
Departamento de Informática de Sistemas y
Computadores

Distributed management and coordination of UAV
swarms based on infrastructureless wireless

networks

By

Jamie Wubben

Advisors:
Prof. Dr. Carlos Tavares Calafate

Prof. Dr. Juan Carlos Cano

Valencia, España

July 2023

To you, the reader;

That you might enjoy reading this thesis as
much as I did working on it.

iii

We are all just the average of the five
people around us; and I, was fortunate
enough to surround myself with the five
most brilliant, and compassionate minds.

Jamie Wubben

v

Acknowledgements

For the reader that does not know me, this acknowledgement might seem rather
short. They, that do know me, probably realize that I have never been a man
that expresses a lot of emotion. Nevertheless, I really do want to thank both of
my advisors, Carlos Tavares Calafate and Juan-Carlos Cano, for their support
and excellent guidance. Without them, I would never be able to finish this work
that I proudly present. In the same way, I would like to express my gratitude for
the entire team from the Computer Networks Research Group (GRC). They, too,
have contributed with their knowledge, but most of all by creating a wholesome
workplace where I am working many hours, but never with reluctance. Over the
years, working in this amazing team, I have come to realize that this wholesome
workplace is probably the biggest key to my success, and I am honored that I
can call myself a member of GRC. Finally, to my parents who, although with
some difficulties, allowed me to continue my studies abroad and provide continuous
support.

Jamie Wubben
Valencia, July 7, 2023

vii

Abstract

Unmanned Aerial Vehicles (UAVs) have already proven to be useful in many
different applications. Nowadays, they are used for photography, cinematography,
inspections, and surveillance. However, in most cases they are still controlled
by a pilot, who at most is flying one UAV at a time. In this thesis, we try to
take this technology one step further by allowing multiple Vertical Take-off and
Landing (VTOL) UAVs to work together as one entity. The main advantage of
this group, commonly referred to as a swarm, is that it can perform more complex
tasks than a single UAV. When organized correctly, a swarm allows for: more area
to be covered in the same time, more resilience, higher load capability, etc. A
swarm can lead to new applications, or a better efficiency for existing applications.
A key part, however, is that they should be organized correctly. During the flight,
different disturbances will make it complicated to keep the swarm as one coherent
unit. Once this coherency is lost, all the previously mentioned benefits of a swarm
are lost as well. Even worse, the chance of a hazard increases. Therefore, this
thesis focuses on solving some of these issues by providing a baseline of building
blocks that enable other developers to create UAV swarm applications.

In order to develop these building blocks, we improve a multi-UAV simulator
called ArduSim. This simulator allows us to simulate both the physics of a UAV,
and the communication between UAVs with a high degree of accuracy. This is a
crucial part because it allows us to deploy (well tested) protocols and algorithms
on real UAVs with ease. During the entirety of this thesis, ArduSim has been used
extensively. It made testing safe, and allowed us to save a lot of time, money and
research effort.

We started by assigning airborne positions for each UAV on the ground. As-
suming that the UAVs, are placed randomly on the ground, and that they need to

ix

reach a desired aerial formation, we searched for a solution that minimizes the total
distance travelled by all the UAVs. We started with a brute-force method, but
quickly realized that, given its high complexity, this method performs badly when
the number of UAVs grows. Hence, we created a heuristic. As for all heuristics, a
trade-off was made between complexity and accuracy. By simplifying the problem,
we found that our heuristic was able to calculate a solution very quickly without
increasing the total distance travelled substantially. Furthermore, we implemented
the Kuhn-Munkres algorithm (KMA), an algorithm that has been proven to provide
the exact answer (i.e. minimal total distance travelled) in the shortest time possible.
After many experiments, we came to the conclusion that our heuristic is faster, but
that the solution provided by the KMA is slightly better. In particular, although
the difference in total distance travelled is small, the KMA reduces the numbers of
flight paths crossing each other, which is an important metric in our next building
block.

Once we developed algorithms to assign airborne positions to each UAV on
the ground, we started developing algorithms to take off all those UAVs. The
objective of these algorithms is to reduce the time it takes for all the UAVs to
reach their aerial position, while ensuring that all UAVs maintain a safe distance.
The easiest solution is a sequential take-off procedure, but this is also the slowest
approach. Hence, we improved it by first proposing a semi-sequential and later
a semi-simultaneous take-off procedure. With this semi-simultaneous take-off
procedure, we are able to reduce the takeoff time drastically without introducing
any risk to the aircraft.

After taking off, it is important that all the UAVs can move from one point to
another while maintaining a stable formation. If one drone would only fly a little
bit faster than the others, over time the formation could warp. Hence, we created
a protocol called Mission-Based UAV Swarm Coordination Protocol (MUSCOP).
It is based on a master-slave pattern, where the master is sending messages to the
slaves so that they know where to go, and the slaves are sending their status to
the master. MUSCOP enforces all the UAVs to wait and resynchronize at each
waypoint. To make the protocol more resilient, we included mechanisms so that
the master is replaced in case it fails (e.g. depleted battery, collision, etc.). A
similar mechanism was created for the slaves, so that, in case a slave fails, the rest
of the swarm can still continue their mission. As a result, our protocol allows a
swarm to complete its mission while ensuring that aircraft stay synchronized even
in harsh environments.

Besides these basic buildings blocks that are needed in every UAV swarm flight,
we also worked on some more advanced features. We developed an algorithm so
that UAVs can change their formation (e.g. circle, line, matrix, etc.) during the
flight. The algorithm decides first which UAV has to go to which place, and then,

x

based on the direction the UAV will go, the altitude of the UAV is changed. By
using this algorithm, the UAVs that are flying in different directions will fly at a
different altitude. Hence, collisions can be avoided. Furthermore, we created an
algorithm that automatically changes the altitude of a UAV so that the altitude
with respect to ground level remains constant. This is an important detail in
mountainous regions, where ground levels can change rapidly, which may lead to
crashes. Our algorithm uses Digital elevation models (DEMs) and a PID controller
to efficiently control the flight altitude.

Finally, at the end of the flight, the UAVs have to accurately land at a specific
location. The accuracy obtained by Global navigation satellite system (GNSS) is
often not sufficient, since it can have an error up to 5 meters. Hence, we created an
algorithm that, with the use of a simple camera, detects an ArUco marker which
is placed on the exact landing place that is targeted. While descending, the UAV
is steered towards the ArUco marker. Using this algorithm, we could decrease the
error margin to an average of 11 cm.

Overall, this PhD thesis offers a complete framework for developing UAV
applications, and represents a meaningful contribution to the research community.
We hope that this contribution will be used (by other authors) in the years to
come.

xi

Resumen

Los Veh́ıculos Aéreos no Tripulados (o drones) ya han demostrado su utilidad
en una gran variedad de aplicaciones. Hoy en d́ıa, se utilizan para fotograf́ıa,
cinematograf́ıa, inspecciones y vigilancia, entre otros. Sin embargo, en la mayoŕıa
de los casos todav́ıa son controlados por un piloto, que como máximo suele estar
volando un solo dron cada vez. En esta tesis, tratamos de avanzar en paso más allá
en esta tecnoloǵıa al permitir que múltiples drones con capacidad para despegue
y aterrizaje vertical trabajen de forma sincronizada, como una sola entidad. La
principal ventaja de realizar vuelos en grupo, comúnmente denominado enjambre,
es que se pueden realizar tareas más complejas que utilizando un solo dron. De
hecho, un enjambre permite cubrir más área en el mismo tiempo, ser más resistente,
tener una capacidad de carga más alta, etc. Esto puede habilitar el uso de
nuevas aplicaciones, o una mejor eficiencia para las aplicaciones existentes. Sin
embargo, una parte clave es que los miembros del enjambre deben organizarse
correctamente, ya que, durante el vuelo, diferentes perturbaciones pueden provocar
que sea complicado mantener el enjambre como una unidad coherente. Una vez
que se pierde esta coherencia, todos los beneficios previamente mencionados de un
enjambre se pierden también. Incluso, aumenta el riesgo de colisiones entre los
elementos del enjambre. Por lo tanto, esta tesis se centra en resolver algunos de
estos problemas, proporcionando un conjunto de algoritmos que permitan a otros
desarrolladores crear aplicaciones de enjambres de drones.

Para desarrollar los algoritmos propuestos hemos incorporado mejoras al llamado
ArduSim. Este simulador nos permite simular tanto la f́ısica de un dron como la
comunicación entre drones con un alto grado de precisión. ArduSim nos permite
implementar protocolos y algoritmos (bien probados) en drones reales con facilidad.
Durante toda la tesis, ArduSim ha sido utilizado ampliamente. Su utilización ha

xiii

permitido que las pruebas fueran seguras, y al mismo tiempo nos permitió ahorrar
mucho tiempo, dinero y esfuerzo de investigación.

Comenzamos nuestra investigación sobre enjambres asignando posiciones aéreas
para cada dron en el suelo. Suponiendo que los drones están ubicados aleatoriamente
en el suelo, y que necesitan alcanzar una formación aérea deseada, buscamos una
solución que minimice la distancia total recorrida por todos los drones. Para
ello se empezó con un método de fuerza bruta, pero rápidamente nos dimos
cuenta de que, dada su alta complejidad, este método funciona mal cuando el
número de drones aumenta. Por lo tanto, propusimos una heuŕıstica. Como en
todas las heuŕısticas, se realizó un compromiso entre complejidad y precisión. Al
simplificar el problema, encontramos que nuestra heuŕıstica era capaz de calcular
una solución muy rápidamente sin aumentar sustancialmente la distancia total
recorrida. Además, implementamos el algoritmo de Kuhn-Munkres (KMA), un
algoritmo que ha demostrado proporcionar la respuesta exacta (es decir, reducir
la distancia total recorrida) en el menor tiempo posible. Después de muchos
experimentos, llegamos a la conclusión de que nuestra heuŕıstica es más rápida,
pero que la solución proporcionada por el KMA es ligeramente más eficiente. En
particular, aunque la diferencia en la distancia total recorrida es pequeña, el uso
de KMA reduce el número de trayectorias de vuelo que se cruzan entre śı, lo cual
es una métrica importante para las siguientes propuestas.

Una vez que desarrollamos los algoritmos para asignar posiciones aéreas a
cada dron en el suelo, comenzamos a desarrollar algoritmos para despegar todos
esos drones. El objetivo de estos algoritmos es reducir el tiempo necesario para
que todos los drones alcancen su posición aérea, al mismo tiempo que garantizan
que se mantenga una distancia segura entre ellos. La solución más sencilla es un
procedimiento de despegue secuencial, pero este enfoque también es el más lento.
Por lo tanto, lo mejoramos proponiendo primero un procedimiento de despegue
semi-secuencial, y a continuación uno semi-simultáneo. Con este procedimiento
semi-simultáneo de despegue, el algoritmo es capaz de reducir drásticamente el
tiempo de despegue sin introducir ningún riesgo para las aeronaves.

Después de despegar, es importante que todos los drones puedan moverse de un
punto a otro mientras mantienen una formación estable. Si un dron se desplaza un
poco más rápido que los demás, con el tiempo, la formación podŕıa romperse. Por lo
tanto, diseñamos y desarrollamos un protocolo llamado Mission-Based UAV Swarm
Coordination Protocol (MUSCOP). Está basado en un esquema maestro-esclavo,
donde el maestro env́ıa mensajes a los esclavos para que sepan a dónde ir, y los
esclavos env́ıan su estado al maestro (el cual actua como coordinador). MUSCOP
obliga a todos los drones a esperar y resincronizarse en cada punto de referencia.
Para hacer el protocolo más resistente, incluimos mecanismos para reemplazar al
maestro en caso de fallo (por ejemplo, bateŕıa agotada, colisión, etc.). Se desarrolló

xiv

un mecanismo similar para los esclavos, para que, en caso de que falle un esclavo,
el resto del enjambre aún pueda continuar su misión. Como resultado, nuestro
protocolo permite que un enjambre complete su misión, asegurándose de que los
aviones se mantengan sincronizados, incluso en entornos complejos.

Además de estos algoritmos, que son necesarios en cada vuelo de enjambre
de drones, también centramos en caracteŕısticas más avanzadas. Concretamente,
desarrollamos un algoritmo para que los drones puedan cambiar su formación (por
ejemplo, ćırculo, ĺınea, matriz, etc.) durante el vuelo. El algoritmo decide primero
qué dron tiene que ir a qué lugar, y luego, en función de la dirección a la que se
dirigirá el dron, se cambia la altitud de la aeronave. Al usar este algoritmo, los
drones que vuelan en diferentes direcciones volarán a diferentes altitudes. Por lo
tanto, se minimiza el riesgo de colisiones.

Otra de las aportaciones realizadas consiste en un algoritmo que cambia au-
tomáticamente la altitud de un dron para que la elevación con respecto al nivel del
suelo permanezca constante. Este es un detalle importante en regiones montañosas,
donde la orograf́ıa del terreno puede ser muy variable, lo que puede provocar acci-
dentes. Nuestro algoritmo utiliza modelos digitales de elevaciones y un controlador
PID para controlar eficientemente la altitud de vuelo.

Finalmente, al final del vuelo, los drones tienen que aterrizar con precisión en
un lugar espećıfico. La precisión obtenida con el sistema Global de Navegación por
Satélite (GNSS) a menudo no es suficiente, ya que puede tener un error de hasta 5
metros. Por lo tanto, creamos un algoritmo que, con el uso de una simple cámara,
detecta un marcador ArUco que se coloca en el lugar exacto de aterrizaje que se
está apuntando. Mientras desciende, el dron se dirige hacia el marcador ArUco.
Usando este algoritmo, pudimos reducir el margen de error a un promedio de solo
11 cm.

En general, esta tesis de doctorado ofrece un marco completo para el desarrollo
de aplicaciones de drones, y representa una contribución significativa a la comunidad
de investigación que esperamos pueda ser aprovechada en investigaciones futuras.

xv

Resum

Els vehicles aeris no tripulats (o drons) ja han demostrat la seua utilitat en una
gran varietat d’aplicacions. Avui dia, s’utilitzen per a fotografia, cinematografia,
inspeccions i vigilància, entre altres. No obstant això, en la majoria dels casos
encara són controlats per un pilot, que com a màxim sol controlar el vol d’un sol
dron cada vegada. En aquesta tesi, tractem d’avançar un pas més enllà en aquesta
tecnologia, en permetre que múltiples drons amb capacitat per a l’enlairament
i l’aterratge vertical treballen de forma sincronitzada, com una sola entitat. El
principal avantatge de realitzar vols en grup, comunament denominats eixam, és
que es poden fer tasques més complexes que utilitzant un sol dron. De fet, un
eixam permet cobrir més àrea en el mateix temps, ser més resistent, tenir una
capacitat de càrrega més alta, etc. Això pot habilitar l’ús de noves aplicacions,
o una millor eficiència per a les aplicacions existents. No obstant això, una punt
clau és que els membres de l’eixam han d’organitzar-se correctament, ja que,
durant el vol, diferents pertorbacions poden provocar que siga complicat mantenir
l’eixam com una unitat coherent. Una vegada que es perd aquesta coherència,
tots els beneficis prèviament esmentats d’un eixam es perden també. Fins i tot,
augmenta el risc de col·lisions entre els elements de l’eixam. Per tant, aquesta
tesi se centra a resoldre alguns d’aquests problemes, proporcionant un conjunt
d’algorismes que permeten a altres desenvolupadors crear aplicacions d’eixams
de drons. Per a desenvolupar els algorismes proposats hem incorporat millores a
l’anomenat ArduSim. Aquest simulador ens permet simular tant la f́ısica d’un dron
com la comunicació entre drons amb un alt grau de precisió. ArduSim ens permet
implementar protocols i algorismes (ben provats) en drons reals amb facilitat.
Durant tota la tesi, ArduSim s’ha utilitzat àmpliament. El seu ús ha permès que
les proves foren segures, i al mateix temps ens va permetre estalviar molt de temps,

xvii

diners i esforç d’investigació. Per tant, es va utilitzar ArduSim per a cada bloc
de construcció que vam desenvolupar. Comencem la nostra recerca sobre eixams
assignant posicions aèries per a cada dron en terra. Suposant que els drons estan
situats aleatòriament en terra i que necessiten assolir la formació aèria desitjada,
cerquem una solució que minimitze la distància total recorreguda per tots els drons.
Per a això, es va començar amb un mètode de força bruta, però ràpidament ens
vam adonar que, atesa l’alta complexitat, aquest mètode funciona malament quan
el nombre de drons augmenta. Per tant, vam proposar una heuŕıstica. Com en
totes les heuŕıstiques, es va fer un compromı́s entre complexitat i precisió. En
simplificar el problema, trobem que la nostra heuŕıstica era capaç de calcular
una solució molt ràpidament sense augmentar substancialment la distància total
recorreguda. A més, vam implementar l’algorisme de Kuhn-Munkres (KMA),
un algorisme que ha demostrat proporcionar la resposta exacta (és a dir, reduir
la distància total recorreguda) en el menor temps possible. Després de molts
experiments, arribem a la conclusió que la nostra heuŕıstica és més ràpida, però
que la solució proporcionada pel KMA és lleugerament més eficient. En particular,
encara que la diferència en la distància total recorreguda és xicoteta, l’ús de KMA
redueix el nombre de trajectòries de vol que s’encreuen entre si, la qual cosa és una
mètrica important per a les propostes següents. Una vegada que desenvolupem
els algorismes per a assignar posicions aèries a cada dron en terra, comencem a
desenvolupar algorismes per a enlairar tots aquests drons. L’objectiu d’aquests
algorismes és reduir el temps necessari perquè tots els drons assolisquen la seua
posició aèria, alhora que garanteixen que es mantinga una distància segura entre
aquests. La solució més senzilla és un procediment d’enlairament seqüencial, però
aquest enfocament també és el més lent. Per tant, el millorem proposant primer un
procediment d’enlairament semiseqüencial, i a continuació un semisimultani. Amb
aquest procediment semisimultani d’enlairament, l’algorisme és capaç de reduir
dràsticament el temps d’enlairament sense introduir cap risc per a les aeronaus.

Després d’enlairar-se, és important que tots els drons puguen moure’s d’un
punt a un altre mentre mantenen una formació estable. Si un dron es desplaça una
mica més ràpid que els altres, amb el temps, la formació podria trencar-se. Per
tant, dissenyem i desenvolupem un protocol anomenat MUSCOP. Està basat en un
esquema mestre-esclau, on el mestre envia missatges als esclaus perquè sàpien a on
anar, i els esclaus envien el seu estat al mestre (el qual actua com a coordinador).
MUSCOP obliga a tots els drons a esperar i resincronitzar-se en cada punt de
referència. Per a fer el protocol més resistent, incloem mecanismes per a reemplaçar
el mestre en cas de fallada (per exemple: bateria esgotada, col·lisió, etc.). Es va
desenvolupar un mecanisme similar per als esclaus, perquè, en cas que falle un
esclau, la resta de l’eixam encara puga continuar la seua missió. Com a resultat,
el nostre protocol permet que un eixam complete la seua missió, i s’assegura que

xviii

els avions es mantinguen sincronitzats, fins i tot en entorns complexos. A més
d’aquests algorismes bàsics, que són necessaris en cada vol d’eixam de drons, també
ens centrem en caracteŕıstiques més avançades. Concretament, desenvolupem
un algorisme perquè els drons puguen canviar la seua formació (per exemple,
cercle, ĺınia, matriu, etc.) durant el vol. L’algorisme decideix primer quin dron
ha d’anar a quin lloc, i després, segons la direcció a què es dirigirà el dron, es
canvia l’altitud de l’aeronau. En usar aquest algorisme, els drons que volen en
diferents direccions volaran a diferents altituds. Per tant, es minimitza el risc de
col·lisions. Una altra de les aportacions realitzades consisteix en un algorisme que
canvia automàticament l’altitud d’un dron perquè l’elevació respecte al nivell del
sòl romanga constant. Aquest és un detall important en regions muntanyenques,
on l’orografia del terreny pot ser molt variable, la qual cosa pot provocar accidents.
El nostre algorisme utilitza models digitals d’elevacions i un controlador PID per a
controlar eficientment l’altitud de vol. Finalment, al final del vol, els drons han
d’aterrar amb precisió en un lloc espećıfic. La precisió obtinguda amb el sistema
global de navegació per satèl·lit (GNSS) sovint no és suficient, ja que pot tenir un
error de fins a 5 m. Per tant, creem un algorisme que, amb l’ús d’una simple càmera,
detecta un marcador ArUco que es col·loca al lloc exacte d’aterratge on s’apunta.
Mentre descendeix, el dron es dirigeix cap al marcador ArUco. Usant aquest
algorisme, vam poder reduir el marge d’error a una mitjana d’11 cm només. En
general, aquesta tesi de doctorat ofereix un marc complet per al desenvolupament
d’aplicacions de drons, i representa una contribució significativa a la comunitat
d’investigació que esperem que podrà ser aprofitada en recerques futures.

xix

Contents

Acknowledgements vii

Abstract ix

List of Figures xxiii

List of Tables xxvii

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Structure of the thesis . 3

2 From single UAVs to an autonomous swarm: an overview 7
2.1 The fundamentals of Unmanned Aerial Vehicles (UAVs) 7
2.2 Why we need UAV swarms . 14
2.3 Current solutions for swarm coordination 15

3 ArduSim: a multi-UAV simulator 19
3.1 Original version of ArduSim . 20
3.2 Design and implementation . 22
3.3 UAV swarm formation . 25
3.4 UAV-to-UAV communications . 27
3.5 Summary . 33

xxi

Contents

4 Assigning airborne positions efficiently 35
4.1 Overview . 36
4.2 Experiments & results . 39
4.3 Summary . 47

5 Taking off 49
5.1 Analysis of possible take-off strategies 49
5.2 Experiments & results . 63
5.3 Summary . 71

6 Maintaining the swarm coherent 75
6.1 The original version of MUSCOP 76
6.2 Proposed resilience mechanism . 77
6.3 Experiments & results . 80
6.4 Summary . 90

7 Advanced mid-flight maneuvers 91
7.1 Swarm reconfiguration . 91
7.2 Adjusting the altitude for changing terrain levels 99
7.3 Experiments & results . 105
7.4 Summary . 114

8 Accurate vision-based landing 115
8.1 Implementation . 116
8.2 Experiments & results . 120
8.3 Summary . 126

9 Conclusions, Future Work and Publications 129
9.1 Conclusions . 130
9.2 Future work . 131
9.3 Publications . 132

Acronyms 135

Bibliography 139

xxii

List of Figures

2.1 Essential components of a UAV . 11

3.1 The proposed architecture of ArduSim. 24
3.2 Linear formation. 26
3.3 Circle formation. 26
3.4 Matrix formation. 27
3.5 Random formation. 27
3.6 Connection between ArduSim and OMNeT++. 29
3.7 Example of buildings generated in OMNeT++ based on OpenStreetMap

data (Foios, a small town in Spain). 30
3.8 Message delay caused by the inter-process overhead in different scenarios. 31
3.9 End-to-end delay when varying the number of UAVs in the experiment,

and the message rate per UAV. All UAVs act as both senders and
receivers. 32

3.10 End-to-end delay when varying the number of UAVs in the experiment,
and the message rate per UAV. Only one UAV acts as transmitter, and
the rest merely act as receivers. 33

4.1 All possible solutions that exist with only four UAVs. 36
4.2 Average calculation time when considering all UAV formations and

assignment algorithms. 40
4.3 Calculation time using the KMA algorithm for various UAV formations. 41
4.4 Calculation time using the heuristic algorithm for various UAV formations. 41
4.5 The total distance travelled by all UAVs using the heuristic and KMA

for the Circle formation. 42

xxiii

List of Figures

4.6 The total distance travelled by all UAVs using the heuristic and KMA
for the linear formation. 42

4.7 The total distance travelled by all UAVs using the heuristic and KMA
for the matrix formation. 43

4.8 A comparison of the heuristic vs. the KMA algorithm in terms of
potential collisions when varying number of UAVs (Circle and Matrix
formations). 44

4.9 A comparison of the heuristic vs. the KMA algorithm in terms of
potential collisions when varying number of UAVs (Linear formation). 44

4.10 An example of the first irregular formation, where the minimal distance
between UAVs is closer in the air than on the ground, and the centers
of the formations are not aligned. 45

4.11 Example of an irregular ground pattern. 46

5.1 Example of a set of intermediate positions in the take-off flight path. . 52

5.2 Comparison between intermediate positions in the flight trajectories of
two drones. 53

5.3 Overview of the CSTH+RSR approach. 55

5.4 Line segment corresponding to the minimal distance between two lines
in a 3D space. 60

5.5 Flowchart representing the batch generation mechanism. 62

5.6 Example of take-off batch grouping (A, B) using our algorithm. 63

5.7 Illustration of the flight path to be taken for a UAV during take-off. . 64

5.8 Calculation time according to their granularity. 65

5.9 Number of potential collisions that would remain undetected when
increasing the granularity value. 66

5.10 Undetected collisions according to interval size used. 66

5.11 Calculation time for the linear formation when varying the number of
UAVs in the swarm. 67

5.12 Calculation time for the circular formation when varying the number
of UAVs in the swarm. 68

5.13 Calculation time for the matrix formation when varying the number of
UAVs in the swarm. 69

5.14 Calculation time for the circular formation. 69

5.15 Calculation time for the matrix formation. 70

5.16 Calculation time for the linear formation. 70

5.17 Take-off times for the matrix formation. 71

5.18 Take-off times for the circle formation. 72

5.19 Take-off times for the circle formation. 72

xxiv

List of Figures

6.1 Example of a swarm splitup. 78
6.2 Message frequency w.r.t. distance between UAVs. 81
6.3 Chances of failing just before a waypoint w.r.t. the distance between

waypoints. 83
6.4 Distribution of the UAV waiting times at waypoint 1. 86
6.5 Flight time and wait time overhead when varying the number of UAVs

that fail. 87
6.6 Time differences for multiple groups at each waypoint. 89
6.7 Working example of a swarm split-up scenario in ArduSim. 89

7.1 Flowchart of the flight formation reconfiguration algorithm. 92
7.2 Transition of 9 UAVs from a linear formation to a compact mesh. . . . 95
7.3 Minimum number of sectors required for a collision-free reconfiguration

procedure. 96
7.4 Minimum number of sectors required for a collision-free reconfiguration

w.r.t. the type of transition. 97
7.5 Time spent moving horizontally (state 2) and vertically (states 1,3). . 97
7.6 Estimated time overhead vs. real time overhead. 98
7.7 The different types of altitude. 100
7.8 The difference between DTM and DSM, source [42] 102
7.9 Block diagram of the proposed method. 104
7.10 Two important metrics for the step response. 106
7.11 Analysis of the influence of parameters Kp and Kd on the step response

of the UAV. 108
7.12 Step response with optimal parameters, i.e. Kp = 1.5;Kd = 1.9. 109
7.13 Results for scenario A. 111
7.14 Results of scenario B. 113

8.1 Two examples of ArUco markers of different sizes. 117
8.2 Image retrieved by the UAV camera after processing using OpenCV/ArUco

libraries. 117
8.3 Visual representation of the virtual border. 119
8.4 Hexacopter used in our experiments. 122
8.5 UAV landing position comparison. 123
8.6 Landing offset GPS vs visual based approached. 123
8.7 Number of consecutive dropped camera frames using algorithm 8.1 . . 124
8.8 Displacement using Algorithm 8.1. 125
8.9 betax and betay angle variations vs. flight time. 125
8.10 Estimated X and Y variations associated to UAV positions during landing.126
8.11 Number of consecutive dropped camera frames using algorithm 8.2. . . 126

xxv

List of Figures

8.12 Displacement using Algorithm 8.2. 127

xxvi

List of Tables

2.1 Mandatory characteristics for each class identification label. 13

4.1 Comparison between KMA and Heurisitic for irregular air formations 46
4.2 Comparison between KMA and Heuristic for irregular ground patterns 47

6.1 Time overhead for the different scenarios at 200 m from the next waypoint. 84
6.2 Time overhead for the different scenarios at 15 m from the next waypoint. 84
6.3 Time overhead for the different scenarios just when reaching the next

waypoint (0 m). 84

7.1 Collisions and minimum distance analysis. 95
7.2 Time UAVs spend in each state. 96
7.3 Influence of the look-ahead distance for scenario A. 110
7.4 Rural flight: influence of adjusting the altitude on flight time and energy. 110
7.5 Influence of the look-ahead distance for scenario B. 112
7.6 Mountain flight: influence of adjusting the altitude on flight time and

energy. 112

8.1 Parameter values adopted regarding Algorithms 8.1 and 8.2. 119
8.2 Speed values adopted regarding Algorithm 8.2. 120
8.3 Comparative table of the different schemes. 127

xxvii

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs), more commonly known as drones, have been
commercially available since 2010. Hence, they are perceived as a recent invention.
In reality, however, nothing is farther from the truth. Although this thesis is
focussed on how modern UAVs can be together in a swarm, it is worth starting
with a little bit of history. Going back, a long, long time ago, the Greek myth of
Daedalus and Icarus tells us that humans always had an aspiration to fly, and that
flying inherently comes with great danger. This myth is most likely not the first
time that people thought about flying, and most certainly not the last. Yet, let
us not linger too long in the ancient past, and let us start when flying actually
began. The reader would probably think of the Wright brothers, flying for the first
time in December 1903, but this would be wrong by almost 1700 years. The first
unmanned “aircraft” was a simple sky lantern used by the Chinese for military
signaling, a prominent application as we will soon discover. It would, however,
take until 1783 before the French brothers Joseph-Michel and Jacques-Étienne
Montgolfier improved on the idea so that humans could finally ascend into the
air. After only a hundred years, the hot-air balloons invented by the Montgolfier
brothers were already in use for exactly the same purposes as nowadays’ modern
versions: warfare and photography; and in many cases, the pictures taken were
used for war intelligence. Although from a humanitarian point of view, this is
awful, there was, and there still is, a big market for it. We must acknowledge
that, (only) due to that funding, many inventors had the possibility to work and

1

1. Introduction

improve the wonderful world of aviation. After many UAVs carrying bombs and
surveilling enemy territory, we arrived at UAVs for consumer use. The French drone
manufacturer Parrot was the first in 2010, and a few years later DJI entered the
same market. To this day, these are still the two most famous drone manufacturers
worldwide. They created the drones that you and I came to know. Namely, a
relatively small, lightweight quadcopter, often equipped with a camera, that can
be controlled from a smartphone or a remote. At that time, they were mostly seen
as toys for children, or adults (which we kindly refer to as hobbyist). Within the
group of hobbyists, there must have been a few with an entrepreneurial mindset,
because soon after some industries realized that they could use these “toys” as a
valuable asset for their business. In many cases, drones could perform a certain
task faster, safer, and cheaper compared to traditional methods. This led to a
rather slow adoption of UAVs in our lives. Nowadays, it is quite common for a real
estate agent to take pictures of a house using a drone, a bridge to be inspected by a
quadcopter, and actions shots in movies to be taken by a UAV. Less common, but
still seen, are drones delivering parcels or aiding farmers. Due to this increase of
flying objects, rules had to be formulated to prevent injuries and misuse. Nowadays,
there are laws about where UAVs can fly, and who can fly them. Given that the
industry is still relatively young, the law will likely be updated many times while
the industry matures. It is, indeed, an industry that is still developing; and I would
like to believe that this thesis is helping that process.

1.1 Motivation

While currently most drone applications rely on the deployment of a single UAV,
interest is growing in solutions where multiple UAVs are simultaneously deployed to
perform a joint task [1], thereby conforming a UAV swarm. Swarms of UAVs allow
us to efficiently perform complex applications that cannot be handled by a single
UAV [2]. It also allows a larger area to be covered in the same amount of time. This
is an important aspect since current battery life impedes most UAVs to fly longer
than 25 minutes. Besides that, they also bring additional benefits. For instance,
applications can be more resilient (important in surveillance), and the load capacity
can be increased by distributing such load among multiple UAVs. Although the
benefits are promising, many challenges also exist, including: (i) swarm formation
definition, (ii) takeoff procedure, (iii) in-flight coordination, (iv) handling the loss
of swarm elements, (v) communication between the swarm elements, (vi) swarm
layout reconfiguration, and (vii) accurate landing. These challenges remain mostly
untackled by the research community, which delays the widespread adoption of
UAV swarms by the industries. Hence, in this thesis, we seek to provide solutions

2

1.2. Objectives

to the aforementioned challenges. We will explain what will hopefully be common
practice in a decade or two, why we want to use multiple UAVs simultaneously,
and how this can improve our lives. We will show how a seemingly simple idea
can actually be quite complicated. Luckily, at least for a few of these complicated
problems, we have found a solution!

1.2 Objectives

The main objective of this PhD thesis is to propose a baseline framework upon
which UAV swarm applications can be developed. Such framework enables the
application developer to seamlessly and safely operate a UAV swarm, encompassing
all the required features associated to the different flight phases.

To achieve this overall goal, several sub-objectives must be defined. These are
the following:

• Create a simulation environment that allows developing new solutions for
UAVs quickly and efficiently, while guaranteeing that the developed code can
be directly ported to real aircraft.

• Devise an algorithm to optimize the assignment of UAVs on the ground to
their aerial position in a flight formation.

• Propose an efficient take-off strategy that offers a minimal take-off time,
while reducing the risk of aircraft collisions during that process.

• Develop a protocol that is able to maintain a stable and coherent UAV flight
formation, while adapting itself to issues like the loss of UAVs, including
both formation leader and slave elements.

• Propose a novel solution to enable changing the flight formation throughout
a mission in a fast and safe manner.

• Develop a control mechanism that allows adjusting the flight altitude of each
individual UAV to account for terrains with irregular profiles.

• Devise a solution for the accurate landing of each individual UAV based on
ground markers and vision-based control systems.

1.3 Structure of the thesis

The thesis dissertation is organized in nine chapters. Next, we briefly describe the
contents of each part:

3

1. Introduction

In chapter 2. From single UAVs to an autonomous swarm: an
overview: we start by explaining the fundamentals of UAVs. We classify UAVs
by size, type, etc., explain the different parts that make up a UAV, and briefly
go over some European legislation. Afterward, we explain why we are interested
in UAV swarms, the advantages they have over single UAVs, highlighting which
challenges need to be solved. Then, we provide some related works for these
different challenges.

In chapter 3. ArduSim: a multi-UAV simulator: we introduce our
multi-UAV simulator called ArduSim. We explain its current structure, how it can
be used, test its performance, and explain its limitations.

In chapter 4. Assigning airborne positions efficiently we start with our
first swarm algorithm. We explain how UAVs that are randomly placed on the
ground can be assigned to a specific airborne location in a formation. We introduce
four different algorithms for solving this problem namely: brute-force, heuristic,
KMA, and KMA for GPU. These algorithms are then compared to each other in
various scenarios using ArduSim.

After assigning the airborne positions, we explain various take-off procedures
in chapter 5. Taking off. We start with a simple sequential take-off procedure,
and improve it to a semi-sequential procedure. Then, we improve it further and
present a semi-simultaneous take-off procedure. We compare the three different
approaches in terms of calculation time, and take-off time.

We continue, with chapter 6. Maintaining the swarm coherent. We detail
our Mission-Based UAV Swarm Coordination Protocol (MUSCOP), which ensures
that a swarm of UAVs follows a mission while maintaining a stable formation. After
explaining the basics of this protocol (which is based on the master-slave pattern),
we introduce extra mechanisms that improve resilience. These mechanisms make
sure that, in case something goes wrong with the master or slave (e.g. depleted
battery, crash, etc.), the swarm can continue the mission.

In chapter 7. Advanced mid-flight maneuvers, we explain two new
algorithms that enhance swarm flights. First, we introduce a way to change the
swarm formation mid-air. This algorithm temporally changes the altitude of some
of the UAVs, so that they can move to their new location while avoiding collisions.
Secondly, we introduce an algorithm that dynamically adapts the altitude of the
UAVs in order to maintain a stable altitude above the ground. This is especially
important in mountainous regions, where a quick change of terrain level might
result in a crash.

At the end of their mission, the UAVs will need to land; in chapter 8. Accu-
rate vision-based landing, we explain how this can be done accurately using a
simple camera and an ArUco marker.

4

1.3. Structure of the thesis

Finally, in chapter 9. Conclusions, Future Work and Publications, we
finish this dissertation by detailing the main conclusions of our work, presenting
the various publications made, and going over some future work.

5

Chapter 2

From single UAVs to an
autonomous swarm: an overview

In this chapter, we start our journey towards autonomous UAV swarms. In order
to finally arrive at the contributions of this thesis, we must first explain the
fundamentals of UAVs. Hence, we will explain the different types of UAVs, the
basic components of each UAV, and the current European legislation regarding
using them. Afterward, we go into depth about why we actually need a UAV
swarm, detailing what advantages they can bring, but also the challenges that we
must face. Finally, we will present current solutions for those challenges created by
other authors.

2.1 The fundamentals of Unmanned Aerial Vehicles (UAVs)

The title of this thesis clearly indicates that the scope of this work will embrace
UAVs. Nevertheless, the term UAV is slightly ambiguous; all it really tells us is that
we are using unmanned aerial vehicles. It tells us nothing about the size, the speed,
the weight, the capabilities, the price, etc. It is, however, of utmost importance to
specify which UAVs are used in this thesis, because we only provide solutions for a
specific type of UAVs. Hence, in this section, we will provide the fundamentals
of UAVs. Let us start with a common misconception; often (including us, in this
thesis) the term UAV and drone are used interchangeably, and technically this is

7

2. From single UAVs to an autonomous swarm: an overview

wrong. The word drone refers to all different types of unmanned robots, including
those on land, water, and air, whereas UAV (obviously) only refer to flying robots.
Nevertheless, in common speech, the two are synonyms; consequently, we will use
them as such.

2.1.1 UAV types

In the world of UAVs there are many categorizations to be made. The biggest
distinction, however, is the difference between fixed-wing aircraft and copters.
Although both can serve for similar purposes, the way they are built, operated,
and used is completely different. Copters have the major advantage that they can
take off vertically and hover. This makes them ideal for inspection work, parcel
delivery, etc. However, fixed-wing aircraft are faster and more efficient. Hence,
they are used more frequently for longer flights surveying a large area. Although
hybrid versions do exist, they are not so common due to their complexity. Since
our work is based on the copter variation, we will only discuss their structure and
configuration. Within the copter variation, there are two types: helicopters, and
multicopters. Helicopters are copters with only one horizontal rotor. This rotor is
connected to the engine by a shaft. As the engine turns the rotor, the rotor blades
spin and generate lift, which is what keeps the helicopter in the air. The rotor can
also move, which will change the tilt of the propeller, and as a consequence the
helicopter can move horizontally.

Multicopters, however, work based on an entirely different principle. They have
multiple rotors which can be controlled individually. Depending on the relative
speed of these rotors, the multicopter can change its pitch, roll, and yaw. The exact
flight dynamics depend on the number of rotors, which brings us to the first way
of categorizing multicopters, i.e. by the number of rotors. The naming convention
follows Greek numerical prefixes e.g. tricopter, quadcopter, pentacopter, etc. The
minimum number of rotors is three, but this variation is quite rare. The most
common version is the quadcopter, followed by the hexacopter. In general, more
motors will generate more lift, and thus allow the copter to carry more weight. It
also improves the safety as the drone is still able to fly when an engine fails, and,
in general, it improves the stability. However, it also makes the drone less agile,
and most importantly, more expensive.

Another common way to categorize drones is by their size and/or weight. In
most cases, size is a good indicator for their usage, cost, payload, and endurance.
The smallest UAVs are called nano UAVs, which are mainly used for indoor flights.
Since they tend to be cheap (≈ €100 or less), they are also used for training
purposes. Normally, they weight less than 100 grams, and have a wingspan of less
than 30 centimeters. Since they are so small and lightweight, their endurance is

8

2.1. The fundamentals of Unmanned Aerial Vehicles (UAVs)

generally limited to only a few minutes. Next are the Micro Aerial Vehicles (MAVs);
they weigh less than two kilograms, cost around 1000€, and can fly for about 30
minutes. They are powerful enough to fly outdoors under good weather conditions
(i.e. wind speed < 30 km/h, and no rain). This makes them very popular for
hobbyists, photographers, and researchers. In this thesis, we make use of this type
of drone. Beyond this point, UAVs get larger, heavier, faster, and more expensive.
It is important to note that, depending on the source, the exact characteristics
and naming for each group can change slightly. A formal categorization of (all
types of) UAVs is made by the European Union Aviation Safety Agency (EASA).
However, since their main concern is about safety, they only take the weight and
the proximity of people into consideration. This will be explained in more detail
in subsection 2.1.3.

Finally, UAVs can also be categorized by altitude and range. In this thesis we
work exclusively with drones that are allowed to fly up to 120 meters. However,
in some applications (mostly military purposes), UAVs are flying at much higher
altitudes. In most cases, these types of UAVs are fixed-wing aircraft that are using
a fuel-cell for energy. They are categorized as follows:

• High Altitude, Large Endurance (HALE) UAVs are the most expensive
(several million euros) unmanned aircraft. They fly up to 30 hours at
an altitude of 20 km, and have a high payload capacity. Due to their
characteristics, they are used in surveillance, and reconnaissance missions.

• Medium Altitude, Large Endurance (MALE) UAVs fly at a medium altitude
of 9 km, and are also able to fly for a long time. Although the cost of
MALE UAV can vary greatly, they are typically priced anywhere from several
hundred thousand euros up to a million.

• Low Altitude, Large Endurance (LALE) UAVs fly closer to the ground, but
still maintain an altitude of a few kilometers, which is similar to most com-
mercial flights. Due to their large endurance and payload capacity of several
kilograms, they are used frequently for forest inventory, and monitoring,
among others.

• Low Altitude, Short Endurance (LASE) UAVs are similar to LALE UAVs,
but their endurance is limited to less than 2 hours.

• MAV UAVs are the most common UAVs. They weigh less than 2 kg, and
usually cost less than 1.000 euros. They typical use a battery pack as power
source and, therefore, the flight time is limited to about 30 minutes. They
fly at a low altitude (below 120 meters), and are therefore used frequently

9

2. From single UAVs to an autonomous swarm: an overview

for photography, inspections, etc. In this thesis, we specifically address this
type of UAV.

2.1.2 UAV structure & configuration

There is a wide range of UAVs available, including commercial off-the-shelf models,
as well as custom-built designs. Despite this great variety of UAV designs, all of
them require a few basic components. In Figure 2.1, we show an illustration of
these components, and how they are connected. Each UAV has a few motors, which
provides the necessary power to generate lift and move the UAV. Coupled with the
motor is the Electronic Speed Controller (ESC), which controls the speed of the
motors. The ESCs receives a signal (indicating the rotation speed) from the flight
controller, which serves as the brain of the UAV. It interprets data from various
sensors, and uses that data to control the ESCs. Most UAVs are equipped with a
Global Positioning System (GPS) and a compass module, which provide critical
location data. This data is used by the flight controller to maintain the UAV stable,
but is also often used for autonomous flights. All of these electrical devices need
power, and this is most commonly provided by a Li-Po battery. The power module
helps regulate and distribute the power from the battery to the various components.
Finally, a pilot can operate the UAV using a remote control kit, which sends
wireless radio signals (in the 2.4 GHz band) to the flight controller. Although this
communication is bidirectional, often a telemetry kit is also included. The telemetry
channel is used to send useful data such as flight mode, location, speed, etc. to
a smartphone or Ground Station Control (GSC). In Europe, this transmitter is
sending a signal at 443 MHz, which allows for long-range communications. Finally,
there are some LEDs and a buzzer which indicate what the drone is doing.

The flight controller is a microprocessor that controls the UAV. Since the per-
formance of the controller influences the flight experience greatly, most commercial
UAVs develop their own proprietary flight controller. Although their performance
is usually excellent, interaction with the flight controller remains limited. Hence, for
research purposes, proprietary flight controllers are not a good option. Fortunately,
there are several open-source alternatives. Most of these projects are using general
purpose microcontrollers such as Arduino, STM32, Teensy, etc. These boards
tend to be cheap, but since they are general-purpose microcontrollers, they are
not optimized for controlling UAVs. They lack common connectors and inbuilt
sensors, which makes using them more complicated. Despite these complications,
a student (Lorenz Meier) from ETH Zurich started building a flight controller in
2008. Due to the enormous scale of this project, he asked other students to help
as well. After working for almost a year, the team (called Pixhawk [3]) won the
European Micro Air Vehicle competition in the indoor autonomy category. Soon

10

2.1. The fundamentals of Unmanned Aerial Vehicles (UAVs)

Figure 2.1: Essential components of a UAV

after, the Pixhawk flight controller began to be adopted by others as well. Nowa-
days, it is by far the most commonly used open-source flight controller. The actual
hardware is produced and sold by the UAV hardware manufacturer Holybro[4].
They sell various versions, with different designs and specifications. The cheapest
versions cost around €80, and the more expensive versions go up to €350. This is,
however, only the hardware part. As with any microcontroller, it needs code to
run. The Pixhawk community also provides the firmware that runs on their flight
controller. Over the years, there were many updates, but the current version of
their (also open-source) software is called PX4[5]. However, since the hardware
is completely open-source, other groups also created firmware that is compatible
with the Pixhawk. The most popular alternative to PX4 is called ArduPilot[6].
They started around the same time as the Pixhawk group, and initially used an
Arduino board. Over the years, many changes were made and, in 2013, they
decided to use the Pixhawk as their main hardware. Nowadays, their firmware is
able to control all different types of drones including: rovers, boats, submarines,
and UAVs. Their specific firmware for controlling MAV UAV is called ArduCopter.
Currently the ArduCopter firmware is arguably better than the PX4. It can run on
more hardware platforms than the PX4, and is able to maintain a UAV hovering
with more stability. In this thesis, we work with the ArduCopter software for the

11

2. From single UAVs to an autonomous swarm: an overview

above-mentioned reasons, but also because ArduCopter is part of the ArduPilot
project. This means that integration of our VTOL UAV protocols with other
vehicles (planes, rovers, etc.) would be easier in the future. Besides firmware, both
PX4 and ArduPilot created software to communicate with the UAV using a GSC.
The version from ArduPilot is called Mission Planner, and from PX4 it is called
QGroundControl. In order to work interchangeably, and allow other programs to
easily communicate with the flight controller as well, the MAVLink[7] protocol was
created (also by Lorenz Meier). It is a very lightweight messaging protocol which
follows a modern hybrid publish-subscribe and point-to-point design paradigm. It
is versatile, efficient, robust, and there are MAVLink libraries for the most common
programming languages. Hence, almost all programs and flight controllers support
MAVLink.

2.1.3 European legislation

Due to the increasing popularity of UAVs, the possibility of danger, and privacy
issues that are related with UAVs, the EU set out a framework for the safe operation
of civil drones. This section is written with the intention to give an overview of
the current legislation, but does not serve as legal advice.

The specific legislation are explained in EU Regulations 2019/947 [8] and
2019/945 [9], which have been created by the EASA [10]. It is applicable since
31 December 2020 in all EU Member States, including Norway and Liechtenstein.
It applies to civil drone operations, and is mainly concerned with managing risk.
For this reason, it defines three categories: the open, the specific, and the certified
category. The open category addresses low risk drone operations in which the
drone operator has to ensure proper safety levels. The category is subdivided in
three subcategories based on the proximity of people.

• A1: fly over people, but not over assemblies of people.

• A2: fly close to people.

• A3: fly far from people.

Besides the proximity of people, the characteristics of the UAV itself is also
important. Depending on these characteristics, each drone will get a class identifi-
cation label. It is important to note that currently (2023) we are in a transition
period, and that formally the class identification labels will be used starting from
January 1st, 2024. The classification is made by verifying if a drone provides
the elements presented in Table 2.1. Keep in mind that this table is just a small
summary, and that the exact specifications are described in [11].

12

2.1. The fundamentals of Unmanned Aerial Vehicles (UAVs)

Table 2.1: Mandatory characteristics for each class identification label.

C0 C1 C2 C3 C4 C5 C6

Max weight <250 g x
Max weight <900 g x
Max weight <4 kg x
Max weight <25 kg x x x x
Low speed mode (<3 m/s) x
Low speed mode (<5 m/s), unless tethered x
Indication of noise emission x x x x x
Remote id function x x x x x
Geo-awareness function x x x
Low-battery warning x x x x x
Flight termination system, unless tethered x x
Geo-caging function x
Information position, speed, and altitude x x

Depending on the combination of subcategories A1, A2, A3, and the class
identification labels, the pilot must fulfill certain requirements. These requirements
can include a minimum age, proof of completion of a theoretical exam, and proof
of completion of a practical exam. Besides the requirements, depending on the
combination, there are also some limitations which might include keeping a certain
distance from people or buildings. Many combinations are possible, hence we do
not go into all of them. However, in most cases, the pilot needs to be older than
16, and pass both a theoretical and a practical exam. Furthermore, there are
strict rules about where a UAV can be flown. In the open category, a UAV is
never allowed to fly higher than 120 meters above ground level. Flying close to an
airport, military, and/or governmental facilities is also prohibited. Many cities also
prohibit flights above crowed areas without special authorization. For that reason,
it is always important that the pilot takes note of the no-fly zones in the region.

Besides the open category, there is also the specific category which includes
flights with a moderate risk such as beyond visual line of sight or UAVs above 25
kg. If the risk is even higher, a flight might fall into the certified category. This
category is for the highest level of risk, and includes for instance a future drone
flight with passengers on board. Since in this thesis we focus on flights in the open
category, we will not go into the details of the specific or the certified categories.

To conclude, the regulation is somewhat complex, but that is mainly because
there are many different types of UAVs. Once the details (i.e. weight, capacities,

13

2. From single UAVs to an autonomous swarm: an overview

etc.) of a specific UAV are known, it is relatively easy to find the class identification
label. From there on, the specific rules about what a pilot is allowed to do, can be
found easily. One major advantage is that the rules are consistent throughout the
entire European Union. Besides that, as stated before, most pilots need a license
which ensures that UAVs are used in a safe and responsible manner.

2.2 Why we need UAV swarms

In this thesis, we provide various algorithms and protocols which enable us to work
with a swarm of UAVs. Before proceeding, we need to explain why we want to use
UAV swarms in the first place. After all, there are already many applications with
just a single UAV, and it seems that they are doing their job just fine.

Nowadays, UAVs are still most commonly used for photography, and for that
application there is no direct need for a swarm. However, new UAV applications
arise every day, and some of them are facing the limits of what a single UAV can
do. One of the major issues of using a single UAV is its high energy consumption
and limited battery capacity. Since a VTOL MAV UAV does not have any wings, it
will always have to rely on powerful engines to maintain it airborne. Hence, flights
for a single UAV are limited to just 20 or 30 minutes. For many applications, such
as precision agriculture, search and rescue missions, surveillance, environmental
monitoring, this is not enough. Hence, the most straight-forward solution is to use
multiple UAVs at the same time. Note that this does not represent a real swarm,
but just multiple aircraft sharing the same space. This can still be very useful,
though, as evidenced by the popular light shows that are held for major events.
Nevertheless, since most of the UAVs already have the capability to communicate,
we can leverage UAV communications to achieve goals in a cooperative fashion.
Only then can we speak of a swarm; notice that, besides covering a larger area, they
provide many more benefits. First of all, they provide redundancy and robustness.
If one UAV fails, the other UAVs in the swarm can take over its place and complete
the mission. This can be very useful, especially in applications such as surveillance
where drones might experience sabotages. Secondly, a swarm (when managed
correctly) is more flexible, it can change its flight formation, and dynamically adapt
itself to the needs of each application. For instance, in a search and rescue mission,
the emergency services first need to find the person in need of help. To that end,
a large area needs to be covered, and thus flying in a linear formation makes the
most sense. Yet, upon finding the person of interest, the emergency services might
want to obtain more data about the surroundings. Hence, the swarm could adapt
and reconfigure itself in a circle. Furthermore, having multiple UAVs increases the
payload capacity, allowing to help carry heavy first aid equipment to the person

14

2.3. Current solutions for swarm coordination

in need. Overall, all of this can be done in a significantly cheaper manner when
compared to traditional solutions.

2.3 Current solutions for swarm coordination

As stated above, a swarm of UAVs can provide many benefits. However, as is often
the case, these advantages do not come for free, and significant challenges need to
be solved before a swarm of UAVs can be used safely and efficiently. In this thesis,
we provide solutions for some challenges, but we start by introducing related works
by other authors.

First and foremost, we need a safe environment to test our solutions. Hence, a
simulator is needed. When looking for UAV flight simulators, one will likely come
across an abundance of flight simulators such as: UAV CRAFT [12], squadrone [13],
and Quantum3d [14]. These types of simulators are created to train new pilots,
and they usually include some type of 3D rendering, and even specific hardware
for realistic emulation. Although very useful in their own right, these proprietary
software products are not designed for doing research, nor do they allow the user
to easily adapt the code, and thus are of no use for use. Nevertheless, there are a
few simulators which are slightly better suited. The popular simulation tool called
Simulink has a product called UAV Toolbox [15]. This tool incorporates a lot of
features. It includes a scenario simulator that allows the user to (i) visualize (3D) a
flight, and (ii) incorporate sensor models and generate synthetic data during a flight.
Given that this toolbox is incorporated in Simulink, a license is necessary, but the
developers are able to change a lot of the models and incorporate it with other
Matlab projects that already exist. Overall, this toolbox is definitely designed for
researchers, has an excellent documentation (including examples), and packs a lot
of features. However, it can only simulate one UAV at the time. Another relatively
new simulator is called AirSim [16]. It was developed by Microsoft research, and it
specifically focuses on research towards Artificial Intelligence (AI). Besides UAVs,
it is also a car simulator, and it was built upon the Unreal Engine, being available
for Linux, Windows, and Mac, and having a good documentation. Since it was
built for AI research, the API is equipped with many functions for image processing
and AI models. This simulator allows for multiple UAVs to be simulated at the
same time. There is also support for software- and hardware-in-the-loop testing.
Unfortunately, this repository is currently archived. A new project (Microsoft
Project AirSim [17]) is under development and will be available for public preview
in the coming year (2024).

The next challenge is the assignment problem, which in the context of UAVs
swarms has not been studied by other authors. However, in a more general context,

15

2. From single UAVs to an autonomous swarm: an overview

it has been studied by mathematicians. Currently, there are three options to solve
this problem: Global methods, local methods, and (meta)heuristics. A global
method promises to find the optimal solution. Currently, the KMA is the fastest
option available. In some specific cases, local methods can work better; however
this is not guaranteed. Those algorithms, called auction algorithms, are used for
example by Causa and Fasano [18] who worked on a strategic path planning for
multi-UAVs, and by the authors of [19], who presented a dynamic task and resource
assignment algorithm. The last option is to use a metaheuristic. This will provide
a suboptimal solution (in terms of reducing cost), but it is typically much faster
than the previous solutions.

With regard to the specific issue of achieving a safe take-off of a large number
of UAVs participating in a swarm, we find only one work (other than our own)
that addresses this topic. In [20] authors consider three simple take-off options
for a swarm: manual, sequential, and simultaneous. However, when the swarm is
large, and when the formation in the air remains unrelated to positions on the
ground, these techniques can take too much time (manual, sequential), or be prone
to cause collisions between UAVs (simultaneous), especially when UAVs are close
together on the ground.

With respect to swarm resilience, we could find a few proposals. Dano et al.
[21] provide resilience from a system engineer point of view. Their work focuses
on a higher abstraction layer, and implemented contract-based design invariant
contracts in a Matlab-based flight simulator to quantify the defined location
resilience metrics of their system. Chen et al. published a paper [22] that is focused
on effectively reorganizing the surviving UAVs in a severely damaged UAV swarm.
They start by analyzing the damage-resilience problem of unified UAV Swarm
Networks (USNETs). The goal of their work was to design a damage-resilient
mechanism, which is usually divided into multiple disjoint subnets of isolated
nodes. Three challenges are investigated: first, the network will be divided into
several disjoint subnets or isolated nodes; secondly, they work on restoring the
network connectivity; finally, they explain how to reduce the computational and
communication overhead.

The work by V.T. Hoang et al. [23] presents an algorithm to reconfigure a
formation of multiple UAVs. This work is especially focused on the application
of vision-based inspection of infrastructure. It presents a new algorithm for
reconfiguration based on the angle-encoded Particle Swarm Optimization (PSO).
They begin with a 3D representation of the surface to be inspected, and a set of
intermediate waypoints. Additionally, new constraints are proposed to decrease
the chances of collision, and to increase task performance, based on the assumption
that an optimal path is produced by using the θ-PSO path planning algorithm.
Other works such as [24], [25], and [26] use an approach which is called flocking.

16

2.3. Current solutions for swarm coordination

Flocking is a behavior that is common in nature, for instance in a group of fish,
birds, or insects. It consists of a few basic rules that are applied to each entity
of the group. When those rules are respected, the group will stay united without
collisions between the group elements. While flocking mechanisms are great to
keep a swarm of UAVs organized, they do not provide the flexibility to completely
define and change the formation itself. Furthermore, controlling the altitude of a
UAV is usually done with a PID controller. to this end, Muliadi et al. [27] propose
an artificial neural network. They show (in simulation) that, with the use of their
neural network, a better performance can be achieved.

Finally, different UAV landing approaches have been studied. Chen et al. [28]
succeeded in landing a real UAV on an object moving with a speed of 1 m/s. A
camera was used to track the position of the landing platform (xy-coordinates), and
a LIDAR sensor provided detailed information about the altitude. This research
work introduced a robust method to track and land on a moving object. However,
the use of a LIDAR sensor discourages the solution, as it tends to be too expensive
when scaling to a high number of UAVs. Nowak et al. [29] proposed a system in
which a UAV could land both at night, as well as during the day. The idea is simple
yet robust and elegant: a beacon is placed on the ground. The light emitted from
the beacon is then captured by a camera (without a infrared filter), and the drone
moves (in the xy-plane) such that the beacon is in the center of the picture. Once
centered, the height is estimated based on the image area occupied by the beacon,
and the drone’s altitude is decreased in order for it to land safely. Shaker et al. [30]
suggested another approach: reinforcement learning. In this approach, the UAV
agent learns and adapts its behavior when required. Usually, reinforcement learning
takes a lot of time. To accelerate this process, a technique called Least-Squares
Policy Iteration (LSPI) is used. With this method, a simulated UAV (AR100) was
able to achieve a smooth landing trajectory swiftly.

17

Chapter 3

ArduSim: a multi-UAV simulator

In the previous chapter, we explained what drones are, and why we want to use
swarms of UAVs. Now, we want to start creating algorithms and protocols to use
them. However, testing these algorithms directly on real drones is a difficult taks,
being time-consuming, expensive, and riskful. Hence, before testing algorithms on
real drones, it is a good idea (almost a requirement) to test the code in a simulator.
Since, nowadays, UAVs are quite popular, there is no shortage of UAV simulators.
However, nearly all of them, are limited to a single UAV, and are not able to
simulate multiple at the same time. Furthermore, they are often designed to (i)
train pilots how to fly, or (ii) as a video game. Hence, they are not appropriate for
our purpose. For that reason, our research group Grupo de redes de computadores
(GRC) 1 developed its own multi-UAV simulator called ArduSim. At the start of
this thesis, ArduSim was already created, and it had the capability of simulating
several hundreds of UAVs at the same time, and allowed them to communicate
with each other. This version of ArduSim served us well during the first steps of
this thesis. However, due to its continuing growing size, it became complicated to
maintain well, and to create new features. Especially in research, it is important
that our software is flexible, and that we are able to quickly generate new protocols.
Hence, we set out to change the architecture of ArduSim completely, so as to
facilitate future development. In this chapter, we will explain the design of our
improved simulator. However, we start by explaining the characteristics of the old

1https://grc.webs.upv.es/

19

3. ArduSim: a multi-UAV simulator

version (which we want to maintain), detailing the shortcomings of that version
(which we will improve upon).

3.1 Original version of ArduSim

The original version of ArduSim [31] was created in order to simulate various
drones at the same time. The project was developed in Java, and all the code
is published under the Apache License 2.0 [32] on GitHub [33] so that everyone
can freely use, distribute, and modify the software. ArduSim can be seen as an
environment that improves up on the single drone simulator provided by ArduPilot
[6]. The simulator of ArduPilot is a Software In The Loop (SITL) simulator that
closely represents the real firmware on a flight controller. However, using the SITL
directly has several problems: (i) it is complicated, (ii) it poorly supports multiple
UAVs, and (iii) it does not include communication models. So, in ArduSim we
utilize the high precision obtained from ArduPilot and build around it, in order to
facility multi-UAV simulations. The most important features of ArduSim can be
summarized as follows:

• Effortless protocol deployment on real UAVs. ArduSim was developed
to make deployment on real UAVs straightforward. To achieve this, we
use the same technology that GSCs are using. In particular, we are using
the MAVLink [7] communication protocol to control the UAV. The only
requirements to deploy a protocol on a real drone are to attach a Raspberry
Pi with a Wi-Fi adapter, and to connect it to the telemetry port of the flight
controller.

• Complete Application Programming Interface. ArduSim provides
its developers an easy-to-use interface, which translate the most common
maneuvers during a flight (e.g. taking off, moving, landing, etc.) into
MAVLink messages that are then sent to the SITL simulator from ArduPilot.

• Soft real-time simulation. In order to represent reality as close as possible,
simulations in ArduSim are performed in near real-time.

• High scalabilty. ArduSim is also very scalable, and on a standard computer
(Intel Core i7-7700, 32 Gb RAM, SSD hard drive), it is able to run up to 100
UAVs in near real-time, and up to 500 UAVs in soft real-time.

• UAV-to-UAV communication. An important part of any swarm protocol
is the communication between the UAVs. Hence, inside ArduSim, various
models were created to virtualize IEEE 802.11a technology. These models

20

3.1. Original version of ArduSim

are based on experiments using real UAVs. When ArduSim is used on real
drones, it automatically uses the Wi-Fi adapter of the Raspberry Pi.

• Graphical and command line interface. ArduSim has both a graphical
and a command line interface. The graphical interface (2D) can be used in
order to verify if a protocol is working as intended, and to show the results.
The command line interface, on the other hand, can be used to automate a
batch of simulations, which is very useful when running an extensive amount
of experiments.

As stated before, the original version of ArduSim was a great tool, and in fact
it has been used to develop and test most of the protocols that we will present
in this thesis. Nevertheless, software must develop and improve in order to meet
our (future) needs. ArduSim grew as a research project and, since the exact
requirements were not known beforehand, it grew organically. As of today (2023),
ArduSim has been used for almost seven years, and in those seven years we created
a better understanding of what is important. Using this knowledge, we took the
time to evaluate what can be improved. The main shortcomings of ArduSim are
all originating from the fact that ArduSim is a monolithic program. Hence, we are
limited by the following:

• Programming language dependency. ArduSim is written in Java. Al-
though this is a robust programming language, it is not the fastest neither the
easiest programming language. Nowadays, many applications rely on artificial
intelligence, which is overwhelmingly done in Python, and computational
expensive algorithms are better implemented in C or Rust. Hence, to better
suit our needs, we must remove this restriction and create a system in which
any programming language can be used.

• Single protocols. ArduSim was created in order to develop, and test,
multi-UAV protocols. However, it was created in such a way that only one
protocol can be used at the same time. In the future, we will need to develop
entire UAV applications. This means that various protocols will be used at
the same time. In order to facilitate this process, the new architecture must
allow for various protocols to be executed concurrently.

• ArduPilot version dependency. ArduSim is using the ArduPilot simu-
lator to simulate the flight behavior of the UAV accurately. However, its
implementation makes it highly depended on the version of ArduPilot. This
makes it difficult to switch between different versions or between different
types of aircraft. In the future, swarms of UAVs might exist of VTOL and

21

3. ArduSim: a multi-UAV simulator

fixed-wing UAVs at the same time. In order to simulate those types of
swarms, we need to decouple ArduSim further.

• Bound to one computer. Since ArduSim is a monolithic program, we must
execute all the code on the same machine. Since it is a lightweight program,
this is not a problem yet. However, in the future, more applications will rely
on artificial intelligence. Those algorithms need to be trained and executed
on servers equipped with GPUs. Hence, we must ensure that ArduSim can
be run in a distributed fashion.

• Steep learning curve. Although ArduSim facilitates many UAV operations,
there is still a steep learning curve. This is mainly due to the fact that it is
a large program, and one must learn many aspects of the simulator at the
same time. In order to flatten this learning curve, we must try to abstract
as many details as possible. In this way, a new user only needs to learn the
basics, and can be concerned about the details at a later stage.

In order to solve the above-mentioned issues, we propose a drastic architectural
change. Specifically, we propose breaking up the monolith program into smaller,
self-contained microservices. Each service will communicate with the other services
using standard TCP/IP communication. Since almost all programming languages
support TCP/IP communication, we are no longer dependent on one specific
programming language. Each algorithm (previously known as protocol) can be
executed in its own microservice, and with some modifications we can easily use
the input of multiple algorithms in order to build complex applications. By using
a standard interface to communicate with the UAV controller, we can create a
separate service for each version of the ArduPilot simulator. In this way, switching
between versions will be made easier. Furthermore, when different machines are
placed in one network, they can exchange TCP/IP messages easily. In that way,
we are no longer bounded to one computer. Finally, each service can be studied on
its own, which flattens the learning curve.

3.2 Design and implementation

In the new design of Ardusim, the code is split into self-contained microservices.
In this subsection, we will detail the various categories of services, and how they
will interact with each other. We can categorize the services in the following five
basic types: (i) algorithms, (ii) applications, (iii) UAV controllers, (iv) auxiliaries,
and (v) networking.

The general idea is that, at any time, various algorithm services will be active.
These algorithm services will contain the logic in order to solve a very specific

22

3.2. Design and implementation

problem. This can, for instance, be code to: adjust the altitude of a UAV, avoid
collisions with other UAVs, move to a waypoint, etc. The algorithms will send
suggestions towards a single application service. In this application service, the
different suggestions are received, and the logic of the application service will
decide which suggestion should be prioritized. To explain this more clearly, let
us imagine we want to create an application where a UAV flies from one point to
another in a mountainous region. In order to avoid crashes, a constant altitude
above the ground must be maintained. In this example, we need two algorithms,
one that guides the UAV towards a point, and another that maintains a constant
altitude. The first algorithm might suggest that the UAV has to go forward, while
the second algorithm might suggest that the UAV must change altitude. In the
application service, a choice will be made regarding which one is more critical.
Since we want to avoid crashes, it is obvious that changing the altitude first is more
important. In some advanced cases, two suggestions can actually be joined together
in the application service. It is, for instance, possible to move the UAV forward
and change altitude at the same time. Whatever the application service decides,
a command will be sent to the UAV controller service. This service contains
all the code for a specific version of a UAV. It has, however, always the same
interface, and hence we can easily change between different versions. The UAV
controller service, will use the SITL simulator provided by ArduPilot. Using the
SITL we can simulate the flight behavior very accurately. SITL will update the
drone’s position, speed, rotation, flight mode, etc. This information is fed back to
all the different services. It is also sent to the auxiliaries services, among which
we can include various visualization and logging services. The above-mentioned
architecture is replicated multiple times in order to create a swarm of UAVs,
where each instance will represent one UAV. Note that it is not necessary that we
run the same application, algorithms, or even version of UAV controller in each
instance. Hence, we can create heterogeneous swarms easily. Of course, in order to
create a swarm, the algorithm instances should be able to communicate with the
others. For that reason, there are also networking services, which will simulate the
communication between UAVs. Finally, there are some auxiliary services connected
to the algorithms and the UAV controller. In Figure 3.1, we illustrate our new
architecture.

23

3. ArduSim: a multi-UAV simulator

Figure 3.1: The proposed architecture of ArduSim.

Notice that all services are connected using TCP/IP-based communication. In
order to facilitate the communication flow, we sometimes use the publish-subscribe
pattern. While using this pattern, the sender publishes a message on a specific
topic. Receivers have to subscribe to the messages they are interested in. In this

24

3.3. UAV swarm formation

way, it is easy to establish a many-to-many communication flow between various
services. As an example, an algorithm service only has to publish its message once,
and it can then be received both by the application and the by auxiliary services.

The UAV controller service is probably the most complex service because
it includes the SITL simulator from ArduPilot. As stated before, ArduPilot is
the firmware that runs on the flight controller. However, they have also created
a (single-UAV) simulator, which is partly built upon another simulator called
FlightGear. There are different versions of the SITL ArduPilot module. The
modules can differ in the type of aircraft (e.g. copters, planes, rovers, etc.), and
for each type of aircraft there is a specific release available. Is it worth mentioning
that, between the different types of aircraft, the way to control them can differ
greatly. Hence, for each version we are interested in, we need to develop a controller
module. This controller module will communicate with the SITL ArduPilot module
using the MAVLink protocol. The controller module interacts with the external
communication module using a general interface. This means that the application
service can send general controls to all types of aircraft, which decouples the
application from the control logic. Besides simulating the behavior of UAVs,
ArduSim should also be able to control real UAVs. Due to our modular design and
the use of the MAVlink protocol, it only requires a minor change. Specifically, a
small onboard computer (e.g. a Raspberry Pi) should be mounted on the UAV.
This onboard computer will run ArduSim and connect to the flight controller using
a serial connection. In such case, it is of course no longer necessary to run the
SITL simulator, and the commands from the Controller module should be sent to
the flight controller using that serial connection.

Finally, within the category of auxiliary services, we distinguish between stan-
dard, and aggregation auxiliary services, where the former has one instance per
UAV, and the latter just one instance in total. For example, a visualization service
that shows the position of the UAVs on a map belongs to the aggregation auxiliary
services, because it will show information of all UAVs. Other services, like logging
the output of an algorithm, will need various instances, in order to separate the
data from the various algorithm instances.

3.3 UAV swarm formation

One algorithm service that we use very often is a service that calculates the
positions of each UAV in a specific formation. Currently, we have the possibility to
create four different types of formations: (i) linear, (ii) circular, (iii) matrix, and
(iv) random. Since, in subsequent chapters, we will use these formations, we now
provide a brief overview of each formation type. In general, a formation can be

25

3. ArduSim: a multi-UAV simulator

created for any number of UAVs, and the user can indicate a minimal distance
between the UAVs that needs to be maintained.

The linear formation is the easiest formation, but nevertheless a very useful
one. Basically, all the drones are on a line with some minimum spacing between
them (see Figure 3.2). Although it is a simple formation, it is used very frequently
used because it allows to cover a large area.

Figure 3.2: Linear formation.

The circle formation, shown in Figure 3.3, places all but one UAV along the
rim of a circle, and one UAV in the center. Although its implementation is equally
straightforward, there is a small caveat. We have to take into account that, when
the number of UAVs grows, the radius of the circle must grow as well. Otherwise,
the minimal distance between the UAVs cannot be guaranteed.

Figure 3.3: Circle formation.

The matrix formation (see Figure 3.4), places the UAVs in a matrix formation.
In many cases, a matrix would be created by starting at a corner and fill the
rows and columns. However, in the specific case of UAVs formations, this is not
a good idea, because it is prone to make the formation asymmetrical, which in
turn enlarges the distances between the UAVs, thereby decreasing the network
performance. Thus, we create a matrix by starting at the center, and place each
new UAV in a vacant spot closest to the center, while maintaining the minimal
distance required by the user.

Finally, we have a random formation (see Figure 3.5, that merely places the
UAVs in a random spot. Although this formation is not used in practice, it is
useful to verify if our other algorithms work for any generic case.

26

3.4. UAV-to-UAV communications

Figure 3.4: Matrix formation.

Figure 3.5: Random formation.

3.4 UAV-to-UAV communications

One, very import service in the above-mentioned architecture is the communication
between the UAVs. In order to create swarm applications, the UAVs must be
able to communicate with each other. The most straightforward way to provide
communications between real UAVs is to rely on broadcasting using UDP. However,
UDP packages can get lost. We can model this behavior to various degrees of
accuracy. In general, the higher the accuracy, the longer it will take to calculate
whether a package will get lost. Since the communication between the UAVs is a
central part of our simulator, we provide four different models:

• Unrestricted. It uses an ideal medium where data packets always arrive to
all possible destinations (basic model).

• Fixed range. data packets arrive to another UAV only if the distance between
them is lower than the defined threshold (simple model).

27

3. ArduSim: a multi-UAV simulator

• Realistic 802.11a with 5dBi antenna. the probability that a data packet is
received by another UAV depends on the distance between the UAVs. This
realistic model is obtained from real experiments where the packet loss rate
between two UAVs was measured using a Wi-Fi ad-hoc network link in the 5
GHz band. Out of these experiments, we derived a model for the package loss
in function of the distance (x) between the UAVs. Beyond 1350 meters, we
consider that packet losses reach 100%, and for smaller distances the package
loss is modeled by y = 5.335 · 10−7 · x2 + 3.395 · 10−5 · x. Furthermore, in
this model, we include carrier sensing functionality.

• OMNet++ co-simulation. In order to simulate the channel model with a very
high degree of accuracy, we include a connection with the network simulator
OMNet++[34]. With the use of OMNet++, we are able to test a plethora of
scenarios, including different 802.11 standards, the influences of buildings,
etc. However, it is computationally very expensive, and it only allows a few
UAVs to broadcast messages at the same time.

The first three models are quite straightforward to implement. However,
the OMNeT++ extension deserves some extra explanation. In OMNeT++ we
represent our UAVs as ad hoc hosts, which are readily available in the INET
framework2. The INET framework provides protocols, agents, and other models
for communication networks. In particular, we are especially interested in their
IEEE 802.11 models. By default, all the network traffic is generated and used
within OMNeT++. However, in our co-simulation, all the messages are generated
and used by ArduSim instead. Hence, we need to be able to send those messages,
along with the location of the UAV, from ArduSim to OMNeT++. Using our
new microservice architecture, this connection is quite straightforward. We just
need to create a new UAV network module, which runs OMNeT++. Inside
OMNeT++, we must create a listener that accepts messages from the outside. For
performance reasons, there is one listener that receives all the messages coming
from the various UAVs. The messages are then handed over to the corresponding
UAV in OMNeT++, and transmitted wirelessly by that node. The transmission
relies on IEEE 802.11p technology, and models for path loss and obstacle loss are
applied. Once the message is received by another UAV in OMNeT++, it is sent
back to the UAV network module. In Figure 3.6 we represent this connection
graphically.

When using OMNeT++, we are able to create (virtual) obstacles in an attempt
to mimic a certain target environment as accurately as possible, which in turn
will impact the communication between UAVs. In principle, the features that

2https://inet.omnetpp.org/

28

3.4. UAV-to-UAV communications

Figure 3.6: Connection between ArduSim and OMNeT++.

OMNeT++ offers to create obstacles are quite rudimentary. With the use of an
.xml file, one can place basic shapes (cuboids, spheres, prisms, etc.) on a specific
location, and with the properties of a specific material (e.g. concrete). The obstacle
file is loaded when the simulation starts. Hence, the obstacles are always static. In
order to make our simulation as realistic as possible, we created a Python script
that converts georeferenced building information (obtained from OpenStreetMap
[35]) and digital elevation models (obtained from the Spanish government [36]) into
the format that OMNeT++ requires. In Figure 3.7, we represent a small town in
our region in OMNeT++. Our current approach to model buildings in OMNeT++
is limited, and does not allow us to place a roof on top of the buildings (only the
walls are modeled). Hence, we represent the buildings by following the shoebox
model.

As stated before, using OMNeT++ is computational more expensive than
our other channel models. In order to test the limits of this co-simulation, we
performed some experiments.

29

3. ArduSim: a multi-UAV simulator

Figure 3.7: Example of buildings generated in OMNeT++ based on OpenStreetMap
data (Foios, a small town in Spain).

First, we want to investigate the inter-process overhead. In particular, we want
to measure how much longer it takes for one message sent by a UAV to be received
by another UAV. To this end, we created a small experiment where two UAVs are
placed 100 meters apart from each other, and where one UAV is sending messages
of 80 bytes to the other one. In the message, we include a timestamp to register
the instant when the message is sent. When the message is received by the other
UAV, the time difference is measured; notice that this is possible as the clock used
in both cases is the local clock in the scope of a single machine (the one running
ArduSim). In order to accurately portray our results, we measure the average
and the standard deviation for 100 messages. In our experiments, we compare
three scenarios: (i) simulating communication in ArduSim (basic channel model
only), (ii) simulating communication via OMNeT++ (advanced channel model),
and (iii) simulating communication via OMNeT++, but running the latter on a
different PC (in the same LAN) to determine the impact of network overhead as
well. We compare these results with a baseline, which is taken when solely using
OMNeT++ (i.e. no ArduSim). This baseline represents the approximate time it
would physically take for a message to be delivered wirelessly (transmission time
plus propagation time), without considering other communication layers; obviously,
values cannot go below this baseline threshold. Furthermore, we performed this
experiment using different message frequencies.

The results are shown in Figure 3.8. As we can observe, the message’s frequency

30

3.4. UAV-to-UAV communications

does not have a significant influence on the end-to-end delay. When using only
ArduSim, the time between sending and receiving a message is 50 ms without
any fluctuation. The delay decreases (to about 12 ms) when we transfer the
messages from ArduSim to OMNeT++ on the same PC. We can also observe
a standard deviation (indicated with the error bars) of 2.1 ms. When using
OMNeT++ on a different PC (via a LAN), the delay is obviously larger (about
14 ms). However, the difference remains very small. In all cases, the delay is
shorter when using OMNeT++, which is most likely because ArduSim is written
in Java, and OMNeT++ in C++. This highlights the high effectiveness of the
co-simulation strategy devised.

Figure 3.8: Message delay caused by the inter-process overhead in different scenar-
ios.

In our previous experiment, there was only one UAV sending a message. In
real applications, multiple UAVs will send (and receive) messages at the same
time. Hence, we conduct an experiment to measure the influence of multiple UAVs
sending messages (in particular, broadcast messages). In our experiment, we place
UAVs in a circle with a radius of 100 meters. One UAV is at the center, and
(as before) will be listening to the messages, and calculating the time difference
between transmission and reception to determine the end-to-end delay. For this
experiment, we run ArduSim and OMNeT++ on the same machine. During the
experiment, we will increase the number of UAVs from 2 up to 35. As before,

31

3. ArduSim: a multi-UAV simulator

we measure the delay between transmission and reception. Besides that, we also
observe whether OMNeT++ is still running in soft-real time. The results are
shown in Figure 3.9.

Figure 3.9: End-to-end delay when varying the number of UAVs in the experiment,
and the message rate per UAV. All UAVs act as both senders and receivers.

As one can clearly observe, the number of UAVs sending messages has a big
impact on the message delay. In general, the higher the load (i.e. more UAVs, or a
higher frequency), the longer the message delay, up to a point when OMNeT++
can no longer process the messages in real time, causing the delay to gradually
grow up to infinity (theoretically). The main issue is that OMNeT++ is a single-
threaded tool and, therefore, it does not allow for parallelism in the scope of a
single experiment. Besides that, the number of events (i.e. messages sent and
received) grows quadratically with the number of UAVs when broadcasting messages.
Therefore, we are limited to a moderate amount of UAVs sending messages.
However, when we change our experiment setup to one UAV broadcasting messages,
and multiple UAVs receiving those messages, we can observe (see Figure 3.10)
that we are able to simulate many more UAVs. Of course, in this experiment, the

32

3.5. Summary

load (measured as number of simulation events) grows linearly with the number of
UAVs. Hence, we are able to simulate up to 1000 UAVs in the best-case scenario.

Figure 3.10: End-to-end delay when varying the number of UAVs in the experiment,
and the message rate per UAV. Only one UAV acts as transmitter, and the rest
merely act as receivers.

3.5 Summary

Simulating the behavior of a UAV swarm is a very important part of the development
cycle. It allows us to quickly, and most important safely, test our protocols
before deploying them on real UAVs. For that reason, our research group (GRC)
developed a multi-UAV simulator called ArduSim. In this chapter, we presented a
new architecture for ArduSim, which makes it more flexible, maintainable, and
easy to use. We changed the previous monolithic version to a microservices-based
architecture. Using this new architecture, we are no longer bounded to a single
programming language, and able to execute various algorithms/protocols at the

33

3. ArduSim: a multi-UAV simulator

same time. Furthermore, it allows ArduSim to be executed in a distributed fashion.
Finally, in ArduSim, we also simulate the communication between UAVs. We
implemented various models that range greatly in accuracy. Our basic models
are very lightweight, but simplify a complex reality. In order to simulate the
communications very accurately, we created a connection with the popular network
simulator OMNeT++, so that ArduSim and OMNeT++ can be used together.
While using OMNeT++, we are able to simulate various wireless communications,
experiment with different path loss models, and observe the influence of obstacles
as well. To validate our co-simulation approach, we performed various experiments
to determine its limitations. We found that, when using ArduSim and OMNeT++
together, we are limited to a moderate amount of UAVs sending messages at
the same time. Hence, co-simulation is best used when experimenting with a
smaller swarm in a complex scenario (e.g. a city), where obstacles can influence
the communication greatly.

34

Chapter 4

Assigning airborne positions
efficiently

In previous chapters, we explained what a swarm of UAVs is, and how we can
test different protocols in our simulator ArduSim. Using this knowledge, we will
start by designing and developing protocols in order to use such a swarm of UAVs
effectively. So, we start at the beginning, when the UAVs are still at the ground.
First we have to ensure that the UAVs reach their target airborne position. For a
single VTOL UAV this issue does not exist; it just has to move towards the GPS
location the user has set. For a swarm, however, it is not so trivial. Imagine a
swarm of n drones that are all placed, close to each other, on random locations on
the ground. All these drones will need to be assigned to a specific (GPS) location
in the air. These locations are given by the user, and are often part of a flight
formation (e.g. a line, a circle, a matrix, etc.). Now the question that arises is,
which UAV on the ground has to go to which place in the air. In principle, this
assignment could take any form. For instance, it could be completely random.
However, this would not be a very intelligent manner of assigning the airborne
positions. Given that the battery power is limited, and that the UAVs are only
useful while flying, we do not want to waste a lot of time during this take-off
process. Given that the take-off process correlates perfectly with the total distance
travelled by all the UAVs, we search for an assignment strategy where this distance
is minimal.

35

4. Assigning airborne positions efficiently

4.1 Overview

There are various types of algorithms that can solve an assignment problem. In
this chapter, we will discuss three different types. We start with a brute-force
method. This is the easiest manner to find the optimal assignment. However,
since it checks all the possible options, it takes a long time in order to find the
best solution, especially when there are many UAVs in the swarm. In order to
reduce this calculation time, there are two solutions. The first solution is to simply
make the problem to be solved a little bit easier. Sometimes it is sufficient to find
an assignment that is “good enough” instead of finding the optimal assignment.
For this reason, we created a heuristic which finds a decent assignment very
quickly. The second solution is to try and solve the problem in a more intelligent
manner than just checking all possible assignments. This solution inevitably
involves more mathematics, and luckily for us, other great minds (Harold Kuhn
and James Munkres) had solved this already, and denominated their algorithm the
Kuhn-Munkres algorithm (KMA).

4.1.1 Brute-force

The brute force algorithm (shown in Algorithm 4.1) goes through all the possible
assignments (i.e. permutations of the air locations), and calculates the total distance
travelled for each possible assignment; afterward it will return the assignment
where the total distance travelled is minimal. The algorithm is very easy to
implement and to understand. However, since we are using permutations, the
computational cost grows quickly. As an example, in Figure 4.1 we show all the
possible permutations for only four UAVs, i.e. 24 different combinations. As a
result, this algorithm has a very high time complexity (O(n!× n)).

1

2

3

4

5

6

7

8

U V

Figure 4.1: All possible solutions that exist with only four UAVs.

36

4.1. Overview

Algorithm 4.1 : Brute-force assignment algorithm

bestDistance =∞
bestPermutation = null
permutations = getPermutation(airLocations)
for all permutation in permutations do
totalDistance = 0
for all id in UAVs do

groundLocation = groundLocations.get(id)
airLocation = permutation.get(id)
distance = ecludianDistance(groundLocation, airLocation)
totalDistance+ = distance

end for
if totalDistance < bestDistance then
bestDistance = totalDistance
bestPermutation = permutation

end if
end for
return bestPermutation

4.1.2 Heuristic

Due to the high time complexity of the brute-force algorithm, we cannot utilize
it when using many UAVs. So, in order to calculate an assignment for many
UAVs, we present a heuristic. This heuristic (as any) offers a trade-off between
calculation time and accuracy (i.e. total distance travelled). The heuristic consists
of determining a location on the ground, which is central to the UAVs deployed.
Then, this central position is used to compute the distance towards all positions
in the desired flight formation, which are then sorted in descending order. Using
this sorted list, the UAV closer to each of these positions is then assigned to it.
All details are explained in algorithm 4.2. This algorithm is able to calculate an
assignment very fast (O(n2)) because it reduces all the ground locations to a single
point. However, since in general formations are symmetrical, the total distance
travelled will only be slightly higher compared to the brute-force solution (which
calculates the optimal assignment).

4.1.3 Kuhn-Munkres algorithm

Although our heuristic is very fast, it does not provide the optimal assignment.
Therefore, we searched for a solution which is not as slow as the brute-force method,

37

4. Assigning airborne positions efficiently

Algorithm 4.2 : Heuristic(numUAVs, groundLocations, flightFormation)

1: centerLocation = mean(groundLocations)
2: airList = ∅
3: for airloc in airLocations do
4: airList ← (airloc, airloc.distance(centerLocation))
5: end for
6: sort airList in descending distance order
7: fit = ∅
8: for airLoc in airList do
9: bestError = MAX VALUE

10: for groundLoc in groundLocations do
11: error = groundLoc.distance(airLoc)
12: if error < bestError then
13: bestError = error
14: bestID = groundLoc.ID
15: end if
16: end for
17: fit ← (id , groundLocations[bestID], aLocation)
18: groundLocations.remove(bestID)
19: end for
20: return fit

but is still able to provide the optimal assignment. Currently, the fastest solution
is achieved by the Kuhn-Munkres algorithm (KMA). This algorithm was developed
by James Munkres in 1957. He based his work on an algorithm first developed
by H. W. Kuhn [37], who in turn was inspired by two Hungarian mathematicians.
Therefore, the algorithm is also known as the Hungarian, the Munkres, or the
Kuhn-Munkres algorithm. In the original problem, the authors were trying to
match a set of n persons to a set of n jobs in the most cost-efficient way. Each
person had a specific cost for a job, which was represented in a cost matrix. As one
might imagine, the KMA can be used for many applications as long as a cost matrix
is provided. In our work, the cost matrix is an n× n matrix, where n is equal to
the number of UAVs, and the elements are calculated by the Euclidean distance
between a ground, and an air location. Once the matrix is created, some steps
are (repetitively) performed on the matrix. These steps are detailed in Algorithm
4.3. The basic idea behind these steps is to create zeros, which indicate a pair
(ground and air position) with the lowest cost possible. Throughout the process,
the zeros in the matrix are updated in such a way that the total cost (i.e. the total
distance travelled) is minimized. After some repetitions (depending on the matrix),
the algorithm terminates. The final set of zeros in the matrix correspond to the

38

4.2. Experiments & results

optimal assignment of ground to air positions. The KMA guarantees to find the
optimal solution within O(n3), which is a lot faster than the brute-force approach,
but still slightly slower than our heuristic. This difference will become important
when n (i.e. the number of UAVs) increases.

Algorithm 4.3 : Kuhn-Munkres CPU(numUAVs, groundLocations)

Require: groundLocations.size = numUAVs

Step 1 → create a matrix of size numUAVs × numUAVs, and fill it out with the
distance between the ground and air location

Step 2 → Subtract row minima: Subtract the smallest entry in each row from each
entry in that row in the distance matrix.

Step 3 → Subtract column minima: Subtract the smallest entry in each column
from each entry in that column in the distance matrix.

Step 4 → Cover all zeros with the minimum number of lines: Using the
smallest number of lines possible, draw lines over rows and columns in order to cover
all zeros in the matrix.

Step 5 → If the minimum number of covering lines is n, an optimal assignment of
zeros is possible and the process is finished. If the minimum number of covering
lines is less than n, an optimal assignment of zeros is not yet possible. In that case,
proceed to Step 6.

Step 6 → Determine the smallest entry not covered by any line. Subtract this entry
from each uncovered row, and then add it to each covered column. Then return to Step
4.

4.2 Experiments & results

Now that we have presented various algorithms to solve the assignment problem,
we will compare these algorithms and decide which one is the most adequate to
use. In order to do so, we perform various experiments using ArduSim. In our
experiments, we measure the calculation time, the total distance travelled, and
the number of flight paths crossing (i.e. a possibility of collisions). We are mainly
focussed on scalability and versatility. Hence, in our experiments, we changed
the number of UAVs and the airborne positions. These airborne positions are

39

4. Assigning airborne positions efficiently

calculated based on a specific formation. We mainly use three different formations
(i.e. linear, matrix, and circular), but experiment with irregular formations as well.

We start by measuring the calculation time. The results are shown in Figure 4.2,
and are exactly as we would expect. The brute-force algorithm cannot be used
due to time constrains, and our heuristic is faster than the KMA. We can conclude
that our heuristic will always provide an assignment within a reasonable timeframe.
Even for swarms up to 2000 drones, it only takes a few tens of a second. The same
cannot be said for the KMA. Here we see that, for 750 UAVs, the calculation time
is close to 16 minutes, which is definitely too much for any practical application.
Furthermore, we can observe (in Figure 4.3) that, for the KMA, the execution time
highly depends on the formation. The KMA performs notably worse when the
UAVs are spread out over one dimension (linear formation). Yet, whenever the
formation is more uniform over the two dimensions, the performance is improved.
Our heuristic, however, does not have this defect, and the calculation time is
independent of the formation itself (see Figure 4.4).

Figure 4.2: Average calculation time when considering all UAV formations and
assignment algorithms.

It is worth pointing out that the calculation time is only one part. It is also
important that the obtained assignment minimizes the total distance travelled. In
this regard, the KMA guarantees a minimal distance cost, whereas our heuristic
merely attempts to reduce it. Hence, the total distances travelled will always be
higher while using our heuristic (in rare cases it might be equal). Nevertheless,
to evaluate the effectiveness of our heuristic, it is interesting to compare both
distances. The results are shown in Figures 4.5,4.6,4.7. As we can see in these

40

4.2. Experiments & results

Figure 4.3: Calculation time using the KMA algorithm for various UAV formations.

Figure 4.4: Calculation time using the heuristic algorithm for various UAV forma-
tions.

figures, and as expected, the total distance travelled is somewhat higher when
using our heuristic. As shown on the zoomed-in view, the difference between the
two algorithms remains relatively constant. On average, this extra distance is of
2879 m, 2378 m, 2457 m for the circle, linear, and matrix formation, respectively.
Although this might seem a lot, one must remember that this is the total distance
sum for all UAVs (on average 1000 UAVs). Nevertheless, we can see that there is

41

4. Assigning airborne positions efficiently

a substantial difference between using the KMA and our heuristic, and w.r.t. the
total distance travelled, the KMA clearly outperforms the heuristic. Furthermore,
we can also observe that the total distance travelled is different for each formation.
This is because some formations, such as the matrix formation, are a lot more
compact (i.e. more UAVs fit in the same area) than others (linear).

Figure 4.5: The total distance travelled by all UAVs using the heuristic and KMA
for the Circle formation.

Figure 4.6: The total distance travelled by all UAVs using the heuristic and KMA
for the linear formation.

42

4.2. Experiments & results

Figure 4.7: The total distance travelled by all UAVs using the heuristic and KMA
for the matrix formation.

Another important metric is the number of flight paths that are crossing each
other. Notice that flight paths that cross other flight paths result in two UAVs
being potentially too close to each other, which might provoke a crash. Hence, an
assignment that separates the flight paths is considered better. It will also aid in
the take-off process, which we will discuss in the next chapter. We measured the
distances between the flight paths and counted the number of times two UAVs
are within 5 meters (a typical GPS error) of each other. The results are shown
in Figures 4.8, and 4.9. As shown, the KMA performs better for all formations.
In some cases, such as the circle, and the matrix formation, it nearly avoids all
collisions. In the linear formation, it is still performing better than the heuristic;
however, the number of collisions are (in general) still quite high. This is due to
its one dimensional property, which forces all the UAVs to move towards similar
directions, and hence there are more possible collisions.

Now that we have tested the assignment algorithms for scalability issues, we
also want to test them for versatility. In the previous experiments, we used
three different formations (linear, matrix, and circular). These formations are
all symmetric and quite regular. However, in real world applications, the chosen
formation might adopt another shape. Since we have seen that the formation does
influence the calculation time of the KMA and the number of flight paths crossing,
it is important that we also examine this behavior for more irregular formations.
Hence, we changed our regular flight formations and made them irregular in two
ways. First, the minimal distance between the UAVs in the air is smaller than on
the ground. This forces the UAVs to come closer during takeoff, whereas normally

43

4. Assigning airborne positions efficiently

Figure 4.8: A comparison of the heuristic vs. the KMA algorithm in terms of
potential collisions when varying number of UAVs (Circle and Matrix formations).

Figure 4.9: A comparison of the heuristic vs. the KMA algorithm in terms of
potential collisions when varying number of UAVs (Linear formation).

they spread out during that process. We also shifted the entire flight formation
in the x and y directions. In this way, the center of the ground location and the
center of the flight formation are not aligned. An example is given in Figure 4.10.
For this scenario, we used 25 UAVs, which were placed on the ground in a linear
formation with a minimum distance of 50 meters between them. In the air, we

44

4.2. Experiments & results

experimented with three formations (matrix, circle, and linear). The minimum
distance between the UAVs was reduced to 10 meters. For each formation we
performed one experiment without a shift of center, one with an offset of 50 meters
in the x direction, and one with an offset of 50 meters in the y direction. The
average results combining all these three experiments are shown in Table 4.1. The
results are similar to the results obtained with the regular formations. As we can
see, the heuristic is faster than the KMA. However, since the size of the swarm is
not too large, both algorithms still execute within an acceptable time. As expected,
the heuristic will increase the total distance travelled. In order to portray this in a
meaningful manner, we calculated the additional distance travelled. In the cases of
the irregular matrix and circle formation, this additional distance only represents
a small percentage. However, in the case of the irregular linear formation, there
is a significant difference of almost 15%. Furthermore, the number of potential
collisions is (again) much lower when using the KMA. In these specific cases, there
were actually no potential collisions while using the KMA, which makes the KMA
a safer option. This is especially true in the case of the irregular linear formation
where, when using the heuristic, 95 flight paths were crossing each other.

Gro
un

d
Fo

rm
at
ion

U

Air
ta
rg
et

V

Figure 4.10: An example of the first irregular formation, where the minimal
distance between UAVs is closer in the air than on the ground, and the centers of
the formations are not aligned.

Besides making the airborne formation irregular, we also experimented with an
irregular ground pattern. As shown in Figure 4.11, the UAVs on the ground are
now split up into two clusters. One cluster has intentionally more UAVs than the
other. In our case, the larger cluster consisted of 20 UAVs, and the small cluster
has only 5 UAVs. The distance between clusters was relatively large. We designed
the formation in such a way that the air formation lies in between the two clusters
on the ground. This ensures that all the UAVs have to move towards the center.

45

4. Assigning airborne positions efficiently

Table 4.1: Comparison between KMA and Heurisitic for irregular air formations

Linear Matrix Circle

Calculation time [ms]
KMA 4084 4616 3819

Heuristic 2274 2070 2210

Additional distance travelled[%] 14.7 4.3 2.2

Nr. potential collisions
KMA 0 0 0

Heuristic 95 15 9

In all our experiments, the minimal distance between the UAVs on the ground
was 50 meters, and in the air 10 meters. The calculation time and the additional
distance travelled values are similar to the previous experiment. The number of
collisions, however, has changed, as shown in Table 4.1. The general trend is still
the same, and the heuristic leads to a lot of flight paths crossing. However, the
main difference between this scenario and the previous one is that, here, even when
using KMA, the chances of collision are not null. In particular, for the specific case
of the linear formation, we find that there are many collisions (23).

Gro
un

d
Fo

rm
at
ion

U

Air
ta
rg
et

V

Figure 4.11: Example of an irregular ground pattern.

46

4.3. Summary

Table 4.2: Comparison between KMA and Heuristic for irregular ground patterns

Linear Matrix Circle
Nr. potential collisions

KMA 23 0 2
Heuristic 78 33 13

4.3 Summary

In order to manage a swarm of UAVs safely, and efficiently, various steps have to
be carried out. The first step, in any swarm application, is deciding which UAV on
the ground goes to which place in the target aerial formation. The final objective
is to make sure that the take-off process is quick and safe. Hence, we need to find
an algorithm that assigns the UAVs their airborne position in such a way that the
total distance travelled by all aircraft is reduced. To this end, we implemented and
tested three different algorithms. Our first algorithm uses a brute-force technique.
However, since there are many possible assignments, we quickly figured out that
this brute-force technique does not scale well. Starting from as little as 10 UAVs,
the calculation time is already excessively long. In order to reduce this calculation
time, we simplified the assignment problem and created a heuristic. This heuristic
is able to assign the airborne positions very quickly, and even for swarms up to
2000 UAVs it only takes a few seconds to calculate an assignment. However, the
assignment returned by the heuristic is not the optimal assignment, and therefore
the UAVs have to fly greater distances. In most cases, this increase in distance
is only a small percentage of the total distance. However, in the case of a linear
airborne formation, there is a significant increase of up to 23%. Therefore, we
searched for an algorithm that could provide us the optimal assignment, but was
still able to do that in a reasonable timeframe. The fastest algorithm that is
currently available is the Kuhn-Munkres algorithm (KMA). So, we implemented
this algorithm in our simulator ArduSim, and compared its performance with our
heuristic. The results clearly show that, when using the KMA, the total distance
travelled by all UAVs is reduced. We also observed that, while using the KMA,
the number of flight paths crossing is reduced. This is an important safety metric
because it indicates the number of possible collisions. These collisions will need to
be avoided during the actual takeoff. We could also observe that the KMA is slower
than our heuristic, but the effects are only significant when the swarm becomes
very large. In our experiments, we tested extensively for scalability, and we show
that the KMA can be used for swarms up to 500 UAVs. If the swarm becomes
any larger, the calculation time becomes excessively long (tens of minutes). For

47

4. Assigning airborne positions efficiently

all these experiments we used regular formations (i.e. linear, matrix, and circle).
However, in real-world applications, this might not be the case, and, therefore, we
also experimented with irregular formations. The results obtained followed the
same trend. Hence, we can say that the KMA is the most adequate assignment
algorithm in the majority of the cases. Only when one wants to use a very large
swarm, the calculation time of the KMA becomes excessively long, and in that
case our fast heuristic is a good alternative.

48

Chapter 5

Taking off

In the previous chapter, we outlined how airborne positions are assigned to a swarm
of UAVs. We provided different algorithms to calculate this assignment, and came
to the conclusion that, in most cases, the KMA is the most adequate algorithm.
During our experiments, we also noted that, given a certain assignment, some flight
paths may cross. Therefore, we cannot take off all the UAVs of the swarm at the
same time, as this would possibly result in a catastrophic crash. Hence, in this
chapter, we discuss and propose various procedures to take off all the UAVs in a
safe manner.

5.1 Analysis of possible take-off strategies

Our objective is that the UAVs reach their airborne position as fast as possible,
while remaining at a safe distance from other UAVs at all times. To this end,
we provide three different procedures to take off a UAV swarm. We start with a
sequential procedure, which is very simple and secure, but also very slow. Above
all, we created this procedure as an easy reference to assess the performance gains
of other approaches. In particular, we improved this procedure for a fast-sequential
procedure, which allows a few UAVs to take off at the same time. As the name
implies, the fast-sequential procedure will reduce the take-off time. However, the
best results will be achieved when most of the UAVs take off at the same time.
Hence, we created a semi-simultaneous takeoff procedure in which we first calculate

49

5. Taking off

which UAVs might collide, and then create groups of UAVs that can take off
together (i.e. those that do not collide).

All of our procedures are based on the master-slave pattern. In this pattern,
the master will instruct the slaves what they have to do. We always choose the
master to be in the center of the formation, since this will improve the network
performance (i.e. the distance between master and slave is smaller).

5.1.1 Sequential

The sequential take-off procedure is a rather simple one. Nevertheless, due to its
simplicity, it is often used for small swarms. In this procedure, the master UAV
first calculates the assignment (as detailed in chapter 4). After that calculation,
the master obtains a list defining where all the slaves have to go (their aerial
positions). The master will then sort that list in order of flight distance, i.e. the
slave that has to fly the furthest goes first, and the one that has to fly the shortest
goes last. The master will then iterate through this list. It will send a message to
the corresponding slave, instructing it to take off to its airborne position (obtained
by the assignment). The slave will respond that it is taking off, and move towards
that GPS location. For safety purposes, the UAV will first take off vertically up to
a certain altitude (typically 10 meters). Afterward, it will move diagonally towards
its airborne location. Once arrived at that location, the slave will inform the
master that it has arrived. When the master receives that message, it will instruct
the next slave in the list to take off. This process is repeated until all the slaves
have reached their target positions. Finally, the master also goes towards his own
airborne position, and the take-off procedure is then considered to be complete.

Since we start with the UAV that has to fly the furthest, there is no possibility
for a UAV to collide with another UAV (that is hovering). However, we have
to wait until the UAV reaches its airborne location, which might take a while.
As a result, this procedure will take a considerable amount of time to complete,
especially for large swarms.

5.1.2 Fast-sequential

In order to improve on the take-off time associated to the sequential procedure
described above, we have proposed a fast-sequential take-off procedure. This
procedure is still based on the sequential procedure, but improves it by reducing
the time gap between consecutive UAV take-offs. The first steps of the fast-
sequential procedure are the same as for the sequential procedure. Again, the
master obtains the position assignments for the target flight formation, and it
sorts them (based on travel distance) in a list. Then, it will instruct the slaves,

50

5.1. Analysis of possible take-off strategies

one-by-one, to take off and move towards their airborne position. Each slave will
first take off vertically (for safety reasons), and then move diagonally towards it
airborne location. However, in this approach, the slave sends a message to the
master once it has completed the initial vertical ascend. At this moment, the
master will already instruct the next slave to take off. This procedure is repeated
until all the UAVs have reached their airborne position. This procedure allows a
UAV to takeoff, while other UAVs are moving diagonally towards their airborne
position. Since, while using this procedure, various UAVs are moving at the same
time, the takeoff time is reduced w.r.t. the purely sequential procedure.

5.1.3 Semi-simultaneous

Although the fast-sequential take-off procedure already represents some improve-
ment, we can decrease the take-off time even further when we allow multiple UAVs
to start their maneuvers at the same time. However, this approach can lead to col-
lisions, which we will need to prevent beforehand. Hence, in our semi-simultaneous
take-off procedure, we will first detect if there will be a conflict in the flight paths
during take-off. Based on that information, we create batches (i.e. groups) of
UAVs that can safely take-off together. Finally, once obtained that information,
the master will go over the list of batches, and instruct all UAVs in a batch to
take-off and move towards its airborne position.

5.1.3.1 Collision detection algorithms

In order to detect conflicts in the flight paths of the UAVs we have created two
algorithms. Our first algorithm, named Collisionless Swarm Take-off Heuristic
(CSTH), is a heuristic that calculates the distance between some points on the
flight paths of a pair of UAVs. We start with a baseline implementation CSTH,
and then explain two different improvements that decrease the calculation time so
as to improve performance. Our other algorithm, called Euclidean distance-based
Collisionless Swarm Take-off (ED-CST), calculates the minimal distance between
the two flight paths (based on the Euclidean distance between the two lines). It is
important to note that, in both algorithms, we are assuming that the flight paths
are straight lines (in 3D). This is however not a severe restriction, since this is
almost always the case for VTOL UAVs.

We start with the most basic version of our CSTH. Although we will quickly
discuss ways to improve it, this baseline version will allow us to define some
basic concepts and, in turn, it will serve as a reference to see the impact of our
improvements. In our CSTH algorithm, we discretize the flight path of each UAV.
We consider each flight path as a series of points. These points are determined

51

5. Taking off

by calculating the (normalized) direction vector between the airborne position
(pa) and ground position (pg), and displacing from the ground position up to the
airborne position using this direction vector. In our approach, we scale the direction
vector by a scalar number, which we call the granularity (G). Depending on the
granularity, we have more or less points between pa and pg. In Figure 5.1, we can
see an example of intermediate locations in the trajectory that a drone must follow
to reach its aerial destination. As can be seen in the image, the distance between
two consecutive points will depend on the actual granularity value adopted.

Pg

i

i+1

i+...

n-1

n

G

Pa

Figure 5.1: Example of a set of intermediate positions in the take-off flight path.

In our CSTH algorithm, we will use each intermediate position of one UAV
to check the distance towards each position of another UAV. If this distance is
shorter than a certain safety margin, we list this pair of UAVs as a pair that
can potentially collide. Once we have detected a collision (in this pair) we no
longer need to calculate the distances between the other points. In Figure 5.2, we
illustrate this process. Of course, calculating the distances between all the points
is a computational, expensive process. To make the process faster, we can check
fewer points, which corresponds to a larger granularity. However, this will also
increase the possibility of missing a collision. Thus, in the experiments, we will
examine which granularity can be used.

In algorithm 5.1, we provide the pseudocode for our CSTH algorithm. It
requires a prior assignment, which we already discussed in chapter 4. It will use
that assignment to get the ground and air position of all the UAVs. Then, for each
UAV, it will check the distance between its current intermediate point, with all
the points of the other UAVs flight path. Since, the distances calculated between
drone i and j will be exactly the same as the distances between drone j and i, we
do not need to check those combinations. To keep track of which UAVs we already
checked, we use the list “uncheckedUAVs”.

52

5.1. Analysis of possible take-off strategies

Figure 5.2: Comparison between intermediate positions in the flight trajectories of
two drones.

Due to the large amount of points that need to be checked, this algorithm will be
quite slow. Hence, we propose two optimizations. Our first optimization will reduce
the search range, and in our second optimization, we remove trajectories that are
divergent (and hence will never collide). We start by reducing the search range. We
denominate it Restricted Search Range (RSR). In the baseline CSTH algorithm,
we check each intermediate position of one UAV with all the other points of the
other UAV. This is, however, a very costly operation, and most importantly not
completely necessary. We can improve the calculation time significantly by simply
restricting the number of points. In our solution, we take the altitude position of
the current aircraft, and discard all the points with an altitude outside a certain
range. Determining this range (similar as with the granularity) will need some
testing; but once fine-tuned, it will result in a faster execution of the algorithm
without loss of accuracy. In Figure 5.3 we illustrate our RSR optimization visually.
As can be seen, an intermediate position of the first drone is compared with only
four positions for the second one, thus reducing the number of calculations to be
performed.

Going deeper into how this optimization works, the list with the identifiers of
all the drones participating in the swarm mission is traversed in the same way as
in the first version. For each of the intermediate points along the path of the drone
under analysis, we obtain the value of its Z coordinate (equivalent to its altitude).
To this value, we will add and subtract the value of the range parameter that the
user has previously assigned to obtain the minimum and maximum values of our
search interval. Furthermore, we have to take into account that the minimum and
maximum values of the interval must be equal to or less than the point pa, and
higher than pg. Once the altitude range is set, we only compare points within this

53

5. Taking off

Algorithm 5.1 CSTH(assignment)

Require: assignment
1: uavIDs = uncheckedUAVs = assignment.getIDs()
2: for id in uavIDs do
3: uncheckedUAVs.remove(id)
4: position = assignment.getGround(id)
5: air = assignment.getAir(id)
6: while distance3D(position, air) > granularity do
7: position = displace(position)
8: for nextUAV in uncheckedUAV do
9: nextPostion = assignment.get(nextUAV)

10: nextair = assignment.getAir(nextUAV)
11: while nextpos.distance3D(nextair) > granularity do
12: nextPosition = displace(nextPosition)
13: if distance3D(position, nextPosition) <= safetyDist then
14: collisionList.add(uavId)
15: goToLine(1)
16: end if
17: end while
18: end for
19: end while
20: end for
21: Return: collisionList

range of values. Lastly, the system used to check for collisions will be the same
as the one discussed in its initial version. In algorithm 5.2, we show the updated
version of our algorithm.

Our second optimization, Divergent Trajectory Detection (DTD), works (in
parallel) on reducing the number of drones to be checked. When we have to verify
fewer pairs of UAVs it will, of course, result in a faster execution time. Since we are
assuming that all the UAVs will take off in a straight line, we can determine quickly
whether the two flight paths are diverging or not. In the case that two flight paths
are diverging, the distance between the points will only increase. Hence, we will
never find a distance smaller than the safety distance, so we can discard this pair
of flight paths completely. To implement this idea we will need to obtain, from
the two aircraft whose paths are under comparison, their first two consecutive
intermediate positions, and calculate the distance between those points. We can
then find two different situations depending on the values of the resulting distances:

54

5.1. Analysis of possible take-off strategies

R
an

ge

Figure 5.3: Overview of the CSTH+RSR approach.

(i) the distance between the points increases (i.e. the flight paths diverge), or (ii)
the distance between the points decreases (i.e. the flight paths converge). In the
first case, we can directly determine that the two UAVs will not collide. In the
second case, we will need to check for a collision as before. In algorithm 5.3, we
show the updated version of our algorithm.

The two optimizations we have presented separately work based on two different
principles: our first optimization (i.e. RSR) reduces the number of comparisons
between two UAV trajectories, and our second optimization (i.e. DTD), reduces
the number of pairs to compare. Hence, we are able to combine them and reduce
the calculation time even further. Such improved version has been named as
CSTH+RSR+DTD, and is detailed in algorithm 5.5. In this version, we first make
a list containing those UAVs whose trajectory is divergent with respect to the
drone that is being examined in the first loop. Next, we determine a range of
values from the height of the first intermediate position of the aircraft. Finally, we
compare this position with the rest of the locations of the other drones that are
within the range of values created. If a potential conflict is detected, the affected
drones are stored in the collision list.

Our CSTH+RSR+DTD algorithm will be able to calculate quickly which UAVs
may collide. However, it is a heuristic and, depending on the granularity adopted,
it might miss some collision. Hence, in order to validate our CSTH+RSR+DTD
algorithm, we also need to know the exact solution. This will allow us to fine-tune
the CSTH+RSR+DTD algorithm (i.e. choose a granularity and search range).

55

5. Taking off

Algorithm 5.2 detectCollisionCSTH+RSR(assignment)

Require: assignment
1: uavIDs = uncheckedUAVs = assignment.getIDs()
2: for id in UAVIDs do
3: uncheckedUAV.remove(id)
4: position = assignment.getGround(id)
5: air = assignment.getAir(id)
6: while distance3D(postion, air) > granularity do
7: position = displace(position)
8: for nextUAV in uncheckedUAV do
9: nextPostion = assignment.get(nextUAV)

10: minz = min(minHeight,position.z - range)
11: maxz = max(maxHeight,position.z + range)
12: while nextPosition.z <= maxz do
13: if nextPosition.z <= minz then
14: nextPosition = displace(nextPosition)
15: continue
16: end if
17: if distance3D(position, nextPosition) <= safetyDist then
18: collisionList.add(uavId)
19: goToLine(1)
20: end if
21: nextPosition = displace(nextPosition)
22: end while
23: end for
24: end while´
25: end for
26: Return: collisionList

Hence, we propose another algorithm (ED-CST) which will determine the minimal
distance between the two flight trajectories by directly calculating the minimum
Euclidean distance between the two lines. Since this approach does not discretize
the flight path, it will provide us the exact answer and never miss a collision. We
will first check the minimal distance between the two (infinite) lines along the flight
paths. If that minimal distance is smaller than our safety margin, then we need to
verify whether the points (where the distance is minimal) on the infinite lines are
actually on the flight paths. If this is the case, then the pair of UAVs is added to
the collision list.

56

5.1. Analysis of possible take-off strategies

Algorithm 5.3 CSTH+DTD(assignment)

Require: assignment
1: uavIDs = uncheckedUAVs = assignment.getIDs()
2: for id in uavIDs do
3: uncheckedUAVs.remove(id)
4: position = assignment.getGround(id)
5: air = assignment.getAir(id)
6: possibleCollisionList = DTD(assignment, id, uncheckedUAVs)
7: while distance3D(position, air) > granularity do
8: position = displace(position)
9: for nextUAV in possibleCollisionList do

10: nextPostion = assignment.get(nextUAV)
11: nextair = assignment.getAir(nextUAV)
12: while nextpos.distance3D(nextair) > granularity do
13: nextpos = displace(nextpos)
14: if distance3D(position, nextpos) <= safetyDist then
15: collisionList.add(uavId)
16: goToLine(1)
17: end if
18: end while
19: end for
20: end while
21: end for
22: Return: collisionList

We start by calculating the minimal distance between two infinite 3D lines. In
general, three different cases are possible: (i) the lines are parallel and the distance
between the lines will always be the same, (ii) the lines intersect at one point and
the minimal distance is zero, (iii) the lines cross. The easiest case is checking
whether the trajectories of two drones are parallel. Here, we only have to verify
that the vectors of each of the drones point in the same direction, that is, that
their three coordinates are exactly the same. Although it is the least likely case, in
such a situation we would confirm that there is no danger of collision between said
drones as long as the distance between lines exceeds the safety threshold.

For the remaining cases, which are the most typical, we use the following
formula to calculate the minimum distance between two three-dimensional lines:

d(r, s) =
|[vr⃗, vs⃗, P Q⃗]|
vr⃗ × vs⃗

(5.1)

57

5. Taking off

Algorithm 5.4 DTD(assignment, id, uncheckedUAVs)

1: uav1 p1 = assignment.getGround(id)
2: uav1 p2 = displace(uav1 p1)
3: for uav i in uncheckedUAV do
4: uav i p1 = assignment.getGround(nextId)
5: uav i p2 = displace(uav i p2)
6: d1 = distance3D(uav1 p1, uav i p1)
7: d2 = distance3D(uav1 p2, uav i p2)
8: if d1 > d2 then
9: possibleCollisionList.add(uav i)

10: end if
11: end for
12: Return possibleCollisionList

In this formula, the two lines in the 3D space are represented by letters r and
s, while P refers to a point on the line r (pgr), and Q to another point on the line
s (pgs). In the numerator we must calculate the determinant composed of the two
vectors for the two lines, and the vector defined through points P and Q. In the
denominator we calculate the cross product of the vectors of both lines. Once both
values are obtained, we divide them to obtain the minimum distance between both
lines.

Once we know the minimal distance between infinite lines r and s, determining
whether there is an actual collision requires checking: (i) if the distance is smaller
than the safety distance, and (ii) if this minimal distance occurs within the segment
of the flight path. So, we need to calculate the points that correspond to this
minimal distance on both flight trajectories, and verify if these points are above
ground level and below the airborne position. In order to calculate these points,
we create a line that is perpendicular to the lines of each of the UAVs under
comparison. This way, the points found on each of the lines are the ones that
actually achieve the minimum distance between them. Figure 5.4 shows the new
line segment representing the minimum distance between lines r, and s in a 3D
space.

To obtain the required points, we need to perform a set of operations. First, we
create the equations of the lines formed by the trajectories of the two UAVs we are
comparing. After this, the distance between them will be determined as follows:{︃

Line 1 : r = pg1 + t1 · d1
Line 2 : s = pg2 + t2 · d2

(5.2)

58

5.1. Analysis of possible take-off strategies

Algorithm 5.5 CSTH+RSR+DTD (assignment)

Require: assignment
1: uavIDs = uncheckedUAVs = assignment.getIDs()
2: for id in uavIDs do
3: uncheckedUAV.remove(id)
4: possibleCollisionList = DTD()
5: position = assignment.getGround(id)
6: air = assignment.getAir(id)
7: while distance3D(position, air) > granularity do
8: position = displace(position)
9: for nextUAV in possibleCollision do

10: nextPostion = assignment.get(nextUAV)
11: minz = min(minHeight,position.z - range)
12: maxz = max(maxHeight,position.z + range)
13: while nextPosition.z <= maxz do
14: if nextPosition.z <= minz then
15: nextpos = displace(nextPosition)
16: continue
17: end if
18: if position.distance3D(nextPosition) <= safetyDist then
19: collisionList.add(uavId)
20: goToLine(1)
21: end if
22: nextPosition = displace(nextpos)
23: end while
24: end for
25: end while
26: end for
27: Return: collisionList

The letters p refer to the points where the UAVs start the diagonal displacement,
while the letters d belong to their normalized vectors. In each of these equations,
we find an unknown, symbolized by the letter t. Second, we obtain the vector
perpendicular to both lines by taking the cross product of the vectors of the two
lines:

n = d1 × d2 (5.3)

Then, we calculate the cross product between each of the vectors of the lines
with respect to the vector obtained in the previous step. In this way, we create a

59

5. Taking off

Figure 5.4: Line segment corresponding to the minimal distance between two lines
in a 3D space.

plane that is perpendicular to both lines.{︃
n1 = d1 × n
n2 = d2 × n

(5.4)

Therefore, the intersecting point c1 of Line 1 with the above-mentioned plane,
which is also the point on Line 1 that is nearest to Line 2, is given by Equation
(5.5). The point (c2) on Line 2 nearest to Line 1 is calculated similarly.{︄

c1 = pg1 +
(pg2

−pg1
)·n2

d1·n2
× d1

c2 = pg2 +
(pg1

−pg2
)·n1

d2·n1
× d2

(5.5)

Now that we have the coordinates, we need to check whether those points are
on the flight path. We can find three different cases:

1. If the coordinates of both points are above pg and below pa, we confirm that
there is a potential collision;

2. If both points are outside this range, we say that there is no danger of
collision.

60

5.1. Analysis of possible take-off strategies

3. If one of the two points is within the range, and the other is not (either
below the pg, or above the aircraft’s pa), the point outside the range will
be replaced by the nearest point within range. We then check the distance
between both points, and if it is smaller than the safety distance, we confirm
that there is a collision.

Notice that our ED-CST algorithm is able to calculate the exact minimal
distance between two flight paths. However, due to the many operations required,
it will typically be slower than the CSHT+RSR+DTD algorithm.

5.1.3.2 Batch generation strategy

Now that we have two different algorithms to determine whether the UAVs may
collide, we still need to groups the UAVs that do not collide in different batches.
Given the list of collisions obtained by either of the two collision detection algorithms
proposed, we now detail an algorithm that is able to define these batches. In this
way, aircraft belonging to a same batch are allowed to take off simultaneously,
without any conflict between their trajectories.

We visualize our algorithm using a flowchart in Figure 5.5; notice that it uses
recursion in order to fill the batches. In particular, our algorithm needs a list of all
the UAVs (which can be easily obtained from the assignment), and also the list of
collision pairs. For each UAV, we check if it appears in the list of collisions. If this
is the case, we directly insert it into a group called (G2). This group is a temporary
group that contains all the UAVs that do not maintain a safety distance. If the
UAV does not appear in the collision list, it will be placed in group G1. Since no
UAV in G1 will collide, they can be put in the first batch. Now we need to split
the UAVs in G2 in various batches. In the best-case scenario, G2 is empty, and
we can end the algorithm directly. Similarly, if G2 contains only one UAV, it is
directly placed in the second batch, and we can end the algorithm. In most of the
cases, however, G2 will maintain more than one drone. This means that we need
more than two batches to separate all the UAVs in collision-free groups. Using
recursion, we can simply run our algorithm again, but this time we only use the
UAVs that are in G2. They will again be separated into groups, and eventually
placed in the batches. We stop the recursion when G2 is empty or only contains
one UAV.

Figure 5.6 shows an example of the batch generation mechanism in a swarm
composed by four aircraft. Using our collision detection algorithm, we obtained
the information that there is a possible risk of collision between the first and the
second UAV, as well as between the third and the fourth UAVs. We start the
batch process with UAV 1. Since there is a risk of collision, UAV 1 is placed in

61

5. Taking off

Size(G2)
< 2

Yes

No

uav_list <= UAVs from G2 list

No

Start

Push G2 to stack

end

Push G2 to stack

Size(G2)
== 1

Push G1 to stack

Size(col_list)
== 0

Yes

i <
Size(uav_list)

Add to G2 list

Yes

No

UAV(i)
appears in
col_list?

Add to G1 list

Yes

i++

No

uav_list <= UAVs swarm

col_list <= Collisions
obtained from detection

algorithm

Yes

No

col_list <= Collision
list generated
from uav_list

i = 0

Figure 5.5: Flowchart representing the batch generation mechanism.

batch B. We continue with UAV 2, this UAV has no risk of collision (we already
solved the collision with UAV 1). Therefore, it is placed in batch A. Next is UAV
3; this UAV collides with UAV 4 and, therefore, it is placed in batch B. Finally,
UAV 4 has no risk of collision, hence it is placed in batch A. This ends the first
iteration of the batch process. We start the second iteration of the batch process
by going over all the UAVs in batch B, and confirm that they do not collide. Since

62

5.2. Experiments & results

UAV 1 and UAV 3 do not collide, we do not have to create additional batches, and
so we end the batch process.

B
1

A
2

B
3

A
4

Figure 5.6: Example of take-off batch grouping (A, B) using our algorithm.

5.1.3.3 Flight path of the UAV

Finally, we briefly have to address the flight path followed by a UAV in our semi-
simultaneous take-off procedure. For the sake of improved safety, the flight path
will be split into three straight-line segments, which are shown in Figure 5.7. First,
the UAV will ascend vertically up to a safety altitude SA1. We do this in order
to clear it from surrounding obstacles close to the ground, or even people located
nearby. Then it moves diagonally, until it reaches its position SA2. Finally, the
UAV moves upwards to safely fit in its final position. In this way, we can avoid
collision between a hovering UAV and one that is moving diagonally in cases of
extremely long paths.

5.2 Experiments & results

In the previous section, we presented three different approaches for taking off
a swarm of UAVs: sequentially, fast-sequentially, and semi-simultanously. We
will now present performance results to assess their usability through different
experiments. We start by testing the influence of the granularity in our CSTH
algorithm. We then perform a similar test to examine the influence of the search
range for our RSR optimization. Afterward, we compare the various versions
of the CSTH algorithm. After that, we compare our ED-CST algorithm to the
CSTH+RSR+DTD algorithm. Finally, we compare the three different take-off
procedures.

63

5. Taking off

SA1

pg

SA2

pa

Figure 5.7: Illustration of the flight path to be taken for a UAV during take-off.

5.2.1 Influence of the granularity

As explained earlier, the granularity has an important influence on the performance
of the CSTH algorithm. In principle, we would like the granularity to be as coarse
as possible since this will reduce the number of points we need to check, thereby
reducing the calculation time. Yet, we cannot increase the granularity too much
because then the possibility of missing a collision will increase. Therefore, we
perform an experiment (in simulation) in order to observe the impact of enforcing
different granularities. In our experiment, 200 UAVs are placed randomly on the
ground with a minimal distance of 10 meters between them. We use three aerial
formations (circular, linear, matrix) with a minimal distance between the UAVs
of 20 meters. The safety distance between the UAVs that must be maintained
at all times is set to 8 meters. We start with a granularity of one meter, and
increase this value by one up to 10 meters. During the experiments, we measured
the calculation time, and also the number of collisions that remain undetected. We
were able to calculate the undetected collisions by using our ED-CST algorithm
that returns the exact answer.

Results are shown in Figure 5.8 and Figure 5.9. As expected, the calculation
time can be reduced significantly by increasing the granularity. It is important to
note that, in Figure 5.8, the values shown are represented on a logarithmic scale
because of the substantial differences in calculation time between the three available
formations. As one can see, the calculation time of the linear formation is the
highest. This is for the sole reason that, while using a linear formation, the flight
paths are longer. Hence, there are more points that need to be compared, and this
in turn will result in a longer calculation time. In Figure 5.9 we show that increasing
the granularity cannot be done without risks. Starting from a granularity of 3 m,
there are already a few undetected collisions. When we increase the granularity,

64

5.2. Experiments & results

the number of undetected collisions will increase. In some cases, however, the
number of undetected collisions will drop slightly, as shown in Figure 5.9 with
granularity 10 meters. This can happen due to the points we select on the flight
path. Nevertheless, in general, the number of undetected collisions will keep
increasing when the granularity is increased. Thereby, it is preventing the take-off
maneuver of the UAV swarm from being reliable. Hence, in order to detect all
collisions, the granularity is limited to two meters. Which still allows us to reduce
the computational time overhead by half.

Figure 5.8: Calculation time according to their granularity.

5.2.2 Influence of the search range

In our first optimization (i.e. RSR) we improve the calculation time of our algorithm
by restricting the search range. Similar to the granularity, the actual search range
we use will influence the calculation time and the number of undetected collisions.
The simulation parameters used in these tests are exactly the same as in the
first experiment. In addition, to obtain the intermediate positions, the value of
the granularity resulting from the previous experiment (2 m) has been used. In
Figure 5.10 we show the results from our experiments. As expected, for a very
small search range, there will be undetected collisions. When we increase the search
range, the number of undetected collisions decreases. We can observe that, in the
case of a circular formation, we never miss a collision, and, in the case of the linear
formation, only a few are missed. This is most likely due to the fact that there
are fewer collisions to detect in the first place. Of course, once the search range

65

5. Taking off

Figure 5.9: Number of potential collisions that would remain undetected when
increasing the granularity value.

exceeds the value of the safety margin (in this case 8 meters) we will detect all
the collisions. Hence, we can safely say that, independently of the formation, the
search range must be set as equal to the safety margin. Depending on the altitude
of the airborne position, this behavior can reduce the calculation time significantly.

Figure 5.10: Undetected collisions according to interval size used.

66

5.2. Experiments & results

5.2.3 Influence of optimization of CSTH

Next, we want to measure the influence of our optimizations. Therefore, we perform
a similar experiment as before. However, in this case, we also change the number of
UAVs. In this way, we can also make statements about the scalability of our algo-
rithm. We performed this experiment for all different versions: CSTH, CSTH+RSR,
CSTH+DTD, CSTH+RSR+DTD. Although, we know CSTH+RSR+DTD will
be the fastest, we perform this experiment to assess the relative impact of our
optimizations.

We start with the linear formation. As already shown before, this formation in
general takes more time to calculate (due to the long distance). Hence, for this
formation, our optimization is the most important. As shown in Figure 5.11, we
can see that, up to 75 UAVs, the influence is minimal. For larger swarms, however,
the influence becomes visible. Our baseline version of CSTH, with calculation
times in the tens of minutes, is simply too slow. However, using our optimization,
we can reduce this time significantly. In this formation, we can also observe that
our RSR optimization outperforms the DTD optimization. This is mainly because,
in a linear formation, half of the UAVs will move in the same direction. Hence,
there are not many flight paths that are diverging. Of course, the combination of
both yields the best results.

Figure 5.11: Calculation time for the linear formation when varying the number of
UAVs in the swarm.

We now, proceed with the circle formation. The results are shown in Figure 5.12,
being very similar to the ones we observed for the linear formation. However, there

67

5. Taking off

are two noticeable differences. First of all, the calculation time is, in general, a lot
faster. As explained earlier, this is related to the total distance the UAVs have to
fly. Furthermore, we can also observe that while using a circle formation, the DTD
optimization outperforms the RSR optimization. In this formation, there are more
flight paths that are diverging, and therefore we can perceive more benefits from
this optimization.

Figure 5.12: Calculation time for the circular formation when varying the number
of UAVs in the swarm.

Finally, we perform the experiment with the matrix formation. Results are
shown in Figure 5.13. Since, this formation is very compact, the calculation time
is even shorter. Besides that, the results stay inline with our previous findings.

5.2.4 Comparison ED-CST and CSTH+RSR+DTD

Now that we have examined the impact of the two optimizations proposed for
the CSTH algorithm, we want to compare it with respect to our ED-CST algo-
rithm. Therefore, we performed a similar experiment as before, using both the
CSTH+RSR+DTD, and the ED-CST algorithm. From our results, shown in
Figure 5.14, and Figure 5.15, we can observe that our heuristic is faster. Notice
that this is quite normal because the ED-CST algorithm provides us with the exact
minimal distance between the two flight paths, whereas our heuristic obtains just
an approximation. However, our objective is to be able to take off multiple UAVs at
the same time, and with the use of our heuristic we are able to do that as well. So,
in most cases, we recommend using the CSTH+RSR+DTD algorithm. However,

68

5.2. Experiments & results

Figure 5.13: Calculation time for the matrix formation when varying the number
of UAVs in the swarm.

when comparing the two algorithms for the linear formation (see Figure 5.16, we
observed that the ED-CST was actually faster. This is (again) due to the longer
flight paths. Given this result, we must conclude that there is a tipping point
where it will be faster to use the ED-CST algorithm. This tipping point will mainly
depend on the length of flight paths, but also on how much the DTD optimization
can be leveraged.

Figure 5.14: Calculation time for the circular formation.

69

5. Taking off

Figure 5.15: Calculation time for the matrix formation.

Figure 5.16: Calculation time for the linear formation.

5.2.5 Comparison of take-off procedures

In our final experiment, we compare our proposed take-off procedures. Again we
will test for different formations, and for a different number of UAVs. For the
sake of completeness, when comparing the different procedures, we also include the
calculation time (which is only relevant for the semi-simultaneous procedure). We

70

5.3. Summary

start with the matrix formation. As shown in Figure 5.17, our semi-simultaneous
approach reduces the take-off time drastically. When using the traditional sequential
take-off procedure, it would take almost 25 minutes for 50 UAVs to take off. In
this time, the batteries are already depleted. However, when using our semi-
simultaneous procedure, it only takes three minutes. We can also observe that,
although the semi-sequential procedure does reduce the take-off time, it does not
reduce it enough.

Figure 5.17: Take-off times for the matrix formation.

The matrix formation, however, is a very compact formation and, hence, the
UAVs do not heave to fly far. When we compare the results with the circle
formation, we can see that it takes longer for all procedures to take off all UAVs.
Figure 5.18 shows us that it now takes almost 45 minutes to take off 50 UAVs using
the sequential procedure. Nevertheless, using our semi-simultaneous procedure, we
can reduce this time to about 5 minutes.

Finally, in the linear formation, the results are very similar. However, due to the
long distance the UAVs have to fly to reach their location in the linear formation,
it now also takes a long time while using our semi-simultaneous procedure. Even
thought the takeoff time is reduced by a factor of 3.5, in this specific case it remains
excessive.

5.3 Summary

Using the knowledge from the previous chapter, we gain awareness about which
UAV on the ground needs to go to each aerial position. However, this does not

71

5. Taking off

Figure 5.18: Take-off times for the circle formation.

Figure 5.19: Take-off times for the circle formation.

tell us in which order we need to take off the UAVs. Hence, in this chapter, we
discussed various take-off procedures. During the take-off, it is important that
the UAVs maintain a safe distance from each other in order to prevent collisions.
Therefore, we started with a sequential take-off procedure. This procedure is often
used because it is simple to implement and very safe. However, when the swarm
becomes only a little bit larger, this take-off procedure takes a lot of time. In order
to solve this problem, we first introduced a fast-sequential take-off procedure. In this

72

5.3. Summary

procedure, UAVs are allowed to take-off with just a small time gap between them.
This decreases the take-off time significantly. However, we are able to decrease
the take-off time even further if we let the UAVs take-off simultaneously. The
main issue that arises is that it introduces the possibility of collisions. Therefore,
we create two algorithms to detect those collisions beforehand, and let the UAVs
take off in groups. One of our algorithms is a heuristic, which we optimized using
two different techniques. We tested our algorithms extensively, and were able
to fine-tune some parameters to achieve a faster execution. We compared this
heuristic with another algorithm we developed, which is based on calculating the
Euclidean distance between the flight paths. Since it involves more calculations, it
is generally slower than our heuristic. Yet, in our experiments, we demonstrate
that, in certain cases (very long flight paths), it might actually perform better.
After testing the two collision detection algorithms extensively, we compared the
three take-off procedures. As expected, our semi-simultaneous take-off procedure
was the fastest. Using the knowledge of this chapter, we are now able to take off a
(large) swarm of UAVs safely and quickly.

73

Chapter 6

Maintaining the swarm coherent

In the previous chapters, we were concerned with taking off a swarm of UAVs. Now
that we know how to do this safely and efficiently, we can start the actual flight. In
many applications, the flight will be pre-planned and determined by a number of
GPS locations that the UAVs will visit. Each of these GPS locations are commonly
referred to as a waypoint, and the conjunction of waypoints as a mission. Going
from one waypoint to another with one UAV is relatively straightforward. However,
when using a swarm of UAVs, we need to ensure that the swarm stays coherent.
For instance, if one UAV goes slightly faster than the others, over time, the swarm
formation will be disrupted. Hence, some synchronization between the UAVs is
necessary. Therefore, we make use of the Mission-Based UAV Swarm Coordination
Protocol (MUSCOP). This protocol was initially published in [38], and makes
use of the master-slave pattern to keep the swarm synchronized at each waypoint.
Although this protocol is able to maintain a swarm coherent during a mission, it
experiences some issues, which we address in this chapter. The original version of
MUSCOP assumed that all the UAVs are accessible at all times. However, during
a mission, some UAVs might become inaccessible, for instance, due to: a crash,
battery depletion, network errors, etc. In the original version of MUSCOP an
error in a single UAV would make the entire swarm inoperable. Our enhancement
ensures that the remaining swarm elements will continue their mission. Since our
work is based on the original version of MUSCOP, we will start by offering an
overview of that version. Then we introduce our contribution. Afterward, we

75

6. Maintaining the swarm coherent

perform experiments with the enhanced version to assess its performance, and
present our results, with discussion.

6.1 The original version of MUSCOP

In this section, we present the original version of MUSCOP. We will, however,
only present the parts that are necessary to understand our enhancements. A full,
in-depth explanation of the original version of MUSCOP can be found in [38].

The objective of the MUSCOP protocol is to maintain a stable flight formation
when a swarm of UAVs follows a preplanned mission. The protocol uses a master-
slave model to synchronize the swarm at each waypoint. Only when all the UAVs
arrive at a waypoint does the master issue the command to go to the next waypoint.
In between the waypoints, all the UAVs are following their own mission. This
mission is calculated before taking off, and it is a modification of the original
mission defined by the user. In particular, the modification takes the relative
position of each node in the swarm into account. Throughout the flight, messages
are broadcasted periodically by both master, and slaves. Overall, there are six
different types of messages:

• Data: This message is sent from the master to the slaves. It contains the
original mission, as well as information such as position in the formation, for
the slaves to calculate their own mission.

• DataAck: Acknowledgement messages are used so that the master knows
the slave received a certain packet.

• ReadyToFly: Once all the slaves have received their data message and
acknowledged it, the master will start sending ReadyToFly messages. These
messages will prepare the slaves for the take-off.

• ReadyToFlyAck: The previous message is acknowledged by this message.

• ReachWaypointAck: Once all the UAVs have taken off and have reached
the first waypoint, the slaves will start sending this message. The message
contains the number of the last waypoint that has been reached.

• MoveToWaypoint: The master listens and waits until all the UAVs have
reached the next waypoint. When this happens, the master will start sending
messages of the MoveToWaypoint type. When a slave receives these messages,
it will start flying to the next waypoint.

76

6.2. Proposed resilience mechanism

The listed messages are received by all the other UAVs within range. This
information, along with the location of the UAV, is used in order to determine if
the UAV should move to the next waypoint, or merely wait at a waypoint.

6.2 Proposed resilience mechanism

Although the above-mentioned version of MUSCOP is able to maintain the swarm
coherent throughout the mission, it assumes that all the UAVs will always receive
the messages ReachWaypointAck, and MoveToWaypoint. However, due to commu-
nication errors, depleted batteries, or potential crashes, a drone might not receive
and/or send the messages. In that case, the entire swarm would wait indefinitely
(in practice, until the batteries are depleted) at a waypoint. This behavior is of
course undesired, and hence we will enhance the MUSCOP protocol. In order to
do so, we must distinguish between two different cases: (i) the master can fail, and
(ii) one (or multiple) slaves can fail. We start by explaining the latter, since this is
the easiest case.

During the assignment (explained in 4), the master UAV creates a list of all the
UAVs that are joining the mission. The same list is used by MUSCOP to verify
if all of the slaves have reached the last waypoint. In order to make MUSCOP
resilient against UAVs failing during the mission, it suffices to update a copy of
this list. In our enhancement, every UAV maintains a list with the ids of the
other UAVs, along with a timestamp (for each UAV). This timestamp is updated
each time a message is received from that UAV. At each waypoint, this list is
checked and, if the time elapsed since the last timestamp exceed a certain threshold
(assigned empirically in later experiments, and referred to as TimeToLive), we
assume that that UAV has failed. Therefore, such UAV will be excluded from the
list. Once all the other “alive” UAVs have arrived at the waypoint, the master will
give the order to continue the mission (through message MoveToWaypoint). This
(simple) update works efficiently, and allows the entire swarm to continue their
mission even in the worst case when all the slaves fail. However, it assumes that
the master is always available.

In order to solve the issue of a failing master, we should execute various steps.
First, we must detect that the master is not able to send or receive messages.
We do this in the same manner as a described above, by maintaining a list of
timestamps. If the master has failed, a new master should be chosen. Finally, that
new master should change its role and start sending the order to move towards
the new waypoint. For the best performance of the swarm, the master should
be the UAV in the center of the formation. This UAV will always be the UAV
that is closest to all others in terms of radio range, as this will improve network

77

6. Maintaining the swarm coherent

performance. Hence, choosing the new master requires determining which UAV
is closest to the center of the formation. We calculate this during the assignment
phase, when the UAVs are still on the ground, since this is the safest moment
to do so. We order the above-mentioned list with timestamps according to the
distance to the center. Since all the UAVs are maintaining their own list, they will
notice when they did not receive a message from the master. Once the timeout
is exceeded, the master will be removed from the list (just as with the slaves).
However, if the master is removed, the UAVs will verify if they are on top of the
list (i.e. the closest to the center). If a UAV notices that it is on top of the list,
it will change its role, and become the new master. The other slaves will receive
the order to move towards the next waypoint as usual, and the entire swarm will
complete the mission. The behavior of this protocol is formalized in Algorithm 6.1,
which uses pseudocode to adequately detail our extension to MUSCOP.

It is important to note that, since this process is executed in all the UAVs, there
is a possibility that the outcome is not the same for all of them. Most commonly,
the UAVs in the swarm will fly close enough to each other so that they can receive
all the messages that are broadcasted. However, when the distance between the
UAVs becomes larger, it is possible that when a new master is chosen, not all the
slaves are able to communicate with it. In that case, the only way for the swarm to
complete the mission is for it to be split up in two sub-swarms. This is one of the
reasons why we have chosen for all the UAVs to maintain their own list. Since, the
decision to remove unavailable UAVs from the list is an individual decision, each
UAV will automatically remove those UAVs that remain outside its communication
range. To provide a better explanation of this scenario, an example of a flight
formation is given in Figure 6.1.

UAV 2

master

UAV 1UAV 0

Group A

UAV 3 UAV 4

Group B

Figure 6.1: Example of a swarm splitup.

In this formation, UAV 2 will be the master, and all of the UAVs can commu-
nicate with it, hence allowing the mission to be completed without any problem.
However, if for some reason the master UAV 2 fails during the flight, UAV 1 will
be (in our example) the new master. Due to the large distance, UAVs 3 and 4 are
unable to communicate with UAV 1. If the procedure to switch between masters
was executed centrally, this situation would cause a problem, resulting in failure of
the mission, or an extra time overhead. Therefore, in our solution, all the UAVs

78

6.2. Proposed resilience mechanism

Algorithm 6.1 UpdateSwarm(numUAVs, listOfMasters)

Require: listOfMasters.size = numUAVs

1: TimeToLive = 5s
2: Setup phase:
3: Let LastTimeUAV be a hashmap of size(numUAVs)
4: for Id in numUAVs do
5: if Id != selfId then
6: LastTimeUAV.put(Id, currentTime)
7: end if
8: end for

9: Fly phase:
10: while waypoint not reached do
11: if Message received then
12: Id = readMessage()
13: LastTimeUAV.put(Id, currentTime)
14: Perform actions related to message
15: end if
16: end while
17: while waypoint reached do
18: for UAV in LastTimeUAV do
19: UAVTime = LastTimeUAV.get(UAV)
20: if currentTime - UAVTime > TimeToLive then
21: LastTimeUAV.pop(UAV)
22: ListOfMasters.pop(UAV)
23: end if
24: end for
25: if selfId == ListOfMasters.getFirst() then
26: IamMaster = True
27: end if
28: if IamMaster == True then
29: Perform actions related to master
30: else
31: Perform actions related to slave
32: end if
33: end while

79

6. Maintaining the swarm coherent

make that decision individually. In this case, such approach will result in two
independent swarms to be created, groups A and B, and both of them will continue
the mission without interacting with the other.

6.3 Experiments & results

We have performed an extensive amount of experiments to validate our proposal.
We started by testing how often a UAV receives messages from another UAV in
the swarm using channel parameters obtained from actual real-life tests [39]. Using
this experiment, we are able to set the variable TimeToLive (see Algorithm 6.1) to
a realistic value. Then, we simulated the probability of a UAV failing in one of
the three different scenarios: in-between waypoints, at a waypoint, and slightly
before a waypoint. We continued our research by performing multiple experiments
where we tested the loss of master(s), slave(s), and different combinations of those.
To test the robustness of our algorithm, we also performed some experiments in
more extreme setups (higher number of UAVs, increased distance, etc.). Finally,
we experimented with swarm split-ups. For all the tests, we measured the time
overhead introduced by our protocol. Each experiment, together with the results,
are discussed in more detail below.

In our first experiment, we wanted to investigate the periodicity of received
messages during the flight. We omitted the messages exchanged during the setup
phase, since they are not used to check if a UAV is still alive, and therefore are not
relevant for our analysis. The UAVs are sending a message every 200 ms; so, in
an ideal environment, a UAV would receive messages with that same frequency.
However, since we are using UDP broadcasts, it is possible that a message is lost.
Inside ArduSim we have a communication model (based on real experiments) for
a transmitter based on IEEE 802.11a, and using a 5dBi antenna. This model is
used to simulate the broadcasting behavior as accurately as possible. For this
experiment, we simulated two UAVs flying at different distances from each other.
In particular, one UAV slowly diverts (with a speed of 1 m/s), so that the distance
between them increases. While following this mission, the time when each message
is received is logged. Then, using the logs, we calculated how many messages are
received per second.

The results are shown in Figure 6.2. We can see that the UAVs can communicate
in a range between zero, and about 1350 meters. As we expected, the number of
messages received drops w.r.t. the distance between UAVs. For a single experiment,
the y-values (i.e. the number of messages received) are fluctuating significantly.
Therefore, we decided to show the average of 20 experiments, and, even in this
case, we can still see important fluctuations. For that reason, it is important that

80

6.3. Experiments & results

Figure 6.2: Message frequency w.r.t. distance between UAVs.

we keep parameter TimeToLive high enough. We want to avoid that a UAV is
assumed to have failed, when actually it was a mere false-negative event. The only
reason why we would like a low value for the TimeToLive parameter is that, in
the worst-case scenario, a UAV could fail when just arriving at a waypoint. This
would mean that the entire swarm would have to wait for the entire timeout period
to elapse prior to continuing with the mission, hence causing an unwanted delay.
Since, at this time, there is no possibility for a UAV to reenter the swarm, we tune
our scheme to give priority towards reducing any false-negative events. So, we
decided to set the TimeToLive parameter to 5 seconds, and thereby we virtually
remove all false-negative cases. Furthermore, we believe that, in the unlikely event
of a UAV failing exactly at a waypoint, introducing a delay of 5 seconds is a small
price to pay when considering the mission as a whole.

In our experiments, we classify the location where a UAV can fail into three
groups: (i) at a waypoint, (ii) just before a waypoint, and (iii) in-between waypoints.
We differentiate among these types of events because the exact location where a
UAV fails has a direct impact on the overall time overhead. This is because the
UAVs only detect if another UAV has failed after a certain timeout has expired.
At each waypoint, the swarm has to wait until all the UAVs arrive, before they are
able to continue their flight. For that reason, if a UAV fails just before reaching a
waypoint, the swarm will have to wait for the timeout to expire (i.e. TimeToLive),
causing a longer delay than if that same UAV had failed at another point during
the mission. Therefore, we conclude that failing just when arriving at a waypoint is
a worst-case scenario. With the same reasoning, failing far away from the waypoint
is a best-case situation. In this case, the UAVs will arrive at the waypoint and,
since the timer has already expired, the time overhead will be significantly lower

81

6. Maintaining the swarm coherent

than in the former case. For our second experiment, we want to investigate what
the chances are that such an event happens. Such possibility is determined by
three parameters: the distance between the waypoints, the speed of the UAV, and
the value of parameter TimeToLive. For this experiment we will test different
flight speeds (5 m/s, 10 m/s, and 15 m/s). The value of the timer is always set
to 5 seconds. By varying these parameters, we can investigate how the distance
between waypoints affects the probability of failure in one of the three cases, since
mathematically the likelihood of a continuous random variable to take place on an
exact value is zero. We could say that a UAV will never fail exactly at a waypoint.
However, in our code, we can force this behavior, and therefore we include it in
the other experiments for the sake of completeness. In real experiments, though,
we could reduce the classification to just two cases. Since the value of the timer is
set, and since we know the speed of the UAV, we can determine the boundaries
associated to these cases. One might think that simply multiplying the speed by
the time provides us the boundaries. However, the matter is a bit more complicated
because the UAV slowly decelerates if it comes near to a waypoint. Therefore, we
have used ArduSim to calculate the exact boundaries. For flight speeds equal to 5,
10 and 15 m/s, the boundaries are 18.45 m, 28.41 m, and 31.06 m, respectively. All
the UAVs failing further away than that distance from the waypoint are classified as
the best case scenario. To calculate the probability, we designed a script which will
randomly choose a distance between zero and the maximum value, and will then
decide to which case it belongs to. To be representative, all the experiments are
randomly repeated multiple times. The script will start from a distance between
waypoints of 1 meter. To be representative, the experiment is repeated 100,000
times before increasing the distance between the waypoints by 1 meter each time.
The script will stop when the probability of failing just before a waypoint drops
below 5%. The results are shown in Figure 6.3.

Of course, if the distance between the waypoints is shorter than the border
distance (i.e. 18.45 m, 28.41 m, and 31.06 m), the UAV will always fail just before
the waypoint. Furthermore, we can observe that the chances of failing just before
the waypoint drop rapidly at the beginning, but it slows down as the distance
increases, ending with an asymptotic behavior. The fact that the chances fall
rapidly at the beginning is beneficial for us, because this means that the time
overhead introduced by our protocol will be low in most cases.

To test if our protocol works in a wide range of cases, we have considered
multiple experiments. In each experiment, we have measured how long a UAV
stays at a waypoint. Then, we compared this to a flight scenario where no UAV
fails. The time difference between both provides us the extra time in the experiment
associated to handling UAV failures. In those experiments, four UAVs are flying
by following a linear formation (flight speed of 10 m/s), with a distance of 50

82

6.3. Experiments & results

Figure 6.3: Chances of failing just before a waypoint w.r.t. the distance between
waypoints.

meters between each UAV. The mission has four waypoints, where waypoint 0 is
right above the take-off position, and waypoint 3 is at the landing place. We have
tested five different scenarios, all of them in the three categories: at a waypoint,
just before a waypoint (15 meters away), and in-between waypoints (200 meters
away). This results in 15 different experiments, plus one control experiment where
no UAV fails. The experiments we proposed are the following:

A : a single slave failing at waypoint 1.

B : a single master failing at waypoint 1.

C : two slaves failing at waypoint 1.

D : a master and his backup failing at waypoint 1.

E : a backup master failing at waypoint 1, and the master failing at waypoint
2.

Table 6.1 describes the first experiments, where UAVs fail at 200 m from a
waypoint. We can observe that there is no extra delay introduced by our protocol,
and this is because, during those experiments, the UAVs have had enough time
to recognize that a UAV has failed. Once arriving at the waypoint, they can act
accordingly, without any extra delay. We can also see that some values are negative;
this simply means that, in such case, it was a bit faster than the control case itself,
where no UAV failed. Overall the values remain small, and they are caused by
ArduSim, and not by our protocol.

Table 6.2 describes the same experiments, but this time the UAVs fail at 15
meters from the waypoint. Earlier, we have established that the boundary distance

83

6. Maintaining the swarm coherent

Table 6.1: Time overhead for the different scenarios at 200 m from the next
waypoint.

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 150 122 - 32 140 112
1 - 50 - 33 - 1 300 -150
2 -148 -184 -104 - 51 99
3 448 -185 197 200 -206

was of 28.41 meters. We have chosen 15 meters since that is half way in-between
this threshold value. Here we can see that our protocol works as expected. The
delay ranges between 0 and 5 seconds, because the UAVs fail near to the waypoint.
We can also observe that the delay is unrelated to which UAV actually fails (the
master or the slave), and that it is also unrelated to how many UAVs fail. In fact,
the delay is only related to when and where a UAV fails.

Table 6.2: Time overhead for the different scenarios at 15 m from the next waypoint.

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 - 77 594 20 123 75
1 2554 2993 2555 2099 3006
2 57 102 -153 -153 2101
3 - 1 301 147 147 -1

In the last set of experiments (see Table 6.3) the UAVs fail just when arriving
at the waypoint, before actually sending the message that notifies neighbors they
arrived to that waypoint. Therefore, in this case, the delay is the longest one, and
equal to the TimeToLive value, which was set to 5 seconds. Also, in this case, we
can observe that the delay is unrelated to which UAV fails, or to how many UAVs
have failed.

Table 6.3: Time overhead for the different scenarios just when reaching the next
waypoint (0 m).

Section A [ms] B [ms] C [ms] D [ms] E[ms]
0 -198 383 234 -128 -135
1 4999 5601 5601 5383 5002
2 - 3 -397 -397 -394 4802
3 0 203 4 0 0

From our experiments, we can conclude that the delay depends on when a

84

6.3. Experiments & results

UAVs fails. As described in Equation 6.1, the delay will always vary from 0 to
TimeToLive, which in our case was of 5 seconds.

Delay[s] =

{︄
TimeToLive− t, if t ≤ 5

0, otherwise
(6.1)

Now that we verified that our approach is working, we want to examine if our
approach is robust, and if it works in more extreme cases. Therefore, we propose
two different experiments: one focusing on reliability, and another one focusing on
scalability. The experiment on reliability is inline with our first experiment, where
we measured the message frequency. However, in this test, we want to examine if
there is an additional delay introduced when UAVs are flying far from each other,
rather than just checking if a message is received or not. Therefore, we performed
a test with just three UAVs flying next to each other, at a distance of 25 meters,
and we let the master UAV fail at a distance of 15 meters from waypoint 1. We
measured the time the UAVs remain waiting at waypoint 1 before continuing their
flight. We then increased the distance (with steps of 25 meters) until there was
no more communication between the UAVs, and a swarm split-up occurred. As
shown in Figure 6.4, the distance between the UAVs does not have a significant
influence on the delay introduced by the protocol. We had to stop this experiment
when the distance between the UAVs was of 450 meters. At this point, a swarm
split-up occurred. This happens because, when the master UAV fails, the distance
between the two nearest UAVs increases from 450 meters to 900 meters, and thus
the distance becomes too large for communication to be feasible.

In the experiment on scalability, we compare a flight with a high number of
UAVs (100) against one with a low number of UAVs (4). In those tests, some of
the UAVs will fail 15 meters before a waypoint. We measure the flight time and
the time waiting at that waypoint. To this purpose, we designed three scenarios:

a) A control flight where no UAV fails.

b) A flight where half the number of UAVs (and the master) will fail at a
particular waypoint.

c) A flight where 10% of the UAVs (and the master) will fail at each consecutive
waypoint.

We believe that those three scenarios cover the scalability parameter of our
approach sufficiently. Scenario b is designed to test what happens in the very
unlikely case of many UAVs failing at once, whereas scenario c is more realistic,
although the fail rate is still quite high.

85

6. Maintaining the swarm coherent

Figure 6.4: Distribution of the UAV waiting times at waypoint 1.

Since one hundred UAVs flying in a linear formation occupy an extremely large
area, we decided to set the communication range to unrestricted inside ArduSim.
In practical terms, this means that all the UAVs are able to communicate with
each other, and thus we avoid any unwanted split-up.

The results are shown in Figure 6.5; to highlight the difference between all the
cases in more detail, we show the difference w.r.t. a flight with only 2 UAVs (none
failed). As shown in the figure, the results are very similar, and the impact of
scaling-up the swarm is minor. However, flying with more UAVs does slow down
the system a bit. In our experiments, this extra delay was limited to a maximum
of 3 seconds. Overall, it is insignificant with respect to the total flight time. In
addition, the delay is independent of the flight time itself; that is to say, the overall
flight time is primarily dependent on the flight distance, while the delay is primarily
influenced by message buffering. Furthermore, ArduSim can also introduce small
and unpredictable delays, as shown in earlier experiments. This figure also confirms
some of our earlier statements, since one can clearly see that, in those cases where
UAVs are failing, a delay is introduced. As shown in the last case (10% of the
UAVs failing at each waypoint), the overall delay grows with the number of times
UAVs fail during the mission.

86

6.3. Experiments & results

Figure 6.5: Flight time and wait time overhead when varying the number of UAVs
that fail.

Finally, as explained before, a swarm split-up can occur whenever UAVs are
too far away from each other, thus making direct communication impossible. Our
protocol has been developed such that all the UAVs take individual decisions about
whether or not another UAV is still alive. Therefore, the protocol is inherently
able to handle a swarm split-up correctly. However, this can only be proven by
experiments. For that reason, we have devised multiple experiments where UAVs
flew according to a specific special flight formation to force partitioning to occur,
as exemplified in Figure 6.1, which makes a swarm split-up possible. During the
setup phase, 13 UAVs are placed close together so that each UAV knows about
the existence of the other UAVs. While taking off, the distance between the UAVs
increases such that distinct groups are formed in the formation. They first fly
together but, at the second waypoint, the master fails. After this event, due to the
large distance between the groups, the UAVs can only communicate with a subset
of the original swarm. We will experiment with a different number of groups (2, 3
and 4). For each of them, the overall flight time and waiting time at waypoints is
recorded. In addition, the time offset between the different groups is also measured.

Before discussing the measurements, we will provide an overview of the events
occurring during the mission:

1. The UAVs are placed close to each other, so that all the UAVs know about
the existence of the other UAVs.

2. The UAVs take off and fly to their place in the swarm formation.

3. They reach their place in the swarm formation, and we can visually see
that different groups (or subswarms) are formed, being the master UAV in

87

6. Maintaining the swarm coherent

the middle. Notice that the groups are only formed visually; from a logical
perspective, the UAVs still belong to a single swarm.

4. The mission starts, and the UAVs go to the first waypoint.

5. Upon reaching the first waypoint, the UAVs inside one group find they are
not able to communicate with the UAVs of other groups, and so they consider
that all other groups have failed. However, since they are still in contact
with their master, there is no need to switch between masters. Hence, they
only remove the presumed failed UAVs from the list of potential masters.

6. In-between waypoint one and two, we let the master UAV fail.

7. Upon reaching the second waypoint, the UAVs notice that the master UAV
has failed, and thus a new master will be chosen. This master is different for
each group.

8. The mission continues without any problem, and they reach the last waypoint.

9. Upon reaching the last waypoint, the slave UAVs will move towards their
master and land. This means that, after the mission, two groups of UAVs
remain with a large distance between them, as shown in Figure 6.7. This
happens because, in our protocol, we have chosen to land near the current
master, rather than picking the original landing position.

Furthermore, we investigated the effect of having a different number of sub-
swarms. During the flight, the flight time and the time waiting at a waypoint
were measured, and the times were subtracted from a control case (linear flight
with 13 UAVs where none of them failed). Those results are shown in Figure 6.6.
We performed experiments with 2, 3 and 4 sub-swarms. For each sub-swarm we
performed two experiments: one where the master UAV fails, and thus a split-up is
created, and another one where the master UAV does not fail, and thus the swarm
stays connected.

As the results show, the number of sub-swarms, and whether or not they are
formed, has little influence on the flight time, or the time the UAVs are waiting at
the waypoints.

To conclude this set of experiments, we compared the time of arrival between
the different sub-swarms. In all cases, the difference between the time of arrival
was very small (below 500 ms). This is due to the fact that all the UAVs travel
with the same speed. Besides, the path of the UAVs was a straight line; whenever
the path consists of curves, the outer swarm clusters will experience larger travel
distances, and will therefore arrive later.

88

6.3. Experiments & results

Figure 6.6: Time differences for multiple groups at each waypoint.

Figure 6.7: Working example of a swarm split-up scenario in ArduSim.

89

6. Maintaining the swarm coherent

6.4 Summary

Maintaining a swarm of UAVs coherent throughout a mission is not an easy task.
Small interferences (e.g. wind) can cause one or more UAVs to fly at different speeds
and, over time, this can cause the entire swarm to break. Hence, a protocol called
Mission-Based UAV Swarm Coordination Protocol (MUSCOP) was developed
in order to synchronize all UAVs throughout their flight. This protocol uses a
master-slave pattern, where the master makes the slaves wait at each waypoint
until all the slaves have arrived. It assumes, however, that all the UAVs are able to
communicate with each other at all times. If only one UAV (master or slave) would
fail during the flight, the entire swarm would wait indefinitely (in practice, until
the batteries are depleted). Such a failure is of course undesired, and can occur
easily due to crashes or communication issues. Hence, in this chapter, we proposed
an extension for MUSCOP. This extension uses the messages the UAVs are already
transmitting to verify if all the UAVs are still working properly. If this is not the
case, appropriate actions are taken so that the rest of the swarm members can
continue their flight. Based on the many experiments we have performed, we can
conclude that our protocol is able to provide resilience against the loss of aircraft
in the swarm. Hence, not only can the protocol be used in many environments, it
also does not matter how many UAVs fail, or what role they had in the swarm.
We find that the delay is only dependent on the actual place where the UAV failed.
For most real world applications, the delay is found to be neglectable, and for the
worst-case scenarios it is still bounded to a few seconds. Our approach is also able
to handle swarm split-ups in such a way that a smaller (subset) of the original
swarm is still able to work together whenever communication with the rest of the
swarm members is lost.

90

Chapter 7

Advanced mid-flight maneuvers

In the previous chapter, we detailed different procedures that allow for a consistent
swarm flight. Yet, in certain cases, more advanced features may be required to
address the need for a complex or dynamically-defined mission. Hence, in this
chapter, we provide contributions in two different directions. On the one hand,
we will propose a solution that allows the swarm to be reconfigured mid-air, and
on demand, that is both fast, and secure. On the other hand, we will propose a
solution that allows each individual UAV in the swarm to adapt to its specific
terrain profile, which may cause some UAVs to require more altitude adjustments
than others. Both of these solutions are discussed below.

7.1 Swarm reconfiguration

In this section, we provide a novel solution to change the formation of a swarm
of UAVs in real time during the flight. This can be useful in many cases, and
for different applications. Take for instance a search and rescue mission. While
searching, the UAVs will need to cover a large area as fast as possible. Hence, a
linear formation might be the most adequate choice. However, once one of the
UAVs discovers the person(s) of interest, a circular formation can provide a better
overview of the situation. Therefore, we provide a computationally inexpensive
protocol that allows a swarm to reconfigure while offering safety guarantees.

91

7. Advanced mid-flight maneuvers

7.1.1 Implementation

In our approach, we make use of a master-slave pattern. The master is elected
before taking off, and in general the master is the UAV located in the center of
the formation in order to minimize losses on the wireless channel. Hence, the
master is in charge of the main calculations to be performed, and keeps the swarm
synchronized throughout the different stages of the reconfiguration. All the stages
are described in Figure 7.1. The reconfiguration will start following a trigger event,
which can be a user input or a predefined event. The reconfiguration itself is
divided into two phases: (i) an analysis step where the calculations are done, and
(ii) a mobility step where the UAVs move to their target locations in an intelligent
manner to avoid collisions. After the swarm has reconfigured itself, the mission
can continue.

Figure 7.1: Flowchart of the flight formation reconfiguration algorithm.

In the first phase (i.e. the analysis phase), the master assigns a new location for
all the slaves (later referred to as intelligent position). This algorithm is very similar
to the one already explained in chapter 4. Again, we search for an assignment
that minimizes the total distance travelled. In order for the master to execute this
algorithm, it needs to know (i) where all the UAVs are currently, and (ii) the new
swarm layout. Using MUSCOP (explained in chapter 6), the master is already
aware of where all the slaves are at each moment. However, in case MUSCOP is not
used, the positions of each UAV should be shared with the master. The new swarm
layout is of course provided by the user or the application. It is worth pointing out
that, in the mobility stage, the UAVs will fly at different altitudes to reduce the
chance of collisions. So, the next thing the master needs to do is to decide which
UAV flies at which altitude. That process is fully described in Algorithm 7.1. It
details how the master calculates (for each slave) in what direction it has to go.
Based on that direction, the UAVs are placed into different angular sectors. Each
sector has a different altitude assigned to it (in our experiments, we use a simple
five-meter increment from one sector to the next). In this manner, UAVs that are

92

7.1. Swarm reconfiguration

likely to cross each other’s path, will now fly at different altitudes, and thus we
significantly decrease the chances of collisions. Note that this algorithm does not
completely guarantee a collision free reconfiguration. Once the calculations are
done, the master will start sending messages with the target location (x, y, ∆z) to
all slaves. Upon receiving this message, the slaves will reply with acknowledgements,
and, once all the slaves have received their target location, the swarm will transition
to the mobility step.

Algorithm 7.1 Section select procedure

Require: numberOfSections > 0

for UAV in UAVs do
∆x← UAV.targetLoc.x− UAV.startLoc.x
∆y ← UAV.targetLoc.y − UAV.startLoc.y
α← atan2(∆y,∆x)
if α < 0 then
α = α+ 2× π

end if
sectorWidth = 2×π

numberOfSections

sector ← 0
for i in range(0, numberOfSections) do
min← i× sectorWidth
max← (i+ 1)× sectorWidth
if min ≤ α < max then
Sector = i

end if
end for

end for

In the second phase (i.e. the mobility phase), the UAVs will move from the
original place to their new place in the formation. In our protocol, we subdivide
this phase into three stages: first, the UAVs will change altitude depending on
their sector, as explained above; then, they will go towards their target location
(X, Y movement), and finally they will return to their initial altitude (return to
the default Z value). In each stage, the master will send messages to the slaves.
when a slave receives the message, it will perform the movement and reply with
an acknowledgement once the movement is finished. The master receives the
acknowledgements and, when all the slaves have sent an acknowledgement message
(and the master has reached its position), the master will transition to the next
stage. At that moment, the master will start sending messages for the new stage.
The slaves will receive those messages, and transition to the next stage. The

93

7. Advanced mid-flight maneuvers

messages sent by the master only contain an ID which represents the current state.
They do not have to contain the location information because this was already
sent in phase 1.

As a final remark, it is worth pointing out that our proposal is computation-
ally efficient. Algorithm 7.1 is the only element with significant computational
requirements, and it is limited to O(N2) in the worst case. Since, in most practical
applications, the number of UAVs in a swarm will be low (below 100), this algo-
rithm can be easily executed on the UAV’s onboard computer. Also, the network
will not be overloaded since the message payloads are quite small.

7.1.2 Experiments & results

We performed a wide set of experiments in ArduSim in order to assess the validity
and robustness of our proposed mechanism. As described above, our approach
combines an intelligent UAV assignment with a sectorization procedure that divides
the UAVs into different altitude levels. To assess the effectiveness of this combined
approach, we will compare it to other (simpler variants) where such mechanism is
not used. This way we can evaluate which stage introduces a higher overhead, and
whether our approach (as a whole) is effective. Therefore, we propose three other
(but similar) approaches:

A. Random position assignment, no altitude change.

B. Random position assignment, different altitudes.

C. Intelligent positioning, no altitude change.

D. Intelligent positioning, different altitudes.

In our first set of experiments, 9 UAVs changed from a linear formation towards
a compact mesh formation (see Figure 7.2 for a graphical illustration). The
minimum distance between the UAVs in that formation was set to 10 meters, the
number of sectors was equal to three and the altitude difference between sectors
was of 5 meters. These variables can be set by the user. During the experiments
we measured (i) the time that the UAVs spent in each state (Move Z, Move XY,
Move Z Initial), (ii) the minimum distance between the UAVs during the MoveXY
stage, and (iii) the potential number of collisions. A potential collision is registered
when the distance between two UAVs is smaller than 5 meters to account for the
GPS offset error.

The results are shown in Tables 7.1 and 7.2. Our experiments have shown (as
stated before) that merely changing the formation layout without adopting any

94

7.1. Swarm reconfiguration

Figure 7.2: Transition of 9 UAVs from a linear formation to a compact mesh.

type of strategy is very dangerous, and prone to cause collisions. We can also
observe that just by changing the altitude, or the position assignment of the UAVs,
in an intelligent manner, is not enough to avoid collisions in all cases. In fact,
only when both were used could collisions be entirely avoided. Furthermore, while
changing the altitude does make the process safer, an additional time overhead is
introduced. The time overhead depends on the number of sectors and the altitude
difference between the sectors; the impact of both parameters is discussed in more
detail in the experiments that follow. Implementing an intelligent positioning
system reduces the overall flight distance and, therefore, flight times are slightly
shorter in experiments C and D.

Table 7.1: Collisions and minimum distance analysis.

Approach Nr. collisions Min. Distance between UAVs
A 4 0.44
B 2 0.33
C 2 3.58
D 0 6.15

In our second experiment, we want to evaluate the scalability of our protocol.
We searched for the minimal number of sectors needed to complete a collision-free
reconfiguration for different number of UAVs, and for different formations. All
the formations were prone to collisions due to the small distance between the
UAVs that was defined (≤ 10 m). We started with 9 UAVs (as in the previous

95

7. Advanced mid-flight maneuvers

Table 7.2: Time UAVs spend in each state.

Approach Move z [ms] Move XY [ms] Move Z ini [ms]
A 404 13607 400
B 6802 13030 7980
C 380 12425 400
D 8600 12415 8600

experiment), and increased this value up to 25 UAVs. The results are shown in
Figure 7.3. As expected, the minimum number of sectors required to guarantee
a collision-free reconfiguration increases with the number of UAVs. The actual
increase highly depends on the type of formation.

Figure 7.3: Minimum number of sectors required for a collision-free reconfiguration
procedure.

Due to our previous findings, we investigated the influence of the type of
formation in greater detail. In particular, we tested all the possible transitions
between the four flight formations considered (Linear, Matrix, Mesh, and Circle).
The experimental settings are similar to the previous ones. We worked with 15
UAVs in formations where the distance between the UAVs is 10 meters. During
the experiment, we searched for the minimal number of sectors needed to complete
a collision-free reconfiguration. We also measured the time spent at each state.

Results are shown in Figures 7.4 and 7.5. As we can observe from Figure 7.4,

96

7.1. Swarm reconfiguration

Figure 7.4: Minimum number of sectors required for a collision-free reconfiguration
w.r.t. the type of transition.

Figure 7.5: Time spent moving horizontally (state 2) and vertically (states 1,3).

results vary significantly depending on the specific transition; in some cases, such
as going from a mesh to a matrix formation, just a few sectors are needed. In
other cases (e.g. matrix to linear) the angles α calculated in Algorithm 7.1 are very
similar, and so many sectors are required in order to separate the UAVs in different
altitude groups. In the presence of many groups, the target altitude can grow a lot,
resulting in a high time overhead (in the worst-case scenarios), as shown in Figure
7.5. Due to the similar shape of both figures, we can see the correlation between
the number of sectors and the overall reconfiguration time. Furthermore, we can

97

7. Advanced mid-flight maneuvers

conclude that the time spent moving in the xy-plane fluctuates only a little, being
limited to a maximum of 6.8 seconds in our experiments.

Finally, we further investigated the time overhead introduced by changing UAV
altitudes during reconfiguration. To achieve this, we start by finding the value of
the one-way delay T for which: ∫︂ T

0

v(t)dt = D (7.1)

where

D = num.sectors× sectors offset

This one-way delay refers to both upward or downward movements. We can
approximate this one-way time overhead T as:

T ∼=
D

v̂0→T
+ ϵ (7.2)

where v̂0→T refers to the expected speed during the entire mobility from time
0 to T, and ϵ accounts for the additional time associated to acceleration and
deceleration processes. In our experiments, v̂0→T was set to 2 m/s, and the
distance between the sectors (sector offset) to 5 meters. The number of sectors
ranged between 2 and 8.

Figure 7.6: Estimated time overhead vs. real time overhead.

98

7.2. Adjusting the altitude for changing terrain levels

Figure 7.6 compares the estimated time overhead for the two-way vertical
mobility against the real-time overhead measured in our experiments. We can
clearly observe a linear pattern (as suspected by the derivation), and, in our case,
the average value of ϵ is of 1.5s. While the speed of the UAVs does influence the
time overhead directly, it does not alter the chances of a collision. This is because
all the UAVs are flying at the same speed, and thus the distance between them
will not change.

7.1.3 Summary

In this section, we focused specifically on the reconfiguration of a swarm. This is a
relevant behavior that can be used to make many applications more efficient and/or
effective. However, the chances of collision become high during reconfiguration,
and so it becomes an issue that must be dealt with. Our proposal is based
on an intelligent position assignment system that reduces the chances of flight
paths crossing during formation reconfiguration. The chances of collision are
further reduced by distributing the UAVs over different altitude levels during the
reconfiguration period. This simple, computationally efficient approach can be
easily applied to various environments. However, it is not able to fully guarantee a
collision-free reconfiguration in all cases, and when scaled-up to many UAVs the
time overhead introduced becomes significant.

7.2 Adjusting the altitude for changing terrain levels

In many applications, the UAV flies automatically from one GPS waypoint to
another. Throughout its path, which is often defined using mission waypoints, the
UAV has to maintain its altitude steady. This is a common built-in feature in many
higher-end UAVs, and it is provided by the flight controller, i.e. a small on-board
computer with multiple sensors which regulates the speed of the propellers to
accomplish its flight goals.

The most commonly used open-source flight controller is called Pixhawk [3],
which often uses the Ardupilot firmware [6]. Through the use of Ardupilot (or
any other flight controller firmware for that manner) we can maintain a constant
altitude. However, this constant altitude is referenced from the take-off point of
the UAV (i.e. from the origin). As shown in Figure 7.7, this is problematic if the
terrain is not flat. This is because, if the terrain rises, there is a chance that the
UAV will crash into the ground. On the other hand, if the terrain is descending,
the drone will fly higher; this can decrease the performance of the UAV sensors (e.g.
camera feeds), or cause it to surpass the legal constraint regarding maximum flight

99

7. Advanced mid-flight maneuvers

altitude (for example, in Europe it is of 120 meters [10]). Therefore, many UAV
applications require maintaining a constant Above Ground Level (AGL) altitude.
We must point out that third-party applications that consider the topography in
mission planning already exist (e.g. FlyLitchi [40]). However, many applications
require that drones can take ad-hoc decisions and deviate from the original flight
plan (e.g., to avoid collisions, or due to a change in the itinerary). Therefore, we
opted for a more holistic approach so that we grant current and future applications
this freedom, in addition to simplifying the operator’s tasks.

Our solution allows ascending or descending a VTOL UAV while it is following
a mission so as to adapt to the terrain profile. Before the start of the flight, the
mission file (which consists of GPS waypoints), and the DEM file (i.e. a file with
topographical data) are uploaded to the UAV. During the flight, the UAV will use
the mission file to determine its direction, and the DEM file to adjust its altitude.
It is important to notice that the change of altitude is calculated in real-time, and
not before the start of the mission. This approach allows us to (i) spend less time
on the calculation at start-up, (ii) make changes to the mission without worrying
about the terrain profile, and (iii) make our method compatible with other (future)
approaches, which use sensors instead of the DEM file to determine the altitude
relative to the ground.

Figure 7.7: The different types of altitude.

100

7.2. Adjusting the altitude for changing terrain levels

7.2.1 Implementation

In order to maintain a stable Above Ground Level (AGL) altitude, we implement
a control system. It controls the velocity of the UAV in the z axis (or up/down
axis), and aims at minimizing the error between the desired and current flight
altitude. For this purpose we use the terrain elevation, coming from the DEM file,
as a reference signal.

A DEM consists of a database which represents the height above sea level
of a given location. A DEM is characterized by its versatility in terms of accu-
racy/compression. Despite different formats exist, the most common one divides
a land area into regular sized squares. For each square, the highest altitude is
measured and saved into a large matrix. In the header of the DEM file, the GPS
coordinates of the origin are provided, as well as the size of each square (also
called the resolution). Since it is easy to retrieve the row and column number
when reading the DEM file, the GPS location of each cell can easily be calculated
(i.e. by adding the offset from the origin). In this manner, a relatively large land
area can be represented in a small file. The size of the DEM file will depend on
the resolution, but, to provide a general idea, using a (high) resolution of 4 m2

for each square, an area of 500 km2 can be represented in a file of only 250 MB.
Considering that these storage requirements are not a problem nowadays, and that
VTOL UAVs can only fly for a few kilometers anyway, size does not represent a
problem.

DEM files are readily available on the Internet. For our research, we have used
the DEMs provided by the Spanish government [41]. As one might observe, on
this site (and in general), two types of DEMs exist (see Figure 7.8): we have the
Digital Terrain Model (DTM), which represents the ground level, and the Digital
Surface Model (DSM), which also includes buildings, trees, etc. It is obvious that
the DSMs represent the real world more accurately (especially in cities), but also
become obsolete much faster. Since the file format of DTM and DSM files are very
similar, our approach works both on DTM and DSM files. Nevertheless, for our
experiments, we have chosen to only work with DTM files.

Furthermore, our control system also needs the relative altitude of the UAV
in order to maintain a stable AGL altitude. The relative altitude of the drone is
determined by the flight controller, which relies on GNSS and barometric data.
The error, which we try to minimize, is determined by the difference between the
reference altitude, and the relative altitude of the drone:

e(t) = reference altitude(t)− relative altitude(t) (7.3)

The task of our controller is to calculate an output such that this error is
minimized. In our system, the output of the controller is the vertical velocity

101

7. Advanced mid-flight maneuvers

Figure 7.8: The difference between DTM and DSM, source [42]

[m/s]. In theory, those values can range from −∞ to +∞; in practice, however,
the electrical motors have a maximum speed which will limit thrust. Of course,
different motors have different maximum speeds. Nevertheless, as long as we are
not in the drone racing business, most operators prefer a (relatively) slow vertical
velocity, mainly for safety and control reasons. Therefore, we have limited the
output of our control to the range ±5m/s.

A general proportional–integral–derivativel (PID) controller can be described
through the following equation:

u(t) = Kp · e(t) +Ki

∫︂ t

0

e(τ) dτ +Kd
de(t)

dt
(7.4)

The output signal u(t) is thus given by the sum of three terms, which all depend
on the error signal: 1) the proportional term (P), which will correct for the current
error; 2) the integral term (I), which will grow over time, and thus can ensure that
the steady state error becomes zero; and 3) the derivative term (D), which allows
predicting the future error, and thus increases the stability of the system. Since in
our application the ground level (i.e. the reference signal) will change over time,
we do not have to be concerned about a steady state error. Therefore, we removed
the integral term (by setting Ki = 0), which allowed us to simplify equation 7.4 to
a PD controller as follows:

102

7.2. Adjusting the altitude for changing terrain levels

u(t) = Kp · e(t) +Kd
de(t)

dt
(7.5)

The equation above is continuous; however, a digital system can never be
continuous, and thus we are forced to discretize the equation. For our drone (and
all drones alike that use ArduCopter [6]), the vertical velocity vector is updated
every 200 ms. Thus, the controller equation can be discretized considering this
sampling period (Ts). Furthermore, we change the naming from the generic output
signal u to the more appropriate name vver, to clarify that we use a PD-controller
to control the vertical velocity.

vver[t] = Kp · e[t] +Kd
e[t]− e[t− 1]

Ts
, Ts = 200ms (7.6)

At this point, we have designed the vertical controller that allows the UAV
to maintain the altitude. However, we also need the UAV to move towards its
targets, i.e. to follow the planned mission. The current target (or waypoint) is
given in GPS coordinates. In order to move the UAV towards the target, we simply
need to define a direction vector −→u that starts from the drone and ends at the
target. After normalization, this vector can be scaled such that the UAV moves at
the planned (or max) speed (in our case, max vhor=15 m/s, as this is the default
setting in the flight controller). Thus, we have the following expression to obtain
the horizontal velocity vector −−→vhor:

−→u =
−−−−→
target−

−−−→
UAV

û :=
−→u
||−→u ||

−−→vhor = max vhor · −→u

(7.7)

Given the right parameters, this should be enough to move the UAV from its
current position to its target while adjusting its altitude, so that its relative altitude
to the ground remains as constant as possible. However, during our simulated
tests, we have observed two issues: firstly, when the change in terrain height is
significant, the UAV needs more time to ascend/descend, otherwise it might still
result in a crash. In practice this means that, if the velocity in the z axis is close
to its limit max vver (5 m/s in our proposal), we need to stop moving towards the
target to avoid a likely collision. Secondly, in equation 7.3, we denoted the error
signal as the difference between the reference altitude and the real altitude, at the
same time instance. During the actual flight, as we will show later, an improvement
can be made by looking ahead to where the UAV will be, and take that altitude

103

7. Advanced mid-flight maneuvers

as reference. These small adjustments have been implemented in our proposal, as
shown in Figure 7.9.

Figure 7.9: Block diagram of the proposed method.

The flight controller of the UAV (block on the right) will provide us with the
current (absolute) altitude of the drone. The difference between the reference
signal and the current altitude denotes the error signal. This error signal is fed into
the PD-controller, which in turn calculates the vertical velocity needed to minimize
the error signal. The vertical velocity signal also controls whether the horizontal
velocity is set to 0 m/s or not. In case the vertical velocity is high (more than 90%
of the maximum allowed), the switch (on the right side of the block diagram) will
toggle and set the horizontal velocity to zero. This will give the UAV the required
time to adjust to higher altitude differences before moving towards the waypoint
again. Notice that we intend to proceed with the planned mission as quickly
as possible, only reducing horizontal speed when strictly necessary. The flight
controller also provides us with the location of the UAV. This location, together
with the location of the waypoint, is used to calculate the direction vector −→u . The
horizontal velocity vector is obtained by scaling the direction vector −→u with the
appropriate horizontal speed. Finally, the DEM block calculates the reference
signal. This calculation is based on the DEM file, which contains the absolute
altitude level for a given location. We use the current location of the UAV, as well

104

7.3. Experiments & results

as its direction vector −→u , to calculate its future position. The ground level altitude
of this future position is fetched from the DEM file, and the reference signal is
then calculated by adding the desired above ground level offset.

7.3 Experiments & results

7.3.1 Parameter tuning

In our model there are five parameters: the proportional gain Kp, the derivative
gain Kd, the look ahead distance [m], the maximum horizontal velocity (max vhor),
and the maximum vertical velocity (max vver). Hence, we need to find the optimal
values for these parameters, as the chosen values will determine how fast the drone
responds to changes, as well as the stability of the system. We have decided to set
the two maximum speed parameters to 15 m/s for the horizontal speed, and 5 m/s
for the vertical speed. As previously stated, these values are a good compromise
between safety and speed, and are often used in VTOL drone applications. This
section will explain how we adjusted the values for the other three parameters.
Our tuning aims at meeting our specific goals, which include achieving an adequate
trade-off between vertical error (overshooting included) and mission time. It is
important to note that, depending on the characteristics of the UAV, these values
might vary. Thus, fine-tuning of these parameters for other types of UAVs will be
necessary. Auto-tuning methods do exist, but they require deriving a mathematical
model of the UAV, which we currently do not have. Therefore, we will estimate the
values for our parameters based on some commonly known rules. In this section,
we will explain the process we went through so that results can be replicated.

First, it must be noted that, determining the optimal parameter values based
on simulating an entire mission, is impractical. This is due to various reasons:

1. Simulating an entire mission takes a long time;

2. It is difficult to determine the true effect of a change in the parameters;

3. One can be fixed on solving a specific problem (i.e. the mission), while
instead the solution should be applicable to different missions (i.e. optimized
parameters for just one mission instead of a general solution);

4. When the entire mission is considered, the horizontal movement of the UAV
also plays a role;

Therefore, we obtain the parameter values using a classic control theory tech-
nique, i.e. observing the step response of the system. The step response is the

105

7. Advanced mid-flight maneuvers

response (i.e. the output) of the system when a step (i.e. sudden change in the
reference signal) is applied. Such step response is then plotted on a graph (see
Figure 7.10), and it is common to normalize the output. Using this graph, we can
determine two important values: (i) the rise time, and (ii) the overshoot. The rise
time explains us how fast the system will converge to the new reference signal.
The overshoot refers to the output exceeding the new desired reference signal. In
our application, both metrics are important. We do not want a high overshoot (or
undershoot), because this will cause the UAV to fly too high (which might violate
legislation) or too low (which might result in a crash). However, the response of
the UAV should also be sufficiently quick (i.e. short rise time) for those cases
where the terrain profile is constantly changing, and the UAV should be able to
keep up with that change.

Figure 7.10: Two important metrics for the step response.

Now that we (roughly) defined our step response (i.e. low overshoot, but also

106

7.3. Experiments & results

short rise time), we will proceed by varying the parameters to observe how they
influence the step response. We start with parameter Kp, and set Kd (Equation 7.6)
to its minimum (the look-ahead distance is not used in the step response since
we are directly changing the reference signal). In Figure 7.11a we show the step
response for several values of parameter Kp. In this figure, we can observe how
parameter Kp influences the step response. We started by setting Kp to zero.
Obviously, in this case, the UAV will not change its altitude, and just remains
flying according to his original reference signal. We then increased the value of Kp

and Kd with steps of 0.1 (we do not show all the possibilities to keep the figure
clear). When we raise the value of Kp, we can see the rise time decreasing. At a
value of 0.5 the UAV reaches the new altitude without any overshoot. However,
the rise time is still too long. If we increase the value of Kp, we can reduce the
rise time further. In Figure 7.11a, it seems that, in terms of rise time, there is no
difference between Kp = 1.0 and Kp = 1.5. However, it is always important to
take both Kp and Kd into account. As stated above, we changed both parameters
with a step size of 0.1 (up to 2.0) and, after 400 experiments, our results show
that, with Kp = 1.5 and Kd = 1.9, the best results are achieved. In Figure 7.11b
we show the influence of the parameter Kd. As we could expect from control
theory, if we increase the value of the Kd parameter, the overshoot will be reduced.
However, an excessively high value will result in an unstable system that tends
to oscillate. As we can see, the overshoot decreases with a higher value of Kd.
Increasing the value of Kd beyond 1.9 (best choice) only introduces more unwanted
oscillation. As shown in Figure 7.12, for the response of the system with the
optimal parameters (w.r.t. overshoot and mission time), some oscillation remains
for our control approach. However, since in our application the terrain level is
constantly changing, this oscillation will not prevail. In addition, the influence of
the look-ahead distance can only be clearly observed in the context of an actual
mission (longer time periods). Therefore, we will show its influence in the next
section.

7.3.2 Evaluation

After modeling our proposed solution and obtaining the optimal parameter values,
we tested our approach under different conditions. We experimented with two
different scenarios: a rural area with some hills (Cumbre de Calicanto, Valencia,
Spain), and a mountainous region (Mulhacén, Granada, Spain). Each scenario
was simulated several times, with different values for the look ahead parameter.
During our experiments, we measured the terrain altitude and the above ground
level altitude of the UAV.

Our first scenario (Cumbres Calicanto) is located in a rural area close to

107

7. Advanced mid-flight maneuvers

(a) Influence of parameter Kp (Kd = 0). (b) Influence of parameter Kd (Kp = 1.5).

Figure 7.11: Analysis of the influence of parameters Kp and Kd on the step response
of the UAV.

Valencia, Spain. We have chosen this region for its moderate setoff. The top of the
hill is around 210 meters high; on one side the slope of the hill is gentle, in the center
there are some abrupt peaks and troughs, and on the other side of the hill the slope
is much steeper. As mentioned before, the influence of the look-ahead distance can
only be measured during a complete mission. In general, looking further ahead
will provide the UAV more time to anticipate altitude changes. However, looking
too far ahead will introduce unwanted behavior if the terrain has narrow peaks or
troughs. During our experiments, we varied the value of the look-ahead distance
in the range from 2 to 20 meters. The DEM file that we use has a resolution of
2 m (square of 2 × 2 meters). Therefore, we increased the look-ahead distance
in two-meter steps each time. During the mission, we measured the error every
200 ms. After the experiment, we calculated the mean error, and the standard
deviation (see Table 7.3). Based on those metrics, we can determine that, in this
scenario, a look ahead distance of 8 meters is the most effective one at reducing
the error.

As mentioned before, the influence of the look-ahead distance can only be
measured during a complete mission. In general, looking further ahead will provide
the UAV more time to anticipate altitude changes. However, looking too far
ahead will introduce unwanted behavior if the terrain has narrow peaks or troughs.

108

7.3. Experiments & results

Figure 7.12: Step response with optimal parameters, i.e. Kp = 1.5;Kd = 1.9.

During our experiments, we varied the value of the look-ahead distance in the range
from 2 to 20 meters. The DEM file that we use has a resolution of 2 m (square
of 2 × 2 meters). Therefore, we increased the look-ahead distance in two-meter
steps each time. During the mission, we measured the error every 200 ms. After
the experiment, we calculated the mean error, and the standard deviation (see
Table 7.3). Based on those metrics, we can determine that, in this scenario, a look
ahead distance of 8 meters is the most effective one at reducing the error.

The results of the entire mission are depicted in Figure 7.13, showing that the
UAV adapts to the terrain profile correctly. As shown in Figure 7.13b, the error is
normally distributed with µ = −0.0493 and σ = 1.6260. Stated otherwise, 99.7%
of the time the error was less than 5 meters.

During our experiment, we also tracked various metrics. One of them was
the vertical speed of the UAV, which we show in Figure 7.13c. It is interesting
to observe how the vertical speed of the UAV changes w.r.t. the terrain altitude
(shown in Figure 7.13a). As we can see, at the beginning (before 150 seconds)
the terrain level changes slowly, and the vertical speed of the UAV is bounded
between -3 m/s, and 3 m/s. From 150 seconds onwards, the terrain level changes
much faster. This is also represented in the vertical speed of the UAV, which often
reaches its maximum of ±5m/s. In addition, we find that changing the altitude

109

7. Advanced mid-flight maneuvers

Table 7.3: Influence of the look-ahead distance for scenario A.

Look-ahead distance [m] Mean error [m] Standard deviation [m]
2 0.1834 2.5176
4 -0.1464 2.3930
6 -0.0721 1.7832
8 -0.0493 1.6260
10 -0.0724 1.6399
12 0.0203 1.5128
14 0.0049 1.7969
16 0.0449 1.9540
18 0.1118 2.1984
20 0.1678 2.5435

levels does not have a significant impact in terms of extra time or energy. To
check this, we measured various metrics for the flight using our altitude adjustment
approach, and without using this mechanism. As shown in Table 7.4, the mission
is 3238 meters long. Due to the setoff, the UAV had to adjust its altitude by 583
meters overall. This change in altitude caused a slight mission delay of about 3%,
and an increase in energy usage of 3.49%. These payoffs are very small, especially
considering that the alternative (not changing altitude) will result in a crash.

Table 7.4: Rural flight: influence of adjusting the altitude on flight time and energy.

Without adjustment With adjustment Difference
Horizontal distance [m] 3238 3238 0%

Vertical distance [m] 0 583 -
Flight time [s] 324 334 +3.01%

Energy consumed [kWh] 127 132 +3.49%

After these promising results in a rural area, we tested our model in a more
challenging environment, i.e. a mountainous region. We have chosen to perform
this simulation in the area of Mulhacén, Granada, Spain. In these mountains, the
ground levels will change faster and more often, which makes it more difficult for
the UAV to maintain a constant altitude above the ground.

For this region, we also experimented with the look ahead distance. As shown
in Table 7.5, the margin of error is higher due to the increased scenario complexity.
In a mountainous region, the look-ahead distance has to be shorter, as expected.
In this case, we can obtain the best results with a look-ahead distance of 4 meters.

From Figure 7.14a we can observe that the terrain is more challenging, and

110

7.3. Experiments & results

(a) Altitude of the UAV w.r.t the terrain
altitude.

(b) The distribution of the error. (c) Vertical speed [m/s] of the UAV.

Figure 7.13: Results for scenario A.

with the use of our approach a ground crash can be avoided. However, as also
shown in Figure 7.14b, the distribution of the error is broader than in the previous
case. Also for this flight, we tracked various metrics. As shown in Figure 7.14c,

111

7. Advanced mid-flight maneuvers

Table 7.5: Influence of the look-ahead distance for scenario B.

Look-ahead distance [m] Mean error [m] Standard deviation [m]
0 -1.5206 8.6427
2 -0.1372 7.4118
4 1.2548 6.1141
6 2.9995 6.5989
8 4.4752 7.7420
10 5.9446 9.3839

the vertical speed of the UAV is often at its maximum in an attempt to maintain
a constant altitude in this rapidly changing terrain. Taking this into account, we
might achieve better results (i.e. smaller mean error, and standard deviation) if we
do not restrict the maximum vertical speed to 5 m/s. However, we do not increase
this maximum speed for various reasons. First and foremost, for the obvious safety
reasons. We must remember that there is a 200ms delay before we can update the
speed, and then there is an extra delay (due to inertia) before the UAV actually
reaches this new speed. If we increased the maximum vertical speed, this would
most likely lead to an unwanted oscillating behavior. Furthermore, we want our
approach to be applicable to many types of drones, and not all drones have enough
power to ascend faster than 5 m/s. Finally, increasing the maximum vertical speed
would also lead to a higher energy consumption.

Table 7.6: Mountain flight: influence of adjusting the altitude on flight time and
energy.

Without adjustment With adjustment Difference
Horizontal distance [m] 6193 6193 0%

Vertical distance [m] 0 2100 -
Flight time [s] 507 655 +28.99%

Energy consumed [kWh] 200 261 +30.59%

As expected, the influence of adjusting the altitude on flight time and energy
consumption is much higher in this demanding scenario compared to the previous
(rural) scenario. As shown in Table 7.6, the mission has a horizontal distance of,
6193 meters. The main difference between this scenario and the previous one is
that, in the current scenario, the vertical distance traveled is much higher. In order
to regulate the altitude above the ground, the UAV had to ascend and descend
for a total of, 2100 meters throughout the mission. This caused the flight time to
increase by 29% and, consequently, the energy consumption rose by 30% as well.

112

7.3. Experiments & results

(a) Altitude of the UAV w.r.t. the terrain
altitude.

(b) Error distribution.
(c) Vertical speed of the UAV throughout
time.

Figure 7.14: Results of scenario B.

113

7. Advanced mid-flight maneuvers

7.4 Summary

For an autonomous application, it is important that a UAV is able to maintain
a constant altitude relative to the ground, even when the terrain altitude varies.
This avoids that the UAV crashes into the ground, or it exceeds legal altitude
constrains. We provided a solution that attempts to maintain a constant altitude
relative to the ground. Our approach is based on a PD-controller, which uses the
altitude data coming from a DEM file as the reference signal. Since drones differ
in size, weight, and many other factors, the parameter values of the PD-controller
will likely differ for each UAV. Therefore, we explained in detail our tuning method
so that it can be easily replicated.

Once the PD-controller was tuned, we experimented with two different scenarios:
a rural area, and a mountainous area. The results of the first (rural) scenario show
that the UAV is able to maintain a constant relative altitude above the ground.
During that experiment, the error (i.e. the difference between desired altitude and
actual altitude) was smaller than 5 meters 99.7% of the time, and the increase in
flight time and energy consumed due to such adjustments was of 3.01%, and 3.49%,
respectively, a performance that we consider sufficient for most applications. In the
more challenging scenario, i.e. the mountainous area, the error increased slightly,
and the increase on flight time and energy consumed due to the terrain profile
adjustments (2100 meters in total for vertical mobility) were now more significant,
reaching 28.99%, and 30.59%, respectively.

114

Chapter 8

Accurate vision-based landing

The last stage of any flight is the landing procedure. Often, when performed by
an experienced pilot, this represents little to no problem. Landing autonomously,
however, is much more complicated. Previous proposals heavily rely on the GPS
and inertial navigation sensors (INS) as the main positioning approaches [43].
However, altitude data provided by the GPS is typically inaccurate, and needs to
be compensated with a close-range sensor, such as a barometric pressure sensor or a
radar altimeter. Despite such compensation, these methods still remain inaccurate,
especially in the horizontal plane, resulting in a landing position that typically
deviates from the intended one by 1 to 3 meters. Furthermore, the GPS cannot be
used indoors. For these reasons, GPS and INS systems are mostly used for long
range, outdoor flights having low accuracy requirements [43].

Taking the aforementioned issues into consideration, in this chapter we introduce
a novel vision-based landing system that is able to make a UAV land in a specific
place with high precision. This challenge is addressed by developing a solution
that combines the use of a camera, and ArUco markers [44, 45]. This way, the
relative offset of the UAV towards the target landing position is calculated using
the ArUco library [46] (based on OpenCV). After computing its relative offset, the
UAV adjusts its position so as to move towards the center of the marker and start
descending, performing additional adjustments dynamically.

115

8. Accurate vision-based landing

8.1 Implementation

Before starting our protocol, the UAV will have to move towards the landing
position. This can be done using the regular onboard GPS system. In our
approach, the exact landing position has to be indicated with an ArUco marker.
This marker is similar to the well-known QR-code. However, it cannot hold as
much information as a QR-code (only an ID), and therefore it can be detected
more easily. A typical ArUco marker consists of a black border and a 6x6 square
of black and white smaller squares. There are different types of configurations (e.g.
3x3, 4x4, 7x7) which are known as dictionaries. A marker from a dictionary with
fewer squares is of course easier to detect, but only a few IDs can be provided. In
this work, dictionary “DICT 6X6 250” is used. As the name suggests, it provides
250 different IDs, which is more than enough for our purposes.

Using the ArUco marker library [44, 45] we are able to calculate the relative
position of the UAV w.r.t. the marker. This positional information can then be
used to steer the UAV while descending in such a way that the UAV lands on the
marker. Of course, it is necessary that the UAV is able to detect the maker, and
to that end two conditions must be met: (i) the marker must be fully inside field
of vision of the camera, and (ii) each square must be uniquely identified (black
or white). It is possible that the two conditions are not met simultaneously. For
instance, when the drone is at a low altitude (i.e. 0.5m) the marker is too big
to fit inside the field of view of the camera; in addition, the shadow of the drone
may “corrupt” the image. On the other hand, when the drone is flying at a higher
altitude (e.g. 12 m) the image may be too small to be detected. In order to deal
with this problem, and to allow the UAV to detect the marker from both low,
and high altitudes, our proposal combines multiple markers of different sizes (see
Figure 8.1).

In this way, the UAV will be able to detect the big marker from a high altitude,
and use that marker as a reference until it is able to detect the smaller marker. Once,
the smaller marker is detected, the UAV will switch and use it as its new reference.
Notice that this approach is easily scalable, and, although in our experiments we
only used two markers, more markers can easily be added if required. Figure 8.2
shows a real scenario where the UAV is able to see two markers, but chooses to
move towards the smaller marker. The center of this marker is indicated by the
red spot.

Once the marker is detected, the drone has to move towards the center of the
marker, and descend from there. Due to the effect of wind, and to the inherent
instability of the UAV itself, the drone will also move in the horizontal plane while
descending. This unwanted movement should be compensated in order to land the
drone more precisely. To achieve this behavior, the strategy described in Algorithm

116

8.1. Implementation

Figure 8.1: Two examples of ArUco markers of different sizes.

Figure 8.2: Image retrieved by the UAV camera after processing using
OpenCV/ArUco libraries.

8.1 is proposed, which works as follows: in line 3, the UAV searches for an ArUco
marker. If no marker is detected, the flight mode of the UAV is changed to loiter.
If this is the case for 30 consecutive seconds, the mission is aborted, and the UAV
will land solely using GPS. Otherwise, from the potential list of detected markers,
the marker with the highest ID (i.e., the smallest marker) is selected (line 11).
With the use of the ArUco library, the location of the marker with respect to the

117

8. Accurate vision-based landing

drone is estimated. If the altitude of the UAV is greater than z2 (see empirical
values in Table 8.1), α is set to 20 degrees; otherwise, it is set to 10 degrees. These
values are based on: the detection distance of the markers, the size of the UAV, the
size of the markers, and an additional margin which is optimized empirically. In
line 20 it is checked if the marker is within the virtual border (explained later). If
so, the UAV descends; otherwise, it moves horizontally towards the target position.
This algorithm will be executed continuously as long as the altitude of the UAV is
greater than z1. From the moment the UAV’s altitude drops below z1 (very near
to ground), the control will be handed over to the flight controller, which will land
the UAV in a safe manner, and disarm the engines.

Algorithm 8.1 Static vision-based landing strategy.

1: Start timer 30 s
2: while altitude > z1 do
3: IDs, detected ← SearchMarker()
4: if ¬ detected then
5: Loiter()
6: if timer exceeded then
7: AbortLanding()
8: end if
9: else

10: reset timer()
11: ID ← highest detected ID
12: Get P (x, y, z)id
13: if z > z2 then
14: α = 20◦

15: else
16: α = 10◦

17: end if
18: βx = | arctan (x/z)|
19: βy = | arctan (y/z)|
20: if βx > α or βy > α then
21: Move(x,y)
22: else
23: Descend()
24: end if
25: end if
26: end while
27: Descend and disarm UAV

118

8.1. Implementation

Table 8.1: Parameter values adopted regarding Algorithms 8.1 and 8.2.

Altitude threshold z1 0.30 m
Altitude threshold z2 13 m

Virtual border angle α {10◦, 20◦}

In the description above, a virtual border is mentioned. This border defines
an area which should enclose the marker (illustrated in Figure 8.3). This virtual
border is created in order to distinguish the two cases of (i) descending and (ii)
moving horizontally. The size a of this square is defined as:

a = 2× tan (α)× h

where h refers to the relative altitude of the UAV.

Figure 8.3: Visual representation of the virtual border.

The main advantage of defining the area in this way is that it will decrease as
the drone lowers its altitude. Therefore, the drone will be more centered above its

119

8. Accurate vision-based landing

target position when it flies at low altitude. However, when flying at higher altitude,
the drone should descend whenever possible to avoid excessive landing times. For
this reason, α is increased to 20◦ if the UAV is flying above 13 meters (z2). However,
in preliminary experiments we observed that this algorithm experiences difficulties.
Specifically, it would change quickly between marker IDs whenever one of the
markers is not visible for a short amount of time. At first, a small timer was used
to eliminate this problem. However, this approach was not satisfactory, and so an
extension of this algorithm is proposed as Algorithm 8.2. This second proposal
uses the same general ideas, but introduces some improvements. In particular,
the altitude (activationLevel[i]) is now saved whenever a new marker is detected.
Contrary to the former version, the algorithm will only switch between markers
when its current altitude is lower than half of the activationLevel[i] value. With
this modification, the typical glitching behavior (of detecting and not detecting
a marker) is eliminated. Furthermore, if the UAV is not able to detect a marker,
it will switch to a recovery mode. This means that it will increase its altitude by
one meter, thereby increasing the chances of finding the marker again. Finally, the
horizontal speed of the UAV depends on the horizontal distance to the marker. The
pitch and roll values are set to v1 (see empirical values in Table 8.2) if the distance
between marker and UAV is greater than 1 meter (see Table 8.1); otherwise, it is
set to v2.

Table 8.2: Speed values adopted regarding Algorithm 8.2.

speed v1 15%
speed v2 5%
speed v3 10%

Since the area captured by the camera is large when flying at high altitudes,
there is less risk of missing the marker. Therefore, the UAV’s descending speed
can be varied with respect to its altitude according to equation 8.1:

descending speed =

{︃
min (60%, altitude× 2%) if altitude > 6meters
v3 otherwise

(8.1)

8.2 Experiments & results

Once we finished the implementation of our solution in ArduSim, we performed three
sets of experiments with a real multicopter. Due to the vast amount and diversity
of UAV models available, it is worth mentioning the actual characteristics of the

120

8.2. Experiments & results

Algorithm 8.2 Adaptive vision-based landing strategy.

1: Start timer 30 s
2: while altitude > z1 do
3: IDs ← Search
4: if ¬ detected then
5: Recover
6: if timer exceeded then
7: Abort
8: end if
9: else

10: reset timer
11: for all IDs do
12: if First time detected then
13: activationLevel[i] = altitude
14: end if
15: if altitude ¡ activationLevel[i]/2 then
16: id ← i
17: end if
18: end for
19: Get P (x, y, z)id
20: if z > z2 then
21: α = 20◦

22: else
23: α = 10◦

24: end if
25: βx = | arctan (x/z)|
26: βy = | arctan (y/z)|
27: if βx > α or βy > α then
28: Move(x,y)
29: else
30: Descend(speed)
31: end if
32: end if
33: end while
34: Descend and disarm UAV

UAV used for our experiments. The UAV adopted belongs to the VTOL category,
more commonly known as a multirotor UAV. In the experiments described in this
work, a hexacopter model is used (see Figure 8.4). Our hexacopter is equipped
with a remote control operating in the 2.4 GHz band, a telemetry channel in the
433 MHz band, a GPS receiver, a Pixhawk flight controller, and a Raspberry Pi
with external camera. The Raspberry Pi creates an ad-hoc WiFi connection in the

121

8. Accurate vision-based landing

5 GHz band, which is used to communicate with a ground station, or with other
UAVs.

Figure 8.4: Hexacopter used in our experiments.

In the first set of experiments, the UAV was instructed to fly up to an altitude
of 20 meters, to move toward a specific GPS location, and to land automatically
(by giving the flight controller full control) once that position was reached. During
these experiments, the landing time was recorded, as well as the actual landing
position. Those experiments, which do not use our protocol, are used as reference.

In the second set of experiments, the landing accuracy of Algorithm 8.1 was
evaluated. Again, the UAV took off until an altitude of 20 meters was reached,
and then flew towards the target GPS location. The largest available marker
(56× 56 cm) was placed at that location, and the UAV used this marker as the
initial reference point for landing. When the UAV was able to detect the smaller
marker (18× 18 cm), it used that marker as the reference point instead. For these
experiments, the descending speed was defined by lowering the throttle by 10%,
and the roll and pitch values were set to a value of 5%. After each experiment,
the landing time and the distance between the marker and the actual landing
position were recorded. We define the landing time as the time interval from the
moment when the UAV detected the largest marker until the time when the landing
procedure was finished.

In the last set of experiments, the landing time of Algorithm 8.2 was measured.
The markers used were the same. However, in this optimized version, the descending,
roll and pitch values were dynamic, as mentioned before.

Without the use of our approach, the UAV was able to land consistently within
a time span ranging from 27 to 30 seconds. Nonetheless, this rapid landing comes

122

8.2. Experiments & results

at a price. As shown in Figures 8.5 and 8.6, the actual landing position varies
substantially, ranging from a maximum error of 1.44 meters to a minimum error of
0.51 meters; the mean value for our experiments was of 0.85 meters. Notice that
these errors are smaller than expected (1-3 meters). This is most likely due to the
small travelled distance between the takeoff and landing locations. In fact, in these
experiments, the UAV flew for only 14 meters, and the total flight time was of
about 52 seconds. Longer flights will introduce higher errors, as reported in the
literature [47].

-150 -100 -50 0 50 100 150

Offset in roll-axis [cm]

-150

-100

-50

0

50

100

150

O
ff
s
e
t
in

 p
it
c
h
-a

x
is

 [
c
m

]

GPS approach

Target postion

Our vision approach
Wind: 10 km/h

Figure 8.5: UAV landing position comparison.

GPS Vision

0

50

100

150

O
ff
s
e
t
(r

a
d
iu

s
)

[c
m

]

Figure 8.6: Landing offset GPS vs visual based approached.

123

8. Accurate vision-based landing

0 20 40 60 80 100

time [s]

0

50

100

150

200

250

300

350

400

fr
a
m

e
s

Figure 8.7: Number of consecutive dropped camera frames using algorithm 8.1

As shown in Figure 8.5, the landing position accuracy increased substantially
when algorithm 8.1 was adopted. In particular, experiments showed that the error
ranged from only 3 to 18 cm, with a mean value of 11 cm (see Figure 8.6). Overall,
this means that the proposed landing approach is able to reduce the landing error
by about 96%. However, in three out of ten of the experiments performed, the UAV
moved away from the marker due to the effect of wind. Since at these moments the
altitude was already quite low, the UAV could no longer detect the marker, causing
the mission to be stopped after 30 seconds. Furthermore, the average landing time
was increased to 162 seconds. This is due to the fact that, during the transition
from one marker to another, the algorithm experienced problems at detecting the
smaller marker during some time periods, as illustrated in Figure 8.7 (from second
22 to 35).

Besides this malfunction situations, the UAV showed a smooth landing tra-
jectory as shown in Figure 8.8. Notice how the UAV makes more aggressive
adjustments in the X axis when the altitude drops below 13 meters; this is due
to the fact that the parameter α becomes smaller, restricting the error range. If
the malfunction cases are removed, the average descending speed was of 0.3 m/s,
which could be considered too conservative. Furthermore, Figure 8.8 shows that
most of the adjustments are made when the UAV is close to the ground (constant
altitude). This can be better observed in Figure 8.9, where the center of the camera
frame and the actual location of the marker with regard to both axes is plotted
(betax,betay). It can be seen that the drone only moves when the betax or betay
angle exceeds the value of α. The range of estimated values captured is shown in
Figure 8.10; we can observe that there is a higher variability in the X axis due

124

8.2. Experiments & results

to wind compensation requirements along that direction during the experiments,
something that occurs to a much lower extent for the Y axis.

0 20 40 60 80 100

Flight time [s]

-5

0

5

10

15

20

25

D
is

ta
n
c
e
 [
m

]

x

y

z

Figure 8.8: Displacement using Algorithm 8.1.

0 20 40 60 80 100

Time [s]

-20

-15

-10

-5

0

5

10

15

20

a
n
g
le

 [
d
e
g
re

e
s
]

X angle

Y angle

-

Figure 8.9: betax and betay angle variations vs. flight time.

The malfunctions of Algorithm 8.1 are solved in the second version. As shown
in Figure 8.11, Algorithm 8.2 does not have any issues when switching between
markers. Therefore, the landing time is decreased significantly to an average of
only 55 seconds. Furthermore, as shown in Figure 8.12, the UAV is descending
faster, which also contributes to reducing the landing time. The decrease in landing
time did not have any effect on the accuracy of the application. The new recovery
mode was also found to be beneficial to ensure that the UAV landed on the marker
every time. To compare our proposed solutions, table 8.3 summarizes the results
obtained, highlighting the main differences between them. Finally, an illustrative

125

8. Accurate vision-based landing

Estimated offset X Estimated offset Y

-0.5

0

0.5

1

1.5

2

2.5

3

O
ff
s
e
t
[m

]

Figure 8.10: Estimated X and Y variations associated to UAV positions during
landing.

video1 has been made available to show how the proposed solution performs in real
environments.

0 10 20 30 40 50 60

time [s]

0

2

4

6

8

10

12

14

16

fr
a
m

e
s

Figure 8.11: Number of consecutive dropped camera frames using algorithm 8.2.

8.3 Summary

Achieving accurate landing of multirotor UAVs remains nowadays a challenging
issue, as GPS-based landing procedures are associated with errors of a few meters
even under ideal satellite reception conditions. In addition, GPS-assisted landing

1https://youtu.be/NPNi5YC9AeI

126

8.3. Summary

0 10 20 30 40 50 60

Flight time [s]

-5

0

5

10

15

20

25

D
is

ta
n
c
e
 [
m

]

x

y

z

Figure 8.12: Displacement using Algorithm 8.2.

Table 8.3: Comparative table of the different schemes.

Source accuracy [m] Landing speed [m/s] Maximum altitude [m]
Ours/dynamic 0.11 0.3 30
Ours/static 0.11 0.1 20
GPS-based 1-3 0.6 ∞

is not an option for indoor operations. To address this issue, in this chapter, a
vision-based landing solution that relies on ArUco markers is presented. These
markers allow the UAV to detect the exact landing position from a high altitude
(30 meters), paving the way for sophisticated applications including automated
package retrieval, or the landing of large UAV swarms in a very restricted area,
among others.

Experimental results using a real UAV have validated the proposed approach,
showing that accurate landing (mean error of 0.11 m) can be achieved while
introducing an additional (but small) time overhead in the landing procedure
compared to the standard landing command.

127

Chapter 9

Conclusions, Future Work and
Publications

Unmanned Aerial Vehicle (UAV), more commonly known as drones, are starting to
become part of our day-to-day lives. They are already used frequently for photog-
raphy, inspections, environmental monitoring, etc. However, due to their limited
battery lifetime, it is complicated for them to cover a large area. Nevertheless,
the need to cover a large area does exist. In order to solve it, multiple UAVs can
be used in a coordinated fashion. When we let those UAVs communicate with
each other, and take autonomous decisions, we can speak of a swarm of UAVs. A
swarm has various advantages over a single UAV: it improves redundancy, increases
coverage, increases maximum payload weight, is more flexible, etc. However, these
advantages can only be fully leveraged if the swarm is managed correctly. In order
to do this, some challenges needed to be solved. These challenges include: swarm
formation definition, take-off procedure, in-flight coordination, handling the loss
of swarm elements, communication between the different swarm elements, swarm
layout reconfiguration, and accurate landing. In this thesis, we addressed these
different challenges. Hence, we now summarize our overall findings, provide some
ideas for future work, and go over the publications that have been produced as a
result of this thesis.

129

9. Conclusions, Future Work and Publications

9.1 Conclusions

We started out by improving a previously developed simulation platform called
ArduSim. We split ArduSim into various self-contained modules that communicate
with each other via TCP/IP so as to achieve a micro-services architecture. This
major change made Ardusim (i) more flexible, (ii) easier to connect with external
programs, (iii) easier to understand, (iv) independent of a specific programming
language, and (v) able to be executed in a distributed fashion.

Besides updating our simulator, we provide solutions for some of the challenges
that every UAV swarm will face during a flight. We started out by investigating
how to assign the UAVs on the ground a position in the air and, most importantly,
which UAV has to go to which airborne position. To that end, we experimented
with three algorithms: a brute-force algorithm that naively searches for the best
solution by testing all possible solutions; a heuristic that simplifies the problem
and, therefore, is able to calculate an assignment very quickly; and finally the
Kuhn-Munkres algorithm (KMA). We came to the conclusion that the KMA is
the best approach as long as the number of UAVs does not exceed 500. For larger
swarms, our heuristic is a good alternative.

Afterward, we investigated various proposals to take off all these UAVs. We
implemented three procedures: sequential, fast-sequential, and a semi-simultaneous
procedure. We compared the different procedures, and found that our semi-
simultaneous procedure significantly reduce the take-off time while maintaining a
safe distance between the UAVs.

Once the UAVs are in the air, we want to fly them from one point to another.
However, due to small disturbances (e.g. one UAV flies slight faster than the
others), the swarm might become disrupted over time. Hence, to prevent this
incorrect behavior, we need to synchronize the swarm at each waypoint along
the path. To do so, we introduced and improved the Mission-Based UAV Swarm
Coordination Protocol (MUSCOP). Our improved version made the protocol more
robust, and it only introduces a minimal time overhead in the worst-case scenarios.

Furthermore, we created an algorithm that allows us to change the formation
of a swarm mid-flight. Our algorithm takes the flight direction of the UAVs into
account and, based on their direction, divides the UAVs in groups. Each group
will change altitude momentarily in order to safely cross from one side to another.

We also implemented an algorithm that will automatically change the altitude
of a UAV in such a way that its above-ground altitude stays consistent. This is
a relevant proposal because, by default, the UAV will not take the terrain level
into account. When not taken care off, this can easily lead to a crash, especially in
mountainous regions.

Finally, at the end of each flight, the UAVs have to land. In order to land more

130

9.2. Future work

accurately on a specific location, we implemented a vision-based approach. Using
a simple camera, we were able to detect ArUco markers from a reasonably high
altitude (30 m), and land a UAV at the target location with an average error of
just 11 cm. Compared to the traditional GPS and compass method, which has an
average error of about 5 meters, our method clearly improves the accuracy.

With the above-mentioned contributions, the original goal of this thesis has
been achieved, and so this dissertation can now be concluded.

9.2 Future work

For future work, there are various paths we can pursue. First of all, we can keep
on improving our simulator, ArduSim. In order to bring it closer to reality, we
can improve on the network modules, and include hardware-in-the-loop modules.
Furthermore, in many applications, sensors will be used to measure and monitor
the environment. Hence, an easy-to-use interface to couple virtual sensors to a
drone can be very useful. One specific sensors that is often used is a camera,
and thus creating a 3D simulation where the UAVs can fly in and observe their
environment is of great help.

Besides improving on the simulator, we can also pursue the path of collision
avoidance. Outside the scope of this thesis, we already worked briefly on it. There
are various approaches to do so. A UAV could communicate with other UAVs, and
together decide which UAV has to change path so that a collision can be avoided.
Another method is based on artificial potential fields, in which the UAV repels
itself from any incoming obstacle. Both methods have been tested in general, but
the best of our knowledge, a method that does this on a swarm level has not yet
been created. In the future, it will become important that we are able to avoid
collisions between different swarms.

Yet another important path that can be taken is the one that deals with
communications. In this thesis, we always assumed ad-hoc networks with all the
nodes in range of each other. Other researchers are actively investigating the
possibilities of using 4G/5G to connect UAVs to different infrastructures. But also
within the ad-hoc network communication, we can still introduce improvements.
Multi-hop communication can be very useful because, when the size of the swarm
grows, there are good changes that having all elements within radio range is not
possible. However, due to the quickly changing environment and fast moving drones,
it is not easy to build a reliable multi-hop network. Hence, more investigations
works are still needed.

Most of all, we need to start using swarms of UAVs in actual applications.
These applications can range from precision agriculture, search and rescue missions,

131

9. Conclusions, Future Work and Publications

to providing network infrastructure after disasters. The possibilities are endless. In
most cases, artificial intelligence will be used to process the data efficiently. When
we are able to process the data on board of the UAV, we can reduce network use
and latency. For that reason, we need to investigate who we can use GPU-based
platforms on board of UAVs.

9.3 Publications

This section lists the publications that have been produced as a result of this thesis,
as well as some other collaborations and related publications we published during
this time.

International Journals

1. Wubben, J., Hernández, D., Cecilia-Canales, J.M., Imberón, B., Calafate,
C.T., Cano, J.C., Manzoni, P. & Toh, C.K. Assignment and Take-Off Ap-
proaches for Large-Scale Autonomous UAV Swarms, Transactions on Intelli-
gent Transportation Systems. I.F. 9.551 JCR:Q1 Category.

2. Wubben, J., Morales, C., Calafate, C.T., Hernández-Orallo, E., Cano, J.C.,
& Manzoni, P.(2022). Improving UAV Mission Quality and Safety through
Topographic Awareness, Drones 2022. I.F. 2021: 5.532; JCR: Q2 Cate-
gory.

3. Sastre, C., Calafate, C.T., Cano, J.C., & Manzoni, P.(2022). Safe and
Efficient Take-Off of VTOL UAV Swarms, Electronics 2022. I.F. 2021.
2.690; JCR Q3 Category.

4. Wubben, J., Fabra, F., Calafate, C.T., Cano, J.C., & Manzoni, P.(2021).
A novel resilient and reconfigurable swarm management scheme, Computer
Networks 2021. I.F. 2021: 5.493; JCR: Q1 Category.

5. Wubben, J., Fabra, F., Calafate, C.T., Krzeszowski, T., Cano, J.C., &
Manzoni, P.(2019). Accurate Landing of Unmanned Aerial Vehicles Using
Ground Pattern Recognition, Electronics 2019. I.F. 2021: 2.412; JCR:
Q2 Category.

Internation Conferences

1. Wubben, J., Calafate, Granelli, F., C.T., Cano, J.C., & Manzoni, P.(2023).
A real-time co-simulation framework for multi-UAV environments offering

132

9.3. Publications

detailed wireless channel models. In the IEEE International Conference on
Communication (ICC), 2023, GGS class 2.

2. Sastre, C., Calafate, C.T., Cano, J.C., & Manzoni, P.(2022). Collision-free
swarm take-off based on trajectory analysis and UAV grouping. In 23rd IEEE
International Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2022 (pp. 477-482). IEEE. GGS class 3.

3. Wubben, J., Cecilia-Canales, J.M., Calafate, C.T., Cano, J.C., & Manzoni,
P.(2021). Evaluating the effectiveness of takeoff assignment strategies under
irregular configurations. In 25th IEEE/ACM International Symposium on
Distributed Simulation and Real Time Applications (DS-RT), 2021 (pp. 1-7).
Core C.

4. Wubben, J., Aznar, P., Fabra, F., Calafate, C.T., Cano, J.C., & Manzoni,
P.(2020). Toward secure, efficient, and seamless reconfiguration of UAV swarm
formations. In 24th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), 2020 (pp. 1-7) IEEE. Core
C.

5. Wubben, J. Catalán-Gallach, I., Lurbe-Sempere, M., Fabra, F., Martinez,
F.J.,Calafate, C.T., Cano, J.C., & Manzoni, P.(2020). Providing resilience to
UAV swarms following planned missions. In 29th International Conference
on Computer Communications and Networks (ICCCN), 2020 (pp. 1-6) IEEE.
Core B/ GGS class 3.

6. Fabra, F., Wubben, J., Calafate, C.T., Cano, J.C., & Manzoni, P.(2020).
Efficient and coordinated vertical takeoff of UAV swarms. In 91st IEEE
Vehicular Technology Conference (VTC2020-Spring), 2020 (pp. 1-5) IEEE.
Core B./ GGS class 2.

7. Wubben, J., Fabra, F., Calafate, C.T., Krzeszowski, T., Márquez Barja, J.,
Cano, J.C, & Manzoni, P. (2019). A vision-based system for autonomous
vertical landing of unmanned aerial vehicles. In 23rd IEEE/ACM Interna-
tional Symposium on Distributed Simulation and Real Time Applications
(DS-RT 2019), 2019 (pp. 132-138) IEEE Core B./ GGS class 3.

Related publications

1. Hernández-Orallo, E., Wubben, J., & Calafate, C.T.(2023). Feasibility
and performance benefits of directional force fields for the tactical conflict
management of UAVs. In 23rd International Conference on Computational
Science (ICCS 2023). GGS class3.

133

9. Conclusions, Future Work and Publications

2. Clérigues, D., Wubben, J., Calafate, C.T., Cano, J.C, &Manzoni, P.(2023).
Supporting geographically widespread UAV swarms through graph-based
network relaying. 19th Annual International Conference on Distributed
Computing in Smart Systems and the Internet of Things (DCOSS-IoT 2023).
IEEE Core B./ GGS class 3.

3. Paul, J., Wubben. J., Zamora, W., Hernández-Orallo, E., Calafate, C.T.
Valenzuela, J.L. Using UAVs for the fast detection and characterization of
polluted areas. In the 2023 IEEE 97th Vehicular Technology Conference
(VTC2023-spring), IEEE. Core B/GGS class 2.

4. Wubben, J., Calafate, C.T., Cano, J.C., & Manzoni, P.(2023). FFP: A
Force Field Protocol for the tactical management of UAV conflicts. Ad Hoc
Networks, 2023. I.F. 2021: 4.816; JCR: Q2 Category.

5. van der Veeken, S., Wubben, J., Calafate, C.T., Cano, J.C., Manzoni, P. &
Márquez, J.M. (2021). A Collision Avoidance Strategy For Multirrotor UAVs
Based On Artificial Potential Fields. In 18th ACM International Symposium
on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous
Networks (PE-WASUN), 2021 (pp.95-102).

134

Acronyms

A

AGL Above Ground Level

C

CSTH Collisionless Swarm Take-off Heuristic
GSC Ground Station Control

D

DEM Digital elevation model
DTM Digital Terrain Model
DTD Divergent Trajectory Detection
DSM Digital Surface Model

E

EASA European Union Aviation Safety Agency
ED-CST Euclidean distance-based Collisionless Swarm Take-off
ESC Electronic Speed Controller

G

135

Acronyms

GSC Ground Station Control
GNSS Global navigation satellite system
GPS Global Positioning System

H

HALE High Altitude, Large Endurance

I

INS inertial navigation sensors

K

KMA Kuhn-Munkres algorithm

L

LALE Low Altitude, Large Endurance
LASE Low Altitude, Short Endurance

M

MALE Medium Altitude, Large Endurance
MAV Micro Aerial Vehicle
MUSCOP Mission-Based UAV Swarm Coordination Protocol

P

PID proportional–integral–derivativel

R

RSR Restricted Search Range

S

136

SITL Software In The Loop

U

UAV Unmanned Aerial Vehicle

V

VTOL Vertical Take-off and Landing

137

Bibliography

[1] A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila.
“Swarms of Unmanned Aerial Vehicles — A Survey”. In: Journal of Industrial
Information Integration 16 (2019), pp. 1–7. issn: 2452-414X (cited on p. 2).

[2] G. Chmaj and H. Selvaraj. “Distributed Processing Applications for UAV/drones:
A Survey”. In: Progress in Systems Engineering. Ed. by H. Selvaraj, D. Zydek,
and G. Chmaj. Cham: Springer International Publishing, 2015, pp. 449–454.
isbn: 978-3-319-08422-0 (cited on p. 2).

[3] Pixhawk. Pixhawk: The hardware standard for open-source autopilots. https:
//pixhawk.org/. Accessed: 09/02/2023. 2021 (cited on pp. 10, 99).

[4] Holybro. Holybro. https://holybro.com/. Accessed: 2023-03-23 (cited on
p. 11).

[5] PX4. Open Source Autopilot For Drone Developers. https://px4.io/.
Accessed: 2023-03-23 (cited on p. 11).

[6] A. D. Team. ArduPilot: Copter documentation. https://ardupilot.org/
copter/. Accessed: 09/02/2023. 2021 (cited on pp. 11, 20, 99, 103).

[7] L. Meier. MAVLink Developer Guide (cited on pp. 12, 20).

139

https://pixhawk.org/
https://pixhawk.org/
https://holybro.com/
https://px4.io/
https://ardupilot.org/copter/
https://ardupilot.org/copter/

Bibliography

[8] EASA. on the rules and procedures for the operation of unmanned aircraft
(cited on p. 12).

[9] EASA. on unmanned aircraft systems and on third-country operators of
unmanned aircraft systems (cited on p. 12).

[10] EASA. Easy Access Rules for Unmanned Aircraft Systems. Accessed: 2021-
10-26. 2021 (cited on pp. 12, 100).

[11] EASA. Easy Access Rules for Unmanned Aircraft Systems (Regulation (EU)
2019/947 and Regulation (EU) 2019/945). https://www.easa.europa.eu/
en/downloads/110913/en. Accessed: 16/03/2023. 2022 (cited on p. 12).

[12] Presagis. The UAV CRAFT customizable Unmanned Aircraft Vehicle (UAV)
simulator. https://www.presagis.com/en/product/uav- craft/. Ac-
cessed: 2022-07-19 (cited on p. 15).

[13] squadrone system. UAV simulator a drone simulator solution that accelerates
the deployment of autonomous drones. https://squadrone-system.com/
en/solutions/uav-simulator/. Accessed: 2022-07-19 (cited on p. 15).

[14] Quantum3D.Quantum3D Training. simulation. Technology. https://quantum3d.
com/uav-simulator. Accessed: 2022-07-19 (cited on p. 15).

[15] Mathworks. UAV toolbox - Design, simulate, and deploy UAV applications.
https://www.mathworks.com/products/uav.html. accessed: 2022-07-19
(cited on p. 15).

[16] Microsoft. Airsim home. https://microsoft.github.io/AirSim/. Ac-
cessed: 2023-03-23 (cited on p. 15).

[17] Microsoft. Project AirSim for aerial autonomy. https://www.microsoft.
com / en - us / ai / autonomous - systems - project - airsim ? activetab =

pivot1:primaryr3. Accessed: 2023-03-23 (cited on p. 15).

[18] F. Causa and G. Fasano. “Multiple UAVs trajectory generation and waypoint
assignment in urban environment based on DOP maps”. In: Aerospace
Science and Technology 110 (2021), p. 106507. issn: 1270-9638. doi: https:
//doi.org/10.1016/j.ast.2021.106507 (cited on p. 16).

140

https://www.easa.europa.eu/en/downloads/110913/en
https://www.easa.europa.eu/en/downloads/110913/en
https://www.presagis.com/en/product/uav-craft/
https://squadrone-system.com/en/solutions/uav-simulator/
https://squadrone-system.com/en/solutions/uav-simulator/
https://quantum3d.com/uav-simulator
https://quantum3d.com/uav-simulator
https://www.mathworks.com/products/uav.html
https://microsoft.github.io/AirSim/
https://www.microsoft.com/en-us/ai/autonomous-systems-project-airsim?activetab=pivot1:primaryr3
https://www.microsoft.com/en-us/ai/autonomous-systems-project-airsim?activetab=pivot1:primaryr3
https://www.microsoft.com/en-us/ai/autonomous-systems-project-airsim?activetab=pivot1:primaryr3
https://doi.org/https://doi.org/10.1016/j.ast.2021.106507
https://doi.org/https://doi.org/10.1016/j.ast.2021.106507

Bibliography

[19] X. Fu, P. Feng, and X. Gao. “Swarm UAVs Task and Resource Dynamic
Assignment Algorithm Based on Task Sequence Mechanism”. In: IEEE Access
7 (2019), pp. 41090–41100. doi: 10.1109/ACCESS.2019.2907544 (cited on
p. 16).

[20] N. Dousse, G. Heitz, and D. Floreano. “Extension of a ground control interface
for swarms of Small Drones”. In: Artificial Life and Robotics 21.3 (2016),
pp. 308–316. issn: 1614-7456. doi: 10.1007/s10015-016-0302-9 (cited on
p. 16).

[21] E. B. Dano. “Resilient system engineering in a multi-UAV system of systems
(SoS)”. In: ISSE 2019 - 5th IEEE International Symposium on Systems
Engineering, Proceedings (2019). doi: 10.1109/ISSE46696.2019.8984509
(cited on p. 16).

[22] M. Chen, H. Wang, C.-Y. Chang, and X. Wei. “SIDR: A Swarm Intelligence-
based Damage-Resilient Mechanism for UAV Swarm Networks”. In: IEEE
Access PP (Apr. 2020), pp. 1–1. doi: 10.1109/ACCESS.2020.2989614 (cited
on p. 16).

[23] V. T. Hoang, M. D. Phung, T. H. Dinh, Q. Zhu, and Q. P. Ha. “Reconfigurable
Multi-UAV Formation Using Angle-Encoded PSO”. In: 2019 IEEE 15th
International Conference on Automation Science and Engineering (CASE).
2019, pp. 1670–1675 (cited on p. 16).

[24] M. Chen, F. Dai, H. Wang, and L. Lei. “DFM: A Distributed Flocking Model
for UAV Swarm Networks”. In: IEEE Access 6 (2018), pp. 69141–69150
(cited on p. 16).

[25] V. Casas and A. Mitschele-Thiel. “Implementable Self-Organized Flocking Al-
gorithm for UAVs Based on the Emergence of Virtual Roads”. In: Proceedings
of the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications. DroNet ’20. Toronto, Ontario, Canada: Association for Comput-
ing Machinery, 2020. isbn: 9781450380102. doi: 10.1145/3396864.3399702
(cited on p. 16).

[26] Y. Tang, Y. Hu, J. Cui, F. Liao, M. Lao, F. Lin, and R. Teo. “Vision-
aided Multi-UAV Autonomous Flocking in GPS-denied Environment”. In:

141

https://doi.org/10.1109/ACCESS.2019.2907544
https://doi.org/10.1007/s10015-016-0302-9
https://doi.org/10.1109/ISSE46696.2019.8984509
https://doi.org/10.1109/ACCESS.2020.2989614
https://doi.org/10.1145/3396864.3399702

Bibliography

IEEE Transactions on Industrial Electronics PP (Apr. 2018), pp. 1–1. doi:
10.1109/TIE.2018.2824766 (cited on p. 16).

[27] J. Muliadi and B. Kusumoputro. “Neural network control system of UAV
altitude dynamics and its comparison with the PID control system”. In:
Journal of Advanced Transportation 2018 (2018) (cited on p. 17).

[28] X. Chen, S. K. Phang, M. Shan, and B. M. Chen. “System integration
of a vision-guided UAV for autonomous landing on moving platform”. In:
IEEE International Conference on Control and Automation, ICCA 2016-July
(2016), pp. 761–766. issn: 19483457. doi: 10.1109/ICCA.2016.7505370
(cited on p. 17).

[29] E. Nowak, K. Gupta, and H. Najjaran. “Development of a Plug-and-Play
Infrared Landing System for Multirotor Unmanned Aerial Vehicles”. In:
Proceedings - 2017 14th Conference on Computer and Robot Vision, CRV
2017 2018-Janua (2018), pp. 256–260. doi: 10.1109/CRV.2017.23 (cited on
p. 17).

[30] X. Chen, S. K. Phang, M. Shan, and B. M. Chen. “System integration
of a vision-guided UAV for autonomous landing on moving platform”. In:
IEEE International Conference on Control and Automation, ICCA 2016-July
(2016), pp. 761–766. issn: 19483457. doi: 10.1109/ICCA.2016.7505370
(cited on p. 17).

[31] F. Fabra, C. Calafate, J.-C. Cano, and P. Manzoni. “ArduSim: Accurate
and real-time multicopter simulation”. In: Simulation Modelling Practice
and Theory 87 (July 2018). doi: 10.1016/j.simpat.2018.06.009 (cited on
p. 20).

[32] A. software foundation. Apache License Version 2.0, (cited on p. 20).

[33] GRCDev. ArduSim: Accurate and real-time multi-UAV simulation. https:
//github.com/GRCDEV/ArduSim. Accessed: 2021-05-26. 2020 (cited on p. 20).

[34] O. Ltd. OMNeT++, Discrete Event Simulator. https://omnetpp.org/.
accessed: July 7, 2023 (cited on p. 28).

142

https://doi.org/10.1109/TIE.2018.2824766
https://doi.org/10.1109/ICCA.2016.7505370
https://doi.org/10.1109/CRV.2017.23
https://doi.org/10.1109/ICCA.2016.7505370
https://doi.org/10.1016/j.simpat.2018.06.009
https://github.com/GRCDEV/ArduSim
https://github.com/GRCDEV/ArduSim
https://omnetpp.org/

Bibliography

[35] OpenStreetMap contributors. Welcome to OpenStreetMap! https://www.

openstreetmap.org. 2017 (cited on p. 29).

[36] Ministerio de Transportes, Movilidad y Agenda Urbana. Centro de descargas.
https://centrodedescargas.cnig.es/CentroDescargas/. 2022 (cited on
p. 29).

[37] H. W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97 (cited on p. 38).

[38] F. Fabra, W. Zamora, P. Reyes, J. A. Sanguesa, C. T. Calafate, J.-C. Cano,
and P. Manzoni. “MUSCOP: Mission-Based UAV Swarm Coordination Pro-
tocol”. In: IEEE Access 8 (2020), pp. 72498–72511. doi: 10.1109/ACCESS.
2020.2987983 (cited on pp. 75, 76).

[39] F. Fabra, C. Calafate, J.-C. Cano, and P. Manzoni. “A methodology for mea-
suring UAV-to-UAV communications performance”. In: Jan. 2017, pp. 280–
286. doi: 10.1109/CCNC.2017.7983120 (cited on p. 80).

[40] V. T. Ltd. Litchi. https://flylitchi.com/. Accessed: 09/02/2023. 2022
(cited on p. 100).

[41] O. A. C. N. de Información Geográfica. Centro de descargas. http://
centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed:
09/02/2023. 2021 (cited on p. 101).

[42] CDEMA. Digital Elevation Models. https://www.cdema.org/virtuallibrary/
index . php / charim - hbook / data - management - book / 3 - base - data -

collection / 3 - 2 - digital - elevation - models. Accessed: 09/02/2023.
2021 (cited on p. 102).

[43] A. Gautam, P. B. Sujit, and S. Saripalli. “A survey of autonomous landing
techniques for UAVs”. In: 2014 International Conference on Unmanned
Aircraft Systems, ICUAS 2014 - Conference Proceedings. 2014, pp. 1210–
1218. isbn: 9781479923762. doi: 10.1109/ICUAS.2014.6842377 (cited on
p. 115).

[44] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and R. Medina-
Carnicer. “Generation of fiducial marker dictionaries using Mixed Integer

143

 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://centrodedescargas.cnig.es/CentroDescargas/
https://doi.org/10.1109/ACCESS.2020.2987983
https://doi.org/10.1109/ACCESS.2020.2987983
https://doi.org/10.1109/CCNC.2017.7983120
https://flylitchi.com/
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
https://www.cdema.org/virtuallibrary/index.php/charim-hbook/data-management-book/3-base-data-collection/3-2-digital-elevation-models
https://www.cdema.org/virtuallibrary/index.php/charim-hbook/data-management-book/3-base-data-collection/3-2-digital-elevation-models
https://www.cdema.org/virtuallibrary/index.php/charim-hbook/data-management-book/3-base-data-collection/3-2-digital-elevation-models
https://doi.org/10.1109/ICUAS.2014.6842377

Bibliography

Linear Programming”. In: Pattern Recognition 51.October (2016), pp. 481–
491. issn: 00313203. doi: 10.1016/j.patcog.2015.09.023 (cited on pp. 115,
116).

[45] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer. “Speeded
up detection of squared fiducial markers”. In: Image and Vision Computing
76.June (2018), pp. 38–47. issn: 02628856. doi: 10.1016/j.imavis.2018.
05.004 (cited on pp. 115, 116).

[46] F. J. Romero-Ramirez, R. Muñoz-Salinas, and R. Medina-Carnicer. ArUco:
Augmented reality library based on OpenCV. https://sourceforge.net/
projects/aruco/. Accessed: 07/02/2023 (cited on p. 115).

[47] M. A. A. Careem, J. Gomez, D. Saha, and A. Dutta. “HiPER-V: A High
Precision Radio Frequency Vehicle for Aerial Measurements”. In: 2019 16th
Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). 2019, pp. 1–6. doi: 10.1109/SAHCN.2019.8824903
(cited on p. 123).

144

https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1016/j.imavis.2018.05.004
https://sourceforge.net/projects/aruco/
https://sourceforge.net/projects/aruco/
https://doi.org/10.1109/SAHCN.2019.8824903

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure of the thesis

	From single UAVs to an autonomous swarm: an overview
	The fundamentals of Unmanned Aerial Vehicles (UAVs)
	Why we need UAV swarms
	Current solutions for swarm coordination

	ArduSim: a multi-UAV simulator
	Original version of ArduSim
	Design and implementation
	UAV swarm formation
	UAV-to-UAV communications
	Summary

	Assigning airborne positions efficiently
	Overview
	Experiments & results
	Summary

	Taking off
	Analysis of possible take-off strategies
	Experiments & results
	Summary

	Maintaining the swarm coherent
	The original version of MUSCOP
	Proposed resilience mechanism
	Experiments & results
	Summary

	Advanced mid-flight maneuvers
	Swarm reconfiguration
	Adjusting the altitude for changing terrain levels
	Experiments & results
	Summary

	Accurate vision-based landing
	Implementation
	Experiments & results
	Summary

	Conclusions, Future Work and Publications
	Conclusions
	Future work
	Publications

	Acronyms
	Bibliography

