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ABSTRACT In recent years, in-vehicle networks are increasingly being incorporated to self-driving cars
in order to interconnect spatially distributed devices such as sensors, actuators, and controllers, leading
to networked control systems (NCS). The main aim of this work is to reduce the use of resources in a
NCS (bandwidth, device batteries) while maintaining an accurate path following for a self-driving car.
Some typical network-induced drawbacks such as time-varying delays, packet dropouts and packet disorder
will also be coped with. In order to reach the goals, a systematic integration of periodic event-triggered
sampling techniques, packet-based control strategies, and state estimation methods is proposed. A novel
non-uniform dual-rate extended Kalman filter (NUDREKF) is formulated to estimate the system state at fast,
control rate from scarce slow-rate measurements. Due to its mathematical simplicity and low computational
cost, the dynamic control law is designed from an inverse kinematic bicycle model and a proportional
feedforward controller. Interestingly, optimal parameters for the event-triggered conditions are reached,
leading to a satisfactory trade-off between resource savings and control performance. Simulation results
for a real trajectory considering actual limitations for the actuators reveal the benefits of the control proposal
compared to a conventional control approach.

INDEX TERMS Event-triggered communication, Kalman filter, networked control system, resource
efficiency, self-driving car.

I. INTRODUCTION
In the last years, with the growth of artificial intelligence and
big data, autonomous vehicles are considerably attracting the
scientific community [1], [2]. Their application covers a wide
range of fields such as self-driving cars, agriculture, industry,
and military tasks. Among their functionalities, it may be
stood out obstacle avoidance and trajectory planning [3],
motion prediction [4], and path tracking [5]. The present
work is focused on a path tracking scenario where time is not
considered, becoming a path-following problem.

Due to the development of network communication
technologies, in-vehicle networks are increasingly being
incorporated to self-driving cars [6]. By means of these spe-
cialised internal communication networks, different devices
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inside a vehicle (sensors, actuators, controllers) can be
interconnected, leading to a networked control system
(NCS) [7]. The main advantages of this control setup
are wiring and weight reduction, easier maintenance, and
resource sharing. However, NCS can be affected among oth-
ers by time-varying delays [8], [9], packet dropouts [10], [11],
packet disorder [12], [13], limited communication resources
[14], [15], and sensor and actuator attacks [16], [17].
These drawbacks may degrade control performance.

As a consequence of the considerable amount of data
that must be transmitted over the in-vehicle network, the
occupancy of its resources may be intensified [14], [15].
Then, the use of dual-rate control and estimation techniques
[18], [19] may be a viable solution. Assuming a slow rate
for sensing and communication, and an M times faster rate
for control and actuation, the amount of packets sent through
the network, and hence, the bandwidth and battery usage,

VOLUME 11, 2023


 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

108011

https://orcid.org/0009-0001-0640-2129
https://orcid.org/0000-0003-4466-2666
https://orcid.org/0000-0002-9640-2658
https://orcid.org/0000-0003-0206-6639
https://orcid.org/0000-0003-0618-7454


G. Alite et al.: Resource-Efficient Path-Following Control for a Self-Driving Car in a NCS

can be reducedM times, while keeping an acceptable control
performance. In addition, packet disorder can be avoided
by defining the slow rate greater than the maximum time
delay.

Integrating dual-rate techniques with event-triggered con-
trol and communication methods [20] enables to increase
resource savings even more in the NCS, since only
some of the packets will be sent through the network
when some event-triggered conditions are satisfied. Event-
triggered control and communication is a trending research
area, which is being applied to diverse fields such as self-
driving vehicles [15], [21], cyber-physical systems [22],
robotic manipulators [23], multi-agent systems [24], hard-
disk drives [25], and so on. In the present work, this
technique will be used from the point of view of periodic
event-triggered communication (PETC) [26], where the
event-triggered conditions are periodically evaluated. In this
way, the PETC mechanism ensures a minimum inter-event
time, which avoids the well-known Zeno behaviour, and
makes easier the digital implementation [27]. In our work,
using Montecarlo-like methods, optimal parameters for the
event-triggered conditions are achieved, which results in an
acceptable trade-off between resource savings and control
performance.

As a consequence of integrating dual-rate and event-
based techniques, the control side will receive scarce and
slow-rate data from the plant side. In order to implement
a faster-rate dynamic controller to assure a desired control
performance, the estimation of the non-available data is
necessary. For vehicle dynamic state estimation purposes,
different strategies can be used [28]. In this work, the
celebrated extended Kalman filter (EKF) [29] is utilised, but
including a novel non-uniform dual-rate mode (NUDREKF)
with the aim of estimating the vehicle state at fast, control
rate from the scarce, non-uniform slow-rate measurement
signal. Then, the non-linear nature of the self-driving car
and possible Gaussian-like measurement and modelling
uncertainties can be coped with in a non-uniform dual-rate
sampling scheme. Additionally, the NUDREKF incorporates
an h-step ahead prediction stage in order to calculate a
control signal with h estimates to be applied in future time
instants. The control signal will be sent to the actuators
using a packet-based control technique [30]. By using this
technique, the set of h fast-rate control values can be sent in
a single packet at the slower rate, reducing network usage.
When the packet is received at the actuator, it replaces the
previous one. If packet dropouts or delays are produced
when new packets are sent, or the packets are not sent as a
consequence of not satisfying the event-triggered conditions,
the h control actions will be applied by the actuator in the
corresponding instants. The use of smart actuators is required
so as to carry out the described management of the recei-
ved data.

The NUDREKF provides the path-tracking algorithm
(Pure Pursuit [31] in our work) with the estimated position,

orientation and velocity of the vehicle. Then, the Pure Pursuit
algorithm is able to generate the next dynamic reference
to be followed. In addition, the NUDREKF provides the
dynamic controller with the estimated velocity and yaw rate.
From these estimates and the reference, the dynamic
controller is able to compute the steering angle to be applied
to the vehicle. In this work, due to its mathematical simplicity
and low computational cost, a straightforward dynamic
control law based on the inverse kinematic bicycle model and
a proportional feedforward controller is proposed. However,
for this kind of scenarios, other approaches can be found
in literature, as the widely used model predictive controller
(MPC) [32], [33], [34], or other methods based on fuzzy
and sliding mode control [35], robust H∞ control [16], etc.
These control alternatives usually imply greater mathematical
and algorithmic complexity (see, e.g., in [36], where a
comparison between MPC and the control law proposed in
the present work is made).

To the best of the authors’ knowledge, few works dealing
with non-uniform dual-rate sampling via EKF can be found
in literature. Only in [37] and [38], similar approaches to face
delayed measurements are introduced, but not considering
autonomous vehicle scenarios. In [39], a NUDREKF is
employed for a four-wheeled holonomic robot, but using a
more complex mathematical formulation, based on multi-
rate system modelling, and not contemplating an NCS
environment.

As a summary, the main contributions of the present work
are:

• Consideration of a novel NUDREKF, which includes an
h-step ahead prediction stage, for path-following control
of a self-driving car.

• Integration of the NUDREKF in an NCS framework,
using PETC and packet-based control.

• Obtainment of optimal parameters for the event-
triggered mechanisms in both network links so as to
reach a satisfactory trade-off between resource savings
and control performance.

The paper is organised as follows. In Section II, the prob-
lem scenario and notation are introduced.
In Section III, the kinematic and dynamic model of the
self-driving car is presented. In our work, this formulation
models the 2017 Lincoln MKZ car [40], which is available
at the Mechanical System Control (MSC) Lab, University
of California, Berkeley (UCB). In Section IV, the different
elements that integrates the control solution are stated.
In Section V, some simulations are carried out using Truetime
[41] to implement the NCS environment. Optimal parameters
for the event-triggered conditions are obtained, and the
control proposal is compared to a conventional control
solution, where a real trajectory located at Richmond Field
Station (UCB) and actual limitations for the actuators are
considered so as to give more realism to the simulation.
Finally, in Section VI, the main conclusions of the paper and
possible future works are highlighted.
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FIGURE 1. Problem scenario.

TABLE 1. Notation.

II. PROBLEM SCENARIO AND NOTATION
Figure 1 shows the problem scenario. Notation employed is
presented in Table 1. Let us consider the plant side as the
network side that includes sensors and actuators of the self-
driving car. The controller side is the network side where the
control solution is implemented. Both sides are connected via
a in-vehicle network.

Although the sensing devices usually work at different
rates, let us only take into account the measurements
that coincide at the slowest rate, being equivalent to the
period MT . The actuators are able to apply control actions
at period T under zero order hold (ZOH) conditions. Then,
M ∈ N+ is the multiplicity between the periods involved in
the dual-rate sampling scheme.

Let us denote k ∈ N and K ∈ N as the current time
instant for variables defined at period T andMT , respectively.
The event-triggered conditions will be evaluated at MT , and
hence, the information can travel through the network at some
instants KMT .
As commented, the control solution includes the

NUDREKF with the h-step ahead prediction stage. The
value of the prediction horizon h depends on the parameters
considered in the NCS and can be set by carrying out
some previous tests. As a dual-rate scheme, a minimum
of M estimates at period T must be generated from an
array of measurements taken at period MT . Then, h ≥ M .

The different vehicle variables involved in the control
solution will be defined in Section III.

A. TIME-VARYING DELAYS, PACKET DROPOUTS,
AND PACKET DISORDER
The round-trip time delay τ (K ) induced by the NCS can be
defined as

τ (K ) = τ sc(K ) + τ ca(K ) + τ c(K ) (1)

where τ sc(K ) is the sensor-to-controller delay, τ ca(K ) is
the controller-to-actuator delay, and τ c(K ) is a possible
computation delay caused by the control solution, which can
be lumped together with the network delays. The delay τ (K )
is assumed to be time-varying in the range [0, τmax], being
τmax the maximum time delay. In this work, in order to avoid
packet disorder, the sensing period is chosen to be greater than
the maximum time delay, i.e. MT > τmax . The probability
density function for the delay τ (K ) is given by

P[τ (K )] =


1
φ
e

−(τ (K )−η)
φ , τ (K ) ≥ η

0, τ (K ) < η

(2)

where the expected value of the delay is E[τ (K )] = φ + η,
the variance of the delay is V [τ (K )] = φ2, and η is the
median value of the delay. From these parameters, φ can be
calculated [42].

Packet dropouts can be modelled by means of a Bernoulli
distribution [42]. Considering d sc(K ) and dca(K ) respectively
as the possible sensor-to-controller and controller-to-actuator
dropouts, the probability of dropout for each network link can
be expressed as

psc = Pr[d sc(K ) = 0] ∈ [0, 1)

pca = Pr[dca(K ) = 0] ∈ [0, 1) (3)

B. PERIODIC EVENT-TRIGGERED COMMUNICATION
(PETC)
The PETC mechanism is implemented at both network sides,
being evaluated at period MT . Let us respectively consider
λz(K ), λu(K ) ∈ [0, 1] as the scheduling variable at the
sensor and controller. When λz(K ) = 1, the packet with
the measurements at instants KMT , z(K ), is transmitted over
the sensor-to-controller link, and when λu(K ) = 1, the packet
with a set of h+ 1 estimated control actions, [û(k), û(k + 1),
. . . , û(k + h)], is transmitted over the controller-to-actuator
link. Otherwise, when λz(K ) = 0 or λu(K ) = 0, no packet is
transmitted. The last sent sensor data are stored in z̄(K ), and
the first control action of the last transmitted set is stored in
ū(K ). Then

z̄(K ) = λz(K )z(K ) + (1 − λz)z̄(K − 1)

ū(K ) = λu(K )u(K ) + (1 − λu)ū(K − 1) (4)

forK ∈ N≥1, being u(K ) = û(k), and considering z̄(1) = z(1)
and ū(1) = u(1).
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The periodic event-triggered condition for the sensor is
based on a mixed-triggered mechanism [43], and is evaluated
by considering every sensor measurement of the array, zi(K ):

sz∑
i=1

∥z̄i(K − 1) − zi(K )∥2 >
sz∑
i=1

σzi∥zi(K )∥2 + µzi (5)

where sz=size(z(K )), and σzi ∈ [0, 1], µzi ∈ R+, [44].
In the same way, the periodic event-triggered condition for
the controller is defined as follows

su∑
i=1

∥ūi(K − 1) − ui(K )∥2 >
su∑
i=1

σui∥ui(K )∥2 + µui (6)

being su=size(u(K )), ui(K ) is the i-element of the array u(K )
(similarly for ūi(K )), and σui ∈ [0, 1], µui ∈ R+, [44].

C. CONTROL STRUCTURE
Next, the overall working mode of the control structure is
briefly described:

• If the event-triggered condition at the sensors (5) is
satisfied, the packet with the vehicle measurements
taken at instants KMT , z(K ), is transmitted over the
sensor-to-controller link.

• From z(K ), the vehicle state correction is carried out by
the NUDREKF, taking into account the possible delay
τ sc(K ). The estimated state is defined at period T , ξ̂ (k).
At time instants kT between two packet deliveries, or if
the packet is lost (d sc(K ) = 0), the vehicle state
prediction is computed by the NUDREKF. More details
in Section IV-C.

• From ξ̂ (k), the Pure Pursuit path-tracking algorithm can
generate the next reference to be followed, r̂ref (k), and
then, the dynamic controller can compute the control
signal û(k). For details, see Sections IV-A and IV-B.

• Then, the h-step ahead prediction stage iterates h times
the control loop, resulting in the matrices with h + 1
estimated references (7), h + 1 state estimates (8), and
h + 1 estimated control actions (9). More details in
Section IV-D.

R̂ref (k, h) =


r̂ref (k)

r̂ref (k + 1)
. . .

r̂ref (k + h)

 (7)

4̂(k, h) =


ξ̂ (k)

ξ̂ (k + 1)
. . .

ξ̂ (k + h)

 (8)

Û (k, h) =


û(k)

û(k + 1)
. . .

û(k + h)

 (9)

• If the event-triggered condition at the controller (6) is
satisfied, the set of control actions Û (k, h) is transmitted
to the smart actuators. When the packet is received,

FIGURE 2. Bicycle model [45].

it replaces the previous one, and then, the actuators are
able to apply the correspondent control action at period
T irrespective of the possible delay τ ca(K ) or future
packet dropouts, dca(K ) = 0. If the h + 1 control
actions were applied and no new packet were received at
the plant side, the actuators would hold the last control
action, û(k + h), until a new packet were received.

III. SELF-DRIVING CAR MODELLING
A. KINEMATIC MODEL
In order to represent the kinematic model of the self-
driving car, let us consider the kinematic bicycle model (see
Figure 2):

ẋ = V cos(ψ + β) (10)

ẏ = V sin(ψ + β) (11)

ψ̇ = r =
V cos(β)
lf + lr

(tan(δf ) − tan(δr )) (12)

β = arctan
(
lf tan(δr ) + lr tan(δf )

lf + lr

)
(13)

where (x, y) are the coordinates of the center of mass in an
inertial frame, ψ is the inertial heading, V is the speed of the
vehicle, lf and lr represent the distance from the center of the
mass of the vehicle to the front and rear axles, respectively,
and β is the angle of the current velocity of the center of mass
with respect to the longitudinal axis of the car. Let us assume
the rear steering angle as δr = 0. Then, in the sequel, the front
steering angle will be δf = δ.

B. DYNAMIC MODEL
With the aim of extending the kinematic model, it is required
an equation to relate the derivative of the yaw rate in body
frame coordinates of the vehicle, ṙ , with the lateral tire
forces at the front and rear wheels, Fyf and Fyr , respectively.
Different alternatives can be used (see, e.g., [45]). In this
work, the Stanford model [46] is chosen:

ṙ =
mlf tan δ

Iz
(ax − rVy) +

lf Fyf
Iz cos δ

−
lrFyr
Iz

(14)
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Fyf = −Caf arctan
(

Vy + rlf
max(Vx ,Vmin)

)
− δ (15)

Fyr = −Car arctan
(

Vy−rlf
max(Vx ,Vmin)

)
(16)

where Vx and Vy are respectively the longitudinal and lateral
velocities (to be defined in (17)-(18)), Iz is the yaw inertia,
m represents the vehicle’s mass, Caf and Car are respectively
the tire cornering stiffness of the front and rear axles, Vmin is
the minimum velocity (Vmin = 2.23 m/s), and ax is the
longitudinal acceleration, which together with δ will be
considered as the control signal. In this work, let us assume
ax to remain constant along the simulation.
In order to give more robustness to the control solution,

two different versions of the dynamic model have been used:
one of them for state estimation by the NUDREKF and the
h-step ahead prediction stage, and the other one to represent
the plant in simulations. The discrete version at period T of
the Stanford model used for state estimation is described by:

Vx(k) = Vx(k − 1) + T · ax(k − 1) (17)

Vy(k) = Vy(k − 1) + T [tan(δ(k − 1))(ax(k − 1)

− r(k − 1)Vy(k − 1)) +
Fyf

m cos(δ(k − 1))

+
Fyr
m

− r(k − 1)Vx(k − 1)] (18)

x(k) = x(k − 1) + T [Vx(k − 1) cos(ψ(k − 1))

− Vy(k − 1) sin(ψ(k − 1))] (19)

y(k) = y(k − 1) + T [Vx(k − 1) sin(ψ(k − 1))

− Vy(k − 1) cos(ψ(k − 1))] (20)

ψ(k) = ψ(k − 1) + T · r(k − 1) (21)

r(k) = r(k − 1) + T
[
mlf tan(δ(k − 1))

Iz
(ax(k − 1)

−r(k − 1)Vy(k − 1)) +
lf Fyf

Iz cos(δ(k − 1))
−
lrFyr
Iz

]
(22)

where the vehicle model states and the control actions will be
respectively defined as:

ξ (k) = (Vx(k),Vy(k), x(k), y(k), ψ(k), r(k))

u(k − 1) = (ax(k − 1), δ(k − 1))

As commented, in this work, ax(k) = ax(k − 1), ∀k .
The model used to represent the plant in simulations is

similar to the previous one (see, e.g., in [45], [47]), but
replacing (14) by

ṙ =
lf Fyf cos(δ) − lrFyr

Iz
(23)

and then, (22) gives place to

r(k) = r(k − 1) + T
[
lf Fyf cos(δ(k − 1)) − lrFyr

Iz

]
(24)

Additionally, the lateral acceleration of the vehicle, ay, is also
included

ay(k) = −Vx(k − 1)r(k − 1) +
Fyf cos(δ(k − 1)) + Fyr

m
(25)

IV. RESOURCE-EFFICIENT PATH-FOLLOWING CONTROL
SOLUTION
A. PURE PURSUIT PATH-TRACKING ALGORITHM
This algorithm is in charge of computing the yaw rate
reference, r̂ref , to be followed by the dynamic controller.
From an offline predefined path (xref ,yref ) formed by n
points, a coherent look ahead distance (LAD), and the esti-
mated vehicle position, orientation and longitudinal velocity
(x̂, ŷ, ψ̂, V̂x) provided by the NUDREKF, the algorithm
follows these steps [31]:

1) Taking the index i = 1..n to access up to the n points
of the predefined path, the total distance disttot (k)
from the current position (x̂(k), ŷ(k)) to the target point
(xref (i), yref (i)) is calculated:

distx(k) = |x̂(k) − xref (i)| (26)

disty(k) = |ŷ(k) − yref (i)| (27)

disttot (k) =

√
(distx(k))2 + (disty(k))2 (28)

When disttot (k) > LAD, the reference for the current
iteration (xref (k), yref (k)) is saved:

xref (k) = xref (i) (29)

yref (k) = yref (i) (30)

2) Then, the next yaw rate reference, r̂ref (k + 1),
is computed:

α(k) = arctan2

(
yref (k) − ŷ(k)
xref (k) − x̂(k)

)
− ψ̂(k)

(31)

r̂ref (k + 1) =
2V̂x(k) sin(α(k))

disttot (k)
(32)

where the function arctan2 represents the fourth-
quadrant inverse tangent.

B. DYNAMIC CONTROLLER
As a dynamic controller, a control law based on the inverse
kinematic bicycle model and a proportional feedforward
controller is used [36]:

δ̂(k + 1) = [arctan2

(
r̂ref (k + 1)L

V̂x(k)

)
+ Kp(r̂ref (k + 1) − r̂(k))]γ (33)

where L is the vehicle’s longitudinal length (i.e., L = lr + lf ),
V̂x(k) and r̂(k) are provided by the NUDREKF and were
respectively defined in (17) and (22), r̂ref (k+1) is provided by
the Pure Pursuit path-tacking algorithm in (32), Kp is the gain
of the proportional feedforward controller, and γ is a vehicle
coefficient that translates the tire angle into the steering angle.
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C. NON-UNIFORM DUAL-RATE EXTENDED KALMAN
FILTER (NUDREKF)
In this work, a NUDREKF is employed in order to provide
the dynamic controller with state estimations at period T
from scarce vehicle measurements taken at instants KMT
and sent over the network when the periodic event-triggered
communication is successful. The filter only corrects its gain
and the vehicle states when the data are received. Otherwise,
state prediction is performed.

Possible process and measurement noises, n1(k) and n2(k),
respectively, are coped with. The noises are assumed to be
zero mean multivariate Gaussian, being their covariances
Q(k) and R(k), respectively.
Let us use the notation ξ̂ (j|i) to indicate the state estimates

for the instant j computed at the instant i. Then, from the
non-linear dynamic model described for the self-driving
car in (17)-(22), adding the noises n1(k) and n2(k), and
synthesizing in this way{

ξ (k) = f (ξ (k − 1), n1(k − 1), u(k − 1))
z(k) = h (ξ (k), n2(k))

(34)

the NUDREKF is formulated as follows:

1) Computations at instants kT ̸= KMT , or kT =

KMT when a sensor-to-controller dropout is produced
(d sc(K ) = 0) or the event-triggered condition (5) is not
satisfied:

• Prediction of the next state ξ̂ (k|k − 1) and
propagation of the covariance P(k|k − 1)

ξ̂ (k|k − 1) = f (ξ̂ (k − 1|k − 1),

× n1(k − 1), û(k − 1))

P(k|k − 1) = A(k)P(k − 1|k − 1)A(k)⊤

+ L(k)Q(k − 1)L(k)⊤ (35)

where (· )⊤ means transpose function, and

ξ̂ (0) = E[ξ (0)]

P(0) = E
[
(ξ (0) − E[ξ (0)]) (ξ (0) − E[ξ (0)])⊤

]
being E[· ] the expectation. Jacobian matrices A(k)
and L(k) are respectively used to linearize the
process model about the current state and about the
process noise

A(k) =
∂f
∂ξ

∣∣∣∣
ξ̂ (k−1|k−1),n1(k−1),û(k−1)

L(k) =
∂f
∂n1

∣∣∣∣
ξ̂ (k−1|k−1),n1(k−1),û(k−1)

(36)

• Shift of the estimated state and covariance

ξ̂ (k|k) = ξ̂ (k|k − 1)

P(k|k) = P(k|k − 1) (37)

2) Computations at instants kT = KMT when the
event-triggered condition (5) holds and no sensor-to-
controller dropout is produced (d sc(K ) = 1):

• Prediction of the output

ẑ(k) = h
(
ξ̂ (k|k − 1), n2(k)

)
(38)

• Correction of the filter gain

K̄ (k) = P(k|k − 1)H (k)⊤(H (k)P(k|k − 1)H (k)⊤

+M (k)R(k)M (k)⊤)−1 (39)

where the Jacobian matrices H (k) and M (k)
enables to respectively linearize the output model
about the next predicted state and about the
measurement noise

H (k) =
∂h
∂ξ

∣∣∣∣
ξ̂ (k|k−1),n2(k)

M (k) =
∂h
∂n2

∣∣∣∣
ξ̂ (k|k−1),n2(k)

(40)

• Correction of the state ξ̂ (k|k) and correction of the
covariance P(k|k)

ξ̂ (k|k) = ξ̂ (k|k − 1) + K̄ (k)(z(k) − ẑ(k))

P(k|k) = K̄ (k)R(k)K̄ (k)⊤ + (I − K̄ (k)H (k))

· P(k|k − 1)(I − K̄ (k)H (k))⊤ (41)

D. H-STEP AHEAD PREDICTION STAGE
This stage is included in order to generate the h estimated
references for R̂ref (k, h) in (7), the h state estimates for
4̂(k, h) in (8), and then, the h estimated control actions for
Û (k, h) in (9), which will be applied to the vehicle when no
new information is received by the actuators. The algorithm
results in an internal control loop, which is h times repeated,
and works as follows:

1) From the state ξ̂ (k) computed by the NUDREKF and
the control signal û(k) calculated by the dynamic
controller, the next state and output estimations are
performed via ξ̂ (k + 1) = f

(
ξ̂ (k), n1(k), û(k)

)
ẑ(k + 1) = h

(
ξ̂ (k), n2(k)

) (42)

2) From the state ξ̂ (k + 1) in (42), the Pure Pursuit path-
tacking algorithm generates a new estimated reference
r̂ref (k + 1), and then, the dynamic controller computes
the next estimated control signal û(k + 1).

3) Iterating the previous two steps h−1 times, thematrices
R̂ref (k, h), 4̂(k, h) and Û (k, h) are obtained.

V. SIMULATION
A. CASE STUDIES
These are the cases simulated in this section:

• Case 1 (nominal case): This case considers no net-
work, and hence, neither delays nor packet dropouts.
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TABLE 2. Parameters used for the model of self-driving car.

A conventional control approach actuating and sensing
at period T is implemented (M=1). The performance of
this control system is considered as the desired one.

• Case 2 (one of the worst cases): In search of resource
savings, the control solution proposed in this work
is implemented using M=10 and wide thresholds.
A relevant reduction of resource usage is reached, but
the path-following behavior is noticeably worsened.

• Case 3 (the best case): As a consequence of the previous
conclusion, and in order to achieve a satisfactory trade-
off between resource savings and control performance,
the parameters of the event-triggered mechanism must
be suitably set. Then, a Montecarlo-like procedure has
been performed to reach optimal parameters. The path-
following results for the best case will be shown.

• Case 4 (a realistic case): In this last case, an experiment
considering a real trajectory located at Richmond Field
Station (a facility of the University of California,
Berkeley -UCB-) and including actual limitations for the
actuators is presented.

The parameters used for the model of the self-driving car
correspond to the 2017 Lincoln MKZ [40], and are shown
in Table 2. For the dynamic controller in (33), it is used
Kp = 0.55 and γ = 1, and for the NUDERKF,
Q(k) = diag(1 · 10−4, 1 · 10−4, 1 · 10−4, 1 · 10−4, 1 ·

10−4, 1 · 10−4),R(k) = diag(1 · 10−4, 1 · 10−6, 1 · 10−6, 1 ·

10−6),∀k , where the function diag(·) represents a diagonal
matrix formed by the elements detailed as arguments.

B. COST INDEXES
The next cost indexes Ji, i = 1..5 are suggested to assess the
savings-performance trade-off.
J1 measures the average deviation from the path followed

by the vehicle to the desired trajectory

J1 =

∑l
k=1min1≤k ′≤l �

tsim
(43)

being

� =

√
(x(k) − xref (k ′))2 + (y(k) − yref (k ′))2 (44)

and where tsim is the total simulation time, and is used to
standardize the index; l is the total number of iterations
needed to reach the final point of the trajectory; and as
known, (x(k), y(k)) is the current vehicle position, and
(xref (k ′), yref (k ′)) is the dynamic reference that is set by the
path-tracking algorithm for the current position.
J2 measures the greatest deviation of the trajectory

followed by the vehicle with respect to the desired one

J2 = max
1≤k≤l

{
min

1≤k ′≤l
0

}
(45)

TABLE 3. Weights and targets for J4.

being

0 =

√
(x(k) − xref (k ′))2 + (y(k) − yref (k ′))2 (46)

J3 assesses the reduction of resource usage achieved by
the control proposal (which includes PETC) with respect
to a conventional, time-triggered control (TTC) working at
period T

J3 =
NoTPETC
NoTTTC

100% (47)

where NoTPETC and NoTTTC are respectively defined as the
number of transmissions over the network for the PETC and
TTC strategies. Let us distinguish the sensor-to-controller
network traffic by means of J3s from the controller-to-
actuator one, J3c.
J4 indicates the global behavior, i.e., a measure of the

savings-performance trade-off, by weighting some of the
previous indexes and setting some targets for them. In our
study, for simplicity, J1 was used as the representative value
for control performance, although in other contexts J2 could
have been chosen (or both of them). Then J4 is given by

J4 =

PJ1J1
OJ1

+
PJ3sJ3s
OJ3s

+
PJ3cJ3c
OJ3c

3
(48)

where PJ1, PJ3c and PJ3s are the weights respectively
considered for the indexes J1, J3s and J3c, and OJ1, OJ3c and
OJ3s are the targets established for the indexes. If J4 ≤ 1, the
targets are reached, and hence, a satisfactory global behavior
can be considered. The lower J4 is, the better the trade-off will
be. Table 3 shows the weights and targets established for the
evaluation of J4. In our simulations, the weights have been set
to givemore relevance to an accurate path-following behavior
instead of resource savings (but the contrary case could
have been considered). Concretely, PJ1 = 1.5 (i.e., 50%
of relevance) and PJ3c = PJ3s = 0.75 (i.e., 25% of
relevance for each of them). Alternatively, other possible
weights could have been chosen. From the Montecarlo-like
procedure performed in Section V-C3, the targets OJ1, OJ3c
and OJ3s have been established as indicated in Table 3 (more
details later).
J5 evaluates comfort that may be experienced by possible

passengers riding in the vehicle

J5 =

∑l−1
k=1 ∥δ(k + 1) − δ(k)∥

tsim
(49)

where the consecutive variation of the control signal δ
has been considered. This index will be only evaluated in
Section V-C4 (case 4), where a real scenario with actual
limitations on δ has been studied.
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TABLE 4. Cost indexes for the case 1 (nominal case).

FIGURE 3. Trajectory for the case 1 (nominal case).

TABLE 5. Cost indexes for the case 2 (one of the worst cases).

FIGURE 4. Trajectory for the case 2 (one of the worst cases).

C. RESULTS
1) CASE 1 (NOMINAL CASE)
Considering a conventional, time-triggered control at period
T = 0.01s, and no network, the path-following behavior of
the vehicle is depicted in Figure 3, where a squared trajectory
is planned. The values obtained for the cost indexes are shown
in Table 4 (J4 is not calculated, since no event-triggered
mechanism is used). This is the desired behavior to be
compared with the one that will be obtained in cases 2 and 3.

2) CASE 2 (ONE OF THE WORST CASES)
In this case, the control solution proposed in this work
is implemented considering M = 10, T = 0.01s,

and h = 50, but defining too wide thresholds in the event-
triggeredmechanismswith the aim of significantly increasing
resource savings. Neither delays nor packet dropouts are
considered. Figure 4 and Table 5 present the results for
this case. As shown, the trajectory followed by the vehicle
is considerably far from the planned one. Due to the very
scarce information received at the controller side (J3s =

0.43636%, which implies a reduction of around 99.6% with
respect to the nominal case), the control solution is not
able to reach a satisfactory behavior (J1 and J2 are clearly
incremented with respect to the nominal case: J1 around
613%, and J2 around 231%). However, every packet with
control actions is successfully delivered at period MT to the
actuator (J3c = 10%, which implies a 90% of reduction
with respect to the nominal case), but with not sufficiently
updated information. J4 > 1, which confirms a poor savings-
performance trade-off.

3) CASE 3 (THE BEST CASE)
In this section, firstly, optimal parameters for the event-
triggered mechanisms have been obtained by following
a Montecarlo-like procedure. Secondly, some simulations
using these optimal parameters have been performed, and
the best results for the savings-performance trade-off are
depicted.

The PETC conditions (5) and (6) show four different
parameters to be set (σz, µz, σu, µu). At the same time, σz and
µz include one parameter for each of the four outputs (σzi, µzi,
i = 1..4). In σu and µu, as the acceleration ax is assumed
to be constant, let us consider only the parameter related
to δ. In order to check the effect of every parameter on the
NCS, the Montecarlo-like procedure will consider different
combinations for these parameters. The combinations are
based on keeping constant all the parameters except one of
them, which will vary inside a range where the maximum
value is 100 times the minimum one.

In the simulations, the NCS considers a delay distribution
according to (2), where E[τ (K )] = 0.017, V [τ (K )] = 0.01,
µ = 0.009s, τmax = 0.064s < MT (T = 0.01s, M = 10),
and a packet dropout distribution such as in (3), where psc =

pca = 0.25. As in the previous case, h = 50.
After performing the simulation procedure, these are the

main conclusions:

1) Effect of the different parameters:

• As Figure 6 shows, the percentage of packets sent
from the controller to the actuator, J3c, is much
more affected by µu than by σu. Concretely, for
µu ∈ [0.00001, 0.001], J3c varies from 2.7% to
8% (see the third subplot in Figure 6). However,
as Figure 5 depicts, for σu ∈ [0.005, 0.5], J3c varies
only from 6.4% to 8% (see the second subplot in
Figure 5).

• Different from the previous conclusion, the per-
centage of packets sent from the sensors to the
controller, J3s, is much more affected by σz than
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TABLE 6. Optimal values for the PETC conditions.

by µz. For the sake of brevity, let us only show
the study done for σz1 and µz1 by means of the
Figures 7 and 8. As the second subplot in Figure 7
illustrates, for σz1 ∈ [0.001, 0.1], J3s varies from
0.88% to 4.7%. However, as depicted in the third
subplot of Figure 8, for µz1 ∈ [0.01, 1], J3s varies
only from 1.8% to 2.5%.

2) As expected, when the percentage of sent packets
(J3s, J3c) is excessively reduced in search of increasing
resource savings, the values for J1 are considerably
incremented, which implies a worse path-following
behaviour. In addition, the results become inconsistent
(with noticeable variability). This behaviour can be
seen, for example, in the first subplot of Figure 7, where
for values lower than 2% in J3s, very different values for
J1 are obtained. Unfortunately, most of the simulations
are gathered in the inconsistent zone, as shown by the
fourth subplot in Figures 5-8. Next, to obtain the targets
and optimal parameters, the inconsistent zone will be
avoided.

3) Obtainment of the targets OJ1,OJ3s and OJ3c for the
cost index J4 (indicated in Table 3):

• As shown in the first subplot of Figure 7, J1 gets
more consistent values from J3s = 3%. Then,
OJ3s = 3%.

• Similarly, from the first subplot of Figure 6, OJ3c
may be approximately set as OJ3c = 8%.

• From the previous subplots, and considering the
established values for OJ3s and OJ3c, OJ1 may be
approximately set as OJ1 = 30.

4) Obtainment of the optimal parameters for the PETC
conditions:

• Setting the target OJ3c in the second subplot of
Figure 5 and in the third subplot of Figure 6, the
optimal values for σu and µu can be respectively
deduced such as σu = 0.05, µu = 0.00001.

• Similarly, considering the target OJ3s and the
Figures 7 and 8, the optimal values for σz1 and
µz1 can be obtained as σz1 = 0.01, µz1 = 0.1.
Following a similar procedure (not presented for
the sake of brevity), σzi, µzi, i = 2..4 can also be
achieved. Table 6 gathers together all the optimal
values.

From the optimal parameters deduced for the event-
triggered conditions in Table 6, four different simulations for
the NCS have been carried out. A different seed for the packet
dropout distribution has been used in every simulation so as
to check the consistency of the control solution. Figure 9
shows the best result obtained, which looks very similar to

FIGURE 5. Targets and optimal parameters for σu.

FIGURE 6. Targets and optimal parameters for µu.

FIGURE 7. Targets and optimal parameters for σz1.

the nominal result (in Figure 3). The points on the trajectory
followed by the vehicle represent the moment where the
packet is sent by the sensors. The cost indexes obtained for
every simulation are presented in Table 7, where J1 and J3s
clearly fulfill the targets in Table 3, and J3c lightly exceed it.
The index J2 worsens around 9% with respect to the nominal
case. The index J4 obtains similar values in every simulation,
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FIGURE 8. Targets and optimal parameters for µz1.

TABLE 7. Cost indexes for the four simulations.

TABLE 8. Variation of the cost indexes with respect to the nominal case
and the desired targets.

FIGURE 9. Trajectory for the case 3 (the best case).

and as J4 < 1, a satisfactory savings-performance trade-off
is always reached.

Table 8 points out the variation of the cost indexes got in the
four simulations with respect to those obtained in the nominal
case. The best case is easily detected by looking for the
greatest negative variation of J4. For every case, the amount of
data travelling through the network has been reduced around

TABLE 9. Cost indexes for the case 4 (a realistic case).

92% in the controller-to-actuator link, and around 97% in
the sensor-to-controller link. For the best case, the control
performance has been only worsened 27% in J1 and 9%
in J2. As a conclusion, facing typical network drawbacks
such as delays and dropouts, the control solution proposed
in this work is able to significantly reduce the resource usage
(bandwidth, battery), while maintaining an acceptable path-
following behavior.

4) CASE 4 (A REALISTIC CASE)
In order to give more realism to the experiments, a case
that considers a real trajectory and actual limitations for the
actuators is contemplated. The trajectory used is located at
Richmond Field Station (UCB). The actual limitations of the
actuators result in the consideration of:

• A range of values for the wheel steering angle, which
usually takes δmax = 0.32rad as the standard maximum
angle. So, δ(k) ∈ [−0.32, 0.32]rad .

• A maximum variation ratio for the steering angle,
ratδ(k), which is related to the first derivative of δ as
follows

ratδ(k) =
δ(k) − δ(k − 1)

T
(50)

Let us consider ratδ(k) = 1,∀k .
In the experiments, three different velocities have been

checked, Vx = [5, 8, 12]m/s, assuming ax(k) = 0,∀k .
To better set the LAD used by the Pure Pursuit path-tacking
algorithm according to the velocity, the next expression is
utilized

LAD =
sf V 2

x

Rmax
(51)

where sf is a scale factor, and Rmax is the maximum turning
angle calculated as follows

Rmax =
L

tan(δmax) − cos(β)
(52)

where L is the vehicle’s longitudinal length, and β was
defined in (13). The rest of parameters, targets and distribu-
tions used in the experiments maintain the same values of the
case 3.

In Figures 10-12 and 13-15, the results obtained by using
the control solution proposed in this work (red path) are
compared to the ones for a conventional control approach
(green path). In this conventional approach, no h-step ahead
prediction stage is implemented, and the NUDREKF is
emulated to have a residual effect, being hardly used to
correct the state estimates (an upper M such as M = 20 is
considered). As shown, the conventional approach is not able
to accurately follow the path (the higher the velocity is,
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FIGURE 10. Trajectory for the case 4 (a realistic case): 5m/s.

FIGURE 11. Trajectory for the case 4 (a realistic case): 8m/s.

FIGURE 12. Trajectory for the case 4 (a realistic case): 12m/s.

the worse the path-following behavior will be), even becom-
ing unstable for the highest velocity (Vx = 12m/s). Never-
theless, our control proposal is able to reach an acceptable
path-following behavior, despite the actual limitations on the
actuators. As expected, the cost indexes J1 and J2 in Table 9

FIGURE 13. Control actions for the case 4 (a realistic case): 5m/s.

FIGURE 14. Control actions for the case 4 (a realistic case): 8m/s.

FIGURE 15. Control actions for the case 4 (a realistic case): 12m/s.

obtained for our proposal present better values for lower
velocities. In average, the cost indexes J3c and J3s point out
around 92.5% and 97.5% of resource savings, respectively.
The lowest velocity (Vx = 5m/s) reaches the best J4, which is
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less than 1, and hence, for this velocity, the targets are
achieved (for Vx = 8m/s, they are almost accomplished).
As also expected, with the lowest velocity, the best comfort
index (J5) is obtained, which is 18% better than the reached
one with the highest velocity.

The control actions depicted in Figures 13-15 show
some saturated values when turning 180◦, which result
in a worse path-following behavior in this path segment.
The conventional control solution (green line) shows more
fluctuating control values than our control proposal (red line),
becoming unstable for the highest velocity.

VI. CONCLUSION
In this work, an NCS approach for a self-driving car is
proposed with the aim of achieving a satisfactory savings-
performance trade-off. Typical NCS drawbacks such as time-
varying delays, packet dropouts and packet disorder are
additionally faced. Optimal parameters have been deduced
for the periodic event-triggered communication mechanisms.
By means of a realistic scenario, the benefits of the
control proposal have been revealed in comparison with a
conventional control approach.

As future works, some aspects may be extended or
included such as throttle and brake pedal control, dynamic
event-triggered communication, etc.
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