

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/197838

Laria, JC.; Aguilera-Morillo, MC.; Lillo, RE. (2022). Group linear algorithm with sparse
principal decomposition: a variable selection and clustering method for generalized linear
models. Statistical Papers. 64(1):227-253. https://doi.org/10.1007/s00362-022-01313-z

https://doi.org/10.1007/s00362-022-01313-z

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Group linear algorithm with sparse principal
decomposition

A variable selection and clustering method for generalized
linear models

Juan C. Laria · M. Carmen
Aguilera-Morillo · Rosa E. Lillo

Received: date / Accepted: date

Abstract This paper introduces the Group Linear Algorithm with Sparse
Principal decomposition, an algorithm for supervised variable selection and
clustering. Our approach extends the Sparse Group Lasso regularization to
calculate clusters as part of the model fit. Therefore, unlike Sparse Group
Lasso, our idea does not require prior specification of clusters between vari-
ables. To determine the clusters, we solve a particular case of sparse Singular
Value Decomposition, with a regularization term that follows naturally from
the Group Lasso penalty. Moreover, this paper proposes a unified implemen-
tation to deal with, but not limited to, linear regression, logistic regression,
and proportional hazards models with right-censoring. Our methodology is
evaluated using both biological and simulated data, and details of the imple-
mentation in R and hyperparameter search are discussed.

Keywords Regression · Classification · Feature clustering · Statistical
computing

1 Introduction

In recent years, penalized regression problems for variable selection have be-
come very popular. Since the introduction of Lasso (Tibshirani, 1996) as a

Juan C. Laria
TomTom Maps-Analytics, Madrid, Spain
E-mail: juank.laria@gmail.com

M. Carmen Aguilera-Morillo
Department of Applied Statistics and Operational Research and Quality, Universitat
Politècnica de València, Spain
UC3M-BS Santander Big Data Institute, Getafe, Spain

Rosa E. Lillo
Department of Statistics, University Carlos III of Madrid
UC3M-BS Santander Big Data Institute, Getafe, Spain

2 Juan C. Laria et al.

regularization term for linear models, many extensions have dealt with vari-
able selection by penalizing the loss function. Most of these extensions are
limited to linear regression, but some of them, such as Elastic-Net (Zou and
Hastie, 2005), Group Lasso (Zhou and Zhu, 2010) or recently Sparse Group
Lasso (Simon et al., 2013) have been also extended to generalized linear models
(GLMs).

In this paper, we focus on the Sparse Group Lasso as a variable selec-
tion method in high-dimensional problems. The hypothesis of the existence
of previously known clusters among the variables poses a significant practical
difficulty for this method to be applied to every supervised problem. Besides,
the Sparse Group Lasso penalty function is the linear combination of a Lasso
penalty (ℓ1 norm) and a Group Lasso penalty (ℓ2 norm), so there are at least
two regularization hyperparameters (plus one for each group, usually fixed). In
most of the applications of the Sparse Group Lasso, the parameters are either
fixed based on a prior information about the data, or chosen to minimize some
error function in a grid of possible values. In that sense, Laria et al. (2019)
proposed a gradient-free coordinate descent algorithm, which allows the au-
tomatic selection of the regularization parameters in the SGL. However, the
problem of grouping the variables was not solved. In genetic or financial ap-
plications, there is a growing demand not only for building predictive models
but also for clustering the variables. Recent papers highlight the importance
of group structures in variable selection (Luo and Chen, 2020; Ciuperca, 2020;
Zhang et al., 2020).

The main methodological contribution of this article is the formal definition
of GLASP, a Group Linear Algorithm with Sparse Principal decomposition.
GLASP is an extension of the Sparse Group Lasso, that, not only avoids the
need for a specification of clusters among the variables, but also computes such
clusters during the model fitting process. Therefore, apart from a predictive
model, GLASP can be considered as a supervised variable clustering algorithm.

The GLASP specification is motivated by the Cluster Elastic Net (CEN)
(Witten et al., 2014), where the authors extend the elastic-net to obtain groups
between variables using k-means, besides variable selection and model fitting.
Recently, some extensions have considered multivariate response CEN, for ex-
ample, Price and Sherwood (2017) and Ren et al. (2020). A minor disadvantage
of CEN is that the number of clusters between variables has to be specified
initially. Unlike CEN, our GLASP algorithm can obtain a smaller number of
groups than initially specified.

From an algorithmic point of view, GLASP has two parts. The first is an
accelerated block gradient descent algorithm to adjust the Sparse Group Lasso
with an arbitrary and flexible error function, which is a linear combination of
the model loss function and a differentiable regularization term. The second is
a particular type of regularized Singular Value Decomposition, with a penalty
function adapted to this specific problem, in order to find the groups.

The method proposed in this paper is, to the best of our knowledge, the
first extension of the Sparse Group Lasso that computes groups automatically.
The internal supervised variable clustering algorithm is also an original con-

Group linear algorithm with sparse principal decomposition 3

tribution and integrates naturally within the Group Lasso penalty. Moreover,
our implementation provides the flexibility to change the risk function and
address any regression problem.

This paper is organized as follows. Section 2 introduces GLASP as the solu-
tion to a problem involving sparsity, clustering, and structure assumptions on
the variables. Section 3 describes in detail the solutions of both sub-problems
addressed, with particular emphasis on the internal optimization algorithms.
Later, Section 4 compares our approach with other linear regression methods
that perform variable selection and clustering. Although a general notation is
adopted from the beginning to refer to the loss function, the main differences
when a linear, logistic or Cox survival model with right-censoring is adjusted
with GLASP are explained in Section 5. For the latter, additional details re-
lated to prediction are presented, as well as a simulation study on survival
data. Moreover, relevant details and practical examples related to the imple-
mentation of GLASP in R language are illustrated in Section 6, with special
emphasis on its tidy interface, and the optimization of hyper-parameters. Sec-
tion 7 illustrates an application of GLASP to gene clustering and survival
prediction with right-censored data. Finally, Section 8 discusses the implica-
tions of our work and future directions of research.

2 Formulation of GLASP

Under the penalized general linear regression framework, we have a data ma-
trix X ∈ RN×p, a response vector y ∈ RN×1, and we are interested in finding
β ∈ Rp×1 such that L(β) + ϕ(β) is minimum. Here ϕ : Rp×1 → R+ is some
penalty, and L : Rp×1 → R is an empirical risk function that measures how
good can we approximate y knowing Xβ. Throughout this paper, and without
loss of generality, we will assume that the data matrix X is standardized to
have mean 0 and variance 1 in each column (i.e. X̄j = 0 and X⊤

j Xj = 1 for
every j = 1, 2 . . . p). This is important for the computations in next sections.
We will make the following extra assumptions:

1. (Sparsity) There is a small number of columns of X that are actually
related to y, and therefore many components of β are exactly zero.

2. (Clustering) There is a (possible unknown) number K of unknown groups,
or clusters, among the variables of X.

3. (Structure) For every group, there is associated a latent variable that sum-
marizes the information provided by all the variables in that cluster. In
linear models, information is measured in terms of linear predictors. A vari-
able Xj ∈ RN×1, j = 1, 2 . . . p, provides information to the model through
Xjβj . Knowing the true groups will improve the estimation of β, and
knowing β will give us insight into the groups.

These assumptions are aligned with those of Witten et al. (2014). However,
we want to remark that often, the number K is unknown. In addition, we do
not want to assume beforehand that Xjβj and Xlβl are close in the squared
euclidean distance, for Xj and Xl in the same group.

4 Juan C. Laria et al.

Solving the sparse regression problem and, at the same time, finding the
clusters in the columns of X, motivates the GLASP optimization problem,

min
β,W ,T

{
L(β) + λ1 ∥β∥1 + λ2

K∑
k=1

∥Jkβ∥2 +
λ3

2

∥∥X − TW⊤∥∥2
F

}
, (1)

where

– ∥·∥2F is the squared Frobenius norm, given by ∥M∥2F = Tr(MM⊤).
– W ∈ Rp×K is an orthogonal matrix with cluster information, W⊤W

diagonal.
– T ∈ RN×K (latent groups) is a low-rank unitary representation of the

linear predictors, T⊤T = IK .

– X = X

p∑
j=1

(eje
⊤
j)βj ∈ RN×p is the matrix of linear predictors, where ej is

the j–th unit vector in the canonical basis of Rp×1.

– Jk =
√
∥Wk∥0

p∑
j=1

(eje
⊤
j)1(Wjk ̸= 0) is a diagonal projection matrix such

that ∥Jkβ∥2 is the euclidean norm of the vector of coefficients associated
with group k, penalized by the size of the group. Here ∥Wk∥0 denotes the
number of elements in column k–th of W that are non-zero, which is the
size of group k.

– λ1, λ2, λ3 are regularization hyperparameters.

Problem (1) is a non-convex optimization problem, and finding the global
optimum would require to search for orthogonal matrices T , rotation matrices
W and coefficient vectors β that minimize (1). This is impractical, and we
propose a two-step iterative approach to find a local minimum of (1). See, for
example Witten et al. (2014). If we minimize (1) only with respect to β, we
obtain the sub-problem

min
β

{
L(β) + λ1 ∥β∥1 + λ2

K∑
k=1

∥Jkβ∥2 +
λ3

2

∥∥X − TW⊤∥∥2
F

}
, (2)

On the other hand, if we let β fixed and minimize (1) with respect to W and
T , then (1) becomes,

min
W ,T

{
λ3

2

∥∥X − TW⊤∥∥2
F
+ λ2

K∑
k=1

∥Jkβ∥2

}
, (3)

Our algorithmic methodology is based on minimizing (2) and (3) until conver-
gence.

Remark 1 If λ3 = 0, problem (2) is the Sparse Group Lasso.

Group linear algorithm with sparse principal decomposition 5

In this case, (2) becomes,

min
β

{
L(β) + λ1 ∥β∥1 + λ2

K∑
k=1

∥Jkβ∥2

}

By construction, Jk is a projection matrix such that ∥Jkβ∥2 =
√
∥Wk∥0

∥∥β(k)
∥∥
2
,

where β(k) are the coefficients in group k. The previous expression is equivalent
to the Sparse Group Lasso (Simon et al., 2013).

Remark 2 In general, for T ,W fixed, the penalization φ(β) = λ3/2
∥∥X − TW⊤

∥∥2
F

does not shrink β towards zero, and therefore, the regularization function in
(2) may not shrink to zero, but to some other vector.

After some algebra, φ(β) can be written in the form

φ(β) = (β1 − c1)
2/a1 + (β2 − c2)

2/a2 + · · ·+ (βp − cp)
2/ap − r2,

where aj , cj , r are values depending on X,W ,T . The contour levels of φ(β)
correspond to ellipsoids in Rp, centered at (c1, . . . cp). To see this, we will plot
the penalty as a function of β. As a toy example, consider a data matrix X ∈
R100×3, with N(0, 1) columns, such that cov(X1, X2) = 0 , cov(X2, X3) = 0
and cov(X1, X3) = 0.5. Let c̃ = (0.5, 0.25, 0.1)⊤, and UΣV ⊤ the singular
value decomposition of Xc̃. We choose T = U and W such that W⊤W
diagonal, but close to V Σ. Then, we have T⊤T = I and W is approximately
given by,

W =

4.97 0
0 2.46

0.37 0

 ,

such that β1 and β2 are in different groups. The contour plot for the GLASP
penalty is shown in Figure 1a, compared with Lasso (Figure 1b), Sparse Group
Lasso (Figure 1c), and GLASP with λ1 = λ2 = 0 (Figure 1d).

Remark 3 For a fixed β, problem (3) can be written in the form

min
W ,T

{∥∥X − TW⊤∥∥2
F
+ γP (W)

}
, (4)

where γ = 2λ2/λ3 and

P (W) =

K∑
k=1

 p∑
j=1

β2
j1(Wjk ̸= 0) ∥Wk∥0

1/2

. (5)

This is a penalized low-rank approximation problem, and in this case, P is
a sparsity penalty.

6 Juan C. Laria et al.

Fig. 1 Contour plots for the GLASP(a), the Lasso (b), the Sparse Group Lasso (c) and
GLASP with λ1 = λ2 = 0 (d).

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0−0.5 0.0 0.5 1.0 1.5

β1

β
2

a)

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0−0.5 0.0 0.5 1.0 1.5

β1

β
2

b)

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0−0.5 0.0 0.5 1.0 1.5

β1

β
2

c)

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0−0.5 0.0 0.5 1.0 1.5

β1

β
2

d)

This problem written in the general form (4) is very similar to those investi-
gated by Shen and Huang (2008). The first part is a low rank approximation
problem, which is known to be solved by the singular value decomposition. In
our case, the challenging part is the function P , which is non-differentiable and
non-convex. However, it is clear that P is a sparsity penalty, and therefore,
(4) will force sparsity in W . We propose a solution based to the sparse PCA
via regularized SVD of Shen and Huang (2008), but considering our function
P as penalty for W , instead of common choices.

3 Algorithms

In this section, we detail the computations to solve the GLASP problem,
separated into two sub-problems, defined in (2) and (3), respectively.

3.1 Internal optimization by groups

Consider (2) for W ,T fixed. The final algorithm is a block gradient descent
method. We found this solution to be very fast to solve convex optimization
problems in a general context, where there is a differentiable loss and a sub-
differentiable penalty. Recent papers dealing with the Sparse Group Lasso and
extensions have also adopted similar approaches (Simon et al., 2013; Ren et al.,
2020; Laria et al., 2019).

Group linear algorithm with sparse principal decomposition 7

Problem (2) can be minimized using a cyclic group-wise gradient descent.
Assume that vector β is fixed for all groups but k–th, and without loss of
generality, assume that the coefficients in group k are β1, β2 . . . βpk

. To avoid
difficult notation, throughout this section β = (β1, β2 . . . βpk

)⊤ will denote the
coefficient vector for group k and pk = ∥Wk∥0 its number of elements. Since
the remaining groups are fixed, and using the definition of the Frobenius norm,
(2) becomes

min
β

L(β) + λ1 ∥β∥1 + λ2
√
pk ∥β∥2 +

λ3

2

pk∑
j=1

∥∥Xjβj − TW⊤
j·
∥∥2
2

 . (6)

To solve (6) we will use the fast iterative shrinkage-thresholding algorithm
(FISTA) (Beck and Teboulle, 2009).

Consider the general optimization problem

min
β
{F (β) := R(β) + Φ(β)} , (7)

where

– R : Rp×1 → R is a smooth convex function, continuously differentiable
with Lipschitz continuous gradient ∇R (with Lipschitz constant L(R)),
such that

∥∇R(β)−∇R(β0)∥2 ≤ L(R) ∥β − β0∥2 .

– Φ : Rp×1 → R is a continuous convex function which is possibly non-
smooth.

Consider (6) in the form (7), taking

R(β) = L(β) +
λ3

2

pk∑
j=1

∥∥Xjβj − TW⊤
j·
∥∥2
2
,

and
Φ(β) = λ1 ∥β∥1 + λ2

√
pk ∥β∥2 .

The core of the FISTA algorithm is to consider, for any t > 0, the quadratic
approximation of F (β) at a given point β0, given by,

Mt(β,β0) = R(β0) + (β − β0)
⊤∇R(β0) +

1

2t
∥β − β0∥22 +Φ(β), (8)

which admits a unique minimizer (that we refer to as update function)

(9)
Ut(β0) = argmin

β
{Mt(β,β0)}

= argminβ

{
M∗

t (β,β0) =
1
2 ∥β −B0∥22 + tΦ(β)

}
,

where B0 = β0− t∇R(β0). The idea of the iterative shrinkage-thresholding al-
gorithm (ISTA) algorithm is to produce a descent sequence for F via β(k+1) ←

8 Juan C. Laria et al.

Ut(β(k)), choosing t carefully such that t < 1/L(R). If the Lipschitz constant
L(R) is unknown, tk is found in each step using a backtracking stepsize rule,
to be the maximum t > 0 such that,

F (Ut(β(k))) ≤Mt(Ut(β(k)),β(k)). (10)

To accelerate the global rate of convergence from 1/k (ISTA) to 1/k2, the
FISTA algorithm updates β(k) according to

β(k+1) ← Utk(β(k)) +
lk − 1

lk+1
(Utk(β(k))− Utk−1(β(k−1))), (11)

where lk+1 = (1 +
√

1 + 4l2k)/2, l1 = 1.

The most difficult part to formulate in our algorithm to solve (6) using
FISTA, is to minimize M∗

t as a function of β, which in our case is given by,

M∗
t (β) =

1

2
∥β −B0∥22 + tλ1 ∥β∥1 + tλ2

√
pk ∥β∥2 (12)

Next proposition provides the update function (9) corresponding to M∗
t in

(12).

Proposition 1 The update function of problem (6) is given by,

Ut(β0) =

(
1−

tλ2
√
pk

∥S(B0, tλ1)∥2

)
+

S(B0, tλ1),

where S is the coordinate-wise soft threshold operator,

S(z, λ)i = sign(zi)(|zi|−λ)+

The following proposition provides conditions for β = 0 to be the mini-
mizer of (6). If we know, after a simple computation, that β = 0, then we
can skip the FISTA optimization for the coefficients in that group. Moreover,
these conditions are also upper bounds for the maximum values of the hyper-
parameters, such that β ̸= 0.

Proposition 2 β = 0 is the minimizer of (6) if

∥S(∇R(0), λ1)∥2 ≤ λ2
√
pk. (13)

In particular, it is also true if,

max
j
|∇jR(0)|≤ λ1. (14)

The proofs of Propositions 1 and 2 can be found in the Appendix.

Group linear algorithm with sparse principal decomposition 9

3.2 Group optimization

This section describes the solution that we propose for sub-problem (3). In
addition, we will assume that there are no overlapping groups.

As stated in Remark 3, when β is fixed, assuming that λ3 > 0 and ignoring
constant terms, (3) can be written as (4), where X is the matrix of linear
predictors,

X = X

p∑
j=1

(eje
⊤
j)βj ,

and P is a sparsity penalty on W , given in (5). Furthermore, to assume that
there are not overlapping groups (and each variable belongs to exactly one
group) can be written as a constraint inW , ∥Wj·∥0 = 1, for every j = 1, 2 . . . p.
We will deal with this constraint later, but first let’s tackle problem (4).

Problem (4) is a special type of regularized Singular Value Decomposition,
where the penalty term can be separated into a sum of penalties on the columns
of W . An efficient way of dealing with this problem, is solving regularized
one-rank approximation problems to construct W and T column-wise. An
example of such an algorithm is the sPCA-rSVD from (Shen and Huang,
2008, Algorithm 1). Our approach here is very similar to theirs, except for the
penalty term.

Consider the simpler problem,

min
u,v

∥∥X − uv⊤∥∥2
F
+ γ

 p∑
j=1

β2
j1(vj ̸= 0) ∥v∥0

1/2
 , (15)

where u and v are columns of T andW , respectively, as described in Agorithm
1 and 2.

Although the regularization in (15) is discontinuous, an iterative solution
is possible, and it is shown in Proposition 3.

Proposition 3 The optimal v in (15) is such that, for l = 1, 2 . . . p,

(16)

vl

= (X⊤u)l1

(
(X⊤u)2l

> γ
(
C

(−l)
β,v + β2

l

)1/2
(
C(−l)

v + 1
)1/2

− γ
(
C

(−l)
β,v C(−l)

v

)1/2)
,

where

C
(−l)
β,v =

p∑
j=1
j ̸=l

β2
j1(vj ̸= 0), C(−l)

v =

p∑
j=1
j ̸=l

1(vj ̸= 0).

10 Juan C. Laria et al.

The update function for v in Proposition 3 can not be applied in one step,
because the expression for each component vl can not be separated from the
whole vector v. To tackle this, we propose to iterate through v, updating each
vl with (16) until convergence. Algorithm 1 describes the iterative optimization
to solve (15), which is a special case of one-rank regularized singular value
decomposition. The whole process to find all the columns of W and T is
explained in Algorithm 2.

Algorithm 1: One-rank regularized singular value decomposition
(1rSVD).

Result: u, v that minimize (15)
Input: X ,β

Compute û, v̂, s that minimize
∥∥X − ûsv̂⊤∥∥2

F
(one-rank SVD).

Initialize u← û; v ← sv̂
while v not stationary do

Update v with (16), cyclically iterating component-wise until convergence.
Update u← Xv/∥Xv∥2

end

Algorithm 2: Regularized singular value decomposition.

Result: W ,T that minimize (4)
Input: X ,β,K
for k = 1 . . .K do

u, v ← 1rSVD(X ,β) (Solve the one-rank SVD problem)
Set Tk ← u; Wk ← v
X ← X − uv⊤ (update X with the residuals)

end

Finally, we have to deal with the non-overlapping groups restriction ∥Wj·∥0 =
1. We propose a greedy approach to force W to have the desired structure.
The idea is to update W by,

Wjk ←Wjk1
(
|Wjk|= max

i
|Wji|

)
, for all j, k (17)

For sufficiently large values of the penalization hyper-parameter γ, most of the
components of W will be zero, so the effect of update (17) will be negligible
as γ increases. Update (17) guarantees that ∥Wj·∥0 ≤ 1. To get the equality,

we will append W a column WK+1 such that Wj K+1 =
∏K

k=1 1(Wjk = 0),
and T a null column TK+1.

4 Simulations

This simulation set-up is described in Witten et al. (2014). The data is sim-
ulated according to the linear model y = Xβ + ϵ, with p = 1000 features,

Group linear algorithm with sparse principal decomposition 11

and ϵi i.i.d. from a N(0, 2.52) distribution (1 ≤ i ≤ n). The data matrix X is
simulated from a multivariate N(0,Σ) distribution, where Σ ∈ Rp×p is block
diagonal, given by

Σ =

Σρ 0 0
0 Σρ 0
0 0 0


1000×1000

,

with Σρ ∈ R50×50 such that

Σρ(i, j) =

{
1 i = j
ρ i ̸= j

.

The parameter ρ is varied from 0 to 0.8, exploring different scenarios for the
correlation inside groups. The true coefficient vector β ∈ Rp is random, given
by,

β = [β1 β2 . . . β25 0 . . . 0︸ ︷︷ ︸
25

β51 β52 . . . β75 0 . . . 0︸ ︷︷ ︸
925

],

where

βj ∼
{
U [0.9, 1.1], 1 ≤ j ≤ 25
U [−1.1,−0.9], 51 ≤ j ≤ 75

.

The data matrix is composed of two groups of 50 variables, correlated
within each group and independent between groups. Only 25 columns within
each group are significant. Additionally, there are another 900 variables that
are independent of each other and have no impact on the response. This simu-
lation scheme, as Witten et al. mention, is motivated by gene pathways, where
genes within the same pathway have correlated levels of expression, but only
a fraction of these are associated with the response of interest.

Table 1 reports the results of the different methods in these simulations.
We compared Lasso (Tibshirani, 1996), Ridge, Elastic Net (EN) (Friedman
et al., 2010b), Elastic Net Cluster (CEN) (Witten et al., 2014), CEN with
known groups, Cluster Group Lasso (Bühlmann et al., 2013), Group Lasso
with known groups (Friedman et al., 2010a), and our approach the GLASP.
CEN and Group Lasso with known groups have been included for baseline com-
parisons since groups are, in general, unknown. A training data set composed
of 200 observations was used to compare the different algorithms, whereas the
hyperparameters were chosen using a validation sample also of size 200. The
experiments were repeated 30 times in order to obtain more relevant results,
calculated on an independent test sample of 800 observations. The different
algorithms have been compared in terms of root mean squared error (RMSE)
of the linear predictor, i.e,

RMSE =
∥∥∥Xβ −Xβ̂

∥∥∥
2
.

We have also studied the accuracy of the variable selection (Correct Zeros),
the number of coefficients different from zero (notice that 50 is the correct
number of coefficients different from zero in the generating model), as well as
the Rand Index (RI) (Rand, 1971), which measures the agreement between the

12 Juan C. Laria et al.

actual and estimated clusters with each algorithm. This index varies between
0 and 1 (from low to high agreement). In the case of Lasso, Ridge, and EN,
the reported groups are found by the k-means algorithm applied to the linear
predictor matrix after estimating β̂. The values reported in Table 1 correspond
to the means in 30 repetitions. The standard errors of the mean are shown in
parentheses.

The results in Table 1 show that GLASP is superior to the other meth-
ods (except for the baseline methods with known groups) in terms of RMSE
and Correct Zeros, sometimes by a large margin, when correlations within
groups are moderate (0.1, 0.2, 0.5). Furthermore, in general, the number of
non-zero coefficients selected by GLASP is the lowest among the different
methods, resulting in more parsimonious models. Concerning the Rand Index,
GLASP is usually lower than other approaches, but we believe this is because
GLASP builds the groups by balancing both criteria, the correlations between
predictors and the relationship between predictors and the response variable.
Therefore, GLASP does not produce either of the two groupings that are triv-
ial in this case: two groups of 50 and one group of 900 (correlation), or two
groups of 25 and one group of 950 (prediction). Groups found by GLASP are
closely related to those groups that one can compute from the singular value
decomposition (or, equivalently, the principal components) of the matrix of
linear predictors.

Table 1: Average results of GLASP and other methods on a test set (800
observations) over 30 simulations. Standard errors are given in parenthesis.
Models were fit on a training set (200 observations) with the hyperparameters
that led to optimal RMSE on a validation set (200 observations). CEN and
Group Lasso with known groups have been included for baseline comparisons
(shaded rows).

ρ = 0.0
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 166.662(1.532) 0.885(0.005) 133.967(6.35) 0.909(0.001)
Ridge + Kmeans 182.004(0.97) 0.05(0) 1000(0) 0.897(0.004)
EN + Kmeans 165.491(1.264) 0.831(0.013) 196.767(13.684) 0.909(0.001)
CEN 167.013(1.463) 0.777(0.032) 253.933(32.999) 0.908(0)
CEN Known Groups 162.681(1.282) 0.807(0.008) 224.767(9.708) 1(0)
Cluster Group Lasso 183.714(0.871) 0.05(0) 1000(0) 0.366(0)
Group Lasso Known Groups 56.759(1.277) 0.113(0.044) 936.667(44.005) 1(0)
GLASP 172.771(1.414) 0.67(0.047) 358.633(49.427) 0.774(0.013)

ρ = 0.1
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 93.876(2.304) 0.911(0.004) 138.533(4.245) 0.951(0.003)
Ridge + Kmeans 199.147(1.619) 0.05(0) 1000(0) 0.949(0.002)
EN + Kmeans 93.635(2.283) 0.906(0.004) 143.5(4.127) 0.953(0.003)
CEN 93.954(2.357) 0.892(0.011) 157.433(11.147) 0.953(0.003)
CEN Known Groups 91.809(2.117) 0.881(0.011) 169.167(10.995) 1(0)
Cluster Group Lasso 166.879(2.137) 0.154(0.032) 895.433(32.323) 0.395(0.004)
Group Lasso Known Groups 39.468(0.866) 0.335(0.081) 715(80.841) 1(0)
GLASP 90.545(2.669) 0.956(0.009) 87(9.184) 0.914(0.003)

ρ = 0.2
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 77.449(1.807) 0.933(0.004) 116.4(3.753) 0.98(0.001)

Group linear algorithm with sparse principal decomposition 13

Ridge + Kmeans 185.387(1.779) 0.05(0) 1000(0) 0.936(0.001)
EN + Kmeans 77.166(1.768) 0.931(0.004) 118.467(3.907) 0.981(0.001)
CEN 73.654(1.306) 0.744(0.026) 306.267(25.934) 0.983(0.002)
CEN Known Groups 74.051(1.5) 0.829(0.017) 221.4(16.967) 1(0)
Cluster Group Lasso 77.141(3.553) 0.104(0.037) 946.5(37.447) 0.839(0.021)
Group Lasso Known Groups 35.551(0.775) 0.43(0.086) 620(86.423) 1(0)
GLASP 62.03(1.517) 0.97(0.005) 79.333(5.137) 0.943(0.002)

ρ = 0.5
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 64.632(1.583) 0.958(0.002) 91.933(2.505) 0.982(0.001)
Ridge + Kmeans 149.217(1.627) 0.05(0) 1000(0) 0.91(0)
EN + Kmeans 63.369(1.407) 0.946(0.003) 103.7(3.077) 0.984(0.001)
CEN 61.36(1.52) 0.789(0.049) 260.567(49.496) 0.988(0.001)
CEN Known Groups 52.998(1.119) 0.813(0.022) 236.667(22.255) 1(0)
Cluster Group Lasso 59.377(0.888) 0.2(0.062) 850(62.284) 0.906(0)
Group Lasso Known Groups 29.144(0.691) 0.905(0.053) 145(52.923) 1(0)
GLASP 58.516(1.757) 0.968(0.002) 82.3(1.675) 0.963(0.003)

ρ = 0.8
Method RMSE Correct Zeros Num. Non-Zeros RI
Lasso + Kmeans 60.031(1.348) 0.955(0.002) 89.7(2.476) 0.964(0.002)
Ridge + Kmeans 114.86(1.454) 0.05(0) 1000(0) 0.906(0)
EN + Kmeans 52.864(0.94) 0.935(0.003) 114.033(2.943) 0.969(0.001)
CEN 42.833(0.879) 0.732(0.043) 317.9(43.026) 0.993(0.001)
CEN Known Groups 32.346(0.834) 0.753(0.048) 296.867(48.34) 1(0)
Cluster Group Lasso 48.994(0.493) 0.17(0.057) 880(56.812) 0.906(0)
Group Lasso Known Groups 20.968(0.692) 0.905(0.053) 145(52.923) 1(0)
GLASP 48.291(0.892) 0.954(0.001) 96.333(0.946) 0.987(0.002)

5 Extension to other models

In Section 4, the choice of the function L(β) corresponds to classical linear
models. However, one strength of our methodology is that it can easily extend
other risk functions, such as logistic regression or Cox models.

We have implemented the following three types of problems: linear and
logistic regression and Cox proportional hazard models with right-censoring.
In the first two cases, the function L is given by,

– Linear regression

L(β) =
1

N
∥y − η∥22 ,

where η = Xβ is the linear predictor.
– Logistic regression

L(β) =
1

N

N∑
i=1

log (1 + eηi)− yiηi.

Our implementation requires to determine the gradient of L, ∇L, which is
given in each case by,

– Linear regression

∇L(β) = − 1

N
X⊤(y − η).

14 Juan C. Laria et al.

– Logistic regression

∇L(β) = 1

N
X⊤

(
1

1 + eη
− y

)
There are lots of numerical details to consider, especially in the case of

logistic regression. For example, the function log(1 + eη) is unstable when
|η|> 30. However, it can be substituted by a more stable approximation, given
by

ˆlog(1 + eη) =


η, η > 33.3
η + e−η, 18 < η < 33.3
log(1 + eη), −37 < η < 18
eη, η < −37

(18)

Similarly, its derivative can be replaced by

d

dη
ˆlog(1 + eη) =

{
(1 + e−η, η > −30
eη, η < −30 (19)

Although our implementation can address logistic regression, we will now
focus on the Cox model, which has been less addressed in the literature from
the perspective of variable selection.

5.1 Proportional hazards model with right-censoring

Under the proportional hazards model framework with right-censoring, we
assume we have a covariate matrix X ∈ RN×p, a vector of event times t ∈
RN×1 and a vector of event indicator δ ∈ RN×1 (δi = 1 if an event was
observed at time ti, and δi = 0 if time ti is right-censored).

The proportional hazards model assumption states that, for an individual
with covariates x⊤ ∈ R1×p, their hazard function h(t) is given by

h(t) = h0(t) exp(x
⊤β),

where h0(t) is a baseline hazard function. This is a semi-parametric model,
because h0(t) is not assumed to have a particular parametric form. More details
can be found in Moore (2016).

In the case of right censoring, our function L is the negative log-partial
likelihood and it is given by,

L(β) =
∑
i∈D

x⊤
i β −

∑
i∈D

log

(∑
k∈Ri

exp(x⊤
k β)

)
,

where D is the index set of observed events, and Ri is the index set of in-
dividuals at risk at time ti. Furthermore, the first derivative of L has the
expression,

∂

∂βj
L(β) =

∑
i∈D

(
xij −

∑
k∈Ri

xkj exp(x
⊤
k β)∑

k∈Ri
exp(x⊤

k β)

)
.

Group linear algorithm with sparse principal decomposition 15

Once the model is fitted, with coefficient vector β̂, to estimate the baseline
survival function we use,

S0(t) = exp(−H0(t)), with H0(t) =
∑
ti≤t

h0(ti),

where

h0(ti) =
δi∑

j∈Ri
exp(x⊤

j β̂)
.

An individual’s estimated survival function is given by

S(t|x) = S0(t)
exp(x⊤β̂). (20)

Example 1 For illustrative purposes, we simulated a survival data set. The
data matrix X ∈ R1000×10 has i.i.d. N(0, 1) columns and βj ∼ N(0, 1/9)
for j ≤ 5 and 0 otherwise. The underlying survival time t∗i for a row x⊤

i is
simulated exponential with parameter λ = exp(x⊤

i β). The censoring time si
distributes exponential with parameter λ = exp(x⊤

i β)/2. The observed time is
the minimum between t∗i and si.

Figure 2 displays the estimation of the survival function given by (20), for
an individual outside the training sample. In this case, the estimated function
is remarkably close to the true survival function of this individual, according
to the simulated model.

Fig. 2 Survival functions S(t|x) estimated and real for an individual with simulated covari-
ates. The GLASP model has been fitted on simulated data with the same x distribution.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

time

S
u
rv

iv
a
l
fu

n
c
ti
o
n

GLASP.estimation True.function

16 Juan C. Laria et al.

5.2 Simulation studies: right-censored survival data

We consider an adaptation of the simulation set-ups described in Section 4.
This time the response variable t and the event indicator δ are simulated, for
every i = 1, 2 . . . N , according to the scheme,

hi = exp(x⊤
i β),

t∗i ∼ Exp(λ = hi),

si ∼ Exp(λ = hi/2),

ti = min(t∗i , si),

δi = 1(ti = t∗i).

The data matrix X is simulated from a multivariate N(0,Σ) distribution,
where Σ is block diagonal, given by

Σ =

Σρ 0 0
0 Σρ 0
0 0 0


20×20

,

with Σρ ∈ R5×5 such that

Σρ(i, j) =

{
1 i = j
0.5 i ̸= j

.

The true coefficient vector β ∈ Rp is random, given by,

β = [β1 β2 0 0 0 β6 β7 0 . . . 0︸ ︷︷ ︸
13

],

where

βj ∼
{
U [0.9, 1.1], 1 ≤ j ≤ 2
U [−1.1,−0.9], 6 ≤ j ≤ 7

.

In this case, the X matrix has two significant groups of 5 variables, and
only 2 variables within each group have an actual impact on the generating
model. We have simulated 50 observations for training and 50 for testing. Fur-
thermore, to obtain relevant results, the simulations were repeated 30 times,
and the results averaged.

The models studied in Section 4 no longer apply, as they are not studied
for Cox regression, or do not have an effective method for the selection of the
regularization hyperparameters in the case of survival data. We have compared
GLASP and the function coxph of the R package survival (Therneau, 2015;
Therneau and Grambsch, 2000). To calculate the groups given by coxph, we
have used k-means, applied to the matrix of linear predictors once the model
was adjusted, as we did in Section 4 for the algorithms that would not directly
compute variable clusters.

Table 2 highlights the results of the simulations for survival data. The met-
ric β WMSE (weighted mean squared error) refers to the β estimation error,

Group linear algorithm with sparse principal decomposition 17

given by (β̂ − β)⊤Σ(β̂ − β), as described in Zhao et al. (2019). The rates β
TPR (true positive rate) and TNR (true negative rate) refer to the correct
identification of the variables that enter the model. Moreover, we included in
Table 2 the mean estimation error of the survival curve S(t|x) for the individ-
uals in the test sample, measured as the integral of the absolute difference of
the estimated and actual curves for each individual.

One can see from Table 2 that the estimation of GLASP is superior to
the classical estimation of coxph in almost every aspect. We believe that this
difference is, apart from the algorithm itself, also accentuated by the regu-
larization hyperparameter selection approach that we have integrated with
GLASP, described in the next section.

Table 2: Average results of GLASP and the Cox proportional hazards model.

Method β WMSE Correct Zeros β TPR β TNR Num. Non-Zeros S(t|x) error RI
coxph 9.11 (1.54) 0.2 (0) 1 (0) 0 (0) 20 (0) 15.88 (0.35) 0.53 (0.01)
GLASP 3.27 (0.61) 0.37 (0.04) 0.95 (0.03) 0.23 (0.06) 16.03 (1.01) 13.86 (0.43) 0.58 (0.03)

5.3 Simulation studies: logistic regression models

In this section, we consider another adaptation of the simulation set-ups de-
scribed in Section 4. This time, the response variable y is simulated, for every
i = 1, 2 . . . N according to the Bernoulli model,

Yi ∼ Ber((1 + exp(−η))−1),

where η = β⊤xi. The simulation set-up parameters β,Σ,Σρ have been chosen
as in Section 4. A total of 200 observations have been used as training, and 650
as testing. For baseline comparison, we have included elastic-net (glmnet) and
lasso. The hyperparameters of GLASP, glmnet and lasso were selected using
four fold cross-validation and random search on the training sample. More
details about the implementation and how to optimally select hyperparameters
of GLASP, glmnet and lasso using a unified framework can be found in Section
6. Table 3 displays the average test accuracy (ACC) and area under the ROC
curve (AUC) of the models estimated with GLASP, glmnet and lasso. To study
the convergence of the optimization algorithm of GLASP in the logistic case,
we have measured the number of iterations (Num. Iter.) of the outer loop of the
algorithm (that alternatively solves (2) and (3) until convergence). As shown
in Table 3, when ρ = 0 the method converges slower on average (6 iterations
versus 3), which is aligned with what we expect when there is no clear group
structure between the variables. On the other hand, Table 3 confirms that
GLASP outperforms glmnet and lasso in terms of ACC, AUC and correct
selection of variables, when the correlation inside groups is moderate. These
results are aligned with those in Table 1, when the response is linear. When
there is no correlation (ρ = 0) the theoretical assumptions of GLASP are not
met, but even in that worse case scenario GLASP is a competitive alternative
to lasso and glmnet.

18 Juan C. Laria et al.

Table 3: Average results of Logistic GLASP, glmnet and lasso on a test set (650
observations) over 30 simulations. Standard errors are given in parenthesis and
significantly superior results (two standard errors) are bold. Models were fit on
a training set (200 observations) using four-fold cross validation and random
search for the hyperparameter optimization, and the model selection was based
on the validation accuracy.

ρ = 0
Method ACC AUC Correct Zeros Num. Non-Zeros RI Num. Iter.
lasso 0.592(0.01) 0.631(0.01) 0.863(0) 139(1.2) - -
glmnet 0.618(0.01) 0.668(0.01) 0.679(0.02) 345(21) - -
GLASP 0.605(0.01) 0.647(0.01) 0.785(0.04) 204(49) 0.057(0.01) 6.23(0.9)

ρ = 0.1
Method ACC AUC Correct Zeros Num. Non-Zeros RI Num. Iter.
lasso 0.783(0) 0.870(0) 0.9(0) 111(1) - -
glmnet 0.816(0) 0.901(0) 0.724(0.01) 315(15) - -
GLASP 0.817(0.01) 0.901(0.01) 0.901(0.02) 77.5(27) 0.237(0.05) 2.83(0.3)

ρ = 0.2
Method ACC AUC Correct Zeros Num. Non-Zeros RI Num. Iter.
lasso 0.835(0) 0.923(0) 0.911(0) 97.9(1) - -
glmnet 0.868(0) 0.948(0) 0.739(0.01) 301(14) - -
GLASP 0.888(0) 0.962(0) 0.928(0.02) 42.7(21) 0.386(0.07) 2.97(0.1)

ρ = 0.5
Method ACC AUC Correct Zeros Num. Non-Zeros RI Num. Iter.
lasso 0.898(0) 0.970(0) 0.919(0) 74.8(1) - -
glmnet 0.925(0) 0.984(0) 0.786(0.01) 252(13) - -
GLASP 0.931(0) 0.987(0) 0.939(0.01) 60.9(11) 0.344(0.07) 3.4(0.2)

ρ = 0.8
Method ACC AUC Correct Zeros Num. Non-Zeros RI Num. Iter.
lasso 0.930(0) 0.986(0) 0.915(0) 63.8(1) - -
glmnet 0.949(0) 0.993(0) 0.820(0.01) 215(13) - -
GLASP 0.948(0) 0.993(0) 0.899(0.02) 118(25) 0.247(0.06) 3.3(0.3)

6 Implementation details

In this section, we will describe some details of the implementation of GLASP,
with emphasis on its R interface, and the selection of hyperparameters.

6.1 Interface

Recently, Kuhn and Vaughan have developed the R parsnip package (Kuhn
and Vaughan, 2020), which provides a standard and organized interface for
creating modelling packages in R. A critical advantage of this approach is that
it integrates very well with other tidymodels packages. We have implemented
our GLASP algorithm in an R package called glasp1, created with the vision
to integrate with parsnip, as well as the rest of tidymodels packages. This
offers numerous advantages, highlighting, for example, the optimization of
hyperparameters, which is always a concern in penalized models.

1 https://github.com/jlaria/glasp

Group linear algorithm with sparse principal decomposition 19

All the internal optimization of the glasp library has been implemented in
C++, and integrated in R through RcppArmadillo (Eddelbuettel and François,
2011) and Rcpp (Eddelbuettel and François, 2011).

Currently, the parsnip library considers two types of objectives for the
models: regression and classification. Taking this into account, we have created
parsnipmodels for each task, namely glasp regression, glasp_classification,

glasp_cox. For example, one way to fit a GLASP model for linear regression
would be as follows.

glasp_regression() %>% set_engine("glasp") %>% fit(y~., data)

To adjust logistic regression is analogous, changing glasp_regression()

to glasp_classification(), and glasp_cox to specify a survival model. In
the case of Cox regression, the response variable is δ (indicating whether the
event has been observed at each instant of time), and the covariates are the
columns of X and the instants of time t. Thus, a GLASP model for Cox
regression with right-censoring would fit as follows.

glasp_cox() %>% set_engine("glasp") %>% fit(event ~ time + ., data)

Let β̂ be the coefficient estimation obtained by GLASP. Since (20) pro-
vides an approximation of the survival function, then the probability of having
observed the event at a time prior to t for an individual with covariates x, can
be estimated as p(t,x) = 1 − S(t|x). One would expect p(ti,xi) to be high
if δi = 1 and low if δi = 0, therefore, in a very practical predictive con-
text, a survival problem can be considered as a classification problem, where
p(T,X) ≈ P (δ = 1). An important advantage of considering it this way, is that
all predictive error metrics associated to classification problems (accuracy, sen-
sitivity, specificity, F1-score, etc) can be calculated in survival problems, which
provides a general approach to optimize hyperparameters.

6.2 Hyperparameter selection

Since glasp model is a parsnip model, it integrates with the tune and dials

libraries (Kuhn, 2020) to deal with the optimization of the hyperparameters
λ1, λ2, λ3, and K, from a very general approach. Package tune offers im-
plementations of the three most popular types of hyperparameter search: grid
search, random search (Bergstra and Bengio, 2012) and Bayesian Optimization
(Snoek et al., 2012).

For example, the following code in R finds the optimal combination of
hyperparameters that minimizes the area under the ROC curve for a GLASP
model in simulated survival data, using Bayesian Optimization, and 4-fold
cross validation.

data <- simulate_dummy_surv_data()

model <- glasp_cox(l1 = tune(),

l2 = tune(),

frob = tune(),

20 Juan C. Laria et al.

num_comp = tune()) %>%

set_engine("glasp")

data_rs <- vfold_cv(data, v = 4)

hist <- tune_bayes(model, event~.,

resamples = data_rs,

metrics = metric_set(roc_auc),

iter = 100)

show_best(hist, metric = "roc_auc")

In the simulation studies of Sections 4 and 5, the GLASP hyperparameters
were optimized using random search.

7 Application to right-censored survival data

In this section we present an application of GLASP to real data from a study
of patients with diffuse large-B-cell lymphoma (DLBCL). The data is avail-
able as right-censored survival sample data in the BioNet packages. For more
information see Dittrich et al. (2008), Beisser et al. (2010), and Alizadeh et al.
(2000).

The study of gene-expression profiles as predictors for survival of patients
with DLBCL is motivated by the large variation in survival times after treat-
ment of this disease, even for patients with similar clinical features. Several
authors have studied patients with DLBCL, trying to predict the survival of
individuals receiving treatment based on high-dimensional microarray gene ex-
pression data. Among these, we can find the works of Rosenwald et al. (2002),
Bair et al. (2006) and Chen et al. (2011). To pre-process the data, we have fol-
lowed an approach similar to that of Chen et al. (2011). We selected the genes
for which individual Cox scores, obtained after fitting univariate Cox regression
models, were more significant than a certain threshold. After removing missing
values, the data were composed of 190 observations, 78 genetic features, and
one clinical variable, which is a factor variable with several levels.

The objective of using the GLASPmethodology with this dataset is twofold.
Firstly, to build a survival model that includes only relevant genetic and clini-
cal characteristics. Secondly, to find clusters among those relevant features, as
GLASP can reveal hidden biological interrelations between gene expressions
associated with this particular disease.

Figure 3 depicts the resulting coefficient estimation and feature clustering
from GLASP in the DLBCL survival data described above. The output in
Figure 3 includes only those variables with associated non-zero coefficients.
According to the model, there are 11 groups, with varying sizes. From a bi-
ological perspective, the resulting clustering could give insight into possible
genetic interactions. For example, Cluster 1 includes BCL2 and CASP10. Both
genes are associated with cell apoptosis. BCL2 blocks the apoptotic death of
some cells such as lymphocytes2, whereas CASP10 plays a central role in the

2 https://www.genecards.org/cgi-bin/carddisp.pl?gene=BCL2

Group linear algorithm with sparse principal decomposition 21

execution-phase of cell apoptosis3. This not only explains that they are in the
same group, but also that their associated coefficients have opposite sign. As
another illustration, Cluster 3, is formed by BMP6 and SRP72. BMP6 induces
cartilage and bone formation4, and mutations of SRP72 are associated with
familial bone marrow failure5.

Fig. 3 GLASP model estimation and gene-clustering for the diffuse large-B-cell lymphoma
dataset. Each row represents a cluster, with squares describing each variable that was in-
cluded in the final model and its associated coefficient estimation in the Cox model.

MYC

−0.111

HDGF

0.09

APEX1

−0.983

NOLC1

−0.104

PTPN2

−0.063

TOX

−0.091

C1QBP

0.055

HMGA1

0.228

POLR1C

−0.369

ILF2

−0.122

BCL2

0.073

CASP10

−0.045

SMAD3

0.328

LILRA4

0.271

SgrpGCB

0.25

SgrpABC

−0.222

SRP72

0.525

BMP6

0.307

AKAP1

0.131

EML4

0.239

HLA−DPA1

−0.186

ACTN1

−0.316

PRKD1

−0.146

LMO2

−0.007

HLA−DQA1

0.04

BCL6

0.117

PASK

−0.172

DYRK4

0.342

BCAT2

−0.444

PIK3R1

−0.416

MUS81

−0.204

UCKL1

0.265

JUP

−0.055

LCK

−0.075

DCTD

−0.238

NR3C1

−0.49

STK39

−0.387

FBL

−0.412

SLCO3A1

−0.107

SLA2

0.212

RPS5

0.187

CCNG2

−0.145

CTGF

−0.039

RPL7L1

0.462

TRAM2

0.032

NOL1

0.448

BAK1

0.04

CDK7

0.123

ITGA6

−0.214

C18orf22

−0.25

GFOD1

−0.147

CCL13

0.094

EIF2S2

0.657

TADA2L

0.045

DNTTIP2

0.542

BSCL2

0.232

RGS16

−0.13

PA2G4

−0.185

EEF1A1

0.258

FAP

−0.025

LY75

−0.19

DMD

−0.064

TCEB3

0.238

IDH3A

0.152

RAFTLIN

−0.273

ANP32A

0.008

RPL13A

0.015

SERPINA9

−0.001
10

9

8

7

6

5

4

3

2

1

0

C
lu

s
te

r

clinical genetic

8 Conclusions

The main contribution of this paper is the formulation of GLASP, a supervised
variable clustering method, very competitive not only as a clustering method
but also as a predictive model. Multiple models have been unified under a joint
implementation, which also integrates with the latest algorithms for hyperpa-
rameter search in R. The methodologies are rarely so flexible that they allow
adjusting classification problems, regression, and Cox survival models with the
same algorithm. Moreover, Section 7 showcased an application of GLASP to

3 https://www.genecards.org/cgi-bin/carddisp.pl?gene=CASP10
4 https://www.genecards.org/cgi-bin/carddisp.pl?gene=BMP6&keywords=BMP6
5 https://www.genecards.org/cgi-bin/carddisp.pl?gene=SRP72&keywords=SRP72

22 Juan C. Laria et al.

biological survival data. From a methodological point of view, this paper has
also introduced a particular case of sparse Singular Value Decomposition, with
a penalty term appearing naturally from the Group Lasso penalty. Its solution
and implementation using coordinate-descend was demonstrated in detail.

In the simulation studies in sections 4 and 5, it is observed that GLASP is
substantially advantageous in terms of predictive ability and variable selection,
apart from providing the simplest models. In the simulations of Section 4 we
noticed that GLASP is the preferred alternative when the correlations between
variables of the same group are moderate. If the dependencies are low, all the
methods have similar performance, whereas if the correlations are high, Cluster
Elastic Net has better performance.

Regarding possible extensions, we propose to explore possible safe-rules
that would rule out multiple predictors from the very beginning, in order to
reduce the dimension of the problem, as Ndiaye et al. (2016); Tibshirani et al.
(2012) do. Moreover, this would also allow finding bounds for the regularization
hyperparameters, and thus accelerate the search for the best combinations.

Acknowledgements We gratefully acknowledge the help provided by Prof. Daniela Wit-
ten, who gave us access to the source code of CEN and the simulation set-ups compared in
Section 4. We also acknowledge the constructive comments of the anonymous referees that
have contributed to improve the contents of this paper.

Supplementary Material

Appendix: Proof of Propositions 2, 3 and 1. (PDF)
R-package glasp: R-package glasp containing code of the method described in

the article. (GNU zipped tar file)
Source code: R scripts to generate Figures 1, 2, and 3, as well as Tables 1 and

2. The data set studied in Section 7 is included. These files are also available
at https://github.com/jlaria/glasp-code. The code is shipped with a
docker-compose file to replicate the exact R environment used in this paper
with an rstudio web server interface. (Zip archive)

References

Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick
JC, Sabet H, Tran T, Yu X, et al. (2000) Distinct types of diffuse large b-cell
lymphoma identified by gene expression profiling. Nature 403(6769):503–511

Bair E, Hastie T, Paul D, Tibshirani R (2006) Prediction by supervised
principal components. Journal of the American Statistical Association
101(473):119–137

Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences 2(1):183–202

Group linear algorithm with sparse principal decomposition 23

Beisser D, Klau GW, Dandekar T, Müller T, Dittrich MT (2010) Bionet: an
r-package for the functional analysis of biological networks. Bioinformatics
26(8):1129–1130

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13(Feb):281–305

Bühlmann P, Rütimann P, van de Geer S, Zhang CH (2013) Correlated vari-
ables in regression: clustering and sparse estimation. Journal of Statistical
Planning and Inference 143(11):1835–1858

Chen K, Chen K, Müller HG, Wang JL (2011) Stringing high-dimensional
data for functional analysis. Journal of the American Statistical Association
106(493):275–284

Ciuperca G (2020) Adaptive elastic-net selection in a quantile model with
diverging number of variable groups. Statistics 54(5):1147–1170

Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Müller T (2008) Identi-
fying functional modules in protein–protein interaction networks: an inte-
grated exact approach. Bioinformatics 24(13):i223–i231

Eddelbuettel D, François R (2011) Rcpp: Seamless R and C++ integration.
Journal of Statistical Software 40(8):1–18, DOI 10.18637/jss.v040.i08, URL
http://www.jstatsoft.org/v40/i08/

Friedman J, Hastie T, Tibshirani R (2010a) A note on the group lasso and a
sparse group lasso. arXiv preprint arXiv:10010736

Friedman J, Hastie T, Tibshirani R (2010b) Regularization paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software
33(1):1

Kuhn M (2020) tune: Tidy Tuning Tools. URL https://CRAN.R-project.

org/package=tune, r package version 0.1.0
Kuhn M, Vaughan D (2020) parsnip: A Common API to Modeling and Anal-
ysis Functions. URL https://CRAN.R-project.org/package=parsnip, r
package version 0.0.5

Laria JC, Carmen Aguilera-Morillo M, Lillo RE (2019) An iterative sparse-
group lasso. Journal of Computational and Graphical Statistics pp 1–10

Luo S, Chen Z (2020) Feature selection by canonical correlation search in high-
dimensional multiresponse models with complex group structures. Journal
of the American Statistical Association 115(531):1227–1235

Moore DF (2016) Applied survival analysis using R. Springer
Ndiaye E, Fercoq O, Gramfort A, Salmon J (2016) Gap safe screening rules for
sparse-group lasso. In: Advances in Neural Information Processing Systems,
pp 388–396

Price BS, Sherwood B (2017) A cluster elastic net for multivariate regression.
Journal of Machine Learning Research 18(1):8685–8723

Rand WM (1971) Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association 66(336):846–850

Ren S, Kang EL, Lu JL (2020) Mcen: a method of simultaneous variable selec-
tion and clustering for high-dimensional multinomial regression. Statistics
and Computing 30(2):291–304

24 Juan C. Laria et al.

Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gas-
coyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, et al. (2002)
The use of molecular profiling to predict survival after chemotherapy for dif-
fuse large-b-cell lymphoma. New England Journal of Medicine 346(25):1937–
1947

Shen H, Huang JZ (2008) Sparse principal component analysis via regu-
larized low rank matrix approximation. Journal of Multivariate Analysis
99(6):1015–1034

Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso.
Journal of Computational and Graphical Statistics 22(2):231–245

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of
machine learning algorithms. In: Advances in Neural Information Processing
Systems, pp 2951–2959

Therneau TM (2015) A Package for Survival Analysis in S. URL https://

CRAN.R-project.org/package=survival, version 2.38
Therneau TM, Grambsch PM (2000) Modeling Survival Data: Extending the
Cox Model. Springer, New York

Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58(1):267–288

Tibshirani R, Bien J, Friedman J, Hastie T, Simon N, Taylor J, Tibshirani
RJ (2012) Strong rules for discarding predictors in lasso-type problems.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
74(2):245–266

Witten DM, Shojaie A, Zhang F (2014) The cluster elastic net for high-
dimensional regression with unknown variable grouping. Technometrics
56(1):112–122

Zhang Y, Zhang N, Sun D, Toh KC (2020) An efficient hessian based al-
gorithm for solving large-scale sparse group lasso problems. Mathematical
Programming 179(1):223–263

Zhao H, Wu Q, Li G, Sun J (2019) Simultaneous estimation and variable
selection for interval-censored data with broken adaptive ridge regression.
Journal of the American Statistical Association pp 1–13

Zhou N, Zhu J (2010) Group variable selection via a hierarchical lasso and its
oracle property. Statistics and Its Interface 3:557–574

Zou H, Hastie T (2005) Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67(2):301–320

