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A B S T R A C T   

Agricultural land abandonment is an increasing phenomenon around the world with relevant environmental and 
socio-economic implications. In the European Union about 11 % of agricultural land is at high risk of aban
donment. The Comunitat Valenciana region (Spain) is the most important citrus producer in Europe suffering 
from this problem. Identifying the status of citrus crops at the parcel level is essential for policymakers in 
agriculture. This work assessed the use of WorldView-3 data, Very High-Resolution Airborne Images, and 
Structure from Motion point clouds to identify the status of citrus parcels using two machine learning algorithms: 
Random Forest and Support Vector Machines. Different analyses involving combinations of the three data 
sources were carried out to assess the impact on classification accuracy. The results showed the high potential of 
airborne imagery (OA ≈ 0.967) and WorldView-3 (OA ≈ 0.936) to detect parcel status using a single image. The 
SfM data showed a lower potential (OA ≈ 0.825). Adding SfM point cloud to the multispectral information 
produced small improvements (0.4–2.0 %) in classification accuracy. The class separability analysis showed the 
importance of WV-3 SWIR bands to detect abandoned parcels as they produce more spectral separability over the 
productive parcels in the 1570 nm – 2330 nm spectrum. The results also show the importance of GLCM texture 
features extracted from sub-metric images due to their ability to model spatial planting patterns typical of fruit 
crops.   

1. Introduction 

Agricultural land abandonment (ALA) is an increasing issue around 
the world with relevant environmental (e.g., biodiversity, carbon 
sequestration, novel ecosystems, wildfires, and water resources) and 
socio-economic (e.g., food production, livelihood, and landscape) im
plications (Prishchepov, 2020). This issue occurs in variable social, 
environmental, and economic contexts (Kosmas et al. 2015). However, it 
is particularly prevalent in mountainous zones and in areas with highly 
fragmented parcel structures (Czesak et al. 2021). Depending on the 
type of crop, the social, and environmental context, ALA can be 
perceived as a problem or as an opportunity since it can have negative 
and positive effects on the environment and society (Subedi et al. 2021). 
These characteristics make ALA a complex phenomenon that must be 
studied at different scales (global, regional, and local) (Strijker, 2005). 
In the European Union about 11 % of agricultural land is at high risk of 
abandonment (Perpiña-Castillo et al, 2018). Therefore, time and cost- 
effective methods are urgently needed to identify ALA to provide land 

managers and policymakers with information on land use changes and 
to continuously update the European Common Agricultural Policy. 

The Comunitat Valenciana (CV) region (Eastern Spain) is the most 
important citrus producer in Europe. It produces more than 3 million Tn 
of mandarins and oranges annually (50 % and 45 % of Spain’s citrus 
industry, respectively) (IVIA, 2022). In 2021, the area dedicated to cit
rus was estimated at 160,088 ha (MAPA, 2021). However, from 2000 to 
2020 there has been a decrease of around 20 % of the area dedicated to 
citrus crops (MAPA, 2022). Identifying the status of citrus crops at the 
parcel level with high accuracy is essential for the public administration 
to make decisions on agricultural policy and to supervise the payment of 
subsidies to farmers. This temporal and spatial-explicit information on 
ALA may help customize policy instruments for counteracting or 
reversing this process and to implement tailored monitoring and man
agement measures of the landscape (Volpi et al., 2023). 

In 2018, the European Commission approved the use of alternative 
methodologies to in situ verification for crop monitoring based on Earth 
Observation data (regulation No. 746/2018). First efforts on detecting 
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ALA via Earth Observation data focused on the use of Landsat (e.g., Yin 
et al., 2018, Grădinaru, et al., 2019, Prishchepov, et al., 2012) and 
MODIS (e.g., Löw et al., 2018, Alcántara, et al., 2012, Estel et al., 2012) 
data. These studies focused on the use of time series of low and 
moderate-resolution imagery to detect ALA in seasonal crops and large 
areas that do not require high spatial resolution. More recent studies 
show that the higher spatial resolution of Sentinel-2 imagery made 
possible to address the ALA issue (e.g., Szostak et al., 2017, Volpi et al., 
2023). These new capabilities motivated some authors to use these 
images to identify ALA at patch-level and pixel-level (Ruiz et al., 2020, 
Portalès-Julià, et. al., 2021). There are also experiences on the use of 3D 
data for the detection of ALA. The works of Kolecka et al. (2015) and 
Czesak et al. (2021) used LiDAR data to map the abandonment of sea
sonal crops. LiDAR data allowed to detect of advanced stages of ALA and 
secondary forest successions in areas with highly fragmented landscapes 
that were once occupied by crops. 

Despite the advances, the operational implementation of citrus crop 
monitoring is still challenging in highly fragmented landscapes. These 
are common in the CV, where the size of the parcels can be a limiting 
factor to apply Sentinel-2 imagery. Fragmented landscapes are also 
common in many European areas and some authors have studied the 
applicability limits of Sentinel-2 but for monitoring seasonal crops with 
higher spectral-temporal separability (Vajsová et. al., 2020). Also, in 
citrus crops parcels in production and abandoned have a very similar 
spectral response. In addition, unlike seasonal crops, citrus is a perennial 
crop that does not has a cycle throughout the year (e.g., wrought, 
planting, germination, growth, and harvest) which could help to 
distinguish them from abandoned fields. The VHSR data can produce 
better results because its sub-metric resolution can capture textures 
caused by planting patterns (also called planting frames) characteristic 
of fruit crops, which is not possible with Sentinel-2 10 m resolution. 
Furthermore, 3D point clouds can provide new information that can 
improve the identification of citrus crops’ status. Several studies have 
combined aerial and satellite imagery with 3D point clouds to improve 
crop type and other land cover classifications (Prins & Van Niekerk, 

2021). 
The objective of this paper is to evaluate the use of three VHSR data 

sources to identify the status of citrus crops: WorldView-3 (WV-3) im
agery including visible and near-infrared (VNIR) and short-wave 
infrared (SWIR) bands, Very High-Resolution Airborne (VHRA) imag
ery, and 3D point clouds generated applying Structure from Motion 
(SfM) on images captured by a Remotely Piloted Aircraft System – RPAS. 
The classification performance including texture features for each data 
type is also analyzed. Additionally, the study evaluates the fusion of 
multi-spectral data and 3D point clouds to identify citrus crops’ status. 
Two algorithms widely used in land cover classification problems are 
compared: Random Forest (RF) and Support Vector Machines (SVM). 
Finally, the relevance of the descriptors used for the classification and 
the class separability is statistically analyzed. 

2. Materials and methods 

2.1. Study area 

The study area is located in the CV region (Eastern Spain) (Fig. 1), 
between the coastal municipalities of Gandia and Oliva (38◦56′14.14′′N, 
0◦ 8′42.03′′W), which occupies around 10,000 ha. In this area various 
land uses coexist such as urban, forestry, and agricultural use. The 
majority crop in this zone is citrus which occupies more than 95 % of the 
agricultural area (Generalitat Valenciana, 2021). The agricultural area is 
located on the coastal plain which is characterized by its flat relief, soils 
with high agronomic capacity, and availability of water. These charac
teristics have made this region a historically agricultural area. In recent 
years there has been a general abandonment of citrus. The agricultural 
structure is characterized by the small size of parcels (average 
0.20–0.40 ha) and the high fragmentation of the landscape. 

2.2. Spatial data and feature extraction 

World View-3 images with values of top-of-atmosphere radiance 

Fig. 1. Study area between the municipalities of Gandia and Oliva in the Comunitat Valenciana region (eastern Spain). Centre of the image: 
38◦56′14.14′′N, 0◦ 8′42.03′′W. 
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were acquired on November 11, 2020. The acquired WV-3 image con
tains 8 VNIR bands (Coastal blue 425 nm, Blue 480 nm, Green 545 nm, 
Yellow 605 nm, Red 660 nm, Red- edge 725 nm, NIR1 835 nm, and NIR2 
950 nm) of 11-bits and 2 m resolution, one pan-chromatic band 
(450–800 nm) of 11-bits and 0.5 m resolution, and 8 SWIR bands 
(SWIR1 1210  nm, SWIR2 1570  nm, SWIR3 1660  nm, SWIR4 1730  nm, 
SWIR5 2165  nm, SWIR6 2205  nm, SWIR7 2260  nm, SWIR8 2330  nm) 
of 14-bits and 3.7 m resolution (Digital Globe, 2014). The WV-3 product 
was orthorectified and atmospherically corrected using the ATCOR2 
algorithm (Richter & Schläpfer, 2019a; Richter & Schläpfer, 2019b) to 
obtain surface reflectance images. To combine images with different 
spatial resolutions resampling processes were applied. The panchro
matic band with a resolution of 0.5 m was resampled at a resolution of 1 
m. The average was used as the aggregating criteria of the pixels. Then 
the VNIR (2 m) and SWIR (3.7 m) bands were resampled to 1 m using the 
nearest neighbor and de panchromatic band as reference. 

To produce new descriptors for the classifier, 7 texture features were 
computed from the panchromatic band. The texture is an important 
characteristic of images that informs about the spatial distribution of the 
different pixel intensity levels. This spatial information is not necessarily 
correlated with spectral data, so including texture descriptors could 
improve classification accuracy (Hall-Beyer, 2017). In this study, the 
Gray Level Co-Occurrence Matrix (GLCM) method (Haralick et al., 
1973) was used to compute texture features. These were calculated from 
64 gray levels in an invariant direction that is the average of the four 
directions: 0◦, 45◦, 90◦, and 135◦. This omnidirectional approach was 
chosen due to planting frames do not present a specific direction. Two 
first-order histogram texture features were calculated: mean, variance, 
and five GLCM texture features: entropy, contrast, dissimilarity, angular 
second moment (ASM), and homogeneity (Morell-Monzó et. al., 2021). 

Very High-Resolution Airborne (VHRA) Imagery was also used in 
this study. This data was provided by the Valencian Cartographic 
Institute (ICV) (Source: https://idev.gva.es/va Orthophoto 2020 CC BY 
4.0 © Institut Cartogràfic Valencià, Generalitat Valenciana). These im
ages were taken on a photogrammetric flight on May 6, 2020 with an 
UltraCam Eagle UC-E-1–50016095-f80 camera from the company Vex
cel Imaging GmbH © with a Qioptic Vexcel HR Digaron sensor. The ICV 
provides an annual VHRA image of the entire Valencian Region in tiles 
of 15160 × 10160 pixels. These images have a spatial resolution of 0.25 
m and 4 spectral bands (Blue 430 nm, Green 530 nm, Red 620 nm, Red- 
edge 720 nm). These images were radiometrically calibrated and 
geometrically corrected (RMSE < 4 cm) by Vexcel Imaging GmbH ©. 11 
tiles were processed and resampled to 1 m to reduce the computational 
requirements and the pixels’ spectral variability within each parcel. The 
value of the resampled pixels was based on the average value of the 
aggregated pixels. Finally, the same 7 texture features were computed 
from the Normalized Difference Vegetation Index (NDVI). The NDVI was 
computed by the normalized difference of the Red and Red-edge bands. 

A photogrammetric point cloud was obtained through 12 RPAS flights 
carried out in February 2021. The RPAS was a senseFly eBee X which in
corporates a S.O.D.A. RGB 20.1 MP and an RTK/PPK positioning system 
(3–8 cm positioning error). The flight height was around 123.7 m in nadir 
shots. A total of 5510 images were taken with 60 % lateral overlap and 80 % 
flight direction overlap. The images were processed using the SfM technique 
to obtain a 3D point cloud. No additional control points were required thanks 
to the RTK/PPK positioning system. An alignment error <6 cm was obtained. 
Then a dense point cloud (325 points/m2) with approximately 4723 million 
points was generated. The dense point cloud was homogenized and its 
density was reduced to decrease processing time. Homogenization 
was performed at a target density of 50 points/m2. The Progressive 
Morphological Filter (PMF) method (Zhang et al., 2003) was used to identify 
the ground points. It is well known that correctly identifying ground points 
from SfM point clouds can be a challenging task, especially in steeply sloping 
areas and dense vegetation. However, citrus crops in our study area have 
some characteristics that make this task easier. Citrus, which are irrigated 
crops, must necessarily be located in parcels with low slopes (<3%) to apply 

irrigation properly. In addition, agricultural practices require spaces 
between tree rows and at the parcel boundaries. These spaces make that a 
significant set of ground points are retrieved correctly. On the other hand, 
farmers need to keep their parcels free of vegetation to facilitate agricultural 
practices, which helps to reduce DTM overestimation. In this context, the 
PMF algorithm, which is one of the standard methods, provided sufficiently 
accurate results. The Digital Terrain Model (DTM) with a cell size of 1 m ×1 m 
was computed. Then the Digital Surface Model (DSM) was computed using 
the pit-free method (Khosravipour et al., 2014). Finally, the Canopy Height 
Model (CHM) and 9 statistics were extracted from the normalized point 
cloud: mean H, standard deviation H, maximum H, minimum H, range of H, 
variance H, skewness H, kurtosis H, and entropy of H, where H is the height 
above the ground. These features were stored in a 1 m raster grid. 
Additionally, the same 7 texture features computed from the CHM were 
calculated and added to the raster grid to produce new descriptors for the 
classifier. 

In order to generate useful information to detect, quantify and 
manage citrus crops abandonment, a classification was defined based on 
three types of parcels: non-productive (NP), productive (PR), and 
abandoned (AB) as shown in Fig. 2. Identify the AB parcels is useful for 
monitoring land abandonment. Furthermore, identify the NP and PR 
parcels allows making more accurate crop yield estimations. Citrus 
parcels were previously identified from the Land Parcel Identification 
System (LPIS) database of Spain known as Sistema de Información 
Geográfica de Parcelas Agrícolas (SIGPAC). 

Ground truth data were obtained through field campaigns conducted 
in February and March 2021. A systematic sampling of the area covered 
with the three data sources (WV-3, VHRA, and RPAS-SfM) was carried 
out. Verification was done through photointerpretation of RPAS images 
and the ICV orthophotos due to the different data acquisition of ground 
truth data and remote sensing. A total of 280 parcels without changes 
during the period May 2020 - February 2021 were selected. This dataset 
contains 60 NP, 120 PR, and 100 AB parcels. This unbalanced dataset 
keeps the proportions of each category observed in the field. 

2.3. Classification 

The classification approach used in this study is based on that pro
posed in Morell-Monzó et al. (2021) adapted to each data source. The 
general workflow consists of the following steps: 1) preprocessing raw 
data; 2) feature extraction (altimetric features, texture features, and 
pixel values for each band); 3) model training (RF or SVM) using pixels 
as training samples; 4) semantic segmentation of the image to create a 
pixel-based classification; 5) apply majority voting to obtain a single 
classification value per parcel. 

In this work two commonly employed classification algorithms were 
used, Random Forest (Breiman, 2001) and Support Vector Machines 
(Cortes & Vapnik, 1995). Although there is a growing trend towards the 
use of deep learning algorithms, RF and SVM are still benchmark algo
rithms for many remote sensing problems (Sheykhmousa et al., 2020). 
This is due to their good performance with small amounts of training 
data and ease of use for non-expert users as they require few hyper
parameters to be adjusted, they use non-sequential training, they are 
quite robust against overfitting they are computationally less 
demanding and they have higher interpretability compared with deep 
learning) (Sheykhmousa et al., 2020). In land cover classifications, RF 
and SVM are two of the most popular methods (Saini and Ghosh, 2018). 

The RF algorithm was applied using the randomForest R package 
(Liaw and Wiener, 2002). RF requires adjusting two main hyper
parameters: the number of trees (ntree) that make up the forest, and the 
number of variables randomly selected in each node split (mtry). In this 
study, the ntree was adjusted to 250 and mtry was adjusted to √M, where 
M is the number of input variables. The impurity is used to search the 
optimal threshold at each node of the tree. RF used the Gini Index as a 
measure of impurity. 

The SVM algorithm was applied using the e1071 R package (Meyer 
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et al., 2021). A SVM with a radial basin function kernel was used. It has 
two hyperparameters to adjust: the regularization parameter (C) and 
kernel bandwidth (γ). In this study the constant of regularization C was 
fixed to 1 and γ was adjusted to 1

M, where M is the number of input 
variables (data dimensionality). The tolerance of termination criterion 
was set by default in 0.001. 

2.4. Accuracy assessment and validation 

First, the optimal kernel size for extracting texture features was ob
tained. The following kernel sizes were evaluated: 3x3, 5x5, 7x7, 9x9, 
11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23 and 25x25. The 
optimal kernel size was the one that maximized the overall accuracy 
(OA) based on the RF classifier. 

Once the optimal kernel size was obtained, the performance of each 
data bundle and its respective combinations was evaluated using both 
RF and SVM. Each model was evaluated using a 4-folds cross-validation 
approach using random splits without replacement. In each iteration, 3/ 
4 of the parcels were used for training and 1/4 for validation, ensuring a 
balanced dataset with the same number of parcels of each class by 
iteration. The following performance metrics were calculated: OA, 
Cohen’s Kappa, precision (producer’s accuracy by class), and recall 
(user’s accuracy by class). 

OverallAccuracy =

∑
CMii

N
(1) 

Cohen’s Kappa can be generalized to the m classes, 

Cohen′ sKappa =
N
∑m

i=1CMii −
∑m

i=1CicorrCipred

N2 −
∑m

i=1CicorrCipred
(2) 

where N is the total number of samples, m is the number of classes, 
CMii the diagonal elements of the confusion matrix, and Cicorr and Cipred 
are the correct and predicted labels of the class i respectively. 

Precisioni =
TPi

TPi + FPi
(3)  

Recalli =
TPi

TPi + FNi
(4) 

where TPi are the true positives for the i class, FPi are the false pos
itives for the i class, and FNi are the false negative for the i class. 

A second validation step was performed. In this case a spatial cross- 
validation with 4 clusters was performed. This validation technique was 
applied to avoid an underestimation of the model error due to spatial 
correlation of the samples which is inherent to remote sensed data 
(Karasiak et al., 2021). Random cross- validation can lead to error un
derestimation when data are strongly aggregated (Wadoux et al., 2021; 
Stock, 2022), as in our case. In this validation step, only the performance 
of the most accurate data bundle from each data source was evaluated. 

Fig. 3 shows the different splits used in random and spatial cross- 
validation. Spatial clusters were generated by k-Means clustering from 
the XY coordinates of the parcels. This procedure allows to generate 
spatial groups of parcels with the greatest distance between groups. 
However, no balanced data splits are generated. 

2.5. Descriptors’ relevance and class separability 

To evaluate the relevance of each descriptor, the Jeffries-Matusita 
(JM) distance was used. JM distance measures the separability be
tween a pair of probability distributions. This method does not inform 
about the influence of a descriptor on the model performance but it 
collects the intrinsic structure of the variables. Unlike methods based on 
permutation or impurity (such as RF feature importance measures), this 
is a statistical method not biased against collinearity and cardinality. In 
addition, JM distance allows knowing the separability between pairs of 
classes, which favors the interpretation of the problem. The JM distance 
takes the range [0,√2] and is defined as: 

Jxy =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − e− Bxy )

√
(5) 

where Bxy is the multivariate Bhattacharyya distance, 

Bxy =
1
8
(x − y)t

(∑
x +

∑
y

2

)− 1

(x − y)+
1
2

In

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒

∑
x+
∑

y
2

⃒
⃒
⃒
⃒

|
∑

x|
1
2 + |

∑
y|

1
2

⎞

⎟
⎟
⎠ (6) 

where × is the first spectral signature vector, y is the second spectral 
signature vector, 

∑
x is the covariance matrix of ×, and 

∑
y is the 

covariance matrix of y. 

3. Results 

3.1. Kernel size analysis 

The kernel size used to extract texture features influences the per
formance of the model. The optimal kernel size depends on the size and 
shape of the parcels as well as the spatial resolution of the image. The 
theoretical behavior is that as the kernel size increases, a higher OA of 
the pixel-based classification is obtained due to the reduction of salt- 
and-pepper noise. For this reason, the larger kernel, produce the 
smaller improvements in OA of the parcel-based classification when 
majority voting is applied. However, if the window size increases too 
much, a decrease in parcel-based OA can occur. This can be explained 
considering that a too large window can include pixels from other cat
egories and adjacent parcels. So, the pixels at the edges of the parcels can 
be misclassified. 

The analysis of the kernel size used to extract the texture features is 
shown below (Fig. 4). The optimal window size to compute texture 

Fig. 2. Example of the three parcel types classified: non-productive (left), productive (center) and abandoned (right).  
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features from the panchromatic band of WV-3 image was 7x7. For the 
NDVI derived from the VHRA image was 11x11. However, in this case 
the OA of the parcel-based classification remained stable for all window 
sizes (0.975–0.986). For the CHM derived from the SfM the optimal 
window size was 11x11. For the SfM data, the OA of the parcel-based 
classification was even lower than the OA of the pixel-based classifica
tion (Fig. 3c) using a 25x25 kernel. On the other hand, the OOB error of 
the RF model decreased as the window size increased, so this measure is 
not recommended to adjust the kernel size as this will result in an un
derestimation of the error. This occurs because the OOB samples and the 
training samples are included in the same window. As the window size 
increase the OOB samples and the training samples are more correlated 
as they share more common neighbors. 

3.2. Classification accuracy 

The results of the random cross-validation for each data bundle are 
shown below (Fig. 5). The data source that produced the best results was 
the VHRA image (OA max = 0.986) followed by the WV-3 image (OA 
max = 0.954) and the SfM point cloud (OA max = 0.836). RF and SVM 
showed similar performance in VHRA image. But RF was slightly more 
accurate in the WV-3 images and SfM point clouds. Furthermore, RF is 
more convenient to larger datasets due to its lower time complexity. 
SVM has a time complexity O(dn2

) or O(dn3
) while RF has a time 

complexity of O(nlog(n)dk). 
All the WV-3-based data bundles produced an OA between 0.882 and 

0.954 (Table 1). The best performance was obtained using the VNIR 
bands, SWIR bands and GLCM texture features. This combination pro
duced an OA of 0.954 using RF and 0.947 using SVM. Similar results 
were obtained by the VNIR bands and GLCM texture features with an OA 
of 0.954 using RF and 0.939 using SVM. Finally, the data bundle with 
the lowest performance was obtained when the VNIR bands were used 
only with an OA of 0.896 using RF and 0.882 using SVM. 

Table 1 shows the performance by class of each WV-3 based data 
bundle. Adding GLCM texture features from the panchromatic band to 
VNIR multispectral data improved OA around 5.5 %. Adding texture 
features improved recall of NP class primarily. The texture features also 
improved the precision of the PR and AB classes and the recall of the AB 
class. Combinations which do not include texture features showed a 
larger commission error of the NP class due to the erroneous classifi
cation between PR and AB classes. Furthermore, the combinations 
incorporating VNIR bands without texture features generated a lower 
recall but higher precision for the NP class. In this case, the high com
mission error of the NP class was caused by the erroneous classification 
of the AB class and, to a lesser extent, of the PR class. Adding SWIR bands 
to the VNIR bands produced improvements in AB class detection 
(improving both precision and recall).. Finally, the model which in
cludes all the data bundles (VNIR, SWIR, and GLCM features) obtained 

Fig. 3. Data splits used in random cross-validation (left) and spatial cross-validation (right).  

Fig. 4. Overall accuracy (OA) of the pixel-based classification (before majority voting step) and parcel-based (after majority voting step) and Random Forest’s Out- 
Of-Bag error at each window size from 3x3 to 25x25. a) corresponds to the WorldView-3 data, b) corresponds to the Very High-Resolution Airborne Imagery, and c) 
corresponds to the Structure from Motion data. 
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the best performance and showed a good balance between user’s and 
producer’s accuracy. According to this model, the most difficult class to 
detect was AB. 

The VHRA image-based data bundles produced an OA between 0.882 
and 0.986 (Table 2). The best performance was obtained using the VNIR 
bands and GLCM texture features derived from NDVI. This combination 
produced an OA of 0.986 using both RF and SVM. The data bundle that 
uses only the VNIR bands obtained a lower recall for the NP class but a 

high precision. It produces a higher commission error for the NP class 
mainly due to the erroneous classification to PR class and AB class to a 
lesser extent. Adding texture features allowed to identify all the NP 
parcels correctly. Adding texture features also improved the precision 
and recall of the PR and AB classes, producing a good balance between 
precision and recall for all classes.Table 3.. 

The data bundles derived from SfM point cloud produced an OA 
between 0.754 and 0.836. The best performance was obtained using the 

Fig. 5. Overall accuracy of the classification based on Random Forest (RF) and Support Vector Machines (SVM) for each data bundle: a) WorldView-3 subsets, b) 
Very High-Resolution Airborne Image subsets, and c) SfM point cloud subsets. 

Table 1 
Accuracy metrics of WorldView-3 based data bundles using random cross-validation. NP, PR and AB correspond to the non-productive, productive and abandoned 
parcels respectively.   

OA  

(RF/ 
SVM) 

Kappa  

(RF/ 
SVM) 

NP 
Precision 
(RF/ 
SVM) 

PR 
Precision 
(RF/ 
SVM) 

AB 
Precision 
(RF/ 
SVM) 

NP 
Recall 
(RF/ 
SVM) 

PR 
Recall 
(RF/ 
SVM) 

AB 
Recall 
(RF/ 
SVM) 

VNIR bands 0.896 
0.883 

0.836 
0.827 

0.960 
0.951 

0.909 
0.900 

0.856 
0.846 

0.733 
0.742 

0.983 
0.973 

0.890 
0.893 

VNIR bands þ GLCM features 0.954 
0.939 

0.927 
0.915 

0.948 
0.951 

0.959 
0.949 

0.931 
0.908 

0.900 
0.867 

0.975 
0.974 

0.940 
0.965 

SWIR bands 0.929 
0.904 

0.905 
0.846 

0.864 
0.970 

0.949 
0.909 

0.909 
0.856 

0.853 
0.775 

0.978 
0.983 

0.940 
0.890 

VNIR bands þ SWIR bands 0.939 
0.916 

0.905 
0.833 

0.964 
0.960 

0.959 
0.931 

0.909 
0.858 

0.833 
0.775 

0.975 
0.973 

0.960 
0.890 

VNIR bands, SWIR bands þ GLCM features 0.954 
0.947 

0.927 
0.917 

0.968 
0.960 

0.973 
0.961 

0.924 
0.912 

0.965 
0.962 

0.973 
0.973 

0.927 
0.924  
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3D point cloud features and the GLCM texture features derived from the 
CHM. This combination produced an OA of 0.8336 using RF and 0.823 
using SVM. 3D data showed lower performance than the WV-3 and 
VHRAI. But these results show the potential of 3D point clouds data to 
monitor the status of citrus crops, specially including texture features 
derived from the CHM. Texture features improved the OA around 6.0 %. 

The 3D point clouds and texture features allows to identify the NP 
class with high accuracy (0.929 of precision and 0.966 of recall using 
RF). However, these data showed low ability to separate the PR and AB 
parcels. 

The results of the spatial cross-validation for the most accurate data 
bundle are shown below (Table 4). Spatial cross-validation show an 
average OA around 1.5 % lower than using the random cross-validation. 
These results suggest a small underestimation of the model error due to 
the spatial correlation of the parcels when using random cross- 
validation. Both RF and SVM were affected by this spatial correlation. 
In this case the most accurate data source was also the VHRA image (OA 
between 0.967–0.962) followed by the WV-3 image (OA between 
0.936–0.935) and the SfM point cloud (OA = 0.822). 

Fig. 6 shows the map of abandonment of citrus parcels in the study 
area. The map was generated by using the VHRA image and the Random 
Forest classifier. It can be seen that abandonment is concentrated mainly 
in coastal areas. In addition, there is a particularly high concentration of 
abandoned parcels near the protected wetlands of Marjal de la Safor 
(north of the map) and Marjal Pego-Oliva (south-east of the map). These 
results agree with our field work in the study area and our previous 
experiences (Morell-Monzó et al. 2021). 

3.3. Spectral, altimetric, and textural combination 

The performance obtained by combining spectral and 3D data is 
shown below (Table 5). The results indicate an improvement of 1.85 % 
in the OA when 3D point cloud features are added to the WV-3 images 
and an improvement of 0.55 % in the OA when these features are added 
to the VHRA image. The improvements produced by the 3D information 
were limited due to the good performance of the WV-3 images and the 
VHRA image, which have small margins of improvement. 

3.4. Descriptors’ relevance and class separability 

Regarding the WV-3 descriptors, the bands in the visible spectrum 
(coastal blue, blue, green, yellow, red) produced a greater separability 
between the NP-AB classes, followed by NP-PR and PR-AB (Fig. 7a). In 
the near-infrared spectrum (red edge, NIR1, NIR2) the separability is 
minimized for all class combinations. The first order texture features, 
mean and variance, produced a similar separability to the visible bands 
due to its high correlation to the panchromatic band. However, the 
second order texture features improved the separability between the PR- 
AB classes, which are more difficult to separate. This explains the per
formance improvement produced by the texture features. 

On the other hand, the SWIR bands produce a higher separability 
between the NP-AB classes, followed by PR-AB and NP-PR (Fig. 6b). This 
greater separability between the PR-AB classes explains the improve
ment in precision and recall of the AB class produced by the SWIR bands. 
There is a maximum separability of the PR-AB classes between 1570 nm 
and 2330 nm, which correspond to the SWIR2 and SWIR8 bands. In 

Table 2 
Accuracy metrics of Very High-Resolution Airborne Imagery based data bundles using random cross-validation. NP, PR and AB correspond to the non-productive, 
productive and abandoned parcels respectively.   

OA  

(RF/ 
SVM) 

Kappa  

(RF/ 
SVM) 

NP 
Precision 
(RF/ 
SVM) 

PR 
Precision 
(RF/ 
SVM) 

AB 
Precision 
(RF/ 
SVM) 

NP 
Recall 
(RF/ 
SVM) 

PR 
Recall 
(RF/ 
SVM) 

AB 
Recall 
(RF/ 
SVM) 

VNIR bands 0.882 
0.879 

0.814 
0.806 

1.000 
1.000 

0.806 
0.803 

0.944 
0.924 

0.867 
0.841 

0.958 
0.956 

0.800 
0.807 

VNIR bands þ GLCM features 0.986 
0.986 

0.978 
0.973 

1.000 
1.000 

0.992 
0.989 

0.971 
0.974 

1.000 
1.000 

0.975 
0.986 

0.990 
0.981  

Table 3 
Accuracy metrics of SfM point clouds-based data bundles using random cross-validation. NP, PR and AB correspond to the non-productive, productive and abandoned 
parcels respectively.   

OA  

(RF/ 
SVM) 

Kappa  

(RF/ 
SVM) 

NP 
Precision 
(RF/ 
SVM) 

PR 
Precision 
(RF/ 
SVM) 

AB 
Precision 
(RF/ 
SVM) 

NP 
Recall 
(RF/ 
SVM) 

PR 
Recall 
(RF/ 
SVM) 

AB 
Recall 
(RF/ 
SVM) 

Altimetric features 0.776 
0.754 

0.568 
0.557 

0.827 
0.822 

0.758 
0.717 

0.692 
0.692 

0.627 
0.631 

0.851 
0.843 

0.840 
0.835 

Altimetric þ GLCM features 0.836 
0.823 

0.738 
0.738 

0.929 
0.909 

0.840 
0.831 

0.786 
0.788 

0.966 
0.960 

0.504 
0.528 

0.892 
0.863  

Table 4 
Accuracy metrics for the best model of each data bundle. NP, PR and AB correspond to the non-productive, productive and abandoned parcels respetively using spatial 
cross-validation.   

OA  

(RF/ 
SVM) 

Kappa  

(RF/ 
SVM) 

NP 
Precision 
(RF/ 
SVM) 

PR 
Precision 
(RF/ 
SVM) 

AB 
Precision 
(RF/ 
SVM) 

NP 
Recall 
(RF/ 
SVM) 

PR 
Recall 
(RF/ 
SVM) 

AB 
Recall 
(RF/ 
SVM) 

WV-3 (VNIR bands þ SWIR bands þ GLCM features) 0.936 
0.935 

0.907 
0.900 

0.917 
0.926 

0.960 
0.957 

0.914 
0.921 

0.961 
0.945 

0.958 
0.961 

0.911 
0.913 

VHRAI (VNIR bands þ GLCM features) 0.967 
0.962 

0.951 
0.948 

1.000 
1.000 

0.958 
0.967 

0.949 
0.930 

1.000 
1.000 

0.942 
0.939 

0.964 
0.945 

SfM point cloud þ GLCM features 0.822 
0.822 

0.714 
0.718 

0.914 
0.918 

0.838 
0.835 

0.776 
0.781 

0.957 
0.954 

0.618 
0.615 

0.878 
0.865  
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addition, there is a low separability in the SWIR1 band, which is the 
closest to the near-infrared spectrum. 

Regarding the VHRA image-derived descriptors, the bands of the 
visible spectrum produced a greater separability between the NP-PR 
classes, followed by NP-AB and PR-AB (Fig. 7c). In this wavelength re
gion, the separability between the NP-AB and PR-AB classes was similar 
to that of WV-3. However, the separability between the NP-PR classes 
was higher. The VHRA image also show a minimum of separability for 
all classes in the NIR - Red-edge wavelengths. On the other hand, texture 
features extracted from NDVI improved the separability between NP-AB 
and PR-AB classes. The results seem to indicate that extracting texture 
features from NDVI produce better results than from the WV-3 
panchromatic band. This can be explained because NDVI produces a 
higher contrast between trees and bare soil. 

Regarding the SfM point cloud descriptors, the highest separability 
occurred between the NP-AB classes (Fig. 7d). The combinations of NP- 
PR and PR-AB classes produced lower separability. Finally, texture 
features improved the separability of the PR-AB classes. These results 
show a certain potential of the texture features extracted from the CHM. 

4. Discussion 

This study evaluated the capabilities of high spatial resolution de
scriptors for mapping the status of citrus parcels in a highly fragmented 
agricultural system. The results show the potential of WV-3 imagery 
(including VNIR and SWIR bands), VHRA imagery with four VNIR 
bands, and SfM-derived point clouds to identify citrus crop status. Both 
WV-3 and VHRA imagery showed a high potential (OA ≥ 0.90) to 
identify the crop status using a single image. 

The WV-3 image achieved an OA between 0.954 and 0.935 using the 
VNIR band, SWIR bands, and GLCM texture features extracted from the 
panchromatic band. This image was taken in February where rainfall 
and higher soil moisture occur. Although farmers often control scrub, 
these conditions produce vegetation growth not associated with land 
abandonment that can affect imagery performance. The WV-3 SWIR 
bands showed a high potential specially to detect the abandoned parcels. 
The separability analysis showed that SWIR bands produce a higher 
separability between PR and AB crops, which are the most spectrally 
similar classes. These results can be explained as SWIR bands are related 

Fig. 6. Map of abandonment of citrus parcels between the municipalities of Gandia and Oliva in the Comunitat Valenciana region (Spain). The map was obtained 
using the Very High-Resolution Imagery of the Valencian Cartographic Institute of 2020 and the Random Forest classifier, which proved to be the most accu
rate results. 

Table 5 
Random Forest-based accuracy metrics obtained by combining spectral, 3D point cloud and textural descriptors. R-CV are the results obtained through random cross- 
validation and S-CV are the results obtained through spatial cross-validation. S + A is the accuracy metric obtained by combining spectral features, its texture features, 
3D point cloud features, and its CHM texture features and Δ is the percentage of improvement produced by adding altimetric features to the spectral information. NP, 
PR and AB correspond to the non-productive, productive and abandoned parcels respectively.   

OA  

(S + A/ 
Δ%) 

Kappa  

(S + A/ 
Δ%) 

NP 
Precision 
(S + A/ 
Δ%) 

PR 
Precision 
(S + A/ 
Δ%) 

AB 
Precision 
(S + A/ 
Δ%) 

NP 
Recall 
(S + A/ 
Δ%) 

PR 
Recall 
(S + A/ 
Δ%) 

AB 
Recall 
(S + A/ 
Δ%) 

WV-3 þ Altimetric features (R-CV) 0.971 
+1.70 

0.955 
+2.80 

1.000 
+3.2 

1.000 
+2.70 

0.931 
+0.70 

0.895 
− 7.00 

1.000 
+2.70 

1.000 
+7.30 

WV-3 þ Altimetric features (S-CV) 0.956 
+2.00 

0.927 
+2.00 

0.981 
+6.4 

0.968 
+0.80 

0.943 
+2.90 

0.972 
+1.20 

0.971 
+1.30 

0.902 
− 0.90 

VHRAI þ Altimetric features (R-CV) 0.993 
+0.70 

0.989 
+1.10 

1.000 
+0.00 

0.992 
+0.00 

0.990 
+1.90 

0.983 
− 1.70 

1.000 
+2.50 

0.994 
+0.40 

VHRAI þ Altimetric features (S-CV) 0.971 
+0.40 

0.961 
+1.09 

1.000 
+0.00 

0.968 
+0.80 

0.946 
− 0.30 

1.000 
+0.00 

0.969 
+2.90 

0.950 
− 1.40  
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to vegetation and soil moisture. The abandoned parcels do not receive 
irrigation while in productive parcels the farmers irrigate their crops 
avoiding a water stress situation. This fact suggests that the separability 
between PR and AB parcels could be greater in the dry season where 
there is hardly any rainfall. These facts, encourage the study of ALA in 
evergreen crops through time-series of vegetation and moisture indices. 

The VHRA image achieved an OA between 0.986 and 0.962 using the 
VNIR bands (R, G, B, NIR) and the GLCM texture features extracted from 
the NDVI. The VHRA image was the most accurate data source. How
ever, these images have lower radiometric quality than WV-3. These 
images do not have surface reflectance products. In addition, the images 
are taken during photogrammetric flights carried out on different dates 
and therefore with different atmospheric conditions and different solar 
angles, even using different sensors every year. These characteristics 
make it difficult to create a spatially and temporally transferable model. 
However, the excellent results obtained allow a monitoring plan for 
citrus crops in the entire Valencian territory by using several locally 
trained models. Alternatively, the radiometric quality of the VHRA im
agery could be enhanced by applying image fusion techniques (e.g., 

Wang and Atkinson, 2018; Houborg et al., 2018; Zhao et al., 2022) that 
allows fusion with Sentinel-2. 

SfM point clouds achieved a lower performance than optical spectral 
data. SfM point clouds achieved an OA between 0.836 and 0.822 using 
altimetric features and GLCM texture features extracted from the CHM. 
Combining multispectral and altimetric data produced a slight 
improvement in model performance. However, generating 3D point 
clouds using SfM is computationally and operationally demanding, so it 
is not suitable for large areas. This fact may not justify the use of 3D 
point clouds generated by SfM for this problem. An alternative for large- 
scale studies would be to use Airborne Laser Scanning (ALS) data to 
extract texture features from the CHM. The classification performance 
obtained is promising and highlights the importance of texture features 
extracted from CHM for identifying spatial patterns of crops. This in
formation could complement moderate-resolution imagery such as 
Sentinel-2, of free access, large coverage, and high temporal resolution 
when spatial planting patterns are a key feature. Texture features 
extracted from the CHM allowed to model citrus planting frames. 
However, we assume that there may be a CHM underestimation under 

Fig. 7. Class separability produced by each descriptor according to the Jeffries-Matusita distance. a) WorldView-3 VNIR bands and GLCM features, b) WorldView-3 
SWIR bands, c) Very High-Resolution Airborne Image bands and GLCM features. d) SfM point cloud altimetric and GLCM features. Jeffries-Matusita distance varies 
between 0 and √2, where 0 is null separability and √2 is maximum separability. 
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certain circumstances. The first is the DTM overestimation in the pres
ence of dense vegetation. The second is the smoothing effect of the tree 
canopies produced by the SfM algorithm. Although the characteristics of 
citrus crops make it easy to obtain a consistent CHM, in other scenarios 
this can be a limiting factor. The use of ALS systems with higher pene
tration (even more for Full-Waveform LiDAR systems), could also be an 
alternative to compute a more accurate DTM. Another alternative is the 
use of the algorithm proposed by Tan et al. 2018 to remove misclassified 
ground points on vegetation using the spectral information of the images 
captured by the RPAS. 

Including texture features produced improvements in all tested 
models, especially when they were computed from the NDVI. The de
scriptors relevance showed that texture features complement the spec
tral data and covers gaps where spectral information does not produce 
enough separability between classes. These results agree with our pre
vious experiences (Morell-Monzó et al., 2021) and confirm the impor
tance of texture features extracted from very high spatial resolution data 
to identify the status of evergreen crops (e.g., citrus crops). The impor
tance of textures lies on their ability to model spatial planting patterns 
(planting frames) typical of fruit crops. 

This work provides new research to identify the status of citrus crops 
and other evergreen crops at parcel level using remote sensing data. In 
particular, the work provides advances towards the operational imple
mentation of checks by monitoring in the context of Common Agricul
tural Policy and the quantification of agricultural land abandonment in 
the Valencian Community region. One of the biggest challenges of 
remote sensing applications is to create accurate models that require 
little training data, reduce recalibration efforts, and that are spatially 
and temporally transferable. In the first steps of application of these 
products for monitoring the status of agricultural parcels, it is necessary 
to validate the models with more data and in other areas, since a lower 
performance is expected outside the study area and other dates. Future 
efforts should focus on quantifying the spatial–temporal transferability 
of the models. Furthermore, future research should clarify the optimal 
acquisition date of the images according to the rainfall and temperature 
regime. 

5. Conclusions 

This work assessed the potential of high-resolution spectral, SfM 
point clouds and textural descriptors to identify the status of citrus 
parcels in the Comunitat Valenciana region (Spain). Different analyzes 
involving combinations of WorldView-3, Very High-Resolution Airborne 
Imagery and RPAS-SfM point clouds data were carried out to assess the 
impact of combining the different data sources on classification accu
racy. It was shown the high potential of WV-3 and VHRA imagery to 
identify citrus crops’ status (greater than 0.900) from a single image. 
The SfM data showed a lower potential (≈ 0.825) by itself. Combining 
multispectral and 3D point clouds produced little improvement in the 
classification accuracy. The WV-3 SWIR bands showed a high potential 
to detect abandoned parcels as they produce more spectral separability 
over the productive parcels in the 1570 nm – 2330 nm spectrum. The 
results also show the importance of GLCM texture features extracted 
from sub-metric images due to their ability to model spatial planting 
patterns typical of fruit crops. 

This work provides new research for the operational implementation 
of checks by monitoring and quantification of agricultural land aban
donment in the CV region. The experience of this research can help the 
implementation of tools that enable monitoring the citrus crop status in 
other areas and other similar perennial crops. The research provided 
useful information on which sources of remotely sensed data are most 
effective for citrus crop status classification, either on its own or in 
combination. It also showed the performance of two machine learning 
algorithms: Random Forest and Support Vector Machines. This provides 
valuable information for selecting the appropriate combination of 
remotely sensed data sources and machine learning algorithms. 
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