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Abstract Digitization of large parts with tight geometric tolerances is a time-
consuming process that requires a detailed scan of the outer surface and the ac-
quisition and processing of massive data. In this work, we propose a methodology
for fast digitization using a partial scan in which large regions remain unmea-
sured. Our approach capitalizes on a database of fully scanned parts from which
we extract a low-dimensional description of the shape variability using Statistical
Shape Analysis. This low-dimensional description allows an accurate representa-
tion of any sample in the database with few independent parameters. Therefore,
we propose a reconstruction algorithm that takes as input an incomplete mea-
surement (faster than a complete digitization), identifies the statistical shape pa-
rameters and outputs a full scan reconstruction. We showcase an application to
the digitization of large aeronautical fuselage panels. A statistical shape model is
constructed from a database of 793 shapes that were completely digitized, with
a point cloud of about 16 million points for each shape. Tests carried out at the
manufacturing facility showed an overall reduction in the digitization time by 80%
(using a partial digitization of 3 million points per shape) while keeping a high
accuracy (reconstruction precision of 0.1mm) on the reconstructed surface.
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1 Introduction

The so-called fourth industrial revolution, Industry 4.0, is undergoing a fast de-
velopment thanks to the advances in Industrial Internet of Things and artificial
intelligence, [1]. As a typical application of Industry 4.0, smart industrial systems
includes a wide range of sensors and processors all over the manufacturing process
[2] to monitor equipment and timely discover faults. In this framework artificial
intelligence algorithms are used for automated quality control and surface defect
inspection tasks in the manufacturing industry [3–7]. In such applications, digi-
tization plays an increasingly important role, as it is essential to create accurate
digital representations of the as-manufactured part that could then be sent to soft-
ware for quality assessment or defect detection [8]. In many industrial applications
such as the one showcased in this paper, digitization takes place at an intermedi-
ate stage of the manufacturing chain and not necessarily on the finished product.
Interestingly, the objective of intermediate digitization would not be to make a
decision on whether to accept, reject or rework a part, but rather to adapt the
subsequent manufacturing operations to the specifics of the part being produced
in an automated way. Digitization, in combination with machine learning and arti-
ficial intelligence algorithms, has already demonstrated its potential to bring new
levels of accuracy and productivity to the industry [6, 9].

Despite the benefits it brings in terms of shape identification, we must include
the digitization time in the total manufacturing workflow time, which includes the
acquisition time plus the data processing time. Sometimes the digitization time
may be negligible compared to the overall processing cycle. However, in many in-
dustrial cases digitization is concerned with large parts that have to meet tight
geometric tolerances, requiring a detailed scan of the outer surface and the acqui-
sition and processing of massive data [10, 11]. In this sense, the introduction of a
complete digitization in the manufacturing process may have a negative effect in
the total production time, which is in conflict with the desired requirements for
the introduction of artificial intelligence in the industry [12].

In this work, we consider as an application the mechanical machining of large
aeronautical fuselage panels which are about six meters long and two meters wide,
with small thickness in the order of few millimeters and double curvature, see
Figure 1. These panels undergo a milling process to reduce the thickness locally
in order to optimize the overall weight-resistance ratio of the panel. Because of
their pronounced slenderness, the milling process requires sophisticated technology,
including special supports and the use of a mirror milling system [13], with a
milling cutter on the machined face and a counter-bearing on the opposite side.

Thickness tolerances are in the order of 0.1 millimeters. Significant geometric
variability is observed from one panel to another, even if they belong to the same
batch. Presumably, variability originates from, at least, two sources: i) previous
manufacturing stages, including a metal forming process that precedes milling;
and ii) the positioning of the part on the support system, as the part is likely to
deform significantly under its own weight. As a consequence, the milling toolpath
cannot be designed according to a CAD model as it would not be an accurate
representation of the real part. Instead, panels must be fully digitized before ma-
chining in order to adapt the milling path to their actual geometry. Both the
acquisition time and data processing (generation of CAD files and adaptation of
the machining path) have a negative impact on productivity.
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In light of this practical case, it is reasonable to assume that there are similar
issues in other manufacturing processes and even beyond the industrial sector.
For example, the interested reader can refer to the references below related to the
medical imaging community. Leaving aside possible technological improvements
regarding the data acquisition procedure (see e.g. [14–17] in this regard), it is
straightforward that a reduced sampling of the surface leads to a shorter scanning
time, at the cost of having an incomplete measurement of the panel. The challenge
we face is that of designing a digitization methodology that takes as input an
incomplete data acquisition of a surface in a reduced time, and outputs a complete
reconstruction of the surface without negatively impacting accuracy.

(a)

(b)

Fig. 1: Application case studied: aircraft panel manufacturing. (a) Raw panel after
forming. Complete digitization of the component is required to adapt machining
trajectories to the real shape. (b) Final panel after milling.

The research field of surface reconstruction from digitally scanned shapes has
achieved considerable progress in the last decades, with contributions mainly found
in applications involving computer vision, e.g. [18–21] and especially, the medical
imaging and bioengineering community, see [22–27] to cite only a few. All meth-
ods rely on some assumptions, or priors, that are imposed either on the scanned
point cloud or on the scanned surface. A complete review of such methods and
different priors can be found in [28]. One popular approach is that of Statistical
Shape Analysis, which capitalizes on previously digitized samples of the same class
(considered as training data) to build a statistical shape model (SSM). The SSM is
then able to represent any shape in the object class by a mean shape and the vari-
ability observed in the training set. Among the different possibilities to build an
SSM, we find Point Distribution Models [29], in which the shapes are represented
as a set of points or landmarks distributed over the surface. Within this approach,
the creation of an SSM is achieved in three main steps: i) registration, that is, the
identification of the landmark points in each training shape; ii) computation of
the mean shape; and iii) extraction of a low-dimensional description of the shape
variability using Principal Component Analysis (PCA) [30–32].
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Previous works in surface reconstruction from incomplete data can be found in
[21], which uses a database of shapes for 2D contour completion and in [19] for 3D
objects surface completion. In [33] high-quality 3D models are reconstructed from
low-quality data by assembling templates from an object database. These works,
however, assume that the incomplete regions are small, thus the objective is to fill
in the gaps that may appear in the acquired data, whereas the aim of this work is
to identify a particular shape by digitizing only a portion of its surface. The work in
[24] presents a method for surface reconstruction from sparse point clouds, where
the input consists of a reduced number of points which are registered onto the
template of the SSM using a Gaussian mixture model approach. The interested
reader is also referred to this last reference for an in-depth review of the state
of the art in this topic. The idea of building object reconstructions from reduced
samplings is already present in [24], however, the digitization outputs in high
accuracy manufacturing, which is the main scope of this work, usually consist of
clouds with a large amount of data points. Indeed, even with a partial scan of the
surface, the number of scanned points is in the order of millions. Another relevant
difference is that the existing literature on surface reconstruction deals with closed
surfaces of 3D solid objects [27], whereas our interest relies on curved shapes that
can be treated as 2D surfaces in a 3-dimensional space.

In this work we propose a methodology for fast 3D surface digitization that
works as follows: first, an SSM is computed from a database of full samples, using
prior information of the surface’s boundary. Then each new sample is partially
digitized and reconstructed by fitting the SSM to the partial measure solving a
non-linear minimization problem. After the new surface is identified in the SSM,
the proposed methodology outputs a reconstruction point cloud that resembles
that of a complete surface scan. With this choice, the introduction of our proposed
methodology in the manufacturing workflow is straightforward, as all the following
data processing phases in the manufacturing line remain unchanged, (see Figure
2).

Forming Complete scan Point
cloud

Data
postpro.

Milling

Partial scan &
shape reconst.

Point
Cloud∗

Fig. 2: Scheme of the original manufacturing workflow, in blue, where a complete
digitization of the surface is performed before machining due to high quality re-
quirements. The proposed modification, consisting of a partial digitization and
a shape reconstruction algorithm, is highlighted in green. In order to be as less
intrusive as possible in the manufacturing workflow, the output of the proposed
fast digitization methodology tries to resemble the point cloud of a complete scan
acquisition.
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The article is structured as follows: in section 2 we introduce the data used in
this work together with the relevant features of the data acquisition. The details
of the SSM creation and reconstruction algorithm are presented in section 3, to-
gether with error and validation metrics definitions. Finally, the numerical results
concerning the application case are shown in section 4 and section 5 contains the
conclusions.

2 Data

All data used in this work has been provided by Stelia Aerospace (St. Nazaire,
France). In this section, we present the data acquisition process and then the
different datasets used in this work, together with its features. We denote a point
in the 3D space as x = {x, y, z} ∈ R3, and a 3D cloud of points corresponding to
a panel shape is represented with capital letters, S = {x1, ...,xn}T ∈ Rn×3. The
Euclidean distance is denoted by ‖ · ‖.

2.1 Data acquisition method and data format

The data acquisition process is as follows: a laser beam travels along a predefined
path that sweeps the panel, storing 3D coordinates of points on the panel’s surface.
The beam is 7.5 cm wide, it reads 400-450 points at a time (acquisition step), and
the device performs acquisition steps at a constant frequency as it travels along
the measured surface. A complete scan of a panel requires a scanning path around
180 m long, yielding a point cloud of approximately 16 million points. This data
is then stored in a file that contains the coordinates of the entire point cloud with
a numerical precision of 0.001mm, which will be the lower bound when measuring
the reconstruction error in section 4. All points in the sample are considered for
the statistical shape model construction, and the proposed reconstruction algo-
rithm will provide surface reconstructions with the same point density as that of
a completely scanned panel. To help the shape’s location in the 3D space, the
component in consideration contains two small holes that are drilled for aligning
purposes during the different manufacturing processes undergoing, serving as ref-
erence marks. The coordinates of both marks are obtained during the scanning
phase, and they are denoted as Φ12 and Φ14 (see Figure 3a).

2.2 Datasets

Three different datasets have been considered along with this work, and are refer-
enced as complete scan, partial sampling, and verification datasets. The features
of each one are the following:

Complete scan dataset. This is the main database, consisting of 746 panels that were
completely scanned at Stelia Aerospace’s workshop between 2014 and 2019 from
7 different laser data acquisition sets working in parallel. The data is considered
to be homogeneous, this is, no distinctions are made between each acquisition set.
A thorough review of the raw database was performed to dismiss corrupted data.
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Overall, there were missing files in 53 samples (either the point cloud file or any
of the reference markers’ locations), and 138 samples were found to have flaws in
the acquired data (either point cloud with empty regions or incoherent measures).
All these defective samples were dismissed, having a final training set consisting
of ns = 555 panels.

Partial sampling dataset. To test the reconstruction algorithm, a partial sample
dataset is built from the complete scan database. The partial scan trajectory
(Figure 3b) has been arbitrarily chosen, partially covering all the panel’s surface
with a trajectory similar to a triangular wave. This has been selected to fulfill the
technological constraints of the laser data acquisition devices at Stelia Aerospace,
so that an in-situ validation can be performed. This partial scan path is near 35 m
long and provides an incomplete point cloud of 3.5 million points, this is, roughly
a 20% of the data contained in a complete scan.

Verification dataset. The last set consists of 9 new panels, different from those in
the complete scan dataset, which are used in the verification of the methodology.
These samples have been digitized twice, using both the complete and partial
scan strategies. As the data comes from the same sample, the reference landmarks
Φ12,Φ14 should have the same coordinates in the partial and complete files of the
same sample. However, we have noticed differences around 0.1 mm in these values
between the partial and complete data. This is probably because the scanning
machine resets its home position between scans, and that process may introduce a
small offset in the local reference system. Despite those differences being small with
respect to the total size of the component, they will be relevant when evaluating
the reconstruction, which is meant to be within the same order of magnitude.

3 Methodology

The method in this work is divided into two stages: first, an SSM of the panel is
built in an offline stage, and then the online stage generates a reconstruction from
an incomplete panel measure using the shape parametrization.

1. Offline stage: generating the SSM. The SSM is built in the same fashion as the
Point Distribution Models (PDM), where there are two distinguished steps:
alignment of the training shapes and dimensionality reduction.
(a) Alignment phase. A point cloud is arbitrarily chosen to serve as template

shape (S0). Then, the alignment of each sample in the training set (target

shape) is performed in two steps: a rigid registration of the target onto
the template followed by a non-rigid registration of the template onto the
target. The output of this step is the template’s deformation field such that
it fits each target shape.

(b) A dimensionality reduction step, using techniques such as the Principal
Component Analysis (PCA) [31], to extract a low-dimensional description
of the shape variability. Specifically, the principal modes of deformation of
the template are extracted from the registered data. It is worth mentioning
that the PCA returns an ordered set of modes according to how much
each of them contributes to explain the input data. Therefore, the user
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(a)

(b)

Fig. 3: (a) Sample shape of the studied geometry with landmark locations and (b)
partial scan trajectory in blue. Dimensions in millimeters.

can establish a trade-off between accuracy and model size, expressed by
the number of modes considered. By selecting the set of modes that best
describe variability, the PCA provides a statistical description of any shape
with a restricted number of modes. New shapes x̃ can be written as the
sum of the mean component x̄ plus a linear combination of the selected
principal modes φi and its shape parameters αi [31]:

x̃ = x̄+
N∑
i=1

φiαi (1)

2. Online stage: panel reconstruction. At the online stage, the input data is an
incomplete scan of a geometry outside the SSM’s samples, thus the online
phase is divided into two steps: shape parameter identification and geometry
reconstruction.
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(a) The shape parameters in Eq. (1) corresponding to the new geometry are
identified through an iterative minimization problem. As a result, we obtain
a deformation field of S0 that fits the shape of the partially scanned sample.

(b) After obtaining the shape parameters that best fit the incomplete data, the
SSM is particularized, with those parameters, at a fine cloud of arbitrarily
distributed points to create a virtual reconstruction of the sample with the
same format of a completely scanned panel. This is called the oversampling

step.

The offline and online phases are now detailed in sections 3.1 and 3.2 respec-
tively.

3.1 Offline training

The purpose of this stage is to build a Statistical Shape Model from a set of pre-
viously scanned complete shapes, which is our training set. Following the PDM
building procedure, we first align all shapes in the training set to an arbitrarily
chosen template shape. We divide this alignment into rigid and non-rigid regis-
tration steps. Then the final SSM is obtained after a dimensionality reduction
step.

3.1.1 Rigid registration

Each of the 7 different scanning machines used to acquire all the samples in the
database has its own coordinate system, which introduces considerable differences
in the scanned coordinates of each panel. The rigid registration step aims to min-
imize rotations and displacements between samples so that the differences are
mainly due to shape variations. A simple rigid registration can be performed us-
ing the reference marks Φ12, Φ14, the samples are aligned so that Φ14 is located at
the origin of the new reference system, and Φ12 is located on the x-axis. Let xs be
the coordinate of a point belonging to a given sample, then the rigid transformation
is written as:

x = RβRθ (xs −Φ14) (2)

where θ and β are the angles between the segment Φ14 − Φ12 and the XY , XZ
planes respectively, with their corresponding rotation matrices Rθ and Rβ .

3.1.2 Template shape

The construction of the SSM requires an arbitrarily chosen template shape, de-
noted as S0. The geometry under consideration is a nearly rectangular-shaped shell
which, despite having a curvature, is mainly aligned with the reference coordinate
system, z being the out-of-plane direction. Considering this topology we define the
template as a flat surface on the xy plane. After performing the rigid registration
on all samples of the training set, we define a rectangular bounding box that covers
all {x, y} coordinates (see Fig. 4). The bounding box is then meshed with a regular
structured grid of 1000 by 250 nodes, thus S0 ∈ R2×nS0 , with nS0

= 250000.
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3.1.3 Non-rigid registration

From now on and to simplify the notation we will use the following decomposition
for any point in the space: x ≡ {p, z}, with p representing the 2D coordinates
{x, y}. Let Ti be the i-th sample in the complete scan dataset. The objective in
this step is the creation of a mapping ai : R2 7→ R3 such that ai(S0) fits the target
shape Ti. Following again the in-plane / out-of-plane approach we divide the non-
rigid registration into two phases: first we obtain a mapping f1 : R2 7→ R2 that fits
the in-plane coordinates pi, then we compute a scalar mapping f2 : R2 7→ R such
that f2 ◦f1 fits zi. The complete non-rigid registration mapping can be written as:

ai = {f1 (S0) , f2 ◦ f1 (S0)} (3)

XY registration The first step of the non-rigid registration is performed using the
thin plate spline model [34, 35]. This is an efficient tool commonly used for shape
matching tasks in the framework of object recognition methods [18, 27, 36]. In its
2D version, the TPS defines a function f(x, y) that minimizes the bending energy
[34, 35]:

If =

∫ ∫
R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy (4)

subject to f(pi) = p′i, where i = 1, ..., N are some previously defined correspon-
dences between the target shape pi and its transformations p′i, also known as land-
mark points. There are different options to establish those landmarks when there is
no prior knowledge of the target shape available, such as closest point metrics [27]
or the shape context [18], which establish as landmarks a set of points arbitrarily
distributed at the shape’s boundary. In both works, the correspondences are set in
an iterative process that alternates between setting the landmarks and solving the
TPS problem (4) until convergence is reached. The landmarks can also be directly
specified if previous knowledge of the shapes being matched is available, with the
benefit of avoiding the iterative process. In the application case at hand, the ref-
erence marks {Φ12,Φ14} provide very little information of the shape to perform
a non-rigid registration with high accuracy in terms of shape match. However, as
the panel’s shape is simple (the projection on the x, y plane is a slightly deformed
rectangle), we can set the landmarks to solve the TPS problem as follows. The
boundary of the panel is the convex hull of all the plane coordinates pT ∈ T (Fig-
ure 4a). The first landmarks are the corners of the square-shaped target Ti, which
are found using a corner detection algorithm and matched to the correspondent
corners of the template S0. Then we can re-parametrize the target’s boundary so
that it has the same amount of points as that of the template’s boundary. This
provides enough landmarks to solve the TPS problem (4) and obtain f1(S0). An
example of this mapping is shown in Figure 4, where the template’s mesh has been
coarsened for the sake of clarity.

Z registration To present the second phase in the non-rigid registration step we
describe the computation of f2 ◦ f1 at a given node n ∈ S0 with coordinates
p′n = f1 (pn), which is illustrated in Figure 5a. First we identify all points P =
{p ∈ T : ‖p − p′n‖ < r}, within the searching radius r = h

√
2/2, and h being a
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(a) (b)

Fig. 4: Non-rigid registration: XY mapping. (a) Template mesh S0 and target
sample Ti with plane coordinates pi. (b) Mapping f1 (S0) obtained with the TPS.
The correspondences between boundary points (landmarks) are highlighted.

representative element size of S0 (in this application, h = 6.3 mm). The coordinate
zn is then computed as a weighted average of all zi ∈ P and using a Gaussian filter
[37]:

zn =

∑
i∈p ziωi∑
i∈p ωi

; ωi = e−
‖pi−p′n‖

2

2σ2 (5)

where we have considered a standard deviation σ = r/2. The data acquisition
procedure presented some specific features that influenced the quality of the z-
coordinate registration near the panel boundaries. On one hand, the samples an-
alyzed in this work contained a much higher point density near the panel bound-
aries (as a consequence of the scanning device travelling at a slower speed near
the boundaries while keeping the acquisition frequency constant), and on the other
hand, the scan device’s trajectory produced a saw-toothed pattern of the boundary
instead of the smooth curve of the actual panel, as shown in the detail of Figure
5b. To address these issues we implemented the following features concerning the
registration near the boundaries:

1. The Gaussian filter’s standard deviation is reduced to σ = r/8 for nodes along
the boundary of S0, and σ = r/6 for nodes at the two following inner lay-
ers. With this measure, we give more importance to the points located near
p′n without reducing the number of considered points, since there is a higher
number of points in the boundary.

2. The nodes at the boundary of S0 laying outside the saw-toothed pattern don’t
have any point within a distance r. The non-rigid registration at these nodes
is computed employing a least squares fitting of the z values obtained at the
adjacent nodes.

3.1.4 Statistical Shape model. Dimensionality reduction.

When all targets are registered into S0 we build the matrix A = [a1, ...,ans ], and
compute the average displacement field x̄. Then the SVD is applied to matrix Ã,
which is obtained by subtracting x̄ from A. Finally, the shape parametrization x̃
of the shape generation model is written as [27, 31]:
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(a)

(b)

Fig. 5: Non-rigid registration: Z mapping. (a) Weighted average at a node with
coordinates p′n. (b) Border features: radii of the weighted average area (orange),
and nodes without points (red).

x̃ = x̄+Φα (6)

where we have used compact notation, α ∈ Rm being the m shape parameters and
Φ the truncated basis with [φ1, ...,φm] modes. The SSM is defined at the discrete
set of points in the template’s mesh S0. However, the online reconstruction stage,
which is presented in the following section, requires a continuous definition of the
SSM. This can be easily obtained by including the traditional FE interpolation in
Equation (6), with linear shape functions. Thus, the SSM at a given point p inside
the template shape S0 with interpolation coordinates ξp ∈ R2 is computed as:

ϕp(α) := B (ξp) x̄+B (ξp)Φα (7)

where B is the linear interpolation operator.
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3.2 Online reconstruction

Let T ′ be a new sample outside the SSM original data from which only a partial
scan with coordinates Xt ∈ T ′ is available. The goal is to generate a reconstruction
of the panel from the incomplete data acquired using the SSM from the offline
training. This is achieved in two steps: identification of the shape parameters and
oversampling.

3.2.1 Shape identification from a partial scan

The location of the reference marks {Φ12,t,Φ14,t} is also available in the new
sample T ′, thus the rigid registration in Eq. (2) is applied to obtain xt. Now we
must identify the shape parameters of T ′ that best fit the partial measures xt. For
this, the following minimization problem is proposed:

min
α∈Rm

[
1

2

∑
t∈T ′

(ϕt(α)− xt)2
]

(8)

Introducing equation (7) in (8), and using the simplified notation Bt = B (ξt),
we can obtain the solution of the minimization problem:

min
α∈Rm

[
1

2

∑
t∈T ′

(Btx̄+BtΦα− xt)2
]

(∑
t∈T ′

ΦTBT
t BtΦ

)
α =

∑
t∈T ′

ΦTBT
t (xt −Btx̄)

(9)

The problem in (8) is non linear, as the interpolation coordinates ξt corre-
sponding to the points xt also depend on the unknowns α. In other words, while
the pt coordinates remain constant the underlying mesh S0 is being modified by
α, so the sample’s points can change their location in the interpolation. For the so-
lution of the problem, we propose a fixed-point procedure presented in Algorithm
1. After setting an initial guess α0 the mapping ϕ(α) is defined, and the inter-
polation coordinates of the sample’s points, ξt, can be directly obtained. Having
the interpolation coordinates equation (9) becomes a linear system of m equations
with m unknowns that can be easily solved, yielding new shape parameters. The
process is repeated until stagnation of the shape parameters.

Algorithm 1 Fixed-point iteration to identify shape parameters
Require: α0 . Arbitrary

i← 1
while ‖αi −αi−1‖ < Tol do

Find the interpolation coordinates ξt
Evaluate Bt

Solve αi . Eq. (9)
end while

We propose two different alternatives to set the initial guess α0:
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1. Assume α0 = 0. This is equivalent to setting the mean value of the reduced
basis, x̄, as the initial guess for the SSM in (6).

2. We also propose a more problem-specific approach. We first obtain the perime-
ter of the partially scanned sample as the convex hull of the pt coordinates.
For these points, we can obtain interpolation coordinates assuming the same
procedure as in the non-rigid registration (section 3.1.3) for the generation of
landmarks. Then the problem in equation (9) can be solved considering only
those points along the boundary to obtain the initial values α0.

3.2.2 Oversampling

Having solved problem (8), the SSM’s parameters αt are identified, and the map-
ping ϕ(αt) is fitted to represent the partially scanned sample T ′. We can create a
new point cloud x′r that resembles that of a complete scanned sample (i.e. with
around 16 million points), as this data is later used in the manufacturing workflow
of the panel. For that purpose, we evaluate and store the interpolation coordinates
ξref of a sample arbitrarily chosen from the database used to generate the SSM
in the offline stage. Then, the SSM is evaluated at the reference coordinates and
the rigid registration transformation in Eq. (2) is reversed:

xr = ϕref (αp)

x′r = RTxr +Φ14

(10)

3.3 Validation and error metrics

The purpose of the validation is twofold. First, to ensure the quality of the SSM
obtained from the complete scan dataset. Second, to verify the reconstruction algo-
rithm from an incomplete sample. Here we present the metrics used for validation,
and the results are shown in section 4.

3.3.1 SSM performance metrics

The quality of the SSM is evaluated with the compactness, generalization, and
specificity metrics introduced in [38]. The compactness is defined as:

C(m) =
m∑
i=1

λi (11)

with λi being the i-th proper value associated with the SVD. This metric represents
the contribution of each additional shape parameter in the reduced model. The
fewer parameters required to properly describe any shape, the more compact the
model is.

The generalization can be seen as the ability of the SSM to represent a shape
out of the training set. This is evaluated using a leave-one-out approach: a sample T
from the complete scan dataset is removed and a new SSM is built using the nT −1
remaining shapes. Then, T is registered to obtain at, and the shape parameters
corresponding to the new SSM can be obtained as follows:
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αt = ΦTm(at − x̄) (12)

where Φm stands for the truncated basis with the corresponding amount of modes
m and x̄ the average field. A reconstruction T ′(m) of sample T is computed using
equation (6) and the estimated shape parameters. Finally, the approximation er-
ror is measured as the average point-wise distance between all ns0 points in the
reconstruction and the sample registration:

ε(T, T ′(m)) =
1

ns0

ns0∑
i=1

‖x̄i +ΦmΦ
T
m(ati − x̄i)− ati‖ (13)

This process is then repeated for each sample in the complete scan dataset,
and the generalization is calculated as a function of the number of modes as in
[38]:

G(m) =
1

nT

nT∑
i=1

ε(Ti, T
′
i (m)) (14)

Finally, the specificity measures the ability of the SSM to generate shapes that
are similar to those in the training set. A random set of N shapes Rs is generated,
with a variable number of modes m. Then, for each shape Si(m) ∈ Rs the distance
to the closest registered sample in the complete dataset Ts is computed as in
equation (13), and the specificity is written as [38]:

S(m) =
1

N

N∑
i=1

min
aj∈Ts

ε(aj , Si(m)) (15)

3.3.2 Reconstruction error metrics

To evaluate the quality of the panel reconstruction algorithm we will consider a
complete scan C and a partial scan P . The reconstruction process will output a
new reconstructed point cloud, R. The complete and partial samples may come
from the complete dataset, with its respective sample in the partial sampling
dataset, or from the complete and partial scans in the verification dataset. As
noted in section the data in the verification dataset presents some differences in
the reference landmarks’ Φ12,Φ14 location, which would introduce an artificial
source of error, since in a real production workflow a sample wouldn’t be scanned
twice. To exclude this error source from the reconstruction error metrics we will
evaluate the reconstruction error after performing the rigid registration step in
section 3.1.1 where all shapes are aligned, thus we will work with the coordinates
xc and xr.

The error between the reconstruction R and the complete scan C can be defined
as the distance between both shapes, which we denote as Dist(C,R). The following
definition for the distance between two surfaces was used in [27, 39] for SSM
validations:

Dist(C,R) =
1

2

[
1

Nc

∑
c∈xc

min
r∈xr

‖c− r‖+
1

Nr

∑
r∈xr

min
c∈xc

‖c− r‖

]
(16)
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where Nc and Nr stand for the number of points at C and R respectively. Although
being a robust, unbiased function, this method has a high computational cost as
the number of points increases. Due to the high density of the point clouds involved
in this application (around 16 million), we propose an alternative definition that
takes advantage again of the geometry’s shape to reduce the computational cost.
First we define ϕs ≡ {ps, zs} as the solution of problem (8) applied to obtain the
reconstruction R. Then an interpolant of the z-coordinates is built using again the
linear interpolation operator B:

LR(p) = Bpzs , LR(ps) = zs (17)

Finally, the distance function between the reconstructed and completely scanned
shapes is defined as:

Dist(C,R) =
1

Nc

∑
c∈xc

|zc − LR(pc)| (18)

Using this distance function and the partial sampling dataset we introduce an
alternative computation of the generalization metric, G∗(m), which considers not
only the SSM but also the reconstruction algorithm’s performance in identifying
shapes that are outside the training dataset. For that, we will use the same leave-

one-out approach, but now the approximation error is computed between each
sample Ci in the complete scan dataset and a reconstruction Ri(m) built from its
corresponding sample in the partial sampling dataset Pi using m modes. Therefore,
the new generalization metric can be written as:

G∗(m) =
1

nT

nT∑
i=1

Dist(Ci, Ri(m)) (19)

where the distance between shapes is calculated using equation (18). With this
measure, we can evaluate the quality of the complete process, which includes the
registration, the model order reduction, and the non-linear reconstruction algo-
rithm.

4 Results

The performance of the proposed method has been analysed in three different
ways:

1. Via compactness, which measures the effect of truncation in the ability of the
model to reproduce the training dataset.

2. Via generalization, which measures the ability of the model to represent unseen
data using a leave-one-out procedure.

3. Via in-situ verification tests, which demonstrate the ability of the methodology
to perform in a relevant environment, as the resulting output of the proposed
methodology has been introduced in the actual manufacturing workflow, with
successful results in the following quality control procedures.

The results concerning the SSM performance are shown in section 4.1, whereas
the in-situ verification test is presented in section 4.2.
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4.1 SSM performance evaluation

The SSM metrics are presented in Figures 6 and 7. All these results were calcu-
lated using the complete scan dataset, with the partial sampling dataset being
also used for the computation of G∗(m) and a random set of 1000 generated
shapes for the computation of the specificity. The compactness graph indicates
that starting at around 50 modes the contribution of each additional parame-
ter drastically diminishes. Metrics S(m), G(m) and G∗(m) were calculated for
m = {1, 2, 5, 10, 20, 50, 100, 200, 500}. In this test, when solving the non-linear min-
imization problem in equation (9) the boundary-specific approach was used to set
the initial guess of the shape parameters. A comparison between the proposed
alternatives is shown in the following section.

Both generalization factors show a similar trend, with a logarithmic descent
of the average error up to 0.044 and 0.053mm respectively. This means that the
reconstruction algorithm from a partial sample provides reliable results, similar
to projecting the intrinsic ability of the SSM. The bars in the graphs represent
one standard deviation. Although in both cases the variability decreases with the
number of modes, the G∗(m) metric presents always higher variability than G(m).
In both cases the generalization metrics are stabilized at m = 100 modes, showing
a slight improvement for 200 and 500 modes. In light of these results, it seems
appropriate to choose a truncated basis with 100 modes for this application, which
represents a balance between accuracy and computational cost.
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Fig. 6: Statistical Shape model, performance evaluation metrics: compactness (left)
and specificity (right).

4.2 Online shape reconstruction verification test

After testing the performance of the method with the complete scan and the virtu-
ally generated partial sampling datasets, in this section we validate the presented
methodology in an industrial environment. For this, 9 different samples were dig-
itized twice in the manufacturing plant, both partially and completely (for error
measurements), as presented in section 2.2. These samples form the verification
dataset. Then, for each panel in the verification dataset, we obtained a surface
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Fig. 7: Generalization metric. Lower values mean better generalization of the
model. The error bars represent one standard deviation.

reconstruction from the partial digitization using the algorithm proposed in this
work, and the output reconstruction point cloud was introduced in the manufac-
turing workflow, substituting the complete digitization point cloud, as presented
in Figure 2. The experiment is designed and executed as follows for each panel:
i) run the full scan program ii) stop the execution and enter in manual execution
mode, to avoid the milling step to be started after scanning iii) log on the indus-
trial computer and download a copy of the full scan for later comparison iv) load
the reduced scan program v) log on the industrial computer and download a copy
of the partial scan vi) give the partial scan as input to our reconstruction sub-
routines, running on a laptop vii) compare the reconstructed to the fully scanned
panel viii) transfer a copy of the reconstructed panel to the industrial computer
ix) go back to automated execution mode by moving to the next manufacturing
step (milling).

The graph in Figure 8 shows the reconstruction error between the complete
scans and its reconstruction for all samples in the verification test, using the dis-
tance function defined in equation (18). The performance of both alternatives for
the initial guess to solve the non-linear problem presented in Section 3.2.1 is also
compared. The horizontal black line in the graph represents the generalization
metric of the SSM for 100 modes, to serve as a reference.

The use of boundary information to build the initial guess provides a better
reconstruction overall, with error values near the generalization ability of the SSM.
Although using the mean panel as an initial guess (i.e. α0 = 0) provides slightly
worse results for most of the samples, there is a considerable discrepancy in samples
4, 7, and 9. Figure 9 shows the reconstruction error color map for sample 9 using
both strategies. The oversampling solution using the mean panel clearly fails to
adapt along the boundary of the surface, and 1.6% of the points in the oversampling
cloud have reconstruction errors over 1 mm, whereas the resulting cloud in Figure
9a has no points with such error levels. Similar behavior is found in samples 4 and
7. Finally, Figure 10 shows the reconstruction error color map for all panels in the
verification dataset using the boundary-specific initial guess.
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Fig. 8: Reconstruction error for each sample in the verification dataset, with the
reconstruction fixed-point algorithm using as initial guess the mean panel (blue)
and the initial boundary reconstruction (red). The SSM’s generalization value is
included in the graph as a reference.

4.3 Discussion

The typical applications of statistical shape models are found in 2D images and
3D volumes with closed surfaces. The application in this work presents a new
challenge, which is the identification of an open surface in a 3D space. Whereas the
construction of Statistical Shape Models for 3D objects can be achieved by properly
detecting the boundary of the solid and then performing a dimension reduction (as
in [27] for example), that is not enough when it comes to open surfaces in a three-
dimensional space. In this case the contours of the open surface must be identified,
there is no such solid’s bulk, and the surface’s curvature cannot be captured with
the identification of its contours. The proposed method is designed to solve this
new challenge by building the SSM in two steps: first, identification of the surface’s
contours and then mapping of the interior curvatures. The performed tests in 4
show that the quality of the generated SSM is in the order of 0.01mm, this is just
one order of magnitude over the data numerical precision, thus we have achieved
the maximum possible accuracy to describe any shape in the provided database,
with a reduced basis of 100 modes in this particular case.

Regarding the surface reconstruction from a partially digitized sample, we com-
pared the performance of the proposed algorithm using different strategies for the
initial guess in the fixed-point iteration in the test using the panels from the veri-
fication dataset. The results show that the identification of the surface’s boundary
as initial step of the non-linear problem solution (presented in section 3.2.1) is
crucial to obtain an accurate shape parameter identification. Not only because
the average reconstruction error is lower in all test cases, but also because using
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(a)

(b)

Fig. 9: Verification dataset, sample 9. Reconstruction error using boundary-specific
procedure (a) and mean panel (b) as the initial guess of the fixed-point algorithm.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10: Reconstruction error map using boundary-specific procedure for all sam-
ples in the verification dataset (see section 2.2).

the mean panel of the SSM as initial guess can lead to stagnation of the solver
at local minima with worse adaption along the boundaries of the surface, result-
ing in a higher reconstruction error. The case of sample number 6 in Figure 10f
is worth to remark, since the performance of the reconstruction algorithm was
clearly worse in that particular case when compared to the other samples. The
average reconstruction error was significantly higher, and the error map showed a
vertical line pattern with higher reconstruction error. After a thorough study of
that sample by the industrial partner, an error in the workshop’s scanning device
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was detected, thus the complete scan of that sample wasn’t representing its actual
surface. Therefore, we think that the methodology presented in this work could
also open the possibility of using the part’s SSM as an aditional tool to check for
anomalies in the manufacturing or digitization workflow.

In the performed tests we observed that using 100 modes in the initial fixed-
point step when using only the contour of the partial digitization may lead to
overfitting problems. This is because, in that particular case, the number of points
used to solve the fitting problem in (8) is considerably lower than that of the
whole partial sample. To avoid this problem we performed the initial iteration of
the fixed-point algorithm using only 10 modes and the boundary of the partial
sample in the tests shown in this work, which lead to satisfactory results.

The total reconstruction error of the proposed reconstruction algorithm from a
partial sample is slightly higher than the generalization ability of the SSM (which is
measured with complete samples), with values between 0.05 and 0.1mm. Although
we have successfully achieved high-quality shape reconstructions from incomplete
data, we think that the trajectory of the partial scan (Figure 3b), which was arbi-
trarily chosen, might affect in the total reconstruction error, and it also explains
the slightly worse generalization (and higher variability) of the SSM when it is
taken into account (Figure 7), since that trajectory is not related to the features
existing in the computed SSM. The choice of an optimal set of measuring locations
(using for example the EIM [40, 41] or a data-driven approach [10]) for the SSM
would lead to lower variability in the surface reconstruction algorithm.

Although we have presented this surface reconstruction methodology using a
specific application case of an aircraft manufacturing component, the proposed ap-
proach can be extended for the reconstruction of any other surface, provided there
is a database of completely digitized samples to build a Statistical Shape Model,
and enough information of the surface’s boundary topology for the non-rigid reg-
istration step in section 3.1.3. After building the SSM that captures the variability
of the new surface, the application of the presented reconstruction algorithm is
straightforward.

Finally, concerning the computational cost of this method, an implementa-
tion in MATLAB (The Mathworks Inc., USA) takes 1 second per iteration in the
fixed-point algorithm. The shape identification problem required between 15-20
iterations for all samples, and the whole reconstruction algorithm, from reading
the input file to obtaining the oversampling reconstruction, takes between 35-45
seconds, depending on the number of iterations. Considering the time spent in the
partial scan acquisition and the reconstruction algorithm the proposed method can
reach an 80% reduction in the surface digitization time, according to estimations
by Stelia Aerospace’s experts.

5 Conclusions

We presented a methodology for 3D surface reconstruction combining partial sam-
pling and SSMs. For the computation of the SSM, we make use of prior known
information of the surface, especially in which concerns boundary detection and
mapping. We propose a non-linear fitting problem to identify the shape parameters
of a partially scanned sample, which is solved with a fixed-point algorithm. The re-
sults show that the obtained SSM can describe the surfaces using 100 modes, with
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an accuracy only one order of magnitude higher than the scanning device’s numer-
ical precision. The fixed-point algorithm’s efficiency is increased if the boundary
of the partial sample is used for the initial iteration, and the total reconstruction
error of the proposed reconstruction algorithm, this is, including SSM and fixed-
point algorithm, remains between 0.05 and 0.1mm of average error reconstruction
for all tested samples.

Whereas typical applications of statistical shape models are found in 2D im-
ages and 3D volumes with closed surfaces, we present a method for the fast dig-
itization of open surfaces in a 3D space using incomplete measurements, which
are obtained in a significantly shorter time than complete digitizations, achieving
high-quality final reconstructed shapes. The implementation of this methodology
in an industrial environment achieved an estimated time reduction of 80% in the
shown application case, provided that there exists a database with samples that
have been completely digitized. The search of optimal partial measuring strategies
for the surface reconstruction algorithm will be studied in future works, together
with the possibility of building the SSM as panel data is collected, this is, without
having a previously obtained sample database.
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