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The Time Capacitated Arc Routing Problem (TCARP) extends the classical Capacitated Arc Routing Problem by
considering time-based capacities instead of traditional loading capacities. In the TCARP, the costs associated
with traversing and servicing arcs, as well as the vehicle’s capacity, are measured in time units. The increasing
use of electric vehicles and unmanned aerial vehicles, which use batteries of limited duration, illustrates
the importance of time-capacitated routing problems. In this paper, we consider the TCARP with stochastic
demands, i.e.: the actual demands on each edge are random variables which specific values are only revealed
once the vehicle traverses the arc. This variability affects the service times, which also become random
variables. The main goal then is to find a routing plan that minimizes the expected total time required to
service all customers. Since a maximum time capacity applies on each route, a penalty time-based cost arises
whenever a route cannot be completed within that limit. In this paper, a strategic oscillation simheuristic
algorithm is proposed to solve this stochastic problem. The performance of our algorithm is tested in a series
of numerical experiments that extend the classical deterministic instances into stochastic ones.

1. Introduction Arc Routing Problem (CARP), capacity constraints limit the volume that

can be carried on each vehicle. Vehicles are typically identical, and

As Corberan and Laporte (2014) described in their reference book
in vehicle routing, “the study of modern arc routing truly started in
1960 with the first publication on the Chinese Postman Problem”. Over
the years, arc routing has evolved into a relevant research area, which
might include real-life characteristics such as multiple criteria, soft
constraints, or stochastic travel times, just to name a few. In general
terms, in Arc Routing Problems (ARPs) the objective is to traverse a set
of connecting edges (in the undirected case) or connecting arcs (in the
directed one) at the minimum possible cost. We can find many types
of constraints modeling different applications, from garbage collection
to meter reading, and the advances in optimization permit to obtain
high-quality solutions in most of the cases.

ARPs can be formally defined on a graph G = (V, E), where V is the
vertex set (including the depot d where routes start and end), and E is
the set of edges (if G is undirected, or arcs if it is directed). For each
edge e € E, there is a non-negative value c(e) giving the distance-based
or time-based cost of traversing it (similarly for arcs). In the Capacitated

are based at the depot. As is the case with many ARPs, this variant
is NP-hard and, therefore, optimal solutions are difficult to obtain for
medium- and large-size instances of real applications. This is why much
of the research in the scientific literature concerns methods to find good
lower bounds, or heuristics to obtain near-optimal solutions (Wghlk,
2008).

Muyldermans and Pang (2014) identified more than 80 publications
dealing with different variants of the CARP, and proposed five cate-
gories to classify them according to the characteristics of the network,
vehicles, facility, demand, and objective. In particular, the network
can be directed or undirected, or combining both cases in a mixed
graph. Vehicles are typically identical, but we can also find a hetero-
geneous fleet in some applications, in which some types of vehicle
cannot service certain arcs (vehicle dependencies). Vehicles can also be
multi-compartment, having the required edges a demand for different
commodities that must be kept segregated during the transportation
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action. Multiple or mobile depots are characteristics related to the fa-
cilities, in which we consider several depots or intermediate facilities,
respectively. Vehicles can be emptied or replenished in these facilities.
The demand contains many subcategories, reflecting the interest of
researchers and practitioners on these topics. Specifically, among the
most important problems is that of split delivery, a well known problem
in which the constraint that each required edge is serviced by a single
vehicle is relaxed. The CARP with time windows has also received a
lot of attention. That is also the case of the time-dependent service cost,
where time windows with a linear penalty cost is considered. In the
periodic CARP, each required edge has a given service frequency over a
pre-specified planning horizon. A realistic CARP arises in applications
that are better modeled with random variable demands on the edges.
The stochastic demand reflects very well practical situations in waste
collection or snow removal. Finally, in the fifth category, objective, the
authors identified multiple objectives, including: service and labor cost,
overtime and penalty costs, length and duration of routes, etc. The
inclusion of profits in the edges constitutes also an interesting case in
which vehicles do not have to service all demand edges, and profits
are also collected from some edges. In line with previous studies (Dror,
2012), it is clear that the diverse nature and different characteristics
of all these CARP variants means that approaches customized for one
application are often less suitable to other problems.

In spite of the range of problems, the CARP remains less studied
than its node-based counterpart, the Capacitated Vehicle Routing Prob-
lem (CVRP or simply VRP), which in real-life applications might require
to consider alternative solutions (Juan et al., 2009). In this paper, we
consider the situation where the capacity constraint on the vehicle is
a time limitation rather than a volume one, which is called the Time
Capacitated Arc Routing Problem (TCARP). A pure TCARP arises in
problems where volume constraints are not relevant, for instance: meter
reading (Corberan et al., 2019), rail inspection (Batista et al., 2019),
or road inspection (Marzolf et al., 2006). Modern applications of the
TCARP can also involve the use of unmanned aerial vehicles (Bayliss
et al.,, 2020). In the TCARP, each edge ¢ € E has a non-negative
travel time 7, representing the time required to traverse it. It also may
have a time-based demand ¢,, which represents the time required to
service it (¢, > f,, since service time includes traversing time). In
CARP, an edge may be traversed but not serviced by a route, which
is referred to as deadheading by that route (Fig. 1). The objective
in the TCARP is to find a set of routes minimizing the total time
employed in servicing required edges, where each one is serviced by
exactly one route while the time capacity Q > 0 of each vehicle is
not exceeded. Note that this total time includes both time required
for servicing edges and for traversing deadhead edges. The distance
traveled is not directly minimized in the TCARP. However, minimizing
total time usually produces solutions (sets of routes) where distance is
traveled efficiently. In situations where vehicle time capacity is critical,
classic volume-based methods will tend to produce infeasible solutions,
with routes exceed the available time. Although in some instances
the difference between time- and volume-based approaches may be
small, replacing units of time for units of volume does not recognize
the specific characteristics of the TCARP (De Armas et al., 2019).
Consequently, while approaches for the volume based CARP provide
a guide to useful strategies for the solution of TCARP problems, they
also require a significant modification.

Literature on the TCARP is scarce. Some antecedents can be traced
back to Keenan and Naughton (1996), who used a heuristic approach
for rural postal delivery problems. Postal delivery problems constitute
one of the most important areas of application of routing models. They
are usually volume constrained if, for example, delivery takes place on
foot (Irnich, 2008). On the other hand, van delivery fits better in the
time-capacitated model (Keenan and Naughton, 1996), where working
time limits are the main constraint on the routes. Also, Keenan (2001)
and Keenan (2005a) tested graph theory based lower bounds. Kirlik
and Sipahioglu (2012) introduced a related problem, the CARP with
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te ~ LogN(m, s)
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/

Fig. 1. Example of a simple TCARP with four routes.
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Deadheading Demand (CARPDD), for which (Bartolini et al., 2013)
proposed lower bounds and an exact algorithm. Specifically, the TCARP
can be considered a particular case of the CARPDD, in which the edge
demands and the objective function have the same (time) units. These
authors provided data sets, lower bounds, and some optimal solutions
for the TCARP. Recent research has shown an increasing interest in
considering working time as an additional constraint in a volume
based problem. Cortinhal et al. (2016) modeled waste collection with
concern for total working time and the balance between the working
time for different routes. Wghlk and Laporte (2018) examined a refuse
collection CARP with duration constraints on large networks. Tirko-
laee et al. (2018) addressed a waste collection problem with driver
and crew working time limits. Willemse and Joubert (2019) exam-
ined Mixed Capacitated Arc Routing Problems under time restrictions,
which required consideration of both deadheading and service time on
routes. There are other CARP examples where different road conditions
mean differing parameters for service at different times of the day.
Thus, for example, the recent paper by Jin et al. (2020) included a
time-dependent penalty cost.

In De Armas et al. (2019), the authors propose a metaheuristic
algorithm to deal with large-scale instances of the TCARP. Our paper
builds upon their approach by extending the previous metaheuris-
tic into a simheuristic algorithm (Juan et al., 2018) able to tackle
a stochastic version of the TCARP in which demands are random
variables following a known probability distribution. Thus, the exact
value of these demands is not discovered until the edge has been
traversed, which has a direct influence on the service times. Notice that
these time-based demands, g,, are now considered as random variables
(which are usually represented by uppercase letters), i.e., O, =, + D,,
being D, > 0 a random variable representing the pure service time
(without considering the traversing time, #,). Working under more
realistic uncertainty conditions (e.g., stochastic demands and service
times), might impose additional difficulties whenever a maximum time
per route is considered. In effect, there are scenarios in which drivers
cannot work for more than a given number of hours, and others in
which a time limitation is imposed by the fact of using batteries —
as in the case of electric vehicles and unmanned aerial vehicles. In
those scenarios, random service times might generate route failures,
i.e., routes that cannot be completed due to the total time exceeding
a time threshold. The existence of these route failures might require
corrective actions which, in turn, will increase the time-based cost of
the routing solution. This justifies the need for reliable solutions with
low expected time-based costs. Hence, the main contributions of this
paper are: (i) it introduces a more realistic version of the TCARP in
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which random demands are considered; (ii) it proposes a simheuristic
algorithm, which integrates simulation into a metaheuristic framework,
to deal with the TCARP with Stochastic Demands; (iii) it proposes
a set of stochastic benchmarks that extend, in a natural way, the
deterministic ones from the TCARP literature; and (iv) it introduces
reliability concepts to better assess the quality of the obtained solutions.

The remaining of the paper is structured as follows: Section 2
provides a literature review on stochastic CARP variants. Section 3
describes the constructive heuristic that we apply to solve the determin-
istic version of the TCARP. Section 4 can be considered the core of the
paper, since it is devoted to describe the simheuristic algorithm that we
propose to solve the TCARP with Stochastic Demands. Finally, Section 5
presents a number of computational experiments to assess the merit
of our proposal, while the results are analyzed in Section 6. Section 7
discusses how our algorithm can be extended to consider loading
capacity constraints as well. The paper finishes with the associated
conclusions and future work in Section 8.

2. Related work on the stochastic CARP

Classical optimization methods encounter grave difficulties when
dealing with optimization problems with uncertainties. It is well doc-
umented that stochastic elements make practical problems much more
challenging, making them inaccessible to modeling except by resorting
to more comprehensive tools, such as computer simulation. This is
probably why the literature on stochastic versions of the CARP is lim-
ited, when compared with the deterministic versions reviewed above.
We now describe the few previous publications.

In their seminal paper, Fleury et al. (2002) modeled the random
quantities in the stochastic CARP by Gaussian random variables, based
on the central limit theorem. Note that the demand on each edge
is the sum of multiple elementary demands (say for instance waste
containers or plastic bags in waste collection). Therefore, the appli-
cation of the theorem results in a Normal distribution. The main
objective was to evaluate the robustness of the solutions obtained when
the demands are stochastic. Fleury et al. (2005) proposed a hybrid
Genetic Algorithm to obtain robust solutions to the stochastic CARP.
The authors customized the Genetic Algorithm framework proposed
by Lacomme et al. (2001) for the deterministic CARP to deal with
random demands. Specifically, the Normal distribution describing the
demand in each edge is truncated, avoiding negative values or demands
exceeding the vehicle capacity. The method was tested on classical
CARP instances (Belenguer and Benavent, 2003).

Christiansen and Lysgaard (2007) proposed a column generation
method based on the following formulation as a set partitioning prob-
lem. The authors first define R as the set of routes r = (d, iy, ..., i, d),
where i, ..., i, € V. Each route r has an expected cost, c,. The expected
demand is computed as the sum of the expected values E[D,] in each
edge e = (i;,i;;;) of the route. Only feasible routes are considered in
R, i.e.: routes with expected demands within the capacity limit Q. Let
a;, be a parameter of value 1 if route r visits node i, and 0 otherwise.
Then the problem can be formulated as follows:

min z(x) = minc,x
() reRrr

st. Y ax,=1VieV
reR

x.={0,1} VreR

Christiansen et al. (2009) extended their previous work and pro-
posed a Branch-and-Price algorithm in which the pricing incorporates
demands with stochastic nature. We can also find developments in the
metaheuristic arena for the stochastic version of the CARP. Laporte
et al. (2010) applied the Adaptive Large Neighborhood Search (ALNS)
framework to solve the undirected CARP in the context of garbage
collection. Specifically, the authors included, in their ALNS method, the
expected cost of recourse by extending the concept of route failure com-
monly found in stochastic node-routing problems. As it is customary in
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heuristic papers, the authors presented computational results to show
the merit of their ALNS. Their analysis reveals that ALNS solutions are
better than those obtained when considering first a deterministic CARP
and then computing the expected cost of recourse by using random
variables for the demands.

As may be expected, we can find different applications in which
the stochastic CARP is adapted to model a particular problem. Chen
et al. (2009) solved a real-world application in small-package delivery,
where uncertainty is addressed into a model called Probabilistic Arc
Routing Problem. The authors adapted a local search that was primarily
designed for the Probabilistic Traveling Salesman Problem (Bertsi-
mas and Howell, 1993). Another interesting application can be found
in Ismail and Ramli (2011), who considered a rich CARP based on
waste collection operations. The authors studied weather-base variants
of routing problems. Specifically, they addressed the particular case
of how rain drops affect the weight of the collected waste. Their
heuristic method is built from a constructive heuristic called Near-
est Procedure Based on Highest Demand/Cost. Also, Gonzalez-Martin
et al. (2018) introduced a simheuristic algorithm for the CARP with
Stochastic Demands. The authors proposed to adapt the metaheuristic
framework to deal with uncertainties. In particular, their method is
based on the well-tested RandSharp algorithm for the deterministic
CARP (Gonzalez-Martin et al., 2012). In the present work, we consider
stochastic demands for the TCARP.

3. A savings-based heuristic

This section describes the constructive heuristic that we apply
to solve the deterministic version of the TCARP. This heuristic for
the TCARP is based on the savings heuristic for the CARP proposed
in Gonzalez-Martin et al. (2012). The resulting adaptation is then
extended by combining it with the augment-merge heuristic proposed
by Lacomme et al. (2004). Algorithm 1 depicts the pseudo-code of our
approach, which we describe now in more detail. Given a graph G,
which might be complete or not, the Floyd-Warshall algorithm (Pallot-
tino, 1984) is used to compute the shortest paths — based on traversing
time — for all pairs of nodes, i, j € G (see line 1 in Algorithm 1). This
allows us to consider the graph as a complete one. At this point, we
compute the savings associated with each path connecting two different
nodes related to a requiring edge, e = (i, j) (lines 2 and 3). The savings
associated with a requiring edge e are computed using the following
expression:

s(e) = t(depot,i) + t(j,depot) — t,

Then, required edges are sorted in a decreasing order according
to the value of their associated savings (line 4). At this point, we
construct a ‘dummy’ set of single-edge routes (line 5) by considering
each requesting edge, and their connection paths to the depot. The
following augment procedure is now applied over the dummy solution
(line 6): (i) routes in the dummy solution are sorted by total time (from
higher to lower); (ii) each route is scanned to identify those edges —
belonging to the scanned route — that are also requesting edges in other
routes of the dummy solution; and (iii) whenever one of these edges is
identified, it is serviced in the scanned route if that does not violate
any constraint — i.e., the largest route ‘absorbs’ the shortest one if
possible. In our experiments, we run the algorithm with and without
this augment procedure, since its performance depends on the specific
instance being solved. Now, a route-merging process starts. This is an
iterative process (lines 7 to 22). In this process, for each edge e in the list
of savings, its two extreme nodes, i and j are considered. All routes (if
any) traversing each of these extremes, and having the corresponding
node as an ‘exterior’ one, are merged to construct a new route mR
traversing e. In this context, an exterior node in a route R is one that
is connected to the depot through a path that does not contain any
requesting edge. Thus, using exterior nodes during the merging process
of routes iR and jR allows for the exclusion of entire sections from
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Algorithm 1 Heuristic approach

Algorithm 2 Simheuristic approach

1: times « algFloyd-Warshall(graph) % Use Floyd—Warshall algorithm
to compute the shortest paths for all pair of nodes i, j in the graph
reqEdges < getReqEdges(graph) %Obtain the requesting Edges
savings « computeSavings(reqEdges, times, depot)
sortSavingByDecreasingOrder(savings)

routes < genDummyPartialRoutes(reqEdges) %Generate dummy
‘partial routes’, where each reqEdge e is a route

6: AugmentRoutes <«  applyAugmentProcedure(routes) %Apply
Extended-Augment phase
7: for (edge e € savings) do %Starts route-merging process
8: i « origin(e)
9: j < end(e)
10: for each route aR in AugmentRoutes with aR traversing i do
11: iR < aR
12: for each route bR in AugmentRoutes with bR traversing j do
13: jR < bR
14: if isMergePossible(iR, jR, vCap) then
15: mR < mergeRoutes(iR, jR, i, j)
16: routes « delete(iR)
17: routes < delete(jR)
18: routes « add(mR)
19: end if
20: end for
21: end for
22: end for

23: sol « reconstruct(routes, graph)
24: return sol

these routes without losing any edge-service already assigned to them.
At this point, the algorithm checks if the new route mR does not violate
the time-based capacity of the vehicle, vCap (line 15). In case that all
the constraints are satisfied, the new route (mR) is added to the current
solution in substitution of the two routes that were merged, which are
deleted (lines 16 to 18).

In order to complete a merge of two routes, it might be necessary to
change the orientation in which one of the routes is traversed — which,
in turn, defines the orientation in which the connecting edge must
be traversed. This process continues until either a successful merge is
attained or no more routes satisfy the initial conditions. The final step
(line 23) consists in reconstructing the final solution, by adding the
missing connection paths among the merged routes. This procedure is
carried out by computing the shortest path between the edges in the
route, using all-pairs shortest paths generated at the beginning of the
procedure. Once the algorithm is completed, the solution is returned
(line 24) as the output of the method.

4. The strategic oscillation simheuristic

Based on the deterministic heuristic introduced in the previous sec-
tion, we propose a simheuristic approach to solve the stochastic TCARP.
Simheuristic algorithms combine metaheuristics with simulation, and
have been recently employed to solve stochastic optimization problems
in areas as diverse as vehicle routing problems (Guimarans et al., 2018),
inventory routing problems (Gruler et al., 2018, 2020), project man-
agement (Panadero et al., 2020), e-commerce network design (Pages-
Bernaus et al., 2019), or waste collection management (Gruler et al.,
2017a,b). Specifically, we propose an oscillation pattern to create a
balance between search intensification and diversification. Strategic
oscillation (SO) is closely linked to the origins of Tabu Search (Glover
and Laguna, 1998) and operates by orienting moves in relation to
a critical level, as identified by a stage of construction. Constructive
and destructive oscillation, where constructive steps add elements and

initSol < BR-Heuristic(inputs,f) % Randomized heuristic
: reliableThreshold « fastSimulation(initSol)
: baseSol « initSol
: bestSol « initSol
. telapsecl <0
: while (tejapsed < tmax) do % SO Stage
newSol « oscillation(baseSol,inputs)
newSol « localSearch(newSol)
5 « getDetTotalTime(newSol) - getDetTotalTime(baseSol)
if (6 < 0) then
fastSimulation(newSol) % Monte Carlo simulation
if (getStochTotalTime(newSol) - getStochTotalTime(bestSol)
< 0) and

—
HQYRNDDAWNE

—
N

13: (Reliability(newSol) < reliableThreshold) then
14: bestSol < newSol

15: insert(poolBestSols, bestSol)

16: end if

17: end if

18: baseSol « AcceptanceCriteria(newSol,bestSol)

19: telapsed « update(telapsed)

20: end while

21: for (sol € poolBestSol) do % Refined simulation

22: deepSimulation(sol)

23: if (getStochTotalTime(sol) < getStochTotalTime(bestSol)) then
24: bestSol « sol

25: end if

26: end for

27: return bestSol

destructive steps drop them, are very popular to enhance classic con-
structive processes. We implemented a simplified and effective SO,
known as iterated greedy or IG (Ruiz and Stiitzle, 2007), which obtains
high-quality solutions by iterating over a greedy constructive heuristic.
The strategic oscillation uses two main phases: destruction and con-
struction. The greedy heuristic in our case is the extended heuristic
(tested with and without the augment procedure) described above.
Algorithm 2 depicts the main characteristics of our approach, composed
of three stages. First, a feasible initial solution is generated using a
constructive heuristic. Then, the IG metaheuristic improves this initial
solution by iteratively exploring the search space. This process conducts
a small number of Monte Carlo simulation (MCS) runs to obtain rough
estimates of the solution performance under stochastic conditions. This
allows us to generate a pool of ‘promising’ elite solutions. In the third
stage, a refinement procedure, using a larger number of MCS runs,
is applied to these elite solutions. The latter step provides a more
accurate estimation of the expected total cost (Rabe et al., 2020). We
now describe the previous steps in more detail.

As shown in Algorithm 2, our method applies the extended savings
heuristic in line 1 to obtain an initial solution, InitSol. It is computed
using the expected demand of the random variables, E(D,). In other
words, we first solve the deterministic version of our problem in
which we simply have an expected (average) value d,. Once the initial
solution is obtained, we submit it to a standard evaluation process using
stochastic data. In particular, we use MCS to simulate many scenarios
(values of the random variables) and compute the average objective
function value (total travel time) across all the scenarios. To keep the
computational time low, we limit this simulation to 100 replications or
scenarios. This process is called FastSimulation in line 2 of the algorithm.

One of the main advantages of simheuristics is that the objective
function information is supplemented with risk analysis (Ferone et al.,
2019). In our problem, random times in the demands may cause a
failure in the routes, since vehicles have a maximum traveling time
Q. Therefore, when we submit a solution to the MCS, in some of
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the scenarios a route may turn out to be infeasible because its total
traveling time exceeds Q. In that case, a corrective action has to be
taken, which implies an early termination of the route: the vehicle
must return to the depot without visiting all the edges in order to
satisfy the time constraint. Then, a new vehicle goes to the route to
complete it from that point on. This extra cost of going to and returning
from the depot has to be added to the total time. Hence, it becomes
part of the average expected cost returned by the MCS. Additionally,
we compute the fraction of times (percentage of scenarios) that the
solution is feasible, and where no corrective action is needed. Hence,
simulation allows us to estimate reliability of a complex process (Faulin
et al., 2008). This reliability value provide a measure of the solution
robustness across different scenarios.

The initial solution reliability is set as a threshold, reliableThreshold,
to filter the solutions from subsequent iterations. Our method collects
the best solutions identified in the search process, and saves them in
a pool of solutions (poolBestSols). We do not admit solutions with a
reliability value lower than the threshold into this pool. As the search
progresses, we increment the reliability threshold by 0.1 every 50
iterations, and only very robust solutions will become part of this elite
set. The main loop of the method (lines 6 to 20 in Algorithm 2) performs
construction and destruction steps according to the strategic oscillation
principle. In particular, we first remove some elements from the baseSol,
which originally is the initial solution. An interesting point is how to
select the elements to be removed from the solution. We consider two
different strategies here. The first one, called random, simply removes k
routes in the bestSol at random — where k is a random number between
2 and the number of routes in the solution. The second strategy, called
selective computes, for each route, the difference between the vehicle
capacity (in terms of time) and its total traveling time. We then order
the routes in decreasing order with respect to this difference and select
one at random from the first k. The rationale behind this step is that
large differences represent an opportunity to improve the route, while
low differences imply compact routes with good allocation of edges.
Note that, in this case, the parameter k has a different role than in
the previous strategy. Then, we also remove from the solution the two
closest routes to the selected one. To do that, we compute the distance
between two routes as the minimum between the pairs of nodes, each
one in a different route. Removing the three routes from the solution
may provide a significant change in the solution, which could permit
us to create a different one.

In both strategies, random and selective, once the selected routes
have been removed we obtain a partial solution. This partial solution
needs to be completed with new routes to serve the required arcs. At
this point, we apply the extended heuristic to reconstruct the partial
solution. This creates new routes to visit the nodes that were in the
removed routes. Hence, a new solution is generated. In this way, we
complete an oscillation step. It is worth mentioning, that the random
strategy has a diversification component — searching for new combina-
tion of routes, while the selective strategy is based on intensifying the
search — looking for improved outcomes. Both components are studied
in our computational experiments. The acceptance-criterion of our SO
(line 20 in Algorithm 2) establishes the rules by which the algorithm
wanders over the regions of the search space in the quest for better
solutions. The following criteria are analyzed: (i) replace if better —
i.e., the new solution is accepted only if it attains a better objective
value; and (ii) random walk, — i.e., it always selects the new solution,
regardless of its objective function value, which prevents the method
from being confined in the area of one local optimum.

5. Computational experiments

The proposed simheuristic has been implemented using Java SE 8.0
and tested on a workstation with a multi-core processor Intel Xeon
E5-2650 v4 and using 32 GB of RAM. To the best of our knowledge,
there are no TCARP instances using random time-based capacities
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that we can use as benchmarks. Accordingly, we have extended a
deterministic set of previously published TCARP and CARPDD data sets.
The extension incorporates both random servicing times and traversing
times. In particular, the following data sets have been used:

+ The tcarp data set, introduced by Keenan (2005a), and available
at Keenan (2005b), contains 10 very sparse networks with up to
44 nodes and 50 edges derived from real rural networks in Ireland.
In the corresponding graphs, all edges are required and represent
roads containing a number of customers that must be visited by
a fleet of vehicles based at the depot. The traversing time 7, of an
edge e is related to its length, and the service time g, is equal to 7,
plus the time for visiting all customers on edge e. Both traversing
and service times, as well as the vehicle capacity Q, represent
times expressed in minutes. For each network, three instances
are derived by setting O equal to 40, 50, or 60 min, respectively.
Results (lower and upper bounds) for this data set are available
in Bartolini et al. (2013).

The tegl data set, proposed by Bartolini et al. (2013), uses the
networks of the egl data set (Li and Eglese, 1996). The input data
for these instances was generated as follows: (i) for each edge
e € E, its length /, (in km) is defined as /, = 0.1 - ¢, —-where
¢, represents the edge cost in the original egl data set; (ii) the
traversing time 7, of edge e is set equal to 0.35-60-/, to simulate the
time (in minutes) needed to traverse the edge by a vehicle with
speed 35 km/h; (i) for each required edge e € E,,,, a random
number of customers s, € [1,5] is assigned to e; and (iv) for
required edges, the service time ¢, is set equal to 7,+5-s, —i.e., they
assume a 5-min stop at each customer. Finally, for each network
two instances are created by setting the time-based capacity Q
equal to 240 and 360 min, respectively. Updated results for this
data set (lower and uppers bounds) are available in Bartolini et al.
(2013).

The val data set, introduced by Kirlik and Sipahioglu (2012),
contains 34 instances defined on 10 different graphs. For each
graph, different instances were created by changing the capacity
of the vehicles and all edges are required in the val data set. These
instances consist of 24 to 50 nodes and 34 to 97 edges. From this
data set, we have selected the large-sized instances, which are
expected to be the most challenging ones. Updated results for
this data set (lower bounds) are available in Kirlik and Sipahioglu
(2012).

The rural data, available at Keenan (2017), contains a large-
scale sparse instances based on a simplified version of real Irish
rural road networks, extracted from a Geographic Information
System (GIS). The data set represents rural postal delivery, where
a postman in a van may service several hundred houses widely
distributed over a very sparse road network. The main constraint
is the length of a working day. As the postman must sort his/her
post before driving, the typical day left for driving is 6 to 7h. A
long road may have several edges, as sections of a road need to
be identified for address purposes. Consequently, there are many
nodes of degree two in the network. The average degree of these
rural local networks is around 2.5, compared to around 3 for
typical main road networks and 3.5 for cities built on a block
pattern. These large networks are similar to the tcarp data set,
which was previously made available (Keenan, 2005b) as a small
example of this type of network. Three instances are then created
by setting Q equal to 360, 400, and 420 min, respectively. The best
known solutions (BKS) for this data set are available in De Armas
et al. (2019).

Regarding the algorithm design, after some tests we have decided
to use the random choice for the destruction process, as well as the
replace-if-better choice for the acceptance criterion. Table 1 summarizes
the main characteristics of these sets: number of instances, minimum
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Table 1
Summary of data sets.

Dataset Instances Min. Max. Min. Max Time capacities
Nodes Nodes Edges Edges Q@

tcarp 10 17 44 24 50 40, 50, 60

tegl 2 77 140 98 190 240, 360

val 5 30 50 50 97 144 - 918

rural 2 221 599 245 872 360, 400, 420

number of nodes, maximum number of nodes, minimum number of
edges, maximum number of edges, and time-based capacity. Notice that
not all instances in a dataset use the same value for the time capacity Q.
Hence, the table shows the different Q-values employed in each dataset.

To extend the aforementioned instances, we have assumed that the
time delay, D,, follows a Log-Normal probability distribution. The Log-
Normal distribution is a natural choice for describing non-negative
random variables, such as times. In the real-world, historical data could
be used to determine the most appropriate distribution for the time
requested to traverse or service each edge. The Log-Normal distribution
has two parameters: the location parameter, u, and the scale parameter,
o, which relate to the expected value E[D,] and the variance Var[D,]
as follows:

1 Var[D,]
He = ll’l(E[De]) - 5 In <1 + m) (1)
Var[D,]
0, = n <1 + —E[DZ]Z ) 2

We have set the variability in the delay of travel/servicing times
with reference to the deterministic equivalents such that Var[D,] = c-1,
and ¢ > 0. The parameter c is a design parameter that allows us to
experiment with different levels of uncertainty. It is expected that, as
¢ converges to zero, the results from the stochastic version converge to

Table 2
Computational results for the tcarp data set.
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those obtained in the deterministic scenario. We consider three differ-
ent levels of uncertainty: low (j = 0.1), medium (j = 1), and large (j =
10). Tables 2 to 5 present the results for the different sets of instances in
a scenario with a large level of uncertainty (c = 10). The first column of
these tables identifies the instance, while the second column depicts the
time-based capacity, Q. We have divided the rest of columns into two
different parts. In the first part of each table, we validate our approach
on the original TCARP instances —i.e., without considering stochasticity.
Thus, the OBS-D column shows our best deterministic solution, and the
OBS-D, column displays the computational time — in seconds — to reach
it. The next columns correspond to previously published deterministic
results, which include: (i) the results provided by De Armas et al.
(2019) for all the tested data sets; (ii) the results provided by Bartolini
et al. (2013) for the tcarp, tegl, and val data sets; and (iii) the results pro-
vided by Keenan (2005a) for the rural data set. Subsequently, the next
columns show the corresponding gap between our approach (OBS-D)
and other state-of-the-art methods. The second part of the tables reports
the results obtained for the TCARP stochastic instances considering
random delays and overtime penalties. The OBD-D-S column shows
the expected cost obtained when the best deterministic solution (OBS-
D) is evaluated under a stochastic scenario, with the corresponding
level of uncertainty. To compute this column, we have executed just
the algorithm disabling the simulation part (fast simulation process),
and we have applied the ‘intensive’ simulation process to the best
deterministic solution. The next two columns (Flrel[6] and F2rel[7])
show the reliability of OBD-D-S. We have considered two different ways
to measure the reliability. F1rel shows the reliability measured in terms
of the percentage of routes that are completed without violating the
time capacity Q. The F2rel displays the reliability measured in the
same way than Flrel, but considering that if the demand capacity
constraint is violated in the last edge — which connects with the depot
— the route does not incur into a failure. This reliability could be seen
as a relaxation of the capacity constraint. Similarly, column OBD-S-S
shows the expected cost obtained for the stochastic TCARP using the

Instance Q Deterministic TCARP Gaps (%) Stochastic TCARP
OBS-D OBS-D, (s) De Armas  Bartolini (2013) [1-2] [1-3] [1-4] OBS-D-S F1 Rel. F2Rel. OBS-S-S F1 Rel. F2Rel. OBS-S-S, (s)
[1] (2018) [2] LB [3] UB [4] [5] [6] [71 [8] [9] [10]

S1 60 104 1 104 104 104 0.00% 0.00% 0.00% 356 0.52 0.60 271 0.69 0.74 1
S1 50 108 1 108 108 108 0.00% 0.00% 0.00% 290 0.78 0.79 275 0.80 0.82 2
S1 40 112 1 112 112 112 0.00% 0.00% 0.00% 362 0.69 0.71 353 0.77 0.79 1
S2 60 156 4 156 156 156 0.00% 0.00% 0.00% 365 0.77 0.78 317 0.80 0.81 20
S2 50 158 4 158 158 158 0.00% 0.00% 0.00% 424 0.75 0.77 365 0.81 0.84 7
S2 40 164 6 164 164 164 0.00% 0.00% 0.00% 505 0.71 0.75 472 0.80 0.82 2
S3 60 215 1 215 215 215 0.00% 0.00% 0.00% 546 0.72 0.73 483 0.73 0.76 15
S3 50 229 1 229 229 229 0.00% 0.00% 0.00% 625 0.69 0.72 585 0.72 0.74 1
S3 40 245 4 245 245 245 0.00% 0.00% 0.00% 793 0.70 0.74 684 0.75 0.77 7
S4 60 146 1 146 146 146 0.00% 0.00% 0.00% 306 0.76 0.75 283 0.77 0.81 4
S4 50 162 1 162 162 162 0.00% 0.00% 0.00% 320 0.80 0.84 298 0.82 0.85 3
S4 40 174 1 174 174 174 0.00% 0.00% 0.00% 434 0.75 0.82 384 0.79 0.84 7
S5 60 140 1 140 140 140 0.00% 0.00% 0.00% 326 0.75 0.78 287 0.78 0.79 2
S5 50 149 1 149 149 149 0.00% 0.00% 0.00% 414 0.63 0.66 376 0.77 0.81 1
S5 40 165 1 165 165 165 0.00% 0.00% 0.00% 465 0.73 0.78 445 0.74 0.79 4
S6 60 104 1 104 104 104 0.00% 0.00% 0.00% 395 0.76 0.82 348 0.83 0.86 6
S6 50 107 10 107 107 107 0.00% 0.00% 0.00% 238 0.77 0.79 215 0.88 0.89 1
S6 40 113 1 113 113 113 0.00% 0.00% 0.00% 297 0.71 0.73 145 0.82 0.85 2
S7 60 68 1 68 68 68 0.00% 0.00% 0.00% 127 0.93 0.94 117 0.92 0.93 3
S7 50 68 1 68 68 68 0.00% 0.00% 0.00% 122 0.91 0.93 119 0.93 0.93 8
S7 40 68 1 68 68 68 0.00% 0.00% 0.00% 170 0.83 0.83 147 0.83 0.91 4
S8 60 83 1 83 83 83 0.00% 0.00% 0.00% 172 0.84 0.86 154 0.88 0.92 5
S8 50 83 1 83 83 83 0.00% 0.00% 0.00% 182 0.75 0.83 174 0.79 0.82 1
S8 40 87 1 87 87 87 0.00% 0.00% 0.00% 195 0.78 0.84 169 0.87 0.88 5
S9 60 177 1 177 177 177 0.00% 0.00% 0.00% 337 0.66 0.70 324 0.80 0.82 1
S9 50 193 3 193 193 193 0.00% 0.00% 0.00% 426 0.70 0.73 410 0.74 0.79 11
S9 40 221 1 221 221 221 0.00% 0.00% 0.00% 484 0.74 0.77 439 0.75 0.78 7
S10 60 171 5 171 171 171 0.00% 0.00% 0.00% 408 0.67 0.73 383 0.82 0.85 6
S10 50 180 31 180 180 180 0.00% 0.00% 0.00% 449 0.74 0.77 416 0.87 0.88 45
S10 40 192 1 192 192 192 0.00% 0.00% 0.00% 515 0.69 0.74 506 0.88 0.89 1
Average: 145 145 145 145 0.00% 0.00% 0.00% 368 0.74 0.77 331 0.81 0.83
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Fig. 2. Comparison between our approach and other state-of-the-art approaches for the deterministic TCARP.

solution provided by our simheuristic approach. The next two columns
(Flrel[9] and F2rel[10]) show their associated reliabilities. Finally,
the last column reports the computational time to reach the OBD-S-
S solution. Regarding tgl instances, despite they were not solved in De
Armas et al. (2019), we have applied their algorithm and code to obtain
and report their results.

6. Analysis of results

The results show that our approach provides high-quality solutions
for the deterministic TCARP. Fig. 2 depicts an overview of Tables 2 to 5
about the performance of our algorithm in a deterministic scenario.
In these box-plots, the vertical axis represents the gap obtained with
respect to the lower bounds (LB) reported in the literature. Notice that
our algorithm reaches the BKS for the tcarp data set, and outperform
the solutions provided by De Armas et al. (2019) for the other three
data sets. In average, we obtain a gap about 1.82%, with a maximum
average gap of 4.04% for the tegl data set. These results highlight the
capabilities of our algorithm.

Regarding the stochastic scenario — which represents the main
contribution of this paper, results show that the solutions provided by
our approach for the stochastic TCARP (OBD-S-S) clearly outperform
the solutions for the deterministic TCARP when these are simulated
(OBD-S-D). In other words, near-optimal solutions for the deterministic
version of the problem might be sub-optimal solutions for the stochastic
version. Notice that the OBD-S-S also outperforms the OBD-S-D in terms
of reliability. Hence the importance of integrating simulation methods
during the searching process when dealing with stochastic optimization
problems. Notice also that the OBS-D value can be seen as a reference
lower bound value in a scenario with perfect information - i.e., without
uncertainty — for the expected cost under stochastic conditions. Simi-
larly, while (OBD-S-D) can be seen as an upper bound for the expected

cost. For the different data sets, Fig. 3 shows the percentage gap of the
OBS-S-S solutions, with respect the best deterministic solution (OBS-D),
using different variance levels (¢ = 0.10, 1, 10).

All in all, the results confirm that not accounting for stochasticity
during the search process may have a significant impact on the quality
of the final solution. For instance, the direct application of determinis-
tic solutions provide a slightly lower cost in ideal situations without
uncertainty, but will cause a much higher cost in a scenario under
uncertainty — which will be increased as uncertainty grows.

7. Adding loading-based capacity constraints

Despite the main goal of this paper is to analyze the stochastic
TCARP, our simheuristic approach can be also generalized to the case
with both random time-based (Q) constraints and vehicle-loading con-
straints. The latter should not be exceeded by the sum of random
demands, L,, associated with each edge e in a route r. Notice that the
extension of the algorithm to cover this general case is quite straight-
forward: we just consider additional random variables and impose a
new rule during the route-merging process, so that routes can only
be merged if no time or capacity constraints are violated. We provide
an example using one of the tcarp instances. As with the time-based
capacity, we have assumed that the random demand associated with an
edge e follows a Log-Normal probability distribution, with Var[L,] =
c -1, —as before, ¢ > 0 is a design parameter.

Table 6 shows the obtained results for the S2 fcarp instance in a
scenario with a medium level of uncertainty (¢ = 1). As shown in the
first and second columns of the table, we have assumed a maximum
time capacity of O = 60, whilst the loading capacity per vehicle, L,
varies between 40 and 10. The first row of the table shows the results
obtained when only the time capacity is considered. The remaining
rows offer the best-found solutions for a specific value of loading
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Table 3

Computational results for the tegl data set.
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Inst. Q Deterministic TCARP Gaps (%) Stochastic TCARP
OBS-D OBS-D, (s) De Armas Bartolini (2013) [1-2] [1-3] [1-4] OBS-D-S F1 Rel. F2 Rel. OBS-S-S F1 Rel. F2 Rel. OBS-S-S, (s)
[1] (2018) [2] LB [3] UB [4] [5] [6] [7] [8] [9] [10]
tegl-el-A 360 1184 29 1367 1162 1178 —-13.39% 1.89% 0.51% 1695 0.77 0.85 1225 0.99 0.99 40
tegl-el-C 240 1589 42 1655 1452 1461 —-3.99% 9.44% 8.76% 2296 0.71 0.76 1797 0.93 0.95 50
tegl-e2-A 360 2023 27 2023 1902 1921 0.00% 6.36% 5.31% 2796 0.69 0.73 2651 0.71 0.75 39
tegl-e2-C 240 2438 57 2481 2323 2388 -1.73% 4.95% 2.09% 3839 0.63 0.69 3627 0.68 0.74 78
tegl-e3-A 360 2425 36 2439 2373 2373 —-0.57% 2.19% 2.19% 3509 0.63 0.67 3434 0.82 0.91 41
tegl-e3-C 240 3011 13 3019 2925 3000 —-0.26% 2.94% 0.37% 4752 0.64 0.70 4564 0.65 0.71 29
tegl-e4-A 360 2686 24 2686 2658 2690 0.00% 1.05% -0.15% 3876 0.65 0.69 3686 0.71 0.75 52
tegl-e4-C 240 3270 10 3270 3248 3351 0.00% 0.68% —2.42% 5215 0.60 0.67 5066 0.62 0.69 26
tegl-s1-A 360 1760 43 2225 1658 1721 —-20.90% 6.15% 2.27% 2387 0.61 0.64 2197 0.78 0.80 63
tegl-s1-C 240 2578 22 3094 2479 2577 —-16.68% 3.99% 0.04% 3506 0.63 0.69 2984 0.87 0.95 56
tegl-s2-A 360 4023 47 4114 3846 3926 —-2.21% 4.60% 2.47% 5166 0.69 0.72 4358 0.83 0.92 82
tegl-s2-C 240 5587 67 5605 5309 5413 —-0.32% 5.24% 3.21% 7957 0.63 0.68 7900 0.64 0.69 92
tegl-s3-A 360 4436 23 4436 4213 4303 0.00% 5.29% 3.09% 6052 0.65 0.69 6067 0.65 0.68 35
tegl-s3-C 240 6105 50 6122 5801 5973 —0.28% 5.24% 2.21% 8879 0.61 0.66 8644 0.63 0.80 58
tegl-s4-A 360 5202 15 5202 5080 5190 0.00% 2.40% 0.23% 7435 0.62 0.66 7349 0.63 0.79 58
tegl-S4-C 240 7256 58 7282 7098 7317 —-0.36% 2.23% -0.83% 10860 0.60 0.65 10767 0.60 0.82 19
Average: 3473 35 3564 3345 3424 -3.79% 4.04% 1.83% 5014 0.65 0.70 4770 0.73 0.81 51
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Fig. 3. Gaps (in %) comparing the OBS-S-S solution with different level of variance w.r.t the “ideal” (uncertainty free) OBS-D solution.

capacity. As can be observed, for a loading capacity between 40 and
30, the deterministic cost of the solutions and the number of routes
do not vary with respect to the solution in which no loading capacity
was considered. This is due to the fact that loading capacities are not
violated for any route in the deterministic scenario. Regarding the
expected cost, columns OBS-D-S and OBS-S-S show that, for L = 30,
it increases with respect to the previous executions. This is due to
the existence of route failures associated with the loading capacity. As
the value of L decreases, the number of routes increases (due to the
smaller loading capacity of each vehicle). As a consequence, both the
deterministic and the expected costs increase as well.

Figs. 4 and 5 depict, respectively, the best-found solutions when the
loading capacity is not considered and when it is established to L = 20.

While in the former case, we employ just 3 routes, in the latter we
employ a total of 5 routes —i.e., more routes, although smaller than the
previous ones, are necessary to cover all demands.

8. Conclusions and future work

In the traditional Capacitated Arc Routing Problem, the main con-
straint is usually given by the loading capacity of the vehicles. How-
ever, there are many real-life applications in which the main constraint
is not the loading capacity of the vehicle but the maximum time
available to complete each route. This is the challenge considered in
the Time Capacitated Arc Routing Problem (TCARP). Some examples of
these applications can be found in the use of unmanned aerial vehicles
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Table 4
Computational results for the val data set (CARPDD).
Inst. Q Deterministic TCARP Gaps (%) Stochastic TCARP
OBS-D OBSD, (s) DeArmas  Bartolini [1-2] [1-3] OBS-D-S(3) Fl1Rel. F2Rel. OBS-S-S FlRel. F2Rel. OBS-S-S, (s)
[1] (2018) [2]  (2013) LB [3] [4] [5] [6] [7] [8] [91]
Val6 918 221 1 221 221 0.00%  0.00% 221 1.00 1.00 221 1.00 1.00 1
Val6 648 223 1 223 221 0.00%  0.90% 248 0.97 0.97 230 0.99 0.99 1
Val6 270 239 17 239 239 0.00%  0.00% 820 0.66 0.70 396 0.92 0.93 21
Val7 465 279 1 279 279 0.00%  0.00% 349 0.96 0.96 347 0.99 0.99 2
Val7 349 283 2 283 283 0.00%  0.00% 686 0.78 0.86 367 0.98 0.99 16
Val7 151 352 3 352 347 0.00% 1.44% 1081 0.80 0.85 678 0.99 0.99 1
Val8 579 386 11 386 386 0.00%  0.00% 628 0.81 0.86 409 0.99 0.99 9
Val8 434 386 29 386 386 0.00%  0.00% 786 0.74 0.82 601 0.94 1.00 16
Val8 188 519 15 519 503 0.00% 3.18% 1525 0.68 0.79 1072 0.99 0.99 16
Val9 511 324 27 324 323 0.00% 0.31% 492 0.82 0.82 545 0.99 0.99 49
Val9 380 327 9 326 326 0.31% 0.31% 438 0.78 0.82 390 0.94 0.96 23
Val9 304 334 17 338 332 -1.18%  0.60% 841 0.75 0.81 529 0.91 0.93 26
Val9 152 445 25 445 422 0.00%  5.45% 1440 0.74 0.82 1044 0.99 0.99 21
Vall0 480 438 19 438 436 0.00%  0.46% 709 0.84 0.87 603 0.90 0.91 42
Vall0 365 449 25 449 446 0.00%  0.67% 836 0.76 0.80 738 0.86 0.88 37
Vall0 288 465 15 465 459 0.00% 1.31% 680 0.72 0.79 590 0.86 0.91 36
Vall0 144 844 30 844 772 0.00% 9.33% 1692 0.67 0.79 2191 0.73 0.83 36
Average: 383 15 383 375 -0.05% 1.41% 828 0.79 0.84 644 0.94 0.96 21

or drones (Luo et al., 2019), as well as in the utilization of road electric
vehicles in smart cities (Fernandez et al., 2019). In effect, both types
of vehicles make use of electric batteries, which in practice limit their
driving range capabilities. A similar situation occurs when considering
the maximum number of hours that a driver can operate per day,
which is limited by both legal and physical thresholds. Despite all
these applications, the TCARP has been rarely studied in the scientific
literature. Even more, the few articles that analyze the TCARP consider
just its deterministic version. This paper goes one step beyond the state
of the art by considering the stochastic version of the problem -i.e., a
more realistic scenario in which travel and servicing times are modeled
as random variables following a given probability distribution. The
analysis of such stochastic scenarios is as challenging as critical, since

aerial drones or road electric vehicles running out of battery might
constitute a serious issue in terms of traffic safety and security.

In order to deal with the aforementioned challenge, this paper
introduces a simheuristic algorithm, which combines a metaheuristic
component with a simulation one. The metaheuristic component relies
on a constructive heuristic, which is an adapted and extended version
of a well-tested heuristic for the traditional CARP. The metaheuristic
is also based in a well-tested strategic oscillation framework. The
simulation component allows not only to test the promising solutions
provided by the metaheuristic module, but it also provides feedback
that guides the search for more ‘reliable’ routing plans —i.e., plans that
can be executed, without failures, in a scenario under uncertainty.

A complete set of experiments is provided. These show that our
approach is highly efficient in solving the deterministic version of
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Fig. 5. Best-found solution for Q = 60 and L = 20.
Table 5
Computational results for the rural data set.
Inst. Q Deterministic TCARP Gaps (%) Stochastic TCARP
OBS-D OBS-D, (s) De Armas Keenan,(2005) [1-2] [1-3] OBS-D-S  F1 Rel. F2 Rel. OBS-S-S F1 Rel. F2 Rel. OBS-S-S, (s)
[11 (2018) [2] LB [3] [4] [51 [6] [71 [8] [9]
Rurall 420 1195 51 1195 1195 0.00%  0.00% 1453 0.71 0.71 1353 0.81 0.81 44
Rurall 400 1195 31 1195 1195 0.00%  0.00% 1330 0.89 0.89 1278 0.94 0.94 132
Rurall 360 1195 142 1193 1193 0.17% 0.17% 1524 0.72 0.72 1307 0.86 0.86 165
Rural2 420 1831 128 1844 1825 -0.70%  0.33% 2218 0.71 0.72 2214 0.80 0.81 245
Rural2 400 1838 188 1840 1821 -0.11% 0.93% 2231 0.74 0.74 2219 0.80 0.81 380
Rural2 360 1845 412 1836 1821 0.49% 1.32% 2273 0.75 0.75 2211 0.76 0.76 593
Rural3 420 2198 321 2218 2168 —0.90% 1.38% 2562 0.74 0.74 2532 0.75 0.75 353
Rural3 400 2191 1334 2193 2156 —0.09% 1.62% 2621 0.69 0.69 2568 0.71 0.71 1293
Rural3 360 2182 653 2182 2142 0.00%  3.45% 2755 0.69 0.70 2629 0.74 0.74 728
Rural4 420 2468 1708 2518 2373 -1.99%  4.00% 2821 0.66 0.67 2629 0.74 0.74 1995
Rural4 400 2487 1954 2489 2345 -0.08%  6.06% 2805 0.72 0.73 2792 0.69 0.71 1838
Rural4 360 2498 2738 2450 2337 1.96%  6.89% 2928 0.70 0.72 2903 0.65 0.66 1912
Rural5 420 1658 404 1674 1647 —0.96% 0.67% 1860 0.85 0.85 1726 0.95 0.95 596
Rural5 400 1664 806 1655 1644 0.54% 1.22% 1814 0.84 0.84 1757 0.94 0.94 936
Rural5 360 1656 968 1666 1636 —0.60% 1.22% 1853 0.80 0.80 1892 0.94 0.94 1281
Average: 1876 789 1877 1833 -0.15% 1.95% 2203 0.75 0.75 2125 0.81 0.81 833
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Table 6

Computers and Operations Research 133 (2021) 105377

Computational results for the S2 tcarp instance considering both time and volume capacities.

Instt Q L  Deterministic TCARP Stochastic TCARP
OBS-D Num. Avg. Route OBS-D, OBS-D-S F1 Rel. F2 Rel. OBS-S-S Avg. Route F1 Rel. F2 Rel. OBS-S,
[11 Routes [2] Cost [3] (s) [4] [5] [6] [7] Cost [8] [9] [10] (s)

S1 60 - 156 3 52.00 4 195.00 0.84 0.86 169.00 56.33 0.94 0.95 5

S1 60 40 156 3 52.00 4 195.00 0.84 0.86 169.00 56.33 0.94 0.95 5

S1 60 30 156 3 52.00 4 257.68  0.57 0.57 239.01  79.67 0.75 0.74 8

S1 60 20 166 5 33.20 12 329.06 0.64 0.64 268.29 53.66 0.72 0.71 32

S1 60 15 178 6 29.67 11 386.09 0.57 0.56 335.69 55.78 0.73 0.73 14

S1 60 10 205 9 22.78 9 505.41  0.58 0.57 456.88  75.98 0.68 0.68 18

the TCARP and, which is even more important, is able to effectively
deal with the stochastic version. Our experiments also show an impor-
tant conclusion, i.e.: that optimal (or near-optimal) routing plans for
deterministic scenarios will easily become sub-optimal routing plans
when executed in more realistic stochastic scenarios. This enhances the
relevance of simulation—optimization approaches as the one presented
here. Finally, we also show that our proposed simheuristic could be
easily extended to include both time-based as well as volume-based
capacity constraints.

As future work, the following lines are being considered: (i) to
extend our approach so it considers the existence of correlations among
travel and servicing times —e.g., when it rains, all travel times tend to be
larger than expected under better weather conditions; (ii) to consider
dynamic scenarios in which inputs, such as travel and servicing times
or even required edges, might change over time, meaning that we have
to face an optimization problem with non-static inputs (Arnau et al.,
2018); and (iii) to consider TCARP versions, related to aerial drones and
self-driving vehicles, which might need to be solved in real time and
re-optimized every few minutes, thus requiring an ‘agile’ optimization
approach (Martins et al., 2020).
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