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Abstract: This chapter presents the set of governing equations to study the behavior of
active materials that have an intrinsic ability for coupling several branches of physics
and, consequently, are commonly used for manufacturing harvesters. Once the equa-
tions are defined, a numerical formulation based on the finite element method is de-
veloped inorder tomodel thesematerials. In particular, this chapter studies the energy
production from themechanical vibrations present in high-speed railway bridges. For
this purpose, a review of the basic parameters of these bridges, their vibrations, fre-
quencies and the dynamic characteristics are highlighted. Then, cantilever harvesters
made out of piezoelectric and piezomagnetic materials are simulated under typical
mechanical vibrations, and several conclusions are highlighted.

Keywords: Active materials, finite element method, piezoelectric devices, piezomag-
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1 Introduction
As is well known, the energy obtained from residual sources is called renewable or
clean energy. Depending on the level of power produced, this renewable energy is
commonly divided into two groups:
– Macro-energy harvesting plants, generating in the order of [kW] or [MW], for ex-

ample: watermill, geothermal and solar energies. These plants are designed as
alternatives to traditional fossil-fuel-based and nuclear plants.

– Micro-energy harvesting technologies, which produce in the order [mW] or [μW],
and are based on residual sources such as mechanical vibrations, heat, sunlight,
chemical or biological sources, etc. In contrast to macro-energy, this technology
is conceived as an alternative to conventional electro-chemical batteries.

The present chapter is focused on micro-energy technology using harvesters. In gen-
eral, harvesters are manufactured with modern materials, denominated active or
smart materials that have the intrinsic ability to couple up to four physic energies,
such as mechanical, thermal and electromagnetism. According to [1], the global mar-
ket for smart materials was 26 USD billion in 2014 and will be approximately 42 USD
billion in 2019.
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There are many examples of energy harvesting applications depending on the
residual sources. For instance, thermoelectric devices are used to generate energy
from residual heat and piezoelectric/piezomagnetic materials from residual mechan-
ical vibrations.

In connection with thermoelectric materials, they are commonly used to reduce
the weight in aeronautics and astronautics. In particular, the radioisotope thermo-
electric generator (RTG) is an electrical generator that draws its energy from the heat
released by radioactive disintegration of the fuel – usually plutonium. The assembly
of an RTG can be seen in Figure 1, consisting of a container of nuclear fuel that gener-
ates the necessary heat through a nuclear fission. This heat is converted into electrical
energy by thermocouples in the radioisotope heat unit, powered by a thermal flux be-
tween the core at up to 1200 [K] and the hot spot, usually a liquidmetal cooling system
connected to the space at up to 300 [K]. In spite of this very large temperature incre-
ment, the efficiency usually lies between 4–7%, with a maximum of 10%.

Fig. 1: Radioisotope thermoelectric generator for space rover, [2].

Concerning vibrating harvesters, they are used for wearing shoes and backpacks, for
computer hard disks, for medical micro-robots and, especially, for energy recovering
from environmental vibrations, see [3]. In this context, the possibility of energy har-
vesting from vibrations of bridges is a very new field. Recently, [4] and others have
been investigating the feasibility of recovering electric energy for high-speed trains
passing over a bridge. Small amounts of electric energy can be recovered by the in-
duced vibrations, and this energy be used for the WiFi signals of structural health
monitoring (SHM) systems.

In short, the energy generation from residual sources – such as heating and me-
chanical vibrations – is a challenge for both engineering and scientific communities.
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Therefore, both the theoretical understanding and numericalmodeling are important
challenges in order to design sophisticated harvesters that generate as much energy
as possible. From a modeling point of view, some of the authors of the present chap-
ter have published several numerical formulations based on the finite element (FE)
method to study active materials, see [5] to [6].

From a practical point of view, it is also very important to know the energy orders
of magnitude that the residual sources can yield, for instance, temperature gradients
in buildings, mechanical vibration amplitudes in bridges, etc. In this way, one author
of thepresent chapter haswide experience in thedesignof high-speed railwaybridges,
see [7] to [8].

On these grounds, this chapter defines the active materials and their advantages
in comparison with classical materials, see Section 2. Then, an outline of the govern-
ing equations that theoretically describe the behavior of active materials is reported
in Section 3. In particular, the main equations of continuum mechanics, electromag-
netism and thermodynamics, are briefly described. Section 4 introduces the FE formu-
lation to numerically model the active materials. First, for the sake of clarity, a brief
outline of the FE method is introduced. Regarding practical applications, Section 5
presents a summary of railway bridges and their mechanical vibrations produced by
passing vehicles. Finally, numerical simulations of harvesters that produce energy
from mechanical vibrations are reported. In particular, basic cantilever beams made
of both piezoelectric and piezomagnetic materials are simulated, and a comparison
between both is highlighted.

Through the chapter, several simplifications are introduced. From a mechanical
point of view, small strain is considered: it is a good approximation for most of the
harvester applications, since classical activematerials aremade out of ceramics. Elec-
trodynamically, free electromagnetic sources suchas free electric charges and currents
are not considered, since these active materials are, in general, non-conductors. Fur-
thermore, the high frequencies produced by the electromagnetic field (speed of light)
are neglected in comparisonwith the mechanical frequencies; this is a reasonable ap-
proximation, since this chapter dealswith the energyproduction from the residualme-
chanical vibrations. Finally, and from a thermodynamical point of view, conservative
materials are considered, namely, dissipations generated by the heating of harvesters
are neglected.

2 Active materials

In classical physics, every cause has an effect. For instance, applying forces to an
elastic body (cause) produces strains (effect); applying electric fields to a dielectric
medium (cause) polarizes the material (effect), etc.
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Historical note
Early work on active materials was carried out by the French broth-
ers Jacques and Pierre Curie; in particular, piezoelectricity was dis-
covered in 1880 by both. Jacques Curie (1855–1941) was Professor
of Mineralogy at the Université de Montpellier. His younger brother
Pierre Curie (1859–1906) received the Nobel Prize in Physics with his

wife, Marie Curie, and Henri Becquerel. Signature taken from Wikipedia.
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Fig. 2: Cause-effect curve. Two regions are observed: linear/non-linear and reversible/irreversible.

Causes and effects are related by constitutive equations that describe the behavior of
the material and are obtained by experimental techniques. For example, in mechan-
ics, the stress-strain curve is calculated by applying equal and opposite forces at the
ends of a bar and measuring its relative deformation. From this curve, several impor-
tant material properties, such as the modulus of elasticity and ductility, are obtained.
Figure 2 shows a general cause-effect curve in which two regions are observed:
– Linear and non-linear. The linear region is mathematically represented by first-

order material properties in a Taylor series expansion. On the contrary, the non-
linear region requires high-order material properties that, in general, depend on
the high-order expressions of the causes and/or effects.

– Reversible and irreversible regions. The former represents a hypothetical behav-
ior for which the entropy of the system is conserved. For this reason, the mate-
rial properties inside this region are denominated conservative. In contrast, the
irreversible region is characterized by the increasing of the entropy and, conse-
quently, by the production of heat. For example, plasticity is an irreversible re-
sponse for which the internal structure of the material is irreversibly transformed
and heat is dissipated. Therefore, the initial state is not recovered when the cause
ceases; this process is path-dependent.
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Fig. 3: Passage of a train over a bridge. Top: the train (cause) produces mechanical vibrations (ef-
fect). Bottom: the bridge incorporates harvesters made of active materials that produce electrical
energy from mechanical vibrations and, consequently, the train generates two effects.

Traditional materials – denominated passivematerials in the remainder of this chap-
ter –, are characterized by a one-to-one function between cause and effect, namely,
stresses generate strains and vice versa. For example, consider a railway bridge made
of passive materials such as concrete and steel. The passage of a train over the bridge
(cause) generates mechanical vibrations (effect), as observed in Figure 3 (top). On the
contrary, active materials are characterized for their intrinsic ability to couple several
branches of physics; consequently, a cause produces one or more effects. Continuing
with the bridge example, consider that this bridge also incorporates harvesters made
out of activematerials. Now, the mechanical vibrations generate electrical energy, see
Figure 3 (bottom). Therefore, the passage of a train generates two sequential effects:
mechanical vibrations and electrical energy.

As commented, in this work, an active material can couple up to four fields:
thermal, mechanical, electrical and magnetic. Heckmann’s diagram [9] allows us
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Fig. 4: Heckmann’s diagram: causes, effects and first-order properties represented by rectangles,
circles and triangles, respectively. Material properties are clarified in Tables 1, 2; picture taken
from [9].

to schematically visualize these couplings, as shown in Figure 4. The causes are
represented by rectangles and the effects by circles. Then, the first-order materials
properties that relate causes and effects are represented by triangles, and they are
listed in Tables 1 and 2. Table 1 refers to the main interactions, namely, the passive
properties; Table 2 shows the coupling, the active properties.

Tab. 1: First-order passive properties. Triangles in first column refer to Figure 4. Table taken from [9].

Symbol Conjugate variables Passive property

1 Stress – Strain Elastic tensor

2 Electric field – Polarization Electric susceptibility

3 Magnetic field – Magnetization Magnetic susceptibility

4 Temperature – Entropy Heat capacity
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Tab. 2: First-order active properties. Triangles in first column refer to Figure 4. Table taken from [9].

Symbol Conjugate variables Active property

5 Mechanic – Electric Direct, converse piezoelectric

6 Mechanic – Magnetic Direct, converse piezomagnetic

7 Mechanic – Thermal Thermal expansion, piezocaloric

8 Electric – Magnetic Direct, converse magnetoelectric

9 Electric – Thermal Direct, converse pyroelectric

10 Magnetic – Thermal Direct, converse pyromagnetic

In short, the activematerials allow the production of energy from residual sources
such as heat, mechanical vibrations, etc. These materials will be studied in the re-
mainder of this chapter. Furthermore, since these materials couple several fields of
physics, the following section introduces the basic governing equations of continuum
physics.

3 Continuum physics

Consider a continuum solid of domain Ω, boundary Γ and its outward normal n. This
solid is subjected to mechanical, electromagnetism and thermal energies and, conse-
quently, the governing equations of the four fields must be considered.

For the sake of convenience, the present chapter uses both tensor and matrix no-
tations. For the first, the following tensor operators are used:
– Scalar product or single contraction denoted by the symbol (⋅): a ⋅ b = aibi.
– Double contraction denoted by the symbol (:): A : B = AijBij.
– Dyadic or outer product denoted by the symbol (⊗): (a ⊗ b)ij = aibj.
– Cross product denoted by the symbol (×): (a × b)i =∈ijk ajbk, where ∈ is the Levi–

Civita tensor.
– The transposition is denoted by ( )⊤.
– The symbol ∇ denotes the Del operator.
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3.1 Outline of continuum mechanics

Classical continuum mechanics is a branch of continuum physics that studies the
kinematics and themechanical response of deformable bodies subjected to the action
of forces. Firstly, the word deformable refers to the capacity to change the medium
shape – conversely to the rigid body mechanics that studies non-deformable solids.
Secondly, the term continuum indicates that matter completely fills the medium, that
is, the medium is assumed to be continuous. This assumption is known as the contin-
uum hypothesis [9]. Finally, and considering this hypothesis, each point of the body
(commonly called material point) can be identified by a position vector and, conse-
quently, the tensor algebra can be applied to study the motion and deformation of
solids.

Historical note
The French mathematician Augustin Louis Cauchy (1789–1857) pio-
neered the use of continuum instead of discrete models. In spite of
his initial 3 years of working as an engineer, he was more attracted
to the abstract beauty of mathematics. Cauchy was a prolific scien-
tist: in continuum mechanics he holds 16 theorems. Signature taken
from Wikipedia.

3.1.1 Kinematics

Consider a continuum body before (at time t = 0) and after deformation (at time t; Fig-
ure 5). The position of a material point P0 inside a domain Ω0 with border Γ0 “before”

t = 0 t = t

Ω0 Ω
P0

Pu

xX

x1

x2

x3

ΓΓ0

n

Fig. 5: Continuum body before and after deformation.
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is located by X; “after” the point becomes P inside another domain Ω of boundary Γ
and located by x. From vector calculus, the displacement u of any material point can
be represented by:

u(X, t) = x(X, t) − X(t) . (1)
Thedependencyof u and x onX is commonlydenominatedas “Lagrange coordinates”
in the continuummechanics community. However, under the assumption of small dis-
placementsX ≈ x, thenotation u(x, t) is adopted in the remainder of thepresentwork.

3.1.2 Strain measure

An objective strain measure can be defined as the change of length and rotation of
an elementary differential of displacement. Mathematically, this definition can be ex-
pressed as:

du(x, t) = ∂u
∂x

⋅ dx = u ⊗ ∇ ⋅ dx , (2)

where the non-symmetric tensor u ⊗ ∇ is called the displacement gradient. As com-
mented, this tensor contains information on the change of lengths and on the rota-
tions of du. In particular, it is observed in Figure 6 that the information relative to the
change of lengths is stored in the symmetric part of (u ⊗ ∇)sy and the rotation in the
skew-symmetric (u ⊗ ∇)sk.

t = 0 t = t

du

du
(u )sy⊗∇

⊗∇
+

(u )sk

Fig. 6: Box representing the deformation process: elongation (u ⊗ ∇)sy and rotation (u ⊗ ∇)sk.

According to the theory of tensor algebra, any tensor canbe decomposed in symmetric
and skew-symmetric parts. Therefore, the displacement gradient can be expressed as:

u ⊗ ∇ = 1
2(u ⊗ ∇ + ∇ ⊗ u) + 1

2(u ⊗ ∇ − ∇ ⊗ u) , (3)

Since the rotations do not produce deformation, the strain measure is given by the
symmetric part of (3); under the assumption of small strains, the symmetric displace-
ment gradient is finally given by:

S = 1
2(u ⊗ ∇ + ∇ ⊗ u) = ∇syu , (4)

where the symbol ∇sy is used for simplicity and S denotes the second-order small
strain tensor.
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For the sake of convenience, S is expressed inVoigt’s notationwith indexes 11=1,
22 = 2, 33 = 3, 12 = 4, 23 = 5, 13 = 6 to obtain:

{S} = {S1, S2, S3, S4, S5, S6}⊤ (5)

As observed, Voigt’s notation allows us to represent a symmetric second-order tensor
by a vector of six coefficients.

3.1.3 Linear momentum balance

From the second Newton’s law, the linear momentum balance states that the rate of
momentum p = ρmu̇ is equal to the total forces acting on the body of Figure 7 (ρm is
the mass density). Notice that the domain is drawn after deformation, commonly de-
nominated current configuration.

Ω

P

x

x1

x2

x3

Γ

nt

f

Fig. 7: Forces acting on continuum body after deformation.

The forces acting on Ω can be classified into long-range f and short-range t forces. The
former represents the forces exerted by external fields such as gravity, and the latter
the forces that interact among material points.

On this basis, the linear momentum balance is mathematically stated as:

d
dt ∫

Ω

p dΩ = ∫
Γ

t dΓ + ∫
Ω

f dΩ . (6)

Considering the notation TC as the second-order Cauchy stress tensor, the mass
conservation dρm/dt = 0, Cauchy’s lemma t = (TC )⊤ ⋅ n and applying the divergence
theorem to the first term on the right-hand side (6), the linear momentum balance in
local form becomes:

ρmü = ∇ ⋅ (TC )⊤ + f . (7)
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3.1.4 Angular momentum balance

The angular momentum balance states that in any inertial frame the rate of change of
the torque is equal to the total momentum generated by the forces acting on the body.
Considering the Figure 7 and (6), this equality is mathematically expressed as:

d
dt ∫

Ω

x × p dΩ = ∫
Γ

x × t dΓ + ∫
Ω

x × f dΩ . (8)

Again, taking into account mass conservation, Cauchy’s lemma, the divergence
theorem to the first term of (8) on the right-hand side and using (6), the angular mo-
mentum balance reads:

∈ : TC = 0 ⇒ TC = (TC )⊤ . (9)

In conclusion, the symmetry of the Cauchy stress automatically guarantees the bal-
ance of angular momentum. As for S, TC , it can be expressed in Voigt’s notation as:

{TC} = {TC
1, T

C
2, T

C
3, T

C
4, T

C
5, T

C
6}⊤ . (10)

3.2 Outline of continuum electrodynamics

Classical electrodynamics (also called classic electromagnetism) is a branch of contin-
uum physics that deals with the interactions between matter and electric charges and
currents. This formalism is founded on the Maxwell’s equations and on the Lorentz
force.

Historical note
Although many scientists worked on electromagnetism, the Scottish
mathematician James Clerk Maxwell (1831–1879) achieved the for-
mulation of the classical theory of electromagnetism, denominated
“second great unification in physics” after the first was realized by
Isaac Newton. Signature taken from Wikipedia.

3.2.1 Maxwell equations

Maxwell’s equations are a set of four coupled and empirical equations that relate the
macroscopic variables of electromagnetism: electric field E, electric displacement D,
magnetic field H and magnetic induction B. Furthermore, the sources of electromag-
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netism, free electric charges ρfq and free electric currents jf also appear in Maxwell’s
equations: ∇ ⋅ D = ρfq ,∇ ⋅ B = 0 ,

∇ × E + ∂B
∂t
= 0 ,

∇ × H − ∂D
∂t − jf = 0 .

(11)

The first equation is denominated electric Gauss’ law and states that the scalar
sources of the electric field are the free electric charges. The second is called magnetic
Gauss’ law and establishes the absence of magnetic monopoles in nature, namely, the
magnetic field is solenoidal. The third law is the Maxwel–Faraday law and states that
the rate of change of a magnetic field generates an electric field. Therefore, this law
couples both electric andmagnetic fields. Finally, the fourth equation is Ampère’s law,
which asserts that the free electric currents and the rate of change of the electric dis-
placement produce magnetic fields. Consequently, this law also couples both fields.

3.2.2 Electromagnetic potentials

In accordance with the Helmholtz theorem – also known as the fundamental theorem
of vector calculus [9] – and according to Maxwell’s laws of (11), there are four electro-
magnetic potentials:
– Two scalar potentials obtained from the Maxwel–Faraday and Ampère laws.
– Two vector potentials deduced from the electric and magnetic Gauss’ laws.

Nevertheless, in the present chapter, the free sources ρfq and jf and the partial deriv-
atives ∂B/∂t and ∂D/∂t are assumed to be zero. This is a good and reasonable ap-
proximation for most applications of harvesters, since they are constructed with po-
larizable/magnetizable media and the frequencies of the mechanical vibrations are
several orders of magnitude lower than the electromagnetic ones.

Assuming ρfq = 0, jf = 0, the electric V and magnetic φ scalar potentials can be
obtained from the Maxwel–Faraday and Ampère laws, respectively [9]:

∇ × E = 0 ⇒ E = −∇V ,∇ × H = 0 ⇒ H = −∇φ .
(12)

Furthermore, these scalar potentials aremore amenable for an FE formulation, aswas
reported in [9]. Finally and for convenience, the electromagnetic constitutive equa-
tions that relate polarization P and magnetization M vectors with E, D and H, B, re-
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spectively, are introduced in the same reference:

D = P + ϵ0E ,
B = μ0(H +M) . (13)

3.2.3 Linear momentum balance

The linear momentum balance of electromagnetism is obtained by combining Max-
well’s laws and Lorentz forces. There exist four representations of the electromagnetic
linear momentum, see [9], closely related to the choice of the Poynting vector. Despite
the fact that the best choice of this vector has generated controversy in the literature
(for instance, the famous Abraham–Minkowski debate), in the present chapter, the
Minkowski representation is assumed. Taking into account this representation, the
linear momentum balance in local form is given by [10]:

∂
∂t (D × B) = ∇ ⋅ (TEM )⊤ − f EM , (14)

where TEM and f EM denote the Maxwell stress tensor and the Lorentz forces, respec-
tively. Obviously, both terms depend on the electromagnetic variables and, in the ab-
sence of free sources, are given by:

TEM = D ⊗ E + B ⊗ H − 1
2 (D ⋅ E + B ⋅ H)I ,

f EM = 1
2
(∇ ⊗ E ⋅ D − ∇ ⊗ D ⋅ E + ∇ ⊗ H ⋅ B − ∇ ⊗ B ⋅ H) . (15)

3.2.4 Angular momentum balance

As deduced in (9), the mechanical angular momentum balance is guaranteed by the
symmetry of the Cauchy stress tensor. Similarly, the electromagnetic angular momen-
tum balance requires the symmetry of TEM .

In vacuum (absence of matter), TEM is symmetric; however, its symmetry in pon-
derablemedia (media with matter) has generated controversy in the literature [9]. Un-
der classical continuum physics, the definition of a total stress tensor composed of
two non-symmetric tensors (Cauchy and Maxwell) is the best approach.

The use of a total stress implies the modification of the classical traction vector t
(Figure 7), by the mechatronic vector tEM, which contains information of both me-
chanic and electromagnetic fields. For more details on the non-symmetry of the Max-
well tensor, see the recently published scientific article by the present authors [6].
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3.3 Outline of thermodynamics

Thermodynamics is a branch of continuum physics that deals with the conservation
and conversion of the energy, among several fields such asmechanical, thermal, elec-
tromagnetic fields, etc. Therefore, this formalism is the cornerstone to theoretically
study harvesters.

Historical note
The American scientist Josiah Willard Gibbs (1839–1903) introduced
the idea of incorporating the entropy into the internal energy of a
system. Therefore, he was a pioneer in combining the first and sec-
ond laws of thermodynamics and, consequently, he is the father of
modern thermodynamics. It was declared that “Gibbs’s name not

only in America but in the whole world will ever be reckoned among the most renowned theo-
retical physicists of all times”. Signature taken from Wikipedia.

The first law of thermodynamics states the conservation of the total energy in a closed
system as: the total energy U is equal to the sum of heat Q and workW performed on
the system, mathematically:

dU = δQ + dW , (16)

where the symbols -d- and -δ- denote exact and inexact differentials, respectively. As
observed, the heat is an inexact differential since it is path-dependent, namely, part
of the total energy is irreversibly converted into heat. An example of an irreversible
process is the mechanical plastic deformation for which part of the mechanical en-
ergy is employed in the transformation of the internal structure of the material. Then,
overheating is produced – heat is dissipated – and the initial state of the material is
never recovered.

As commented, this chapter deals with conservative processes for which the ef-
fects of the temperature are neglected. Consequently, δQ = 0 and dU = dW.
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Fig. 8: Reversible exchanges of energies be-
tween mechanical and electromagnetic fields
with thermal interaction neglected.

Consider the closed thermodynamical system shown in Figure 8. The system is com-
posed of mechanical and electromagnetic energies that can be reversibly exchanged
with each other given that δQ = 0.

As reported in Section 2, causes and effects play an important role in the study of
active materials and, consequently, in harvesters. From a thermodynamical point of
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view, causes and effects are represented by intensive and extensive variables, respec-
tively, and their products represent the total work performed by the system:

dU(S, P,M) = dW(S, P,M) = TC : dS + E ⋅ dP + H ⋅ dM . (17)

Table 3 lists the intensive and extensive variables used in the presentwork. Simple and
double contractions product are used, and the fact that the energy is a scalar variable
facilitates the following analyses.

Tab. 3: Intensive (cause) and extensive (effect) variables used in this chapter.

Intensive variables Extensive variables

Stress – T C Strain – S
Electric field – E Polarization – P
Magnetic field – H Magnetization – M

There are several thermodynamic potentials to represent the total internal energy of
the system. In this work, and for an amenable numerical implementation, it is conve-
nient to use the electromagnetic enthalpy Π, which results from a Legendre transfor-
mation of (17) to exchange the pair P,M by the corresponding E, H:

dΠ(S, E,H) = TC : dS − P ⋅ dE −M ⋅ dH . (18)

Since the problem is conservative, Π can be expressed as an exact differential:

dΠ(S, E,H) = ∂Π
∂S

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨E,H : dS + ∂Π
∂E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨S,H ⋅ dE + ∂Π
∂H

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨S,E ⋅ dH , (19)

Finally, comparing (18) and (19), the constitutive equations can be obtained from
Π as:

TC = ∂Π
∂S

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨E,H ,

P = − ∂Π
∂E

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨S,H ,

M = − ∂Π
∂H

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨S,E .

(20)

These three expressions can be arranged to obtain a Hessian matrix to describe
the behavior of the material:

{{{{{
dTC

dP
dM

}}}}} =
[[[[[[[[[[

∂TC

∂S
∂TC

∂E
∂TC

∂H
∂P
∂S

∂P
∂E

∂P
∂H

∂M
∂S

∂M
∂E

∂M
∂H

]]]]]]]]]]
{{{{{
dS
dE
dH

}}}}} . (21)
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In order to obtain the constitutive equations and considering (20), an explicit form
of the potential Π must be calculated. In a first and reasonable approximation, this
potential can be found by a Taylor expansion in the vicinity of a natural state Π(S =
E = H = 0) = 0 and by keeping in mind the linearity of the problem, to give:

Π(S, E,H) = 1
2(S : C : S − E ⋅ ϵ ⋅ E − H ⋅ μ ⋅ H)− eV : S ⋅ E − eφ : S ⋅ H − H ⋅ ν ⋅ E , (22)

where C, ϵ, μ, ν, eV and eφ denote elastic, permittivity, permeability, electromag-
netic, piezoelectric and piezomagnetic material tensors, respectively. Finally, consid-
ering (13), (22) and (20), the Hessian (21) becomes:

{{{{{
TC

D
B

}}}}} =
[[[
C −eV −eφ
eV ϵ ν
eφ ν μ

]]]
{{{{{
S
E
H

}}}}} . (23)

3.4 Summary of governing equations

This section summarizes the governing equations to model conservative active mate-
rials under small strains and displacements, for low electromagnetic frequencies and
assuming material linearity. The equations are equilibrium and constitutive comple-
mented by the boundary conditions.

3.4.1 Equilibrium equations

For an amenable FE implementation and considering TEM, the equilibrium equations
are the linear momentum balance (7) and the electric and magnetic Gauss laws (11):

ρmü = ∇ ⋅ TT + f ,∇ ⋅ D = 0 ,∇ ⋅ B = 0 , (24)

where TT = TC + (TEM)sy is the total stress tensor, composed of both symmetric Cauchy
and Maxwell stress tensors.

3.4.2 Material constitution

For the sake of clarity, the multi-coupled constitutive (23) is expressed in matrix form
using Voigt’s notation (5) and (10):
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Piezoelectrics{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

T1
T2
T3
T4
T5
T6
D1
D2
D3

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[[[[[[[

C11 C12 C13 0 0 0 0 0 −eV13
C12 C11 C13 0 0 0 0 0 −eV13
C13 C13 C33 0 0 0 0 0 −eV33
0 0 0 C66 0 0 0 0 0
0 0 0 0 C44 0 0 −eV15 0
0 0 0 0 0 C44 −eV15 0 0
0 0 0 0 0 eV15 ϵ11 0 0
0 0 0 0 eV15 0 0 ϵ11 0
eV13 eV13 eV33 0 0 0 0 0 ϵ33

]]]]]]]]]]]]]]]]]

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

S1
S2
S3
S4
S5
S6
E1
E2
E3

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

,

Piezomagnetics{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

T1
T2
T3
T4
T5
T6
B1
B2
B3

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

=
[[[[[[[[[[[[[[[[[

C11 C12 C13 0 0 0 0 0 −eφ13
C12 C11 C13 0 0 0 0 0 −eφ13
C13 C13 C33 0 0 0 0 0 −eφ33
0 0 0 C66 0 0 0 0 0
0 0 0 0 C44 0 0 −eφ15 0
0 0 0 0 0 C44 −eφ15 0 0
0 0 0 0 0 eφ15 ϵ11 0 0
0 0 0 0 eφ15 0 0 ϵ11 0
eφ13 eφ13 eφ33 0 0 0 0 0 ϵ33

]]]]]]]]]]]]]]]]]

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

S1
S2
S3
S4
S5
S6
H1
H2
H3

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

.

(25)

As observed, both constitutive matrices are transversely isotropic, since the present
active materials are polarized along the x3 direction.

3.4.3 Boundary conditions

The set of multi-coupled governing equations is mathematically closed by including
the boundary conditions. As is common, these equations are composed of natural and
essential boundary conditions; the former are called Neumann and the latter Dirichlet
equations. Both are given by:

Dirichlet type Neumann type
u = u, TT ⋅ n = tEM ,
V = V , D ⋅ n = qΓ ,
φ = φ, B ⋅ n = 0 ,

(26)

where u, V, φ, tEM and qΓ denote prescribed displacements, voltage, scalar magnetic
potential, mechatronic vector and electric charges on Γ, respectively.
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4 Finite element method

Thefinite elementmethod (FE) is a numerical techniqueused tomodelmanyproblems
in science and engineering. Sophisticated situations, such as the governing equations
for the active materials reported in Section 3, result in complex systems of partial dif-
ferential equations for which there are no analytical solutions; but the FE method al-
lows us to approximate these sets of partial differential equations in an algebraic sys-
tem that can be solved using numerical algorithms. In fact, at present, FE is the more
widespread method in technological applications, and a wide number of commercial
codes exist. For more details, the reader is referred to the classical books [11].

Historical note
The FE method was developed in the 1960s by, among others, the
Greek John Argyris (1913–2004) at the University of Stuttgart, the
American Ray William Clough (1920–2016) at the University of Cal-
ifornia (Berkeley) and the Anglo-Polish Olgierd Zienkiewicz (1921–
2009) at the University of Swansea. The main contribution of the

latter was to recognize the general potential of FE to resolve problems in areas outside solid
mechanics. Signature taken from www.nap.edu.

4.1 Outline of the finite element method

As mentioned, FE is probably the most advanced method for the solution of multi-
coupled problems, however, for these applications the method involves complex
mathematical concepts. Consider the continuum system shown in Figure 9; the
FE method is constructed from the following steps:
i) The continuum domain Ω is divided into subdomains or finite elements Ωe, inter-

connected at the nodal points.
ii) The nodal values of the degrees of freedom are assumed to be the unknown pa-

rameters of the problem.
iii) A set of functions denominated “shape functions” are chosen to interpolate the

solution within each finite element in terms of their nodal values.
iv) The principle of virtual work is applied to the governing equations to obtain

“weakened” forms of the problem.
v) The solution is calculated by solving a set of linear or non-linear equations.

Basically, the resolution of non-linear transient problems implies three steps:
a) The time interval is divided into small time increments ∆t.
b) The analytical time derivatives are replaced by discrete forms using, for instance,

the Newmark-β scheme.
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node a

Ωe

Ω

Γ

Discretization

Ω ≈ ∪nel
e=1Ωei

Ωe

Fig. 9: Finite element discretization of a continuum domain.

c) The non-linear algebraic problem for each time increment is solved using the
Newton–Rhapson algorithm.

The assembled non-linear FE equations are written in a residual form R and are lin-
earized by the derivative:

Rk
a = − ∂Ra

∂gb
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
k
dgka (27)

where a, b are the local numbering of two generic nodes, k theNewton–Raphson itera-
tion counter anddgka the derivatives of the degrees of freedomat node a. The algorithm
for time integration is written as:

− ∂Ra
∂gb

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k = c1Kab + c2 Cab + c3Mab , (28)

where the parameters c1, c2 and c3 are given in [6].
The consistent tangent K, capacity C and massM matrices are derived for each

iteration as:

Kab = −∂Ra
∂Ub

, Cab = −∂Ra

∂U̇b
, Mab = −∂Ra

∂Üb
, (29)

where gtb = {Ub, U̇b, Üb} represents the zero, first and second derivatives, respectively.
The degrees of freedom at the generic node b are denoted by Ub.

Finally, the solution is updated using gk+1b = gkb + dgkb. Notice that the Newton–
Raphson iteration counter should exhibit a quadratic asymptotic rate of convergence
if the tangent matrices are correctly calculated.



22 | Roberto Palma, José L. Pérez-Aparicio, and Pedro Museros

4.2 Finite element modeling of active materials

The present work deals with amulti-coupled formulation for which eachnode has five
unknowns, namely:
– three mechanical displacements u in the three Cartesian directions
– voltage potential V
– scalar magnetic potential φ

Consequently, the FE formulation contains a set of five residuals. Notice that the resid-
ual for the mechanical displacements is commonly expressed in compact notation by
a single equation; however, inmatrix notation, it holds three equations due to the fact
that u is a vector.

For the sake of clarity, this section reports the discretizations, residuals and the
final assembled FE matrices. For more details on the FE formulation, the reader is
referred to [9].

4.2.1 Discretizations

As commented, the continuum domainmust be discretized. In this work, this is done
by n three-dimensional eight-noded brick elements such that Ω ≈ ∑n

i Ωe. Further-
more, standard shape functions N of Lagrangian type are used to interpolate the
unknowns through the element. For simplicity, an isoparametric interpolation is
adopted, namely, global coordinates x and degrees of freedom are approximated by
the sameN:

x ≈ Na x̃a ,
u ≈ Na ũa , ü ≈ Na ̃üa ,
V ≈ Na Ṽa , φ ≈ Na φ̃a ,

(30)

where x̃a, ũa, Ṽa and φ̃a refer to the nodal value at the local node a, and the Einstein
summation convention is applied. Furthermore, (4) and (12) are approximated by:

S ≈ ∇syNa ũa = B
sy
a ũa ,

E ≈ −∇Na Ṽa = −Ba Ṽa ,
H ≈ −∇Na φ̃a = −Ba φ̃a ,

(31)

where the derivation operatorsB are expressed in matrix notation as:

B
sy
a =

[[[[[[[[[[

Na,1 0 0
0 Na,2 0
0 0 Na,3

Na,2 Na,1 0
0 Na,3 Na,2

Na,3 0 Na,1

]]]]]]]]]]
, Ba = {{{{{

Na,1
Na,2
Na,3

}}}}} , (32)

and (⋅,i) denotes differentiation with respect to the i-th Cartesian coordinate.
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4.2.2 Residuals

The governing equations reported in Section 3.4 are commonly called strong forms,
since they are second-order differential functionsof thedegrees of freedom u,V andφ.
The term “strong” refers to the higher continuity on the dependent variables. In con-
trast, the weak forms are often integral expressions that require weaker continuity
field variables, namely, they are first-order equations and, consequently, allow an
FE discretization. In order to obtain “weakened” forms two procedures exist:
I. energy principles such as Washizu or Hamilton
II. weighted residual methods

The first procedure is particularly suited for solid mechanics and structures. On the
contrary, the second procedure ismore general and canbe applied to solve all kinds of
partial differential equations. In this sense, the second approach is used in the present
work, and it consists of the following steps:
i) Equilibrium equations (24) are multiplied by arbitrary test functions.
ii) The divergence theorem is applied to the gradient terms of these equations.
iii) The Neumann boundary conditions (26) are enforced (the Dirichlet type are auto-

matic).

After the application of the discretizations of (30) and (31) to the weak forms, the three
multi-coupled residuals read:

Ru
a = ∫

Ωe

[Bsy⊤
a TT +Na(f − ρm Nb ̃üb)] dΩe +∮

Γe

Na ̄tEM dΓe ,

RV
a = ∫

Ωe

B⊤a D dΩe − ∮
Γe

Na q̄Γ dΓe ,

R
φ
a = ∫

Ωe

B⊤a B dΩe .

(33)

4.2.3 Assembled matrix

From the residuals of (33) and using (29), the tangent matrices are directly calculated
by simple derivations. The final assembled matrix becomes:

[[[
Kuu

ab + c3 Muu
ab KuV

ab K
uφ
ab

KVu
ab KVV

ab K
φV
ab

K
φu
ab K

φV
ab K

φφ
ab

]]]
k{{{{{

dũn+1b
dṼn+1

b
dφ̃n+1

b

}}}}}
k

= {{{{{
Ru

a
RV
a

R
φ
a

}}}}}
k

, (34)

where the parameter c3 contains information on the time integration algorithm. As
observed, the assembled matrix is a set of five fully coupled equations.
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First, no capacity matrices are present, since the current problem is conserva-
tive and, consequently, there are no dissipative terms. Second, only the mechanical
mass matrices are included, given that the only hyperbolic equation is the linear mo-
mentum balance, (7). Third, the main diagonal represents direct (or passive) interac-
tions, namely, elasticity, permittivity and permeability, see Table 1. In contrast, the
off-diagonal terms are due to the couplings (or active interactions) of Table 2. Fourth,
the explicit forms of the tangent matrices are reported in [9]. Finally, the set of alge-
braical equations of (34) is implemented into the research FE code FEAP [12], which
belongs to the University of California at Berkeley (USA).

5 Application: Energy production in high-speed
railway bridges

This section introduces an overview of high-speed railway bridges with the objective
to obtain their main vibration variables. Then, harvesters are numerically simulated
by the previous FE formulation, and their energy production is calculated.

5.1 Overview of high-speed railway bridges

Structures have evolved over the years, and this evolution has been driven both by the
increasing demands of society and the advances of technology; bridges in general and
particularly railway bridges are no exception. Every possibility of reducing traveling
times has always been explored with the greatest interest, producing a progressive
increase in the speed of these railways. In turn, such increases have led to more de-
manding requirements for rail infrastructure. Tracks have become heavier and stiffer,
a greater radius of curvature has been adopted for bents, cants have also been in-
creased, etc. Like general infrastructure, bridgeshave towithstand thedynamic effects
induced by vehicles traveling at speeds of over 300 [km/h]. Typically, one speaks of
high-speed bridgeswhen the design of the linewithstandsmore than 200–250 [km/h].

A wide variety of bridges has been designed to meet the requirements of the new
high-speed lines. Because high-speed tracks must avoid sharp curves, long viaducts
are very often required to cross over valleys, riverbeds and hollows; additionally, wide
streams and estuaries also require long structures. In countries such as Italy, Germany,
Spain, USA, China and Japan, prestressed concrete is usually preferred for such long
bridges, often (but of course not always) resorting to simply supported, prefabricated
decks on top of piers. In China and Japan, a large part of the railway lines are con-
structed on top of – concrete – viaducts to avoid excessive occupation of land. In ad-
dition, this strategy avoids interference between existing and new high-speed lines.
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Typical span lengths range from some 30 [m] for simply supported prefabricated decks
up to 70 [m] for continuous decks, with some singular constructions featuring more
than 150 [m].

Continuous bridges are also present in both steel or mixed construction. Metallic
viaducts are typical in France, but some modern designs have also earned a reputa-
tion in Spain (spans from 50 [m] to more than 200 [m]). Metallic arches are used in
France, China and other countries, with main spans up to some 200 [m]. In Spain,
steel arches have also been used in certain singular locations, as is shown in Figure 10
(top), while concrete arches have reached world-record spans in the high-speed lines
Madrid-Valencia and Madrid-Portugal. Figures 10 (middle and bottom) and 11 show
other representative examples.

In any case, shorter bridges are also required to cross over local roads and small
rivers. Simply supported concrete slabs, pseudo-slabs or twin girder bridges are very
well suited for such cases, with spans ranging from some 15 up to 40–50 [m]. Twin
metallic girder ormodern truss bridges are also advisable for single or multiple spans.
For shorter spans below some 15 [m], rigid frames are often preferred in order to avoid
excessive vibration (Figure 12).

High-speed bridges should to satisfy certain structural requirements in order to
guarantee adequate performance. The limits of deflection required for good behav-
ior are rather strict, since passenger comfort is a demanding serviceability limit state
(SLS) in high-speed transportation. As a rule-of-thumb, in Europe the maximum per-
mitted deflection (or vibration amplitude) under the pass of a high-speed convoy is
about L/2000, L being the span length. Lower L/1500 or higher L/2500 values may,
of course, be found in practice.

Thenumber of cycles of vibration that thebridgeundergoes is variable, depending
on the type of train and speed. If resonance or near resonance occurs, vibration will
take place during more cycles and with greatest amplitudes. Typically, one cycle of
strong oscillation is observed for each bogie when the speed of the train is far from
resonance; for a convoy with an axle load pattern such as the one in Figure 13, one
would expect around 12 cycles, given that two adjacent bogies are very close in the
link between power andpassenger cars (also referred to as coaches). Themotion of the
mid-span section would be similar to that shown in Figure 14, in which oscillations of
large amplitude arise when the four loads corresponding to the connection between
power and passenger cars act at the same time on the bridge (t = 0.76 and 5.5 [s]).
The approximate maximum amplitudes of the 12 cycles are marked with diamonds in
the figure.

Figure 14 corresponds to a simply supported bridge of 22 [m] span, with 5.5 [Hz] of
fundamental frequency, a linear mass equal to 22,000 [kg/m] and a 1% damping ra-
tio. The response is computed resorting to the fundamental mode only, which plays
a very predominant role in simply supported beams. The total wheelbase of the pas-
senger cars is 18.7 [m], corresponding to a typical Eurostar vehicle. The bogie wheel-
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Fig. 10: Top: continuous concrete deck with arch over the motorway Granada–Seville (Spain).
Image courtesy of José Lavado Rodríguez (http://hlestructuras.com). Middle: double viaduct over
the Rhône river in Avignon (France). Image courtesy of Philip Bourret by way of structurae.net.
Bottom: simply supported spans on the Madrid-Barcelona high-speed line (Spain) with pre-
fabricated concrete beams.
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Fig. 11: Archidona (Spain) viaduct: continuous composite twin-girder bridge with upper and lower
concrete decks. Image courtesy of Alejandro Castillo Linares (http://www.acl-estructuras.com).

Fig. 12: Skewed (left) and straight (right) rigid portal frames. Madrid-Valencia line (Spain).

Fig. 13: Scheme of an articulated train with two power cars and nine passenger cars.
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Fig. 14: Typical response in an out-of-resonance situation (v = 133.2 [km/h]).

base is 3 [m], with loads per axle of 170 [kN]. A rough number is useful to verify that
the analysis yields reasonable results: the static deflection under two point loads con-
centrated atmid-span, computed solely for the first bendingmode is 1.18 [mm]. This is
approximately themaximumamplitude of the deflection observed during the passage
of the coaches. For the interested reader, the main aspects of the dynamics of railway
bridges have been explained well in a number of publications, for instance [7, 13, 14]
and [8].

When the vehicle circulates at a speed of resonance (or sub-resonance), more cy-
cles of strong oscillationwill appear, because the free vibration induced after the train
passage will be larger, and usually the decay of such free vibration is slow; this de-
cay is due to the usual low values of damping of high-speed bridges. Two examples of
resonance/sub-resonance are shown in Figures 15 and 16. This resonance occurswhen
the passage of a coach takes a time lapse equal to one period of the structure; in this
example, the vehicle travels at 18.7 [m] in 1/5.5 [s] to reach the first resonance speed.
If the time lapse is two, three or more (integer) times the period of the structure, the
phenomenon is called sub-resonance (also resonance of higher order). Resonance and
sub-resonance are jointly referred to simply as resonances. In some particular cases,
resonancesmay disappear unexpectedly if the theoretical resonance speed is equal to
one of the so-called cancellation speeds. This is a particular behavior of simply sup-
ported bridges, which is treated in great detail in [7] and [8].

As can be seen, the second resonance is not too strong in this case, and the am-
plitudes are not much larger in Figure 16 than in Figure 14, except for the free vibra-
tion. The reasons beyondmaximumorminimumamplitudes of resonances in railway
bridges are dealt with in depth in [7]. It should be emphasized that in resonance situ-
ations the amplitudes of vibration may be large in general, and the vertical accelera-
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Fig. 15: Typical response in the (first) resonance situation: one oscillation cycle related with the
passage of a succession of coaches (v = 370.3 [km/h]).
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Fig. 16: Typical response in the (second) resonance situation: two cycles of oscillation during the
passage of a succession of coaches (v = 185.15 [km/h]). This phenomenon is also known as sub-
resonance.

tion of the deck could reach unacceptable values. This is also a very demanding SLS
for high-speed bridges; usually the vertical acceleration is limited to 0.35 g in bridges
with ballasted track, while 0.5 g is permitted for slab tracks. These limit values are
linked to the ballast instability phenomenon and to the loss of the contact phenom-
enon, respectively; they include an overall security coefficient of 2.0 because of the
extreme importance of those phenomena for the running safety, [15].
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Other key properties for understanding the dynamic behavior are frequency and
damping. Regarding the latter, it should be pointed out that high-speed bridges es-
sentially remain in linear elastic behavior throughout their service life due to their
stiffness, vibration and fatigue requirements. Therefore, damping is very low because
the structure is virtually undamaged, and values of the critical viscous damping ra-
tio as low as 1% can be expected for prestressed concrete and 0.5% for steel or mixed
bridges. These are conservative numbers prescribed by the building codes. It should
notbe surprising that real values are somewhathigher, a fact that shouldbeduly taken
into account for energy harvesting assessments because the vibration levels will be
slightly reduced. The reader is referred to, for instance, [13] and [15] for additional in-
formation on damping.

As regards the ranges of natural frequencies, a reference is provided in [13]: some
values in simply supported bridges would be 10 [Hz] for a 10 [m] span, 6 [Hz] for a
20 [m] span, 4 [Hz] for a 40 [m] span and 2.5 [Hz] for a 70 [m] span; the margins are
by no means narrow given the variety of bridge types. The article [16] provides useful
ranges for total mass.

The behavior of continuous bridges, frame bridges and arches is more complex
than that of the previous cases, due to the greater complexity of their mode shapes
and also due to the significant contribution of more modes to the response. The va-
riety of bridge and train types makes it very difficult to give concrete orders of mag-
nitude regarding the vibration amplitudes, frequency levels, etc., particularly in arch
bridges due to their singularity. For continuous decks and frames, the limits of deflec-
tion are similar (approx. L/2000) to the ones with simply supported structures, the
frame designs usually being stiffer and, consequently, showing higher frequencies.
Even if today’s computer codes have very much eased the computational effort, the
dynamic analysis of railway bridges is a task that should always be undertaken by
expert engineers, especially in the assessment of singular or large structures.

5.2 Numerical modeling of harvesters

A typical vibratingharvester is composed of a substructure, which is typically ametal,
an active material (piezoelectric/piezomagnetic) and the proof mass (Figure 17). Due
to themechanical vibration exertedby thepassageof a train, theharvester is subjected
to mechanical oscillations. As commented, active materials under mechanical causes
produce electromagnetic effects that areused togeneratepower from residual sources.
This generation can be used in SHM, a relatively new discipline that uses arrays of
sensors/actuators to control the mechanical displacements and to ensure a proper
operation of the structure.

Figure 17 shows a sketch of a classic uni-morph harvester, which operates in
mode 33; both poling and force directions are the same. As is common, the active
material (piezoelectric or piezomagnetic) is bounded by two electrodes, see [17].
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Substructure

Piezoelectric
Proof
mass

Fig. 17: Sketch of a vibrating harvester composed of piezoelectric/piezomagnetic, substructure
and proof mass. Mechanically, it is a cantilever fixed-free beam. Electrically, the electric/magnetic
potential is set to zero on the bottom electrode and the top one is connected to a battery.

In the present chapter, this harvester is modeled by the FE formulation described
in Section 4. For this purpose, a piezoelectric/piezomagnetic beam of dimensions
30 × 1 × 0.5 [mm] is simulated. Furthermore, the polarization/magnetization is ap-
plied along the thickness, and the material properties are taken from [9]:

[C] =
[[[[[[[[[[

116 77 78 0 0 0
116 78 0 0 0

162 0 0 0
– sym – 89 0 0

86 0
86

]]]]]]]]]]
× 109 [Pa] (35)

[eV ] = [[[
0 0 0 0 0 11.6

0 0 0 11.6 0−4.4 −4.4 18.6 0 0 0

]]] [mPa/V] (36)

[eφ] = [[[
0 0 0 0 0 5.5
0 0 0 0 5.5 0
5.8 5.8 7 0 0 0

]]] × 102 [mPa/A] (37)

[ϵ] = [[[
11.2 0 0
0 11.2 0
0 0 12.6

]]] × 10−9 [F/m] (38)

[μ] = [[[
5 0 0
0 5 0
0 0 10

]]] × 10−6 [H/m] (39)

Numerically, the harvester is meshed by using a structured mesh of 1000 eight-
node elements. The mechanical boundary conditions are fixed free to represent the
cantilever beam, while both electric and magnetic potentials are set to zero on the
bottom electrode, as is shown in Figure 17. Figure 18 shows a three-dimensional view
of the FE mesh used for modeling the active material. Notice that the substructure is
not represented.
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Fig. 18: Perspective view of the FE mesh used for modeling the active material.

The time-history displacement shown in Figure 14 is prescribed in FEAP at the right
tip of the beam to obtain the generated electric/magnetic potentials:
– On the one hand, Figure 19 plots the time-history of produced voltage obtained

for the harvester made out of piezoelectric material. As observed, the voltage in-
creases with time due to the resonance of the cantilever harvesters and, conse-
quently, the energy produced increases.

Due to this strong increase, the design of resonator harvesters is a challenge for the ex-
perimental community. In this sense, the present numerical formulation can be used
as a “virtual laboratory”. As observed, a non-negligible potential drop of approxi-
mately 12 [mV] is obtained with this simple application. Therefore, the use of several
harvesters in a railway bridge produces enough energy to monitor the structure.
– On the other hand, Figure 20 shows the scalar magnetic potentials produced by

the piezomagnetic harvester. Again, the cantilever harvester presents resonances
for the same mechanical vibrations.

To sumup, it is observed that bothpiezoelectric/piezomagnetic harvesters showa sim-
ilar behavior. Nevertheless, the voltagedrop is one order ofmagnitude greater than the
magnetic one, monitoring the electric field is easier, and magnetic materials are diffi-
cult tominiaturize. In conclusion, the production of energy frommechanical vibration
with the former material in high-speed railway bridges looks like the best option.

With regard to the use of the energy production anddespite the fact that the poten-
tial drop is 12 [mV], this signal could be applied to supply sensors and actuators made
out piezoelectric materials in order to analyze the mechanical displacements of the
bridge. As commented, these devices, which produce clean energy, could replace the
traditional electro-chemical batteries that pollute the environment. Finally, vibrating
harvesters produce alternating current (AC) and, consequently, the use of rectifiers is
required. In this sense, the simplest way to rectify the AC is to connect the harvesters
with diode junctions, which results in a high efficiency (approximately 84%).
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Fig. 19: Produced electric voltage versus time for a piezoelectric harvester.
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Fig. 20: Produced scalar magnetic potential versus time for a piezomagnetic harvester.

6 Concluding remarks
This chapter has reported a finite element formulation to simulate active materials
that couple up to four fields of physics. For the sake of clarity, the chapter outlines
the governing equations of several physics branches: continuum mechanics, electro-
dynamics and thermodynamics. Furthermore, a brief description of the finite element
method is also reported.

From a practical point of view, the chapter contains a revision of the main vari-
ables and orders of magnitudes of vibrating high-speed railway bridges. For this vi-
brating application, time-history values are used to obtain the orders of magnitude
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of vibrating harvesters. In particular, two cantilever beams made out of piezoelectric
andpiezomagneticmaterials are simulated. Finally, it is concluded that the former are
more appropriate for vibrating harvester applications.

In short, this numerical tool allows the design of vibrating harvesters by using
a numerical laboratory in contrast to expensive laboratory experiments. For this pur-
pose, this tool couldbe combinedwithoptimizationandprobabilistic techniques such
as genetic algorithms and Monte Carlo simulation to optimize the harvesters and to
perform sensitivity analyses, respectively.
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