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Robust estimators are often lacking a closed-form expression for the computation of their residual covariance matrix. In fact, it is
also a prerequisite to obtain critical values for normalized residuals. We present an approach based on Monte Carlo simulation to
compute the residual covariancematrix and critical values for robust estimators. Although initially designed for robust estimators,
the new approach can be extended for other adjustment procedures. In this sense, the proposal was applied to both well-known
minimum L1-norm and least squares into three different leveling network geometries. &e results show that (1) the covariance
matrix of residuals changes along with the estimator; (2) critical values forminimum L1-norm based on a false positive rate cannot
be derived from well-known test distributions; (3) in contrast to critical values for extreme normalized residuals in least squares,
critical values for minimum L1-norm do not necessarily tend to be higher as network redundancy increases.

1. Introduction

&e least-squares (LS) estimator, also known as L2-norm
minimization, is the standard method in surveying data
processing. In case of absence of outliers, it is the best linear
unbiased estimator for the unknown parameters [1]. It also
provides the maximum likelihood solution, if observational
errors are normally distributed.&e LSminimizes the sum of
the squares of the residuals v (weighted by the weight matrix
of observations P), that is,

v
T
Pv � min . (1)

However, if there are outliers in the sample, the LS will
provide biased parameters [2, 3]. Here, we follow the def-
inition of Lehmann [4]: “an outlier is an observation that is
so probably caused by a gross error that it is better not used

or not used as it is.” In surveying engineering, statistical
testing procedures are commonly applied to deal with data
possibly contaminated by outliers. &is idea goes back to the
pioneering work of Baarda [5, 6]. He introduced the Data
Snooping (DS) procedure in order to detect outliers in a
geodetic network. &e issue of outlier detection in surveying
engineering has been widely explored in the literature (see,
e.g., [7–13]). A conceptual analysis of measurement errors
and outliers in geodetic networks can be found in [14].

&e iterative approach of DS, also known as Iterative
Data Snooping (IDS) [13], is the most well-established
outlier identification method in geodetic networks. For a
review of DS and its variations, we suggest [12]. In the IDS
procedure, every observation i is tested against outliers by
computing its normalized residual wi, i.e., the ratio between
its LS residual vi and its LS residual standard deviation σvi

:
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wi �
vi

σvi

. (2)

&e ith observation with the extreme (highest) normalized
LS residual (max |wi|) is compared to its critical value |Zα/2|,
which is generally taken from the normal statistical table (α
being the user-defined significance level of the test). If max |
wi|> |Zα/2|, then the respective observation is flagged as an
outlier and usually excluded from the observations set. &e
same procedure is repeated iteratively until no observation is
flagged as an outlier. It is worth mentioning that (2) is a
simplification of wi for scenarios of uncorrelated observa-
tions, an assumption that was adopted throughout this work.

However, IDS involves not only a single test but also
multiple hypothesis testing. In that case, the “false positive
rate” (type I error probability or significance level α) is the
rate of experiments in which at least one observation is
flagged as an outlier, when, in fact, there is none. In this
context, Lehmann [9] showed that the critical values cannot
be derived from well-known univariate test distributions
(e.g., normal distribution), due to the correlations between
residuals. Hence, in order to fully control false positive rates
in geodetic networks, critical values for IDS started to be
numerically computed by means of Monte Carlo simulation
(MCS) (see, e.g., [15, 16]).

As mentioned, IDS, however, is based on LS residuals,
which are very “sensitive” to outliers [2]. On the other hand,
minimum L1-norm is one of the standard robust estimation
methods in Geodesy [17]. &e estimator that minimizes L1-
norm is more “resistant” or “robust” to outliers, as they tend
to be almost completely projected onto the corresponding
residuals [18]. Numerical examples can be found in [19, 20].
&e test against outliers by computing normalized residuals
is also useful in minimum L1-norm [18, 21].

Minimum L1-norm seeks the minimization of the sum
of weighted absolute residuals [19]:

p
T
|v| � min , (3)

where p is the weight vector of uncorrelated observations
and |v| is the vector of absolute residuals. In particular,
Minimum L1-norm is likely to provide higher outlier
identification success rate than IDS for low-redundancy
networks [15, 22].

&e minimum L1-norm solution may not be unique
[23], and its vector of residuals in geodetic networks tends to
be sparse, with many residuals being equal to zero (see, e.g.,
[20, 24]). &is means that corresponding observations are
accepted as “perfect” observations, without any measure-
ment errors. Geodetic observations, however, always have
(at least) random errors [25]. Hence, such assumption of
“perfect” observations is disconnected to the physical reality
of geodetic networks. Besides, the estimator that minimizes
L1-norm is biased except for some particular cases [26].
&erefore, the final estimation of a network should always be
performed by LS, even if minimum L1-norm was applied to
identify outliers [8, 27].

Minimum L1-norm has no analytical direct solution and
needs to be solved by numerical methods. &is work focuses
on the solution by the simplex method [28] of linear

programming, the most widely used approach for solving
minimum L1-norm [23]. In geodetic networks, it has already
been applied by many authors (see, e.g., [19, 20, 29–31]).

Another technique commonly employed to solve min-
imum L1-norm in geodetic networks is the iterative
reweighted least squares (IRLS) (see, e.g., [24, 32–34]). It has
also been applied in deformation analysis of geodetic net-
works [35–37]. However, it is worth mentioning that IRLS
does not seem to be always reliable [38], as it is a “local”
estimator and may produce unacceptable solutions if it gets
stuck in a local optimum [39].

Other techniques that were performed to compute
minimum L1-norm in geodetic networks include simulated
annealing [24]; genetic algorithm [39, 40]; and linear pro-
gramming by an interior point method [38]. Solutions of
minimum L1-norm by these methods and by IRLS are
outside the scope of this paper.

To actually identify outliers based onminimum L1-norm
results, geodesists have already tried two different criteria:
(1) the ratio between residuals and respective observation
standard deviation σi as the test statistic (see, e.g., [15, 41]);
and (2) the normalized residual wi (Equation 2, considering
vi and σvi

from minimum L1-norm) as the test statistic (see,
e.g., [21, 42]). For both criteria, the chosen critical values
(fromwhich the respective observation would be classified as
an outlier) were, in general, common values taken from the
univariate normal statistical table, such as |Zα/2|� 3.00
(α� 0.27%) and |Zα/2|� 3.29 (α� 0.1%), which, as men-
tioned, are not appropriate even for IDS. However, it re-
mains unclear how to properly choose critical values in
minimum L1-norm.

In this context, this paper has three main contributions:
(1) it provides a new procedure to compute critical values for
normalized residuals in robust estimation based on MCS
control of false positive rate; (2) it serves as a method to
compare different quality control procedures by preserving
respective critical values with the same false positive rate;
and (3) it provides a Monte Carlo approach to compute the
covariance matrix of residuals Ʃv for any adjustment pro-
cedure, which is, indeed, a prerequisite to compute critical
values for residuals.

&e outline of this paper is as follows. First, we present
the new approach to estimate Ʃv by means of MCS. We
highlight that such technique can be widely applied to any
adjustment procedure, including LS, the estimator that
minimizes L1-norm and other robust estimators. &en, also
by MCS, we present a procedure to compute critical values
for normalized residuals in robust estimation, based on the
control of false positive rate (unprecedented in geodesy).
Experiments were conducted in three different leveling
networks, focusing on the minimum L1-norm solution by
the simplex method and on comparison with LS/IDS.

1.1. Covariance Matrix of Residuals by Means of MCS.
Given a geodetic network with m observations and n un-
knowns parameters, its respective mathematical model may
be defined by equations (4) and (5), with Amxn being the
“design” matrix with the coefficients of the parameters
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vector xnx1 and lmx1, the vector of reduced observations [43].
In equation (5) (stochastic model), σ20 is the variance factor
and is ƩLmxm the covariance matrix of observations. As
mentioned, vmx1 is the residual vector and Pmxm is the
(symmetric positive-definite) weight matrix of observations.
&e solution for x produced by the LS is given by equation (6).

Ax � l + v; (4)

σ20􏽘
L

� P
−1

; (5)

x � A
T
PA􏼐 􏼑

−1
A

T
Pl. (6)

Hence, applying the general law of propagation of
variances [25], the covariance matrix of parameters Ʃx is
expressed by

Σx � A
T
PA􏼐 􏼑

−1
A

T
PΣL A

T
PA􏼐 􏼑

−1
A

T
P􏼒 􏼓

T

,

Σx � σ20 A
T
PA􏼐 􏼑

−1
A

T
PP

−1
A

T
PA􏼐 􏼑

−1
A

T
P􏼒 􏼓

T

,

Σx � σ20 A
T
PA􏼐 􏼑

−1
A

T
PA A

T
PA􏼐 􏼑

−1
,

Σx � σ20 A
T
PA􏼐 􏼑

−1
.

(7)

Assuming σ20 � 1 and la � Ax being the vector of ad-
justed observations, its covariance matrix ƩLa is

ΣLa � A A
T

PA􏼐 􏼑
−1

A
T
. (8)

Finally, Ʃv for the LS adjustment can be directly com-
puted by equation (9). Note that Ʃx, ƩLa, and Ʃv in equations
(7)–(9) refer to LS, as they were obtained by the LS solution.

Σv � ΣL − ΣLa � P
− 1

− A A
T
PA􏼐 􏼑

− 1
A

T
. (9)

In matrix Ʃv, elements in position (i, j) represent the
covariance between residuals of observations i and j and
elements (i, i) represent the variance σ2vi

of the ith obser-
vational residual. Hence, despite the adjustment procedure,
once its Ʃv is obtained, wi of each observation (equation (2))
can be easily calculated as σvi

�
�����
Σv(i,i)

􏽰
, with Σv(i,i) being the

ith element of the main diagonal of Ʃv.
For other adjustment procedures, however, the com-

putation of Ʃv is not so immediate. Actually, some robust
estimators even lack a closed-form expression for the
computation of its Ʃv in the literature. In order to fully
address this issue, which is also a prerequisite to enable the
calculation of critical values for normalized residuals in
robust estimation, we propose the following approach
(Figure 1) to compute Ʃv for any adjustment procedure, by
means of MCS. &e inputs are functional and stochastic
models (matrices A and ƩL) of the geodetic network and the
chosen adjustment procedure (e.g., LS or minimum L1-
norm).

(1) synthetically generate M� 200,000 vectors of
(pseudo-) random normally distributed errors of
observations e(k), k � (1, . . . , M), with expected

mean μ� 0 and covariance matrix ƩL, i.e.,
e(k) ∼ N(0,ΣL); this amount of MCS trials was
suggested by Rofatto et al. [12]

(2) For each MCS trial, let l(k) � e(k), k � (1, . . . , M),
and we compute the respective residuals vector v(k)

by performing the chosen adjustment procedure;
then, each v(k) will have m elements v

(k)
i ,

k � (1, . . . , M), i � (1, . . . , m), with v
(k)
i being the

residual of the ith observation in the kth MCS trial
(3) Considering the average of residuals of the ith ob-

servation in all MCS trials vi, i � (1, . . . , m), we
compute the variance VARvi

(equation (10)) for each
residual and compute the covariance COV(vi,vj) for
each pair of residuals (equation (11)):

VARvi
�

1
M − 1

􏽘

M

k�1
v

(k)
i − vi􏼐 􏼑

2
; i � 1, . . . , m;

(10)

COV
vi,vj( 􏼁

�
1

M − 1
􏽘

M

k�1
v

(k)
i − vi􏼐 􏼑 v

(k)
j − vj􏼐 􏼑;

i � 1, . . . , m; j � 1, . . . , m; i≠ j.

(11)

(4) fix the estimated Ʃv by placing variances of each ith

residual in the ith element of the main diagonal and
covariances in its corresponding position (i, j).

Regarding Ʃv in minimum L1-norm, some authors (see,
e.g., [8, 21]) derived variances of the subset of nonzero
residuals, and Junhuan [18] presented an expression valid
for IRLS solution. On another hand, our MCS method
computes all variances and covariances and is more general,
not only for any minimum L1-norm solution but also for
any adjustment procedure.

1.2. Critical Values Based on False Positive Rates.
Recently, many works (see, e.g., [9, 15, 16]) have investigated
critical values for normalized residuals in IDS based onMCS
control of false positive rate. Motivated by mentioned works,
we propose the following procedure for any robust estimator
(Figure 2). In fact, the method could be applied to any
adjustment procedure, but it is clearly more useful for robust

Input: A, ∑L and the
adjustment procedure

Generate a random error vector

Compute respective residuals vectors

Number of MCS trials = 200,000?
No

Yes

Compute the variances
and the covariances of residuals

Fix ∑v End

Figure 1: Proposed Monte Carlo approach to compute Ʃv for any
adjustment procedure.
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estimators in the process of outlier identification. &e inputs
are matrices A and ƩL of the geodetic network, the desired α
(false positive rate), and the robust estimator for which
critical values of normalized residual will be estimated.

(1) compute Ʃv of the geodetic network by the procedure
from Figure 1, considering the robust estimator
selected.

(2) synthetically generate M� 200,000 vectors of
(pseudo-) random normally (or with other distri-
bution) distributed errors of observations
e(k), k � (1, . . . , M), with expected mean μ� 0 and
covariance matrix ƩL, i.e., e(k) ∼ N(0,ΣL); in order
to avoid any kind of bias, these new vectors should be
different from the vectors of step (1). Random errors
generally follow normal distributions in geodetic
observations. However, an advantage of an MCS
approach is that it may be applied to other error
distributions, as can be seen in the work of Lehmann
[9].

(3) compute the max-|wi| (i.e., the maximum absolute
wi) of each MCS trial.

(4) order the set of all max-|wi| values in the ascending
order.

(5) &e critical value will be the one in position (1− α) ∗
M of the ordered set.

2. Experiments and Results

Experiments were performed in three simulated leveling
networks (Figure 3). Network A consists in one control
station, m� 6 observations (height differences), and n� 3
unknowns (station heights). Network B consists in one
control station, m� 10 observations, and n� 4 unknowns.
Network C consists in one control station, m� 15 obser-
vations, and n� 5 unknowns. &erefore, the “mean re-
dundancy number” [13] of network A is rA � (6–3)/6� 0.50,
network B is rB � (10–4)/10� 0.60, and network C is
rC � (15–5)/15� 0.67.

For all networks, the standard deviation of the obser-
vations was given by σi � 1.0(mm)∗

��
Ki

􏽰
, where Ki (in km)

is the length of the respective leveling line. In the ascending
order of the observation index, the lengths (in km) of each
leveling line were as follows: for network A, [42, 38, 27, 22,
23, 33]; for network B, [37, 28, 33, 26, 40, 32, 39, 29, 34, 41];
and for network C, [30, 34, 25, 37, 28, 38, 29, 35, 31, 26, 33,
36, 27, 32, 24]. &erefore, for example, σi of the 4th obser-
vation of network A (which is also the lowest σi of all
networks) is σ4(Network A) � 1.0(mm)∗

��
22

√
� 4.69mm.

Minimum L1-norm adjustments were performed by the
simplexmethod of linear programming. Normally distributed
pseudorandom numbers were generated by the Mersenne
Twister algorithm [44] and transformed from uniform to
normal distribution by the Ziggurat technique [45]. All ex-
periments were performed in the software Octave.

At first, we computed Ʃv for the three networks in three
different ways: (1) Ʃv(LS-A) for the LS adjustment by its (well-
established) analytical formulation (equation (9)); (2) Ʃv(LS-
MCS) for the LS adjustment, performing the new approach we
presented by means of MCS; and (3) Ʃv(L1-MCS) for mini-
mum L1-norm adjustment (simplex solution), performing
the new approach we presented by means of MCS. Table 1
presents the elements (rounded to one decimal place) of
these matrices computed for network A. Respective matrices
for networks A, B, and C (rounded to three decimal places)
can be found in the appendix.

&en, we applied the new procedure to compute critical
values for normalized residuals by MCS and based on the
false positive rate (significance level α) in minimum L1-
norm (simplex solution). For comparison and further
analysis, in Table 2, we also presented critical values for IDS
with the same procedure and critical values from the normal
distribution statistical table.

Although the use ofMCS seems computationally expensive,
today, this is no longer an obstacle even for personal computers
[12]. As so, the whole process of computingminimumL1-norm
critical values, which includes the estimation of respective Ʃv(L1-
MCS) (Figure 2), took approximately 14, 21, and 29minutes (for
networks A, B, and C, respectively) using an Intel (R) Core
(TM) i5 2.50GHz processor with 4Gb RAM.

3. Discussion

&e first issue to be addressed is the covariance matrix of
residuals for network A, B, and C. Table 3 presents the
maximum, minimum, and average differences of the variances
(elements of the main diagonal) and covariances (elements
outside the main diagonal) between matrices Ʃv(LS-MCS) and
Ʃv(LS-A) and between matrices Ʃv(LS-MCS) and Ʃv(L1-MCS).
Ʃv(LS-A) and Ʃv(LS-MCS) had very close values for the three

networks. &e difference between corresponding elements
were always less than 0.300mm2 (being less than 0.100mm2

for more than 75% of all networks elements), and average
differences computed were less than 0.060mm2 for all
networks. &ese differences are relatively very low, as the
minimum variance of observations (of the 4th observation of
network A) was 4.692 ≈ 22.0mm2. Hence, this result vali-
dates our strategy presented to compute Ʃv based on MCS.

Input: A, ∑L, α, and the
robust estimator Compute ∑v

Generate a random error vector

Compute the respective max – |wi|

Number of MCS trials = 200,000?
No

Yes

Order the set of all max – |wi|
values in the ascending order

�e critical value will be the one in
position (1 – α) ∗ M of the ordered set End

Figure 2: Proposed Monte Carlo procedure to compute critical
values for robust estimators.
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Table 1: Covariance matrices computed for network A (mm2).

Ʃv(LS−A) Ʃv(LS−MCS) Ʃv(L1−MCS)

24.9 10.6 −0.2
10.6 20.9 7.2
−0.2 7.2 13.4

6.8 6.6 10.4
−0.7 6.5 −9.9
6.6 −7.0 −6.4

6.8 −0.7 6.6
6.6 6.5 −7.0
10.4 −9.9 −6.4

9.3 −6.1 5.9
−6.1 9.9 −0.5
5.9 −0.5 16.7

24.9 10.7 −0.1
10.7 20.9 7.2
−0.1 7.2 13.3

6.8 6.5 10.3
−0.7 6.6 −9.8
6.6 −7.0 −6.3

6.8 −0.7 6.6
6.5 6.6 −7.0
10.3 −9.8 −6.3

9.3 −6.1 5.9
−6.1 9.9 −0.5
5.9 −0.5 16.6

35.0 6.1 0.5
6.1 25.4 5.3
0.5 5.3 25.0

4.5 4.9 5.3
−5.8 4.5 −5.0
3.1 −3.1 −4.8

4.5 −5.8 3.1
4.9 4.5 −3.1
5.3 −5.0 −4.8

16.6 −2.9 4.4
−2.9 12.1 0.0
4.4 0.0 16.9

61 2

34

5

(a)

1

6
2 3
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48
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(b)

1
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9
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12

13

15

14

(c)

Figure 3: Configuration of networks A, B, and C.

Table 2: Critical values for normalized residuals.

α (%) Normal table |Zα/2|
Network A Network B Network C

IDS Min. L1-norm IDS Min. L1-norm IDS Min. L1-norm
0.10 3.29 3.74 5.89 3.89 6.68 3.98 5.16
0.27 3.00 3.48 5.35 3.64 5.97 3.74 4.82
1.00 2.575 3.10 4.61 3.28 4.99 3.41 4.32
2.50 2.24 2.81 4.04 3.00 4.32 3.13 3.93
5.00 1.96 2.56 3.60 2.77 3.80 2.91 3.62
10.00 1.645 2.29 3.13 2.52 3.30 2.68 3.29

Table 3: Statistics of differences of elements (mm2).

Network Between matrices
Maximum Minimum Average

VAR COV VAR COV VAR COV

A Ʃv(LS-MCS) and Ʃv(LS-A) 0.101 0.096 0.004 0.004 0.037 0.041
Ʃv(LS-MCS) and Ʃv(L1-MCS) 11.703 5.104 0.322 0.421 5.978 2.796

B Ʃv(LS-MCS) and Ʃv(LS-A) 0.078 0.105 0.001 0.002 0.040 0.031
Ʃv(LS-MCS) and Ʃv(L1-MCS) 24.524 7.448 2.363 0.063 12.846 3.393

C Ʃv(LS-MCS) and Ʃv(LS-A) 0.293 0.144 0.003 0.001 0.053 0.037
Ʃv(LS-MCS) and Ʃv(L1-MCS) 6.606 3.009 3.265 0.001 4.920 1.454

Table 4: Ʃv(LS-A) for network A.

Matrix elements (mm2)
24.875 10.565 −0.195 6.755 6.560 10.370
10.565 20.919 7.215 −0.699 6.516 −9.866
−0.195 7.215 13.367 6.613 −7.020 −6.418
6.755 −0.699 6.613 9.331 −6.056 5.914
6.560 6.516 −7.020 −6.056 9.924 −0.504
10.370 −9.866 −6.418 5.914 −0.504 16.716
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On the other hand, we can clearly see that elements of
Ʃv(L1-MCS) were very different from Ʃv(LS-MCS) (and Ʃv(LS-A))
ones. &e maximum variance differences (in mm2) were
11.703, 24.525, and 6.606 for networks A, B, and C, re-
spectively, and average variance differences were always
higher than 4.900mm2. Hence, as expected, using Ʃv(LS-A) is
not appropriate in the context of minimum L1-norm.

As expected, critical values for normalized residuals in IDS
and minimum L1-norm presented in Table 2 were always
different from critical values obtained in the univariate normal
distribution table. Moreover, minimum L1-norm critical
values were always higher than IDS ones. &is characteristic
highlights the importance of controlling the false positive rate
properly by MCS, as was proposed in this research.

Finally, we note also that critical values for both mini-
mum L1-norm and IDS vary from different networks. Al-
though IDS values tend to increase with network
redundancy, as already shown by [16], the same cannot be
claimed for minimum L1-norm. Hence, this issue may be a
subject for further investigation.

4. Concluding Remarks

In this work, we successfully developed and presented an
approach by means of MCS to compute the covariance
matrix of residuals and critical values for normalized

residuals in any adjustment procedure. Since the LS method
has a well-established analytical expression for the covari-
ance matrix of residuals, our MCS strategy to estimate it was
first applied to LS. We found that differences in respective
elements between our strategy and analytical formulation
were negligible, which validates our approach.

Numerical results of the whole procedure of computing
critical values, which includes the estimation of the re-
spective residuals covariance matrix, were presented in three
leveling networks for minimum L1-norm solved by the
simplexmethod of linear programming and compared to LS
(for the covariance matrix of residuals) and IDS based on LS
results (for critical values). In this sense, we highlight that, as
mentioned, the minimum L1-norm solution may not be
unique. Hence, conclusions of this paper are associated with
the simplex solution of minimum L1-norm.

We have shown that the covariance matrix of residuals
may change along with the adjustment procedure (in our
case, from LS to minimum L1-norm). &erefore, since ro-
bust estimators generally do not have a well-established
solution to compute the covariance matrix of residuals, the
approach presented for any adjustment procedure (in-
cluding robust estimators) herein is a valuable strategy.

Surveyors cannot rely on critical values from univariate
normal distribution either for IDS or minimum L1-norm.
Moreover, critical values vary even among robust estimators.

Table 5: Ʃv(LS-MCS) for network A.

Matrix elements (mm2)
24.901 10.661 −0.110 6.782 6.546 10.307
10.661 20.939 7.187 −0.682 6.551 −9.807
−0.110 7.187 13.313 6.629 −6.990 −6.328
6.782 −0.682 6.629 9.349 −6.060 5.921
6.546 6.551 −6.990 −6.060 9.920 −0.546
10.307 −9.807 −6.328 5.921 −0.546 16.615

Table 7: Ʃv(LS-A) for network B.

Matrix elements (mm2)
23.099 −6.372 0.038 0.231 −7.799 −7.529 −7.567 −6.103 −6.334 0.269
−6.372 15.454 6.372 0.430 −0.627 6.174 −0.197 −5.745 −6.175 6.801
0.038 6.372 19.855 5.922 0.890 −6.334 6.812 −0.851 −6.774 −7.223
0.231 0.430 5.922 13.604 6.276 −0.198 −6.121 −6.044 6.352 −6.474
−7.799 −0.627 0.890 6.276 25.663 −7.172 −8.061 6.538 0.262 7.165
−7.529 6.174 −6.334 −0.198 −7.172 18.296 −7.370 −0.358 −0.159 −6.532
−7.567 −0.197 6.812 −6.121 −8.061 −7.370 24.818 0.494 6.614 0.691
−6.103 −5.745 −0.851 −6.044 6.538 −0.358 0.494 16.359 −6.596 −6.896
−6.334 −6.175 −6.774 6.352 0.262 −0.159 6.614 −6.596 21.052 −0.422
0.269 6.801 −7.223 −6.474 7.165 −6.532 0.691 −6.896 −0.422 27.303

Table 6: Ʃv(L1-MCS) for network A.

Matrix elements (mm2)
34.951 6.134 0.530 4.509 4.830 5.344
6.134 25.380 5.259 −5.786 4.477 −4.986
0.530 5.259 25.016 3.118 −3.139 −4.844
4.509 −5.786 3.118 16.556 −2.896 4.366
4.830 4.477 −3.139 −2.896 12.063 0.000
5.344 −4.986 −4.844 4.366 0.000 16.937
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Table 8: Ʃv(LS-MCS) for network B.

Matrix elements (mm2)
23.035 −6.417 0.021 0.230 −7.805 −7.553 −7.465 −6.095 −6.229 0.255
−6.417 15.478 6.363 0.436 −0.615 6.201 −0.195 −5.751 −6.156 6.813
0.021 6.363 19.894 5.994 0.904 −6.366 6.854 −0.908 −6.682 −7.242
0.230 0.436 5.994 13.638 6.262 −0.250 −6.044 −6.081 6.389 −6.489
−7.805 −0.615 0.904 6.262 25.685 −7.176 −8.071 6.565 0.222 7.170
−7.553 6.201 −6.366 −0.250 −7.176 18.334 −7.387 −0.325 −0.208 −6.501
−7.465 −0.195 6.854 −6.044 −8.071 −7.387 24.740 0.421 6.603 0.663
−6.095 −5.751 −0.908 −6.081 6.565 −0.325 0.421 16.405 −6.650 −6.876
−6.229 −6.156 −6.682 6.389 0.222 −0.208 6.603 −6.650 20.996 −0.446
0.255 6.813 −7.242 −6.489 7.170 −6.501 0.663 −6.876 −0.446 27.304

Table 9: Ʃv(L1-MCS) for network B.

Matrix elements (mm2)
46.912 −3.882 0.243 −0.090 1.851 −6.036 1.964 2.750 3.470 1.470
−3.882 13.115 4.654 0.372 −4.172 2.125 −4.687 −3.836 −3.791 0.639
0.243 4.654 31.286 2.254 4.222 −3.682 −0.287 −7.010 −0.249 0.587
−0.090 0.372 2.254 6.702 2.975 −0.490 −3.026 −2.519 2.781 −3.569
1.851 −4.172 4.222 2.975 41.976 −5.582 −0.622 1.139 3.542 −0.858
−6.036 2.125 −3.682 −0.490 −5.582 13.078 −5.069 −1.601 −1.096 1.657
1.964 −4.687 −0.287 −3.026 −0.622 −5.069 42.890 4.207 −1.276 2.077
2.750 −3.836 −7.010 −2.519 1.139 −1.601 4.207 24.088 −7.454 −0.043
3.470 −3.791 −0.249 2.781 3.542 −1.096 −1.276 −7.454 32.981 −1.847
1.470 0.639 0.587 −3.569 −0.858 1.657 2.077 −0.043 −1.847 51.828

Table 10: Ʃv(LS-A) for network C.

Matrix elements (mm2)
19.478 5.322 −0.182 −0.047 0.074 5.356 −5.201 −5.383 −5.430 0.156 −0.027 −5.166 −5.093 −5.140 0.229
5.322 23.978 4.498 0.124 −0.186 0.264 −4.701 −0.203 −0.079 −4.436 0.062 5.586 5.401 5.525 −4.622
−0.182 4.498 15.426 5.447 −0.136 −0.053 4.316 −5.258 0.189 4.263 −5.311 −0.235 −0.371 5.076 4.127
−0.047 0.124 5.447 26.579 4.860 0.037 0.077 5.524 −4.897 0.114 5.561 −0.010 4.849 −5.571 4.973
0.074 −0.186 −0.136 4.860 18.059 5.329 −0.112 −0.248 4.611 5.217 5.081 5.403 −4.538 0.322 −4.723
5.356 0.264 −0.053 0.037 5.329 27.066 5.621 5.568 5.605 −5.314 −5.366 −5.578 −0.249 −0.212 0.016
−5.201 −4.701 4.316 0.077 −0.112 5.621 19.098 −5.586 −5.509 −4.281 0.035 0.420 0.308 0.385 −4.393
−5.383 −0.203 −5.258 5.524 −0.248 5.568 −5.586 24.156 −5.320 −0.018 −5.276 0.185 −0.063 5.461 −0.266
−5.430 −0.079 0.189 −4.897 4.611 5.605 −5.509 −5.320 20.784 0.096 0.285 0.175 4.786 −0.110 4.707
0.156 −4.436 4.263 0.114 5.217 −5.314 −4.281 −0.018 0.096 16.406 −5.331 −5.158 0.059 0.173 −4.377
−0.027 0.062 −5.311 5.561 5.081 −5.366 0.035 −5.276 0.285 −5.331 22.358 −5.393 −0.312 5.249 −0.250
−5.166 5.586 −0.235 −0.010 5.403 −5.578 0.420 0.185 0.175 −5.158 −5.393 25.256 −5.341 −5.351 0.245
−5.093 5.401 −0.371 4.849 −4.538 −0.249 0.308 −0.063 4.786 0.059 −0.312 −5.341 17.121 −5.029 −4.478
−5.140 5.525 5.076 −5.571 0.322 −0.212 0.385 5.461 −0.110 0.173 5.249 −5.351 −5.029 21.399 0.495
0.229 −4.622 4.127 4.973 −4.723 0.016 −4.393 −0.266 4.707 −4.377 −0.250 0.245 −4.478 0.495 14.900

Table 11: Ʃv(LS-MCS) for network C.

Matrix elements (mm2)
19.458 5.295 −0.162 −0.090 0.032 5.227 −5.170 −5.464 −5.477 0.176 0.076 −5.238 −5.117 −5.051 0.223
5.295 23.975 4.534 0.095 −0.144 0.172 −4.757 −0.210 −0.061 −4.365 0.112 5.573 5.335 5.639 −4.604
−0.162 4.534 15.441 5.430 −0.147 −0.090 4.285 −5.252 0.166 4.309 −5.310 −0.277 −0.363 5.117 4.100
−0.090 0.095 5.430 26.624 4.815 0.031 0.126 5.550 −4.931 0.095 5.567 −0.044 4.918 −5.603 4.953
0.032 −0.144 −0.147 4.815 18.100 5.317 −0.114 −0.282 4.676 5.165 5.092 5.527 −4.565 0.327 −4.713
5.227 0.172 −0.090 0.031 5.317 26.772 5.547 5.549 5.596 −5.253 −5.328 −5.442 −0.287 −0.235 0.051
−5.170 −4.757 4.285 0.126 −0.114 5.547 19.018 −5.600 −5.502 −4.231 0.042 0.410 0.318 0.297 −4.363
−5.464 −0.210 −5.252 5.550 −0.282 5.549 −5.600 24.192 −5.269 −0.053 −5.306 0.243 −0.031 5.451 −0.210
−5.477 −0.061 0.166 −4.931 4.676 5.596 −5.502 −5.269 20.772 0.102 0.230 0.319 4.741 −0.118 4.662
0.176 −4.365 4.309 0.095 5.165 −5.253 −4.231 −0.053 0.102 16.331 −5.333 −5.176 0.078 0.212 −4.356
0.076 0.112 −5.310 5.567 5.092 −5.328 0.042 −5.306 0.230 −5.333 22.329 −5.380 −0.323 5.189 −0.289
−5.238 5.573 −0.277 −0.044 5.527 −5.442 0.410 0.243 0.319 −5.176 −5.380 25.298 −5.353 −5.311 0.239
−5.117 5.335 −0.363 4.918 −4.565 −0.287 0.318 −0.031 4.741 0.078 −0.323 −5.353 17.126 −5.059 −4.450
−5.051 5.639 5.117 −5.603 0.327 −0.235 0.297 5.451 −0.118 0.212 5.189 −5.311 −5.059 21.412 0.491
0.223 −4.604 4.100 4.953 −4.713 0.051 −4.363 −0.210 4.662 −4.356 −0.289 0.239 −4.450 0.491 14.817
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However, unlike IDS, the critical values in minimum L1-norm
do not necessarily tend to increase with network redundancy.
Hence, the main contribution of this work was the proposed
Monte Carlo-based critical values to control the false positive
rate for normalized residuals of robust estimators.

Future research should perform this proposal in order to
provide a fair comparison among different quality control
procedures with the same false positive rate. Furthermore,
one can investigate effects of chosen false positive rates in
probability levels of classes of errors in outlier identification,
i.e., type II error, type III error, overidentification positive
and negative, and statistical overlap (see [16] associated with
robust estimators).

&e proposed approach for the computing residuals
covariance matrix can be extended to covariance matrices
other than the residuals one in future works. One can, e.g.,
compute the network parameters in eachMCS trial and then
compute the parameter covariance matrix of the chosen
adjustment procedure.

&e relationship between network redundancy and
critical values for normalized residuals in robust estimation
also needs further investigation. Besides, the new approach
for the computation of the covariance matrix of residuals
and for the estimation of critical values for normalized
residuals described here should be applied for other robust
estimators and other types of geodetic networks, such as
Global Navigation Satellite System (GNSS) networks.

Appendix

Tables 4–6 present matrices Ʃv(LS-A), Ʃv(LS-MCS), and Ʃv(L1-
MCS) computed for network A, respectively.

Tables 7–9 present matrices Ʃv(LS-A) , Ʃv(LS-MCS), and
Ʃv(L1-MCS) computed for network B, respectively.

Tables 10–12 present matrices Ʃv(LS-A) , Ʃv(LS-MCS), and
Ʃv(L1-MCS) computed for network C, respectively.
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