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Abstract: Robotics has been successfully applied in the design of collaborative robots for assistance 
to people with motor disabilities. However, man-machine interaction is difficult for those who suf-
fer severe motor disabilities. The aim of this study was to test the feasibility of a low-cost robotic 
arm control system with an EEG-based brain-computer interface (BCI). The BCI system relays on 
the Steady State Visually Evoked Potentials (SSVEP) paradigm. A cross-platform application was 
obtained in C++. This C++ platform, together with the open-source software Openvibe was used to 
control a Stäubli robot arm model TX60. Communication between Openvibe and the robot was car-
ried out through the Virtual Reality Peripheral Network (VRPN) protocol. EEG signals were ac-
quired with the 8-channel Enobio amplifier from Neuroelectrics. For the processing of the EEG sig-
nals, Common Spatial Pattern (CSP) filters and a Linear Discriminant Analysis classifier (LDA) were 
used. Five healthy subjects tried the BCI. This work allowed the communication and integration of 
a well-known BCI development platform such as Openvibe with the specific control software of a 
robot arm such as Stäubli TX60 using the VRPN protocol. It can be concluded from this study that 
it is possible to control the robotic arm with an SSVEP-based BCI with a reduced number of dry 
electrodes to facilitate the use of the system. 

Keywords: brain computer interface (BCI); Electroencephalography (EEG); Steady-State Visually 
Evoked Potential (SSVEP); robot control; C++ 
 

1. Introduction 
Robotics has been successfully applied to help people with disabilities perform dif-

ferent tasks. Many individuals suffer motor limitations as a consequence of strokes, trau-
mas, muscular dystrophies, cerebral palsies, or various neurodegenerative diseases such 
as amyotrophic lateral sclerosis (ALS). For these patients, daily activities such as reaching 
and moving objects can be an important problem. Assistance or collaborative robots have 
been developed to help subjects with motor limitations in performing daily tasks and to 
allow them a greater degree of autonomy. However, the handling of these robots through 
buttons or joysticks remains an obstacle for many users affected by motor dysfunctions. 

Brain-computer interfaces (BCIs) are an interesting alternative for robot control by 
people with severe motor limitations. BCIs are non-muscular communication and control 
systems that a person can use to communicate his intention and act on the environment 
from measurements of brain activity [1–8]. The term was introduced by Jacques Vidal in 
1973 [9] and in 1999 the definition of a BCI system was formalized during the first inter-
national meeting on BCI technology [8]. 

BCIs include sensors that record brain activity and software that processes this infor-
mation in order to interact with the environment by means of actuators. In the majority of 
implementations, non-invasive BCIs based on the acquisition of EEG signals are used [10]. 
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BCI’s potential as an assistive technology system was the main driver for its devel-
opment. Patients with limited communication and movement capabilities can benefit 
from this technology, which includes communication protocols such as spellers [11–14] 
control of robot arms and neuro-prosthesis [15–19], control of motorized wheelchairs [20–
23], home automation systems [24,25], virtual reality [26] and patients with paralysis that 
they can restore interaction with their environment [8]. 

Different paradigms have been used in BCI applications based on EEG for robot con-
trol, such as Motor Imagery (MI) [19,27–33], P300 evoked potentials [14,34,35], or Steady-
State Visually Evoked Potentials (SSVEP) [36–48]. 

In [16] a rehabilitation application based on the control of a robot arm is shown to 
perform tasks of grasping parts by using a MI paradigm. The application allows two-di-
mensional control of a robot arm. The imagined movement of left, right, and both hands 
and relaxation allow movement to the left, right, up, and down of the robot [17]. 

With the SSVEP paradigm, different studies have been performed to control a robotic 
arm or hand, seeking that people with muscular or neuromuscular disorders can interact 
and communicate with their environment [47,49]. The tasks performed with a robotic 
hand have been opening or closing the hand [50] or giving the order for the robot hand to 
make a gesture (greeting, approval, or disapproval) [51]. 

Combinations of two or more paradigms have also been proposed to control a robotic 
arm such as P300/SSVEP [52,53], SSVEP/mVEP [54], SSVEP/MI/Electromyography (EMG) 
[55], SSVEP/Facial gestures [56], control of a robotic arm and a wheelchair by SSVEP/cer-
vical movements [57], SSVEP/EOG [58], SSVEP/Eye [59], SSVEP/Computer Vision [60], 
SSVEP/MI [55], and SSVEP/P300/MI [61]. 

Existing studies of the application of BCI systems to the control of assistive devices 
are limited to pilot tests, and their use outside the laboratory has not been generalized 
[49,62,63]. Some of the drawbacks that prevent the widespread use of BCIs in patients are 
the high cost of hardware and development of the BCI [62], the laborious preparation of 
the interface (i.e., placement of the electrodes to acquire the EEG signal) [10], the need for 
training on the part of the subject in the use of the BCI and its calibration [64]. 

The use of open-source software (OSS) has made it possible to implement low-cost 
BCI applications without having to pay for user licenses. There are different types of OSS 
that can be implemented in projects related to BCIs [65,66]. These software platforms re-
ceive brain signals and allow scenarios to be designed that interact with external or simu-
lation devices. Likewise, these platforms allow the processing of electroencephalographic 
signals such as filtering, feature extraction, and classification [67]. Some examples of com-
mercial and free software platforms with which interaction between users and devices can 
be carried out for the implementation of a BCI are Matlab [68–70], Labview [71,72], Open-
vibe [73–75], BCI2000 [76–78], BCI++ [79], o OpenBCI [80]. Tools for offline analysis of EEG 
signals have also been developed, such as those developed in Matlab by the Swartz Center 
of Computational Neuroscience (SCCN) [81]. 

In this study, Openvibe is used to acquire, filter, process, classify and visualize EEG 
signals in the development of the BCI application. Scenario design is performed with 
toolboxes and can be used in real-time. Openvibe is a platform developed in C++. It allows 
working under Linux or Windows operating system. It is licensed under the Affero Gen-
eral Public License (AGPL), which is a copyleft license derived from the GNU General 
Public License designed for cooperation within the research community and was made 
by the Institut National de Recherche en Informatique et en Automatique (INRIA) [73]. 

Openvibe has been used for multiple applications and with different types of para-
digms such as motor imagination to control a robotic arm or a robotic hand [30,31], motor 
imagination in neural plasticity with a wrist exoskeleton [32], with the P300 paradigm for 
the control of an electric chair [23], P300 for the control of a manipulator robot [35], surface 
electromyographic signals for the control of a functional electrical stimulator (FES) [82], 
neurorehabilitation [28,33,83], music [84], mobile robots [85] or processing with motor im-
agination or P300 [86–89] with different amplifiers [90]. 



Sensors 2022, 22, 5000 3 of 26 
 

 

Different types of interfaces or amplifiers have been used to obtain electroencepha-
lographic signals through the Openvibe platform, such as Neurosky under the motor im-
agination paradigm [29] or Emotiv with the P300 paradigm [90]. An Enobio amplifier from 
Neuroelectrics is used in this study. Enobio has been used for the acquisition and pro-
cessing of EEG signals in research related to different BCI applications, such as subjective 
behaviors in marketing [91] and other activities [92–96]. 

This work implements and tests a BCI application based on scalp EEG for the control 
of a robot arm with minimum requirements at the hardware and software levels from the 
point of view of the programmer and the user. These design requirements are addressed 
with the use of open-source BCI software. A cross-platform application is developed to 
interface OpenVibe and the proprietary software that controls the Staübly robot arm. 

With these design specifications, the SSVEP paradigm has been selected, which, com-
pared to the other paradigms commonly used in EEG BCIs, provides greater communica-
tion speed [7,10,97,98], the subject requires less training time [10,55,97–99], and can be 
operated with fewer electrodes placed on the occipital region [46,48,50,51,100–103]. The 
SSVEP signal appears in the visual cortex when the subject observes intermittent stimuli 
[104], and its response depends on the subject’s attention [105–107] and the size, shape, 
and frequency of the stimulus [7,19,108]. 

Minimum requirements are also considered for the BCI experimental subject to facil-
itate the use of the control system. In order to simplify the acquisition of the EEG signal, 
dry electrodes are chosen, avoiding the use of electroconductive gel. To also improve the 
readiness of implementation, just eight electrodes are selected. 

The SSVEP-based BCI system designed has been tested with five healthy subjects 
without previous experience in BCIs. The results suggest that the control of the robot arm 
through the integration of an open BCI software platform with the software program de-
veloped to control the robot is feasible. The proposed system allows controlling the robot 
arm with a level of demand acceptable to the user. 

The prototype developed is presented in the following sections. EEG signal pro-
cessing and communication between the robot arm and the BCI application are described. 
The performance of the participants with the BCI is analyzed and compared with previous 
studies in the area. Finally, the results are discussed, and the conclusions of the study are 
presented. 

2. Materials and Methods 
2.1. System Description 

The SSVEP BCI control system proposed in this work is composed of two main sub-
systems: The SSVEP processing system and the robot system. EEG signals are wirelessly 
transmitted from the EEG Enobio amplifier. The EEG signal is then processed to obtain 
the control signal for the robotic arm. The SSVEP BCI communicates with the robotic arm 
via a TCP/IP communications protocol. The robotic arm is a six-axis industrial manipula-
tor model TX60 from Stäubli [109]. It is a light-duty robot arm with a maximum load of 9 
kg in certain positions. The robot arm weighs 3.5 kg, and its maximum reach is 670 mm 
(Figure 1). 
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(a) (b) 

Figure 1. Robot Stäubli TX60. (a) robot arm in the lab; (b) degrees of freedom scheme. 

As previously stated, among the different software platforms available for the acqui-
sition, processing, and classification of EEG signals [76,110–112], Openvibe has been se-
lected [97,98,113]. This software was developed by INRIA [113] in order to design, test, 
and use brain-computer interfaces. Its programming is based on block diagrams and al-
lows the EEG signals to be acquired, filtered, conditioned, classified, and visualized. 
Openvibe is compiled in C++, so it allows quick and easy integration of the communica-
tion library with the robot. 

Figure 2 shows the architecture of the SSVEP BCI control system. The different mod-
ules are explained in the following sections. 

 
Figure 2. SSVEP-BCI methodology for robotic arm control. 

2.2. Stimulus Generation 
Stimulus generation for the elicitation of the SSVEP can be based on light-emitting 

diodes LEDs [114] or monitors [46,51,101,103,108,115]. In this study, intermittent visual 
stimuli are presented on the computer screen. 
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The stimulus type is a white square with a black background [115–117]. The size of 
the stimulus and the location of the stimuli on the screen is configured in Openvibe. Fre-
quencies used are 12, 15, and 20 Hz [114]. These frequencies are multiples (1/5, 1/4, 1/3) of 
the update rate from a 60 Hz LCD screen (Figure 3). 

The experimental procedure to train the BCI spatial filters and classifier has 32 trials 
arranged in 8 runs. Every run has four trials. Every trial has a length of 12 s and consists 
of three sections: (1) stimulus presentation (arrow positioning), (2) visualization period, 
and (3) rest period and stimulus change. 

The duration of the stimulus is set to 7 s, the duration between stimuli or interval 
time of trials is set to 4 s, and the delay of the stimulus is 1 s (Figure 3). The stimuli are 
shown in sequence, and each stimulus is repeated eight times (Figure 4). 

 
Figure 3. Timing of a single SSVEP trial. 

 
Figure 4. Time duration for starting on stimulation frequency and resting period in one run. 

Subjects observed on an LCD screen the three stimuli placed on the top, right, and 
left parts of the computer screen. The center square has the same color as the black back-
ground. The execution begins with the positioning of the arrow in one of the four stimuli, 
and then the stimuli begin to oscillate at 20 Hz (upper box), 15 Hz (left box), and 12 Hz 
(right box). Simultaneously, the subject must focus on the stimulus for 7 s. Then, the stim-
uli stop flashing, and the arrow is repositioned on one of the other stimuli. The sequence 
is random in each run (Figure 5). 

 
Figure 5. Stimuli frequencies. 

2.3. Signal Acquisition 
Several factors have been taken into account when selecting hardware and software 

components for the EEG-based BCI. Given the interest in a compact and portable solution 
for BCI control, Enobio digital amplifier from Neuroelectrics [118] was selected to acquire 
the EEG signals. The Enobio amplifier was developed for BCI research. It was chosen for 
its wireless technology and dry electrodes that facilitate the experimental setup. 
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The EEG signal was acquired through channels O1, O2, Oz, PO3, PO4, Pz, Cz, and Fz 
around the occipital area according to the standard 10–20 electrode location system (Fig-
ure 6). Ground and reference electrodes were placed in the subject’s earlobe. The EEG 
signal was recorded using a sampling rate of 500 Hz and band-pass filtered between 2 and 
100 Hz with an activated notch filter at 50 Hz. The sampled and amplified EEG signal is 
then sent to the computer via Bluetooth. 

 
Figure 6. Electrode disposition according to the international system 10–20. 

2.4. Signal Processing 
The EEG signal is sent from Enobio to Openvibe through the Openvibe Acquisition 

Server module [113]. The EEG signal is processed in a five-step process: preprocessing, 
feature extraction, classification, command translation, and feedback to the BCI user. Its 
programming is based on block diagrams and allows the signals to be acquired, filtered, 
conditioned, classified, and visualized (Figure 7). 

 
Figure 7. Signal Processing Procedure. 

Considering that the cognitive activity of interest in this study is in the range of 0.2–
40 Hz, a fourth-order Butterworth band-pass filter between 6–40 Hz was applied to the 
EEG signal. According to [119], the SSVEP paradigm is less sensible to artifacts, due to its 
high signal-to-noise ratio (SNR) and robustness, than other typical BCI paradigms [120] 
said that SSVEP are little affected by muscular artifacts such as blinking and facial mus-
cles’ EMG. As one of the objectives of this work was to research into practical applications 
of BCI systems in non-clinical settings, SSVEP was selected because of its high signal-to-
noise ratio (SNR). Nevertheless, appropriate processing and filtering of artifacts must be 
conducted in every BCI system. 

For feature extraction, we use a spatial approach [121]. A common spatial patterns 
(CSP) filter selects the best characteristics from the EEG signal. The CSP algorithm pro-
duces spatial filters that maximize the variance of bandpass-filtered EEG signals from one 
class while minimizing their variance for the other class [122–126]. 
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The power spectrum was extracted in the considered frequency bands, respectively 
19.75–20.25 Hz for 20 Hz flashing frequency, 14.75–15.25 Hz for 15 Hz flashing frequency 
and 11.75–12.25 Hz for 12 Hz flashing frequency. For single-trial data (7 s length), a 0.1-s 
sliding window was applied to extract the signal features. The window length was 0.5 s. 
A logarithmic mapping is applied to the power average, as it assists in the improvement 
of the classification performance [127]. 

In order to classify the features extracted, a linear discriminant analysis (LDA) clas-
sifier was used. The aim of LDA is to adjust a hyperplane that can separate the data rep-
resenting the different classes [67,128]. This classifier is popular and efficient for BCI. For 
each condition, the training set was used to select the features and to train the LDA clas-
sifier on these features. Then, the trained LDA classifier was used to classify the features 
extracted from the test set [129–131]. 

Cross-validation was used in this study to validate the LDA classifier. The idea was 
to repeatedly divide the set of trials in a BCI timeline into two non-overlapping sets, one 
used for training and the other for testing. Cross-validation is typically used in Openvibe 
in a range from 4 to 10 partitions. In this case a 10-fold cross-validation method was used. 
The LDA classifier was trained on 90% of the feature vectors and tested on 10%, 10 times. 

2.5. GUI for Robotic Arm Control 
To control the robotic arm, six degrees of freedom are available in position (linear 

control) and orientation (angular control). The graphical user interface (GUI) designed for 
the control of the robot arm is shown in Figure 8. Both in the upper left corner of the 
application screen and on the coordinate axes in the center, the user can visualize the ac-
tive degree of freedom to control. 

 
Figure 8. GUI for the control of the robotic arm. 

The GUI shows the three visual stimuli used to elicit the SSVEP. Stimulus 1 allows 
changing the degree of freedom. It is oscillating at 20 Hz, and when the subject selects this 
stimulus, in case of having the position selected, it will alternate between the three main 
axes (X, Y, and Z) while, in case of having the orientation selected, it would alternate be-
tween the three main angles (alpha, beta, and gamma). Stimulus 2, whose frequency is 15 
Hz, increases the position and angle negatively, while stimulus 3, programmed at a fre-
quency of 12 Hz, increases them positively. 

The increases are related to the selected precision and the degree of freedom to con-
trol, this magnitude being millimeters in the case of linear movement or degrees in the 
case of angular movement. The subject can vary the millimeters or degrees of movement 
of the robot with the precision indicator located in the upper left corner of the GUI. 
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2.6. Robot Communication Module 
Figure 9 shows the block diagram for the robot arm control. Openvibe Acquisition 

Server acquires the EEG signal from Enobio. Openvibe Designer is used for the treatment 
of the received signal and the classification of the subject’s intention. Through the virtual 
reality peripherals network (VRPN), the application designed in Openvibe is connected 
with an external application in Visual Studio. The VRPN protocol has two servers, Analog 
VRPN Server and Button VRPN Server. The analog server is capable of receiving a con-
nection from an analog client and sending analog signals. The Button VRPN Server is 
simply a digital server that, receiving the connection from a digital client, can send logical 
signals similar to the mechanism of a button. In the study, digital servers (Button VRPN 
Server) have been used to carry out actions (Table 1). The protocol used is TCP/IP, which 
guarantees the order and reception of the data sent, and also allows communication to 
start and end in a controlled manner. 

 
Figure 9. Control signal flowchart. 

Table 1. VRPN communication tags. 

TAG Value Description 
OVTK_StimulationId_ExperimentStart 0X00008001 Simulation Start 
OVTK_StimulationId_ExperimentStop 0X00008002 Simulation Stop 

OVTK_StimulationId_Label_00 0X00008100 Stimulus for axis change 
OVTK_StimulationId_Label_01 0X00008101 Stimulus for negative increase 
OVTK_StimulationId_Label_02 0X00008102 Stimulus for positive increase 

In Visual Studio, a program has been developed that receives the output of the clas-
sifier in Openvibe Designer and elaborates the control action to act on the robot through 
a series of events. This program sends the robot the modification of the position or orien-
tation according to the precision and wishes of the subject. 

In addition, keyboard-configured security controls have been implemented that al-
low the experimenter to directly control the execution of the program. Figure 10 summa-
rizes the selected set of keys and their use. The application is launched with the Space key. 
Once started, the robot is disabled for safety. The programmer can enable or disable the 
robot’s movements using the appropriate keys. It should be noted that disabling the robot 
does not cut communication, so it is a useful tool for debugging the response obtained. 
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Figure 10. Combination of softkeys and their functionality. 

The J and K keys allow the opening and closing of a small pneumatic solenoid valve. 
Thanks to this external drive, the robot can be equipped with a claw to carry out pick and 
place or similar tasks. With the arrows, it is possible to navigate through the menu. The 
user can select whether to control the position or orientation of the robot, as well as the 
precision (millimeters or degrees of freedom). Nine final positions have been pro-
grammed for the robot so that they maintain the same height level and vary their position 
on the plane. In this way, objects can be reached with greater speed in the programmed 
tasks. Finally, the Enter key returns the robot to its initial position. 

Concurrent programming has been used to guarantee the correct operation of the 
program. The robot needs to be constantly communicating, so it must always have an 
active server. Furthermore, the application must guarantee that the stimuli maintain the 
same blinking frequency to avoid false positives and even erroneous control actions. Fi-
nally, the screen is continually refreshing itself, and there are a number of external events 
coming from the keyboard that must be attended to, and actions are taken accordingly. 
For this reason, the main application runs sequentially and has three execution threads 
(Figure 11): 
- Server thread, in charge of making, maintaining, and recovering the connection with 

the robot. 
- Monitor thread, in charge of refreshing the screen every time there is a modification 

in it. 
- Event thread, responsible for managing all events external to the application and 

coming from the keyboard. 

 
Figure 11. Program execution threads. 

2.7. Subjects 
A total of 5 healthy volunteers (3 males and two females; aged 19–30 years) with 

normal or corrected to normal vision participated in this study. The participants were stu-
dents from the Universitat Politècnica de València. None of them had previous experience 
with BCIs. A medical history of epilepsy or the intake of psychoactive drugs were exclu-
sion criteria for this experiment, and none of the participants was rejected for these causes. 

Informed consent was obtained from all individual participants included in the 
study. Subjects were informed about the experimental procedure. Subjects were sitting in 
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front of an LCD screen. They were instructed to focus their attention on the stimulus in-
dicated on the computer screen. They were also instructed to avoid muscle and eye move-
ments and to have a comfortable and relaxed position throughout the experiment. 

2.8. Experimental Procedure 
The experimental procedure has followed the recommendations established in [132]. 

The experimental subjects have to guide the robot arm to eight positions in a 360° range 
according to the sequence of numbers shown in Figure 12. The rotation of the extreme 
joint of the robot has been controlled, corresponding to the degree of freedom 6 of Figure 
1b. The movement is visualized in the Stäubli simulation environment (Figure 13) and 
carried out by the 6th articulation of the robot arm. The subjects must rotate this robot arm 
articulation to the angular positions indicated by a series of circular targets that appear 
sequentially. To do this, the 12 Hz visual stimulus allows for clockwise rotation and the 
15 Hz visual stimulus for counter-clockwise rotation. Once the required rotation is 
reached, the target is confirmed with the activation of the triangular stimulus that oscil-
lates with a frequency of 20 Hz. 

 
Figure 12. Position of the targets and order of appearance. 

 
Figure 13. Stäubli Robotic Suite environment showing the rotation of the extreme joint of the robot. 
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Given that targets are distributed every 45°, Table 2 reflects the optimal theoretical 
movement sequence of the task. The triangular stimulus is initially aimed at the first tar-
get, so no turn is necessary. In order to achieve the second objective, a counter-clockwise 
movement of 135° is required, which corresponds to 45 theoretical steps in the program. 
In order to carry out the test, a minimum of 285 turning movements are required without 
counting the shots. The experimental setup is shown in Figure 14. 

Table 2. Minimum number of movements required for the test. 

Target Anti-Clockwise Rotation 
(Degrees) 

Clockwise Rotation 
(Degrees) 

Theoretical 
Movements 

1 0 0 0 
2 135 0 45 
3 90 0 30 
4 90 0 30 
5 135 0 45 
6 180 0 60 
7 0 90 30 
8 0 135 45 

Total   285 

 
Figure 14. SSVEP BCI control of the Stäubli robotic arm. 

3. Results 
Table 3 shows the average time it takes each subject to complete the task. The average 

has been made considering the number of trials carried out by each subject. It is observed 
how subjects C, D, and E finished every experimental run in just over three minutes. These 
subjects are capable of selecting about three targets per minute with the complexity re-
quired by reaching and confirming every requested rotation (combined actions). Subjects 
A and B did not achieve good control of the BCI system and did not complete the full 
number of trials in the experiment. 

Table 3. Comparative results between subjects. 

Subject Trial Time (min)  
 1 2 3 4 5 Average 
Subject A 8.73 7.09 6.17 - - 7.33 
Subject B 5.93 3.86 - - - 4.89 
Subject C 3.949 3.205 4.300 - - 3.818 
Subject D 3.501 3.165 2.967 3.093 - 3.181 
Subject E 5.310 3.379 2.939 2.414 2.241 3.257 
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Figure 15 shows the evolution of learning for each subject, the time spent in each 
attempt, and the attempts made by each one. It is concluded that subjects A, B, D, and E 
had a continuous improvement in the task from their first attempt to the last attempt. In 
subject A the trial time decreased by 29.28%, in subject B by 34.84%, in subject D by 11.64%, 
and subject E reduced the time by 57.80%. Subject C decreased his time from the first to 
the second attempt, but in the last attempt, it increased by 8.89%, possibly due to the ac-
cumulated fatigue from task repetitions. 

 
Figure 15. Evolution of the time to complete the task in each attempt of the five subjects. 

Figure 16 shows the average time of the attempts made by each subject. The best 
average time was obtained by subject D with four attempts and a total time of 3.18 min. 

 

Figure 16. Average total time to complete task per subject. 

Table 4 compares the average success rate of the subjects after performing the exper-
imental tasks according to the minimum number of movements required shown in Table 
2. The success rate has been evaluated according to Equation (1). The average, as in the 
previous case, has been calculated based on the number of trials carried out. 
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Trial Success (%) = (theoretical movement/experimental movement) × 100 (1)

Table 4. Success rate comparison between subjects. 

Subject Trial Success (%)  
 1 2 3 4 5 Average 
Subject A 31.69% 34.33% 30.19% - - 32.07% 
Subject B 35.32% 43.18% - - - 39.25% 
Subject C 61.88% 78.30% 59.45% - - 66.54% 
Subject D 76.73% 91.68% 76.38% 68.98% - 78.44% 
Subject E 43.56% 62.42% 68.14% 87.50% 85.70% 69.46% 

Figure 17 shows the percentage of movements calculated with respect to the theoret-
ical minimum number of movements. Subjects A and B did not have a good performance. 
Their percentage for each attempt was below 50%. Subjects C, D, and E had performances 
above this value, with subject C achieving a peak performance in one of his attempts of 
78.3%, subject D of 91.68% and subject E of 87.5%. 

 
Figure 17. Percentage of success of each subject for each attempt. 

Figure 18 shows that the average success percentage was less than 40% in subjects A 
and B, in the range of 60 and 70% for subjects C and E, and above 70% for subject D. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A1 A2 A3 B1 B2 C1 C2 C3 D1 D2 D3 D4 E1 E2 E3 E4 E5

Su
cc

es
s R

at
e

Trial/Subject



Sensors 2022, 22, 5000 14 of 26 
 

 

 

Figure 18. Distribution and average percentage of success of each subject. 

In Figure 19, the number of movements performed is displayed as a function of the 
time spent in completing the task. 

 
Figure 19. Relationship between time and the number of total movements completed. 

The information transfer rate (ITR) was used to evaluate the performance of the BCI 
system [8,133]. The calculation was made according to Equation (2), where T is equal to 
the stimulus time (7 s) plus the gaze change time (4 s); N is the number of stimuli, which 
in this case was three, and P is the precision of the classification (Table 4). ITR =  60𝑇  log 𝑁 + Plog 𝑃 + (1 − 𝑃) log 1 − 𝑃𝑁 − 1  (2)
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Table 5 and Figure 20 show the ITR of each subject in each trial, as well as the mean 
value achieved. The best subject had a classification of 91.68% (Table 4) with an ITR of 5.94 
bit/min. 

Table 5. ITR for every subject and trial. 

Subject Trial ITR (bpm)  
 1 2 3 4 5 Average 

Subject A 0.005 0.002 0.018   0.008 
Subject B 0.007 0.165    0.086 
Subject C 1.336 3.345 1.120   1.933 
Subject D 3.107 5.937 3.055 2.081  3.545 
Subject E 0.178 1.386 1.982 4.999 4.635 2.636 

 
Figure 20. Distribution and average ITR of each subject. 

4. Discussion 
The influence of the spatial filtering stage of the EEG signal with respect to the pre-

cision of the classifier has been analyzed. For this, three Laplacian filters [134,135] with 
the weights indicated in Table 6 have been compared with two CSP filters of two and eight 
dimensions. The CSP algorithm results in spatial filters that maximize the variance of the 
EEG signals corresponding to one class and minimize it for the other class [122,136]. 

Table 6. Laplacian filter weights. 

Laplacian Filter ID O1 O2 OZ PO3 PO4 PZ 
LF1 1 1 1 −1 −1 −1 
LF2 1 1 −2 0 0 0 
LF3 1 1 1 0 0 0 

Table 7 shows the comparison of the spatial filters applied in an LDA classifier. The 
value obtained is the precision value of the classifier in each subject. From the comparison 
of the precision measure of the classifier, it can be observed that a significant improvement 
is obtained with the CSP filters compared to the Laplacian ones. The best response was 
obtained with a CSP filter of dimension 8, although the difference with respect to the CSP 
filter of two dimensions is not very significant. 
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Table 7. Spatial filter comparison. 

 Classifier Precision (%) 
Filter LF1 LF2 LF3 CSP(2) CSP(8) 

Subject A 52.02 49.84 49.92 65.36 65.47 
Subject B 41.17 37.38 37.35 60.17 61.28 
Subject C 46.57 39.53 34.92 64.4 65.74 
Subject D 44.9 40.79 40.79 61.31 62.12 
Subject E 43.28 45.29 45.29 67.46 68.32 
Average 45.588 42.566 41.654 63.74 64.632 

The study carried out is compared with other similar studies below. Out of the sev-
enteen reviewed references, this study is the only one that worked with the Enobio inter-
face with eight dry electrodes. Different studies in robotic application obtained acquisition 
signals from the occipital/parietal brain areas. There are many interfaces used for acquisi-
tion signal such as Enobio (Neuroelectrics) with 32 electrodes [40], Epoc Headset (Emotiv) 
[51,101,137], Ultracortex (OpenBCI) [45,47], Biosemi [103], Neuracle [46,48], BioRadio 
(Great Lakes NeuroTechnologies) [39], DSI (Wearable sensing) [42], Mindo 4S (National 
Chiao Tung University Brain Research Center) [43,138], EEG amplifier Nuamps Express 
(Neuroscan) [44] and NeuSen W8 (Neuracle) [41]. See Table 8 for a summary. 

Table 8. Robotic application, acquisition device and electrode characteristics. 

Study Application Amplifier Electrodes Electrodes Placement 

Present study Robotic arm Enobio 8 
Cz, O1, O2, PO3, Oz, PO4, Pz, reference and 
ground electrodes in the right ear lobe 

Al-maqtari et al. [50] Robotic hand Ag/AgCl electrodes 3 O1, O2, reference electrode in left ear lobe 
Çiǧ et al. [137] Robotic arm Emotiv Epoc Headset 14 O1, O2 
Pelayo et al. [47] Robotic arm Ultracortex 8 No information 
Meattini et al. [51] Robotic hand Emotiv Epoc Headset 14 O1, O2, P7, P8 
Bakardjian et al. [103] Robotic arm Biosemi 128 12 occipital channels 

Chen et al. [48] Robotic arm Neuracle 9 
PZ, PO5, PO3, POZ, PO4, PO6, O1, OZ, O2, 
ground between FZ-FPZ 

Cáceres et al. [101] Robotic arm Emotiv Epoc Headset 14 O1, O2 

Chen et al. [46] Robotic arm Neuracle 10 
P3,PZ,P4,PO3,PO4,T5,T6,O1,OZ,O2, 
ground between FPZ and FZ, reference 
electrode CZ 

Sandesh et al. [37] Robotic hand Ag/AgCl electrodes No information No information 

Karunasena et al. [39] 
Wrist and robotic 
gripper arm 

BioRadio 1 Oz (Cz - FPz = Ground-Reference) 

Sharma et al. [40] Robotic arm Enobio 32 Oz-Pz-Fp1 
Zhang et al. [42] Robotic arm DSI 24 P3,P4,Cz,T5,T6,O1,O2 
Chen et al. [41] Robotic arm NeuSen W8 8 T5, P3,PZ, P4, T6,O1, Oz, O2 
Lin et al. [43] Robotic arm Mindo 4S 4 O1, O2 
Kaseler et al. [44] Robotic arm EEG amplifier 9 P3,Pz, P4, PO3, POz, PO4, O1, Oz, O2 
Tabbal et al. [45] Robotic arm OpenBCI 8 O1, O2, Oz 
Chiu et al. [138] Robotic arm Mindo 4S 4 O1, O2 

The references reviewed used a combination of frequencies in the low and medium-
range [46–48,50,103,137] or in the low range [51,101], while the present study used fre-
quencies in the medium range. This study used a black/white stimulus color as in [51], but 
with different frequencies, while other studies used stimulus color such as red, blue, and 
purple, or they used other types of stimuli such as images or names. See Table 9 for a 
summary. 

  



Sensors 2022, 22, 5000 17 of 26 
 

 

Table 9. Stimuli characteristics. 

Study Frequencies (Hz) Screen Stimuli Color Subjects Session/Block (Trials) 
Present study 12, 15, 20 LCD monitor White/Black 5 32 
Al-maqtari et al. [50] 8, 13 LED Red 2 30 
Çiǧ et al. [137] 6.66, 7.5, 8.57, 10, 12 No information No information 11 No information 
Pelayo et al. [47] 7, 11, 15 LED No information 3 30 

Meattini et al. [51] 6, 7.5, 10 LCD monitor White/Black 
No informa-
tion 

No information 

Bakardjian et al. [103]  
Exp1: 5-12 Exp2: 5-
5,4-6-6,7-7,5-8,5-10-
12 

LCD monitor Videos 8 No information 

Chen et al. [48] 
From 8 to 15,2 in 0.3 
Hz steps 

LCD monitor Blue 4 4 session—25 trials 

Cáceres et al. [101] 6-4, 3-5 LCD monitor Red-Blue-Purple 6 No information 

Chen et al. [46] 
8–15 Hz in 0.5 Hz 
steps 

LCD monitor No information 12 No information 

Sandesh et al. [37] 21 Hz LED No information 5 2 session—5 trials 

Karunasena et al. [39] 6.5, 7.5, 8.2, 9.3 LED White 3 
30 s at each stimulus fre-
quency 

Sharma et al. [40] 15 Laptop Square 1 
30 s at each fixation tar-
gets 

Zhang et al. [42] 

9, 9.25, 9.5, 9.75, 
10.25, 10.5, 
10.75, 11, 11.25, 11.5, 
11.75, 12 

LCD Monitor Images 20 400 trials 

Chen et al. [41] 
9, 9.5, 10, 10.5, 11, 
11.5, 12, 12.5, 13, 
13.5, 14, 14.5 

Laptop White Name 8 5 blocks of 12 trials 

Lin et al. [43] 14.4, 16, 18, 20.6, 24 Monitor 
Circles—Black and 
white 

15 3 blocks of 5 trials 

Kaseler et al. [44] 
8, 57, 10, 12, 15 Hz o 
7, 96 to 14, 86 steps 
0.46 Hz 

LCD Monitor Square 2 20 trials in each test 

Tabbal et al. [45] 7.5, 10, 12 No information Red/blue 5 4 blocks of 8 trials 

Chiu et al. [138] 14.4, 16, 18, 20.6, 24 Monitor 
Circles—Black and 
white 

15 3 blocks of 5 trials 

This study presents a preprocessing and feature extraction process similar to [51]. 
Both studies used Butterworth fourth-order filters, Common Spatial Pattern (CSP) filters 
and Band Power (BP) extraction. See Table 10 for a summary. 

Table 10. Signal processing characteristics. 

Study Feature Extraction/ 
Classification Accuracy 

Present study 
Band power (BP) 
Linear discriminant analysis (LDA) 

The average precision was 60.9%, in a range be-
tween 30.19% and 91.68%. The average of three of 
the five subjects was 85.83% 

Al-maqtari et al. [50] FFT, Power Density Spectrum (PDS) No information 

Çiǧ et al. [137] 

Hilbert transform (HT) and Multi wavelet trans-
form (MWT) 
Neural Network and cubic-Support vector ma-
chine (SVM) 

90% 

Pelayo et al. [47] FFT, SNR 85.56% 
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Meattini et al. [51] 
Band power (BP) 
Support vector machine (SVM) 

The accuracy of reading four states was just under 
90%, which is acceptable for the application of ges-
turing. 

Bakardjian et al. [103] 
Independent Component Analysis (ICA) and 
phase-locking value (PLV) 
Linear discriminant analysis (LDA) 

No information 

Chen et al. [48] Canonical correlation analysis (CCA) 95.50 ± 3.00% 
Cáceres et al. [101] FFT, Power spectral density (PSD) 91.65 ± 9.13% 
Chen et al. [46] Canonical correlation analysis (CCA) 92.78% 

Sandesh et al. [37] 
Wavelet 
LDA 

Accuracy 84% and completion time 44.6 seg 

Karunasena et al. [39] 
FFT 
Euclidean distance 

Accuracy between 29.6% and 61.8% 

Sharma et al. [40] FFT Accuracy 79% 

Zhang et al. [42] 
CCA (Canonical Correlation Analysis) 
Adaptative FBCCA/Bayesian estimation 

Accuracy 95.5% 

Chen et al. [41] CCA (Canonical Correlation Analysis) Accuracy between 76.67% and 98.33% 

Lin et al. [43] 
FFT, SNR 
CCA 

Acurracy 90% 

Kaseler et al. [41,44] No information Accuracy between 60% and 100% 

Tabbal et al. [45] 
Welch power spectral density/FFT/Singular Value 
Decomposition (SVD) 
SVM 

The accuracy of the three methods is between 50% 
and 98.75% 

Chiu et al. [138] 
FFT, SNR 
CCA 

Accuracy 91.35% 

This study used the Linear discriminant analysis (LDA) as classification, while other 
studies used other types of classification such as Support vector machine (SVM) [39,42] or 
Canonical correlation analysis (CCA) [43,45]. Although other classifiers had an accuracy 
of 85.56% to 95.5%, the LDA classifier had good results for three of the five subjects in this 
study. Taking into account the task objectives, the classification accuracy can be consid-
ered acceptable above 80%. The three subjects that were able to control the BCI had 86% 
peak average accuracy in a range between 78.30% and 91.68%. 

In subsequent studies, the authors intend to improve the classifier training method 
by coding a wrapper solution as proposed in [139]. This method consists in explicitly de-
fining for each fold which time segments of the signal should belong to the train set and 
which to the test set, and using this same segmentation for training all of the supervised 
learning components in all the signal processing scenarios. It is also intended in future 
studies to compare different classifiers. 

Trials have been carried out in subjects without prior experience in BCI applications, 
so with perseverance and carrying out more trials better results could be achieved. This 
learning process can be observed in Figure 15 for every participant in the study. 

The performance of the participants in the study can be affected by some variables of 
the study, such as stimulus type and color, the use of LEDs instead of a computer screen 
for presenting the intermittent stimulus, or selecting another combination of electrodes in 
the occipital cortex. The authors evaluated the effect of some of these parameters in a pre-
vious study [114]. In that work, it was concluded that both white and red colors could be 
used for medium frequency intermittent stimulus, and both green and red for low fre-
quency, while at high frequency, there are no differences between colors. That is the rea-
son why white stimuli are used in this study. 

The perception of the subjects regarding the experiment was that completing the task 
was feasible, although it required concentration. Participants agreed that the application 
carries out their wishes except on rare occasions, providing a sense of control. Regarding 
the placement of the dry electrodes and the perceived pain, all agree that the placement 
has been simple, and the pain is bearable. 
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The main limitations of the present work are related to the use of dry electrodes and 
the number of participants. The use of wet electrodes can improve the quality of the EEG 
signals obtained and, consequently, the success rate of the experimental trials. However, 
the aim of this study was to build a BCI system that is easy to apply, with few electrodes, 
and comfortable to use, avoiding the nuisance of applying the electro-conductive gel. The 
future success of BCI systems applied to, for instance, assistance robotics or videogames 
depends on this readiness of use, where the user can wear the electrodes without external 
assistance. 

Regarding the subjects, results showed that although a majority learn and improve 
in the course of the trials. There is a percentage, in this case, 40% of the subjects where the 
precision rate is less than 50%. This percentage is close to the reported BCI illiteracy rate 
[140] in which the subjects are unable to use the BCI. In future studies, the authors intend 
to increase the number of experimental subjects to corroborate the obtained results. 

Finally, a matter of importance is to continue investigating with this paradigm, for 
example incorporating new functionalities, other analyses with EEG signals algorithms, 
different stimuli, an embedded application, or the replacement of the screen with LEDs. 

5. Conclusions 
The SSVEP paradigm was used to guide an industrial robot arm through the analysis 

and processing of the EEG data obtained through an Enobio amplifier with dry electrodes. 
A cross-platform application was obtained in C++. This platform, together with the open-
source software Openvibe, can control a Stäubli robot arm model TX60. Additional secu-
rity controls through the keyboard were implemented. 

Five healthy subjects tried the BCI. Two of them were unable to successfully control 
the BCI device. This proportion agrees with previous results related to BCI illiteracy rates 
[140,141]. Regarding the subjects that were able to control the BCI, an average of around 
71.5% success (peak performance average of 86%) in the application was obtained in sub-
jects C, D, and E, with an average task completion time of around 3 min. This means that 
these subjects are capable of performing different actions every 23 s and with a reliability 
of more than 70% with eight dry EEG electrodes. 

It has been confirmed that the black and white colors used in the SSVEP paradigm 
stimulus have shown good results and that these colors are acceptable to use in an exper-
iment such as the one carried out. 

The main conclusion of the study is that it is possible to control in real-time the ro-
botic arm with a cross-platform application developed in C++, using openly available tools 
to develop an SSVEP-based BCI. The BCI operates with a reduced number of dry elec-
trodes to facilitate the use of the system. 
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Abbreviations 
The following abbreviations are used in this paper: 

BCI Brain-computer interface 
CSP Common spatial patterns filter 
EEG Electroencephalography 
EMG Electromyography 
GUI Graphical user interface 
ITR Information transfer rate 
LCD Liquid crystal display 
LDA Linear discriminant analysis 
mVEP Motion-onset visual evoked potential 
MI Motor imagery 
P300 Event-related potential component 
SPSS Statistical Package for the Social Sciences 
SSVEP Steady-State Visual Evoked Potentials 
TCP/IP Transmission Control Protocol/Internet Protocol 
UDP User datagram protocol 
VEP Visual evoked potential 
VRPN Virtual reality peripherals network 
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