
Digital Communications and Networks 8 (2022) 257–266
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan
A LoRa-based protocol for connecting IoT edge computing nodes to provide
small-data-based services

Kiyoshy Nakamura a, Pietro Manzoni a,*, Alessandro Redondi c, Edoardo Longo c,
Marco Zennaro b, Juan-Carlos Cano a, Carlos T. Calafate a

a Universitat Polit�ecnica de Val�encia, Valencia, Spain
b Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
c Politecnico di Milano, Milan, Italy
A R T I C L E I N F O

Keywords:
Small data
Edge computing
LoRa
IoT
* Corresponding author.
E-mail address: pmanzoni@disca.upv.es (P. Man

https://doi.org/10.1016/j.dcan.2021.08.007
Received 21 January 2021; Received in revised for
Available online 26 August 2021
2352-8648/© 2021 Chongqing University of Posts a
open access article under the CC BY-NC-ND license
A B S T R A C T

Data is becoming increasingly personal. Individuals regularly interact with a variety of structured data, ranging
from SQLite databases on the phone to personal sensors and open government data. The “digital traces left by
individuals through these interactions” are sometimes referred to as “small data”. Examples of “small data”
include driving records, biometric measurements, search histories, weather forecasts and usage alerts. In this
paper, we present a flexible protocol called LoRaCTP, which is based on LoRa technology that allows data
“chunks” to be transferred over large distances with very low energy expenditure. LoRaCTP provides all the
mechanisms necessary to make LoRa transfer reliable by introducing a lightweight connection setup and allowing
the ideal sending of an as-long-as necessary data message. We designed this protocol as communication support
for small-data edge-based IoT solutions, given its stability, low power usage, and the possibility to cover long
distances. We evaluated our protocol using various data content sizes and communication distances to demon-
strate its performance and reliability.
1. Introduction

Big data is defined by the three big Vs of its data: volume, variety and
processing velocity. By contrast, small data consists of analyzing a dataset
comprising small volumes and formats to make them accessible, pro-
cessable, and understandable. Small data is defined in different terms; for
example, D. Estrin [1] described it as “digital traces around individuals”
and argued that it “is going to change the way we think about and
practice health.” Another characterization of small data emphasizes its
focus on the individual as the location data is collected, analyzed, and
utilized [2]. This enables individuals to improve their own abilities and
grants them the freedom to choose what they pursue.

Smart devices and other low-cost computing platforms provide data
personalization [3], and bring intelligence closer to the edge [4]. TinyML
[5] makes it easier to solve complex problems. The combination of these
two trends creates new opportunities to use AI to solve problems in a
wider set of scenarios with systems that can use a small amount of data to
learn about and resolve tasks quickly.

In this paper, we present a flexible protocol based on LoRa technology
zoni).

m 13 August 2021; Accepted 21

nd Telecommunications. Publishi
(http://creativecommons.org/lic
[6] that allows data “chunks” (i.e., self-contained pieces of data with
highly variable lengths, such as JavaScript Open Notation (JSO-
N)-encoded messages) to be transferred over long distances with low
energy expenditure. The proposed protocol, named Long-Range Content
Transfer Protocol (LoRaCTP), provides all the mechanisms necessary to
make LoRa data transfers reliable by introducing a lightweight connec-
tion that permits data messages to be of any ideal length. To test such
message lengths, our protocol evaluation used a library with data mes-
sage lengths of up to 150 KB to obtain stable and reliable behavior.

The LoRa spread spectrum modulation technique derived from the
Chirp Spread Spectrum (CSS) technology to provide long-range, low-
power wireless platforms that have been widely adopted for the
Internet of Things (IoT) networks worldwide. LoRa devices and the open
LoRaWAN protocol enable smart IoT applications in varying contexts,
such as energy management, natural resource reduction, pollution con-
trol, infrastructure efficiency, and disaster prevention.

In order to provide small data oriented computing services in poor-
connection and resource-limited scenarios, LoRaCTP has been used to
design a generic FrUgal eDGE (FUDGE)/fog architecture [7]. Given this
August 2021

ng Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
enses/by-nc-nd/4.0/).

mailto:pmanzoni@disca.upv.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2021.08.007&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2021.08.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2021.08.007
https://doi.org/10.1016/j.dcan.2021.08.007


Fig. 1. FUDGE system's overall architecture.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
architecture, we introduce the concept of “aggregator”, i.e., a process that
coordinates the data flow between the edge nodes and cloud services.
These FUDGE nodes interchange data using an Application Programming
Interface (API) based on the Message Queuing Telemetry Transport
(MQTT) pub/sub system. Data enters into a FUDGE node locally through
a so-called content proxy; using a dedicated channel with an aggregator
based on LoRaCTP, and data transfers adapt to channel quality.

The paper is organized as follows. Section 2 describes related work
about system designs equivalent to ours, whereas Section 3 describes the
overall structure of our proposal with some details on FUDGE nodes.
Section 4 presents our devised solution for connecting varying content
aggregators autonomously. Section 5 details our proposal, which is the
core of this paper, and Section 6 provides the performance evaluation of
our LoRaCTP protocol. The paper ends with Section 7, where some final
considerations are described.

2. Related works

The research area of message dissemination in distributed generic
pub/sub system has been notably active over the last 20 years. Most
works have focused on developing efficient and scalable routing algo-
rithms to create topic-based dissemination trees (in the form of multicast
groups) that cover only subscribers matching a particular topic [8–12].
Such works do not consider a specific broker implementation; instead, an
overall broker topology is assumed. It is only recently that the popularity
of protocols has drawn attention to the problem of interconnecting
MQTT-specific brokers [13]. Some works have focused primarily on
vertical clustering, where single brokers are replaced by multiple vir-
tualised broker instances running behind a single endpoint, typically a
load balancer [14,15]. These approaches introduced the concept of
multiple brokers cooperating with each other, although broker clusters
were viewed as single centralised entities from the perspective of clients.

Banno et al. in Ref. [16] introduced pure MQTT by way of an Inter-
networking Layer of Distributed MQTT (ILDM) for brokers where specific
nodes were placed between clients and heterogeneous brokers to connect
both groups and the brokers themselves. Similar to our work, message
distribution was obtained with publication flooding, but the underlying
network of ILDM nodes was assumed to be loop-free, and there were no
automatic mechanisms present for broker failure recovery. The subsequent
study brought proposals of interconnected MQTT brokers that could
dynamically change their topology configuration at run time using specific
MQTT messages transmitted by a trusted centralized entity [17,18].
258
A parallel study suggested creating a broker network and used an
external monitoring agent to check individual broker status [19]. Clients
were connected to brokers through local gateways; upon any broker
configuration changes (e.g., broker failure and increase in latency), the
gateway would reconnect clients to new brokers using the information
retrieved by the monitoring agent. Such an approach enabled client
mobility, dynamic broker provisioning, and broker load balancing.
Finally, an example of tree-basedMQTT broker topology was provided by
Ref. [20] with a proposal of Software Defined Networking (SDN) to
minimize data transfer delay by creating per-topic multicast groups. The
proposed SDN controller gathered client and relative pub/sub topic in-
formation from all the edge brokers through a master broker, which acts
as the root of the multicast tree. However, the paper assumed a static
topology with no indication of how to elect a master broker.

Satyanarayanan et al. [21] introduced the concept of “edge-native ap-
plications” that fully exploited edge computingpotentialwhilemaintaining
a strong relationshipwith it. Such custom-designedapplicationswould take
advantage of one or more unique attributes of edge computing such as (a)
bandwidth scalability, (b) low-latency offload, (c) privacy-preserving, and
(d)WAN-failure resiliency. In Ref. [22], the authors investigated redundant
IoT edge node relocations to provide a timely “Confident Information
Coverage” service that would extend network lifetimes using an
offloading-assisted energy-balanced manner. In Ref. [23], the authors
propose a “Verifiable and Flexible Data Sharing” mechanism for an
information-centric IoT that exploited ciphertext-policy attribute-based
encryption for authorization and identity-based signatures for distributed
identity verification. In Ref. [24], the authors defined two important con-
cepts among others: the paradigm of edge/cloud computing transparency
and IoTcomputing topologymanagement.The formerpermits computation
nodes to change dynamicallywithout administrator intervention,while the
latter provides a global IoT system view ranging from hardware and
communication infrastructures to the software theydeploy. InRef. [25], the
authors describe the design of an IoT-based platform that aimed tomanage
energy consumption in real-time for water resource recovery facilities,
integrating them into a future demand-side management environment.
LoRa and MQTT were the basic technologies employed in an interesting
proposal for a low-cost drone-based remote monitoring system for
dangerous areas [26]. Also, in Ref. [27] an open-source earthquake and
weather monitoring system is presented based on a Long Range (LoR-
a)-based star topology with a fully energy-autonomous sensor node.

With all this, we consider that IoT and edge computing are growing
together, and for this reason, our work aims to provide a reliable content



Fig. 2. FUDGE node's structure.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
transfer protocol based on a widely used technology to simplify the
connection from remote areas to edge based solution, thus simplifying
the introduction of this approach in IoT scenarios.

3. FUDGE architecture

Fig. 1 shows the overall architecture of a FUDGE system. Its basic
structure is based on various data sharing nodes called “aggregators” and
several edge stations (FUDGE nodes). The stations have a dedicated
channel with a specific LoRa-based aggregator to enable long-range
transmissions with low power consumption. In addition, the LoRaCTP1

is in place to transfer data chunks (content in this context) reliably and
bidirectionally by adapting dynamically to channel quality; Protocol
details are described further in Section 5.

Transferred content is encrypted using the associated aggregator's
certificate, which must be preinstalled manually in the edge nodes. This
approach guarantees both communication privacy and that only the
authorized aggregator can handle the incoming data. We understand that
this approach uses minimal security, but considering the context is
enough to define system reliability.

The aggregator uses a polling approach to coordinate data flow with
the edge nodes. Polling was chosen out of necessity to address LoRa
difficulties when detecting and handling collisions and given the low
bandwidth offered by LoRa, to guarantee the highest possible speed of
reliable transmission. Moreover, polling does not require more complex
hardware/software infrastructure to manage e-link establishment.
Overall, this approach allows for greater channel usage flexibility, sleep
mode in edge nodes, and easy processing of disconnected cycles.

Once an edge node is selected during polling, a push/pull sequence
occurs where the node pushes data to the aggregator and then pulls the
previously polled data stored in the aggregator.

The content forwarder is in charge of this task, and during the push
stage, it sends all the content stored by the consistencymanager tagged as
Global. During the pull stage, in addition to previously stored polling
content, aggregators return content from other aggregators on topics
registered from any service in the edge node. In the pull stage, in addition
to previously stored polling content, aggregators return content from
other aggregators on topics registered from any service in the edge node.
This allows local processes to receive replies to local requests and data
from other cloud services.
1 The LoRaCTP code can be found here: https://github.com/pmanzoni/lorac
tp.

259
A FUDGE node

The structure and organization of a “FUDGE node” is depicted in
Fig. 2. FUDGE architecture is based on microservices and allows easier
scaling and faster development of applications. In a FUDGE node, several
microservices can coexist and interchange data with each other using an
API based on the MQTT pub/sub system.

Three basic elements constitute a FUDGE node: an MQTT broker, a
persistency manager, and a content forwarder. Beyond these elements, a
FUDGE node handles as many content sources as it does content proxies.
The MQTT broker is the core of a FUDGE node, handling content flow
inside the node. The persistency manager element takes care of storing
content labeled as persistent in a time-series database. This allows the
system to maintain its temporal evolution while retaining all the data
required to handle asynchronous operations or possible disconnections.
Moreover, data analytics tools can be used to visualize and extract met-
rics from collected data or to implement custom monitoring dashboards.
The last main FUDGE element, the content forwarder, communicates
with aggregators with LoRaCTP for all required content interchanges.

Since MQTT is at the core of the system, we define a standard format
for topics. The structure used in the system is as follows:

<device id><service id>/scope/persistency/ …others …

where:

● <device id> identifies the specific FUDGE node device;
● <service id> identifies the service providing the content, which can

be anything from a simple temperature sensor or camera to a
messaging system;

● scope indicates whether content is designated for use by other local
services within the FUDGE node (L) or forwarded to the aggregator
(G);

● persistency indicates whether content requires a persistency man-
ager, with P, N, and X indicating necessary action taken, no action
required, and a search performed in the persistency repository for
data retrieval, respectively. The last uses other fields to indicate
whether the search is a request or a response for a search, or other
details; and

● others indicate any additional tags required by a specific service.

The content itself has to be structured using the JSON data-
interchange format according to the format in Listing 1.

https://github.com/pmanzoni/loractp
https://github.com/pmanzoni/loractp


2 Values L and R are read by the broker at startup using the respective/proc/
cpuinfo and/proc/meminfo system files available on Linux.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
Listing 1. JSON content structure.
The <measurement_id> shows a specific set of values that could be

generated from multiple sources on the same set, e.g., several weather
stations providing weather values on an area close to the edge node. The
difference between <tag_value> and <field_value> is given by the un-
derlying time-series database. Basically, a measurement that changes
over time should be a field, and the metadata about the measurement
should be a tag. To continue the previous example, pressure and tem-
perature values are fields, and weather station names are tags.

4. Aggregator overview

Aggregators are used to distribute data among the various FUDGE
nodes. These aggregators are based on MQTT standard brokers
augmented with the capacity to integrate content coming from various
end-points. Some existing MQTT broker implementations (e.g.,
Mosquitto, CloudMQTT, HiveMQ) allow the use of bridging, i.e., a direct
connection between brokers. Such solutions are prone to message loops
among brokers. Indeed, the existence of a cycle where a message is
continuously republished by the participating brokers can quickly
deplete a broker's resources, ultimately making it unable to deliver
meaningful traffic. As implementing duplicate detection (i.e., tracking all
producers of original messages received and forwarded by any broker) in
a distributed scenario would create enormous complexity, existing so-
lutions require the manual configuring of inter-broker connections using
a loop-free (tree) topology. However, configuring MQTT bridges manu-
ally has two significant drawbacks: 1) similar to wiring switches for
small- or medium-sized enterprises, the potential for confusion and
accidental duplicate connection creation is significant, especially for
larger topologies; and 2) enforcing a static loop-free inter-broker topol-
ogy completely sacrifices adaptivity and robustness.

Our proposal relies on an automatic algorithm, the classical Spanning
Tree Protocol (STP) used in switched networks, to set up the brokers’ tree
in MQTT, thus allowing for the creation of a loop-free, dynamic inter-
broker network. STP (standardised as IEEE 802.1D) is a distributed
protocol that creates a logical spanning tree over a meshed network of
layer 2 switches. Such a spanning tree is obtained by electing a root
switch and blocking some output ports of the other switches: blocked
ports do not forward data frames, thus preventing broadcast storms. To
determine the root node and ports to be blocked, switches exchange
control packets known as Bridge Protocol Data Units (BPDUs). General
scheme enhancements have been proposed and standardized; these
include the Rapid STP (RSTP, IEEE802.1D-2004), which provides
significantly faster spanning tree convergence, and the Multiple Span-
ning Tree Protocol (MSTP, IEEE802.1Q-2005), which allows the creation
of multiple spanning trees for different VLANs or groups of VLANs, and
the recent shortest path bridging protocol (IEEE 802.1aq), which allows
redundant links between switches to be active simultaneously, thus
increasing bandwidth.

Given these available protocols, we developed MQTT-ST [28], start-
ing from the latest MQTT protocol specifications [29]. InMQTT-ST, when
a broker is willing to create a bridge with another broker or group of
brokers, it transmits an MQTT CONNECT message upon startup. The
260
broker (brokers) targeted for connection have their addresses and ports
specified in a configuration file. To inform a broker that a connection
request comes from another broker and not from a client, the most sig-
nificant bit of the protocol version byte is set in the CONNECT header.

Upon receiving a CONNECT message with an appropriate bit set, a
targeted broker will immediately reply with a modified CONNECT
message to the originating node, using the standard MQTT port 1883, to
allow bidirectional communication. This also allows a node with no
configuration file set to be part of the broker network if contacted by a
networked broker. The targeted broker then stores the IP addresses of all
directly connected brokers in a local table, which is used to keep track of
the state of each connection marked as root, designated, or blocked. For
each connection, the table also stores the average Round Trip Time (RTT)
and a value C, which summarizes the resource capability of the endpoint
broker as detailed later. Finally, the broker sets itself as root and starts
transmitting signaling messages to all connected brokers. For this task,
instead of creating a new specific message, we reuse MQTT PINGREQ
messages.

Standard MQTT specifies a keep-alive parameter, which defines the
maximum time interval permitted to elapse after the last client trans-
mission. In case the timer expires, the broker closes the connection with
the client. Therefore, to maintain a live broker connection, clients peri-
odically transmit PINGREQ messages. MQTT-ST reuses such messages to
play the role of STP BPDUs. The values of the current root broker's IP
address for the transmitter, the broker capability value C, and a root path
cost P are appended to PINGREQmessages. The latter two fields (C and P)
are used for root selection and path computation.

Root brokers play a crucial role in the broker trees, acting as relay
nodes for all traffic and enduring increased computational loads as a
result. Indeed, selecting a broker with poor or overloaded resources may
result in poor overall performance. While STP selects a root based on
identifier alone, which does not suit the scenario under consideration
well. In MQTT-ST, instead, the root broker is selected according to the
capability value C, defined as

C ¼ αLþ βM (1)

where L is the broker CPU speed, R is the amount of RAM, and α, β are
tuneable conversion parameters.2 In the case of a tie, the broker with the
lowest IP address is selected as the root.

In STP, each node selects the best path to the root according to
bandwidth-related criteria, preventing the use of reduced capacity links
in the tree that may slow down an entire network. For MQTT-ST, we
observe that latency, rather than bandwidth, plays a critical role. Each
broker, therefore, continuously monitors the RTT to other brokers and
uses that value for updating the root path cost P. In order to do this, we
leverage the request/response mechanism already present in MQTT
through the PINGREQ/PINGRESP. A timer is started when a client
transmits a PINGREQ message that stops when the corresponding
PINGRESP message is received by the broker, providing an estimate of
the current RTT. Upon receiving the PINGREQ message, the connection
that provides the lowest latency path towards the root is marked as the
root connection. In the case of ties in cumulative latency, the connection
passing through the broker with the highest amount of resources is
selected as the root connection. All connections are then labeled
following the same logic as the STP: (i) all the root broker connections are
marked as designated, (ii) non-root connections of other brokers are
marked as designated if the broker has a better path cost (or a better
value of C in the case of a tie) compared to a neighboring broker, and (iii)
all other ports are labeled as blocked.

While executing, an MQTT-SN broker works exactly like an MQTT
broker from a connected client's perspective. Moreover, the broker



Fig. 3. Packet structure used by the stop-and-wait ARQ.

Fig. 4. Flow of the establishment and interchange of data.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
forwards all published messages (regardless of topic) along with non-
blocked connections (root or designated) while discarding messages
coming from blocked connections. The forwarding is performed like a
standard MQTT PUBLISH message. It should be noted that in order to
allow full replication of messages published at one broker to all other
brokers, message forwarding is performed with the highest MQTT
Quality of Service (QoS) available (QoS ¼ 2). On the one hand, this
guarantees that each message will be received only once by its intended
recipients. On the other hand, it requires a four-part handshake with a
non-negligible associated overhead. Since forwarding is implemented
through a standard MQTT PUBLISH, all other features of the latest MQTT
specification are conserved (e.g., retain, topic alias, message expiry
interval).

Upon broker failure, MQTT-SN handles the corresponding socket
error to re-establish the forwarding tree. More specifically, a broker
detecting the socket error transmits a special PINGREQ message used to
restart the tree construction from scratch. The broker sets itself as root
and appends an additional Topology Change (TC) field set to the mes-
sage, similar to STP. Any broker receiving such a message will restart its
own root selection procedure, eventually leading to the converging of a
new tree.

5. LoRaCTP details

This section presents details on LoRaCTP. Our protocol works directly
at LoRa to create a supporting long-range communication link. LoRa is
based on CSSmodulation that maintains low power characteristics as FSK
modulation. The advantage of LoRa is in the technology's long-range
capability. As range depends highly on the location environment and
obstructions, LoRa technology (e.g., LoRaWAN) enjoys a distinct capa-
bility advantage with a link budget greater than any other standardized
communication technology.

LoRaCTP is used to transfer data chunks (content) or self-contained
pieces of data, e.g., a JSON-encoded message with a potentially unlim-
ited length. We tested out a library with messages of up to 150 KB
(Section 6). LoRaCTP is based on a unicast protocol that adopts a classical
stop-and-wait Automatic Repeat Request (ARQ) approach with a dy-
namic and adaptive value for the retransmission delay. The protocol
ensures that information is not lost due to dropped packets and that
packets are received in the correct order.

Once the content is designated for sending, it is split into as many
blocks as necessary, given the maximum application payload size, which
value depends on the selected data rate. For example, assuming the Eu-
ropean 863–870 MHz band with the worst propagation conditions, the
lowest data rate should also be assumed, preventing any node from
sendingmore than roughly 51 bytes per packet given by Spreading Factor
(SF) 12); under SF7, packets can contain provided by SF12, where the
node cannot send more than about 51 bytes per packet; with SF7, the
packet can be up to 222 bytes. The packet structure is shown in Fig. 3.

Each packet has a fixed 20-byte header with source address and
destination address shortened to the rightmost 8 bytes of the LoRa
261
adapter address. The flag field contains four values: the packet sequence
numbers (encoded as an alternating 0/1 sequence), the ACK sequence
numbers (encoded as an alternating 0/1 sequence, too), a flag that in-
dicates if this is the last packet of the content sent, and a flag that in-
dicates whether. Three bytes more are used to store the checksum of the
packet using the rightmost 3 bytes of the SHA-256 hash digest, which is
computed over the data to be sent.

Each packet is sent using a three attempts scheme. That is, if an ACK is
not received after three attempts, the channel is deemed busy or too noisy
for the content to be sent, and the sending is dropped. Standard situations
set the retransmission delay (the time a system waits for an ACK to be
received) to 5 s, which is deemed reasonable for preventing any unnec-
essary packet retransmissions. When more than one packet is necessary
to send content, retransmission delay is recomputed by continuously
evaluating the RTT and adapting the delay as follows:

where rtime is the time the ACK was received, stime is the time the packet
was sent, ertt is the estimated RTT delay, and urtt is the used RTT delay.



Fig. 5. Code of the ping.py example.
Fig. 6. Code of the pong.py example.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
We give more weight (0.875) to historical values than the last measured
values. The sending operation returns statistics regarding the total
packets sent, the total number of retransmissions, and if the transmission
had to be aborted, which is indicated with a FAILED flag.

On top of this flow-control protocol, a lightweight transport protocol
is used to establish a connection between a master node and a client
node. Fig. 4 shows a simple sequence example. The master node monitors
incoming connections, which are established in the unicast manner (i.e.,
providing the master node's address) or the anycast manner (i.e., sending
to the generic “0000000000 address) to receive replies from nearby
listening devices. This possibility allows for greater flexibility, such as
establishing dynamic topologies in rural areas.

The evaluation code (see Section 6) is a simple adaptation of the
“ping-pong” scheme, where applications send messages (pings, see
Fig. 5) to listening nodes and obtain replies (pongs, see Fig. 6) once a
node receives a ping. We adapted our evaluation code to allow for
variable-sized content. These code snippets (Figs. 5 and 6) illustrate the
LoRaCTP's API and the four primitives that permit easy control of content
transfer: connect(), listen(), sendit(), recvit().

6. Evaluation

This section presents the performance results of LoRaCTP when it is
used to transfer content over varying distances between nodes with
varying data sizes; we also compared performance with two differing SFs
(SF7 and SF12).

The devices we used as nodes were LoPy4 by Pycom.3 The LoPy4 (see
Fig. 7) is a quadruple bearer MicroPython-enabled development board
with IEEE 802.11 b/g/n, Bluetooth v4.2 BR/EDR and BLE, LoRa (Sem-
tech SX1276), Sigfox with an Espressif ESP32 chipset (Xtensa dual–core
32–bit LX6), 520 KBþ 4 MB of RAM, and 8 MB of an external flash. It has
a dual processor with a network processor that handles its WiFi
3 https://pycom.io/.

262
connectivity and IP stack, leaving the main processor free to run user
applications.

In addition to the LoRaCTP code used with each LoPys, an extension
was employed to allow each device to be used as a LoRa adapter due to
connections going through a serial/USB port.

We considered the following distances between any two nodes: 1,
100, 750, and 6000 m. The 1- and 100-m tests were performed using the
facilities of the Universitat Polit�ecnica de Val�encia. The 750-m tests were
performed in the Ciudad de las Artes y las Ciencias area of Valencia,
Spain, while 6000 m testing was performed between two viewpoints in
Chiapas, Mexico. The latter locations were in areas high enough to pre-
clude intervening obstacles.

We measured the system performance using a metric called “Suc-
cessful Transfer Time (STT)”. This metric measures message transfer
times from the sender's perspective and is computed from the moment
the first content of a message is sent to the moment the ACK of the final
message content is received. All tests were performed using SF7 and
SF12.

To determine the system stability, 10 message bursts were sent. We
rarely observed retransmissions, even over the longest distances, indi-
cating a negligible impact on SST. As we had to consider delays on the
order of hundreds of seconds, a few additional seconds did not affect
system usability significantly, and no effect was detected on message
delivery.

Fig. 8 provides a clear illustration of STT evolution as a direct function
of message size given SF7 (i.e., STT grows with message size) while the
distance between nodes had a negligible effect. As expected, the overall
throughput offered by LoRa is quite low, in the order of 250 bps (see
Fig. 9).

Figs. 10 and 11 show the average STT values of various-sized mes-
sages (1, 10, 50, and 100 KB) sent at SF7 and SF12, respectively,
measured against the distances between two nodes. Almost constant
behavior can be observed in the results, although the STT clearly grows
as the message size increases. The system is quite stable at an increasing

https://pycom.io/


Fig. 7. Node example based on a LoPy device.

Fig. 8. STT behavior with varying message size (median values) using SF7.

Fig. 9. STT behavior with varying message size (median values) using SF12.

Fig. 10. STT versus distance between two nodes using SF7.

Fig. 11. STT versus distance between two nodes using SF12.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
distance, and very few retransmissions were required during the
experiments.

From the above results, we can conclude that our solution is an
effective and stable solution to integrate data from long distances using
LoRa. For example, 100 KB messages transmitted under SF7 obtained a
maximum delay of 457.56 s and a minimum of 451.49 s. Under SF12, the
maximum and minimum delays increased to 82.545 and 82.513 min,
respectively. While it is clear that the worst aspect of LoRa usage is low
throughput, that aspect is compensated for by the distance covered and
the low energetic cost required by these devices, providing a frugal so-
lution to a notable problem. We are considering future work that adds a
smart algorithm to our protocol, enabling switching between SF7 and
SF12 according to specific scenarios, message sizes, and other aspects.

Preliminary evaluations were also conducted to determine data
transfer energy costs. Fig. 12 shows how much energy was required by a
device that was operating. Peaks were due to LED blinking, and the
average power usage was approximately 176 μWh.

Fig. 13 shows the energy required to send a single packet message,
with the segment between the two red arrows representing all phases
involved in session establishment, sending the packet, and receiving the
263



Fig. 12. Representation of energy consumed by the device when no operations are performed.

Fig. 13. Representation of energy consumed by the device when a single packet message is sent.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
ACK. The block required 287 μWh, indicating an expenditure of 110 μWh
to send the packet.

Fig. 14 shows the energy required by the device to send five packets
and the corresponding process. This figure clearly indicates the sending
of each packet, the waiting interval for the ACK to arrive, and the arrival
of the ACM message (for example, the sequence indicated between the
two green arrows). Each of these block sequences has an energetic cost of
60 μWh

We can therefore devise a function to compute the energetic cost ec of
sending a packet. Under SF7, a given packet size p in bytes gives

ec½μWh� ¼ 287þ ð⌈p = 222⌉� 1Þ*60
Since the LoPywas poweredwith 3.3V, the energetic cost in amperes is
264
ec½μAh� ¼ ec½μWh�=3:3
7. Conclusions

In this paper, we presented a flexible protocol based on LoRa tech-
nology that allows content transfers across long distances with low en-
ergy expenditure, provided all necessarymechanisms for LoRa reliability,
and introduced a lightweight connection that permitted the ideal sending
of any data message length. We evaluated our protocol's performance and
reliability using the content of varying sizes transmitted across various
distances.

We designed this protocol as communication support for small-data
edge-based IoT solutions, given its stability, low power usage, and dis-
tance capacity.



Fig. 14. Representation of energy consumed by the device when five packets are sent.

K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

This work was partially supported by the “Conselleria de Innovaci�on,
Universidades, Ciencia y Sociedad Digital”, Proyectos AICO/2020, Spain,
under Grant AICO/2020/302 and “Ministerio de Ciencia, Innovaci�on y
Universidades, Programa Estatal de Investigaci�on, Desarrollo e
Innovaci�on Orientada a los Retos de la Sociedad, Proyectos IþDþI 2018”,
Spain, under Grant RTI2018-096384-B-I00.

References

[1] D. Estrin, Small data, where n ¼ me, Commun, ACM 57 (4) (2014) 32–34, https://
doi.org/10.1145/2580944.

[2] M. Thinyane, Small data and sustainable development — individuals at the center
of data-driven societies, in: 2017 ITU Kaleidoscope: Challenges for a Data-Driven
Society, ITU K, 2017, pp. 1–8, https://doi.org/10.23919/ITU-WT.2017.8246991.

[3] O. Kennedy, D.R. Hipp, S. Idreos, A. Marian, A. Nandi, C. Troncoso, E. Wu, Small
data, in: 2017 IEEE 33rd International Conference on Data Engineering, ICDE,
2017, pp. 1475–1476, https://doi.org/10.1109/ICDE.2017.216.

[4] Y.W. Teh, On big data learning for small data problems, in: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’18, Association for Computing Machinery, New York, NY, USA, 2018, p. 3,
https://doi.org/10.1145/3219819.3219941.

[5] C.R. Banbury, et al., Benchmarking TinyML Systems: Challenges and Direction,
2020, 04821 arXiv 2003.

[6] B. S. Chaudhari Bs, Zennaro M, LPWAN technologies: emerging application
characteristics, requirements, and design considerations, Future Internet 12 (3).

[7] K. Nakamura, P. Manzoni, M. Zennaro, J.-C. Cano, C.T. Calafate, J.M. Cecilia,
FUDGE: A Frugal Edge Node for Advanced IoT Solutions in Contexts with Limited
Resources, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 30–35, https://doi.org/10.1145/3410670.3410857. URL.

[8] R. Baldoni, R. Beraldi, L. Querzoni, A. Virgillito, Efficient publish/subscribe through
a self-organizing broker overlay and its application to SIENA, Comput. J. 50 (4)
(2007) 444–459, https://doi.org/10.1093/comjnl/bxm002. https://academic
.oup.com/comjnl/article-pdf/50/4/444/1179684/bxm002.pdf.

[9] A. Majumder, N. Shrivastava, R. Rastogi, A. Srinivasan, Scalable content-based
routing in pub/sub systems, in: IEEE INFOCOM 2009, IEEE, 2009, pp. 567–575.
265
[10] J.L. Martins, S. Duarte, Routing algorithms for content-based publish/subscribe
systems, IEEE Communications Surveys & Tutorials 12 (1) (2010) 39–58.

[11] G. Siegemund, V. Turau, K. Maâmra, A self-stabilizing publish/subscribe
middleware for wireless sensor networks, in: 2015 International Conference and
Workshops on Networked Systems (NetSys), IEEE, 2015, pp. 1–8.

[12] V. Turau, G. Siegemund, Scalable routing for topic-based publish/subscribe systems
under fluctuations, in: 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), IEEE, 2017, pp. 1608–1617.

[13] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, M. Mohammadi, Toward better
horizontal integration among iot services, IEEE Commun. Mag. 53 (9) (2015)
72–79.

[14] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga, D. Kobayashi,
A scalable and low-cost mqtt broker clustering system, in: 2017 2nd International
Conference on Information Technology (INCIT), IEEE, 2017, pp. 1–5.

[15] S. Sen, A. Balasubramanian, A highly resilient and scalable broker architecture for
iot applications, in: 2018 10th International Conference on Communication Systems
& Networks (COMSNETS), IEEE, 2018, pp. 336–341.

[16] R. Banno, J. Sun, M. Fujita, S. Takeuchi, K. Shudo, Dissemination of edge-heavy
data on heterogeneous mqtt brokers, in: 2017 IEEE 6th International Conference on
Cloud Networking (CloudNet), IEEE, 2017, pp. 1–7.

[17] A. Schmitt, F. Carlier, V. Renault, Dynamic bridge generation for iot data exchange
via the mqtt protocol, Procedia computer science 130 (2018) 90–97.

[18] A. Schmitt, F. Carlier, V. Renault, Data exchange with the mqtt protocol: dynamic
bridge approach, in: 2019 IEEE 89th Vehicular Technology Conference (VTC2019-
Spring), IEEE, 2019, pp. 1–5.

[19] T. Rausch, S. Nastic, S. Dustdar, Emma: distributed qos-aware mqtt middleware for
edge computing applications, in: 2018 IEEE International Conference on Cloud
Engineering (IC2E), IEEE, 2018, pp. 191–197.

[20] J.-H. Park, H.-S. Kim, W.-T. Kim, Dm-mqtt, An efficient mqtt based on sdn multicast
for massive iot communications, Sensors 18 (9) (2018) 3071.

[21] M. Satyanarayanan, G. Klas, M. Silva, S. Mangiante, The seminal role of edge-native
applications, in: 2019 IEEE International Conference on Edge Computing, EDGE,
2019, pp. 33–40.

[22] M. Wang, L. Zhu, L.T. Yang, M. Lin, X. Deng, L. Yi, Offloading-assisted energy-
balanced iot edge node relocation for confident information coverage, IEEE Internet
of Things Journal 6 (3) (2019) 4482–4490.

[23] R. Li, H. Asaeda, J. Li, X. Fu, A verifiable and flexible data sharing mechanism for
information-centric iot, in: 2017 IEEE International Conference on
Communications, ICC, 2017, pp. 1–7.

[24] M.A. L�opez Pe~na, I. Mu~noz Fern�andez, Sat-iot: an architectural model for a high-
performance fog/edge/cloud iot platform, in: 2019 IEEE 5th World Forum on
Internet of Things, WF-IoT, 2019, pp. 633–638.

[25] M. Nunes, R. Alves, A. Casaca, P. P�ovoa, J. Botelho, An internet of things based
platform for real-time management of energy consumption in water resource
recovery facilities, in: L. Strous, V.G. Cerf (Eds.), Internet of Things. Information
Processing in an Increasingly Connected World, Springer International Publishing,
Cham, 2019, pp. 121–132.

[26] L. Angrisani, A. Amodio, P. Arpaia, M. Asciolla, A. Bellizzi, F. Bonavolont�a,
R. Carbone, E. Caputo, G. Karamanolis, V. Martire, M. Marvaso, R. Peirce,

https://doi.org/10.1145/2580944
https://doi.org/10.1145/2580944
https://doi.org/10.23919/ITU-WT.2017.8246991
https://doi.org/10.1109/ICDE.2017.216
https://doi.org/10.1145/3219819.3219941
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref5
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref5
https://doi.org/10.1145/3410670.3410857
https://doi.org/10.1093/comjnl/bxm002
https://academic.oup.com/comjnl/article-pdf/50/4/444/1179684/bxm002.pdf
https://academic.oup.com/comjnl/article-pdf/50/4/444/1179684/bxm002.pdf
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref9
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref9
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref9
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref10
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref10
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref10
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref10
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref11
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref11
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref11
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref11
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref11
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref12
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref12
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref12
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref12
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref13
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref13
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref13
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref13
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref14
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref14
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref14
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref14
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref15
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref15
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref15
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref15
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref16
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref16
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref16
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref16
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref17
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref17
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref17
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref18
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref18
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref18
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref18
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref19
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref19
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref19
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref19
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref20
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref20
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref21
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref21
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref21
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref21
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref22
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref22
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref22
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref22
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref23
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref23
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref23
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref23
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref24
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref25
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26


K. Nakamura et al. Digital Communications and Networks 8 (2022) 257–266
A. Picardi, G. Termo, A.M. Toni, G. Viola, A. Zimmaro, An innovative air quality
monitoring system based on drone and IoT enabling technologies, in: 2019 IEEE
International Workshop on Metrology for Agriculture and Forestry, MetroAgriFor,
2019, pp. 207–211.

[27] P. Boccadoro, B. Montaruli, L.A. Grieco, Quakesense, a lora-compliant earthquake
monitoring open system, in: 2019 IEEE/ACM 23rd International Symposium on
Distributed Simulation and Real Time Applications, DS-RT, 2019, pp. 1–8.
266
[28] E. Longo, A.E.C. Redondi, M. Cesana, A. Arcia-Moret, P. Manzoni, Mqtt-st: a
spanning tree protocol for distributed mqtt brokers, in: ICC 2020 - 2020 IEEE
International Conference on Communications, ICC, 2020, pp. 1–6, https://doi.org/
10.1109/ICC40277.2020.9149046.

[29] A. Banks, E. Briggs, K. Borgendale, R. Gupta, Mqtt Version 5.0, OASIS Standard.

http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref26
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref27
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref27
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref27
http://refhub.elsevier.com/S2352-8648(21)00059-6/sref27
https://doi.org/10.1109/ICC40277.2020.9149046
https://doi.org/10.1109/ICC40277.2020.9149046

	A LoRa-based protocol for connecting IoT edge computing nodes to provide small-data-based services
	1. Introduction
	2. Related works
	3. FUDGE architecture
	A FUDGE node

	4. Aggregator overview
	5. LoRaCTP details
	6. Evaluation
	7. Conclusions
	Declaration of competing interest
	Acknowledgment
	References


