R ζk 
are zeros, the QR decomposition is usually 

ewritten as 

 ζk 
= Q ζk 

R ζk 
= Q ζk 

(
R ζk1 

0 

)
= 

(
Q ζk1 

Q ζk2 

)(R ζk 1 

0 

)
(16) 

here R ζk1 
∈ C 

N a xN a , Q ζk1 
∈ C 

N r xN a and Q ζk2 
∈ C 

N r x (N r −N a ) . Thus, 

| y − H ζk 
s || 2 = || Q 

H 
ζk 

· (y − Q ζk 
R ζk 

s ) || 2 = || 
(

Q 

H 
ζk1 

Q 

H 
ζk2 

)
y −

(
R ζk1 

0 

)
s || 2 

= || Q 

H 
ζk1 

y − R ζk1 
s || 2 + || Q 

H 
ζk2 

y || 2 . (17) 

However, this method cannot be used if N a = N r because the 

erm used for the sorting ( || Q 

H 
ζk2 

y || 2 ) does not exist. On the other

and, [16] proposes a simple but efficient sorting method that can 

e used without any limitation. This ordering strategy, which is 

ased on the Zero Forcing (ZF) estimator of each subproblem is 

sed in the proposed algorithm: 

 ζk 
= Q ζ k y (18) 

  ζk 
= Q 

(
R ζk 

−1 z ζk 

)
, (19) 

here Q (·) gives the nearest constellation symbol. Then, the Eu- 

lidean distance associated at each estimator d ˆ z ζk 

is computed and 

tored in the vector of distances d = [ d ˆ z ζ1 
, d ˆ z ζ2 

, . . . , d ˆ z ζN c 

] . 

The valid TA combinations are then sorted according to the Eu- 

lidean distance, from smallest to largest, 

 ω 1 , ω 2 , . . . , ω N c ] = arg sort (d ) (20) 

here sort ( ̇ ) defines an ordering function for reordering the ele- 

ents of the input vector in ascending order, and ω 1 and ω N c are 

he indices of the maximum and minimum value in d , respectively. 

In addition, to find the ordered TA combinations, the initial and 

uboptimal values of d ML , ˆ ζk 

ML 
, ˆ s ML , d̄ t and d̄ r are computed in this 

tage. The ZF estimators of the different subproblems are used to 

ompute these approximations according to 

ˆ 
k 

ML = ω 1 ; d ML = d (ω 1 ) ; ˆ s ML = ̂  z 
ˆ ζk 

ML (21) 

 ̄

t = min 

c̄ ML 
t 

(d ) ∀ t (22) 

 ̄

r = min 

c̄ ML 
r 

(d ) ∀ r. (23) 

hus, in this step, the different configurations have been sorted 

nd the main parameters needed by the STS algorithm have been 

nitialised to suboptimal values. By means of these two strategies, 

he computational cost of the second stage can be reduced. 

.1.2. Stage B: Exact LLR computation 

After the preprocessing stage, a modified STS algorithm is 

sed to solve each ML ζk subproblem. The STS_G function in 

lgorithm 1 denotes the STS algorithm proposed in [23] by adding 

he following adjustments. 

• List administration: The original STS uses a list administration 

to update the counter-hypothesis distances of the transmitted 

bits d̄ r in order to find the ML solution and all of the counter- 

hypothesis distances simultaneously. In our case, it is necessary 

to use two list administrations: one for the transmitted bits, 

and one for the bits that select the TA combination. Therefore, 

when a leaf node has been reached, the decoder must also up- 

date the second list administration with one of two options: 
5 
• If a new ML hypothesis is found, all d̄ t such that c t = c̄ ML 
t are 

set to d ML . 
• Otherwise, all d̄ t with c t = c̄ ML 

t and d(s ) < d̄ t are set to d(s ) ,

with d(s ) being the Euclidean distance of the leaf node. 
• Pruning criterion: Another important key to complexity reduc- 

tion in the STS algorithm is the pruning criterion. This crite- 

rion is based on the fact that a subtree that originated from a 

given node is only visited if the ML distance or the counter- 

hypothesis distances of the transmitted bits are going to be up- 

dated. Therefore, we must modify this pruning criterion to also 

take into account the counter-hypothesis distances of the bits 

that select the TA combination. Thus, in addition to the condi- 

tions described in [23] , the pruning radius r must be updated 

according to 

r = max { r, d̄ t | (t = 1 , . . . , n 1 ) ∧ (c t = c̄ ML 
t ) } . (24)

In summary, for each ζk configuration, the STS_G algorithm is 

xecuted, and the order of execution of ζk is the one given in Stage 

 by ω i . In addition, in order to reduce the computational com- 

lexity, the main approach is not to initialise the values of d ML , 

ˆ 
k 

ML 
, ˆ s ML , d̄ t and d̄ r , as in the original STS algorithm. For each con- 

guration, these initial values are taken from the output of the pre- 

ious solved configuration ω i −1 or from the values of Stage A if it is 

he first subproblem to be solved. Therefore, for each configuration, 

he distances used are lower bounded, reducing the computational 

omplexity of the following subproblems. For this reason, it is im- 

ortant to place the correct configuration in the first positions. 

. The proposed ML strategy for soft-output detection with 

lipping 

In practical applications, the complexity of the max-log LLR can 

e reduced by the use of clipping [22] . Therefore, given a clipping 

arameter L clip , the dynamic range of LLRs is bounded according to 

 L e (c u ) | ≤ L clip , ∀ u. (25) 

The key issue is to analyse that (25) in conjunction with 

12) and (13) results in an upper bound of the counter-hypothesis 

istances d̄ t and d̄ r . Therefore, the counter-hypothesis distances 

hat are larger than d ML + L clip do not need to be computed ex- 

ctly and can be set to the value d ML + L clip . Thus, the computa-

ional complexity can be reduced and becomes the case with clip- 

ing more relevant from a practical point of view. Obviously, this 

eads to performance degradation, so the value of L clip can be used 

o suitably adjust the detection complexity/performance trade-off. 

hree different strategies for the case with clipping are presented 

n this work. 

.1. Description of the clipped OSTS 

The proposed OSTS described above is easily adapted for the 

ase with clipping. For this purpose, Stage A can be easily modified 

y replacing Eqs. (22) and (23) by the following: 

d̄ t = min c̄ ML 
t 

{ d , d ML + L clip } ∀ t (26) 

d̄ r = min c̄ ML 
r 

{ d , d ML + L clip } ∀ r. (27) 

Stage B, the exact LLR computation is changed in order to com- 

ute clipped LLR values. This procedure can be inserted into the 

TS_G algorithm, as in the original STS algorithm [27] by just ap- 

lying the next adjustment when a leaf node has been reached and 

 new ML hypothesis has been found: 

 ̄

t = min { d̄ t , d ML + L clip } ∀ t (28) 

 ̄

r = min { d̄ r , d ML + L clip } ∀ r. (29) 

The remaining steps of the STS_G algorithm are not affected. 
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.2. Description of the ODTS algorithm 

The Double Tree Search (DTS) proposed in [24] modifies the 

riginal STS algorithm when the clipping strategy is applied. The 

TS algorithm takes advantage of the fast BOHD algorithm [25] to 

rst calculate the d ML distance. Then, the STS is modified since 

t only needs to find the counter-hypothesis distances. Therefore, 

he computational cost is considerably reduced with respect to the 

riginal STS. We denote this new modified version of the STS_G 

lgorithm as STS_GM. 

To implement DTS for MIMO-GSM systems (ODTS), we first ex- 

cute Stage A as in the clipped OSTS algorithm, in order to reduce 

he computational complexity of Stage B. After the preprocessing 

tage, the DTS algorithm proposed in [24] is used to solve each ML 

k subproblem, adding the following adjustments. The initial radius 

f the BOHD algorithm is the ML distance of the previous config- 

ration since we use an adjustable and propagated radius to im- 

rove efficiency. Consequently, when the initial radius in the BOHD 

s smaller than the distances of all possible solutions, the detection 

nds very fast and no solution is returned. Thus, if the d ML 
ω i 

solu- 

ion given by the BOHD algorithm is lower than the propagated 

istance d ML , the propagated distance and the counter-hypothesis 

istances must be updated according to 

 ̄

t = min { d̄ t , d ML 
ω i 

+ L clip } ∀ t, (30) 

 ̄

r = min { d̄ r , d ML 
ω i 

+ L clip } ∀ r, (31) 

 

ML = d ML 
ω i 

. (32) 

Then, the STS_GM is used, which is the STS_G algorithm with- 

ut the search of the ML solution since the solution has al- 

eady been computed by the BOHD algorithm. Therefore, the 

TS_GM computes the counter-hypothesis distances that are lower 

han those already computed. The pseudocode is the same as 

lgorithm 1 modifying STS_G by DTS. The performance of the al- 

orithm is shown in Fig. 3 . 
Fig. 3. Illustration of the procedu

6 
.3. Description of the BO-DTS algorithm 

Box optimization (BO) has been proposed as an aid to the 

IMO detector in different works [24,25,28] . The MIMO detection 

roblem is given by: 

 

ML = arg min 

x ∈ �N t ⊂C N t 

‖ 

H · x − y ‖ 

2 
. (33) 

hen, the auxiliary box optimization problem can be stated as: 

ˆ xr = arg min 

x ∈ C N t 
‖ 

H · x − y ‖ 

2 
, 

min ( Re (�) ) ≤Re (x i ) ≤max ( Re (�) ) , 1 ≤i ≤m 

in ( Im (�) ) ≤I m (x i ) ≤max ( I m (�) ) , 1 ≤i ≤m 

(34) 

here x i , 1 ≤ i ≤ N t are the components of the vector x . This prob-

em is derived from (33) , discarding the condition that the com- 

onents of the solution belong to the constellation �. The prob- 

em (34) is a continuous optimization problem and can be solved 

uch faster than (33) . The solution of this auxiliary problem pro- 

ides extremely tight bounds that can be used to speed up stan- 

ard sphere Decoders by radius shortening and branches pruning 

s shown in [24,25] . This technique can be also used for GSM prob-

em detection. In hard-detection for GSM [16] , it was used in order 

o achieve a lower bound of the minimum Euclidean distance for 

ach configuration. This strategy can also be used for soft-detection 

o reduce the number of configurations that are totally analysed. 

hus, in Stage A we can compute the solution of the continuous 

east squares problem for each configuration ζk as 

ˆ sr ζk 
= arg min 

s ∈ S 

∥∥y − H ζk 
s 
∥∥2 

. 

min ( Re (�) ) ≤Re (s i ) ≤max ( Re (�) ) , 1 ≤i ≤N a 

in ( Im (�) ) ≤I m (s i ) ≤max ( I m (�) ) , 1 ≤i ≤N a 

(35) 

This problem is derived from (10) for each configuration ζk 

nd discarding the condition that the components of the solu- 

ion belong to the � constellation. In this case, the boundaries of 

he search area are box-shaped, hence the name Box Optimization 
re of the ODTS algorithm. 
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Table 2 

Setups for Computed Simulations. 

N t N a N r M−QAM N c bps / Hz 

Setup 1 4 2 4 64 4 14 

Setup 2 8 2 8 64 16 16 

Setup 3 8 4 8 16 16 20 

Setup 4 32 4 4 16 64 22 
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BO). An efficient algorithm for solving this problem adapted to the 

IMO problem was proposed in [25] . Therefore, for each configu- 

ation, a lower bound on the minimum Euclidean distance can be 

omputed as dr w i 
= 

∥∥y − H ζk 
ˆ sr ζk 

∥∥2 
and stored in the vector of dis- 

ances d . Thus, Stage A is modified and the different configurations 

re sorted according to the distance dr w i 
using the BO solver pro- 

osed in [25] to compute ˆ sr ζk 
in line 2 of Algorithm 2 . 

Algorithm 2: The proposed Box-Optimization Assisted Double 

Tree Search for GSM Algorithm (BO-DTS). 

Input : y , H ζk 
, k = 1 , 2 , . . . , N c , �

Output : L e (c u ) , u = 1 , 2 , . . . , n 

/* Stage A */ 
1 for k = 1 : N c do 

2 ˆ sr ζk 
= BO (y , �, H ζk 

) 

3 ˆ z ζk 
= Q 

(
ˆ sr ζk 

)
4 d ζk 

= ‖ y − H ζ k ̂
 z ζ k 

‖ 2 
5 dr ζk 

= ‖ y − H ζ k 
ˆ sr ζ k 

‖ 2 
6 d = [ d r ζ 1 

, d r ζ 2 
, . . . , d r ζN c 

] 

7 [ ω 1 , ω 2 , . . . , ω N c ] = arg sort (d ) ; 

8 ˆ ζk 

ML = ω 1 ; d ML = d (ω 1 ) ; ˆ s ML = ̂  z 
ˆ ζk 

ML 

9 d̄ t = min 

c̄ ML 
t 

(d ) ∀ t 

10 d̄ r = min 

c̄ ML 
r 

(d ) ∀ r 

/* Stage B */ 
11 for i = 1 : N c do 

/* Modified DTS Algorithm */ 
12 if d r ω i < d ML then 

13 d ML 
ω i 

= BOHD( y , H ζk 
, d ML ) 

14 if d ML 
ω i 

< d ML then 

15 d ML = d ML 
ω i 

16 ˆ ζ ML 
k 

= ω i d̄ 
r = min ( ̄d r , d ML + L clip ) ∀ r 

17 d̄ t = min ( ̄d t , d ML + L clip ) ∀ t 

18 if d ML 
ω i 

< min ( ̄d r , d̄ t ) then 

19 [ ̄d t d̄ r ]= STS_GM( y , H ζk 
, ̂  s ML , ̄d t d̄ r , ˆ ζ ML 

k 
, ω i ) 

20 L e (c t ) = (d ML − d̄ t )(1 − 2 c ML 
t ) ∀ t 

21 L e (c r ) = (d ML − d̄ r )(1 − 2 c ML 
r ) ∀ r 

Moreover, in Stage B, these distances can be used to discard 

onfigurations. In other words, when a new configuration ω i is go- 

ng to be explored, (i.e., a DTS algorithm is executed for ω i ), the

istance d ML has already been updated to the smallest distance 

ound so far. Then, if the lower bound distance of this configura- 

ion dr w i 
is greater than the current d ML , the w i configuration can 

e safely ignored because the distance of any signal in this con- 

guration will be greater than d ML and consequently greater than 

 ̄

t ∀ t and d̄ r ∀ r. This procedure is graphically described in Fig. 4 . 

he pseudocode implementation is given in Algorithm 2 . 
Table 1 

Main features of different algorithms for ML detection.

Algorithm GSM Soft-Output No clipping 

STS No Yes Yes 

DTS No Yes No 

SA-SSDA Yes No - 

BOHD Yes No - 

OSTS Yes Yes Yes 

ODTS Yes Yes No 

BO-DTS Yes Yes No 

7 
In addition, the dr w i 
distance can also be used within the DTS 

lgorithm, to avoid the execution of STS_GM algorithm. This is due 

o the fact that, in some configurations, the d ML distance will be 

arger than dr w i 
, and therefore we have to run the BOHD algorithm 

ithin the DTS block in Fig. 4 . However, if there are no counter- 

ypothesis distances for d̄ t ∀ t and for d̄ r ∀ r lower than dr w i 
, the 

TS_GM algorithm in the DTS detector can be ignored since it will 

ot find counter-hypothesis distances lower than those that have 

lready been computed. 

The main features of the proposed algorithms and the refer- 

nced algorithms are summarised in Table 1 . 

. Simulation results 

This section presents several numerical examples. We have cho- 

en four different setups to test our proposals (see Table 2 ). The 

hannels have been chosen independently and have been identi- 

ally distributed Rayleigh fading. For the channel coding, an LDPC 

f rate 1 / 5 has been used as specified in TS 38.212 [29] . The re-

ults of the Monte Carlo simulations are presented throughout this 

ection, where the E b /N 0 is varying. The test were carried out run- 

ing Matlab R2019 using a dual Intel Xeon CPU E5-2697 processor 

ith the Ubuntu operating system. 

It is important to underline that the proposed methods pro- 

ide the optimal ML performance as long as the detection schemes 

sed for computing the ML distance and the counter-hypothesis 

istances are ML. The Bit Error Rate (BER) performance of two 

L soft-output detection algorithms without clipping is the same, 

hich also happens when comparing two soft-output ML detectors 

ith identical value of the clipping parameter. This has been ver- 

fied by simulation, as illustrated by Fig. 5 . Thus, any soft-output 

L algorithm, as well as those proposed in this paper, provide the 

erformance curves shown in Fig. 5 . 

For this reason, the main task of this section is to comparatively 

valuate the complexity of the different algorithms. As mentioned 

bove, the aim of the paper is to present different MIMO-GSM 

L algorithms that provide an upper bound on the attainable de- 

ection accuracy with much lower computational complexity than 

xhaustive detection or other ML algorithms already proposed. In 

rder to compare our proposals in terms of computational cost 

since in terms of BER any ML algorithm gives the same result), 

he STS algorithm applied to the MIMO-GSM problem has been 

elected, since it is one of the most efficient algorithms to pro- 

ide soft-output ML results. Although some suboptimal algorithms 

s [21] obtain near-optimal performance with low complexity for 

articular antenna and constellation values, none of them achieves 
 

Clipping Performance Ref. 

Yes max-log ML [27] 

Yes max-log ML [24] 

- ML [14] 

- ML [16] 

Yes max-log ML proposed 

Yes clipped max-log ML proposed 

Yes clipped max-log ML proposed 
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Fig. 4. Illustration of the procedure of the BO-DTS algorithm. 

Fig. 5. BER performance comparison for the different setups with different values 

of clipping. 

t

c

u

e

e

t

fl

p

fi

e

a

t

c

o

b

p

c

a

fl

5

w

p

r

a

M

o

c

n

l

i

i

t

g

d

t  

p

n

c

t

O

r

a

i

s

d

m

t

s

5

w

S

p

v

T

p

s

he soft-output ML benchmark. Thus, our proposals have not been 

ompared with suboptimal algorithms in terms of complexity. 

The computational complexity of MIMO tree search detectors is 

sually measured through the number of expanded nodes. How- 

ver, since each algorithm has a different cost in the expansion of 

very node, this method cannot be the only parameter to compare 

he computational cost of different methods. Thus, the number of 

ops, another commonly used metric, has also been used for our 

roposals. We have also recorded the computing times since the 

nal goal is to provide methods that can be executed faster. Nev- 

rtheless, it important to note that the computing times eventu- 

lly depend on the computing platform and on the implementa- 

ion program. In our case, we have also recorded the number of 

omparisons that each algorithm executes since rankings that are 

nly based on the other parameters procedure misleading results 

ecause the STS algorithm involves many comparisons in the ex- 

ansion of each node. Therefore, in order to have a comprehensive 

omparative evaluation of all of the algorithms, we have taken into 

ccount all of the parameters mentioned: the average number of 

ops, times, expanded nodes, and comparisons. 
8 
.1. Results without clipping 

In the case without clipping, we compare the proposed OSTS 

ith the original STS algorithm. The STS algorithm has been ap- 

lied to the MIMO-GSM problem in two ways. First, an STS algo- 

ithm is run to solve each subproblem of (10) . After completing 

ll of the subproblems, the detector takes the shortest distance as 

L solution (this procedure has been denoted as STS). Second, the 

riginal STS is applied to solve (4) with the use of an extended 

onstellation, that is, using ′′ 0 ′′ for the detection of inactive anten- 

as. This way of applying STS algorithm to the MIMO-GSM prob- 

em is denoted as STS _ EC (STS with extended constellation). It is 

mportant to note that the STS _ EC cannot be used for Setup 4 since 

t is not possible to obtain the required triangular factorization of 

he channel matrix. 

In terms of performance, as mentioned above, the three ML al- 

orithms provide the same BER curves. In terms of complexity, the 

ifferent com plexity parameters were recorded for the different se- 

ups and the results are shown in Fig. 6 . The results show that ap-

lying the STS algorithm to each subproblem and comparing the fi- 

al results to obtain the ML solution reduces the complexity when 

ompared to the algorithm using an extended constellation. Fur- 

hermore, if we apply the proposed strategies that give rise to the 

STS algorithm, all of the evaluated parameters are considerably 

educed. This reduction in cost is independent of the system size, 

lthough it is considerably higher when the size of the problem 

ncreases, as is the case of Setup 4. The results for this setup are 

hown in Fig. 6 which show how the different parameters are re- 

uced by 5 to 10 times by the OSTS algorithm compared to the STS 

ethod. This reduction depends on the working Eb / N0. Moreover, 

he reduction in the number of flops is particularly significant, as 

hown Fig. 6 (b). 

.2. Results with clipping 

In the case with clipping, we compare the OSTS (with clipping) 

ith the ODTS and BO-DTS algorithms. The comparison with the 

TS algorithm (with clipping) has been omitted here since it was 

roved in the previous subsection than the OSTS algorithm pro- 

ides a much lower computational cost than the STS algorithm. 

he experiments were performed with different values of the clip- 

ing parameter. As mentioned above, the BER performance for the 

ame clipping value is the same when an ML algorithm is applied. 
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Fig. 6. Average number of expanded nodes, flops, comparisons and computing times (seconds) different setups. 

Table 3 

Average time (seconds), expanded nodes, flops, and comparisons of the OSTS, ODTS, BO-DTS methods for the soft-output detection for Setup 1. 

Eb/N0(dB) -10 -5 0 5 10 15 

colrule L clip=1 . 2 Time OSTS 1.9e-2 1.7e-2 1.4e-2 1.5e-2 1.0e-2 1.0e-2 

ODTS 7.7e-3 6.1e-3 4.9e-3 5.3e-3 4.0e-3 4.0e-3 

BO-DTS 5.0e-3 5.0e-3 4.6e-3 5.1e-3 3.9e-3 3.9e-3 

Nodes OSTS 4.0e1 3.5e1 3.4e1 3.2e1 3.4e1 3.3e1 

ODTS 8.2e1 1.0e2 1.3e2 1.4e2 1.7e2 1.8e2 

BO-DTS 5.1e1 8.9e1 1.2e2 1.4e2 1.7e2 1.8e2 

Flops OSTS 3.1e4 2.5e4 2.40e4 2.2e4 2.4e4 2.3e4 

ODTS 5.9e3 4.9e3 4.6e3 4.5e3 4.5e3 4.2e3 

BO-DTS 2.8e7 1.9e7 1.4e7 9.2e6 4.5e6 4e4 

Comps OSTS 3.6e4 2.9e4 2.7e4 2.5e4 2.7e4 2.6e4 

ODTS 1.3e3 1.2e3 1.3e3 1.4e3 1.5e3 1.5e3 

BO-DTS 9.3e2 1.1e3 1.3e3 1.4e3 1.6e3 1.6e3 

L clip=3 Time OSTS 1.5e-2 1.4e-2 1.4e-2 1.4e-2 1.4e-2 1.4e-2 

ODTS 6.5e-3 6.2e-3 6.7e-3 6.8e-3 6.9e-3 6.9e-3 

BO-DTS 4.6e-3 5.4e-3 6.4e-3 6.7e-3 6.8e-3 6.8e-3 

Nodes OSTS 5.7e1 5.6e1 5.6e1 5.7e1 5.6e1 5.6e1 

ODTS 2.2e2 4.6e2 7.4e2 8.5e2 8.6e2 8.7e2 

BO-DTS 1.7e2 4.3e2 7.3e2 8.4e2 8.5e2 8.6e2 

Flops OSTS 4.2e4 4.0e4 4.0e4 4.1e4 4.0e4 4.0e4 

ODTS 5.8e3 4.9e3 4.6e3 4.6e3 4.5e3 4.2e3 

BO-DTS 2.8e8 2.0e8 1.4e8 9.1e7 4.5e7 3.5e3 

Comps OSTS 4.9e4 4.7e4 4.8e4 4.8e4 4.7e4 4.7e4 

ODTS 2.1e3 3.5e3 5.2e3 5.8e3 5.9e3 5.9e3 

BO-DTS 1.7e3 3.3e3 5.1e3 5.8e3 5.9e3 5.9e3 

9 
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Table 4 

Average time (seconds), expanded nodes, flops, and comparisons of the OSTS, ODTS, BO-DTS methods for the soft-output detection for Setup 2. 

Eb/N0(dB) -10 -5 0 5 10 15 

L clip=1 . 2 Time OSTS 2.1e-2 2.0e-2 2.0e-2 2.0e-2 1.9e-2 1.9e-2 

ODTS 1.3e-2 1.2e-2 1.2e-2 1.2e-2 1.1e-2 1.1e-2 

BO-DTS 1.1e-2 1.1e-2 1.1e-2 1.1e-2 1.1e-2 1.1e-2 

Nodes OSTS 2.1e1 1.7e1 1.8e1 1.8e1 1.6e1 1.6e1 

ODTS 3.7e1 3.6e1 4.0e1 4.2e1 3.5e1 3.4e1 

BO-DTS 2.3e1 3.2e1 3.9e1 4.1e1 3.5e1 3.3e1 

Flops OSTS 3.3e4 2.9e4 2.9e4 2.9e4 2.8e4 2.7e4 

ODTS 1.9e4 1.9e4 1.9e4 1.9e4 1.8e4 1.8e4 

BO-DTS 6.3e7 4.5e7 3.2e7 2.1e7 1.0e7 1.7e4 

Comps OSTS 3.2e4 2.7e4 2.7e4 2.7e4 2.5e4 2.4e4 

ODTS 1.1e3 1.0e3 1.1e3 1.1e3 1.0e3 9.6e2 

BO-DTS 1.0e3 1.1e3 1.1e3 1.1e3 1.0e3 9.9e2 

L clip=3 Time OSTS 2.85e-2 3.1e-2 3.3e-2 3.2e-2 3.1e-2 3.1e-2 

ODTS 1.5e-2 1.6e-2 1.6e-2 1.6e-2 1.5e-2 1.5e-2 

BO-DTS 1.2e-2 1.4e-2 1.5e-2 1.5e-2 1.5e-2 1.5e-2 

Nodes OSTS 3.4e1 3.4e1 3.7e1 3.8e1 3.5e1 3.5e1 

ODTS 9.e1 1.7e2 2.2e2 2.3e2 2.0e2 2.0e2 

BO-DTS 7.4e1 1.6e2 2.2e2 2.3e2 2.0e2 2.0e2 

Flops OSTS 4.2e4 4.1e4 4.3e4 4.3e4 4.1e4 4.2e4 

ODTS 1.9e4 1.9e4 1.9e4 1.9e4 1.8e4 1.8e4 

BO-DTS 6.3e7 4.5e7 3.2e7 2.1e7 1.0e7 1.7e4 

Comps OSTS 4.4e4 4.3e4 4.6e4 4.6e4 4.3e4 4.4e4 

ODTS 1.5e3 2.1e3 2.6e3 2.7e3 2.3e3 2.4e3 

BO-DTS 1.5e3 2.2e3 2.6e3 2.7e3 2.4e3 2.4e3 

Table 5 

Average time (seconds), expanded nodes, flops, and comparisons of the OSTS, ODTS, BO-DTS methods for the soft-output detection for Setup 3. 

Eb/N0(dB) -10 -5 0 5 10 15 

L clip=1 . 2 Time OSTS 7.8e-2 3.0e-2 2.3e-2 1.7e-2 1.5e-2 1.4e-2 

ODTS 2.4e-2 1.6e-2 1.4e-2 1.3e-2 1.2e-2 1.2e-2 

BO-DTS 1.3e-2 1.2e-2 1.2e-2 1.1e-2 1.0e-2 1.0e-2 

Nodes OSTS 5.2e2 1.4e2 8.4e1 3.7e1 1.6e1 8.1593 

ODTS 3.7e2 1.2e2 7.9e1 4.0e1 1.9e1 1.2e1 

BO-DTS 1.1e2 7.1e1 6.6e1 3.7e1 1.8e1 1.2e1 

Flops OSTS 1.3e5 4.5e4 3.0e4 2.0e4 1.5e4 1.4e4 

ODTS 3.6e4 2.2e4 1.8e4 1.5e4 1.3e4 1.3e4 

BO-DTS 6.9e8 5.3e8 3.9e8 2.6e8 1.2e8 1e4 

Comps OSTS 1.7e5 4.8e4 2.7e4 1.3e4 7.6e3 5.3e3 

ODTS 6.7e3 2.6e3 1.8e3 1.1e3 8.2e2 7.3e2 

BO-DTS 3.2e3 2.3e3 2.1e3 1.5e3 1.2e3 1.2e3 

L clip=3 Time OSTS 8.2e-2 3.8e-2 3.2e-2 2.4e-2 2.09e-2 1.86e-2 

ODTS 2.4e-2 1.6e-2 1.5e-2 1.3e-2 1.2e-2 1.2e-2 

BO-DTS 1.3e-2 1.2e-2 1.3e-2 1.1e-2 1.1e-2 1.0e-2 

Nodes OSTS 6.4e2 2.4e2 1.9e2 1.1e2 7.8e1 5.6e1 

ODTS 4.8e2 2.4e2 2.4e2 1.5e2 1.0e2 7.2e1 

BO-DTS 1.9e2 1.7e2 2.1e2 1.4e2 1.0e2 7.1e1 

Flops OSTS 1.6e5 6.701e4 5.4e4 3.6e4 2.8e4 2.3e4 

ODTS 3.6e4 2.2e4 1.8e4 1.5e4 1.3e4 1.3e4 

BO-DTS 6.9e8 5.3e8 3.9e8 2.6e8 1.2e8 1e4 

Comps OSTS 2.1e5 0.7e5 6.1e4 3.6e4 2.5e4 1.8e4 

ODTS 7.8e3 3.8e3 3.3e3 2.2e3 1.6e3 1.3e3 

BO-DTS 3.9e3 3.3e3 3.5e3 2.6e3 2.0e3 1.7e3 
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t is important to recall that high clipping values improve perfor- 

ance in terms of BER, but increase the computational cost of 

he algorithms. Figure 5 shows the results for the different setups. 

oreover, this figure shows that when the clipping value is 3 (or 

ore), the performance degradation is almost negligible. 

The complexity results are summarised in Tables 3 , 4 , 5 , and 6 ,

here the average times, expanded nodes, flops, and comparisons 

re presented for the different setups of Table 2 and clipping val- 

es of 1.2 and 3. It is important to highlight that, in most of the

valuated cases, the number of expanded nodes by the OSTS algo- 

ithm is lower than the expanded nodes by the ODTS and BO-DTS 

lgorithms. However, the number of comparisons performed by the 

STS algorithm is very significant compared with those performed 

y the other two algorithms. Furthermore, the computation times 

s considerably reduced by the ODTS and BO-DTS. Clearly, it is evi- 

ent that the computation time per node of the OSTS algorithm is 
10 
uch higher than that of the ODTS and BO-DTS algorithms. There- 

ore, even though the ODTS and BO-DTS expand more nodes, they 

re more efficient than the OSTS algorithm.Thus, we can conclude 

hat, when clipping values are applied, the ODTS and BO-DTS al- 

orithms are more efficient in terms of complexity than the OSTS, 

egardless of the size of the system. 

The BO-DTS algorithm requires a previous run of the BO algo- 

ithm in the preprocesing step. This means an increase in com- 

utational cost, which is clearly reflected in the number of flops 

xecuted by the algorithm. However, when the problem size in- 

reases (Setup 3 and 4), the increase in computational cost at the 

reprocessing stage (which is reflected in the number of flops) is 

ompensated by the complexity reduction in the second stage be- 

ause many configurations can be pruned. Therefore, even though 

he total number of flops is high, the number of expanded nodes, 

ime, and comparisons is considerably reduced, as Table 6 shows. 
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Table 6 

Average time (seconds), expanded nodes, flops, and comparisons of the OSTS, ODTS, BO-DTS methods for the soft-output detection for Setup 4. 

Eb/N0(dB) -10 -5 0 5 10 15 

L clip=1 . 2 Time OSTS 7.5e-1 2.9e-1 1.3e-1 1.1e-1 1.1e-1 1.0e-1 

ODTS 1.9e-1 1.3e-1 8.4e-2 7.9e-2 7.8e-2 6.4e-2 

BO-DTS 6.7e-2 7.0e-2 5.4e-2 5.6e-2 5.9e-2 5.1e-2 

Nodes OSTS 3.8e3 1.2e3 7.5e2 6.1e2 5.3e2 4.8e2 

ODTS 2.6e3 1.5e3 1.7e3 1.9e3 1.8e3 1.5e3 

BO-DTS 3.6e2 6.2e2 1.0e3 1.3e3 1.3e3 1.1e3 

Flops OSTS 9.2e5 3.2e5 2.0e5 1.6e5 1.5e5 1.3e5 

ODTS 2.4e5 1.3e5 1.0e5 9.1e4 7.5e4 5.1e4 

BO-DTS 3.4e9 2.7e9 2.0e9 1.3e9 6.7e8 2.71e4 

Comps OSTS 1.4e6 4.5e5 2.6e5 2.1e5 1.8e5 1.6e5 

ODTS 4.9e4 2.7e4 2.6e4 2.6e4 2.4e4 1.9e4 

BO-DTS 1.2e4 1.4e4 1.8e4 2.0e4 2.0e4 1.7e4 

L clip=3 Time OSTS 5.2e-1 2.1e-1 1.4e-1 1.2e-1 1.2e-1 1.1e-1 

ODTS 1.5e-1 1.2e-1 1.4e-1 1.5e-1 1.4e-1 1.7e-1 

BO-DTS 5.6e-2 7.0e-2 9.1e-2 1.0e-1 1.0e-1 9.97e-2 

Nodes OSTS 4.2e3 1.5e3 8.7e2 7.1e2 6.5e2 6.2e2 

ODTS 4.4e3 6.2e3 1.0e4 1.2e4 1.3e4 1.2e4 

BO-DTS 1.2e3 3.4e3 6.8e3 8.7e3 9.3e3 9.0e3 

Flops OSTS 1.0e6 3.8e5 2.2e5 1.9e5 1.7e5 1.7e5 

ODTS 2.4e5 1.3e5 1.0e5 9.1e4 7.5e4 5.1e4 

BO-DTS 3.4e9 2.7e9 2.0e9 1.3e9 6.7e8 2.7e4 

Comps OSTS 1.5e6 5.4e5 3.0e5 2.5e5 2.2e5 2.1e5 

ODTS 6.8e4 7.4e4 1.1e5 1.3e5 1.40e5 1.3e5 

BO-DTS 2.0e4 4.2e4 7.6e4 9.4e4 1.0e5 9.6e4 
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hus, in general terms, it is more efficient to use the BO-DTS algo- 

ithm for large systems and the ODTS algorithm is recommended 

or small systems. 

. Conclusions 

In this work, three new algorithms for soft-output MIMO-GSM 

etection have been presented. One of them, the OSTS, can be ap- 

lied with and without clipping, and the other two can only be 

sed with clipping. The algorithms were tested in four setups with 

ifferent system sizes. The results have provided some very clear 

onclusions. In the case without clipping, the proposed algorithm 

ignificantly reduces the computational simulation cost compared 

o other ML algorithms, which makes it relevant for use in these 

ases. From a practical point of view, the clipped option is more 

elevant. In the case with clipping, other options have been pro- 

osed (the ODTS and the BO-DTS) which have been found to be 

ore efficient than the OSTS algorithm. Depending on the overall 

ize of the system, it is more convenient to select either the ODTS 

r the BO-DTS. The ODTS provides a lower computational cost for 

mall sizes. However, when the system size increases, the BO-DTS 

lgorithm provides a cost that is considerably lower. 
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