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Abstract: With the emergence of fog and edge computing, new possibilities arise regarding the
data-driven management of citizens’ mobility in smart cities. Internet of Things (IoT) analytics
refers to the use of these technologies, data, and analytical models to describe the current status of
the city traffic, to predict its evolution over the coming hours, and to make decisions that increase
the efficiency of the transportation system. It involves many challenges such as how to deal and
manage real and huge amounts of data, and improving security, privacy, scalability, reliability, and
quality of services in the cloud and vehicular network. In this paper, we review the state of the art
of IoT in intelligent transportation systems (ITS), identify challenges posed by cloud, fog, and edge
computing in ITS, and develop a methodology based on agile optimization algorithms for solving
a dynamic ride-sharing problem (DRSP) in the context of edge/fog computing. These algorithms
allow us to process, in real time, the data gathered from IoT systems in order to optimize automatic
decisions in the city transportation system, including: optimizing the vehicle routing, recommending
customized transportation modes to the citizens, generating efficient ride-sharing and car-sharing
strategies, create optimal charging station for electric vehicles and different services within urban
and interurban areas. A numerical example considering a DRSP is provided, in which the potential
of employing edge/fog computing, open data, and agile algorithms is illustrated.

Keywords: fog; edge computing; Internet of Things; intelligent transportation systems; smart cities;
machine learning; agile optimization

1. Introduction

In today’s modern society, urban centers are facing the so-called booming of infor-
mation. Due to the population growth in many countries around the globe, and recent
innovations in information and telecommunication technologies, several activities and
related challenges have jointly arisen. People are increasingly consuming more information
through their mobile devices, vehicles are equipped with different intelligent systems, de-
vices are distributed around the cities for gathering and generating information, and urban
areas are continuously taking advantage of these information technologies and big data.
Consequently, so-called smart cities have emerged, whose scope combines sustainable
development with the intelligent management of gathered data in order to enhance the
operation of different services within urban areas, such as waste collection management [1],
car-sharing/ride-sharing activities [2], the optimal location of recharging stations for elec-
tric vehicles (EVs), among others. In this matter, during the past few years, the Internet of
things (IoT) has become a popular term that plays a significant role to expand and produce
a lot of data through sensors and allows citizens and things to be connected in any situation
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or with anyone [3]. Moreover, fog and cloud computing come to support IoT to manage the
large amount of generated data [4]. In Figure 1, Roadside Units (RSU), cellphones, and ve-
hicles share the fog layer (in green), whose devices are connected through the edge layer
(connections) to the cloud/open data repository layer (in blue). These connections allow
the interchanging of data among these agents. The open data server stores information
stemming from IoT devices installed at the edge of the networks. The grabbed data are
then processed in site, instead of being sent to the cloud directly by data analytics in the
fog layer.

Figure 1. The fog-computing architecture deployed in this work, in which RSUs as are used as fog
nodes and the Internet of Vehicles (IoV) as the communication protocol.

One of the main tasks when building smart cities is the development of intelligent
transportation systems (ITS). These systems need to establish exact, effective, comprehen-
sive, and real-time control systems, relying on IoT and capable of reducing or solving
the phenomenon of mobility overcrowding [5,6]. Furthermore, integrating IoT and open
data initiatives in smart cities allows governments, public, and private sectors to develop
new services and applications by ensuring the effective handling and managing of data
that are constantly shared among individual citizens and different industries [7]. For in-
stance, sensing real-time traffic flow and mobility tracking data, such as vehicle states
(e.g., location, speed, etc.), intersection information (e.g., the length of the queue waiting
at the intersection, etc.), and the situation of the road (e.g., under construction, traffic
accident, etc.) can be analyzed [8,9] to explain the dynamics of urban vehicles as micro and
macroscopic simulations, traffic flow, and travel time estimations [10].

In this context, mobile internet technology is one of the actors which enables dynamic
and on-demand sharing activities. In ride-sharing systems, for example, people are al-
lowed to offer trips for riders by using their own private vehicles. These ride-sharing
economy activities include highly dynamic systems in which drivers and riders receive
matches through automated processes that are used by a ride-share provider [11]. Nowa-
days, the concept of ride-sharing plays an essential role in new transportation paradigms,
holding multiple advantages for society in general, e.g., reducing traffic congestion, noise,
and pollution; minimizing fares for passengers, and operational costs for drivers, etc.
Hence, utilizing the cloud and edge computing helps to handle terabytes of data extracted
from IoT devices—including information about vehicles’ mobility and traffic conditions.
Furthermore, by analyzing these data and combining them with the concept of ride-sharing,
some urban mentioned problems can be reduced or even solved. In this context, optimiza-
tion techniques, such as approximate methods—i.e., heuristics and metaheuristics—have
proved to be both efficient and capable of generating high-quality solutions for large-scale
and complex real-world problems [12]. This means that heuristics have a high potential to
provide agility and real-time responses, which are necessary issues for a good performance
of ITS and, in general, of this type of system. Nevertheless, after reviewing some related
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work, very few articles combining heuristics with IoT analytics by utilizing the cloud and
edge computing have been found.

Hence, to fill this gap, a dynamic ride-sharing problem (DRSP) is addressed in our
work, where dynamic conditions usually encountered in modern urban centers affect the
decision-making processes. In other words, the DRSP considers dynamic traffic conditions
that might lead to several changes on the initially designed routes due to the incorporation
of refreshed information, such as traffic conditions and vehicles states. In this problem, a set
of routes must be designed so that the total reward collected by picking up passengers is
maximized. A discrete-event-driven metaheuristic is proposed to solve this problem. This
solution method is enhanced with biased-randomized techniques to provide an efficient
exploration of the solution space. Furthermore, this paper has reviewed existing works
in the context of IoT, edge/fog, cloud computing in terms of ITS. We highlight multiple
challenges, opportunities, and usage of cloud, fog, and edge computing in ITS and discuss
how to solve problems such as low latency, handling data, privacy protection, etc. in this
area. Additionally, we discuss the role of IoT analytics in ITS and different techniques used
for solving the problems. Some of our main goals are:

• To review accessible real open data repositories.
• To review approaches regarding optimization, simulation, machine learning, and agile

optimization algorithms in ITS.
• To provide challenges and opportunities of cloud, fog, and edge computing and IoT

analytics in ITS.
• To propose a methodology for solving the DRSP in the context of edge/fog computing.

The remaining sections of the paper are structured as follows: Section 2.1 reviews the
open data initiatives for smart cities. Section 2.2 describes the optimization, simulation,
and machine learning approaches in the ITS. In Section 2.3, the concept of agile optimization
for dynamic and intelligent transportation systems is described. Section 3 presents a brief
review of related work. We present a case study in Section 4. In Section 5, the discrete-
event-based methodology is introduced. Section 6 discusses computational results. Finally,
Section 7 summarizes our main insights and provides future research lines.

2. Fundamental Concepts

This section provides a theoretical background about the main concepts employed in
this document. Firstly, an exposition about accessible real open data repositories in a group
of smart cities is provided. Secondly, quantitative approaches regarding optimization,
simulation, machine learning, and agile optimization algorithms in ITS are reviewed.

2.1. Open Data Initiatives for Smart Cities

During the last decade, there have been multiple initiatives involving big cities across
the world in order to make ITS data available for the general public. These open-data are
accessible to citizens and researchers [13]. The real potential of any small city relies not
only on collecting data from sensors, but also on spreading these data to empower citizens,
increase transparency, and enhance public services [3,14]. As mentioned by Granickas [15],
in the European Union and in the year 2013, the direct benefit associated with the use of
open data was approximately of 40 billion euros, which rises to 140 billion euros if we
consider the entire set of European countries. There are many smart cities in the world,
such as Barcelona (BCN), New York (NYC), Amsterdam, Helsinki, Chicago, Quebec City,
Rio de Janeiro (Rio), Dublin, Nairobi, and Manchester. In many of these cities, open-data
initiatives are growing fast [16]. Open data is known as one of the most significant and
decisive elements of a smart city initiative, and open data allows for increasing access to
information, enabling social inclusion and economic development of different smart city
frameworks, such as environment, transportation, energy, governance, people and lifestyle,
technology, and building infrastructure [17]. Table 1 identified several smart cities from the
globe, and two open data sources that provide European Union territories. Moreover, it
shows how often the data sets are updated, as well as the main format employed.
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Table 1. Open data initiatives in smart cities by the type of format and frequency update.

Open Data Name Format Update Frequency

Name City Link

Open Data BCN Barcelona https://opendata-ajuntament.barcelona.cat/data/en/organization/transport?page=2 All availability/need

London data store London https://data.london.gov.uk/ All Daily/ availability/need

Data.gov United state https://data.gov/ All availability

NYC Open Data New York City https://data.cityofnewyork.us/ CSV and XLSX and XML & RDF & RSS availability

Data and information Amsterdam https://data.amsterdam.nl/datasets/zoek/ CSV and XLSX and XLS and API Daily

Overheid Netherlands https://data.overheid.nl/ All Daily

Helsinki Region Info-share Helsinki https://hri.fi/en_gb/ All availability

Chicago Data Portal Chicago https://data.cityofchicago.org/ CSV and XLSX and XML and RDF and RSS availability

Quebec data Quebec https://www.donneesquebec.ca/ All availability/need

Data.Rio Rio https://www.data.rio/ CSV and XLSX availability

Dublinked Dublin Region https://data.smartdublin.ie/ All availability/need

Data.gov Ireland https://data.gov.ie/ All availability

Berlin Open Data Berlin https://daten.berlin.de/ CSV and PDF and WFS and HTML availability

GovData Germany https://www.govdata.de/ XLSX and ZIP and PDF and CSV and WMS adn HTML availability

European Union several cities in Europe https://data.europa.eu/euodp/en/data/ All availability

European data portal Several cities https://www.europeandataportal.eu/en All availability

https://opendata-ajuntament.barcelona.cat/data/en/organization/transport?page=2
https://data.london.gov.uk/
https://data.gov/
https://data.cityofnewyork.us/
https://data.amsterdam.nl/datasets/zoek/
https://data.overheid.nl/
https://hri.fi/en_gb/
https://data.cityofchicago.org/
https://www.donneesquebec.ca/
https://www.data.rio/
https://data.smartdublin.ie/
https://data.gov.ie/
https://daten.berlin.de/
https://www.govdata.de/
https://data.europa.eu/euodp/en/data/
https://www.europeandataportal.eu/en
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Public information has great potential value, which can be relative to different cities
domains included in Economic and Business, Environment and Energy, Agriculture, Cul-
ture and Tourism, Education and Health. Table 2 considers various sectors that relate
to the important area of smart cities, and some keywords are discussed for each. Thus,
in the Health sector for instance, it is clear that they are concerned with measuring the
impact of the COVID pandemic, the number of cases, or the status of each hospital. In
addition, the Environment and Energy data sets cover air quality, wastewater, oil, gas,
and energy usage. The data sets for Agriculture cover land use, animals, and a list of
associations’ equipment. However, some smart cities do not consider that information.
Moreover, the Transportation and Traffic data sets are more active in those open data
sources. They focus on traffic data, pedestrian facilities trails and paths, road infrastructure,
and parking spaces.

Since cities are facing sustainable urban development challenges, innovative services
and analytical capabilities are needed for resource optimization and value creation based
on data. This information from cities open data is one of the most powerful resources [18].
Table 3 shows the availability of specific vehicles in each open data source. Most of the
open data sources consider cars, taxis, buses, and metros in their transportation data sets.
However, only a few of them address electric vehicles, unmanned aerial vehicles, airplanes,
and ships. Some cities, such as Barcelona, London, New York City, and Dublin provide
vehicles’ information, while some cities in the United States provide information about
unmanned aerial vehicles. Those open data sources create opportunities to improve many
operational activities of the city by the anticipated effect on operating costs, public safety,
transportation, and quality of municipal services.

2.2. Optimization, Simulation and Machine Learning in ITS

Large amounts of data are generated daily by web-based services, mobile devices,
and sensors in ITS. With that, new approaches for data-based transportation systems
have emerged Vlahogianni [19]. In modern ITS, data play an important role in solving
problems related to congestion control, peak load reduction, mobility management of EVs,
etc. For instance, Saharan et al. [20] reviewed and analyzed dynamic pricing techniques in
the ITS area.

Based on a multi-agent system, Satunin and Babkin [21] proposed a new approach to
design a demand-responsive transport model, where the interests of the system stakehold-
ers are represented by different independent agents. Moreover, according to combinatorial
auctions, they proposed an algorithm that allows expression of commodities of multiple
transportation scenarios with obvious means of offers. Furthermore, Shah et al. [22] devel-
oped and compared a mixed-integer programming model with a space–time network flow
model for scheduling vehicles on a grid of intersecting roads. Then, they showed that the
proposed space-time network model is more efficient than other approaches. Furthermore,
using real-time data on travel times, Taniguchi and Shimamoto [23] showed that the total
cost decreased by using their dynamic vehicle routing and scheduling model.
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Table 2. Sector availability data set in open data initiatives of smart cities.

Name
Sector Availability

Economic Environment and Agriculture Culture and Education Transportation Health

Open Data BCN Trade, employment, science,
and technology.

Air quality, green point, list of
associations and environment
equipment and activities.

Accommodation, regulated education,
list of grants, tourism points,
temporary exhibitions.

Parking spots, biking stations,
bus stops, street sections, traffic
incidence notices, transportation
equipment.

Measures the impact of COVID,
family planning, hospitals,
protected housing, social services
centers.

London data store List of the number of jobs, data on
broader economic conditions.

Recycling, household waste, carbon
dioxide emission, employment by
industry, domestic energy efficiency.

Number of visits by country, annual
education, working-age population,
international visitors by city.

Number of journeys, traffic flow
of vehicles, number of bicycles,
road information.

Annual London survey, physically
active children, public health.

Data.gov

Loan data, retail, services’ annual
survey, the survey of business
owners, construction price,
economic indicators.

Oil and gas well map, clean air status,
state soil geographic, earthquake
locations, uranium location database,
animal or plant diseases.

National register of historic districts,
cultural resources, national automotive
center, higher education school
location, citizen participation.

Traffic data, railroad mileposts,
airport runways, pedestrian
crashes, bicycles, and pedestrian
facilities.

Infant health indicators census
tract and year, all live births in
Illinois, human disease.

NYC Open Data

Civil service list, NYC jobs,
BIC-issued violations, NYC free
tax prep sites, payments received
for DCA fines.

Water consumption, public recycling
bins, natural gas consumption.

Latin cultural organizations, NYC
museum recreation, physical
education, bilingual education
programs, art galleries, tourism grants.

Transportation sites and
structure, new driver
applications, subway entrances,
real-time traffic speed.

Hospitals’ facilities, mental health
service, health center district.

Data and
information

Income and expenditure,
employment of Amsterdam,
international trade.

—

Sports providers, running routes,
primary education, culture in
Amsterdam, museums and galleries,
hotels.

Traffic forecasting traffic model,
mobility of public transport,
walking and cycling, metro and
tram rail management.

Health districts, social care, city
care districts.

Overheid
Income before inflow, income
after outflow, purchase data,
international trade, transit trade.

Electricity balance, supply,
and consumption, supply of natural
gas, public electricity network, noise
pollution, fruit growing, history of
agriculture.

Public libraries, history of education,
education expenses, museums’ size,
class, visitors.

Disabled parking spaces,
passenger mobility, travel
characteristics, modes of
transport, traffic performance.

Serious obesity in children, health
expenditure, youth protection
programs.

Helsinki Region
Info share

Statistical yearbook of Helsinki,
income by stage of life and area,
income and consumption.

Nature data of Espoo city, energy
consumption, district heat production,
urban tree database of the city.

Places, events, and activities, grammar
school, number of students, art and
culture subsidies.

Intersections with traffic lights,
signposts for bicycles, pedestrian
traffic, parking payment zones.

Deaths and cause of death,
comparison of child welfare, care
for the mentally disabled.

Chicago Data Portal Current employee information
budget.

Energy usage, average electricity,
green roofs map.

Individual Chicago landmarks, public
library location, neighborhood
boundaries.

Chicago street names, traffic
crashes, taxi trips, average daily
traffic counts, parking permit
zones.

COVID cases, tests, and deaths,
neighborhood health clinics,
community service centers.

Quebec data
Business register, forest
certification, pricing zone, list of
work stoppages.

List of large parks, district parks and
public spaces, public trees, food
inspection, urban agriculture.

Places of interest of the city, all parks
and green space, funding granted,
administrative data, museum
institutions.

Injuries suffered by accident,
the road network of the city,
sidewalks, and parking.

Daily number confirmed COVID
cases, list of days of
hospitalization.
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Table 2. Cont.

Name
Sector Availability

Economic Environment and Agriculture Culture and Education Transportation Health

Data.Rio Budget execution revenue. Air quality, rainfall zones,
hydrography.

Proportion of room, special education,
the arrival of tourists, basic education
development, ranking of national
tourists.

Bike racks, cycle network,
passenger movement.

Municipal health units,
programmatic health areas, pay
health insurance.

Dublinked Location of enterprise centers’
contact information.

Public lighting infrastructure, bin
locations, local electoral areas, details
of bathing water status, noise
monitoring.

Location of sculptures, libraries, art
centers, third level institutions, school
warden duty points.

Bikeshare scheme, bicycle traffic
volumes, road infrastructure,
traffic congestion.

Locations health centers, contact
information.

Data.gov The location of enterprise centers,
industrial estates, annual budget.

Wind energy development, winter
service plan, water, power plants,
number of farms, public slipways.

Tourism attractions, arts facilities,
primary schools, the record of
protected structures, number of
registered teachers.

Parking of vehicles, road
schedule, traffic congestion,
traffic lights.

COVID-19 daily statistics, aftercare
service, child welfare referrals.

Berlin Open Data Gastronomy, shops, and other
businesses.

List of street tree planting, used glass
recycling.

List of memorial plaques, monuments
of the state of Berlin.

Road traffic accidents,
the volume of vehicles, parking
space.

Covid number of cases, Covid
number of indicators, staff in the
public health service.

GovData Foreign trade, import, export,
employees gross wages.

Monitoring radioactivity, public
wastewater treatment, pig and sheep
population, land use and harvesting,
electricity.

Tourist accommodation, the record of
institute.

Wheel counting data, occupied
parking spaces, road traffic
accidents.

Daily alcohol consumption,
diagnostic statistics.

European Union Eu customs tariff, economic
sentiment indicator.

European electricity market, European
food consumption, number of dairy
cows, greenhouse gas emissions,
global surface water exploration.

Number of trips by country, world
region of destination, tourism
accommodation, classification of
European skills.

Airport traffic data, the number
of passengers.

Health programs, purity,
and potency of drugs.

European data
portal

Information of electronic address,
goods decelerate, budget.

Land use, protected areas, oil, gas,
water, pesticide sale, meat production.

List of courses, library collection,
football data.

Public transport, schedule data,
vehicles, passengers air transport.

Pharmacy type, number of
confirmed COVID cases, deaths by
week.
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Table 3. Availability of open data initiatives in smart cities by each type of transportation.

Open Data Name Type of Transport

Name Car-Taxi Bus Bike Metro Tram EV/UAV Airplane/Ship

Open Data BCN YES YES YES YES YES YES/NO NO

London data store YES YES YES YES YES YES/NO NO

Data.gov YES YES YES YES YES YES YES

NYC Open Data YES YES YES YES NO Yes/NO NO/ YES

Data and information YES YES NO YES YES NO NO

Overheid YES YES YES YES YES NO NO

Helsinki Region Infoshare YES YES YES YES YES NO NO/YES

Chicago Data Portal YES YES YES NO NO NO NO

Quebec data YES YES NO YES NO NO NO

Data.Rio YES YES YES YES NO NO NO/ YES

Dublinked YES YES YES NO NO NO NO

Data.gov YES YES YES NO NO YES/NO NO/ YES

Berlin Open Data YES YES YES NO YES NO NO

GovData YES YES YES YES YES NO NO/ YES

European Union YES YES NO YES YES NO NO/ YES

European data portal YES YES YES YES YES YES/NO NO/ YES

In the ITS area, one of the main goals is to support efficiency, safety, and eco-friendly
transport networks that improve the quality of life. Based on a cellular automata, Marques
and Neves-Silva [24] developed a traffic simulator called GESTRAF. It considers the individ-
uality factor. By using data in Portugal, Ramos et al. [25] described and developed a useful
framework that includes a core modeling and simulation platform. This framework can be
adapted to the urban transportation system. Fernández-Isabel and Fuentes-Fernández [26]
presented another simulation model for analysis of ITS. Their framework considers model-
ing languages, guidelines, and tools to develop ITS specifications and simulations.

Using simulation for car-sharing management dates back to the 70s, due to the fuel
crisis in the United States and the lack of federal funding for new urban transportation
facilities. Hence, Kornhauser et al. [27] developed a simulation for the cities of Trenton
and New Jersey, in order to evaluate the productivity potential of dynamic ride-sharing
systems on a hypothetical automated guide-way transit network. According to the number
of specific origins and destinations that vehicles can travel to at any time, different policies
were tested. Agent-based and dynamic simulation have been the most frequently used
methods to deal with car-sharing challenges. Based on agent-based modeling, by using
New York city fleet data, Lokhandwala and Cai [28] considered implicit objectives such as
reducing the fleet size, increasing the occupancy rate, decreasing the total travel distance,
and reducing carbon emissions. Moreover, their simulations demonstrated that the total
travel distance was decreased by up to 55%. In terms of using shared autonomous vehi-
cles, Fagnant and Kockelman [29] used dynamic ride-sharing with aim of the optimizing
fleet sizing, improve the model’s capabilities, and deliver a benefit–cost analysis for fleet
operators.

ITS management has become more efficient due to the application of deep learning
and machine learning techniques that perfectly complement other analytical and statistical
techniques. This, in turn, has facilitated traffic management and traffic planning, enhanced
safety and security in transit roads, reduced maintenance costs, and optimized public
transportation as well as ride-sharing performance [30]. Thus, for example, Fang et al. [31]
proposed a support vector machine to classify user transportation and vehicular modes
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after considering different machine learning methods. In addition, Said et al. [32] applied
Q-Learning and reinforcement learning techniques by using a support vector machine to
select the best transportation route based on CO2 emissions, travel duration, ticket tariff,
waiting connection time to catch transport means, and connection time between the differ-
ent transport means to reach the destination. Nguyen et al. [33] developed a useful review
and showed which deep learning applications are more efficient in transportation networks,
such as traffic flow forecasting, traffic signal control, automated vehicle detection, travel
demand prediction, autonomous driving, and driver behavior analysis. Moreover, Li and
Xu [34] classified vehicles using different classifiers, such as Adaboost, support vector ma-
chines, reinforcement learning, support vector regression algorithms. They used the latter
to improve the accuracy of short-term traffic flows. Likewise, Karami and Kashef [35] in-
troduced intelligent planning data, methods, and models for transportation, and discussed
clustering techniques that automatically group more accurate information, and tested some
useful machine learning methods in time series prediction: ARIMA, Kalman filtering, Holt
winters’ exponential smoothing, random walking, KNN algorithms, and deep learning.
Similarly, Boukerche and Wang [36] reviewed different machine learning methods in the
field of traffic prediction. With the rapid rise of traffic monitoring, significant challenges
arise regarding the storage, communication, and processing of traditional transportation
systems based on cloud computing. For instance, Chen et al. [37] propose a traffic flow
detection scheme based on deep learning on the edge nodes.

Based on K-fold cross-validation and out-of-bag error, Jahangiri and Rakha [38] mod-
eled a selection process for extracting data from smartphone sensors. This process consid-
ered different supervised machine learning models, such as K-nearest neighbor, support
vector machines, decision tree, bagging, and random forest. The authors developed multi-
class classifiers that identify the transportation model, e.g., driving a car, using a bus,
riding a bicycle, walking, and running. By using some information of public transportation
and geographical location from daily mobility, Omrani [39] was able to predict the travel
mode employed by citizens in Luxembourg city. Furthermore, after considering several
machine learning methods, they selected artificial neural networks for the job. In a similar
way, Gal et al. [40] considered both historical and real-time data associated with the bus
network system in the city of Dublin to develop a hybrid method combining queuing the-
ory and machine learning. They employ this method to predict travel times in scheduled
bus routes.

2.3. Agile Optimization Algorithms in ITS

Many real-life applications in ITS require real-time decision-making. Especially in
transportation, urban centers are continuously exposed to plenty of dynamic situations,
which highlights the need for smart and agile decision making. Examples of these situations
occur under the rupture of such systems, where intelligent systems must be able to quickly
react and provide users with smart alternatives to the previously computed ones.

During the last few decades, many solution methods have been proposed for tack-
ling many stochastic and non-stochastic combinatorial optimization problems. From the
deterministic world, the use of approximate solution approaches—e.g., heuristic and
metaheuristics—has gained singular notoriety due their capability for providing near-
optimal (or even optimal) solutions in a reasonable amount of computational time [41].
Alternatively, simulation–optimization approaches have proved satisfactory when dealing
with stochastic optimization problems. These algorithms facilitate the consideration of risk
and reliability analysis during the assessment of alternative high-quality solutions [42,43].

Obtaining high-quality solutions for large-scale problems in real-time is a major chal-
lenge. It sometimes assumes the re-optimization of the model, as inputs and constraints are
modified dynamically due to the incorporation of new data or changes in the environmen-
tal conditions. Heuristics are extremely fast solution approaches that are designed to solve
a specific problem. These deterministic procedures can be extended in a probabilistic algo-
rithm using biased-randomization techniques [12]. These techniques consist in employing



Energies 2021, 14, 6309 10 of 26

skewed (non-symmetric) probability distributions to smooth the taking of decisions during
the construction of a solution. Under these circumstances, the resulting biased-randomized
algorithm (BRA) can be executed multiple times, thus generating alternative solutions of
similar quality. Moreover, BRAs can be used to extend and enhance the performance of
many classical metaheuristics approaches [44].

The BRAs are extremely fast and only require up to a single parameter to be calibrated.
In this way, they can be naturally executed in parallel. Accordingly, the idea behind agile
optimization (AO) algorithms relies on the employment of multiple CPU/GPU cores to
concurrently run a large number of threads, each being responsible for virtually executing
a run of the BRA (Figure 2). Consequently, multiple runs of a BRA are simultaneously
processed (at virtually the same time as the one required by a single execution of the
original heuristic). As a result, a pool of multiple alternative solutions is generated, being,
finally, the best solution returned by this procedure. By taking advantage of both the
optimization and parallel computing worlds, AO strategies allow for: (i) the finding of
efficient solutions to large-scale and NP-hard optimization problems in real-time; as well
as (ii) peridiocally re-optimizing the model as the inputs and constraints are dynamically
modified due to the arrival of new data or to changes in the environmental conditions. This
is the case, for instance, of goods transportation in humanitarian logistics, where routing
plans must be provided in real-time in order to save lives [45]. Another example refers to
connecting vehicles in motion to roadside units, where the dynamic movement of vehicles
requires their re-assignment to these units in real-time [46]. Similar requirements can be
also found in ride-sharing operations in smart cities, where requests, demands, and traffic
conditions alter the expected natural operation of this environment [2].
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Figure 2. The concept of agile optimization.

3. Related Work

This section reviews some related work in the context of cloud, fog, and edge comput-
ing, as well as on the use of data analytics in ITS.

3.1. Cloud, Fog, and Edge Computing in ITS

When applied in the context of ITS, cloud, fog, and edge computing techniques
facilitate the transmission and processing of terabytes of data in real-time. These data
are provided by smart sensors networked with IoT devices, through which they are
transmitted to the decision-making system unit in the cloud, where many issues arise.
Mainly, a huge load on servers and cloud systems is created. To reduce this overloading
on the cloud, technologies such as edge and fog computing were developed in various
manners. For instance, fog computing provides a better infrastructure for the interaction
between cloud computing and IoT devices, thus promoting their spread, data mining,
and analysis in order to optimize the use of these resources [47]. Some characteristics of fog
computing were discussed in Bonomi et al. [48], such as low latency, extensive distribution,
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mobility, and a wide range of nodes that could create a new type of application and services
of IoT in connected vehicles, smart grid, and smart cities. In this regard, Peter [49] found
the ability of fog computing as a suitable platform for IoT to handle the data overflowing
and resolve the problem related to congestion and latency. Later, Bierzynski et al. [50]
considered the possible way to combine fog and cloud computing to support the solution of
IoT challenges. In addition, in this context, Chen et al. [51] used an edge-computing system
for IoT based on smart grids, fully realizing the demand for high bandwidth with a low
latency problem. They proposed the privacy protection strategy through edge computing,
a data prediction strategy, and a pre-processing strategy of hierarchical decision-making
based on task grading.

Allocation of applications to fog and edge nodes is one of the big challenges in this area.
Some applications may require larger computing capacity. Hence, techniques for grouping
and classifying resources in virtual nodes with large computational capacity are necessary
for the co-existence of computational tools with different computations. Due to this issue,
based on combining semantic description of resources with semantic clustering techniques,
Xhafa et al. [52] present some clustering techniques for creating virtual computing nodes
from fog/edge nodes and, by using these clusters via heuristics and linear programming,
creating an optimal allocation of applications to virtual computing nodes. Additionally, due
to the growth of IoT and 5G telecommunication networks, Gohar and Nencioni [53] provide
an overview of the benefits of 5G in an economic and technological context, and discuss
impacts and concepts of 5G for ITS from various dimensions.

Apart from providing support to efficiently manage data, cloud computing and IoT
hold the potential of improving problems such as security, privacy, scalability, reliabil-
ity, and quality of service in cloud and vehicular networks. Particularly, Yan et al. [54]
introduced challenges in security and privacy in their work. For instance, challenges of
high-mobility vehicles’ verification, scalability, mixed identities and locations, and the
complexity of establishing trust relationships between multiple players due to the inter-
mittent short-range communications were addressed. Moreover, to show the suitable
security architecture that manages many of the challenges in vehicular clouds, they pro-
vided a directional security architecture. Wang et al. [55] provided a collaborative vehicular
edge computing for a qualified vehicular network that has the flexibility to support the
collaboration between both horizontal and vertical dimensions. This flexibility can be
distributed more efficiently at network edges. Furthermore, based on cloud computing
and IoT technologies, He et al. [56] presented a multilayered vehicular data cloud plat-
form by proposing new capable software architecture for vehicular data cloud in the IoT
environment. The objective is to integrate numerous devices available within vehicles
and devices in the road infrastructure. On this matter, Dobre and Xhafa [57] provided
services based on context-aware and data-intensive applications to support challenges that
are tied to big data management to foster a better understanding of traffic problems in
large cities. Moreover, Xiao and Zhu [58] presented an intuitive theory about vehicular
fog computing that transforms connected vehicles into mobile fog nodes and used the
mobility of vehicles—such as buses and taxis—to offer cost-effective and deliver computed
resources to anywhere it is requested.

According to the rapid rise of data produced by devices and sensors, Tanganelli et al. [59]
presented a distributed hash table that is executed to design discovery services for fog com-
puting platforms with mobile nodes. This is done by creating multiple attributes and range
queries in order to use their storage and computing capabilities in ITS. Furthermore,
Badidi et al. [60] reviewed current service delivery models in edge and fog computing in
smart cities, and proposed a fog-based data pipeline for IoT data management messaging
systems. Zhang et al. [61] considered developing and deploying data-driven ITS that has
the capability of vision, multi-sources, and learning to optimize its performance. They also
have identified some issues such as missing values, data cleaning, dimension reduction,
sparse learning, and heterogeneous learning for further research to improve the transporta-
tion systems. Minh et al. [62] suggested efficient decentralization of internet-connected
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vehicle data and services at different levels of intelligence and complexity in the fog com-
puting model and optimized the edge-based virtualized resources. Through integrated
intelligent computing, real-time data analytics, and the internet of vehicles, Darwish and
Abu Bakar [63] proposed a new architecture and reviewed the challenges and opportunities
of implementing fog computing and real-time data analytics in the area of the Internet of
vehicles. Raza et al. [64] developed a vehicular edge computing architecture to support
a high level of scalability and a suitable model for vehicles to reduce waiting time for
services that require real-time decision making. Brennand et al. [65] used fog computing in
traffic services to control congestion in order to reduce the problem caused by the traffic
jam. They proposed a distributed approach based on a classification system to suggest new
routes to vehicles.

Fog computing supports a variety of growing applications, including those in IoT and
new generations of wireless systems (5G/6G), which are recognized as an important area
of future technology. In this regard, Chiang and Zhang [66] showed the opportunities and
challenges associated with the use of fog computing in the networking context of IoT. In ad-
dition, as cloud-based 5G infrastructure is not efficient for some high-demand applications
such as transportation, tactile Internet, and augmented reality, and because of the extra
cost for more latency of computation and storage, Tufail et al. [67] proposed multi-access
edge computing technology for smart cities’ environments. Based on vehicular networks
and features of device-to-device communications, Cheng et al. [68] developed a feasible
study of device-to-device for ITS. They also improved general system performance in ITS
by considering the interference control mechanism, predictive resource allocation methods,
and roadside unit cooperative scheduling. Camacho et al. [69] inspected the 5G architecture
designed with software-defined networking and presented potential challenges in wireless
technologies to provide vehicle connectivity such as connected vehicles or self-driving cars.
For a proper allocation of resources, Lee et al. [70] proposed an auction-based scheme that
consists of a blockchain mechanism. Among its advantages, there is the consideration of
a fog-enable ITS model to allow vehicles on the Internet of vehicle networks to use the
services provided by roadside units. Moreover, by carrying out an ordering service at the
data center with the hyper-ledger fabric platform, they prevented the overuse of computing
resources for proof-of-work and validation. In addition, Raza et al. [71] proposed a vehicle-
to-everything communication model based on ultra-high-speed and ultra-low latency
of integrated networking technologies—such as mobile edge computing, fog, and cloud
computing—for managing traffic and monitoring systems sustained by a full automated
ITS environment.

3.2. IoT Analytics in ITS

IoT analytics is one of the core tasks in any ITS, since it takes care of gathering a
large amount of data and transforming these data into useful information, developing
predictive models, and supporting intelligent decision making [72]. IoT develops digital
services and functions for different groups of users and creates smarter cities and villages.
Analyzing the mobility of digital devices, such as phones and vehicles, allows for the
understanding of relationships between sensors and energy, and between sensors and data
storage. Due to the strong use of IoT and Big data in ITS, and based on analyzing different
road traffic problems, Dai and Ma [73] helped to improve transportation management by
optimizing the traffic. Using vehicles and communication within entities in road traffic
scenarios generates huge raw data in ITS. In order to understand raw sensor data in ITS,
Swarnamugi and Chinnaiyan [74] address the enforceability of techniques for modeling
and the reasoning approaches in ITS. They also identify the used machine learning and
deep learning techniques in the reasoning phase of ITS. Mohandu and Kubendiran [75]
reviewed data analytics insight for the transport and mobility industry, ITS implementa-
tions, threshold instances, and in some use cases, including routing, planning, platform
architecture, among others. Calabrese et al. [76] addressed techniques to extract efficient
mobility statistics for transportation research. When integrated with statistical analysis,



Energies 2021, 14, 6309 13 of 26

mobile phone traces demonstrate a reasonable proxy for individual mobility that can help
to understand the intra-urban variation of mobility and the non-vehicular component
of overall mobility. In two different analysis levels, such as GPS-data traces and street
segments, Jiménez-Meza et al. [10] used GPS-data (data-time, latitude, and longitude) to
estimate travel time, distance, and speed. Then, they characterized street segments by cal-
culating the level of services by using the average speed. Later, Zanella et al. [77] reviewed
and analyzed the ability technology, protocols, and architecture for urban IoT and tried
to create a block to find out an integrated urban scale of information and communication
technology platform by using practical cases in Padova, Italy.

Mahdavinejad et al. [78] evaluated different machine learning methods to deal with
IoT data challenges in smart cities. They classified machine learning algorithms and
explained how different techniques can be applied to extract more accurate information.
Graser [79] presented a new python library to concern movement data based on the pandas’
data analysis library and the GeoPandas extension. They analyzed existing frameworks and
implementations to define the main function required for a movement data analysis library
and show its usefulness in stand-alone python scripts. Pappalardo et al. [80] presented data
cleaning difficulties related to raw spatio–temporal trajectories, and created an algorithm
to synthetically generate trajectories able to reproduce the realistic law of human mobility.
Bao and Liu [81] mathematically analyzed the transportation system and explained how to
build a multi-agent deep deterministic policy gradient system to optimize real-time signal
control policies in emerging large-scale ITS. Moreover, Teng et al. [82] proposed a low-cost
code dissemination scheme which called vehicles as code mules in a smart city, where code
stations are deployed to obtain the updated code from the cloud data center and send it to
the code mules. They optimized the code selection scheme and greedy deployment scheme
to maximize coverage of code dissemination over the city with low cost and duration time.

Cao et al. [83] proposed an edge computing platform by using descriptive analysis
to discover significant patterns from real-time bus transit data streams. These authors
found the potential of applying this platform on applications such as autonomous vehi-
cles, smart intersections, and smart traffic light systems. By considering bus information,
Yongjun et al. [5] designed a system based on IoT and GPS, quickly collecting accurate
data with the collector, sending it to the centralized dispatch center and the correspond-
ing database system. The system then reports information, such as current urban traf-
fic conditions, present bus location, arrival time, and bus line in the short run. Hence,
based on real-time traffic conditions, the monitor center can complete the bus schedule.
Panadero et al. [84] solved the stochastic version of the team orienteering problem, which is
related to unmanned aerial vehicles. These authors proposed a simheuristic algorithm [43],
which combines a biased-randomized heuristic [85] with simulation techniques to provide
an ‘agile’ optimization methodology [46]. Moreover, Adi et al. [86] reviewed the process of
machine learning analysis in IoT data generation, and developed a framework to make
suitable applications to learn from other IoT applications. Finally, Wei et al. [87] considered
bus line optimization based on the metro–bus relationship and competition. They also
developed a quantitative methodology to evaluate their approach.

Table 4 shows a comparison between different characteristics addressed by the re-
viewed literature in the context of cloud, fog, and edge computing, as well as in the use
of data analytics in ITS. Most of the reviewed works focus on the concepts of cloud, fog,
and edge computing to manage the processing of huge amounts of data, and improve
their performance to provide better services. Furthermore, only a few works address opti-
mization and ML techniques by considering open data servers to solve real life problems
in ITS. In order to narrow this gap, we address the usage of a combination of fog and
edge computing in ITS by using open repositories. This is useful to provide real-time
information, which can feed our developed algorithms for solving the DRSP.
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Table 4. Comparison of the reviewed work.

References Year Use Case 4G/5G/6G IoT Fog Cloud ITS Opt ML Data Analysis

[47] 2019 Self-driving vehicles, sensors raw data X X X X X X

[48] 2012 Fog characteristics X X

[49] 2015 Analyzed Fog Computing and its real time applications X X X X

[50] 2017 Combination of cloud, fog and edge computing X X X

[51] 2019 Edge computing system for IoT-based X X

[52] 2021 Optimization methods, semantic clustering X X X X X

[53] 2021 Various dimensions of 5G on ITS X X X X

[54] 2012 Analyze security challenges, potential privacy threats in
vehicular clouds

X X X

[55] 2018 Collaborations different edge computing, vehicular edge
computing

X X X

[56] 2014 Multilayered vehicular data cloud, cloud computing and
IoT technologies

X X X X X

[57] 2014 Analysis challenges of next-generation Big Data services
CAPIM platform, Context-Aware Framework

X X X

[58] 2017 Connect vehicles into mobile fog nodes X X X X

[59] 2017 Service for fog computing with mobile nodes X X

[60] 2020 Fog-based data pipeline X X X X X

[61] 2011 Multifunctional data-driven intelligent transportation
system X X X

[62] 2018 Context-aware fog computing, multiple intelligent X X X X

[63] 2018 Real-time ITS big data analytics in the Internet of
vehicles X X X X X

[64] 2019 Vehicular Edge Computing architecture, smart vehicle X X X X X

[65] 2019 Traffic service, control congestion, roads classification X X X

[66] 2016 Challenges of fog and IoT X X X X

[67] 2021 Multi-access edge computing X X X X

[68] 2015 Device-to-device communications. vehicular networks X

[69] 2018 Wireless technologies, vehicle-to-x connectivity X X X

[70] 2020 Vickrey–Clarke–Groves auction mechanism, road side unit X X X

[71] 2018 Vehicular-to-Everything, cellular 5G technologies, roadside
infrastructure

X X X X X

[72] 2019 IoT-ITS system, multiple regression analysis, multiple
discriminant analysis and logistic regression

X X X

[73] 2021 Road traffic, traffic information X X X X

[74] 2021 Context-awareness in the Intelligent Transportation
System X X X X X X

[75] 2021 ITS, Big data analytics X X X X

[76] 2013 Mobile phone data, mobility information X X X

[10] 2013 Vehicles,travel time, distance X X

[77] 2014 Urban IoT system X X X X

[78] 2018 Smart cities IoT data X X X X X X X

[79] 2019 Movement data, python library X

[80] 2019 Mobility analysis X X

[81] 2019 Spatial influence-based communication, multi-agent Deep
Deterministic Policy Gradient

X X X

[82] 2019 Mobile vehicles, taxi trajectory X X X X X

[83] 2017 Mobile edge nodes, transit bus data X X X X

[5] 2012 Vehicle subsystem,
the station subsystem and the monitoring center

X X

[84] 2018 Team orienteering problem, simheuristic algorithm,
biased-randomized heuristic, simulation techniques

X X

[86] 2020 Data generating for IoT, IoT applications X X X X X X

[87] 2020 Bus line optimization, metro integration X
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4. An Illustrative Case Study

We have developed a case study in order to illustrate the previously described concepts.
Our example addresses a DRSP, in which events such as traffic conditions, new service
requests, or service cancellations can change the originally designed routes after the vehicles
have already departed from their origins. The core idea of the ride-sharing problem is
to foster that personal private vehicles are shared by a group of people, instead of being
used only by the car owner. Nowadays, the massive use of apps and interconnected
smartphones facilitates the immediate contact between drivers and users for sharing trips.
Furthermore, ride-sharing activities provide multiple benefits for drivers, users, and the
entire community [88], such as the reduction in costs, pollution, and traffic congestion.

The static version of the ride-sharing problem [2] consists of a finite set of capacitated
heterogeneous vehicles, each one driven by an individual owner, who offers empty seats to
users with similar itineraries. Each user requests a service, providing their current location,
and drivers pick them up in these locations. This means that drivers have some kind of
flexibility to adapt their routes so they visit the pickup point. Moreover, the vehicle capacity
allows for more than one user to be transported. Hence, the route performed by each
vehicle consists of an origin point (each driver’s home), a set of locations where the driver
picks up the users, and an arrival point. We assume that a driver can pick up each user
only if the destination of all of them is the same. However, the destination points can be the
same or different for each vehicle. Since the vehicle capacity and the number of vehicles
are limited, not all users requesting a service can be picked up. Hence, the challenge is not
only to design the routes, but also to select the users that will be picked up. This selection
process is carried out based on both the distance between the user location and the driver’s
origin and destination points, as well as the fee that is paid by the user to the driver for
being transported. The objective of the ride-sharing problem is then to maximize the total
collected fee. Figure 3 displays an example of a complete solution for the static version
of the addressed problem. Connected houses represent the users who are served by the
vehicles, whereas non-connected houses represent the non-served users.

The static version of the ride-sharing problem assumes that, once all routes have been
designed, they cannot be further modified. Nevertheless, real-world events, such as traffic
conditions, new orders, or cancellations, may lead to make changes in the original route
plans. Since these events occur frequently when vehicles are already in route, a DRSP
allows for the design of new routes, which include only those users who have not yet been
picked up. This redesign process is performed in discrete time intervals. Formally speaking,
the DRSP can be defined on a directed graph G(N, E), where N is the set of nodes, and E is
the set of edges linking these nodes, i.e., E ⊆ N × N = {(i, j) | i ∈ N, j ∈ N, i 6= j}. Three
subsets of nodes are considered, such that N = I ∪O ∪ A. I is the subset of nodes where
the users are located, O is the subset of drivers’/vehicles’ origin nodes, and A is the subset
of final destination nodes. Each pickup point i ∈ I has a known fee fi, which is paid by
each user for being transported. Traversing each edge (i, j) ∈ E has a deterministic cost
cij. Routes are performed by a set K of vehicles. The capacity bk of each vehicle k ∈ K
is known as well. Each pickup point i ∈ I must be visited only once, and each vehicle
k ∈ K is assigned to only one route. Only a subset of nodes J ⊂ I can be visited. Each
route starts in an origin node o ∈ O, traverses a subset of nodes H ⊂ J, and finishes in a
destination node a ∈ A. If dh is the demand of each node h ∈ H, then ∑h∈H dh ≤ bk. If t
is the time interval set to recalculate the routes, then this process is always performed in
the time τ = nt, where n ∈ N. This recalculation is performed iteratively until all vehicles
have arrived to their respective destinations. Furthermore, if Ln is the subset of non-visited
nodes in the period n, such that Ln ⊆ J, then the route recalculation is performed only
for the nodes in both Ln and A. This assumption is helpful to respect the commitment of
serving the originally selected customers, taken in the period n = 0. We assume that routes
are only affected by traffic conditions, i.e., new orders and cancellations are not allowed
in our addressed version of the problem. Hence, our problem consists in designing a set
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of |K| routes that meet the aforementioned constraints, such that the total collected fee
is maximized.

Figure 3. Representation of a complete solution for a static RSP.

5. Solution Approach

In this section, we describe our proposed methodology for solving the DRSP. This
methodology is based on a discrete-event heuristic [89], which generates promising solu-
tions according to events that occur over time. These events are related to circumstances
in which the system has to react appropriately, i.e., changes in traffic conditions involve
re-planning routes to contemplate them. Discrete-event constructive heuristics are based on
the use of discrete-event simulation to handle time dependencies that arise as the solutions
are constructed. In our case, the basic idea is to complete a discrete-event (time-based)
simulation of arrival, departures, and re-planning of routes, so that vehicles can re-plan
routes according to the traffic conditions provided by the open data server to minimize
the travel time towards the final destination. This re-planning procedure is performed at
each time interval t. Hence, any event can belong to one of the following types: vehicle
delivery, vehicle arrival, and traffic update. Each event is associated with a vehicle and a
trigger time. Likewise, the vehicle is assigned to a current trip (between two customers)
and the current route that is covered.

The flowchart of our solving approach is presented in Figure 4. At the beginning
(period n = 0), the algorithm produces an initial static planning without considering any
traffic conditions, that is, all the information employed during this stage is not modified.
In addition, the list of events is initialized adding one departure event for each available
vehicle, and a traffic update event. Departure events are programmed to occur at the period
n = 0, while the traffic data event arises in the period n = 1. Each period n lasts t time
units, which is established as an input parameter. The main loop iterates over a list of
events that occur during the execution of the routes until this list is empty. At each iteration,
the algorithm takes the first event and proceeds according to the event type. In the case
of a departure event, the vehicle located at the customer departs to the next destination
of the current trip, hence, a new arrival event is scheduled, considering the travel time
and the current traffic congestion. If the event is an arrival event, two possibilities could
be given: the vehicle arrives either to a customer or to the final destination. In the case of
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the former, the vehicle must stop to perform a pick-up action. Then, the vehicle capacity
availability is updated with the passenger demand. In addition, the algorithm creates a
new vehicle departure event from this customer. In the case of the latter, the vehicle arrives
to the final destination and, thus, no further action is required. Finally, for the case of the
traffic update event, which occurs in each period n, the algorithm re-plans the vehicles’
routes, considering the current traffic data, from the next stop to the final destination.

Algorithm 1 outlines the heuristic for solving the DRSP in a given period n. This
approach is a two-stage heuristic algorithm capable of providing a good trade-off between
solution quality and required computational effort. The input parameters are: a list of
customers, where each customer consists of location coordinates, passenger demand,
and fee to pay; a list of vehicles, where each vehicle is composed of the coordinates
of the origin and final destination, and seats capacity; and the α and β parameters for
computing the savings list and the biased-randomized heuristic, respectively. In the first
stage, the original problem is divided into small sub-problems (clusters) according to origin
points and destination points. Notice that different sub-problems might share some of the
pick-up locations. In the second stage, each cluster is solved by applying a savings-based
heuristic proposed by Panadero et al. [90]. This heuristic involves the following steps:
(i) generation of a dummy solution where each pick-up point (node) is connected by one
route (vehicle) with the origin and the final destination, and (ii) construction of the enriched
savings list of edges, where each savings value is related to an edge that links whichever
location such as origin, destination, and pick-up point. This enriched savings value is
computed as sij = α(cim + c0j − cij) + (1− α)(µi + µj). The input parameter α is set within
(0, 1); cij denotes the traveling time between i and j. Likewise, 0 and m are the origin and
destination nodes, respectively. Finally, µi and µj are the assigned fees at each node. These
savings values consider both the traveling time and the aggregated fee collected by visiting
both locations i and j. The main loop iterates while the list is not empty. For each iteration,
the edge at the top of the list is chosen, then, the associated routes are merged if and only if
the resulting route does not exceed the vehicle capacity; otherwise, the edge is rejected.

This heuristic is deterministic because the merging process always selects the first
element of the savings list. We extend this heuristic introducing a biased-randomization
process [85] in order to produce a variety of solutions without losing the logic behind the
original heuristic. As explained in Section 2.3, we employed the geometric probability
distribution, Geom(β) with β ∈ (0, 1), to introduce a biased-randomized behavior. In
Algorithm 2, the biased-randomized heuristic is executed for a maximum number of
iterations or computational time, resulting in a multi-start approach [91]. Therefore, several
feasible and promising solutions are generated, and the one with the highest collected fee
is returned. The input parameters for Algorithm 2 are the same as those for Algorithm 1.
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Algorithm 1 Two-stage approach algorithm for solving a static RSP
1: input:
2: customers: list of customers
3: vehicles: list of vehicles
4: α: parameter for computing the savings list
5: β: parameter for the geometric distribution
6: end input
7: function Biased-Randomized Algorithm(customers,vehicles,β,α)
8: clusters← computeClusters(customers,vehicles)
9: for clusterk in clusters do

10: solk ← dummySolution(clusterk)
11: savings← genSavingsList(clusterk,α)
12: while savings 6= ∅ do
13: edgeij ← pick(savings,β)
14: ri, rj ← getRoutes(edgeij)
15: if checkMerging(ri, rj,vehicle(clusterk)) then
16: routei ←merge(routei,routej)
17: solk ← replace(solk,routei)
18: end if
19: savings← remove(savings,edgeij)
20: end while
21: sol← add(sol,solk)
22: end for
23: return sol
24: output:
25: sol: a solution
26: end output

Algorithm 2 Multi-Start Approach for solving RSP
1: input:
2: customers: list of customers
3: vehicles: list of vehicles
4: α and β: parameters required by the BRA heuristic
5: end input
6: function Multi-Start(customers,vehicles,β,α)
7: bestSol← Heuristic(customers,vehicles)
8: while end not reached do
9: sol← BRA(customers,vehicles,β,α)

10: if fee(sol) > fee(bestSol) then
11: bestSol← sol
12: end if
13: end while
14: return bestSol
15: output:
16: bestSol: the best solution
17: end output
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Figure 4. Discrete-Event Algorithm flowchart.

6. Computational Experiments and Results

A series of numerical experiments were designed to test our approach. A total of
27 instances with different characteristics were tested. The instance name in Table 5 sets
both the number of customers requesting a service and the number of available vehicles.
For example, drsp63x6-1 is the first instance in the list considering 63 potential customers
and 6 vehicles. Hence, three groups of instances with different sizes are tested. Each
potential customer’s demand and location were generated randomly. Available vehicles
are heterogeneous in each instance, with capacities varying between 4 and 8 users. The ag-
gregated capacity of all vehicles is proportional to the total demand. Only for experimental
purposes have the traffic conditions also been generated randomly for each edge (i, j) ∈ E
in each period n. These conditions are represented by a coefficient wn

ij, which was generated
according to a uniform probability distribution, such that wn

ij ∼ U(0, 1). For real-world
cases, wn

ij can be computed after retrieving the corresponding traffic information from open
data repositories. wn

ij affects the cost cij incurred when traversing this edge. For instance,

if c0
ij is the time spent for going from customer i to customer j in the period 0, i.e., before

the vehicles’ departure, then the simulated real time for traversing the edge (i, j) in the
period n, affected by the traffic conditions, is computed according to Equation (1). Finally,
the time interval that triggers the re-computation of routing plans is set in t = 10 time
units. Notice that the number of times that routes are re-computed is instance-dependent,
since these new computations are performed iteratively until all vehicles have arrived
at their corresponding final destinations. The algorithm was implemented in Python 3.8.
The experiments were carried out on an i7-8750 CPU at 2.20 GHz with 16 GB of RAM
memory installed. The time limit for the biased-randomization process was set as 1 s (in
order to keep the real-time condition).

cn
ij = c0

ij(1 + wn
ij) (1)
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Table 5. Obtained results by our algorithm for a DRSP.

Instance Served Customers Total Collected Fee OBS Cost OBD Cost Gap

drsp43x4-1 17 237 595.80 384.14 −35.53%
drsp43x4-2 18 295 587.88 492.58 −16.21%
drsp43x4-3 20 373 512.51 398.23 −22.30%
drsp43x4-4 22 394 502.89 402.97 −19.87%
drsp43x4-5 15 223 582.33 374.95 −35.61%
drsp43x4-6 22 347 528.00 528.70 0.13%
drsp43x4-7 16 261 497.84 367.13 −26.26%
drsp43x4-8 23 468 528.30 455.39 −13.80%
drsp43x4-9 18 313 650.22 418.83 −35.59%

Average 19.00 323.44 553.97 424.77 −22.78%

drsp63x6-1 33 676 685.87 635.04 −7.41%
drsp63x6-2 34 678 777.73 735.61 −5.42%
drsp63x6-3 31 494 811.37 726.05 −10.51%
drsp63x6-4 35 700 786.22 721.99 −8.17%
drsp63x6-5 30 515 714.26 665.46 −6.83%
drsp63x6-6 33 560 827.48 847.60 2.43%
drsp63x6-7 30 506 799.50 654.05 −18.19%
drsp63x6-8 28 383 873.49 791.88 −9.34%
drsp63x6-9 34 608 782.46 650.52 −16.86%

Average 32.00 568.89 784.26 714.24 −8.92%

drsp83x8-1 40 582 1114.75 1020.69 −8.44%
drsp83x8-2 38 722 1411.50 1040.39 −26.29%
drsp83x8-3 39 660 1310.40 1173.44 −10.45%
drsp83x8-4 43 740 1050.79 1051.51 0.07%
drsp83x8-5 34 516 1155.35 882.54 −23.61%
drsp83x8-6 39 661 1092.90 1019.06 −6.76%
drsp83x8-7 41 730 1124.13 1019.06 −9.35%
drsp83x8-8 40 726 1315.08 1340.66 1.95%
drsp83x8-9 39 668 1212.02 1052.88 −13.13%

Average 39.22 667.22 1198.55 1066.69 −10.67%

Table 5 shows the results obtained after running our approach for the considered
instances. The limited number of vehicles and their limited capacities make it infeasible
to visit all the potential customers. Hence, the maximum number of served customers
is 23, 35, and 43 for each group of instances, respectively. The total collected fee for
serving these customers is also shown. Then, we employ our algorithm to generate two
different solutions: our best static solution (OBS) and our best dynamic solution (OBD).
The OBS is a solution generated in the period 0 (an initial solution) that cannot be further
modified, i.e., the vehicles perform the same static routes regardless of the traffic conditions.
Alternatively, the OBD is a solution that is recomputed each 10 time units and, therefore,
it adapts to the changing traffic conditions. This recalculation is performed in the same
way as the initial solution, but considering only the remaining customers to serve and
the cost per edge given by Equation (1). The total collected fee is not different for the
OBS and the OBD since the customers selected to be served by the initial solution are
respected in all the recalculations performed to obtain the OBD. Only the routes can change
in this case. Finally, gaps in Table 5 represent the percentage difference between the costs
attained by the OBD and the ones attained by the OBS. A negative gap means that the
OBD obtains a lower cost than the OBS. Average gaps are always negative regardless of
the instance size. Only 4 out of 27 instances reach a positive gap, with a maximum value of
only 2.43% for the instance drsp63x6-6. Conversely, the most negative gap reaches a value
of −35.61% for the instance drsp43x4-5. These results indicate that, in terms of costs, our
dynamic approach always outperforms the scenario in which the solution is not adaptable
to external changing conditions.
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Figure 5 shows a series of box plots displaying the attained costs by the OBS (pink)
and the OBD (green). Each box plot depicts the group of instances classified according to
their size. Additionally, a crossed circle indicates the mean of each group of data. This
figure shows the natural cost increase when the instance size grows. Nevertheless, this
increase is made up for the proportional rise in the total collected fee, as Table 5 shows.
Furthermore, Figure 5 indicates graphically the cost savings attained after solving this
problem with our dynamic approach, instead of employing a static metaheuristic.
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Figure 5. Costs obtained by each type of solution for different instance sizes.

Figure 6 depicts an example of the execution of our algorithm in two consecutive
periods for the instance drsp63x6-2. Big black nodes indicate the origin points, big red
nodes indicate the destination points, medium-sized numbered nodes represent the served
customers, and small unnumbered gray points represent the non-served customers. Routes
are depicted by lines of different colors and styles. Figure 6a shows the initial best-found
solution (BFS), generated in the period n = 0. If this set of routes is not further modified,
then we obtain the OBS, at a cost of 777.73 (Table 5). Alternatively, Figure 6b shows the
BFS in the period n = 1 considering dynamic conditions and, therefore, the originally
designed routes have changed to eventually obtain the OBD. At this moment, each vehicle
has already arrived to the location of its respective first customer. Our algorithm takes
these locations as new origin points; hence, the former origins are represented by green
nodes in Figure 6b. Notice that routes after the black nodes in this figure are different
from those of Figure 6a. For instance, the black dashed route in Figure 6a follows the
sequence 4-65-24-12-47-40-69. In the period n = 1, the corresponding vehicle has already
traveled from node 4 to node 65. Nevertheless, the dynamic traffic conditions makes the
original planned route change and the vehicle follows the new sequence 4-65-40-32-69.
The total customers selected in the period n = 0 remain the same, i.e., the commitment of
serving them is respected, although the routes are different now. Given the limited space,
the new re-computed routes for the rest of the periods are not displayed; however, this
process is repeated until every vehicle has arrived at nodes 69 and 70, respectively. All
these successive recalculations lead the attainment of the OBD, at a cost of 735.61 (Table 5).
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(a) Period n = 0.

(b) Period n = 1.

Figure 6. Example of the BFS for the instance drsp63x6-2 in the periods n = 0 and n = 1.

7. Conclusions and Future Research

This paper has discussed how the combination of cloud with fog and edge computing
can influence modern transportation systems, especially in the context of smart cities, where
open data initiatives are growing. These open repositories can be employed to provide real-
time information to users of public and private transportation systems. When processed
by machine learning methods and optimization algorithms, this information can become
in valuable knowledge that empowers citizens and support intelligent mobility decisions.

The paper also discussed the necessity for developing agile algorithms, capable
not only of providing high-quality solutions to large-scale vehicle routing and other
transportation-related problems, but also to do so in real-time and every few minutes,
as new data are gathered via IoT and open repositories. This agile optimization algo-
rithms are based on the parallelization of biased-randomized algorithms, which rely on
introducing an oriented random behavior into an already fast constructive heuristic.

A numerical case study regarding ride-sharing mobility contributes to illustrate these
concepts. In this case study, a more traditional static scenario is compared against a dy-
namic one. In the former, the transportation system is optimized just at the beginning,
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while in the latter new data are employed to re-optimize the system every now and then.
The computational experiments show the benefits of our proposed dynamic approach,
which clearly outperform the traditional one in terms of costs. Furthermore, our exper-
iments include instances with multiple sizes; hence, our algorithm has been proven to
be flexible and scalable, i.e., it can be easily adapted to cope with even bigger instances.
Nevertheless, it is worth mentioning that we have not included the occurrence of events
such as new requests, cancellations, or destination modifications. These events are present
in real-life situations and, therefore, they can be included in future work.

As additional future research lines, the following are highlighted: (i) to employ our
agile optimization methodology in a scenario using data directly obtained from an open-
data repository in the city of Barcelona; (ii) to extend the proposed methodology into
a simheuristic algorithm, capable of considering random travel times, random rewards,
as well as other stochastic components; and (iii) to consider a different case study based on a
car-sharing problem, which complements the ride-sharing example provided in this paper.
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