
Renewable and Sustainable Energy Reviews 170 (2022) 112968

Available online 17 October 2022
1364-0321/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Performance analysis and modelling of a 50 MW grid-connected 
photovoltaic plant in Spain after 12 years of operation 

Enrique Fuster-Palop a,b, Carlos Vargas-Salgado a, Juan Carlos Ferri-Revert c, Jorge Payá a,* 
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A B S T R A C T   

This study aims to estimate the performance and losses of a 50 MW photovoltaic (PV) utility-scale after 12 years 
of operation. The PV plant has monocrystalline and polycrystalline silicon modules and is located in the central 
region of Spain with an annual insolation of 1976 kWh/m2. Monitoring data over the entire year 2020 has been 
analyzed and filtered to assess the performance results following the IEC 61724 standard guidelines. The annual 
average reference yield, final yield, performance ratio and capacity utilization factor are of 5.44 h/d, 4.28 h/d, 
79.24%, and 19.77%, respectively. Besides the experimental analysis, this work improves the estimation of the 
daily performance ratio, especially in days with low insolation. Two different modelling approaches have been 
assessed and compared. In first place, a physical model has been adopted, based on the most common losses, and 
including an exponential expression to account for low irradiance losses. In second place, statistical models have 
been used, with either multiple linear regressions or random forest algorithms. In contrast with other published 
models which require many inputs, the best accuracy has been reached with the random forest model using only 
the ambient temperature and solar irradiance as predictors, obtaining a RMSE of 1% for the PR and for the 
energy production.   

1. Introduction 

Photovoltaic (PV) energy systems are a key technology to increase 
the share of renewables in the energy mix, especially in countries with a 
high solar resource. In the last decade, the rapid cost reduction of up to 
82% [1], together with the favorable decarbonization policies [2], has 
increased exponentially the global PV installed capacity from a total of 
72 GW in 2011 to 707.5 GW in 2020 [3]. 

Literature on the operation of large photovoltaic plants is rather 
recent. Most of these plants are located in hot, desert, arid or semi-arid 
climates, such as 5 MWp in Sivagangai (India) [4], 9.36 MWp in Gujarat 
(India) [5], 10.13 MWp in Soroti City (Uganda) [6], 11.15 MWp in 
Shagaya PV plant (Kuwait) [7], 15 MWp in Nouakchott (Mauritania) [8], 
20.05 MWp in southwestern Algeria [9], and 23.92 MWp in El Bayad 
(Algeria) [10]. In most of the cases, these analysis were performed after 
only 1–5 years of operation, which provide limited insights on the 
long-term performance. To cover this gap, this paper investigates the PV 
production after 12 years of operation, for the largest PV power plant 

(50 MW) for which the performance is reported in literature. 
The PV energy production potential estimation is essential to provide 

more accuracy in the design and monitoring stages of new PV utility- 
scales and to guarantee their integration to the power grid [9], and a 
proper performance and reliability throughout their life-cycle [11]. For 
this purpose, commercial modelling softwares are generally employed, 
with a reliability which depends on the accuracy of the irradiance and 
electrical submodels [12]. The latter includes parameters such as the 
power losses at different stages of the facility, namely, the performance 
ratio (PR). 

In addition to the study of the performance of a power plant, this 
paper also investigates the modelling of the PR as one of the main points 
to estimate the AC energy yield (EAC) in PV systems using irradiance 
time-series. These models are widely spread in technical specification 
manuals [13], open-source libraries pvlib [14], research literature [15], 
and commercial software [16]. Generally, the main inputs are the 
in-plane global irradiance (IPOA), the nominal capacity, along with the 
PR. The latter is introduced as a product of the different installation 
losses, which are strongly dependent on the technology, the system 
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design, and the climatic conditions [17]. There is abundant literature 
regarding losses in which affect on the PR [18], especially when facil
ities operate far from the standard test conditions (STC) [19]. However, 
there are only a few publications which quantify the impact of low 
irradiance losses (LIL) [20] on the PR by adding a correction factor. 
Irradiances below 200–400 W/m2 cause a non-negligible drop in effi
ciency of the modules [21], leading to an overprediction in the EAC re
sults when operating in such range of irradiances [22]. 

Generally, the modelling of LIL is addressed with logarithmic ex
pressions to estimate either directly the PV production or the module 
efficiency [23] together with several empirical models with scarce 

peer-reviewed comparisons with other previous model proposals [24]. 
Another common approach to face the non-linearity of these low irra
diances is by defining two or more empirical expressions by irradiance 
ranges [25]. The simplest model which provides a LIL correction is 
found in the in-house program PR-FACT [26]. Nevertheless, the 
employed continuous efficiency curve is not publicly reported and 
cannot be implemented by other researchers. More complex low irra
diance models have been developed [27], but they require detailed 
electrical characteristics of the solar cell, which hinder the replicability 
when compared to simpler models. To cover this gap, this paper de
velops a replicable method to estimate the LIL, and hereby increase the 

Nomenclature 

Parameters used in equations 
a, b, c Exponential fit coefficients 
A Area of PV modules 
CUF Capacity Utilization Factor 
EAC AC PV energy production 
IPOA Global irradiance in the plane of array 
IRR Internal rate of return 
Isc Short-circuit current 
GSTC Reference solar irradiance at standard conditions 
IQR Interquartile range 
LCOE Levelized cost of electricity 
MAE Mean absolute error 
mtry Number of predictors selected at each split of the 

regression tree 
Nmod Number of PV modules from a PV array 
NOCT Normal operating cell temperature 
NPV Net present value 
nRMSE Normalized root mean squared error 
ntree Number of trees of the random forest algorithm 
PPV,rated Rated installed PV power of the system at standard test 

conditions 
Pinv,rated Rated installed power of the inverter 
PR Performance ratio 
PR′ Performance ratio without considering low irradiance 

losses 
PRmeasured Performance ration obtained from measurements 
Pmax Peak power 
R2 Coefficient of determination 
RMSE Root mean squared error 
Ta Ambient temperature 
Tcell Cell temperature 
THD Total harmonic distorsion 
VIF Variance inflation factor 
Voc Open circuit voltage 
yi Mean measured value 
ŷi Predicted value 
yi Measured value 
YF Final yield 
YR Reference yield 
YR1 Reference yield from weather station 1 
YR2 Reference yield from weather station 2 
β0, β1, β2, β3 MLR coefficients 
γ Maximum power temperature coefficient 
ηwiring, DC DC wiring losses 
ηdeg Degradation losses 
ηinv Inverter efficiency 
ηLIL Low irradiance losses efficiency 
ηmismatch Mismatch losses 
ηPV,stc PV efficiency under STC 

ηsoil Soiling losses 
ηtemp Temperature losses 

Abbreviations 
AC Alternating current 
ANN Artificial neural network 
ANOVA Analysis of variance 
a-Si Amorphous silicon 
DC Direct current 
IEC International Electrotechnical Commission 
LIL Low Irradiance Losses 
mc-Si Mono-crystalline silicon solar cell 
ML Machine learning 
MLR Multiple linear regression 
MPPT Maximum power point tracker 
pc-Si Poly-crystalline silicon solar cell 
O&M Operations and maintenance 
PV Photovoltaic 
RD Royal decree 
RF Random forest 
STC Standard test conditions 
SCADA Supervisory control and data acquisition 
SVM Support vector machine 
WS Weather station 

Units 
A Ampere 
c€ Euro cent 
d Day 
GW Nominal Gigawatt 
GWh Gigawatt hour 
h Hour 
Hz Hertz 
kV Kilovolt 
kVA Kilovolt-ampere 
kW Nominal kilowatt 
kWh Kilowatt hour 
kWp Kilowatt peak 
m Linear metre 
m2 Square metre 
nm Nanometre 
MW Nominal Megawatt 
MWh Megawatt hour 
MWp Megawatt peak 
M€ Millions of Euros 
◦C Degree Celsius 
V Volt 
W Nominal Watt 
Wp Watt peak 
μV Microvolt 
Ω Ohm  

E. Fuster-Palop et al.                                                                                                                                                                                                                           



Renewable and Sustainable Energy Reviews 170 (2022) 112968

3

accuracy of the global PR, using the irradiance exclusively as input. 
Besides physically based models, statistical and Machine Learning 

(ML) models have been proposed in recent years to estimate the PV 
production [28]. However, literature in this field is scarce. An artificial 
neural network (ANN) was applied to predict the PR of the PV modules 
with a root mean squared error (RMSE) below 0.02 [29]. The PR was 
calculated by means of a physical expression dependent on the tem
perature and irradiance. S. Bandong et al. [30] developed a Support 
Vector Regression (SVR) and Multiple Linear Regression (MLR) using 26 
climatic variables as predictors, obtaining a RMSE of 1.5% compared 
with measured data. Behzad Hashemi et al. [31] reduced the number of 
inputs to 5, obtaining a RMSE of 0.06 with Long Short-Term Memory 

networks and 8 years of recorded data from a 1.44 kWp facility. The 
complete replicability of these models is nevertheless limited due to the 
large number of climatic variables that must be measured over a long 
period of time. 

The present work explores the capability of simpler ML models to 
predict the global PR with only two climatic variables: IPOA and the 
ambient temperature (Ta). Two regression models have been employed: 
a MLR, which is the simplest algorithm, and Random Forest (RF), which 
is computationally simpler than ANN and well-suited for predicting 
stochastic PV generation reducing bias and variance [32]. The authors 
have not found any published research on its application to estimate the 
global PR, which is a useful alternative for prediction when there is not 

Fig. 1. Aerial view of the PV plant (500 sectors: S1–S500).  

Fig. 2. Photograph of the PV plant.  
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enough information available on the facility to develop a physical 
model. 

To sum up, given the previous literature review, this article presents 
the following novelties:  

• Provide relevant experimental data regarding the PV performance of 
a large PV system (50 MW) after 12 years of operation under Med
iterranean climatic conditions.  

• The development and assessment of a method to estimate the daily 
LIL, based on an empirical exponential expression and using the IPOA 
as input. 

• The development and assessment of a MLR and a RF model to esti
mate the global PR of the utility-scale using only as inputs Ta and 
IPOA. 

2. Materials 

The grid-connected PV utility-scale of the present work is located in 
the east of Olmedilla de Alarcón, Spain (39.6155◦N, 2.0905◦W). The 
plant was commissioned in October 2008 with a nominal power of 50 
MW, a peak power of 60.103 MWp and a total land occupation of 175.3 
ha. According to the Köppen climate classification, the climate of the 
power plant is classified as Csa (hot-summer Mediterranean), with daily 
average temperatures that vary between 0 ◦C and 31 ◦C, and a horizontal 
irradiation of up to around 1050 W/m2, according to the measured data 
of this study. 

The solar PV power plant (Figs. 1 and 2) consists of 500 independent 
sectors, each with an inverter of 100 kW and an array of different PV 
modules whose total peak power varies per sector from 116.5 kWp to 
127.5 kWp. The peak power distribution is shown in Fig. 3 for the 
different manufacturers. 

The PV modules have a fixed 30◦ tilt angle and are oriented towards 
the south. There are three different module manufacturers with mc-Si 
and pc-Si. The characteristics of the PV modules are summarized in 
Table 1. Each sector contains several models of the same manufacturer 
with different rated powers. 

All sectors use the same inverter model INGETEAM INGECON 
SUN100 with a nominal power of 100 kW and an efficiency of 96%. The 
rest of the electrical parameters of the inverter are shown in Table 2. The 
energy output of the inverters is expanded to a medium voltage level of 
20 kV by means of 500 transformers of 100 kVA. The voltage is finally 

Fig. 3. Installed peak power grouped by manufacturer.  
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increased in a substation up to 132 kW before its injection into the grid. 
For the present study, the hourly EAC has been measured by the 

monitoring system of the inverters. The inverter measurements are 
transferred to the supervisory control and data acquisition (SCADA) 
system, which is installed in a high-performance workstation, through 
an industrial RS232/RS485 to Ethernet converter and an IP-based 
network. The PV plant also has two weather stations (WS) located at 
its northern (39.6348◦N, 2.0867◦W) and southern (39.6151◦N, 
2.0938◦W) ends (Fig. 1). The WS are equipped with a Ta sensor and a 
pyranometer which measures the IPOA. Both systems provide measure
ments every 5 min, and their main specifications are summarized in 
Table 3. The instrumentation of each WS is connected to an independent 
programmable logic controller system Omron CJ1M-CPU11 to condition 
the signals and send them to the SCADA system. The recorded data is 
stored and used for real-time monitoring, alarm management, signal 
processing, report generation, as well as the integration of the SCADA to 
the web. The measurement equipment is calibrated annually by the 
Spanish Centre for Energy, Environmental and Technological Research. 

3. Methods 

This section describes the methodology to analyze the measured data 
and to estimate the PR and EAC. 

The methodology is summarized in Fig. 4. The aim is to perform an 
analysis of the 50 MW PV power plant and to propose a novel method 
based on climatic data that improves the PR estimations and helps reach 
a more accurate estimation of the EAC. 

The first step in the methodology (section 3.1) is to carry out an 
exploratory data analysis of the collected data. The EAC data of each 
sector and the climatic data have been initially filtered to remove po
tential outliers. Afterwards, the main performance parameters of the 
utility-scale have been calculated, and an exploratory data analysis of 
these results has been performed. Additionally, the results are compared 
with other power plants in similar climatic regions. 

As a second step, two approaches have helped to model the PR with 
climatic data: the first method is a physical model, considering the 

Table 2 
Summary of the characteristics of the inverters.  

Parameter Value Units 

Maximum input voltage 900 V 
Maximum input current 286 A 
MPPT voltage range 405–750 V 
Number of inputs 4 - 
Number of maximum power trackers 1 - 
Nominal output power 100 kW 
Nominal operating voltage 3 × 220–3x400 V 
Nominal frequency range 50/60 Hz 
Maximum output current 340 A 
European efficiency 96 % 
Power factor 1 - 
THD <3 %  

Table 3 
Summary of the pyranometer specifications.  

Feature Pyranometer Temperature sensor 

Value Units Value Units 

Manufacturer Delta 
Ohm 

- E+E Elektronik - 

Model LP PYRA 
02 

- EE21 - 

Sensitivity 10 μV/ 
Wm− 2 

10 mV/ 
◦C 

Measuring range 0 ÷ 2000 W/m2 − 40 ÷ 60 ◦C 
Operating 

temperature range 
− 0,5 ◦C − 40 ÷ 60 ◦C 

Impedance 33 ÷ 45 Ω - - 
Spectral range 283 ÷

2800 
nm - - 

Type of sensor - - Pt100 (tolerance class A, 
DIN EN 60751) 

- 

Accuracy - ◦C 0.2 ÷ 0.7 ◦C  

Fig. 4. Workflow of the methodology.  
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product of several factors that describe the energy losses in different 
stages of the facility. The LIL have been modelled to improve the esti
mated PR accuracy for low irradiances. Several regression and ML 
models have been assessed. This requires examining the correlations 
between the predictors (climatic data) and the predicted variable (PR) 
and obtaining one different model per manufacturer, justified by a one- 
way ANOVA test. Two different models have been studied: a MLR model 
and a RF model with their respective k-fold cross-validations with 
measurements. 

The last step consists of predicting the total EAC of the power plant 
through a physical model that considers the PR previously calculated 
from the different models, the module characteristics, and the array 
configuration of each sector. Finally, the production results have been 
compared with the measurements for the different PR models. 

3.1. Data pre-processing 

The performance data has been analyzed on an hourly basis for year 
2020. The core of the experimental data is the EAC from the inverter, the 
Ta, and the IPOA for the tilt and azimuth angle of the PV arrays (30◦ S). To 
provide stable measurements and a consistent analysis without mea
surement errors, the data was initially filtered according to the guide
lines the standard IEC 61724, as in similar PV utility-scale analysis [22]. 
The hourly measurements were filtered according to the ranges indi
cated in Table 4. 

In Table 4, Pinv, rated (upper filter threshold for the EAC) can be un
derstood as the nominal power of the inverter (in this case, Pinv, rated =

Table 4 
Filtering criteria applied for the hourly measured data.  

Min Parameter Max 

20 W/m2 IPOA 1500 W/m2 

− 30 ◦C Ta 50 ◦C 
0 EAC 1.02 ⋅ Pinv, rated  

Table 5 
Description of the PV performance parameters.  

Parameter Description Expression Units 

Reference Yield 
(YR) 

The maximum theoretical solar 
energy available in a specific 
location is defined as the ratio 
between the total daily in-plane 
insolation (IPOA,d) and the 
reference solar irradiance at 
standard conditions (GSTC = 1 
kW/m2). 

YR =
GPOA,d

GSTC 

h/d 

Final Yield (YF) The ratio between the EAC of the 
system during a certain period, 
in this case daily (EAC,d), and the 
PV rated installed power of the 
system at standard test 
conditions (PPV,rated). 

YF =
EAC,d

PPV,rated 

h/d 

Performance 
Ratio (PR) 

The ratio between the YF and the 
YR. It can be understood as an 
efficiency parameter that 
measures the energy losses 
between actual output of the 
plant with its irradiation input. 
PR allows comparing 
performance results between 
different PV systems regardless 
the geographical location and 
the installed peak power. 

PR = 100⋅
YF

YR 

% 

Capacity 
Utilization 
Factor (CUF) 

Relationship between the YF of 
the plant and the maximum 
possible energy production, 
defined by its installed capacity 
in a given period. 

CUF =

100⋅
EAC,d

PPV,rated⋅24 

%  

Table 6 
Description of the losses included in the PR physical model.  

Parameter Description Value Reference 

ηsoil Soiling losses Optical losses due to 
dust and particles 
accumulated on the 
PV modules’ surface 
over time. The latter 
fluctuate mainly with 
the frequency of the 
rainfalls, the 
maintenance 
schedule, and dust 
type. For this facility 
with a 30◦ tilt, 2% of 
soiling losses has 
been assumed. 

0.98 [38–40] 

ηdeg Degradation 
losses 

Power decay over 
time in the output of 
the PV modules due 
to different causes of 
deterioration: cell 
cracks, corrosion, 
discoloration, glass 
breakage, etc [41]. 
Values extracted from 
the manufacturer 
data sheet. 

0.916 
0.890 
0.920 

Manufacturer 
Siliken 
Scheuten 
Yingli 

ηtemp Temperature 
losses 

Drop in the PV 
module efficiency 
due to the increase of 
the cell operating 
temperature. The 
calculation of the 
hourly values is 
further described in 
this section. 

ηtempi
(Tcell) [15,37] and 

manufacturer 

ηLIL Low 
irradiance 
losses 

This parameter 
gathers the nonlinear 
efficiency drop of the 
PV modules for low 
irradiance values. 
The calculation 
methodology is 
further explained in 
this section and the 
value depends on the 
IPOA or YR. 

ηLIL(YR) Manufacturer 

ηinv Inverter 
efficiency 

A constant value for 
inverter efficiency is 
provided by the 
manufacturer 
mentioned in section 
2. 

0.96 Manufacturer 

ηmismatch Mismatch 
losses 

Losses due to the 
interconnection of 
solar modules of cells 
with different 
electrical properties. 
Following published 
literature, a typical 
loss of 2% has been 
assumed. 

0.98 [38,42] 

ηwiring,DC DC wiring 
losses 

Direct current losses 
caused by the ohmnic 
resistance of the 
wiring that 
interconnects the PV 
strings with the 
inverter. Due to the 
great spatial 
extension of the 
power plant a 2% of 
losses has been 
assumed [38]. 

0.98 [38,43]  
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100 kW). 
With respect to the data filtering, some authors employ a higher 

threshold for the minimum IPOA (200 W/m2) [33]. Nevertheless, to keep 
as much available data as possible in this work, a less restrictive 
threshold of 20 W/m2 has been considered according to the recom
mendation of part one of the standard IEC 61724 [34]. Keeping the 
irradiance values in the range 20–200 W/m2 has enabled the develop
ment of a specific characterization of the system for low irradiance 
values. 

The typical reporting periods to assess the performance of PV utility- 
scales are equal or longer than one day (e.g. annually, monthly, or daily) 
[35]. The hourly measurements were aggregated daily to avoid potential 
underestimations of module performances as reported in bibliography 
[36]. 

3.2. PV performance parameters 

The performance of the present PV utility-scale has been evaluated 
following the IEC 61724 standard guidelines. Their definitions and ex
pressions of the main performance parameters are described in Table 5. 

3.3. Energy production model 

The hourly EAC (EAC,h) of the entire utility-scale has been calculated 
using Eq. (1). The daily production (EAC,d) can be obtained aggregating 
the hourly production as shown in Eq. (2). 

EAC,h =
∑500

i=1

∑8

j=1
PRi⋅ηPV,stci,j

⋅Ai⋅Nmodi,j ⋅GPOA (1)  

EAC,d =
∑24

h=1
EAC,h (2)  

Where:  

• Ai,j is the area of a PV panel of sector i in the array j, provided by the 
manufacturer in Table 1.  

• ηPV,stci,j 
is the PV efficiency under STC of sector i in the array j, as 

provided by the manufacturer in Table 1.  
• Nmodi,j is the total number of modules of the sector i in the array j.  
• GPOA is the hourly measured in-plane global irradiance.  
• PRi is the performance ratio of the sector i and has been obtained 

either with a physical quantification of the plant losses (section 3.4) 
or with a statistical analysis (section 3.5). 

3.4. PR physical model 

The physical definition of the PR is based on the determination of the 
losses which occur in every energy transmission or conversion stage 
from IPOA to the EAC of the inverters. The losses of the transformation 
stage have not been included since the measured data is before the grid 
injection. There are no shadow losses in the PV plant. 

According to several authors [37], the PR of each sector i can be 
defined as the product of the losses indicated in Eq. (3). The term PR′

i 
(base PR model) refers to the PR before introducing the LIL. 

PR′

i = ηsoil⋅ηdeg,i⋅ηtemp,i⋅ηinv⋅ηmismatch⋅ηwiring,DC (3)  

Where η is the efficiency of each stage, as indicated in Table 6. Whenever 
the efficiency data is not available, the values have been obtained from 
similar facilities in literature. 

The temperature losses efficiency (ηtemp) is obtained with Eq. (5) 
through the temperature coefficient of the PV modules (γ), defined in 
Table 1, and the PV cell temperature (Tcell). The latter can be estimated 
with Eq. (4) using the hourly measured Ta and IPOA, as well as the 

nominal operating cell temperature (NOCT in Table 1), which is defined 
as the cell temperature obtained with Tamb 20 ◦C and a solar irradiance 
of 1 kW/m2. This approach is widely employed in literature and provide 
conservative loss values compared to other cell temperature models 
[44]. 

Tcell,i =Ta + GPOA⋅
NOCTi − 20

800
(4)  

ηtempi
=(1 − γi ⋅ (Tcelli − 25)) (5) 

Since only a single complete year with measurements is available, 
the absence of a cyclical component in the time series limits the use of 
year-on-year and statistical methods [45], which present robust results 
with time series of several years. As an alternative, instead of directly 
using the degradation losses supplied by the manufacturers (Table 6), 
the degradation losses were calculated with the daily PV production 
balance of Eq. (1), and breaking down the PR between ηdeg,i and another 
factor with the rest of the losses contemplated in Table 6. The ηdeg,i daily 
values were then averaged for the entire year, resulting in values of 
0.9022 for Siliken, 0.8711 for Scheuten, and 0.8934 for Yingli. These 
coefficients represent the total loss due to degradation after 12 years of 
operation. 

The efficiencies of Table 6 are typically employed to quantify the PR 
[18]. In the present work a new coefficient has been added, the LIL 
(ηLIL), to account for the drastic drop of the module PV production at low 
irradiances (below 200 W/m2) [20]. Additionally, this coefficient in
cludes the drop of the inverter efficiency when the power input is low, at 
low irradiance values. This helps to compensate the fact that a constant 
inverter efficiency had been assumed in the factor ηinv. 

ηLIL has been calculated in Eq. (6) as the ratio between the PR ob
tained from the measurements (PRmeasured) and PR’, which does not 
consider the impact of the LIL. 

ηLIL =
PRmeasured

PR′ (6) 

Different correlations have been developed to relate the LIL with YR. 
The best fitting has been achieved with the expressions indicated in (7) 
and (8). 

ηLIL = 1 − exp (b ⋅ YR) (7)  

ηLIL = 1 − a⋅Yc
R⋅exp (b ⋅ YR) (8) 

Finally, the PR employed in the production model includes ηLIL, as 
shown in Eq. (9). 

PR=PR′ ⋅ηLIL (9) 

In order to evaluate the accuracy of the developed correlations, the 
daily PR obtained from the measurements has been compared with the 
calculated PR using the error metrics described in section 3.6. 

3.5. PR statistical and Machine Learning models 

A different approach to estimate the PR is by means of statistical 
models (e.g. MLR) and ML models (e.g. RF). Each of the developed 
models employs exclusively climatic data (IPOA and Ta) as predictors. 
The data corresponds to year 2020 which is representative for the 
behavior at half-life of the facility. 

Given the variety of equipment, a different fit is proposed for each 
manufacturer to provide accurate predictions of the daily PR of the PV 
utility-scale. A one-way ANOVA test has been employed to determine 
which level of aggregation is more appropriate to define the statistical 
models. In other words, the one-way ANOVA tests helps to determine if a 
single global model is better for all sectors, in comparison to a different 
model for each of the module manufacturers. The null hypothesis is that 
the manufacturer groups are equal, whereas the alternative hypothesis is 
that at least one of the distributions is significantly different from the 
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others [46]. 
The confidence of the results rely on the degree the one-way ANOVA 

assumptions are met [47]. A significance value (type-I error) of 5% has 
been assumed for all the hypothesis tests. The choice is based on S. 
Vergura [48], who indicated that medium-large PV plants present a 
larger uncertainty due to their high complexity. 

Once the PR modelling by manufacturers was justified with the one- 
way ANOVA test, both MLR and RF models were trained and then tested. 

As shown in Eq. (10), the MLR model assumes a linear relationship 
between the predicted variable (PR) and the predictors (YR1 from WS1, 
YR2 from WS2, and Ta). The stats R package has been applied. The 
regression parameters for each manufacturer i (β0,i, β1,i, β2,i, β3,i) are 
estimated by ordinary least squares [49]. 

PRi = β0,i + β1,i⋅YR1 + β2,i⋅
YR2

YR1
+ β3,i⋅Ta (10) 

The confidence of the regression parameters depends on the degree 
of compliance of the MLR assumptions [50], which are evaluated 
through their respective hypothesis test in section 4.2. The multi
collinearity is quantified employing the variance inflation factor (VIF) 
indicated in Eq. (11). 

VIFi =
1

1 − R2
i,j

(11)  

Where Ri,j is the correlation coefficient of the i predictor on the 
remaining explanatory variables. VIF values greater than 4 arise multi
collinearity problems [51]. 

Parallel to the MLR model, a RF model has been developed. The RF 
algorithm is a non-linear ML model [52] that potentially explains the PR 
with a better accuracy for the range of low irradiances. Since the PR is a 
continuous variable, the suggested RF model is constituted by regression 
trees. 

The RF model was trained using the caret R package [53]. In the RF 
algorithm, several hyperparameters need to be defined by the user. The 
two most relevant optimization parameters are the number of predictors 
at each split (mtry) and the number of trees to grow for aggregation 
(ntree) [54]. 

The mtry value is calculated by default by the algorithm as the 
rounded down result of the square root of the total number of predictor 

Fig. 5. Validation methodology of the MLR and RF models.  

Fig. 6. Heatmaps of hourly measured IPOA, Ta and EAC in 2020.  
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variables. In this case, since there are three predictors, the mtry value is 
2. The ntree value was fixed once the increase of ntree improved the 
RMSE in less than 1%. The previous criteria is commonly used by re
searchers [55] and employed in RF models applied to PV applications 
[56]. 

To assess the accuracy and robustness of the MLR and RF models, the 
validation was performed as depicted in Fig. 5. The pre-processed 
dataset obtained in section 3.1 was randomly split using an 80:20 
ratio to create a train dataset and test dataset. This partition is done to 
perform an external validation of the models with unseen data from the 
train set [57]. Then, a k-fold cross validation was conducted with the 
train set formed by the 80% of the original dataset to obtain the opti
mized regressors coefficients of the MLR model and build the RF model. 
For this work a k value of 10 was considered, which is commonly used in 
literature [58]. Finally, external model validations with the remaining 
20% of the original dataset were employed. 

3.6. Model deviation 

The accuracy of the three models for the daily PR and the derived PV 
production has been compared. For the MLR and RF models, the trained 
model performance is evaluated on the test set using as error metrics the 
root mean squared error (RMSE), the normalized root mean squared 
error (nRMSE), the mean absolute error (MAE) and the coefficient of 
determination (R2) as defined in equations (12)–(15) [59]: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − ŷi)
2

N

√

(12)  

nRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1(yi − ŷi)

2
√

yi
(13)  

MAE=
1
N
∑N

i=1
|yi − ŷi | (14)  

R2 = 1 −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 (15)  

Where yi, ŷi , yi are the measured, predicted and the mean measured 
values, respectively, and N the number of samples of the dataset. 

4. Results 

Following the methodology described in Fig. 4, this section presents 
the performance analysis of the PV utility-scale, the results and valida
tion of the PR models, and finally in the impact on the PV production. 

4.1. Performance results of the PV facility 

The raw measured data consists of 8727 hourly measurements of 
three variables: IPOA, Ta and EAC (in 500 sectors), during 364 days of 
2020. After applying the data filtering explained in section 3.1, the 
resulting dataset was reduced by 59.33% of the original hours. The 
minimum irradiation threshold was the main effective filter since 
49.74% of the original data was removed due to nighttime hours, and 
8.30% during the sunrise and sunset hours. Additionally, there were 10 
days (1.29% of the raw data) when the PV production stopped (non- 
productive hours in Fig. 6. Stops on individual days are mainly due to 
inverter failures caused by high temperatures, blown fuses and powered 

Fig. 7. Monthly average of the Ta and PV performance parameters (YR, YF, PR and CUF) in 2020. The interquartile ranges are represented by error bars and 
dashed lines. 

Table 7 
Statistical results of the global daily performance parameters in 2020.  

Parameter Units Minimum 1st Quartile Median Mean 3rd Quartile Maximum Standard deviation Skewnessa 

YR h/d 0.59 4.10 5.90 5.44 7.30 8.03 2.09 − 0.68 
YF h/d 0.43 3.31 4.74 4.28 5.63 6.33 1.59 − 0.85 
PR % 69.11% 75.93% 79.15% 79.24% 82.20% 93.44% 4.08% 0.23 
CUF % 1.81% 13.81% 19.77% 17.88% 23.52% 26.43% 6.64% − 0.85  

a Dimensionless Value. 
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surge protection devices, which need staff intervention before starting- 
up again. Fig. 6 shows the hourly values of the total measured EAC of 
the utility-scale, IPOA, and Ta after the data filtering. 

The annual IPOA was 1975.52 kWh/m2 and the EAC of the complete 
utility-scale in 2020 was 91.32 GWh, with a monthly average of 7.61 
GWh. 

At the top of Fig. 7 the average Ta for each month is shown. The 
average daily Ta during the year is 16.61 ◦C, fluctuating from a mini
mum average of 7.43 ◦C in January, and a maximum average of 28.28 ◦C 
in July. 

The monthly variation of the PV performance parameters is also 
presented in Fig. 7 and Table 7. According to section 3.2, the YR reached 
its maximum in August and its minimum in December with a value of 

7.35 h and of 3.63 h of irradiance equivalent to 1 kW/m2, respectively. 
Regarding the YF, the yearly average was 5.44 h/d. The minimum 

was 2.98 h/d in December and the maximum 5.49 h/d in August. 
However, the maximum daily values, up to 6.33 h/d (in March), were 
registered during the Spring season, where the lower Ta compared to 
summer provided a higher efficiency. There are also noticeable differ
ences in the yearly average YF for the different module manufacturers. 
The best performance is obtained by Siliken with 4.32 h/d, followed by 
Yingli with 4.26 and, lastly, Scheuten with 4.19 h/d. The latter also 
provides the lowest performances within some sectors, reaching lower 
values than 4 h/d, as shown in Fig. 8. 

The PR ranges between in 74.97% in August and 83.46% in 
February, with an annual average of 79.24%. The lowest PRr are 

Fig. 8. Boxplots of the average YF (a), PR (b) and CUF (c) of each sector and manufacturer.  

Table 8 
Comparison of the PV performance in different PV facilities with hot-summer Mediterranean climate (Csa).  

Location Commisioning 
Year 

Monitoring 
period 

Module 
type 

Peak power 
(kWp) 

YF (h/d) min/ 
mean/max 

PR (%) min/ 
mean/max 

CUF (%) min/ 
mean/max 

Ref. 

Olmedilla de Alarcón, 
Spain 

2008 2020 mc-Si/pc- 
Si 

60,103.4 0.43/4.28/6.33 69.11/79.24/ 
93.44 

1.81/17.83/26.43 Present 
study 

Ar Ramtha, Jordan - 2017–2018 pc-Si 5000 2.80/4.60/5.80 74.00/80.00/ 
90.00 

11.00/18.10/ 
23.00 

[62] 

Albacete, Spain 2010 2010–2013 pc-Si 4600 2.20/-/4.37 59.46/-/78.84 9.16/-/18.22 [63] 
Mugla, Turkey - 2008 pc-Si 2730 2.53/4.77/6.65 -/72/- - [64] 
Albacete, Spain 2008 2012–2016 pc-Si 2700 4.71/-/7.92 78.93/-/84.86 19.64/-/33.02 [63] 
Şahinkaya, Turkey 2016 2017 pc-Si 2130.7 2.32/4.53/6.28 73.92/81.15/ 

91.78 
9.65/18.86/26.16 [37] 

Albacete, Spain 2007 2012–2016 pc-Si 1400 7.92/-/2.2 83.56/-/85.60 20.14/-/29.87 [63] 
Albacete, Spain 2007 2010–2013 mc-Si 1300 3.10/-/5.69 80.36/-/85.66 12.91/-/18.66 [63] 
Albacete, Spain 2008 2010–2013 mc-Si 1300 3.50/-/6.69 64.91/-/68.83 14.65/-/27.29 [63] 
Monteroni, Italy 2011 2012–2015 mc-Si 960 1.70/3.80/6.20 75.00/84.4/ 

94.00 
6.90/15.60/25.60 [11] 

Ciudad Real, Spain 2013 2013–2016 pc-Si 370 4.29/-/4.63 80.39/-/81.39 17.86/-/19.30 [63] 
Sitia, Crete, Greece 2002 2007 pc-Si 171.36 1.96/3.66/5.07 58.00/67.36/ 

73.00 
-/15.26/- [15] 

Manisa, Turkey 2018 1 year mc-Si 30 1.53/4.16/6.09 81.22/83.61/ 
86.15 

6.38/17.35/25.39 [65] 

Bouzareaha, Algeria 2004 2016–2018 pc-Si 9.5 -/3.37/- -/70.00/- - [66] 
Tangiers, Morocco - 2015 pc-Si 5 1.96/4.45/6.42 58.00/79.00/ 

98.00 
6.55/14.84/21.42 [67] 

Chania, Crete, Greece - 2010–2012 a-Si/mc-Si 2.18 1.83/-/6.55 80.40/-/95.40 - [68] 
Tangiers, Morocco - 2016 pc-Si 2 3.38/4.72/5.90 71.23/77.24/ 

84.00 
10.83/11.76/ 
12.78 

[69] 

Los Angeles, United 
States 

- - - 0 -/4.22/- -/72.10/- - [70] 

Casablanca, Morocco - - - 0 -/4.29/- -/71.90/- - [70]  

E. Fuster-Palop et al.                                                                                                                                                                                                                           



Renewable and Sustainable Energy Reviews 170 (2022) 112968

11

obtained in summer due to the higher temperatures. There is a clear 
correlation with the temperature. The global PR was above 75% for 
84.2% of the days with measurements, proving that the system has been 
working correctly in global terms. There are significant fluctuations in 
the PR when comparing the different manufacturers: the Siliken and 
Yingli (pc-Si) sectors provide an annual average of 79.61% and 79.01%, 
respectively, while the Scheuten (mc-Si) sectors yield 77.09%. 

The PR of the mc-Si sectors is on average around 2% lower than the 
pc-Si sectors. Considering the similarities among manufacturer charac
teristics in the STC efficiencies, the performance difference is mainly 
caused by a greater drop in efficiency when the temperature increases. 
This issue can be observed in Table 1, since the temperature coefficient 
in the mc-Si modules is higher than for the pc-Si modules. The same 
phenomenon was also found in similar climate conditions, both in 
northern Algeria [60] and in Morocco [61]. 

The monthly average CUF ranges between 12.44% in December and 
22.93% in August, with an annual average of 17.88%. The CUF 
dispersion decreases during the months with more sunny hours and 
stable weather. The annual average CUF among module manufacturers 
differs slightly: 17.99% for Siliken, 17.44% for Scheuten and 17.74% for 
Yingli, following a similar distribution scheme as the PR. 

According to the assumptions described in section 3.4, the estimated 
degradation losses are generally 1–2% higher than the rates provided by 
the manufacturer datasheets. After 12 years of operation, the average 
degradation loss for Siliken modules is 9.79%, 12.89% for Scheuten, and 
10.66% for Yingli, and their respective averaged yearly degradation 
rates are 0.816%/year, 1.074%/year, and 0.888%/year. Consequently, 
the averaged modules efficiency at STC drops to 12.13% for Siliken, 
10.85% for Scheuten, and 11.02% for Yingli. The highest degradation is 
suffered by the mc-Si technology. 

As indicated in Table 8, the performance of the present utility-scale is 
comparable with other PV power plants reported in scientific literature 
under Csa Mediterranean climate. However, due to the long operating 
period and consequent degradation losses, the average YF, PR, and CUF 
are slightly lower than in the other plants, where the performance was 
measured a few years after their commissioning. Among the registered 
PV utility-scales the CUF is generally greater for bigger installed powers, 
and mc-Si technologies on average provide better PR results. 

Besides the energy performance assessment, an economic analysis 
has also been conducted. The remuneration of the facility has depended 

on two different Spanish legislative frameworks during its operation. 
The first period, from its commissioning in 2008 until July 2014, fol
lowed RD 661/2007 [71], with a fixed price. The second period, which 
is still in force, follows RD 413/2014 [72]. The remuneration calcula
tions for this period are described in detail for other plants in literature 
[73]. 

The net present value (NPV), internal rate of return (IRR), payback 
period and the levelized cost of electricity (LCOE), were estimated ac
cording to N. Bansal et al. [74], considering the initial investment cost, 
the O&M costs, the cashflows generated by the energy selling, the 
annual degradation rate of the modules, the inflation rate and the dis
count rate summarized in Table 9. 

4.2. PR modelling results 

Fig. 9 shows the deviations between the modelled daily PR consid
ering the physical losses and the measured daily PR, as calculated with 
Eq. (6). While for regular days with daily YF higher than 3 h/d the de
viations fluctuate around 1, which means that no significant corrections 
are required, there is a clear drop for daily YR values below 2 h/d. 

These deviations were modelled with two nonlinear exponential fits, 
whose coefficients and error metrics are given in Table 10. The 
employment of an exponential fit allows reducing selectively these dif
ferences only for low YR values. A linear regression fit would tend to 
overestimate the LIL. The exponential 1 fit, despite its simplicity, tends 
to excessively reduce the PRs with low YR values s. The exponential fit 2 
presents a more moderate fit and reduces the error compared with the 
exponential 1 for YR values around 2 h/d. The exponential 2 was 
consequently selected for the comparison with the PR models. 

Adding the correction of the exponential fit 2 in Eq. (9) clearly im
proves the results, as may be inferred by comparing Fig. 10a and b. 
There are significant overpredictions with the base PR model (up to 15% 
of relative error) which are mitigated when ηLIL is introduced. With the 
exponential fit 2, the nRMSE decreases by 48.22%. 

The compliance with the one-way ANOVA assumptions has been 
verified prior to its application. To meet the normality of the annual 
average PR, the inferior outliers below the limit defined by Tukey (Q1- 
1.5⋅IQR = 0.757) were filtered applying the same method as in other PR 
analyses [46]. As a result, 22 facilities were omitted and the remaining 

Table 9 
Parameters of the economic analysis.  

Variable Value Units Reference 

Total investment cost 384 M€ Present 
study 

Averaged yearly EAC measured for 
the life cycle 

91,967 MWh Present 
study 

Fixed electricity price (2008–2014) 22.976 c€/kWh [71] 
Averaged electricity market price 

(2014-Present) 
6.186 c€/kWh [75] 

Specific remuneration for the 
operation (2014-Present) 

31.754 c€/kWh [76] 

Specific remuneration for return on 
the investment (2014-Present) 

244,850 €/MW⋅year [76] 

Average degradation rate Siliken: 
0.816 
Scheuten: 
1.074 
Yingli: 0.888 

%/year Present 
study 

O&M cost 11.6 €/kWp⋅year [77] 
Annual Spanish inflation rate 

(averaged between 2008 and 
2020) 

1.062 % [78] 

Annual discount rate 7.090 % [79] 
Life cycle of the facility 25 years Present 

study 

The NPV, IRR and payback period are 93.02 M€, 9.19%, and 17.61 years, and the 
LCOE is 0.359 €/kWh. 

Fig. 9. Relationship between LIL (ηLIL) and the YR.  
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PR followed a normal distribution with a mean of 0.795 and a standard 
deviation 0.014, as verified with the Kolmogorov-Smirnov test with a 
p-value of 0.239. 

The normality of each PR distribution was tested with the 
Kolmogorov-Smirnov test for the Siliken, Scheuten and Yingli modules, 
providing p-values of 0.724, 0.516 and 0.0806, respectively. All the p- 
values are consequently higher than the type-I error threshold (0.05). A 
p-value of 0.239 was obtained. However, the homoscedasticity among 
the three PR samples was not met applying the Barlett’s test. To reduce 
the heterogeneity of variances, the Welch’s correction factor [80] was 
included in the one-way ANOVA test [81], which provided a p-value of 
2.7e-14. Thus, the null hypothesis was rejected, which led to develop 
three independent PR statistical models. 

For the MLR and RF model, the predictors were selected considering 
the global Pearson correlation coefficients between the climatic data and 
the global PR of the plant (Fig. 11) and the multicollinearity among 
predictors measured with the VIF. There is a low negative correlation 
with the measured irradiance from the two WS and a moderate corre
lation with Ta. This reveals that the higher PR is generally reached in 
cold days. The VIF values between Ta and the irradiances are below 1.6, 
presenting reduced multicollinearity. However, there is high multi
collinearity between YR1 and YR2 with a VIF value of 50.25. The selected 
predictors are Ta, YR1, and the ratio YR2/YR1 to consider weather fluc
tuations and have both irradiance predictors uncorrelated. This ratio 
presents a correlation coefficient with PR and Ta of 0.51 and − 0.11, 

Table 10 
LIL exponential model coefficients and error metrics.  

Model Expression a b c RMSE MAE R2 

Exponential 1 ηLIL = 1 − exp (b ⋅YR) - − 1.688 - 0.047 0.033 0.514 
Exponential 2 ηLIL = 1 − a⋅Yc

R⋅exp (b ⋅YR) 0.539 − 1.067 0.273 0.043 0.032 0.585  

Fig. 10. PR results validated with the base (a) and exponential (b) models.  

Fig. 11. Correlation matrix of the PR and the climatic variables as predictors.  

Table 11 
Coefficients and p-values of the MLR models to estimate the PR of the three manufacturers.  

Manufaturer MLR coefficients  p-values 

β0 β1 β2 β3  β0 β1 β2 β3 

Siliken 0.403 0.003 0.435 − 0.004  <2e-16 1e-04 <2e-16 <2e-16 
Scheuten 0.687 0.008 0.111 − 0.005  <2e-16 2–14 <2e-16 1e-04 
Yingli 0.933 0.004 − 0.114 − 0.004  <2e-16 3e-07 <2e-16 8e-06  
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respectively. 
The MLR expression results from the linear combination of the var

iables shown in Eq. (10), and the fitted coefficients gathered in Table 11. 
The intercept (β0) value is the most influential coefficient for every 
manufacturer, followed by the fluctuations of the measured irradiances 
between both WSs. The negative coefficients of β3 explain the reduction 
of the PR for increasing Ta values. The regression fit provides p-values 
below 0.05 for all the manufacturers (see Table 11). This supports the 
null hypothesis that the independent variables do not affect significantly 
the dependent variable. 

Another conclusion is that including nonlinear combinations of the 
predictors have any power in explaining the PR, as verified with the 
Ramsey’s RESET test (p-value of 0.5671). The residuals of each regres
sion fit follow a normal distribution according to the Kolmorov-Smirnov 
test with an averaged p-value of 0.0998. The residuals are uncorrelated, 
given the averaged Durbin-Watson D statistic of 1.839 (p-value of 0.198) 
[82]. 

Fig. 12a compares the measured and the predicted PR of the three 
MLR models. There is a higher overprediction for lower PR values, as 
happened with the base PR model and this is not explained with linear 
relationships. The nRMSE represents for the three regressions around 

3%. Fig. 12a, shows the global PR obtained by weighting the estimations 
of each regression with the number of sectors associated for each 
manufacturer, providing an accuracy of 87.85%. The accuracy repre
sents the number of estimations with a relative error lower than 5%. The 
global nRMSE is 0.0324, which is close to the value obtained for the 
Siliken sectors which are the most frequent sectors. The global nRMSE 
improves by 41.54% and 15.29% compared with the base model and the 
exponential model, respectively. However, there is a trend to over
estimate the lower PR values due to the linearity of the model similar to 
the base model. 

For the RF regression models, the hyperparameters were first tuned 
to provide the lower RMSE. The Siliken sectors do not require more than 
50 trees, and the other manufacturers require up to 100 trees to provide 
stability in RMSE. The nRMSE was below 3%. This is a major 
improvement compared to the MLR, as shown in Fig. 12b, where the 
number of outliers has been reduced, especially for low PR values. The 
greater deviations are found in the extreme PR values. Nevertheless, the 
global accuracy rises up to 99.44%. Weighting all the sectors the global 
PR yields a nRMSE of 0.013, shown in Table 13. This represents a 
reduction of 77.04% with respect to the base model and is similar or 
lower than the SVR model found in literature [30]. 

Fig. 12. Validation of the PR results obtained with the MLR (a) and RF (b) models compared with the measured PR.  

Table 12 
Error metrics of the PR for the MLR and RF models.  

Manufacturer MLR model  RF model 

RMSE nRMSE MAE R2  RMSE nRMSE MAE R2 

Siliken 0.026 0.033 0.019 0.689  0.024 0.030 0.017 0.741 
Scheuten 0.028 0.037 0.020 0.547  0.023 0.029 0.016 0.701 
Yingli 0.025 0.031 0.018 0.497  0.019 0.024 0.014 0.683  

Table 13 
General error metrics of the PR and EAC models.  

Model PR EAC 

RMSE (− ) nRMSE (− ) MAE (− ) R2 (− ) RMSE 
(MWh) 

nRMSE (− ) MAE 
(MWh) 

R2 (− ) Annual error 
(%) 

Annual error (YR < 3 h/d) (%) 

Base case 0.044 0.055 0.028 0.144 8.268 0.032 6.334 0.993 1.814 7.280 
Exponential 1 0.034 0.043 0.023 0.432 7.973 0.031 5.968 0.993 − 1.141 − 1.006 
Exponential 2 0.029 0.037 0.021 0.517 7.924 0.031 5.870 0.994 − 0.706 − 0.474 
MLR 0.026 0.032 0.018 0.617 6.301 0.024 4.978 0.996 − 0.116 − 0.787 
RF 0.010 0.013 0.007 0.945 2.626 0.010 1.973 0.999 0.099 2e-04  
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The manufacturer’s error metrics of both MLR and RF models are 
shown in Table 12. 

4.3. PV production modelling results 

The global EAC of the PV power plant has been obtained for the base 
case, with the theoretical PR values, and compared with the production 
obtained with the three PR models (the exponential fit, the MLR and the 
RF model). 

All the energy losses estimated in the energy balance are quantified 
in Fig. 13 by means of a Sankey diagram. The annual in-plane global 
irradiance does not consider the non-productive days since they have 
been filtered. LIL represent 0.78% of the annual array nominal energy at 
STC and the degradation losses have the biggest weight due to the long 
operating time of the utility-scale. The estimated annual EAC with the 
physical model differs by − 0.71% compared with the measurements. 
The annual production would rise 2.61% (up to 93.03 GWh) if the 10 
non-productive days were considered. 

The validation results for each model are shown in Fig. 14. The base 
model systematically overpredicts the production when the daily 

Fig. 13. Sankey diagram of the annual losses in the PV utility-scale according 
to the PR physical model. 

Fig. 14. Validation of the global PV production obtained considering the PR for the base (a), exponential (b), MLR (c) and RF (d) models.  
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irradiance is low; however, the three PR models significantly reduce the 
number of outliers for low daily irradiances. Compared with the base 
case, the total RMSE is reduced up to 68.24% with the RF, while the 
exponential and the MLR models provide moderate improvements in 
RMSE of 4.16% and 23.79%, respectively. The relative error of the 
estimated annual production was reduced up to 0.09% with the RF 
model. Filtering only the days of the year in which the YR is below 3 h/d, 
an improvement in the annual production error of close to 7% is 
observed for the three previous models, and the RF provides the best 
results. Table 13 provides the general error metrics in the estimation of 
the production. 

Fig. 15 represents the performance of each model, by means of the 
nRMSE of the daily EAC. The nRMSE is clearly bigger in low irradiance 
days. Daily irradiation measurements lower than 2 kWh present a 
nRMSE of 13.14%, which is significantly higher than the nRMSE of 
3.21% which is obtained for the full irradiance range. By incorporating 
the PR the LIL factor, the nRSME is reduced in the full range up to 5.87%. 
This value drops to 2.44% with the MLR model and 1.01% with the RF 
model. These three models reduce the nRMSE for low irradiances by 
more than half compared with the base model. Nevertheless, the RF 
model provides the lowest fluctuations and confident production pre
dictions for the complete range of daily irradiances. 

5. Conclusions 

The present work involves the analysis of a 50 MW PV utility-scale 
plant in Olmedilla de Alarcón (Spain) after 12 years of operation 
under Mediterranean climatic conditions. The experimental campaign 
consists of a monitoring period of one year with measurements of cli
matic data and EAC from the inverters. Using this data, the main PV 
performance parameters have been obtained. 

The annual average and the minimum and maximum monthly 
average registered for the YR, YF, PR and CUF respectively are: 5.44 h/d, 
4.28 h/d, 79.24%, and 19.77%. These results provided a clear season
ality, with lower system efficiencies during the summer due to the high 
temperatures. The performance is slightly lower than other PV power 
plants in the Mediterranean, although with more years of operation. 
Nevertheless, the PR is over 80% for almost 42% of the measured days, 
proving a correct performance. Furthermore, the pc-Si sectors provided 
PR values around 2% greater than the mc-Si sectors, mainly due to the 
higher PV temperature and degradation losses of the mc-Si sectors. The 
estimated degradation losses of the modules are approximately 2–3% 
lower than according to the manufacturer data. The degradation losses 

yield the greatest weight in the energy balance, representing a global 
energy loss of 13% of the global energy at STC. 

After the performance analysis, a more in-depth study has been 
performed to reduce the outliers in the predictions in low irradiance 
days. A physical model was developed, as the product of the different 
losses of the PV system, including the LIL through irradiance measure
ments and an exponential fit. The results improved the nRMSE by 1.9% 
compared with the conventional model, increasing the R2 from 0.144 to 
0.553 for low irradiances. 

A second approach has been applied using two statistical methods 
using only Ta and YR as predictors. The RF model has provided the best 
performance with a nRMSE of 1.27%. These results indicate a better 
performance than SVR models found in literature, which require 
significantly more predictors. In contrast, the MLR model has reduced 
the nRMSE by 2.30% with an accuracy of 87.85%. 

The inclusion of the improvements in the PR and in the PV daily 
production model has provided improvements in nRMSE of 0.11%, 
0.76%, and 2.19% for the exponential, MLR, and the RF models, 
respectively. These improvements are significantly greater for the low 
irradiance days, providing reductions in the nRMSE up to 7.27%, 7.75% 
and 11.07% for the exponential, MLR and RF models, respectively. In 
any case, both statistical models provided a better PR accuracy than the 
physical model, and are recommended to forecast the PR whenever 
measured data is available. Moreover, they constitute an alternative to 
model and predict the PR when there is scarce technical data of the 
plant. 

As future work, the degradation of the PV modules will be studied in 
more detail by analyzing the performance after more years of operation. 
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