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Abstract

Preterm delivery, defined as birth before 37 weeks of gestation, is a significant global
concern with implications for the health of newborns and economic costs. It affects
approximately 11% of all births, amounting to more than 15 million individuals world-
wide. Current methods for predicting preterm labor lack precision, leading to over-
diagnosis and limited practicality in clinical settings. Electrohysterography (EHG)
has emerged as a promising alternative by providing relevant information about uter-
ine electrophysiology. However, previous prediction systems based on EHG have not
effectively translated into clinical practice, primarily due to biases in handling imbal-
anced data and the need for robust and generalizable prediction models.

This doctoral thesis aims to develop an artificial intelligence based preterm labor
prediction system using EHG and obstetric data from women undergoing regular
prenatal check-ups. This system entails extracting relevant features, optimizing the
feature subspace, and evaluating strategies to address the imbalanced data challenge
for robust prediction.

The study validates the effectiveness of temporal, spectral, and non-linear fea-
tures in distinguishing between preterm and term labor cases. Novel entropy mea-
sures, namely dispersion and bubble entropy, outperform traditional entropy metrics
in identifying preterm labor. Additionally, the study seeks to maximize complemen-
tary information while minimizing redundancy and noise features to optimize the
feature subspace for accurate preterm delivery prediction by a genetic algorithm.

Furthermore, we have confirmed leakage information between train and test data
set when generating synthetic samples before data partitioning giving rise to an over-
estimated generalization capability of the predictor system. These results emphasize
the importance of using partitioning-resampling techniques for ensuring data inde-
pendence between train and test samples. We propose to combine genetic algorithm
and resampling method at the same iteration to deal with imbalanced data learning
using partition-resampling pipeline, achieving an Area Under the ROC Curve of 94%
and Average Precision of 84%. Moreover, the model demonstrates an F1-score and
recall of approximately 80%, outperforming existing studies on partition-resampling
pipeline.

This finding reveals the potential of an EHG-based preterm birth prediction
system, enabling patient-oriented strategies for enhanced preterm labor prevention,
maternal-fetal well-being, and optimal hospital resource management.

Overall, this doctoral thesis provides clinicians with valuable tools for decision-
making in preterm labor maternal-fetal risk scenarios. It enables clinicians to de-
sign a patient-oriented strategies for enhanced preterm birth prevention and manage-
ment. The proposed methodology holds promise for the development of an integrated
preterm birth prediction system that can enhance pregnancy planning, optimize re-
source allocation, and ultimately improve the outcomes for both mother and baby.





Resumen

El parto prematuro, definido como el nacimiento antes de las 37 semanas de gesta-
ción, es una importante preocupación mundial con implicaciones para la salud de los
recién nacidos y los costes económicos. Afecta aproximadamente al 11% de todos los
nacimientos, lo que supone más de 15 millones de individuos en todo el mundo. Los
métodos actuales para predecir el parto prematuro carecen de precisión, lo que con-
duce a un sobrediagnóstico y a una viabilidad limitada en entornos clı́nicos. La elec-
trohisterografı́a (EHG) ha surgido como una alternativa prometedora al proporcionar
información relevante sobre la electrofisiologı́a uterina. Sin embargo, los sistemas de
predicción anteriores basados en EHG no se han trasladado de forma efectiva a la
práctica clı́nica, debido principalmente a los sesgos en el manejo de datos desbal-
anceados y a la necesidad de modelos de predicción robustos y generalizables.

Esta tesis doctoral pretende desarrollar un sistema de predicción del parto pre-
maturo basado en inteligencia artificial utilizando EHG y datos obstétricos de mujeres
sometidas a controles prenatales regulares. Este sistema implica la extracción de car-
acterı́sticas relevantes, la optimización del subespacio de caracterı́sticas y la evaluación
de estrategias para abordar el reto de los datos desbalanceados para una predicción
robusta.

El estudio valida la eficacia de las caracterı́sticas temporales, espectrales y no lin-
eales para distinguir entre casos de parto prematuro y a término. Las nuevas medidas
de entropı́a, en concreto la dispersión y la entropı́a de burbuja, superan a las métricas
de entropı́a tradicionales en la identificación del parto prematuro. Además, el estudio
trata de maximizar la información complementaria al tiempo que minimiza la redun-
dancia y las caracterı́sticas de ruido para optimizar el subespacio de caracterı́sticas
para una predicción precisa del parto prematuro mediante un algoritmo genético.

Además, se confirmó la fuga de información entre el conjunto de datos de entre-
namiento y el de prueba al generar muestras sintéticas antes de la partición de datos,
lo que da lugar a una capacidad de generalización sobreestimada del sistema predic-
tor. Estos resultados subrayan la importancia de particionar y después remuestrear
para garantizar la independencia de los datos entre las muestras de entrenamiento y
de prueba. Se propone combinar el algoritmo genético y el remuestreo en la misma
iteración para hacer frente al desequilibrio en el aprendizaje de los datos mediante el
enfoque de partición-remuestreo, logrando un área bajo la curva ROC del 94% y una
precisión media del 84%. Además, el modelo demuestra un F1-score y una sensibili-
dad de aproximadamente el 80%, superando a los estudios existentes que consideran el
enfoque de remuestreo después de particionar. Esto revela el potencial de un sistema
de predicción de parto prematuro basado en EHG, permitiendo estrategias orientadas
al paciente para mejorar la prevención del parto prematuro, el bienestar materno-fetal
y la gestión óptima de los recursos hospitalarios.

En general, esta tesis doctoral proporciona a los clı́nicos herramientas valiosas
para la toma de decisiones en escenarios de riesgo materno-fetal de parto prematuro.
Permite a los clı́nicos diseñar estrategias orientadas al paciente para mejorar la pre-
vención y el manejo del parto prematuro. La metodologı́a propuesta es prometedora
para el desarrollo de un sistema integrado de predicción del parto prematuro que
pueda mejorar la planificación del embarazo, optimizar la asignación de recursos y
reducir el riesgo de parto prematuro.





Resum

El part prematur, definit com el naixement abans de les 37 setmanes de gestació, és
una important preocupació mundial amb implicacions per a la salut dels nounats i els
costos econòmics. Afecta aproximadament a l’11% de tots els naixements, la qual cosa
suposa més de 15 milions d’individus a tot el món. Els mètodes actuals per a predir el
part prematur manquen de precisió, la qual cosa condueix a un sobrediagnòstic i a una
viabilitat limitada en entorns clı́nics. La electrohisterografia (EHG) ha sorgit com una
alternativa prometedora en proporcionar informació rellevant sobre l’electrofisiologia
uterina. No obstant això, els sistemes de predicció anteriors basats en EHG no s’han
traslladat de manera efectiva a la pràctica clı́nica, degut principalment als biaixos en
el maneig de dades desequilibrades i a la necessitat de models de predicció robustos i
generalitzables.

Aquesta tesi doctoral pretén desenvolupar un sistema de predicció del part pre-
matur basat en intel·ligència artificial utilitzant EHG i dades obstètriques de dones
sotmeses a controls prenatals regulars. Aquest sistema implica l’extracció de car-
acterı́stiques rellevants, l’optimització del subespai de caracterı́stiques i l’avaluació
d’estratègies per a abordar el repte de les dades desequilibrades per a una predicció
robusta.

L’estudi valguda l’eficàcia de les caracterı́stiques temporals, espectrals i no lineals
per a distingir entre casos de part prematur i a terme. Les noves mesures d’entropia,
en concret la dispersió i l’entropia de bambolla, superen a les mètriques d’entropia
tradicionals en la identificació del part prematur. A més, l’estudi tracta de maximitzar
la informació complementària al mateix temps que minimitza la redundància i les
caracterı́stiques de soroll per a optimitzar el subespai de caracterı́stiques per a una
predicció precisa del part prematur mitjançant un algorisme genètic.

A més, hem confirmat la fugida d’informació entre el conjunt de dades d’entrenament
i el de prova en generar mostres sintètiques abans de la partició de dades, la qual
cosa dona lloc a una capacitat de generalització sobreestimada del sistema predictor.
Aquests resultats subratllen la importància de particionar i després remostrejar per
a garantir la independència de les dades entre les mostres d’entrenament i de prova.
Proposem combinar l’algorisme genètic i el remostreig en la mateixa iteració per a
fer front al desequilibri en l’aprenentatge de les dades mitjançant l’enfocament de
partició-remostrege, aconseguint una àrea sota la corba ROC del 94% i una preci-
sió mitjana del 84%. A més, el model demostra una puntuació F1 i una sensibilitat
d’aproximadament el 80%, superant als estudis existents que consideren l’enfocament
de remostreig després de particionar. Això revela el potencial d’un sistema de predic-
ció de part prematur basat en EHG, permetent estratègies orientades al pacient per
a millorar la prevenció del part prematur, el benestar matern-fetal i la gestió òptima
dels recursos hospitalaris.

En general, aquesta tesi doctoral proporciona als clı́nics eines valuoses per a la
presa de decisions en escenaris de risc matern-fetal de part prematur. Permet als
clı́nics dissenyar estratègies orientades al pacient per a millorar la prevenció i el maneig
del part prematur. La metodologia proposada és prometedora per al desenvolupament
d’un sistema integrat de predicció del part prematur que puga millorar la planificació
de l’embaràs, optimitzar l’assignació de recursos i millorar la qualitat de l’atenció.
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Chapter 1

Introduction

1.1 Preterm birth

1.1.1 Origin, prevalence and relevance

The World Health Organization defines preterm births as those that occur before the
37th week of gestation. Prematurity is the major determinant of neonatal morbidity
and mortality and affects around 11% of all births and more than 15 million persons
worldwide, while its incidence is increasing annually [1, 2]. Prematurity causes 1
million newborn deaths each year and is the leading cause of death in the first four
weeks of life [3]. Thanks to the medical advances made in the last decades, survival of
preterm newborns has improved considerably. More than 95% of the preterm infants
that receive modern neonatal and pediatric care survive to adulthood (>18 years old)
[4]. In case of survival, preterm newborns may suffer complications in the short term.
The possibilities of survival increase with gestational age, leading to high differences
in the survival rates between extremely preterm (<28 weeks), very preterm (≥28
and <32 weeks), moderately (≥32 and <34 weeks) preterm and late preterm infants
(≥34 and <37 weeks) [5]. Extremely preterm deliveries result in several months
of lost fetal development, leaving infants more susceptible to morbidities [6]. The
proportion of surviving infants born without severe morbidity is ∼9% at 22 weeks
of gestation, and ∼64%, ∼95% and 99% for extremely, very and moderately preterm
infants, respectively [7, 8]. The risk of hospital admission to the neonatal unit is twice
as high than in the term group, even in the late preterm group [9]. Morbidity is mainly
due to respiratory distress syndrome, with a prevalence of 88% of the total of preterm
births before 34 weeks of gestation, followed by retinopathy (45%), intraventricular
hemorrhages (37.4%) and bronchopulmonary dysplasia (32%) [10]. One in every five
babies who survive will have an intellectual disability, one in two will have cerebral
palsy, and one in three will have eye damage [3]. Premature babies are also at risk of
developing other long-term conditions, such as asthma, learning disabilities, attention
deficit disorder, and emotional problems [11].

Medical care for preterm birth requires significant hospital resources and has a
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great impact on public health systems. The average cost of a preterm birth is 5
to 10 times higher than that of a term birth [12]. For an extremely preterm baby,
the average cost in Canada per baby amounted to $67,467 in the first ten years of
life [12]. Saving a baby weighing less than 750 grams costs more than $117,000, the
highest cost in public health [13]. In the United States, preterm birth incurred an
economic cost of at least $26.2 billion in 2005, including medical, educational and lost
productivity expenses [5]. Furthermore, the average first-year medical costs for both
in- and outpatient care were about 10 times greater for preterm ($32,325) than term
infants ($3325) [5].

1.1.2 Current methods of predicting preterm delivery

The criteria for the diagnosis of preterm labor is somewhat imprecise since the un-
derlying etymology and sequence of events preceding preterm labor are not fully
understood. Symptoms such as pain caused by uterine contractions, pelvic pressure,
increased uterine secretions and low back pain have been associated with preterm
labor [14]. However, these symptoms can also be associated with normal pregnan-
cies, making the diagnosis of preterm labor even more complex, which often results in
overdiagnosis of as many as 40% of women with preterm labor symptoms [15]. Less
than 10% of the women clinically diagnosed with threatened preterm labor give birth
within 7 days of the onset of symptoms [16].

Several biomarkers have been used to predict preterm labor by measuring specific
molecules or substances in maternal or fetal fluids or tissues associated with the
biological processes that lead to preterm birth [17]. These biomarkers can be measured
at different stages of pregnancy, although their levels may change over time, allowing
clinicians to monitor women with a higher risk of preterm birth and adjust their
supervision accordingly [18]. The main molecular biomarkers used for preterm birth
prediction found in the literature are as follows:

• Fetal Fibronectin (fFN) is a glycoprotein that acts as a scaffold for cell adhesion
and is present in the fetal membranes, cervix, and vaginal secretions. It acts
as a glue between the fetal membranes and the uterine lining. The absence of
fFN suggests that the patient is at low risk of preterm birth. The presence of
fFN in cervical or vaginal secretions during pregnancy indicates that the fetal
membranes have been disrupted, which is a common precursor of preterm labor.
The predictive value of preterm birth is usually evaluated by different levels of
fFN ≥10, ≥50, ≥200 and ≥500 ng/ml. A meta-analysis performed in 2021 [19]
reviewed 15 studies which reported predictive values to address preterm labor in
women with a singleton pregnancy and <34 weeks of gestation. The threshold
of <10 ng/ml resulted in the highest average sensitivity of 0.78 (95% CI, 0.69–
0.85) and the lowest specificity of 0.63 (0.52–0.73) with respect to the other
cut-off values. In contrast, 500 ng/ml had the lowest sensitivity, 0.11 (95% CI,
0.07–0.18), but the highest specificity, 0.99 (95% CI, 0.97–1.00), i.e. a threshold
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of 500 ng/ml is highly effective in identifying women at low risk of preterm labor
[19].

• Cervical Length (CL) is also a well-known preterm labor biomarker. The cervix
is the lower part of the uterus that opens into the vagina. During pregnancy, the
cervix undergoes changes in preparation for delivery, including the shortening
of the cervix, which occurs gradually. If the cervix shortens too early, it may
be a sign of preterm labor. Cervical length is usually measured by transvaginal
ultrasound. Most women (75%) with a shortened cervix do not deliver preterm
[20]. Women with a cervical length < 25 mm before 28 weeks of gestation
and contractions have twice the incidence of preterm birth than those with a
cervical length < 25 mm but no contractions [21]. The incidence of premature
births increases in women who have already delivered prematurely, from ∼3%
to ∼20% [22]. Taipale et al. studied 3694 women with no prior preterm birth
and a gestational age <37 weeks and reported considering a CL < 25 mm:
sensitivity = 6%, specificity = 100%, Positive Predictive Value (PPV) = 39%
and Negative Predictive Value (NPV) = 99% [23]. As in women with a prior
preterm birth and <34 weeks of gestation, the following has been reported (CL
< 25mm): sensitivity = 76%, specificity = 68%, PPV = 20% and NPV = 96%
[24]. A recent study combined the measurement of cervical length and fetal
fibronectin levels to predict preterm delivery and resulted in an Area Under the
ROC Curve (AUC) of 67%, with a maximum positive predictive value of only
14% and a negative predictive value of 96.1% [25]. Another recent work used a
Convolutional Neural Network (CNN) model to predict preterm births from 354
two-dimensional transvaginal cervical ultrasound images, in which 319 and 35
images were for term and preterm groups, respectively [26]. In the classification
task, they reported a sensitivity of 67.7 ±4.2%, precision of 68.3 ±8.7% and
AUC of 72.3 ±13.4%. The deep learning algorithm focuses on different parts of
the transvaginal cervical ultrasound images to classify them into preterm and
term classes. The lower segment of the cervix, close to the ectocervix and the
heterogeneity of the density of tissues around the cervix were the most important
features in identifying preterm births, while the term cases were identified by
mainly focusing on the top of the largest homogeneous region in the middle part
of the anterior cervical lip [26].

• C-Reactive Protein (CRP) is an acute-phase protein produced by the liver in re-
sponse to inflammation. CRP measurement is quick, noninvasive and risk-free,
and can be an effective diagnostic test for evaluating and categorizing the risk
of preterm labor and predicting the morbidity of both mother and fetus [27].
Significant differences were obtained between the mean of the CRP levels in
preterm and term deliveries, CRP levels being lower in the latter [28]. An-
other study was performed on 59 preterm and 17 term women, who did not
present complications during pregnancy. Considering the C-reactive protein
>3.6 reported a sensitivity of 41.3 (30.1–53.3) %, specificity of 89.3 (80.1–95.3),
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positive predictive value of 79.5 (63.5–90.7) % and AUC of 0.683, indicating a
significant relationship of CRP with preterm labor [27].

• Interleukin-6 (IL-6) is a pro-inflammatory cytokine involved in the initiation of
labor. Elevated levels of IL-6 have been found in the amniotic fluid of preterm
labor women. Lockwood et al. evaluated a total of 161 patients seen at 3-
to 4-week intervals between 24 and 36 weeks. In premature deliveries, IL-6
concentrations in the cervix and vaginal canal increased ∼4-fold compared to
women who delivered at term [29]. Another study predicted preterm labor
in women with threatened preterm labor using IL-6 and achieved an AUC of
87.6%, sensitivity of 73.2% and specificity of 85.7% for predicting preterm labor.
It should be noted that the database used was seriously skewed in the number
of samples and acquisition protocol between the groups. The preterm group
was made up of 82 patients with symptoms of threatened preterm labor and the
control group included only 21 outpatients seen in routine obstetric visits [30].

• Progesterone plays a critical role in maintaining pregnancy quiescence. Low
progesterone levels have been associated with an increased risk of preterm labor
[31]. Progesterone supplementation may be recommended for women at high
risk of preterm labor. Although it is a widely used biomarker [31], a recent ex-
tensive meta-analysis reviewed the efficacy of vaginal progesterone in preventing
recurrent preterm birth in women with a singleton gestation and a history of
spontaneous preterm birth. They determined that there is no strong evidence
to support its use in reducing preterm labor because of the methodological lim-
itations in most if the publications, including small samples [31].

• Uterine dynamic monitoring is a standard protocol in obstetric care during la-
bor and delivery as it offers valuable information on uterine dynamics. The
gold standard for this process is by inserting an Intrauterine Pressure Catheter
(IUPC) into the uterine cavity for accurate and reliable measurements [32, 33].
IUPC provides essential information such as the contraction duration, frequency
and resting tone. However, it involves certain risks such as pain, bleeding, and
infection. As its use also requires rupturing the membrane, which can increase
the risk of infection and premature rupture, it cannot be used to prevent preterm
labor and is mainly used in high-risk pregnancies for monitoring uterine activ-
ity during labor [32, 33]. In clinical practice, Tocodynamometer (TOCO) is the
most commonly used technique for uterine dynamic monitoring, as it is safe and
non-invasive method using a device on the mother’s abdomen to measure uter-
ine pressure on the abdominal wall. However, the measurements depend largely
on the subjective opinion of the specialist and require constant transducer repo-
sitioning. TOCO monitoring is seriously affected by maternal obesity, uterine
fibroids, and other factors [34]. To provide a more comprehensive assessment
of fetal well-being during labor and delivery, TOCO monitoring is often used in
conjunction with other methods, such as electronic fetal heart rate monitoring.
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This combination can help detect abnormalities in uterine activity and fetal
distress, and determine the optimal timing of delivery [32, 33, 34].

To sum up, although various techniques are available for predicting preterm labor,
none can accurately detect all preterm labor cases. The advantage of these techniques
mainly lies in their ability to identify patients who are not at risk of preterm labor,
known as a negative predictive value [35], thus reducing unnecessary interventions.

1.2 Electrohysterography for predicting preterm
births

Electrohysterography (EHG), or recording the bioelectric potential generated by bil-
lions of uterine myometrial cells on the abdominal wall, has emerged as a promising
alternative that provides relevant information on the uterine electrophysiological state
for use in predicting preterm labor.

From the physiological point of view, like other biological cells, uterine smooth
muscle cells exhibit negative resting potential with small and slow spontaneous fluc-
tuations. When resting, the potential fluctuations reach a threshold, isolated or action
burst potentials are induced with a peak-to-peak action potential amplitude ranging
33-69 mV [36, 37]. As action potentials propagate on the surface of a myometrial
cell, the depolarization causes voltage dependent Ca2+ channels to open. When this
occurs, Ca2+ enters the muscle cells, traveling down its electrochemical gradient to
activate the myofilaments and generating a contraction by increasing the size and/or
number of actual portals for Ca2+ entry [36, 37]. This cyclic depolarization and repo-
larization of the muscle cell membrane therefore results in a contraction and relaxation
sequence of the myometrium. Although a single electrical spike can initiate a contrac-
tion, multiple coordinated spikes are needed for forceful and continuous contractions
[36, 37]. Studies in isolated myometrial tissue have shown the temporal association
between electrical activity and contractions [38, 39, 40, 41, 42]. In all the species
investigated, each contraction is accompanied by a burst of action potentials, start-
ing slightly earlier than the corresponding contraction (see Figure 1.1), and stopping
before the uterus has completely relaxed. The frequency, amplitude and duration of
the contractions are mainly determined by the occurrence frequency of the uterine
electrical bursts, the total number of cells simultaneously active during the burst and
the duration of the uterine electrical bursts, respectively [43, 44].

Uterine electrical activity is low and uncoordinated in early gestation. As preg-
nancy progresses, uterine myometrial cell conductance increases due to more gap-
junctions, leading to coordinated, intense contractions previous to labor [37, 43].
Figure 1.2 shows an example of a 10 min EHG record at 31st Week of Gestation at
Recording Time (WOG) for women delivered at term (lower trace) and prematurely
(upper trace). Term labor women did not record any contractions, since the record
was obtained far from delivery. There were two uterine contractions (EHG-bursts with
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Figure 1.1: EHG (top) and TOCO (bottom) records of a woman at 26 weeks who delivered
prematurely [45]. Red boxes are manual annotations of three contraction intervals in both
records.

increased amplitude and frequency with respect to basal activity when the uterus is
at rest) in preterm labor women.

EHG is composed of two components, the slow wave (SW, 0.005–0.03 Hz) and
fast wave (FW, 0.1–4 Hz). The fast wave component can be further divided into
two subcomponents: the fast wave low associated with signal propagation (FWL,
0.1–0.34 Hz) and fast wave high related to cell excitation (FWH, 0.34–4 Hz) [39,
46]. Traditionally, the EHG signal analysis is mainly focused on temporal, spectral,
and non-linear parameters to describe the FW component [18, 47, 48] because the
physiological significance of slow waves on surface recordings is questionable due to
its overlapping with skin stretching and baseline oscillations [43]. Also, EHG energy,
mainly distributed below 1 Hz, FWH, is usually analyzed in the 0.34–1 Hz range to
minimize respiratory and cardiac interference [18].

Many studies have shown that the amplitude of the EHG signal increases as preg-
nancy progresses due to the increase in the number of uterine cells involved in the
contractions [39]. Furthermore, as labor approaches, the spectral content of the EHG
signal is shifted to higher frequencies, which are associated with an increase in cellular
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Figure 1.2: Example of EHG signals recorded at 31 weeks of gestation from woman who
delivered prematurely at 33 weeks of gestation (top), and woman who delivered at term in
the 37th week of gestation (bottom).

excitability [39, 46]. Labor proximity is also associated with higher signal predictabil-
ity and regularity, reducing the chaos and complexity of the EHG signal [46, 47].

It should be noted that EHG recordings do not only contain uterine electrical ac-
tivities of muscle cells, but also corrupted segments with multi-source interference (see
Figure 1.3) such as motion artifacts or breathing. In surface myoelectric recordings,
the former are unpredictable and vary in waveform depending on multiple factors.
They can cause sudden changes in the bioelectric potential amplitude, which is also
associated with alteration of the power spectral density, by distributing energy in
the high-frequency range [49, 50, 51]. Breathing mainly affects the Fast Wave Low
component bandwidth of the EHG signal [52]. Other factors that can corrupt EHG
signals include the fetal or maternal electrocardiogram (1.38–1.5 Hz), electromyogra-
phy noise (∼30 Hz) and electromagnetic noise from external devices (∼60 Hz) [52].
As the two latter are easily removed from the EHG by a low-pass filter at 4 Hz, a
preprocessing step to discard both motion artifacts and respiratory interference is
crucial to extract robust features from EHG records.
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Figure 1.3: EHG signal with respiratory (yellow) and motion (blue) artifacts.

1.3 Machine learning

1.3.1 The application of machine learning in EHG signals to
predict the preterm labor

Machine learning, a subfield of Artificial Intelligence (AI), has revolutionized health-
care by analyzing large amounts of medical data. Its main objective is to develop
prediction models by automatically detecting the data structure for decision support.
Machine learning allows computers to interpret complex patterns in the data, extract
meaningful insights and make accurate classifications or predictions [53, 54]. Thanks
to machine learning, medical professionals can gain deeper insights into patient data,
make more accurate diagnoses, develop better treatment plans, and improve patient
healthcare and their quality of life. It can also improve diagnosis, treatment, and
patient outcomes through image and speech recognition, precision medicine, disease
diagnosis, personalized treatment recommendations, and predictive analytics. Ma-
chine learning has been widely used in multiple medical applications, such as detec-
tion of retinopathy, bone age, identification of skin cancer or to predict liver disease
and preterm labor from EHG records [54, 55].

The commonly used workflow for predicting preterm labor with EHG signals in-
volves several steps (see Figure 1.4) [18, 56]:

1) Data acquisition: EHG signals are recorded from the surface of the mother’s
abdomen using electrodes connected to biomedical devices.

2) Signal preprocessing: As previously noted, EHG recordings encompass not only
uterine electrical activity but also motion artifacts and respiratory interferences.
Signal preprocessing typically involves the removal of noise and artifacts and the
application of filters to enhance signal quality.

3) Feature extraction: temporal, spectral, non-linear and synchronization features,
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when multichannel Electroencephalogram (EEG) is available, can be extracted
from the preprocessed EHG signals. These features capture relevant information
on the uterine electrophysiological state and serve as input features for the
machine learning model [18, 56].

4) Dataset preparation: The extracted features are then used to create a dataset,
in which each set of features obtained from the subject’s EHG recordings is
assigned a label indicating whether the delivery occurred prematurely or at
term.

5) Dataset balancing: As mentioned above, the prevalence of preterm labor is
about 10% in the general population, giving rise to an imbalanced dataset for
preterm labor prediction systems [57]. This can lead to a bias towards the ma-
jority class and result in lower predictive performance [57]. To address this issue,
researchers have employed various techniques to balance the dataset, such as
oversampling the minority class, undersampling the majority class, and generat-
ing synthetic samples using techniques like the Synthetic Minority Oversampling
TEchnique (SMOTE) [57]. These techniques allow machine learning algorithms
to be trained on a more balanced dataset, leading to better performance and
more accurate predictions for preterm labor from EHG signals [56]. However,
it is important to note that these techniques should be used with caution and
evaluated carefully, as they may also introduce other biases or tradeoffs in the
model’s performance [57].

6) Machine learning model training: To predict preterm delivery, a machine learn-
ing model, such as a logistic regression, linear discriminant analysis, k-nearest
neighbors, neural network, or support vector machine, is trained using input
features extracted from the EHG signals.

7) Model evaluation: The performance of the trained model is evaluated by various
metrics such as accuracy, sensitivity, specificity and area under the receiver
operating characteristic curve (AUC).

8) Model optimization: If the model’s performance is unsatisfactory, the work-
flow may need to be optimized by adjusting various parameters such as feature
extraction, feature selection, dataset balancing techniques, or model hyperpa-
rameters (internal configurable parameters of each classification algorithm).

9) Model deployment: Once the model’s performance is deemed satisfactory, it
can be deployed to predict preterm labor using new, unseen EHG signals in
real-world clinical settings.
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Figure 1.4: Workflow for predicting preterm labor with EHG.

1.3.2 Dimensionality reduction methods

As mentioned above, multiple input features are normally used to perform target clas-
sification tasks. The features can generally be divided into three groups with respect
to the degree of importance required to discriminate the target classes. Relevant fea-
tures are the attributes with the ability to partially describe some properties of the
target classes, while their role cannot be assumed by others. An irrelevant attribute
lacks any description of the target classes’ properties. Redundant features are those
attributes whose roles can be taken on by another attribute. In this regard, the differ-
ent input features may contain complementary, redundant or noise information [53].
Complementary features can capture different aspects of the data and provide a more
complete representation of the underlying patterns as a result, combining features
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that provide relevant and complementary information and can enhance the overall
performance of a classification model. In contrast, the inclusion of noise information
may even worsen classification performance [53].

When the number of features becomes too large, it leads to the “curse of dimension-
ality” [58]. If too many input features are used, the model may become too complex,
giving rise to a high computational cost. In addition, the high dimensional input
feature data may suffer from model “overfitting”, leading to poor predictive system
performance. Dimensionality reduction is the conversion of high-dimensional data
into a reduced-dimensional representation. Ideally, the reduced representation should
be that of the intrinsic dimensionality of the data, which is the minimum number of
parameters necessary to interpret the characteristics of the data under consideration
[59]. Principal Component Analysis (PCA) is one of the most widely feature reduc-
tion methods used. It projects the initial feature space onto a lower dimensionality
subspace, which preserves the “essence” of the original data [53]. Although the data
may appear large, there may only be a small number of degrees of variability, cor-
responding to latent factors [53]. The resulting principal components are essentially
linear combinations of the original data that capture most of the variance in the data.
However, although this method helps to solve the model complexity problem, it is
not very useful in determining complementarity and redundancy between features or
in discarding noisy information [60].

In contrast, feature selection methods can not only reduce data dimensionality, but
also take the complementary data and data redundancy. These methods can obtain
the subset of features that best fits the target classification problem, in this case the
prediction of preterm delivery. Feature selection aims to identify the relevant features
by their relations with the corresponding class labels, i.e. the preterm and term
labor classes, and discards irrelevant and redundant features [61]. Feature selection
methods are classified into filters, embedded, and wrapper methods, according to
their relationship to the machine learning classification method [62]:

• Filter methods are independent of any learning method, as they focus on the
general data features. These methods basically consist of computing a statistic
such as the Pearson correlation coefficient or chi-squared test, which evaluates
the discriminatory capacity between classes for each feature and selects the best.
Some limitations include a lack of feature interaction, no interaction with the
classification model, dependence on data distribution, and the computational
expense of high-dimensional data [63].

• Embedded methods: In these methods, the feature selection process is inte-
grated in the machine learning algorithm itself. These methods train classifiers
while simultaneously selecting the most relevant features for optimal perfor-
mance. The latter is also in fact one of its major limitations, since embedded
methods can make it difficult to compare different models and their feature se-
lection approaches, as feature selection is part of the model training process.
This can pose a challenge in choosing the best model for a given task. They
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are also prone to model overfitting, find it difficult to compare different models,
and are computationally expensive for large datasets [62, 63].

• Wrapper methods employ a search algorithm to find the subset of features that
optimizes the classifier algorithm used. It has also been proven to outperform
the filter method for predicting pregnancy and labor contractions [64]. Several
wrapper method alternatives are based on how they find the optimum feature
subset [62]. Some, such as Recursive Feature Elimination or Sequential Back-
ward Selection, consist of iteratively remove the least important features from
the initial whole feature set [62]. Other methods, like Sequential Forward Selec-
tion or Forward Selection, start with an empty feature set and iteratively add
one feature at each iteration, based on the performance of a machine learning
model [62]. Alternatively, methods like Particle Swarm Optimization and Ge-
netic Algorithm evaluate the random feature subset and combine the best to
iteratively converge in the optimum feature subset [62]. The literature high-
lights feature selection by Genetic Algorithm as one of the best choices, as it
is faster and achieves a better optimum feature subset than the alternatives
[61, 65, 66, 67, 68]. The Genetic Algorithm [69] optimization technique is a
heuristic, population-based, algorithmic search method that mimics the human
natural evolutionary process. The operations in a genetic algorithm are iterative
procedures that manipulate a population of chromosomes (feature subset solu-
tion candidates) to produce a new population through genetic functions such as
crossover and mutation (similar to Charles Darwin’s evolutionary principle of
reproduction, genetic recombination and survival of the fittest) [69]. In other
words, it initially evaluates random feature subsets by a fitness function, which
depends on the classifier, and then, combines the best feature subset (mutation
and crossover functions) to generate new feature subsets. In the next iteration,
the genetic algorithm uses these new feature subsets together with new random
feature subsets. The mutation operator introduces changes in the feature sub-
set (chromosome) by adding or removing some random feature and so creates
a new feature subset (children). Crossover involves combining two feature sub-
sets (chromosomes) to create a new feature subset (children). The procedure
finishes when the termination condition is met, which may not improve the best
optimal subset of features over certain successive iterations [69]. The workflow
of feature selection used to predict preterm labor is shown in Figure 1.5. These
algorithms have been shown to escape from local minima to reach global minima
in complex functions. With this technique, the problems of noise, redundancy
and complementarity can be solved, since only those features that provide rel-
evant information for the prediction of preterm birth will be selected. It also
solves the problem of complexity due to overfitting of the model, since only one
subset of features from the initial set is introduced.
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Figure 1.5: Flowchart of feature selection using genetic algorithm.

1.3.3 Resampling Methods for Imbalanced Data Learning

Only around 10% of births occur before 37 weeks of gestation, giving rise to a highly
imbalanced data problem, which can significantly impact the performance of classi-
fication systems. Classic machine learning algorithms may struggle with imbalanced
datasets because they are typically designed to optimize overall accuracy. In an im-
balanced dataset, where the majority class greatly outnumbers the minority class, a
model that predicts only the majority class can achieve a highly accurate score but
would not be good at predicting the minority class, which is often the target in im-
balanced datasets [70]. In a medical diagnosis scenario, the cost of a false negative
(i.e. failing to diagnose a preterm delivery) may be much higher than the cost of a
false positive (i.e. wrongly predicting a preterm delivery).

Self-composition of the database is another issue, i.e. the size and number of
samples of each class in the database. It is important to understand why imbalanced
databases lead to poorer classification results than balanced ones. The imbalance of
a binary database (e.g. preterm vs. term) is determined by comparing the number
of observations in both groups. Research suggests that the problem is not just the
imbalance of the database, but also the amount of the total sample available [71]. For
example, dealing with a total database of 300 samples with a minority class sample is
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more challenging than a database of 3000 samples with a minority class of 500. There
is also a lack of information due to the limited data available in the minority class,
which may lead to an insufficient characterization of all the possible variations in the
minority class [71, 72].

Several techniques have been described in the literature to address imbalanced data
learning, including resampling techniques, ensemble classifier methods, cost-sensitive
learning and synthetic data generation [73].

• Resampling techniques obtain a balanced sample set by increasing or decreas-
ing the number of samples of the minority or majority group. Oversampling
techniques obtain new synthetic samples from a set of features of the “real”
data. These techniques include multiple selection of a sample from the minority
class, synthetic generation of samples from the minority class (SMOTE) [74],
variants of SMOTE, and Adaptive Synthetic Sampling (ADASYN) generation
of samples from the minority class [75], which adds a bias to make them more
realistic. Undersampling techniques reduce the number of samples in the ma-
jority class to reduce the imbalance. These approaches attempt to maintain
the data distribution and improve the visibility of the minority class to help the
classifier generate a better decision surface. Techniques such as Tomek Link [76]
and the Neighborhood Cleaning Rule [77] are examples of this. Hybrid methods
combine oversampling and undersampling techniques to increase or reduce the
minority and majority class observations [73].

• Cost-sensitive learning techniques are applied by directly modifying the cost
function of a common classifier, thus increasing the cost of misclassifying a
certain class. These techniques are useful in applications where an error in
the classification of one of the classes has greater weight than the other. For
example, in medical diagnosis a false positive is limited to increasing the number
of tests to be performed on the patient, while a false negative can be fatal for
the patient. Class weighting is usually grouped into cost-sensitive methods and
consists of assigning weights to each class to balance the dataset during training
[73].

• Ensemble classifier methods use multiple single classifiers to improve the final
classification performance. Two fundamental concepts underlie these methods:
bagging and boosting. Bagging, which stands for Bootstrap Aggregating, is a
method that combines classifiers in which the training input data set has been
varied or assigns weights to the observations. Boosting improves the perfor-
mance of a weak learning algorithm that only performs slightly better than
random by iteratively adjusting the weight of each training sample and com-
bining multiple weak learners to create a strong and more reliable algorithm
[73].

• Synthetic data generation is used to balance the dataset, for example by us-
ing Generative Adversarial Networks (GANs) [78]. Unlike resampling methods,
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which attempt to achieve balanced data, defined as a set of features, GANs are
a type of generative model that can learn to generate synthetic time series data
similar to the real training data without relying on explicit modification of the
original dataset. GANs cannot be directly grouped into resampling methods for
class imbalance, although they can be used to address class imbalance indirectly
by generating synthetic data for the minority class, thereby increasing its rep-
resentation in the training set and improving the model’s performance on that
class. This approach is called the Synthetic Minority Over-sampling Technique
with GANs (SMOTE-GAN) [79].

1.3.4 Performance Metrics for Predicting Preterm Labor

Evaluation metrics are essential in assessing the performance and accuracy of any
predictive model, including those used for predicting preterm labor from EHG signals.
Since the classifier algorithm’s output are usually continuous data ranging from 0 to
1, it is advisable to obtain first the threshold-independent metrics such as AUC and
precision-recall to assess the prediction model’s performance [53]. The descriptions
of the mathematical formulations for various model metrics in which the optimal
threshold should be determined are as follows:

• AUC: The area under the receiver operating characteristic curve, which is a plot
of the true positive rate (sensitivity) against the false positive rate (1-specificity)
at various classification thresholds. AUC measures the model’s ability to dis-
tinguish between preterm and term deliveries across all possible thresholds.

AUC =

∫︂ 1

0

TPR(FPR) × dFPR (1.1)

where TPR and FPR are true positive rate and false positive rate, respectively.

• Average Precision (AP): The area under the precision-recall curve, which is a
plot of precision against recall (sensitivity) at various classification thresholds.
Average precision measures the model’s ability to correctly identify positive
cases (preterm deliveries) while minimizing false positives.

AP =
∑︂
n

(Rn − Rn−1) × Pn (1.2)

where Pn and Rn are the precision and recall at the nth threshold, respectively.

Unlike ROC curves, which are insensitive to data imbalance, precision-recall curves
indicate that poor performance can be masked by ROC curves [80], so that the average
precision complements AUC by providing a more comprehensive assessment of the
model’s performance in scenarios with imbalanced class distribution. Figure 1.6 shows
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an example of the ROC curve and precision recall curve, in which the dashed line
denotes the random classifier with no capability to predict the target classes. The
performance of the current model is depicted by the solid line. The ROC curve reaches
its maximum performance as it approaches the upper left corner, while the precision-
recall curve reaches its peak at the upper right corner. The closer it is to these corners
and the farther away from the dashed line the better the model performance.

Figure 1.6: Example of an ROC curve (left) and precision-recall curve (right). The dotted
lines in the graphs represent the ROC baseline and precision-recall curves (random classifier).

Once the machine learning model has been fully satisfied, a threshold is usually
specified to classify the input data into the preterm or term groups. Threshold-
dependent metrics are more user-friendly and comprehensible in evaluating perfor-
mance. After thresholding the classification algorithm’s output, we can determine
the number of true positives, true negatives, false positives and false negatives (see
definition below) taking into account the target outcome and the algorithm’s predic-
tion. In the context of predicting preterm labor, TP, TN, FP, and FN are used to
describe the results of a binary classification model that predicts whether a delivery
will be preterm or term [53].

• True positives (TP) are cases in which the model correctly predicts a preterm
delivery.

• True negatives (TN) are cases in which the model correctly predicts a term
delivery.

• False positives (FP) are cases in which the model predicts a preterm delivery,
but the actual delivery is term.
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• False negatives (FN) are cases in which the model predicts a term delivery, but
the actual delivery is preterm.

In other words, TP and TN represent correct predictions, while FP and FN are
incorrect predictions, which should be minimized. Various metrics can then be com-
puted to evaluate the predictive model’s performance. Some of the most frequently
used include: accuracy, sensitivity, precision, specificity, negative predictive value
(NPV), AUC, and average precision [53, 80, 81]. These metrics help to assess the
model’s ability to correctly identify positive and negative cases, minimize false pos-
itives and distinguish between preterm and term deliveries. The metrics often used
to assess the prediction models’ performance include accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, F1-score, and G-mean [53].

• Accuracy: The proportion of correct predictions (both true positives and true
negatives) out of all predictions made by the model. In the context of predicting
preterm labor, accuracy measures how well the model correctly identifies both
preterm and term deliveries.

Accuracy =
TP + TN

TP + TN + FP + FN
(1.3)

• Sensitivity: Also referred to as recall, quantifies the proportion of actual positive
cases (preterm deliveries) correctly identified by the model as positive and is
the proportion of actual positive cases (preterm deliveries) that are correctly
identified by the model as positive. In other words, sensitivity measures how
well the model correctly identifies preterm deliveries out of all the actual preterm
deliveries.

Sensitivity =
TP

TP + FN
(1.4)

• Specificity: The proportion of actual negative cases (term deliveries) that are
correctly identified by the model as negative. In other words, specificity mea-
sures how well the model correctly identifies term deliveries out of all actual
term deliveries.

Specificity =
TN

TN + FP
(1.5)

• Precision: It is also referred to as positive predictive value (PPV) and quantifies
the proportion of predicted positive cases (preterm deliveries) that are actually
positive. Precision measures how often the model is correct when it predicts
preterm delivery.

Precision =
TP

TP + FP
(1.6)
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• Negative predictive value (NPV): The proportion of predicted negative cases
(term deliveries) that are actually negative. NPV measures how often the model
is correct when it predicts term delivery.

NPV =
TN

TN + FN
(1.7)

• F1-score, the harmonic mean of precision and sensitivity, combines precision
and sensitivity into a single value and ranging from 0 to 1.,Awhere a score of
1 indicates perfect precision and sensitivity. In the context of preterm labor
prediction, the F1 score is useful for measuring the model’s ability to correctly
identify both preterm and term deliveries while minimizing false positives.

F1-score =
2 × recall × precision

recall + precision
(1.8)

• G-mean calculates the geometric mean of sensitivity and specificity, used to
evaluate the model’s ability to identify all positive cases while minimizing false
positives. In the context of predicting preterm labor, G-mean is useful in as-
sessing the model’s performance in correctly identifying preterm deliveries while
minimizing false positives. It should be noted that both F1-score and G-mean
are generally used to assess the prediction models’ performance in imbalance
data learning [80, 82, 83, 84].

G-mean =
√︁

recall × specificity (1.9)

1.4 State of the art of preterm delivery prediction
using EHG signals

Many different approaches have been proposed to predict preterm labor from EHG
signals. The goal of the present review is to provide an overview of the current state
of this field of research and covers the different approaches proposed, including both
feature extraction, dimensionality reduction and machine learning, putting special
emphasis on the approach to mitigate imbalance data problem. The review also
includes the strengths and limitations of these approaches. The information given
in Table 1.1 comprises the studies conducted since 2018, providing details such as
the number of preterm and term records in the dataset, the dimensional reduction
method employed, the resampling strategy used (whether the dataset was resampled
before or after partitioning, i.e. data resampling-splitting or data splitting-resampling
pipeline), and the classifier used.

The first studies include those that did not use any strategy to deal with imbal-
anced data and highlight their limitations and then focus on the different strategies
used to mitigate the imbalanced data learning problem.
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1.4.1 Studies with no strategy to deal with imbalanced data
learning

Due to the nature of the study, few studies attempted to predict preterm labor by EHG
without any strategy to deal with imbalance preterm and term data. Selvaraju et al.
extracted temporal and spectral features from the TPEHG DB to train a random
forest classifier, reporting an accuracy of 75.2%, F1-score of 34.6%, and AUC of
67.7% in testing [85]. Goldsztejn & Nehorai used EHG records from the TPEHG DB
and TPEHGT DS databases on women with over 28 weeks of gestation. They fed a
Recurrent Neural Network classifier (RNN) with a time-frequency domain short-time
Fourier transform of EHG signals and clinical data, reporting a sensitivity of 77.3%,
with a specificity of 70%, AUC 80%, and PPV 30.9% [86].

Mohammadi Far et al. achieved an excellent performance using only three fea-
tures obtained by the Empirical Mode Decomposition (EMD) to split the EHG signal
into the first two intrinsic mode functions (IMF) amplitudes, plus a support vector
machine classifier, with a sensitivity of 99.5%, specificity of 99.7%, and AUC of 99.9%
[87, 88]. In this regard, the first two IMFs, which represent the highest frequency
component of EHG signals, are probably outside the main bandwidth, in which the
EHG signal distributes its energy (0.2–1 Hz). Several studies reported that peak-to-
peak amplitude is an unreliable metric for predicting preterm labor in cross-sectional
studies, as it is influenced by various factors such as body mass index, age and skin
preparation, among others [18, 46, 89]. Other studies [57, 87, 90] showed that similar
features obtained from EMD can distinguish between preterm and term births, but
involve sample entropy being the best performing feature (AUC of 69.0 ±4.2%)[57].
Further studies are thus still needed to validate the methodology proposed by Moham-
madi Far et al. Moreover, Shahrdad & Amirani also achieved high performance by
characterizing EHG signals from TPEHG DB with linear predictive coding and fitting
an RUSBoost classifier (random undersampling + AdaBoost), obtaining a sensitivity
of 90%, specificity of 89%, and AUC of 97% [91]. However, it is unclear whether the
reported performance was obtained for training, validation and test data due to a
lack of information.

1.4.2 Resampling techniques for imbalanced data learning

The most common approach to address the imbalanced data problem in predicting
preterm delivery from EHG signals involves oversampling the minority class (preterm)
using techniques such as SMOTE or ADASYN. Most recent studies oversample the
whole database (preterm and term) before splitting into training and testing partition
[57]. For example, the TPEHG DB [46]. contains 38 preterm and 262 term labor
observations, resulting in an imbalanced dataset. The dataset can be balanced to 262
preterm and 262 term labor cases by oversampling. The balanced samples are then
split into balanced training and testing partitions to resolve the imbalance problem.

Following this scheme, in a study by Fergus et al., various machine learning tech-
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niques were evaluated by different sets of EHG signal parameters. The minority class
was oversampled using SMOTE, and the resulting decision tree classifier achieved
high scores of 90% sensitivity, 83% specificity, and 89% AUC on the TPEHGT DS
database [92]. Ahmed et al. also oversampled the minority class with ADASYN and
achieved an accuracy of 99% and an AUC of 95.4% using a support vector classifier on
the same database [93]. Peng et al. attempted to predict preterm births from EHG
recordings obtained after the 26th week of gestation from the TPEHG DB. They ex-
tracted linear, spectral, and non-linear features from the signals and resampled them
using ADASYN. The subsequent classification by a random forest (RF) algorithm
achieved 88% sensitivity, 97% specificity and 88% AUC [94]. Xu et al. used the
TPEHG DB to predict preterm labor by extracting linear, spectral, and non-linear
features and balancing the dataset by SMOTE. They used a Gradient Boosting Clas-
sifier (GBC) and reported an overall accuracy of 85%, Gmean of 84%, and AUC
of 91% [95]. Khan et al. also used the TPEHG DB and extracted a similar set of
features using ADASYN to balance the dataset and the support vector machine to
fit the model, obtaining an accuracy of 95.5%, sensitivity of 93.5%, and specificity
of 97.1% [96]. Mas-Cabo et al. used a similar approach to predict preterm labor
from the TPEHG DB. They addressed the issue of imbalanced data using SMOTE
and fitted an Artificial Neural Network (ANN) to solve the classification task. The
results reported a sensitivity of 84.4 ±2.5%, specificity of 89.2 ±2.1%, and AUC of
91.1 ±2.6% [97].

Despite the promising results, recent research shows that the previous studies
may have overestimated the performance of preterm labor prediction system due
to a methodological bias, i.e. oversampling techniques before data splitting (data
resampling-splitting pipeline) can lead to correlation data structures between the
training and test data, giving rise to unrealistic performance estimates [57] (see Figure
1.7). Indeed, they repeated the experiment carried out by Fergus et al. and Ahmed et
al., using the oversampling technique after data splitting (data splitting-resampling
pipeline), obtaining AUC values of 60.75% and 56.04%, respectively [57], which were
much lower than those obtained by the data resampling-splitting pipeline.

The influence of resampling before or after data splitting on model performance
was also reported by other research groups [98, 99]. Xu et al. developed a sup-
port vector machine model using EHG signals from the TPEHG DB and found that
data resampling-splitting pipeline led to a sensitivity of 99.5 ±1.2%, specificity of
99.2 ±0.2% and AUC of 94.3 ±2.1%. However, when oversampling was performed
after data splitting, the model achieved a sensitivity of 89.1 ±2.6%, specificity of
92.5 ±1.2% and AUC of 96.8 ±6% [98]. Note that in this work feature selection
was performed prior to data partitioning, potentially leading to information leakage
for prediction models. Cross-validation was performed by k-fold rather than strat-
ified k-fold, which does not guarantee the proportion of the groups, giving rise to
imbalanced partitions [98]. Lou et al. compared the performance of preterm delivery
prediction models using different resampling schemes. They fitted a Gaussian Naı̈ve
Bayes (GNB) classifier using the same database. Using the data resampling-splitting
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Figure 1.7: Comparison of the effect of applying oversampling before and after data sepa-
ration in a two-dimensional artificial classification problem.
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pipeline, the classifier achieved a sensitivity of 98 ±1%, specificity of 91 ±4% and
AUC of 98 ±1%. In contrast, when partitioning preceded oversampling, sensitivity
was 84 ±10%, specificity 66 ±6% and AUC 84 ±7% [99].

1.4.3 Matching the composition of the preterm and term
database

Other studies attempted to balance the database during the study design stage and
matched “artificially” preterm and term women, which did not preserve the original
distribution between classes (∼15% preterm labor records). Chen et al. used the
Icelandic database to extract 150 EHG signal segments for both preterm and term
classes and used components of wavelet transformation and sample entropy as input
features for the stacked sparse autoencoder classifier (SSAE). Their model achieved
a sensitivity of 92%, specificity of 88% and AUC of 90% [100]. Mischi et al. studied
different features to distinguish between preterm and term births using their own
database of EHG recordings from women with symptoms of threatened preterm labor
at the time of recording (34 preterm and 20 term registers). They found that modified
approximate entropy was able to predict preterm labor with a sensitivity of 68 ±23%,
specificity of 82 ±18% and AUC of 75.4% [101]. Cheng et al. used an extended version
of Mischi et al.’s database with 44 preterm and 30 term recordings and characterized
the EHG signals with temporal, spectral, non-linear and graph features. They used
the support vector machine to fit the classification model and achieved a sensitivity of
93.2%, specificity of 86.7% and AUC of 84.2% [102]. Romero-Morales et al. selected
17 preterm and 17 term EHG registers from the TPEHG DB and TPEHGT DS, ex-
tracted temporal, spectral and non-linear features and used the Quadratic Support
Vector Machine to classify them. They reported an accuracy of 88.52 ±1.47%, sen-
sitivity of 83.83 ±3.07% and specificity of 93.22 ±1.31% [103]. Finally, Chen & Xu
extracted 20 entropy metrics from 450 EHG signal segments of 51.2s from 13 term
and 13 preterm women in the TPEHGT DS, i.e. each patient was represented by
450×20 features, and designed the classifier using a Sparse Autoencoder (SAE) fol-
lowed by a Deep Neural Network (DNN), achieving a sensitivity of 98.02%, specificity
of 97.74% and AUC of 97.89% [104]. Despite the promising results, future studies are
still needed to further corroborate the method, due to the possible overfitting problem
when attempting a high dimensional feature space, especially when the sample size is
extremely low.
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de Pediatria, vol. 75, no. 3, pp. 169–174, 2011, issn: 16954033. doi: 10.1016/
j.anpedi.2011.04.001.

[10] F. Wu et al., Short-term outcomes of extremely preterm infants at discharge:
A multicenter study from Guangdong province during 2008-2017, BMC Pedi-
atrics, vol. 19, no. 1, pp. 1–11, 2019, issn: 14712431. doi: 10.1186/s12887-
019-1736-8.

25

https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1016/S2214-109X(18)30451-0
https://doi.org/10.1186/1742-4755-10-S1-S1
https://doi.org/10.1016/S2352-4642(19)30108-7
https://doi.org/10.2307/3965140
https://doi.org/10.1055/s-0035-1571202.Short
https://doi.org/10.1001/jama.2015.10244.Trends
https://doi.org/10.1001/jamapediatrics.2014.3351
https://doi.org/10.1016/j.anpedi.2011.04.001
https://doi.org/10.1016/j.anpedi.2011.04.001
https://doi.org/10.1186/s12887-019-1736-8
https://doi.org/10.1186/s12887-019-1736-8


Chapter 1. Introduction

[11] C. S. H. Aarnoudse-Moens, N. Weisglas-Kuperus, J. B. Van Goudoever, and J.
Oosterlaan, Meta-analysis of neurobehavioral outcomes in very preterm and/or
very low birth weight children, Pediatrics, vol. 124, no. 2, pp. 717–728, 2009,
issn: 00314005. doi: 10.1542/peds.2008-2816.

[12] S. Petrou, H. H. Yiu, and J. Kwon, Economic consequences of preterm birth:
A systematic review of the recent literature (2009-2017), Archives of Disease
in Childhood, vol. 104, no. 5, pp. 456–465, 2019, issn: 14682044. doi: 10.1136/
archdischild-2018-315778.

[13] N. X. Thanh, J. Toye, A. Savu, M. Kumar, and P. Kaul, Health Service Use
and Costs Associated with Low Birth Weight - A Population Level Analysis,
Journal of Pediatrics, vol. 167, no. 3, pp. 551–556, 2015, issn: 10976833. doi:
10.1016/j.jpeds.2015.06.007.

[14] M. Katz, K. Goodyear, and R. K. Creasy, Early signs and symptoms of preterm
labor. American journal of obstetrics and gynecology, vol. 162, no. 5, pp. 1150–
3, 1990, issn: 0002-9378. doi: 10.1016/0002-9378(90)90004-q.

[15] J. D. Iams, F. F. Johnson, and M. Parker, A prospective evaluation of the
signs and symptoms of preterm labor, Obstetrics and Gynecology, vol. 84, no. 2,
pp. 227–230, 1994, issn: 1873233X.

[16] I. B. Fuchs, W. Henrich, K. Osthues, and J. W. Dudenhausen, Sonographic
cervical length in singleton pregnancies with intact membranes presenting with
threatened preterm labor, Ultrasound in Obstetrics and Gynecology, vol. 24,
no. 5, pp. 554–557, 2004, issn: 09607692. doi: 10.1002/uog.1714.
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Chapter 2

Scope of the Study

Preterm deliveries, i.e. those occurring before 37 weeks of gestation, are a worldwide
problem with a prevalence of more than 10% of all deliveries [1]. Being born too early
increases the risk of neurodevelopmental disorders and respiratory and gastrointestinal
complications [2]. Preterm births also have a great economic impact, with an average
cost of between 5 to 10 times higher than that of a term birth [3].

Predicting preterm delivery has traditionally been based on measuring uterine dy-
namics by TOCO, cervical length [4] and/or the use of biochemical markers [5, 6].
However, none of these techniques have been shown to precisely predict preterm labor
due to a lack of sensitivity, giving rise to overdiagnosis in up to 40% of women with
preterm labor symptoms [7]. Electrohysterography (EHG) has emerged as a promis-
ing alternative that provides relevant information on the uterine electrophysiological
state for predicting preterm labor. Numerous studies have proposed temporal, spec-
tral or nonlinear parameters for EHG signal characterization throughout pregnancy.
However, no specific study has focused on the analysis of complementary, redundant
and irrelevant information in the different parameters, so that including irrelevant or
redundant information could even generate noise in the model and worsen its perfor-
mance [8].

Several preterm delivery prediction systems have been developed that use tempo-
ral, spectral and non-linear EHG parameters as input features, obtaining promising
results with an AUC higher than 90-95%, although with no significant impact on
clinical practice. This is partially due to the methodology bias used to mitigate the
imbalanced data problem (preterm 12% vs. 88% at term) when designing preterm
labor prediction systems. As mentioned above, SMOTE oversampling-splitting is the
most common approach to deal with imbalanced data. Applying the SMOTE tech-
nique to the total database before data partition could generate a data structure
correlation between training, validation and test data and overestimate the model’s
predictive ability [9]. It still remains unclear whether other strategies for dealing with
the data-imbalance problem, such as oversampling and hybrid resampling techniques
applied after data partition combined with classification methods and/or ensemble
classifiers would improve model performance and/or reliability. [10, 11, 12].
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Chapter 2. Scope of the Study

2.1 Hypothesis

In this study, we tested the following hypotheses:

• EHG recordings on the abdominal surface contain relevant information on the
electrophysiological state of the uterus, which is linked to the labor time hori-
zon. This information is not available in the purely mechanical and indirect
information obtained in traditional TOCO recordings.

• Robust and generalizable preterm birth prediction systems can be achieved
through applying artificial intelligence approaches using EHGs from single ges-
tation women who undergo regular check-ups. This would help clinicians to
improve pregnancy planning and management by optimizing both maternal-
fetal well-being and hospital resources.

• Different strategies of dealing with imbalanced data learning could lead to biased
performance of the machine-learning prediction system with inconclusive results
and a low generalization ability.

2.2 General objective

This project aimed to provide artificial intelligence computer-assisted tools, with spe-
cial emphasis on imbalanced data learning, to predict preterm labor risks to help
clinicians in their decisions on the management and planning of pregnancy and child-
birth in a preterm labor maternal-fetal risk scenario. The project was aimed to give
clinical professionals the appropriate tools to predict preterm labor and facilitate
the optimal and earlier selection of possible treatments and management of hospital
resources to improve maternal-fetal well-being and reduce costs.

2.3 Specific objectives

To achieve the general objective, the following specific objectives were pursued:

• To extract relevant features from EHG signals to discriminate the preterm versus
term labor in women undergoing regular prenatal check-ups.

• To determine the complementary, redundant and noisy information of EHG
features to optimize the feature subspace for predicting preterm delivery.

• To assess different imbalanced data learning strategies to achieve a robust and
generalizable preterm birth prediction system.
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Abstract

Electrohysterography (EHG) has emerged as an alternative technique to predict
preterm labor, which still remains a challenge for the scientific-technical community.
Based on EHG parameters, complex classification algorithms involving non-linear
transformation of the input features, which clinicians found difficult to interpret, were
generally used to predict preterm labor. We proposed to use genetic algorithm to iden-
tify the optimum feature subset to predict preterm labor using simple classification
algorithms. A total of 203 parameters from 326 multichannel EHG recordings and
obstetric data were used as input features. We designed and validated 3 base classi-
fiers based on k-nearest neighbors, linear discriminant analysis and logistic regression,
achieving F1-score of 84.63 ±2.76%, 89.34 ±3.5% and 86.87 ±4.53%, respectively, for
incoming new data. The results reveal that temporal, spectral and non-linear EHG
parameters computed in different bandwidths from multichannel recordings provide
complementary information on preterm labor prediction. We also developed an en-
semble classifier that not only outperformed base classifiers but also reduced their
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variability, achieving an F1-score of 92.04 ±2.97%, which is comparable with those
obtained using complex classifiers. Our results suggest the feasibility of developing a
preterm labor prediction system with high generalization capacity using simple easy-
to-interpret classification algorithms to assist in transferring the EHG technique to
clinical practice.

Keywords: Preterm labor; Electrohysterography; Myoelectric activity; Genetic al-
gorithm; Ensemble learning

3.1 Introduction

Premature delivery is defined as one that occurs before 37 weeks of gestation. Over
9–12% of children are born prematurely every year, this being the leading cause of
new-born deaths and the second-leading cause of death after pneumonia in children
under the age of 5 [1]. In the case of survivors, it is associated with 20% mental
retardation, 50% cerebral palsy and 33% eye injuries [2]. Preterm births are also
associated with long-term morbidity consequences such as learning disabilities, at-
tention deficit disorder, emotional problems, respiratory distress and intraventricular
hemorrhage [1]. The costs derived from premature pregnancy are significant for na-
tional healthcare systems. In the United States, the economic cost in 2005 (combined
medical, educational and lost productivity) associated with preterm birth amounted
to at least $26.2 billion [1]. The average first-year medical costs, including both in-
patient and outpatient care, were about 10 times greater for preterm ($32,325) than
for term infants ($3325) [1].

Obstetricians usually assess uterine dynamics by tocodynamometer (TOCO) and
cervix status using cervical length and bishop scores to determine the risk of preterm
labor [3]. Biochemical markers such as fetal fibronectine and interleukin-6 have also
been shown to be useful to identify patients that are not at risk of preterm labor, thus
obtaining a high negative predictive value [4, 5]. However, all these techniques fail
to detect women who will deliver prematurely, with positive predictive values lower
than 0.50. Electrohysterography (EHG), which consists of the recording of uterine
myoelectrical activity on the abdominal surface, has emerged as a powerful tool to
predict preterm labor due to its high sensitivity in identifying the real preterm labor
patients [6]. In addition to identifying uterine contractions, which is the only useful
information that can be derived from TOCO, relevant information on the uterine
electrophysiological state can also be obtained from the EHG. Temporal, spectral
and non-linear parameters are used to characterize the electrophysiological changes
throughout pregnancy [7]. In this context, the EHG signal amplitude associated with
the number of uterine cells involved in one contraction has been shown to increase as
pregnancy progresses. As labor approaches, a shift of spectral content towards higher
frequencies has also been reported, suggesting increased cell excitability [6]. Different
entropy measurements such as sample entropy (SampEn), fuzzy entropy (FuzEn)
and spectral entropy (SpEn) have shown that signal predictability increases as labor
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approaches [8], although some controversial results have been reported [7]. Likewise,
signal complexity seems to decrease, which was shown by analyzing the Lempel-Ziv
evolution in function of time-to-delivery [9]. Poincaré plot-derived parameters [10]
have also been proposed to characterize the EHG signal, and it has been observed
that signal randomness decreases as labor approaches [6].

Many efforts have focused on developing prediction models for forecasting preterm
labor based on EHG features and achieved classifier accuracy of more than 95% [7].
Despite the promising results of these prediction systems, they have had no significant
impact on clinical practice [11]. This is due to various factors. Firstly, most of
these systems use neural networks or support vector machine, multilayer perceptron,
or similar algorithms, which involved non-linear transformations of the input EHG
features into high dimension space, in which data from the target classes offer better
linear separability [12]. This could give rise to good prediction performance even
when the input features apparently do not contain information to differentiate the
target classes. Obstetricians often consider this type of classification algorithm as a
black box or a mathematician’s gadget due to its being difficult to interpret [13], and
so find it difficult to trust the predictions of these complex classifiers. By contrast,
obstetricians are familiar with linear discriminant analysis (LDA), logistic regression
(LR) and k-nearest neighbors (KNN) [12], which are simple and easy to interpret [13].
In addition, since the nonlinear transformation of the data is avoided, the definition of
input EHG features used to obtain the prediction model also contributes to a better
understanding of the uterine electrophysiological mechanism associated with labor. It
is therefore fundamental to develop preterm labor prediction systems using simple and
easily interpretable algorithms to improve the transferability of the EHG technique
to clinical practice by gaining obstetricians confidence in prediction model outcomes
[14]. Secondly, due to using reduced sample sizes, many previous studies have used
crossvalidation methods to design and validate the classifiers, without determining
the real generalization capacity for incoming data “never” seen by the classifiers [7].

The aim of this work was therefore to develop easily interpreted prediction systems
based on EHG features for forecasting preterm labor in women at regular check-ups
and to determine its generalization capacity for incoming data “never” seen by the
classifiers, to facilitate the transfer of this technique to clinical practice. We also
attempted to identify those EHG features that presented relevant and complementary
information on labor prediction.

3.2 Materials and Methods

3.2.1 Database

Two public EHG databases available in Physionet were used for the study: The
“Term-Preterm EHG Database” (TPEHG DB) [14] and the “The Term-Preterm EHG
Dataset with tocogram” (TPEHGT DS) [15]. Both databases were obtained by the
Department of Obstetrics and Gynecology at the Ljubljana University Medical Center.
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To agree with the data available for each patient, only EHG recordings from both
databases were used to predict preterm labor, i.e. the tocogram signals included
in Term-Preterm EHG DataSet with Tocogram (TPEHGT DS) were ignored. They
comprised a total of 326 EHG signals from 275 term labor (labor > 37 weeks) and 51
preterm labor were recorded during routine checkups of pregnant women between 22
and 37 weeks of gestation. The protocol used to obtain the EHG recordings consisted
of placing four disposable electrodes on the woman’s abdomen at an interelectrode
distance of 7 cm. Three bipolar channels (S1, S2 and S3) were obtained from the
monopolar EHG recordings, as shown in Figure 3.1. Each signal was digitized at 20
samples per second per channel with a 16-bit resolution over a range of ±2.5 millivolts
[14]. A demographic description of both databases was provided in Table 3.1.

Table 3.1: Demographic description of the both databases (TPEHG DB and TPEHGT
DS).

Group N
Maternal
Age (Years)

Parity Abortions
Maternal
Weight (kg)

WOG
(Weeks)

Birth
(Weeks)

Term 275 29.33 ±4.34 0.40 ±0.74 0.23 ±0.61 68.55 ±10.55 26.95 ±4.19 39.21 ±1.12
Preterm 51 29.08 ±5.26 0.41 ±0.64 0.26 ±0.60 66.82 ±11.24 27.59 ±3.72 33.92 ±2.21

Navel 

3.5 cm3.5 cm

3.5 cm

3.5 cm

E2 E1

E3 E4

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

S1 = E2 - E1
S2 = E2 - E3
S3 = E4 - E3

Figure 3.1: Recording protocol of EHG signals. Modified from [15].

3.2.2 EHG Signal Characterization

Physiologically, various types of uterine contractions such as Alvarez waves, Braxton
Hicks contractions, preterm contractions, and with less frequency the so-called “long
duration low-frequency band waves” [16] may be present in EHG recordings acquired
from pregnant woman in the third trimester of gestation not close to delivery. The
amplitude of the EHG bursts associated with these uterine contractions is expected
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to be very low, giving rise to subtle changes from basal activity. It is therefore very
difficult to accurately identify the onset and offset of uterine contractions in these
recordings and this could generate some uncertainty in the results derived from them.
Previous results have revealed that whole window analysis can also be used for char-
acterizing EHG signals [8, 14, 17] and that it even outperforms EHG-burst analysis
for predicting imminent labor in women with threatened preterm labor [18]. Whole
window analysis has the additional advantage of not requiring the uterine contractions
to be identified in the EHG recordings, and only non-physiological segments should
be excluded (such as artifacted segments and those with respiratory interference),
thus facilitating its implementation in real time. In this work we therefore performed
whole EHG window analysis to characterize the EHG signals rather than EHG-burst
analysis. Two experts identified physiological segments in the EHG recordings by a
double-blind process. The EHG characteristics of the recordings were analyzed in 120
s windows with a 50% overlap, the window length being a trade-off between computa-
tional cost and preserving the representative segment of the recordings [18]. We then
computed the median value of all the analyzed windows in the recording to obtain a
single representative value of each EHG parameter per recording.

A total of 66 temporal, spectral and non-linear parameters were worked out per
recording channel and session, see Table 3.2. Firstly, the EHG signal is known to
contain Fast Wave Low (FWL) and Fast Wave High (FWH) components, which are
associated with signal propagability and cell excitability, respectively, their energy
being distributed in 0.2–0.34 Hz and 0.34–4 Hz, respectively [6]. Due to the relatively
lower signal-to-noise interference above 1 Hz [6, 14], we considered both 0.34–4 Hz and
0.34–1 Hz to characterize the FWH component. Therefore, we calculated the peak-to-
peak amplitude (App) to describe the signal amplitude of different EHG components
in four bandwidths: whole EHG bandwidth 0.1–4 Hz; FWH bandwidth 0.34–4 Hz;
0.2–0.34 Hz and 0.34–1 Hz, in which the energy of the FWL and FWH components
is mainly distributed respectively. Due to the increasing formation of gap junctions
as pregnancy progresses, signal amplitude, which is associated with the number of
uterine cells involved in one contraction, was shown to increase as labor approaches
[6].

As labor gets nearer, the EHG signal spectral content shifted to higher frequencies,
suggesting increased cell excitability [6]. Different spectral parameters have been
proposed to quantify the signal spectral content distribution: mean frequency (App),
dominant frequency (DF) computed in the range 0.2–1 Hz and in 0.34–1 Hz, power
spectrum deciles (D1, . . . , D9), normalized energy (NormEn) (0.2–0.34 Hz, 0.34–
0.6 Hz 0.6–1 Hz) [19], high-to-low frequency energy ratio (H/L Ratio) and spectral
moment ratio (SpMR), as in [15]. We also included Teager energy, which contains
information not only on signal amplitude, but also on the frequency content [8]. Due
to the increased cell excitability, different spectral parameters are expected to increase
as pregnancy progresses, however there is no agreement in the literature about the
spectral parameters that can best characterize the EHG signal, and above all those
that provide information to complement temporal and non-linear parameters.
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Due to the non-linear nature of the biological process dynamics, non-linear param-
eters have been widely used to characterize EHG signals. A previous study showed
that the bandwidth in which the non-linear parameters are computed is a key factor
in obtaining a robust and physically interpretable indicator for characterizing EHG
signals [14, 17]. We therefore computed several non-linear parameters in the same four
bandwidths as App to determine whether there was any redundant or complementary
information between non-linear parameters computed in different bandwidths and to
other linear features. SampEn, FuzEn and SpEn were used to measure time series
regularity and predictability in both the time and frequency domains [8, 14]. A lower
value of entropy metrics is associated with more self-similarity in the regular and pre-
dictable time series. We also computed the Lempel-Ziv index (binary (LZBin) and
multistate n = 6 (LZMulti)), which evaluates time series complexity by measuring
the “diversity” of the patterns embedded in a time series [8, 18]. Time reversibility
(TimeRev) estimates the similarity in forward (natural) and reverse time and can be
considered as a measurement of the degree of signal nonlinearity [8]. Uterine myoelec-
tric activity has also been shown to possess fractal properties and is another way of
measuring signal self-similarity [20, 21]. We also computed Katz’s fractal dimension
(KFD) [22] since it is less sensitive to noise than Higuchi’s method [23]. It was defined
as the ratio between the curve length, which corresponds the sum of the Euclidean
distances between successive points of the time series, and the maximum distance
between the first point and any sample of the time series [22].

Since the “present” EHG signal amplitude may significantly influence the “follow-
ing” values, we represented the Poincaré plot of consecutive EHG signal amplitudes
(EHG[n] vs. EHG[n-1]) to estimate the short (SD1) and long-term (SD2) variation
of the dispersion along the minor and major axes of the ellipse, respectively [10]. We
then obtained the SDRR, defined as square root of the variance of the whole time se-
ries

√︁
(SD12 + SD22)/2 and SD1/SD2 ratio, which measures signal randomness. This

latter has been shown to decrease significantly in women with threatened preterm la-
bor who delivered in less than 7 days, in comparison to those who delivered in more
than 7 days [8]. Table 3.2 summarizes the EHG parameters and obstetric data used
to design the preterm labor prediction model (3 channels × 66 EHG parameters per
channel + 5 obstetric data = 203 features).

3.2.3 Classifier Design and Evaluation

Since the preterm birth rate is about 12% in women who have regular check-ups,
this means that the two target classes are highly imbalanced. It is well known that
the conventional classification algorithms are often biased towards the majority class
for imbalanced data, obtaining a higher misclassification rate for the minority class
instances [24]. In this case, low sensitivity can be expected for true preterm labor.
In this work, we used the synthetic minority oversampling technique (SMOTE, k =
5) [24], which has been widely used to mitigate imbalanced class problems, to obtain
balanced preterm labor and term labor data [7].
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Table 3.2: Input features for predicting preterm labor that include both temporal, spectral,
and non-linear.

EHG Temporal
Parameters

EHG Spectral
Parameters

EHG Non-Linear
Parameters

Obstetric data

App

MeanF
DF

NormEn
H/L Ratio
[D1–D9]
SpMR

Teager Energy

SampEn
FuzEn
SpEn
LZBin

LZMulti (n = 6)
SD1
SD2

SDRR
SD1/SD2
TimeRev
KFD

Maternal age
Parity

Abortions
Weight

Week of gestation
(WOG)

We then used the conventional holdout method (30 partitions) to design and
validate the classifiers. For each partition we randomly split the whole balanced
database into 3 datasets with the same proportion between the classes: training (1/3),
validation (1/3) and testing (1/3) for designing, validating and testing the classifier,
respectively.

As mentioned above, a total of 203 EHG features derived from the 3-channels EHG
recording and obstetric data was used to design the prediction system. Since they
may contain mutual and redundant information or noise, which could lead to loss of
prediction performance, it is fundamental to reduce the dimension of the data. The
relevance of the features for predicting preterm labor can be evaluated either individ-
ually (unidimensional approaches) or multidimensionally. Unidimensional approaches
are simple and fast and therefore appealing. Nevertheless, if we only consider a uni-
dimensional approach, the outcomes suggest eliminating those with non-significant
statistical differences. The individual discrimination power must not be the only con-
sideration since possible correlations and dependencies between the features are not
considered. Many authors [12, 25, 26, 27, 28] claim that the redundant information
shared between the characteristics leads to discarding some of them with a feature
selection algorithm. The same occurs with noisy features that add an artifact to
the classification. Although complementarity between features is critical to achieve
good performance, multidimensional search techniques such as mutual information
estimation may be helpful to evaluate possible correlations and dependencies between
features. Nevertheless, estimating the mutual information (especially through proba-
bility density function estimations) between high-dimensional variables is a hard task
in practice due to the limited number of available data points for real-world problems
[29]. In this work, we measured the capability of each individual feature to identify
a premature delivery with a statistical test. The Wilcoxon Rank-Sum Test was per-
formed to compare the features’ ability to distinguish term and preterm deliveries
from EHG recordings in routine check-ups. This is a non-parametric statistical hy-
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pothesis test used to compare two related samples to assess whether their population
mean ranks differ (α < 0.05) [30].

Lower p-values mean higher discriminatory capacity between target classes for
the individual feature. We performed multidimensional analysis by using a wrapper
method for feature selection which has been widely used in the literature [25, 27,
31] and has been proven to provide better results than filter methods based on the
intrinsic information embedded in the features: the genetic algorithm [31]. The initial
feature set was assessed by a genetic algorithm to fit with logistic regression (LR),
linear discriminant analysis (LDA) and k-nearest neighbor (KNN) classifiers. If a
feature was selected by one or several classifiers, it meant that it complemented others
in predicting preterm delivery. The genetic algorithm is a random search strategy
based on procedures of natural evolution and is widely used for selecting the optimal
feature subset to design computer-aided systems for pattern recognition in different
biomedical applications [32, 33]. In this work, population size (N) and genome length
were fixed to the number of model features, N = 203 [26]. The crossover function
implemented was the arithmetic crossover with a probability of 0.8. Typically, it was
assumed between 0.6 and 1, increasing the randomness of the children generation the
lower the value it takes [34]. We used mutation uniform for the mutation function,
with a probability of 0.01, since the convergence to a lower minimum is better with
low values (<0.1) [31, 34]. The tournament function with a size of 2 and an elite
count of 2 was used to select the next generation population [26]. The termination
condition of the genetic algorithm was defined as a differential tolerance of 10−6 for
the fitness function between 150 consecutive generation’s best fitness value.

Figure 3.2 summarizes the procedure carried out to fit the model and obtain the
optimized feature subset. Firstly, an initial population was randomly established, then
the balanced data set was masked with the chromosomes, obtaining the different fea-
ture subsets. The mask (selected features), which corresponded to an i-chromosome,
was set to the balanced data set obtaining the i-subset, with 1 ≤ i ≤ N. Subsequently,
for each feature subset, the training dataset was used to fit the prediction model for
each partition. The average F1-score over 30 partitions in validation subsets was then
worked out to assess the model’s performance. When all the chromosomes in the pop-
ulation were evaluated, a new one was created, crossing over and mutating the last
population and keeping the chromosomes that outperformed the fitness function (3.1).
It became an iterative procedure until the termination condition was reached, giving
rise to the optimized feature subset which corresponded to the best chromosome that
optimized the fitness function. Finally, we determined the model’s generalization ca-
pacity for the testing dataset which could be considered as the incoming new data
“never” seen by the model.

Fitness function = max{F1-score · (NFeat − NCFeat)} (3.1)

where F1-score is the average F1-score of validation dataset for 30 partitions, NFeat
is the number of features of the initial set and NCFeat is the number of features of
the current subset.
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For the classification methods, we compared different methods (LDA, LR and
KNN) that can easily be interpreted by obstetricians. Due to the fact that the opti-
mization cost function of the genetic algorithm is the weighted classifier performance
(3.1) [26], different optimized EHG feature subsets may be obtained for each classifi-
cation method.

To compare the different prediction model’s performance the following metrics
were used: accuracy, F1-score, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) and area under curve (AUC) [12]. The Friedman
non-parametric test was conducted to determine the statistical difference in different
metrics [35]. The Nemenyi post-hoc test [35] was then used for pair-wise evaluation
of the classifiers, checking the similarity of their performance.

Since individual classifiers may present a high bias or variance, giving rise to weak
base models, to overcome these problems we also evaluated the utility of ensemble
classifier to achieve better performance. The three previously obtained base mod-
els based on LDA, LR and KNN were used, with a commonly used majority voting
strategy in the meta-level to obtain a more robust meta-classifier preterm labor pre-
dictor. We also determined the model’s generalization capacity for testing incoming
data “unseen” by the model for the ensemble classifier. Base and ensemble classifiers
performance variability were compared by computing the coefficient of variation of
the classifier metrics for both the validation and testing dataset.

3.3 Results

Figure 3.3 shows the three optimized feature subsets for predicting preterm labor
using LDA, LR and KNN as classification methods. It also shows the outcomes of
individual correlations of the Wilcoxon Rank-Sum test for each individual feature
to discriminate between preterm and term labor classes. Firstly, we found that the
EHG features computed from the 3 channels contained complementary information:
22, 25 and 23 features computed from S1, S2 and S3 respectively were included in
at least one of the three optimized feature subsets. Peak-to-peak amplitude com-
puted in the 0.2–0.34 Hz bandwidth, where the main energy of the FWL component
is concentrated, seems to provide relevant information for predicting preterm labor,
having been included in the “best chromosomes” of the LR and LDA classifiers. In
general, there is important mutual information between different spectral EHG pa-
rameters. In this regard, deciles D1–D3, D8 and D9 were not included in the best
chromosome of any of the three base classifiers. The DF in 0.1–1 Hz and 0.34–1 Hz,
NormEn in 0.1–0.34 Hz and 0.34–0.6 Hz, D5, D6 and SpMR seem to provide most
relevant information on cell excitability. As for the non-linear parameters, the infor-
mation extracted from different bandwidths was not necessarily redundant, but rather
complementary. The non-linear parameters, extracted from 0.34–4 Hz, where FWH
components distributed their energy, seem to contain the most relevant information
for predicting preterm labor. In contrast, the non-linear parameters computed from
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Figure 3.2: Genetic algorithm for selecting optimized feature subset to predict preterm la-
bor based on EHG. Considering: genetic algorithm (GA), classifier (CLF), training partition
(Train), validation partition (Val), testing partition (Test), chromosome (Chrom), popula-
tion size (N), obstetrics features (OBST).

0.2–0.34 Hz contain less complementary information for differentiating preterm and
term records. In this respect, the parameters derived from the Poincare plot, SampEn
and FuzEn, computed in this bandwidth were not included in any of the three base
classifiers. In comparison to LZBin, LZMulti seems to provide more complementary
information to other EHG features and therefore more present in the best chromo-
some of the different algorithms (see Figure 3.3). The entropy metrics (SampEn,
FuzEn and SpEn) contained redundant information, SpEn being the most relevant
one forming part of the optimum feature subset of several classifiers. Both TimeRev
and KFD also offered relevant and complementary information to other features. As
for the common features shared between the different prediction models, only decile
5, which is equivalent to median frequency, was common for the best chromosome of
the three base classifiers. It can be seen that a subset of 11 and 8 features was also
shared by LR and LDA, and by LR and KNN classifiers, respectively. As for obstet-
rics data, only WOG was shown to be relevant for predicting preterm labor for both
LDA and LR classifiers. As for individual statistical test, a total of 43 features with
statistically significant differences were obtained. Analysing the results by features
selected by classifiers, a total of 29, 22 and 40 characteristics for LR, LDA and KNN
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were chosen respectively. Only 17 of these features that obtained a p-value < 0.05. 21
features were selected by at least 2 classifiers and 8 of these obtained a p-value lower
than 0.05. Not all those features which obtained a p-value < 0.05 (decile 1 to 3 or
sample entropy) were included in the optimized feature subset. Various features which
provided individual statistical significance between target classes were used in each
optimized feature subset. Likewise, the optimized feature subsets also included some
features that did not obtain individual statistical significance between target classes
but provided complementary information to other relevant features, for example peak
to peak amplitude, Teager, SD ratio or time reversibility.

Table 3.3 shows the average performance for both base and ensemble classifiers
for training, validation and testing dataset and Figure 3.4 shows the results of the
Nemenyi post-hoc test of F1-score between different classifiers for both validation and
testing datasets. In general, the base classifiers performance for training dataset was
better than the validation dataset, as expected. The classifier metrics of the testing
dataset was similar to or slightly inferior than the validation dataset. Nevertheless,
regardless of the classification method, the average F1-score was over 85% and 80% for
validation and testing dataset, respectively. The LDA and LR classifiers showed sim-
ilar performance and obtained no significant difference. Both LDA and LR classifiers
obtained better performance than KNN, although a significant difference was only
achieved for the LDA classifier. The ensemble classifier obtained a significantly bet-
ter performance than the different base ones, achieving an average F1-score of around
92% for both the validation and testing datasets. The receiver operating character-
istic (ROC) curves of the different classifiers for validation and testing partitions are
shown in Figure 3.5.

As for classifier performance variability between partitions, training data usually
obtained a lower value than the validation and testing datasets with similar results. In
Figure 3.6 are depicted the different classifier metrics’ variability for both validation
and testing dataset are depicted. In general, base and ensemble classifiers presented
low performance variability (<10%). Accuracy, F1-score and AUC metrics usually
achieved the lowest variability, while sensitivity, specificity and PPV generally had
the highest. It can also be seen that the ensemble classifier can considerably reduce
the different metrics’ variability, obtaining similar or lower values than that of the
minimum variability achieved by the base classifiers.
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Figure 3.3: Optimized feature subset (best chromosomes) achieved using genetic algorithm
for each base classifiers implemented with LR (orange), LDA (green), and KNN (blue). A
single frame color indicates that a feature is part of the classifier’s best chromosome identified
with that color; two and three frame colors indicate that the feature belongs to two and three
classifiers’ best chromosome, identified with the corresponding colours. *, ** and *** mean
a p-value of the Wilcoxon Rank-Sum test lower than 0.05, 0.005 and 0.0005, respectively,
computed by each feature between preterm and term labor classes.
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Table 3.3: Average performance of 30 partitions for base classifiers (LDA, LR and KNN)
and for the classifiers’ ensemble.

KNN LDA LR Ensemble

Train 92.86 ±2.41 96.01 ±1.50 100 ±0.00 99.62 ±0.59
Accuracy (%) Validation 85.82 ±3.82 90.03 ±2.53 89.78 ±3.29 92.61 ±2.48

Test 82.92 ±2.90 88.77 ±3.89 87.42 ±40.00 91.64 ±3.2

Train 93.26 ±2.20 96.14 ±1.43 100.00 ±0.00 99.63 ±0.58
F1-score (%) Validation 87.26 ±3.21 90.61 ±2.23 89.55 ±3.49 92.97 ±2.27

Test 84.63 ±2.76 89.34 ±3.50 86.87 ±4.53 92.04 ±2.97

Train 98.43 ±1.86 98.99 ±1.29 100.00 ±0.00 99.87 ±0.48
Sensitivity (%) Validation 96.48 ±2.88 95.79 ±3.04 87.86 ±5.07 97.36 ±2.25

Test 94.21 ±5.00 93.58 ±3.63 84.03 ±6.73 96.23 ±3.17

Train 87.30 ±4.05 93.02 ±2.81 100.00 ±0.00 99.37 ±1.14
Specificity (%) Validation 75.16 ±7.40 84.28 ±5.48 91.7 ±4.22 87.86 ±4.34

Test 71.64 ±4.58 83.96 ±6.59 90.82 ±3.67 87.04 ±5.47

Train 88.67 ±3.28 93.48 ±2.49 100.00 ±0.00 99.39 ±1.11
PPV (%) Validation 79.83 ±5.19 86.12 ±3.95 91.51 ±4.08 89.04 ±3.49

Test 76.95 ±2.76 85.63 ±5.02 90.2 ±3.58 88.33 ±4.44

Train 98.25 ±2.09 98.95 ±1.33 100.00 ±0.00 99.88 ±0.47
NPV (%) Validation 95.64 ±3.32 95.41 ±3.18 88.50 ±4.28 97.13 ±2.4

Test 92.92 ±5.42 92.99 ±3.78 85.33 ±5.28 95.94 ±3.35

Train 98.49 ±0.83 99.30 ±0.56 100.00 ±0.00 100.00 ±0.00
AUC (%) Validation 92.16 ±2.37 94.72 ±2.10 93.03 ±2.74 98.63 ±0.85

Test 90.20 ±2.41 94.72 ±2.54 91.44 ±2.63 98.13 ±1.26
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Figure 3.6: Base and ensemble classifiers performance variability for both validation (left)
and testing (right) dataset. As for base classifiers, minimum, average and maximum vari-
ability were computed.
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3.4 Discussion

Our aim in this work was to develop a preterm labor prediction system based on EHG
using simple and easily interpretable classification algorithms in order to promote the
transfer of the EHG technique to clinical practice. In this context, the features’ qual-
ity, i.e. their capability to provide useful and complementary information to others,
it is critical to achieve satisfactory classification performance. Although temporal,
spectral and non-linear EHG parameters have been shown to provide relevant in-
formation for predicting preterm labor [7], the redundancy and complementarity of
different EHG features were still unclear. The classical dimension reduction methods,
such as principal component analysis (PCA), does not guarantee the extraction of
complementary information or noise reduction to optimize classifier accuracy [36].

Unlike the filter methods for feature selection that reduce the number of features
using the intrinsic properties of the data, regardless of the learning algorithm to be
used, we proposed to use wrapper methods, which generally lead to better classifi-
cation performance [27] to determine the optimized feature subset. Of the different
search strategies, we preferred to use the random search strategy, which is a tradeoff
between classification performance and search complexity for moderate and/or large
numbers of features [27]. In this respect, both particle swarm optimization (PSO) and
the genetic algorithm could be used to optimize data information in feature space.
Benalcazar et al. proposed the use of PSO and the neural network to predict labor in-
duction success [37]. Alamedine showed that PSO generally outperformed sequential
forward selection and Jeffrey divergence distance for predicting labor and pregnancy
contractions when using LDA, QDA and KNN as classification methods [25]. The
genetic algorithm has also been shown to obtain better performance than the filter
method to predict pregnancy and labor contractions using KNN [38], and also out-
performed both forward and backward selection for predicting central nervous system
embryonal tumor outcomes, based on gene expression [27]. This is due to the ability
of the genetic algorithm to escape local optima and discover the global optimum in
even a very rugged and complex fitness function [31]. In practice, the genetic al-
gorithm may not always lead to a theoretically perfect solution to a problem, but
always delivers at least a very good solution [31]. We here used the genetic algorithm
to perform feature selection as it had been shown to theoretically outperform PSO in
obtaining highest number of best minimum fitness and did so faster [39]. We believe
that in our context, using the PSO strategy would give rise to similar or slightly worse
results.

Using the genetic algorithm for feature selection, we proved the feasibility of de-
veloping a preterm labor prediction system with high generalization capacity using
simple and easy-to-interpret algorithms, achieving an F1-score of the individual base
classifier of over 80% for incoming data previously unseen by the model. Since these
simple classifier’s success depends mainly on the information embedded in the feature,
we believe that this will help to gain obstetricians confidence of preterm labor pre-
diction model’s outcome, bringing thus the EHG technique closer to clinical practice.
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The prediction model proposed here has the inherent advantage over PCA that it
does not require all the parameters to be computed once the model is trained, and
is therefore easier to implement on a portable device due to its lower computational
cost. In this respect, the time necessary to compute the optimized feature subsets of
each window was 19.03 seconds using just one core of an Intel Core I7 8550U laptop,
which can be considerably less than the maximum time limit of 60 s (step size be-
tween analysis windows). In addition, the total time consumption required for each
base classifier implemented by LR, LDA and KNN to obtain its outcome from the
input features applying a majority voting strategy to generate the ensemble classi-
fier’s outcome was 0.094 s, indicating that the prediction outcome can be obtained
immediately after the recording. To characterize the EHG signal, the median value
of the temporal, spectral and non-linear parameters was worked out in windows of
120 s as the representative value of the whole recording. Previous studies have shown
that the 10-90th percentiles of individual EHG parameters can better discriminate
between preterm and term records [17]. The prediction model’s performance when
using these percentiles of EHG features (results not shown for the sake of brevity)
was similar to that obtained in this work with no significant differences.

We also reported for the first time three EHG feature subsets (best chromosomes)
that contain the maximum complementary information, thus optimizing the predic-
tion model’s performance. Our results revealed the redundancy between different
spectral parameters and also the complementarity between temporal, spectral and
non-linear parameters. This result is understandable, since these represent the differ-
ent phenomena involved in uterine contraction efficiency: intensity, excitability and
non-linear dynamic character [6].

As for non-linear parameters, Fele-Žorž et al. showed that SampEn computed
in FWH bandwidth can discriminate preterm and term records [14]. Lemancewicz
et al. found that Lempel-Ziv and approximate entropy computed at 0.24–4 Hz was
significantly higher for women with threatened preterm labor who delivered in less
than seven days than in those who delivered in more than seven days [9]. On the
other hand, Lempel-Ziv computed at FWH bandwidth in women with threatened
preterm labor decreased as labor approached [18]. Mas-Cabo et al. compared differ-
ent non-linear parameters computed from the whole bandwidth (0.1–4 Hz) and fast
wave high bandwidth (0.34–4 Hz) and concluded that the signal bandwidth in which
non-linear parameters are computed may be a key factor in obtaining a robust and
physically interpretable indicator for characterizing EHG signals [18]. In this work,
we found that the non-linear parameters computed in different bandwidths provided
complementary information. In addition, SampEn, FuzEn and Lempel-Ziv which rep-
resent the signal predictability and complexity in time domain, contained redundant
information between each other. SpEn, which measures the flatness of the spectrum,
seemed to provide additional information on the signal. Of the obstetric data, only
gestational age was found to be relevant for predicting preterm labor, possibly due to
the values of EHG features being intrinsically modified as gestational age increases
[14]. However, maternal age, parity and abortions were irrelevant for the algorithm,
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although these latter have been associated with preterm labor risk factors [40]. We
believe that other obstetric data, such as fetal fibronectin and cervical length may
provide complementary information to EHG and improve preterm labor prediction
performance.

The results revealed the complementarity of EHG features extracted from different
channels, highlighting the utility of multichannel recording for preterm labor predic-
tion. Firstly, a similar number of features from the three channels were included in
the optimized feature subsets (Best chromosomes). Using the same method (Genetic
algorithm + LDA, LR or KNN classifier), we also attempted to develop a preterm
labor prediction system using the information extracted from individual channels and
computing a mean efficiency index, which has been shown to be a more robust in-
dicator of uterine electrical activity efficiency from multichannel recordings [41]. We
found that the model performance based on individual channels was much inferior
(<70%) to that obtained for multichannel recording, suggesting that multichannel
recording may provide a more reliable electrophysiological state of the whole uterus
[41]. Unlike the prediction system based on a neural network developed in a previous
work, we obtained a better performance using all the EHG features extracted from the
three individual channels (S1+S2+S3) than the mean efficiency index [41]. We believe
this discrepancy may be associated with the greater degree of freedom in combining
information from a multichannel recording and the genetic algorithm’s capacity to
optimize the information in feature space. Our results for base classifiers also out-
performed those obtained by Fergus, who used PCA to reduce the data dimension
of EHG features extracted from channel 3 in the 0.34–1 Hz bandwidth. An AUC of
66%, 86% and 84% was obtained from this latter to validate the dataset using LDA,
LR and KNN classifiers, respectively [42]. Our results are also comparable with those
obtained using a neural network [7] and PCA for data dimension reduction (AUC =
88.2%). In other words, the information optimization in the feature space eliminated
the need to use complex classification methods. In comparison with other studies
in the literature [43, 44], our prediction model’s performance may be slightly lower,
which could be due to the different method used to validate it. In this respect, the
use of cross-validation and hold-out validation without preserving a testing dataset
previously unseen by the model may overestimate the model performance [12].

We also evaluated the performance improvement in an ensemble classifier over
base classifiers in predicting preterm labor. Ensemble methods combining the output
of individual weak classifiers have successfully produced accurate predictions for many
complex classification tasks [12]. The success of these methods is attributed to their
ability to consolidate accurate predictions and correct errors across many diverse
base classifiers [45, 46]. Successful ensemble methods make a balance between the
ensemble’s diversity and accuracy [47]. In this work we showed that a simple ensemble
classifier aggregation whose meta-level only consisted of a majority voting strategy can
further improve classification performance, obtain higher average metrics and reduce
the different metric variabilities between partitions. In this respect, the use of other
meta-learning algorithms may further improve classification performance. Again, it is
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preferred to use simple and easy-to-interpret algorithms to develop the meta-classifier.
Future work will compare different meta-learning algorithms in terms of improved
classification performance and to further validate the utility of these methods for
predicting imminent labor and/or preterm labor in women with threatened preterm
labor undergoing tocolytic treatment. Regardless of the improvement in performance
achieved by using ensemble classifiers, obstetricians may find it significantly more
difficult to interpret these algorithms, and this should be taken into account when
transferring the EHG technique to clinical practice.

In spite of its promising results, the present study is not exempt from limitations.
Firstly, the size of the samples of women who took regular check-ups and delivered at
term or prematurely was highly imbalanced. We used the commonly-used SMOTE
oversampling technique to minimize this problem [24]. Specific imbalanced data learn-
ing algorithms, such as weighted classifiers or boosting ensemble learning, could help
to achieve more reliable preterm labor prediction systems. Secondly, due to the lim-
ited sample size, a larger database is still needed to further validate the performance
of preterm labor prediction systems before transferring them to clinical practice. De-
spite these limitations, we believe that this work constitutes a significant step towards
putting the EHG technique into clinical practice.

3.5 Conclusions

By optimizing feature subspace with genetic algorithms, we showed the feasibility of
developing a preterm labor prediction system with a high generalization capacity us-
ing simple and easy-to-interpret algorithms such as LDA, LR and KNN, obtaining an
average F1-score of 89.34 ±3.5%, 86.87 ±4.53% and 84.63 ±2.76%, respectively, for
the testing dataset. We found that temporal, spectral and non-linear EHG parameters
computed in different bandwidths provide complementary information for predicting
preterm labor. In addition, we further proved that the information extracted from
multichannel recordings was also complementary among channels. A simple aggre-
gation ensemble classifier can obtain more reliable preterm labor prediction systems
than individual weak base classifiers, achieving higher average metrics and lower vari-
ability between partitions. The average F1-score of the ensemble classifier was about
92.04 ±2.97% for an incoming new dataset previously unseen by the model, which
was significantly higher than that of commonly used obstetric techniques.

The optimized feature subset requires a few further features to be computed,
which, together with use of easily interpreted classifier algorithms, would contribute
to implementing preterm labor prediction systems in real-time and improve clinical
staff’s acceptance of the EHG technique, thus promoting its transferability to clinical
practice.
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various linear and non-linear signal processing techniques to separate uterine
EMG records of term and pre-term delivery groups, Medical and Biological
Engineering and Computing, vol. 46, no. 9, pp. 911–922, 2008, issn: 01400118.
doi: 10.1007/s11517-008-0350-y.

[15] F. Jager, S. Libenšek, and K. Geršak, Characterization and automatic clas-
sification of preterm and term uterine records, PLoS ONE, vol. 13, no. 8, O.
Uthman, Ed., e0202125, 2018, issn: 19326203. doi: 10.1371/journal.pone.
0202125.

[16] C. Marque, J. Gondry, J. Rossi, N. Baaklini, and J. Duchêne, Surveillance des
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Abstract

One of the remaining challenges for the scientific-technical community is predicting
preterm births, for which electrohysterography (EHG) has emerged as a highly sensi-
tive prediction technique. Sample and fuzzy entropy have been used to characterize
EHG signals, although they require optimizing many internal parameters. Both bub-
ble entropy, which only requires one internal parameter, and dispersion entropy, which
can detect any changes in frequency and amplitude, have been proposed to character-
ize biomedical signals. In this work, we attempted to determine the clinical value of
these entropy measures for predicting preterm birth by analyzing their discriminatory
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capacity as an individual feature and their complementarity to other EHG characteris-
tics by developing six prediction models using obstetrical data, linear and non-linear
EHG features, and linear discriminant analysis using a genetic algorithm to select
the features. Both dispersion and bubble entropy better discriminated between the
preterm and term groups than sample, spectral, and fuzzy entropy. Entropy metrics
provided complementary information to linear features, and indeed, the improvement
in model performance by including other non-linear features was negligible. The best
model performance obtained an F1-score of 90.1 ±2% for testing the dataset. This
model can easily be adapted to real-time applications, thereby contributing to the
transferability of the EHG technique to clinical practice.

Keywords: Electrohysterography; Uterine electromyogram; Uterine electrical activ-
ity; Preterm birth prediction; Feature selection; genetic algorithm; Bubble entropy;
Dispersion entropy; Sample entropy; Fuzzy entropy

4.1 Introduction

Preterm birth (deliveries before 37 weeks of gestation [1]) affect more than 15 million
persons worldwide, involving 5 to 18% of pregnancies [2]. It is one of the leading causes
of infant mortality, varying from 90% (<28 weeks) to 10% as gestation time advances
[2]. Two-thirds of preterm births happen after the spontaneous onset of labor, while
the remainder are medically indicated because of maternal or fetal complications
[3]. Being born too soon increases the risk of neurodevelopmental impairments and
respiratory and gastrointestinal complications [3]. In the survivors, this has been
associated with 20% mental retardation, 50% cerebral palsy, and 33% eye injuries
[4]. Preterm births also have a serious economic impact on public health systems;
the average cost of a preterm birth is 5–10 times higher than a term birth [5]. As
for an extremely preterm baby, born before 28 weeks of gestation in Canada, it costs
an average of $67,467 for the first ten years of its life [6]. Saving a baby weighing
less than 750 g costs more than $117,000, the highest costing procedure in Canada’s
public health system [7].

Several techniques have been proposed in the literature, such as monitoring uterine
dynamics by tocodynamometry (TOCO), cervix length, Bishop score, and biochem-
ical markers, to determine the risk of preterm birth [8]. Cervical length is seen as
one of the best birth predicting methods [8], although several studies report that this
criterion has proven to be insufficient or inaccurate [9, 10]. Due to its low positive
predictive values and sensitivities, routine cervical length assessment is not recom-
mended in women at low risk of preterm birth [9]. Monitoring uterine activity is
routinely used by obstetricians during labor. The two most widespread current meth-
ods are: directly through an intrauterine pressure catheter (IUPC) and indirectly
through external TOCO. However, both have serious disadvantages and limitations
in their use. IUPC is an invasive method that can only be used during labor, which
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can increase the risk of infection and may even harm the fetus or the mother. Al-
though TOCO is safe, it uses pressure transducers on the abdomen and has poor
sensitivity and precision [11]. Biological fluids have been used as biochemical markers
to predict preterm births, although systematic reviews have indicated that no single
biomarker or combination of such could be identified to reliably predict the preterm
birth risk or pregnancy outcome [12]. None of them has been proven to objectively
and precisely estimate the time of delivery and whether or not it will be premature
[8]. Electrohysterography (EHG) has emerged as a promising technique to identify
the risk of preterm birth due to its high sensitivity [13]. EHG is the recording of
changes in bioelectrical potential of the uterine myometrial cells and can be picked
up on the human abdominal surface. During pregnancy, the uterine myometrial cells
undergo a process of increased excitability and bioelectric propagability due to the
larger number of gap-junctions, which end up leading to coordinated high-intensity
contractions that give rise to labor. These electrophysiological changes have been
shown to be reflected in an increased EHG signal amplitude associated with the num-
ber of uterine cells involved in the contractions [13]. On the other hand, the shift
of the EHG signal spectral content to higher frequencies has been associated with
increased cell excitability [13, 14]. The spectral content of the EHG signal has been
widely studied and categorized by the frequency bandwidth: the whole bandwidth
(WBW) ranges from 0.1–4 Hz, the slow wave, which is related to uterine contrac-
tions, and the fast wave which is usually subdivided into two components: fast wave
low (0.13–0.26 Hz), which has been associated with signal propagation, and fast wave
high (FWH) (0.34–0.88 Hz), which is related to cell excitability [13]. FWH is usually
extended for study to 0.34–4 Hz [15].

Due to the non-linear nature of the biological system, other authors have proposed
the use of different entropy measures to characterize EHG signals [16, 17]. The ap-
proximate entropy algorithm aims at obtaining a statistically valid measure of entropy
for noisy biomedical time series and represents the probability that similar patterns
(delay vectors) in a time series will remain similar once the pattern lengths are in-
creased (extended delay vectors), thereby providing a natural measure of the time
series regularity [18]. Lemancevicz et al. found that approximate entropy computed
in the 0.24–4 Hz bandwidth for women with threatened preterm birth who delivered
in less than 7 days was significantly higher than those who finally delivered in more
than 7 days, suggesting that the EHG signal becomes more irregular as pregnancy
progresses [19]. However, approximate entropy has been shown to be a biased esti-
mator and highly sensitive to the number of data samples [20], while sample entropy
is a modification of approximate entropy, in which self-matches are not included in
calculating the probability [21]. A lower value of sample entropy also indicates more
self-similarity in the time series. Sample entropy is more independent of data samples
and behaves more consistently than approximate entropy [21]. This latter has been
widely used to characterize EHG signals for discriminating preterm and term birth
records [15] and also for distinguishing between women with threatened preterm birth
undergoing tocolytic therapy who finally deliver in less or more than 7 days [17, 22].
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In contrast to [19], the results of these works pointed to a reduction of entropy mea-
surements (signal complexity) as labor approaches. Despite the promising results,
sample entropy has been shown to have some drawbacks, e.g., it may be unstable and
obtain unreliable results for short time series. It has also been shown to be sensitive
to the configuration of its internal parameter values (embedding dimension m and
scaling factor r) and can be too time-consuming for long data [23].

To deal with some of the deficiencies of sample entropy, fuzzy entropy is based on
the concept of fuzzy sets. It presents a stronger relative consistency and shows less
dependence on data length than sample entropy [23]. It has also been shown that the
soft and continuous boundaries of fuzzy functions ensure continuity. Nevertheless,
there are even more degrees of freedom for choosing internal parameters than for
sample entropy, since both membership function and fuzzy power were introduced to
define the boundary [24].

Since selecting the internal parameters is a critical issue in obtaining any entropy
metrics, Manis et al. introduced a new definition of entropy known as bubble entropy,
which is derived from permutation entropy, in which the vectors in the embedding
space of the time series are ranked [25]. It quantifies the effort (number of swaps)
required by the permutation process, which is carried out by the “bubble sort” algo-
rithm, from which this measure obtains its name. By counting the number of swaps
performed for each vector, a more coarse-grained distribution is obtained to compute
the conditional Rényi entropy, which is the combination of the conditional permuta-
tion entropy [26] and Rényi permutation entropy [25, 27]. Bubble entropy has been
shown to be almost free of internal parameters, since the scaling factor r is totally
eliminated in its definition, and the importance of embedding dimension m is signif-
icantly reduced. It has also been proven to be remarkably stable and has a greater
power to distinguish subjects with congestive heart failure and normal sinus rhythm
than both sample entropy and permutation entropy [25]. Manis et al. proposed us-
ing bubble entropy for discriminating congestive heart failure from a healthy control
group [25].

In 2016, Rostaghi and Azami proposed using dispersion entropy, another entropy
measure, to quantify the complexity of a time series [28]. Dispersion entropy is based
on the symbolic dynamics or pattern and Shannon entropy to quantify the randomness
of the times series. The concept of symbolic dynamic arises from a coarse-graining
of the signal measurements, i.e., the signal is transformed into a new one with only a
small number of patterns. The transformation is achieved by using mapping functions
such as a linear or normal cumulative distribution function, among others [28, 29]. In
this way the study of the dynamic patterns of the time series is simplified to a distri-
bution of symbol sequences. Dispersion entropy can detect a change of simultaneous
frequency and amplitude and is relatively insensitive to noise since a small change in
amplitude value will not vary the class label of the pattern [28]. Again, this entropy
measure depends on the selection of the embedding dimension m and the number of
classes c. For lower c values, there are few patterns to which to assign the time series,
thus, underestimating the signal complexity, while if c is too high, small variations
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in the signal can cause a change of class, making it sensitive to noise [15]. It has
been shown to perform better in detecting abrupt signal and noise robustness test-
ing, has better stability for both simulated and real-word signals [30], and requires
less computation time than sample entropy [29]. Dispersion entropy is also faster
than other related entropy measures due to the fact that it does not need to either
sort the amplitude values of each embedding vector or calculate every distance be-
tween any two composite delay vectors with embedding dimensions m and m + 1 [28].
Kafantaris et al. found that dispersion entropy obtained significantly higher values
for both atrial premature beats and premature ventricular contraction electrocardio-
gram signals than healthy subjects [31]. Dispersion entropy of the discrete wavelet
transformed EEG has also been used for differential diagnosis of health control, mild
cognitive impairment, and Alzheimer’s disease [32]. Tripathy et al. developed an
automated sleep stage classification system, in which after some transformation of
temporal EEG signals, they computed dispersion and bubble entropy. Their results
could discriminate between different sleep stages with greater accuracy (>85%) [33].

To date, there has been no evidence of the utility of either bubble entropy or
dispersion entropy for characterizing EHG signals; the aim of the present study was,
therefore, to analyze the discriminatory capacity of bubble entropy and dispersion
entropy EHG signals to differentiate between women who deliver at term and prema-
turely. We also attempted to determine whether these entropy measures can further
improve the EHG feature space for predicting preterm birth by analyzing their com-
plementary information to other EHG characteristics.

4.2 Materials and Methods

4.2.1 Database Description

A total of 326 EHG registers were analyzed from two public databases available
in Physionet conducted on pregnant women between 22 and 37 weeks of gestation:
“Term-Preterm EHG Database” (TPEHG DB) [15] and the “The Term-Preterm EHG
Dataset with tocogram” (TPEHGT DS) [34] obtained by the Department of Obstet-
rics and Gynecology of the Ljubljana University Medical Center. Of the total, there
were 275 term births and 51 preterm births (<37 weeks of gestations). The protocol
used to obtain the EHG registers consisted of placing four electrodes (E1, E2, E3, and
E4) on the woman’s abdomen to obtain three bipolar channels (S1, S2, and S3), with
a pairwise distance of 7 cm (see Figure 4.1) [15]. The sampling rate was set to 20 Hz.
The signals were further band-pass filtered between 0.1 and 4 Hz using a fifth-order
digital zero-phase Butterworth filter.

4.2.2 EHG Signal Analysis

We first excluded from the study the corrupt signal segments from the recordings
(motion-artifacts and respiratory interference) by a double-blind process conducted
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Figure 4.1: Recording protocol of EHG signals. Modified from [34].

by two experts. A whole-window analysis was then carried out to characterize the
EHG signals, since this has been shown to provide relevant information on the uterine
electrophysiological state without the need to identify the EHG-bursts associated with
contractions embedded in the records, which is more suitable for future “real-time”
applications [15, 16, 17]. The analysis used 120 s moving windows with a 50% overlap,
a good trade-off between information-loss and computational cost [22].

Since we aimed to determine whether the different entropy metrics could further
enhance preterm birth prediction by analyzing their complementary information to
other EHG characteristics, we computed a set of 46 temporal, spectral, and non-linear
features [8] to characterize EHG signals, the analysis windows, and EHG recordings.
These were organized in different feature groups, as shown in Table 4.1. We then
computed the median value of the total analyzed windows to obtain a unique rep-
resentative value for each recording session and channel. We calculated EHG signal
peak-to-peak amplitude (App) in both the whole EHG (WBW) bandwidth 0.1–4 Hz
and Fast Wave High (FWH) bandwidth 0.34–4 Hz since this latter seems to be more
sensitive to labor proximity [15]. As the EHG signal is mainly distributed between
0.2 and 1 Hz, we computed various spectral features [16, 17] to quantify the sig-
nal’s energy distribution, including dominant frequency DF1 and DF2 computed in
the 0.2–1 Hz and 0.34–1 Hz ranges, respectively; mean frequency (App) and power
spectrum deciles (D1, . . . , D9) in the 0.2–1 Hz bandwidth; normalized subband
energy (NormEn) (0.2–0.34 Hz, 0.34–0.6 Hz and 0.6–1 Hz); high (0.34–1 Hz)-to-low
(0.2–0.34 Hz) frequency energy ratio (H/L Ratio); teager energy, and spectral mo-
ment ratio (SpMR). Since the analysis bandwidth is a key factor in estimating the
non-linear features [16, 17], we calculated them in both whole EHG and FWH band-
widths. These latter included: Lempel-Ziv index (binary (LZBin) and multi-state
n = 6 (LZMulti) Lempel-Ziv index, which evaluates time series complexity by mea-
suring how “diverse” the patterns embedded in a time series are; time reversibility
(TimeRev), which estimates the dynamic flows’ similarity in forward (natural) time
and reverse time and can be considered a measurement of the degree of signal non-
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linearity [35]; Katz fractal dimension (KFD), as the uterine myoelectric activity has
also been shown to possess fractal properties, which is another way of measuring self-
similarity [36]; the Poincaré ellipse metrics were computed since the “present” EHG
signal amplitude might significantly influence the “following” values. We, therefore,
represented the Poincaré ellipse of consecutive EHG signal amplitudes (EHG[n] vs.
EHG[n-1]) and extracted the main metrics (minor axis (SD1), major axis (SD2),
square root of variance (SDRR,

√︁
(SD12 + SD22)/2, and SD1/SD2 ratio) [37]; spec-

tral entropy (SpEn); sample entropy (SampEn); fuzzy entropy (FuzEn); dispersion
entropy (DispEn), and bubble entropy (BubbEn). We performed an internal param-
eter sweep of the entropy measures to optimize their performance in discriminating
preterm and term delivery by selecting the internal parameter combination associ-
ated with the lowest Wilcoxon Rank-Sum Test p-value when comparing preterm and
term groups. For SampEn, the embedding dimension m was grid searched from 2
to 5, while the scaling factor r swept from 0.05 to 0.3 with a step of 0.05 times the
standard deviation of the time series. Both the m and r ranges were considered to
achieve reliable results for physiological data [38]. Due to the high number of degrees
of freedom required for internal parameter selection to estimate fuzzy entropy (em-
bedding dimension m, scaling factor r, fuzzy power n, and membership function), we
evaluated several fuzzy membership functions as proposed in [24]: triangular, trape-
zoidal, Z-shaped, bell-shaped, gaussian, constant-gaussian, and exponential functions.
For each membership function, we used the optimized parameter r and power n for
discriminating biomedical signals [24], sweeping the embedding dimension from 2 to
5. We varied the dispersion entropy internal parameter m from 2 to 5 and the class
number c between 3 and 9. The range for m and c was selected according to the lit-
erature, satisfying cm < Z, Z being the length of the time series [29]. We assessed the
performance of five mapping functions to compute DispEn: linear, normal cumulative
distribution function, tangent sigmoid, logarithm sigmoid, and the sorting method.
Finally, we varied the embedding dimension of bubble entropy m from 2 to 40, since
stability has been shown to improve as m increases [25]. For SampEn, FuzEn, SpEn,
and DisEn, the time delay parameter was fixed to 1 to avoid loss of information of
high frequency components without excessively increasing the computational cost [24,
28]. Table 4.2 shows the optimized internal parameters of the entropy measures best
able to discriminate preterm and term records (lowest p-value of Wilcoxon Rank-Sum
Test). Each optimized entropy was included for further analysis to predict preterm
birth.

To analyze the clinical value of different entropy measures for predicting preterm
birth, we designed prediction models 1 and 2 using a subset of entropy measures
previously used in EHG analysis: EnSFS set (sample entropy, fuzzy, and spectral
entropy) and all entropy measures EnALL (see Table 4.3). We also defined models
3–6 to determine whether entropy measures provided complementary information to
other EHG characteristics and obstetric data. Table 4.3 shows the input features of
the six preterm birth prediction models developed in this work.
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Table 4.1: EHG features for predicting preterm birth including the composition of each
feature group. SampEn, FuzEn, and SpEn were included in EnSFS and EnALL subsets to
analyze the additional value of bubble entropy and dispersion entropy for predicting preterm
birth in relation to other entropy measures.

Linear Features
(L)

Non-Linear
Features (NL)

EnSFS EnALL Obstetric Data

Number of
features

20/channel 16/channel 6/channel 10/channel 5

Included
features

App
MeanF.

DF1, DF2
NormEn
H/L Ratio
[D1–D9]

Teager Energy
SpecMR

LZBin
LZMulti (n = 6)

TimeRev
KFD
SD1
SD2

SDRR
SD1/SD2

SampEn
FuzEn
SpEn

SampEn
FuzEn
SpEn
DispEn
BubbEn

Maternal age
Parity

Abortions
Weight

Week of gestation
(WOG)

Table 4.2: Optimum internal parameters of each entropy measure in 0.1–4 Hz and 0.34–4
Hz bandwidths for channels S1, S2, and S3.

Channel S1 Channel S2 Channel S3

SampEnWBW m = 3, r = 0.15 m = 3, r = 0.1 m = 2, r = 0.1

SampEnFWH m = 2, r = 0.3 m = 3, r = 0.1 m = 2, r = 0.3

FuzEnWBW
m = 5, r = 0.0077, n = 3,

exponential function
m = 5, r = 0.0077, n = 3,

exponential function
m = 2, r = 0.0077, n = 3,

exponential function

FuzEnFWH
m = 5, r = 0.0077, n = 3,

exponential function

m = 5, r = 0.0077, n = 3,

exponential function

m = 2, r = 0.0077, n = 3,

exponential function

DispEnWBW m = 2, c = 3, linear m = 2, c = 3, linear m = 2, c = 3, linear

DispEnFWH m = 2, c = 3, linear m = 3, c = 4, linear m = 2, c = 7, logsig

BubbEnWBW m = 23 m = 23 m = 26

4.2.3 Classifier Design and Evaluation

Due to the fact that only about 12% of the women undergoing regular check-ups
deliver prematurely, there is a high imbalance rate between the two target classes in
the original database, term and preterm. So as to mitigate the bias of conventional
classification algorithms towards the majority class, obtaining low sensitivity for true
preterm birth, we used the synthetic minority oversampling technique (SMOTE, k =
5) to obtain balanced preterm and term birth data [39]. This latter consisted of gener-
ating synthetic samples for the minority class, taking into account the original feature
space. The conventional holdout method (30 partitions) was used to design and val-
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Table 4.3: Composition of feature model depending on feature group considered.

Model Acronym Input EHG Features Obstetrical Data Initial Features

1 EnSFS EnSFS No 18
2 EnALL EnALL No 30
3 Linear Linear Yes 65
4 LNL Linear, NL Yes 113
5 LEnALL Linear, EnALL Yes 95
6 LNLEnALL Linear, NL, EnALL Yes 143

idate the classifiers. For each partition, the whole balanced database was randomly
split into training (1/3), validation (1/3), and testing (1/3) with the same proportion
between classes for designing, validating, and testing the classifier. We used the same
partitions for designing and testing the classifier to compare the performance of the
different models (see Table 4.3) for predicting preterm birth.

Since we attempted to evaluate the complementary information between entropy
metrics and linear and other non-linear EHG features, we preferred to use a feature
selection technique rather than dimensionality reduction. Feature selection is the
process of obtaining a subset of relevant features to construct a machine learning
model, it removes “irrelevant” features that do not contribute much to the clas-
sification problem and keeps the most relevant and complementary information to
discriminate the target classes. The computational cost is also reduced by removing
some of the features [40]. To optimize feature subset selection, we used the genetic
algorithm, which is a random search strategy that provides a trade-off between clas-
sification performance and search complexity for a moderate and/or large number of
features [41]. Both population size and genome length were fixed to the number of
the model’s input features (N) [42]. The tournament function was established with a
size of 2 and an elite count of 2 to create the next generation population [42]. The
crossover probability of combining the genetic information of parents to generate new
offspring was typically assumed between 0.6 and 1, increasing the randomness of the
children generation for a lower value [43]. The convergence to a lower minimum is
better with low values (<0.1) of mutation probability, which is used to maintain the
genetic diversity between generations [43, 44]. Arithmetic crossover was used with
a probability of 0.8 and uniform mutation with a probability of 0.01. Finally, the
genetic algorithm’s termination condition was achieved if the fitness function did not
improve noticeably for 150 consecutive generations (differential tolerance: 10−6). To
analyze the complementary information between input features we preferred to use
linear classification methods without any complex data transformation by the linear
discriminant classifier (LDA) to design the preterm birth prediction model.

Figure 4.2 shows a scheme of the optimization of features. Initially, we started
balancing the original imbalanced dataset for each initial feature of the model (see
Table 4.3). In the first step of the genetic algorithm, a set of randomly generated
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Figure 4.2: Diagram of the genetic algorithm for selecting the optimized feature subset to
predict preterm birth based on EHG (green dashed line). The red dashed line represents the
calculation of the performance of the test group masked by the best chromosome obtained
from the optimization of the genetic algorithm, considering: training dataset (Train), vali-
dation dataset (Val), testing dataset (Test), chromosome (Chrom), population size (N).

chromosomes masked the balanced data set, creating a feature subset. The mask
(selected features), which corresponded to an i-chromosome, was set to the balanced
data set obtaining the i-subset, with 1 ≤ i ≤ N, N being the model input features.
We then used the LDA classifier to design the prediction model using each feature
i-subset for the training dataset. The model was then scored by a fitness function
in the validation dataset, defined as the mean F1-score of the 30 validation datasets
weighted by the number of features being used in each iteration.

Fitness function = max{F1-score · (NFeat − NCFeat)} (4.1)

where:

• NFeat is the number of features of the initial set.

• NCFeat is the number of features of the current subset.

The two best scored chromosomes (elite children) and new ones derived from
mutation and crossover processes created a new population. This process was repeated
until the termination condition was achieved, giving rise to the optimum feature subset
(best chromosome).

For the different performance comparisons of the prediction models, we also com-
puted the following metrics for the dataset testing: F1-score, accuracy, sensitivity,
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specificity, positive predictive value (PPV), negative predictive value (NPV), and
area under curve (AUC). Likewise, we carried out the Friedman nonparametric test
to analyze statistical differences in different metrics for the different models. The
Wilcoxon Rank-Sum test was then used for pair-wise evaluation of the classifiers,
checking the similarity of their performance.

4.3 Results

Figure 4.3 shows box and whisker plots of different entropy measures using the optimal
configuration of their internal parameters for both the whole and FWH bandwidths
for preterm and term birth records. In general, the different entropy measures from
the preterm group showed lower values than those from the term group, suggest-
ing increased signal predictability as labor approaches, although some controversial
results were obtained with contradictory tendencies for sample, fuzzy, and spectral
entropy in channel S1. Regardless of the recording channel, the entropy measures
computed from the FWH bandwidth offered better separability between preterm and
term groups and obtained lower p-values. The spectral entropy of the preterm group
in the FWH bandwidth was significantly lower than that of the term group for chan-
nel S3. In sample and fuzzy entropy, statistically significant differences were found
between the preterm and term groups for both channel S2 and S3. Fuzzy entropy
seemed to offer slightly better separability for channel S3 when compared with sample
entropy. Dispersion entropy obtained significantly different values in distinguishing
preterm and term records for both channel S1 and S3, the latter obtaining the great-
est separability. Finally, bubble entropy obtained significantly lower values for the
preterm group than the term group for all the recording channels and the two band-
widths studied. Again, channel S3 obtained the best differentiation outcome between
the preterm and term groups.

Table 4.4 shows the optimized feature subsets obtained for each of the feature
models. SpEn was selected to consider only classical entropy metrics (EnSFS). When
extending the entropy characteristics with DispEn and BubbEn (EnALL), only the
latter was selected. In the rest of the models some features were shared between
the optimum feature subsets. A large number of input features were computed for
each model in different channels and EHG bandwidths. Due to the complexity of the
multidimensional feature space and redundancy or complementarity between features,
the genetic algorithm may reach the best chromosome with different combination of
features for each model [44]. In spite of these issues, many features are part of the best
chromosome of the models developed. For linear metrics, DF1, NormEn in 0.1–0.34
Hz, D6, D8, and SpMR were selected for every optimum subset. KFD in the whole
bandwidth was selected in the two models that included it as input features, i.e., LNL
and LNLEnALL. Regarding entropy metrics, only bubble entropy appeared in every
optimum subset. Only week of gestation was chosen in all cases for obstetric features.
Features such as Lempel-Ziv multistate, time reversibility, or Poincaré ellipse metrics
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Figure 4.3: Box and whisker plot distributions of SampEn, FuzEn, SpEn, DispEn, and
BubbEn using the optimal configuration of internal parameters indicated in Table 4.2 com-
puted from EHG signals in different bandwidths and channels. *, ** and *** mean significant
statistical difference (p-value ≤ 0.05, ≤ 0.01, and ≤ 0.001, respectively) between preterm
and term records.

were never selected from any channel or bandwidth, which can be attributed to the
fact that they contain redundant information with linear and entropy metrics.

As expected, in the preterm birth prediction models, the training dataset always
obtained higher performance than the validation and testing datasets, the perfor-
mance of these two latter being similar. Since the testing dataset performance de-
notes the model generalization capacity for the “never seen” incoming data, we only
show in Table 4.5 the average performance of the testing dataset for the different
preterm birth prediction models. Figure 4.4 shows the outcome of pairwise com-
parisons of the performance metrics of these prediction models using the Wilcoxon
Rank-Sum test. Moderate average performance with relatively high variability was
achieved when using only entropy measures for predicting preterm birth, the aver-
age F1-score being 63.7 ±5.1% and 76.8 ±3.2% for EnSFS and EnALL, respectively.
The inclusion of dispersion and bubble entropy significantly enhanced the prediction
model performance, and only BubbEnWBW, S2, BubbEnWBW, S3 are part of the
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Figure 4.4: Comparison of the metrics’ performance in the testing dataset for different
preterm birth prediction models ∗, △, and □ mean a significant statistical difference (p-value
≤ 0.05) between classifiers’ performance in F1-score, sensitivity, and specificity, respectively,
by the Wilcoxon Rank-Sum test.

EnALL best chromosome. The Linear model, which used linear EHG features and
obstetric data, provided a significantly higher F1-score (87.6 ±2.2%) than EnSFS and
EnALL. The inclusion of other non-linear features (LNL model with binary and mul-
tistate Lempel-Ziv, Time reversibility, Katz fractal dimension, and Poincaré ellipse
metrics) only provided a slightly better prediction outcome than Linear, without any
significant difference (Linear 87.6 ±2.2% vs. LNL 88.4 ±2.3%), while entropy mea-
sures seemed to complement linear EHG features, obtaining a higher performance
(Linear 87.6 ±2.2% vs. LEnALL 89.9 ±2%) with a statistically significant improve-
ment in sensitivity, specificity, and F1-score. The best performance was achieved by
the LNLEnALL, which used both linear and all non-linear EHG features, including all
the entropy measures, with an average F1-score of 90.1 ±2%. The LNLEnALL metrics
were significantly higher than those of the other models (see Figure 4.4), except for
LEnALL, for which no significant difference was found in any metric. The variability
of LNLEnALL metrics between partitions, especially for sensitivity, was lower than
other models. Figure 4.5) shows the LNLEnALL curve of LNLEnALL for training, val-
idation, and testing a dataset. The LNLEnALL curve shows how the training partition
presents the best performance with a larger area under the curve. The validation and
testing partitions obtained a lower area under the curve than the training partition
and an almost overlapping curve, which suggests a high power of generalization and,
therefore, minimizes bias and variance in the classification.
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4.4. Discussion

Figure 4.5: ROC curves of the LNLEnALL model that used linear, all non-linear EHG
features and obstetric data including optimized feature subset for the training, validation,
and testing dataset.

4.4 Discussion

In this work, we compared five entropy measures from three EHG channels computed
in both FWH and WBW bandwidths for distinguishing between preterm and term
delivery records. Our results showed that the EHG metrics from channel S3 gener-
ally obtained lower p-values between preterm and term delivery metrics, suggesting
greater class separability. This finding is consistent with those found by other au-
thors, who attempted to predict preterm birth using information extracted from the
S3 channel due to its higher signal-to-noise ratio [45, 46, 47, 48]. We also confirmed
that the different entropy measures computed in the FWH bandwidth provided higher
separability between preterm and term delivery records than the WBW bandwidth,
as we found in a previous work [16]. As for entropy measures, sample entropy was
widely used for characterizing EHG signals acquired in women who had had regular
check-ups, women with threatened preterm birth, and those who underwent labor in-
duction [8, 22, 49]. Both fuzzy entropy and spectral entropy were previously proposed
to distinguish preterm and term records [17]. As far as we know, this is the first time
EHG has been characterized using dispersion entropy and bubble entropy, which have
also been used for quantifying the regularity of other biomedical signals [25, 31, 32,
33].

With regard to the application of dispersion and bubble entropy to EHG char-
acterization, despite eliminating the scale factor r in bubble entropy that makes it
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easier to search for optimization parameters, it still presents a certain dependency on
embedding dimension m. In our application, preterm records obtained lower bubble
entropy values than term records for high embedding dimension m, suggesting increas-
ing signal predictability as labor approaches [8, 13]. In contrast, a low embedding
dimension may lead to physiological misinterpretation throughout pregnancy. This
finding was consistent with the observation made by Manis et al., with respect to the
increase in the stability of the entropy measure as the embedding dimension increases
[25]. We also found bubble entropy to be less sensitive to the signal bandwidth con-
sidered in the computation. In contrast, dispersion entropy was more sensitive to
the signal bandwidth in which we computed this measure (see Figure 4.3, WBW vs.
FWH). This may be due to the fact that dispersion entropy not only detects the
signal complexity, but also instantaneous amplitude and frequency fluctuations [29].

We found that bubble entropy outperformed dispersion entropy and fuzzy entropy
in discriminating preterm and term delivery patients and that these latter outper-
formed sample and spectral entropy. Our results agree with those of other authors
who stated that dispersion entropy was found to be more consistent than sample en-
tropy in characterizing the effect of age on the intrinsic stride-to-stride dynamics for
gait maturation evaluation and in discriminating the non-invasive blood pressure sig-
nals of Dahl salt-sensitive hypertensive rats and rats protected from high-salt-induced
hypertension [29]. Azami et al. also showed that dispersion entropy outperformed
both sample entropy and fuzzy entropy for characterizing resting-state magnetoen-
cephalogram regularity in Alzheimer’s disease [50]. Fuzzy entropy is more effective
than sample entropy and approximate entropy for distinguishing Alzheimer patients
from normal subjects [51].

We also attempted to determine the redundancy and complementary information
between input features, since redundant and/or irrelevant features may lead to high
computational complexity and overfitting problems, thereby increasing the variance
of the prediction model without reducing its bias [52]. Information redundancy can
be detected by analyzing mutual information in a multidimensional feature space to
obtain a high correlation between the chosen features subsets and the target class
[53]. Nevertheless, estimating the mutual information (especially through estimating
probability density functions) between high-dimensional variables is a hard task in
practice due to the limited number of available data points for real-world problems
[52]. In this work, we used a wrapper method based on a genetic algorithm for
selecting complementary features to enhance the prediction model outcome while
keeping redundancy features out. This latter has also been proven to outperform the
filter method for predicting pregnancy and labor contractions [54].

While previous studies reported that non-linear and entropy features have been
shown to better characterize the EHG signal than linear metrics [55, 56], our results
showed that linear, non-linear, and entropy metrics complement each other for dif-
ferentiating between preterm and term deliveries. This agrees with those of other
authors who proposed using sample entropy together with linear features (root mean
square, peak frequency, and median frequency) and obstetrical data for distinguish-
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ing term and preterm delivery records and achieved an AUC of 95% using a cross
validation technique [45]. In a later work, feature ranking was proposed to determine
the optimized feature subset, achieving a similar AUC of 94% using sample entropy,
log detector, and other linear metrics as input features [47]. We found a great deal of
redundant information between non-linear features, and only 4 of 78 non-linear and
entropy features were included in the optimized feature subset for LNLEnALL. This
could be associated with the fact that these latter attempted to quantify the same
phenomena: signal regularity and complexity. Only entropy measures complement
linear features, obtaining a significantly higher prediction performance (see Table 4.5
Linear vs. LEnALL); the improvement of prediction performance when including other
non-linear features being negligible (Linear vs. LNL). For entropy measures, fuzzy
and bubble entropy offered complementary information for predicting preterm and
term delivery records, which were included in the optimized feature subset (see Table
4.4). Spectral, sample, and dispersion entropy were more likely to be redundant than
fuzzy and bubble entropy. In our previous work [57], a similar input feature to the
one included in this work (adding, in this case, dispersion and bubble entropy) was
optimized using a genetic algorithm for feature selection and LDA for classifying. The
results revealed that selected linear features maintain a correlation with those in this
work. Dominant frequency in 0.1–1 Hz and 0.34–1 Hz, normalized energy in 0.1–0.34
Hz and spectral moment ratio were chosen in both studies. Decile 5 seemed to be a
good discriminative feature, but in this case, it seems to be replaced by deciles 6, 8,
and 9, indicating their complementarity and redundancy with decile 5. In contrast,
peak-to-peak amplitude was selected by the genetic algorithm in other computed
bandwidths not added to the input feature of the present work. In the non-linear
parameters, only the Katz fractal dimension in the whole bandwidth appeared in the
optimum feature subset in LNL and LNLEnALL. For entropy measures, the double
selection of bubble entropy and the lack of other non-linear and entropy metrics in
the final subset suggest that bubble entropy has a high discriminating power between
term and preterm cases. As bubble entropy keeps enough redundant and complemen-
tary information with non-linear and other entropy metrics, they were not used in
the optimum feature subset. Our results agree with those of Cuesta-Frau, who sug-
gested that bubble entropy may offer complementary information to other entropy
measures, such as permutation entropy, for predicting the risk of developing diabetes
[58]. In this regard, fuzzy entropy was also found to complement entropy measures as
the distribution entropy for differentiating both ictal and interictal EEG from normal
EEG and for discriminating ictal from interictal EEG [59].

Our results are hardly comparable to many previous works in preterm birth predic-
tion systems that used cross validation methods to design and validate the classifiers,
without determining the real generalization capacity for incoming “never seen” data
by the classifiers [45, 46, 47, 60]. The results of the prediction model obtained in this
work even outperformed the results of our previous work, in which principal com-
ponent analysis was used for dimension reduction of input features and multilayer
perceptron artificial neural network to implement the classifier [61]. We believe that
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this prediction performance improvement was mainly due to the information optimiza-
tion in feature space using the genetic algorithm, which can eliminate any redundant
information and irrelevant features while keeping in the complementary information
[41]. In addition, by optimizing information in feature space, we showed the feasi-
bility of designing a preterm birth prediction system using simple linear classifiers,
which are easily interpretable by clinicians. The complex classification algorithms,
which can only be interpreted by experts, such as artificial neural network and/or
support vector machines, can be dispensed with, which will considerably improve the
transferability of the technique to clinical practice [62]. Instead of the mean efficiency
index, which has been proposed as a robust indicator of uterine electrical activity
efficiency from multichannel recordings [61], in this work, we used the EHG features
extracted from the three individual channels since there is a greater degree of freedom
in combining the information extracted from them.

Ahmed el al. used multivariate multiscale sample and fuzzy entropy in addition
to univariate metrics to capture cross-channel dynamics of multichannel EHG record-
ing and to characterize the interaction between the variates of complex systems to
successfully discriminate between women who finally delivered at term and those who
did so prematurely [63]. We found that the multivariate sample, fuzzy, and dispersion
entropy measures obtained a relatively low model performance (∼60%) for the test
dataset (result not shown here for the sake of brevity). The addition of these mul-
tivariate entropy measures to the univariate measures did not significantly improve
the model performance, which means that no additional relevant information can be
obtained from them.

In spite of its promising results, the present study has certain limitations that
should be pointed out. There are various factors that make the transfer of the EHG
technique to clinical practice difficult; the databases are small and highly imbalanced
for the preterm birth class; for instance, in the public databases used in this work,
the term/preterm ratio is around 7 to 1. A larger database will be needed to assess
the robustness of these preterm birth prediction systems if they are to be used in
clinical practice. Second, the lack of a standard protocol for the electrode position
in EHG recordings is another factor that makes a shared database difficult. On
the other hand, most of the prediction systems are based on neural networks or
support vector machine, multilayer perceptron, or similar algorithms, which involve
non-linear transformations of the input EHG features into high dimension space, in
which data from the target classes offer better linear separability [40]. This could give
rise to good prediction performance even when the input features apparently do not
contain individually information to differentiate the target classes. Obstetricians often
consider this type of classification algorithm as a “black box” or a “mathematician’s
gadget” due to its being difficult to interpret [62] and so find it difficult to trust the
predictions of these complex classifiers. In a previous study, we, therefore, attempted
to develop a preterm birth prediction model using simple classifiers to avoid complex
artificial intelligence algorithms, whose success depends mainly on the information
embedded in the features [57]. Other clinically relevant measures, such as cervical
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length, fetal fibronectine, and/or interleukin 6, which has been proven to be one
of the more effective techniques to predict preterm birth [8], were missing in these
databases [15, 34]. This could partly be due to the fact that EHG signals were recorded
from regular check-ups in women that did not show symptoms of preterm labor risk,
and these measurements are not usually performed in this scenario. The inclusion of
these additional clinical data to the predictor model could, therefore, further improve
preterm birth prediction performance [17]. The commonly used SMOTE oversampling
technique was employed to mitigate the imbalanced class problem [39]. Future studies
should focus on the design and validation of preterm birth prediction systems using
specifically imbalanced data learning algorithms.

4.5 Conclusions

Both dispersion and bubble entropy can be used to characterize EHG signals, pro-
viding a higher between-class distance for distinguishing between preterm and term
delivery records than sample, fuzzy, or spectral entropy. A feature-selection method
based on a genetic algorithm was used to determine redundant and complementary
information between linear and non-linear EHG features. We found that non-linear
features contained a great deal of redundant information, as did the different entropy
measures. Nevertheless, the entropy measures offered complementary information to
linear features and could achieve a significantly higher performance for predicting
preterm birth. Bubble entropy was declared to be a high-performance term-preterm
discriminator, even improving on dispersion entropy in individual and multidimen-
sional approaches. By optimizing the information in the feature space using the
genetic algorithm, we were able to design a preterm birth prediction system using
a simple linear classifier that yielded an average F1-score of 90.1 ±2% for the test
dataset. These results suggest that the proposed system has a high generalization
capability for “never seen” incoming data and has great potential to bring the EHG
technique closer to clinical practice.
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Abstract

Due to its high sensitivity, electrohysterography (EHG) has emerged as an alterna-
tive technique for predicting preterm labor. The main obstacle in designing preterm
labor prediction models is the inherent preterm/term imbalance ratio, which can give
rise to relatively low performance. Numerous studies obtained promising preterm
labor prediction results using the synthetic minority oversampling technique. How-
ever, these studies generally overestimate mathematical models’ real generalization
capacity by generating synthetic data before splitting the dataset, leaking informa-
tion between the training and testing partitions and thus reducing the complexity of
the classification task. In this work, we analyzed the effect of combining feature selec-
tion and resampling methods to overcome the class imbalance problem for predicting
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preterm labor by EHG. We assessed undersampling, oversampling, and hybrid meth-
ods applied to the training and validation dataset during feature selection by genetic
algorithm, and analyzed the resampling effect on training data after obtaining the
optimized feature subset. The best strategy consisted of undersampling the major-
ity class of the validation dataset to 1:1 during feature selection, without subsequent
resampling of the training data, achieving an AUC of 94.5 ±4.6%, average precision
of 84.5 ±11.7%, maximum F1-score of 79.6 ±13.8%, and recall of 89.8 ±12.1%. Our
results outperformed the techniques currently used in clinical practice, suggesting the
EHG could be used to predict preterm labor in clinics.

Keywords: Genetic algorithm; Imbalance data learning; Electrohysterography;
Preterm labor prediction; Resampling methods; Uterine electromyography; Machine
learning

5.1 Introduction

5.1.1 Preterm Labor

The World Health Organization defines preterm labor (prevalent in more than 11%
of total births) as labor before 37 completed weeks of gestation [1]. It is the leading
cause of death in children, accounting for approximately 35% of newborn deaths and
16% of children under five years of age [2]. In the case of survivors, shorter term
consequences involve respiratory difficulties, sepsis, neurological conditions, feeding
difficulties, as well as visual and hearing problems [3]. Long-term complications in-
clude poorer neurodevelopmental outcomes, higher rates of hospital admissions, as
well as behavioral, social–emotional, and learning difficulties in childhood [2]. As the
average cost of preterm birth is 5–10 times higher than a term birth, preterm birth
also has a significant economic impact on public health systems, the average cost of
preterm birth is 5–10 times higher than a term birth [4], with an average cost of
64,815 USD per premature baby [5]. For an extremely preterm baby born before 28
weeks of gestation the average cost per baby amounts to 74,009 USD for the first year
of life in Germany [6].

Various methods are currently used to predict preterm labor in clinical practice,
including: uterine dynamics monitoring by tocodynamometry, cervix length, Bishop
score, and bio-chemical markers [7] such as fetal fibronectin and interleukin 6 [8].
None of these techniques can precisely predict true preterm labor, and their clinical
values mainly lies in their negative predictive value thanks to their ability to identify
patients who are not at risk of preterm labor [7]. Due to its high sensitivity, elec-
trohysterography (EHG) is emerging as a promising technique to identify the risk of
preterm birth [9]. This non-invasive technique records the electrical activity of billions
of uterine myometrial cells on the maternal abdominal wall.
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5.1.2 Electrohysterography for Preterm Labor Prediction

Previous studies showed that the EHG signal distributes its energy within 0.1–4 Hz
and is made up of two components: fast wave low (0.2–0.34 Hz), which has been
associated with signal propagation, and fast wave high (0.34–4 Hz), which is related
to cell excitability [9, 10]. Since EHG mainly distributes its energy below 1 Hz,
many authors preferred to analyze the signal within the 0.34–1 Hz range to minimize
respiratory and cardiac interference [11]. Uterine myometrial cell excitability and
bioelectric propagability rise due to progressive formation of gap-junctions, which
end up leading to coordinated high-intensity contractions that give rise to labor.

A set of temporal, spectral, and non-linear parameters have been proposed in the
literature to characterize these electrophysiological changes. As pregnancy progresses,
EHG amplitude increases and is associated with a larger number of uterine cells in-
volved in the contractions [9]. The EHG signal spectral content also shifts towards
higher frequencies as delivery approaches, suggesting increased cell excitability [9,
12]. Previous studies found increased signal regularity, thus reduced complexity, by
analyzing Lempel-Ziv and different entropy measures [10, 13, 14, 15, 16, 17], although
controversial results were obtained due to the limited database with different compo-
sitions depending on the inclusion criteria and the analysis bandwidth, among others.
Time reversibility and Poincaré plot-derived parameters were also used for character-
izing the EHG signal [13, 14, 18], with an increased signal non-linearity degree and
less randomness as pregnancy progresses.

The latest research studies focused on the development of preterm birth prediction
systems and have obtained promising results, with an accuracy of more than 90% [11,
15, 19, 20, 21]. However, they have not had a significant impact on clinical praxis.
Firstly, most preterm labor prediction systems used complex classifiers that involve
the non-linear transformation of input features into higher dimension space to better
separate the target classes [22]. Obstetricians find the prediction results difficult to
interpret and hard to trust, since these algorithms achieve good performance even
when the input features are highly overlapped between the target classes [19, 23].
In this regard, we have shown the feasibility of predicting preterm labor with the
synthetic minority oversampling technique (SMOTE) on a balanced dataset using
simple classification algorithms such as the K-nearest-neighbor, logistic regression,
and linear discriminant analysis by feature subspace optimization using a genetic
algorithm [15, 19]. Secondly, due to the highly imbalanced data between the two
target classes (11% preterm labor vs. 89% term labor), conventional classification
algorithms are often biased towards the majority class and fail to correctly identify
the minority class, obtaining a higher misclassification rate of true preterm labor in
predicting premature deliveries [21, 24, 25, 26]. This phenomenon is due to the fact
that conventional machine learning algorithms are designed to optimize the overall
performance (accuracy) instead of considering the predictive capability of each class
[27]. The majority class data are relatively excessively distributed than the minority
class data, thus invading the minority class area and hindering the correct setting of
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the decision boundary [25].

5.1.3 Resampling Methods for Imbalance Data Learning

Rebalancing to equal the distribution of data classes is a commonly used strategy
to mitigate the above imbalanced learning problems. Most previous studies used
SMOTE, which consisted of synthesizing new samples by interpolating the original
minority class observations [28], achieving promising results [11, 15, 19, 26, 29, 30,
31, 32]. Nevertheless, according to a recent study [26], these works may overestimate
preterm labor prediction performance due to their methodological bias. Application
of the SMOTE technique prior to data partition would give rise to the data struc-
ture correlation between training and test dataset, and tends to overestimate the real
generalization capacity of the model [26]. In fact, Vandewiele et al. attempted to
reproduce the preterm labor prediction system method of 11 published studies and
analyzed the model’s performance difference between applying SMOTE before and af-
ter data partition [26]. When balancing data before partition, they obtained an AUC
ranging from 85% to 99% which was very close to the reported evaluation metrics. In
contrast, when applying SMOTE to training data after partitioning, prediction per-
formance decreased drastically, with an AUC below 65% using the same input features
and classification algorithms [26]. Due to the underlying assumption of the homo-
geneity of the clusters of minority observations, SMOTE can inappropriately alter the
class distribution when factors such as disjoint data distributions, noise, and outliers
are present [33]. In addition to the SMOTE technique, other resampling methods
have also been proposed to mitigate the imbalanced data problem, including under-
sampling and oversampling/undersampling hybrid methods [21]. Undersampling is a
non-heuristic method that consists of removing instances from the majority class to
alleviate the skewed class distribution problem. This latter is limited to a moderate or
low imbalanced dataset and is not recommended for highly imbalanced datasets be-
cause of its high potential of underfitting due to information loss [34]. If the size of the
minority class sample is small the classifier performance may be greatly impaired [34].
However, other authors have proposed hybrid oversampling/undersampling methods
to reduce the class overlap problem, which usually consists of cleaning the major-
ity class observations in proximity to the minority instances by the undersampling
method before or after SMOTE [35, 36, 37, 38].

Studies in different application areas have attempted to determine the optimal
resampling method from a database set with variable numbers and/or type charac-
teristics [34, 39, 40]. Napierala & Stefanowski studied types of minority class dis-
tribution in real imbalanced datasets and their influence on learning classifiers [39].
Zhou analyzed the effect of sampling methods on the performance of quantitative
bankruptcy prediction models on real highly imbalanced dataset and confirmed that
the proper sampling method in developing prediction models mainly depended on
the size of the training sample [40]. With hundreds of minority observations in the
dataset, the undersampling was superior to the oversampling method in terms of
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computation time, although SMOTE was found to be a better choice with only a few
dozen minority instances. A combination of SMOTE and undersampling could be a
good alternative for a large training sample [40]. Loyola-González et al. analyzed the
impact of resampling methods for contrast pattern-based classifiers on imbalanced
databases and provided a guide for the selection of the resampling method regarding
the class imbalance ratio [34]. Despite these previous studies, no resampling method
always outperforms the others [41]. It is difficult to determine a specific optimal rate
of undersampling or oversampling which always leads to better results for a specific
application [41].

Other authors have proposed combining feature selection, resampling, and ensem-
ble learning to deal with multiclass imbalanced data learning, and obtained results
that outperformed or were comparable to several state-of-the art algorithms [42]. In
the classification task, high-dimensional features may lead to overfitting, which can
limit the model’s generalization capability [43]. Removing irrelevant features may
reduce the noise information in the training space and also model complexity and
training time. In imbalanced scenarios, high-dimensionality could have a greater
impact; as minority class samples can easily be discarded as noise [42], eliminating
irrelevant features may also reduce the risk of treating the minority class as noise.
High-dimensionality can even lead to class overlapping, which makes the design of dis-
criminative rules extremely difficult in imbalanced data scenarios [44]. Ramos-Pérez
et al. analyzed the combination effects of resampling and feature selection techniques
on high-dimensional and low instance imbalanced data, also determining whether
resample data should be before or after feature selection [45]. The contribution of
feature selection to specific preterm labor prediction from imbalanced data remains
unclear.

The aim of this work was to determine the effect of combining feature selection
and resampling methods on preterm labor prediction from imbalanced data. We first
confirmed that the application of resampling methods before data partition consid-
erably reduced the complexity of the classification task. We showed the feasibility of
combining both the feature selection using genetic algorithm and resample methods
in the same iterative process to deal with imbalanced data, in contrast to resam-
pling before or after feature selection. Our results suggested that undersampling the
validation set turned out to be the best strategy for preterm labor prediction in an
imbalanced scenario, achieving a recall ranging from 79.6% to 89.8%, which is consid-
erably higher than the techniques commonly used in clinical practice and also than
the unbiased preterm labor prediction performance reported by Vandewiele et al.

5.2 Materials and Methods

5.2.1 Database Description

300 EHG records from “Term-Preterm EHG Database” (TPEHG DB) [10] and 26
EHG records from “The Term-Preterm EHG Dataset with tocogram” (TPEHGT DS)
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[46] obtained between 22 and 37 weeks of gestation were analyzed in the study. This
ensemble database was highly imbalanced in terms of preterm labor: 275 term labor
(84%) vs. 51 preterm (16%). Both datasets used the same recording protocol, which
consisted of placing four electrodes (E1, E2, E3 and E4) on the abdomen to obtain
three bipolar channels (S1, S2 and S3), with a pairwise distance of 7 cm. All the
signals were sampled at 20 Hz and then pre-processed by band-pass filtering between
0.1 and 4 Hz using a fifth-order digital zero-phase Butterworth filter (see Figure 5.1).
We also used obstetric data available from both databases, such as maternal age,
parity, number of previous abortions, maternal weight and weeks of gestation on
recording.
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Figure 5.1: Example of preprocessed EHG signal recorded from women with 30 weeks
of gestation who finally delivered at preterm. Two EHG-bursts associated with uterine
contraction can be clearly seen (around 150 s and 400 s) with increased amplitude and
frequency contents with respect to basal activity when the uterus is at rest.

5.2.2 EHG Signal Analysis

As EHG signal recordings may not only contain uterine myoelectrical activity, but also
corrupt segments such as motion-artifacts and respiratory interference, EHG records
were reviewed by two experts in a double-blind process to remove all the corrupted
signal segments. A whole windows analysis with sliding windows of 120 s length and
50% overlap was then performed to characterize the EHG recordings [10, 13, 14],
and proved to be a good trade-off between computational cost and information loss
[47]. This type of analysis was able to identify relevant information in the EHG signal
without identifying EHG-bursts associated with uterine contractions [47], which could
be very challenging in EHG records taken far from delivery. After obtaining all the
features of the analysis windows of a whole recording, we computed the median value
as the representative data of this process.

We used a widely used set of temporal, spectral, and non-linear parameters for
EHG signal characterization. First, we calculated EHG signal peak-to-peak amplitude
(App) in the following four bandwidths: 0.1–4 Hz, 0.2–0.34 Hz, 0.34–4 Hz and 0.34–1
Hz. Since EHG spectral content mainly distributed its energy in the 0.2–1 Hz band-
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width, we estimated dominant frequency DF1 in the range 0.2–1 Hz, DF2 in 0.34–1
Hz, normalized sub-band energy (NormEn) (0.2–0.34 Hz, 0.34–0.6 Hz and 0.6–1 Hz)
and high (0.34–1 Hz)-to low (0.2–0.34 Hz) frequency energy ratio (H/L Ratio). We
also calculated mean frequency (App), power spectrum deciles (D1, . . . , D9), Teager
energy and spectral moment ratio (SpMR) in 0.2–1 Hz. Likewise, we computed the
following parameters to quantify the non-linear degree, signal complexity and regu-
larity: binary and multistate Lempel-Ziv index (LZBin and LZMulti n = 6), time re-
versibility (TimeRev), Katz fractal dimension (KFD), Poincaré ellipse metrics (minor
axis (SD1), major axis (SD2), square root of variance (SDRR, (SD12+SD22)/2) and
SD1/SD2 ratio), sample entropy (SampEn), fuzzy entropy (FuzEn), spectral entropy
(SpEn), dispersion entropy (DispEn), and bubble entropy (BubbEn) [15]. Since non-
linear parameters estimated from different bandwidths may contain complementary
information for predicting preterm labor [14], we computed the non-linear parameters
in the same four bandwidths as the signal amplitude. In total, each record was char-
acterized by a set of 222 EHG features ((4 temporal, 18 spectral, and 52 non-linear
parameters per channel) × 3 channels = 222) and the 5 obstetric patient data. Table
5.1 summarizes all the parameters described in this section, which constituted the
input features of the preterm labor prediction system.

5.2.3 Classifier Design and Evaluation

Our specific application was first characterized by a total of 227 high-dimensional
input features, with few and imbalanced sample data between the target classes (326
EHG records, with an imbalanced ratio of 51/275 preterm/term cases). We used the
conventional holdout method (200 partitions) to design and validate the classifier.
For each partition, the whole imbalanced database was randomly split into training
(80%) and testing (20%), preserving the skewness between the preterm and term
classes (preterm/term samples = 51/275). The training partition was then further
split into training (64%) and validation datasets (16%). As mentioned above, we at-
tempted to evaluate the effect of combining feature selection and resampling methods
for predicting preterm labor in an imbalanced scenario. As there is still no general
agreement in the literature as to which strategy with imbalanced data obtains the
best performance, we compared the different strategies by balancing training or val-
idation data using the following resampling methods: oversampling (SMOTE, k =
5), undersampling, and over/undersampling hybrid, the preterm/term instance ratio
after data balancing being 1:1. We used the neighborhood cleaning rule (NCL) for
the undersampling method; this uses Wilson’s edited nearest neighbor rule to remove
noise instances, as it identifies the boundary samples to the decision boundary to
avoid overfitting [48].

Step 1: effect of resampling strategy for feature selection. We used the genetic
algorithm to optimize feature subspace, which has been proven to successfully preserve
complementary information for predicting preterm labor in the SMOTE balanced
database, while discarding redundant, irrelevant and noise information [15, 19]. This
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Table 5.1: EHG features and obstetrical data included as input data to the classifier to
discriminate preterm from term deliveries. The number of features per channel depends on
the frequency band- widths and were computed: 0.1–4 Hz, 0.2–0.34 Hz, 0.34–4 Hz and 0.34–1
Hz for temporal and non-linear features, and 0.2–1 Hz for spectral features. Considering:
peak to peak amplitude (APP), dominant frequency (DF1) in the range 0.2–1 Hz, (DF2)
in 0.34–1 Hz, normalized sub-band energy (NormEn) (0.2–0.34 Hz, 0.34–0.6 Hz and 0.6–1
Hz) and high (0.34–1 Hz)-to low (0.2–0.34 Hz) frequency energy ratio (H/L ratio), power
spectrum deciles (D1, . . . , D9), spectral moment ratio (SpMR), binary and multistate
Lempel-Ziv index (LZBin and LZMulti), time reversibility (TimeRev), Katz fractal dimen-
sion (KFD), Poincaré ellipse metrics (minor axis (SD1), major axis (SD2), square root of
variance (SDRR,

√︁
(SD12 + SD22)/2 and SD1/SD2 ratio), sample entropy (SampEn), fuzzy

entropy (FuzEn), spectral entropy (SpEn), dispersion entropy (DispEn), and bubble entropy
(BubbEn).
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Table 5.2: Configuration parameters used in genetic algorithm.

Parameter Value Parameter Value

Population size N=222 Mutation Uniform

Genome length N=222 Mutation Probability 0.01

Number of
generations 500 Selection scheme Tournament of size 2

Crossover Arithmetic Elite count 2

Crossover Probability 0.8 Termination condition

No fitness function
improvement for 150
consecutive iterations

(differential tolerance: 10-6 )

algorithm (GA) is an optimization technique, a population-based heuristic search
method that simulates the natural evolutionary process. It is an iterative procedure
that manipulates a population of chromosomes (solution candidates) to produce a
new population through genetic functions such as crossing over and mutation. These
algorithms have been shown to be able to escape from local minima to reach global
minima in complex functions [49]. We used the same GA configuration parameters
as in our previous studies (see Table 5.2) [15, 19].

As for the classification method, in this work we used the simple easily interpreted
linear discrimination analysis (LDA) to discriminate the target classes, which has
obtained good results for predicting preterm birth in previous works [15, 19]. The
mathematical formulation of LDA classification methods can be found in previous
works [22].

All the chromosomes in the total population were evaluated to determine model
goodness by the fitness function, which we defined as the mean F1-score of the 200
validation datasets weighted by the number of features used in each iteration [15,
19, 49]. This was used in preference to accuracy, since the F1-score is the geometric
mean of precision and recall and obtains the correct classification of the preterm
observation, without ignoring term observations.

Fitness function = mean {F1-score × (NFeat − NCFeat)} (5.1)

where NFeat and NCFeat are the number of features in the initial set and the current
subset, respectively. The six best chromosomes which optimized feature subsets were
thus obtained by considering the following assumptions: resampling the training par-
tition by oversampling (FSTO), undersampling (FSTU), or under/oversampling hybrid
(FSTH) method; resampling the validation partition by oversampling (FSVO), under-
sampling (FSVU), or under/oversampling (FSVH) hybrid method. Figure 5.2 shows
the flowchart that assesses the effect of combining feature selection by the genetic
algorithm and the different resampling methods for imbalanced data learning.
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Figure 5.2: Flowchart to assess the effect of combining feature selection by the genetic
algorithm and resampling methods to deal with the imbalanced data problem. The training
or validation partitions are resampled by oversampling (TO, VO), undersampling (TU, VU),
or applying hybrid methods (TH, VH). The initial population of N chromosomes masks the
training and validation partitions. For each chromosome, LDA classifiers are trained and
evaluated with the respective validation partitions by its fitness function. A new population
of chromosomes is generated from the processes of mutation, crossing over, and selection
of the elite chromosomes from the previous iteration until the termination condition was
satisfied, obtaining its corresponding best chromosome.
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5.2. Materials and Methods

Table 5.3: Resampling method for predicting preterm labor.

Approach Resampling Technique Model

No resampling Not applicable RN

Oversampling SMOTE RO

Undersampling NeighborhoodCleaningRule RU

Hybrid SMOTE + NeighborhoodCleaningRule RH

Step 2: effect of resampling strategy for training the prediction model. For each
optimized feature subset, we further assessed the influence of the different resampling
methods (RN, RO, RU and RH, see Table 5.3) applied to the total of 80% of train-
ing dataset (see Figure 5.3). Each training and test partition was masked by the
optimized feature subset FSTO, FSTU, FSTH, FSVO, FSVU or FSVH or not (all fea-
tures, AF). We then trained the LDA classifier using the resampled training partition
and evaluated its average performance for the testing dataset, which represents the
new incoming data never seen by the model and could be used to determine the real
model generalization capability, using two threshold independent metrics to evaluate
the model performance: the area under the LNLEnALL Curve (AUC) and average
precision (AP). This was because the threshold-dependent metrics have been shown
to be biased towards the majority class in an imbalanced scenario, whereas AUC and
AP avoid this bias [50]. AUC and AP are mathematically formulated in Equations
(5.2) and (5.3).

AUC =

∫︂ 1

0

TPR(FPR) × dFPR (5.2)

AP =
∑︂
n

(Rn − Rn−1) × Pn (5.3)

where TPR and FPR are true positive rate and false positive rate, and Pn and Rn

are the precision and recall at the nth threshold.
We then analyzed the statistically significant difference between the different

model performances to determine the best strategy to achieve the highest average
AUC and AP scores ((AUC + AP)/2) for the testing dataset. We first confirmed
the normal data distribution (D’Agostino’s k-squared test [51]) for both AUC and
AP scores of the 200 partitions for each combination of feature subset and resampling
method. Then we assessed the statistically significant difference of the (AUC + AP)/2
between different resampling methods for each feature subset by one-way analysis of
variance with repeated measures (RANOVA, α = 0.05) followed by Tukey’s multiple
comparison test and evaluated the statistically significant difference of the (AUC +
AP)/2 between the different feature subsets for all the resampling methods (RN +
RO + RU + RH) by the same statistical method (α = 0.05).
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Figure 5.3: Flow diagram of the training process and evaluation of the prediction models.

Step 3. Effect of imbalance ratio for feature extraction. We also assessed the
influence of the post-resampling preterm/term instance ratio (imbalance ratio) for the
best strategy of steps 1 and 2 (resampling methods for feature subset and training of
prediction model). The process shown in Figure 5.2 was again used to obtain nine
best chromosomes with an imbalance ratio of from 20 to 100% with a 10% step. We
determined the statistically significant differences of the model performances between
the different imbalanced ratios using the same statistical method (α = 0.05).

Finally, for the best strategy, i.e., the best (AUC + AP)/2, we determined the
threshold-dependent scores of the test partitions for the operative point that maxi-
mizes the F1-score and G-mean: F1-score, G-mean, precision, recall, and specificity.
Recall metric denotes the true preterm birth predicted by the algorithm with respect
to the total of preterm labor women in the testing partition. Precision represents the
true preterm birth with respect to the total preterm birth predicted by the algorithm.
Specificity refers to the true negative rates over the total negative cases predicted by
the algorithm. F1-score is the harmonic average of recall and precision, which is a
trade-off between false positives and false negatives. G-mean was defined as the ge-
ometric average of recall and specificity [52]. All these metrics were mathematically
formulated in the Equations (5.4)–(5.8) [53].

Recall =
TP

TP + FN
(5.4)

Specificity =
TN

FP + TN
(5.5)

Precision =
TP

TP + FP
(5.6)
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F1-score =
2 × recall × precision

recall + precision
(5.7)

G-mean =
√︁

recall × specificity (5.8)

where TP is the true positive, TN is the true negative, FP is the false positive, and
FN is the false negative.

5.3 Results

Table 5.4 shows the average AUC and AP scores for the testing dataset to predict
preterm labor in an imbalanced scenario using each combination of the resampling
method for the feature subset and training of the prediction model. Figure 5.4 shows
the violin plot of the score (AUC + AP)/2 for the four resampling methods of each
set of input features. The average values of AUC, AP and (AUC + AP)/2 are
also shown in this figure. When using all features (AF) for designing the model,
SMOTE (RO) did not enhance the prediction capacity of the base classifier with
AUC∼52% and AP∼21%. Both the undersampling (RU) and hybrid (RH) methods
performed significantly better, achieving an AUC of ∼65% and AP of ∼12%. When
using FSTO, FSTU and FSTH as input features, different resampling methods yield
similar performance with no significant difference. For FSVO, FSVU and FSVH, the no
resampling (RN) and oversampling (RO) versions performed significantly better than
the undersampling and hybrid versions. When using the optimized feature subset
achieved by the genetic algorithm (FSTO, FSTU, FSTH, FSVO, FSVU and FSVH),
none of the resampling methods proposed for the training dataset of the models
significantly improved the model performance without additional resampling (RO,
RU, RH vs. RN).

The different optimized feature subsets obtained by the genetic algorithm signifi-
cantly improved the mean score of AUC and AP over AF. Undersampling or hybrid
methods during feature selection achieved significantly higher mean AUC and AP
scores than those obtained by the oversampling method when used in the training or
validation subsets (FSTU ≈ FSTH > FSTO, and FSVU ≈ FSVH > FSVO). Regarding
whether to balance training or validation datasets during feature selection, better
performance metrics were obtained for the latter in all cases (except for AP(FSTO)
vs. AP(FSVO)). Undersampling the validation dataset significantly outperformed the
rest (FSVU > FSVH > FSVO). Our results showed that the best preterm labor predic-
tion strategy in an imbalanced scenario was undersampling the validation dataset for
feature selection, with no further resampling method (base-classifier RN of FSVU).

We also evaluated the effect on the model performance of post-resampling the im-
balance ratio of the validation dataset. Table 5.5 shows AUC and AP values for the
optimized features subset achieved using different validation dataset ratios. Besides,
Figure 5.5 shows violin plots of the score (AUC + AP)/2. Ratios of from 20% to 40%
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5.3. Results

Figure 5.4: Violin plots represent the distribution of (AUC + AP)/2 for the four resam-
pling methods for each set of input features and average value of (AUC + AP)/2 in black
line. Violin color represents homogenous group with similar performance without significant
difference (p-value > 0.05).

performed significantly worse than the other imbalance ratios. The model perfor-
mance increased from an imbalance ratio of 50%, with the best result achieved when
the validation partition was totally balanced. The statistical analysis showed that
imbalance ratios of 90% and 100% significantly outperformed those of 50–80%, with
no statistically significant differences between them. The number of features included
in each best chromosome was 30, 44, 35, 34, 46, 57, 55, 59, and 58 for imbalance
ratios of from 20% to 100%, respectively.

Figure 5.6 shows the average LNLEnALL and precision-recall curve for the best
strategy to deal with the imbalanced data problem (FSVU, imbalance ratio 100%
and no resampling method) for the testing dataset. Table 5.6 shows the threshold-
dependent scores for the test partitions for the operative point that maximizes the
F1-score (threshold = 0.85) and G-mean (threshold = 0.01) shown in Figure 5.5. The
maximum F1-score for preterm labor prediction in an imbalanced scenario was 79.6
±13.8%, with a recall of 79.6 ±17.4% and precision of 81.9 ±14.9% for testing dataset.
By maximizing the G-mean we can further improve the recall score to 89.8 ±12.1%
with a specificity of 94 ±5.4%.
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Table 5.5: AUC and AP scores for the testing datasets for optimum feature subset obtained
from undersampling validation partition with different imbalance ratios.

Imbalance ratio (%) 20 30 40 50 60

AUC (%) 86.9 ±8 88.9 ±7.4 86.5 ±8.5 89.2 ±6.9 90.4 ±7.2

AP (%) 70.7 ±15.1 71.3 ±15.1 72.1 ±14.6 72.7 ±14.9 81.6 ±13

Imbalance ratio (%) 70 80 90 100 -

AUC (%) 88.5 ±8.6 91.4 ±5.7 92.5 ±5.7 94.5 ±4.6 -

AP (%) 76 ±14.2 75.5 ±14.5 81.2 ±12.7 84.8 ±11.7 -

Figure 5.5: (AUC + AP)/2 distribution of testing partition for optimum feature subset
obtained from undersampling validation partition with different imbalance ratios and the
average value of (AUC + AP)/2 (black line). Violin colors represent homogenous groups
with similar performance and no significant differences (p-value > 0.05).
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Table 5.6: Threshold-dependent metrics for the best model (FSVU, imbalance ratio 100%
and no resampling method).

Maximizing
criteria

F1-score
(%)

G-mean
(%)

Precision
(%)

Recall
(%)

Specificity
(%)

F1-score 79.6 ±13.8 87.7 ±10.1 81.9 ±14.9 79.6 ±17.4 97.9 ±2.7
G-mean 71.5 ±17.8 91.6 ±6.7 61.4 ±21.5 89.8 ±12.1 94.0 ±5.4

Figure 5.6: Average ROC curve (left) and precision-recall curve (right) of the testing
dataset for the best combination of feature subset and resampling method (FSVU, imbalance
ratio 100% and no resampling). The red “×” and “⊙” markers show the operative points
that maximize the F1-score and G-mean, respectively. The threshold level was shown for
each point of the color curves (more blue means closer to 0 and more yellow closer to 1). The
dotted lines in the graphs represent the ROC baseline and precision-recall curves (random
classifier).
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5.4 Discussion

5.4.1 Imbalanced Data Learning

This paper describes different resampling methods for dealing with the imbalanced
class problem to predict preterm labor from EHG records and obstetrical data and
identified their realistic generalization capability for new incoming data. To avoid
data structure correlation by oversampling the whole database before data partition,
this was carried out before resampling. Regardless of the resampling method, we
found that poor results were obtained when using all input features due to high di-
mensionality, achieving an AUC of less than 65% and AP below 40%. This result may
suggest the existence of noise information that could give rise to high data overlap-
ping between the target classes. These results were comparable with those obtained by
Vandewiele et al., who obtained an AUC<65% applying SMOTE after data partition
without optimizing the feature subspace [26]. Other authors found that oversampling
before data partition significantly reduced the classification task complexity [54], i.e.,
training and testing data have a similar and correlated data structure, overestimat-
ing the model’s generalization capability [26, 54]. Indeed, we found the classification
task complexity considerably increased with respect to oversampling before data par-
tition. In fact, in the present work the optimum feature set (FSVU and no resampling
method) for preterm labor prediction was compounded by 58 features, which were
much more than the 12-feature subset using the SMOTE balanced dataset before
partition [15].

Regardless of the resampling method applied to the training or validation data,
the feature optimization of the subspace by the genetic algorithm may reduce the
overlapping data between the target classes and classification task complexity [55,
56], thus significantly increasing both AUC and AP. Our results revealed the impor-
tance of feature quality in correctly discriminating target classes in an imbalanced
data scenario. The optimized feature subset achieved by balancing data using the
oversampling method performed worse than the undersampling method. This may
be due to the ability of the latter method to remove noisy observations close to the
decision boundary, thus increasing the visibility of the minority class and reducing
classification task complexity [25, 57]. The reduced data overlap enhanced sensitiv-
ity, highly desirable in the medical context, while offering good trade-offs between the
majority and minority class accuracy rates [57]. By contrast, SMOTE may alter class
distribution in the presence of noise and/outlier instances [33], unavoidable in medi-
cal data, giving rise to blurring of the decision boundary between the target classes
[58]. We also found that the undersampling validation dataset performed significantly
better than the balancing training data (FSTU vs. FSVU columns, Table 5.4), which
by the undersampling method eliminate a great deal of information of the majority
class for the training model. The total sample size used to design the model was
thus too small to statistically represent their population, worsening the quality of the
feature subspace and impairing the classifier performance [34]. However, the hybrid
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resampling method performed significantly better than the oversampling method, be-
ing slightly, but significantly, worse than undersampling, suggesting that the latter
is the main cause of the relative improvement of the model performance in hybrid
implementations.

After obtaining the optimized feature subset after balancing the validation data
by the undersampling method, it was no longer necessary to apply the resampling
method to the training data. In fact, similar results were obtained for the original
data without the resampling and oversampling method. Again, as applying the under-
sampling method to the training data could even worsen the model performance due
to information loss [21, 24] (see AP: RN vs. RU, Table 5.4), there was an insufficient
sample size to design a robust preterm labor prediction system. Our results suggest
that both the feature selection and resampling methods are effective to solve the clas-
sification task in imbalanced scenarios. These results agree with other authors who
studied the combined feature selection and resampling method for imbalance data
learning and found that in 79% of the study cases, balancing before feature selec-
tion improves the results [59]. We also showed the feasibility of combining both the
feature selection and resampling methods in the same iterative process to deal with
imbalanced data, in contrast to resampling before or after feature selection [59, 60].
Balancing validation data to deal with the imbalance data problem was similar to the
strategy proposed by Jain et al., who used a weighted sum of recall and specificity as
the fitness function [61]. By adding more weight to the recall metric, minority samples
became more representative in the fitness function, thus to some extent overcoming
the bias of the classifier towards the majority class [61].

Conventional accuracy is known to be unsuitable for evaluating classifier perfor-
mance in an imbalanced scenario, although in the literature both the F1-score and
G-mean have been widely used for this purpose [24, 52, 62]. Many studies highlight the
weakness of the threshold-dependent metric in comparison to threshold-independent
metrics such as AUC and AP in imbalanced scenarios [63, 64]. Jeni et al. compared a
broad range of metrics that included both threshold-dependent metrics (accuracy, F1-
score, Cohen’s kappa, and Krippendorf’s alpha) and threshold-independent metrics
such as AUC of the LNLEnALL curve and precision-recall curve [62]. They found that
all other metrics except threshold-independent metrics were attenuated by skewed dis-
tributions. Although the area under the LNLEnALL is a popular and strong measure
to assess the performance of binary classifiers, it has been found that the LNLEnALL

curve may provide an overly optimistic view when dealing with imbalanced data [27,
65]. By contrast, precision-recall curves can be more informative than LNLEnALL and
have become the basis for assessing performance imbalanced data learning [27, 65].
In fact, a very different precision-recall would be obtained for the same LNLEnALL in
these scenarios (see Table 5.5). In the present work we used threshold-independent
metrics, as suggested by other authors [27, 65, 66], to avoid a data-skewed bias.
Threshold-independent metrics avoid the optimization of the threshold for class as-
signment and ease the preliminary comparison of different classifier performances.
After obtaining the best strategy to achieve the highest AUC and AP mean score,
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we further determined the threshold-dependent metrics by maximizing both the F1-
score and G-mean. By maximizing the latter mean, we considerably increased the
recall score by reducing the false negative cases that consisted of true preterm labor
patients misclassified as term cases, despite the fact that this necessarily involved less
precision [62]. The false negative cases in our application are especially relevant in
obstetrics, due to the serious consequences of preterm birth on the newborn’s health.

5.4.2 Preterm Labor Prediction System

Using the optimized feature subset obtained by undersampling the validation dataset,
our best results achieved an AUC∼94% and AP∼84%. Although this result may
perform worse than most studies in the literature that attempted to predict preterm
birth by balancing the data by SMOTE before data partition [11, 15, 19, 29, 32,
67], there is no comparison from the methodological point of view. We believe that
the generalization capability of the preterm term prediction model in these studies
is overestimated, due to the leaked information between the training and testing
partitions [26]. Our model outperformed that obtained by Vandewiele et al. who, as
in the present work, conducted data partition before the resampling method [26].

The fact that we did not obtain even better results was due to diverse main factors.
In addition to a small database with an imbalance problem, the features from the
preterm and term classes were highly overlapping, since the EHG data was recorded
a considerable time before delivery. Our results agree with other authors who found
that the impact of class imbalance on sensitivity greatly depends on the degree of
class overlap [25, 68], i.e., class imbalance had a greater impact when class overlap
was high and seemed insignificant when low. For the case under study, a total of 326
registers were considered when the imbalance ratio was (preterm cases/term cases =
51/275). There is some evidence that overlapping between classes is the main cause
of misclassification for this amount of records and imbalance ratio [25]. Other difficult
factors, such as small sample size, the presence of disjoint data distribution, outlier
and noise observations, and high dimensionality features could be amplified by the
data imbalance, making the classification task more challenging [25]. The influence of
the data imbalance problem decreases for larger datasets; when the train data is large
enough imbalanced distributions do not prevent correct classification, even when the
imbalance level is very high [69, 70]. There are only a few dozen minority instances
in our application that can cause a possible distribution discrepancy between the
training, validation, and testing data. Considering that 10% of all births will deliver
preterm, an effect size of 0.2, error margin of 5%, and confidence level of 95%, at
least 27 preterm women were necessary in the training, validation, and testing data
to statistically represent the overall population [71]. This means approximately 810
patients were required to design a robust and generalizable preterm labor prediction
system for clinical use. There is currently an urgent requirement for a large database
of EHG records to determine its clinical value for predicting preterm labor. In this
regard, although there are other publicly available EHG databases, we were unable to
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join databases from different sources due to the lack of a standardized protocol for data
acquisition [21]. In addition, these databases were obtained from women in regular
check-ups, which means that some important preterm birth prediction measures, such
as cervical length, fetal fibronectin and/or interleukin 6 [11] are missing from their
obstetric data [10, 46]. Including these additional clinical data in the classifier could
therefore further enhance preterm labor prediction performance [13].

5.4.3 Limitations, Future Works and Practical Implications

Our results suggest that the best strategy to mitigate imbalanced data learning in
highly overlapping classification tasks with small samples, which is very frequent in
the medical data context, is to undersample the validation dataset to 1:1 during
feature selection. Despite the promising results, the present work is not exempt from
limitations: in addition to the limited sample size, we only tested our method by LDA
classification methods in a specific application. This general recommendation should
be further corroborated by future studies that seek to deal with imbalanced data
learning using other classification methods and/or to be used for other classification
tasks.

Future work may be directed toward the use of other strategies to mitigate the
imbalanced data problem, such as cost-sensitive or ensemble learning [21], which to
date has only been used to predict preterm births from EHG records using balanced
data by oversampling before data partition. In spite of the limitations of our study,
we believe that the results faithfully represent a realistic generalization capacity for
new incoming data, with a recall ranging from 79.6% to 89.8%, which is considerably
higher than the techniques commonly used in clinical practice [7, 72, 73, 74]. Our
results contribute to more accurate prediction and prevention of preterm labor, which
is highly relevant in clinical practice. Accurate prediction of preterm labor would allow
screening out almost 75% of false threatened preterm labor cases, with an estimated
cost of 20,372 USD/patient [75], which would give rise to substantial savings for
public health systems. It would also allow clinicians to provide better and more
personalized care to real preterm labor cases, potentially contribute to increasing the
survival rate in cases of extreme prematurity by prolonging pregnancy, and reduce
long-term morbidity and lifelong disabilities in survivors.

5.5 Conclusions

In the present work we have shown the feasibility of combining different resampling
methods in feature selection and training the prediction model during the same iter-
ative process to deal with the imbalanced data problem. We found that overlapping
data between the target classes was the main problem in predicting preterm labor
and was amplified by the data imbalance scenario. Feature selection by the genetic
algorithm and intrinsically balancing the validation partition could significantly re-
duce data overlap between target classes and improve the model performance. This
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result highlights the importance of the feature quality for preterm labor prediction.
Using the best chromosome by the genetic algorithm, subsequent resampling of the
training dataset did not improve decision making, suggesting that the same feature
subset was already optimally arranged to avoid information loss and noise between
observations.

We also determined that the undersampling method during feature selection out-
performed the oversampling method, thanks to its ability to enhance the visibility of
the minority class by eliminating noisy observations close to the decision boundary,
while undersampling seemed to be the main contribution of the model performance
improvement in hybrid implementations. The best strategy to mitigate imbalanced
data consisted of undersampling the validation dataset to 1:1 during feature selec-
tion, achieving an AUC∼94% and AP∼84%. The maximum F1-score was around
80%, with a recall of ∼80%. By maximizing the G-mean, the best model achieved
a recall of ∼90%, with an F1-score around 72%. Our results represent a realistic
estimation of the EHG technique’s generalization capability for predicting preterm
labor and outperform the current techniques used in clinical practice to detect true
preterm labor cases, thus constituting a useful tool for clinical use for preterm labor
prevention.
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Chapter 6

General Discussion

6.1 EHG characterization

In this study, our aim was to develop an EHG preterm labor forecasting system to
promote its transfer to clinical settings. The classical approach consists of extract-
ing relevant information from the EHG used as the input features of classification
algorithms. Previous studies have proposed a wide range of features to character-
ize EHG changes throughout pregnancy, divided into four main groups: temporal,
spectral, nonlinear, and synchronization features [1, 2]. These four feature categories
encompass the different phenomena involved in the efficiency of uterine myoelectri-
cal activity (intensity, excitability and synchronization) and their non-linear nature,
which allows an objective global assessment of the uterine electrophysiological state
for better preventing preterm labor [1, 2].

6.1.1 Analysis of temporal and spectral EHG features

Amplitude-related features such as peak-to-peak amplitude or RMS are commonly
used temporal parameters to characterize EHG signals. These latter reflect the num-
ber of uterine cells involved in the contraction and therefore are indirect measures
of uterine contraction intensity. While it is widely accepted that the amplitude
of the EHG signal tends to increase as labor approaches [3, 4, 5], the utility of
amplitude-based features for preterm labor prediction has provided controversial re-
sults. Amplitude-related metrics are effective in discriminating the imminence of
delivery in EHG recordings from women with threaten preterm labor [6, 7]. In con-
trast, other authors found that women who delivered prematurely exhibited a similar
amplitude to term delivery cases with no significant difference [8, 9], which agrees
with our findings [10]. This is mainly due to the fact that surface-recorded EHG
depends not only on the internal source signal amplitude but is also affected by other
factors, such as body mass index and skin preparation, among others [4], so that
surface-recorded amplitude is not a reliable measure of uterine contraction intensity.
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Spectral parameters were found to be more reliable than temporal parameters in
characterizing EHG changes throughout pregnancy [4, 8]. Physiologically, uterine
contractility depends on the uterine myocyte excitability and the propagation of its
electrical activity to the whole uterus, which plays a crucial role in shaping the spectral
content of the EHG signal [3, 8]. Previous studies showed that spectral features,
such as dominant frequency, median frequency, decile, high-to-low frequency energy
ratio and spectral moment ratio, effectively increase as labor approaches [4, 5, 8,
11, 12]. This means that uterine cells become more excitable, giving rise to the
shift of spectral content towards higher frequencies [4, 8]. Preterm delivery was also
found to have a significantly higher dominant frequency than term delivery in both
the FWH and WBW bandwidth in women who have regular check-ups [5, 8, 11,
12, 13]. We confirmed that dominant frequency is a relevant discriminator between
preterm and term deliveries [10]. Also, the median frequency is considered an effective
feature for distinguishing between term and preterm deliveries within the FWH, but
not in the WBW [8, 11, 12]. In the present thesis our findings indicate that the
median frequency in the range of 0.2–1Hz is a reliable discriminator between preterm
and term labor [10]. We preferred to restrict the upper frequency limit to 1 Hz to
reduce cardiac interference, while the lower frequency limit was set to minimize the
influence of baseline fluctuation. Our study also revealed that the spectral moment
ratio of preterm deliveries was significantly lower than term deliveries [10], which
agrees with the smaller value for women during the active phase of labor as compared
to antepartum patients [5]. Similarly, we found that the high-to-low frequency ratio
and deciles were also effective in differentiating between preterm and term labor cases
[10], while other spectral parameters were found to be less sensitive in detecting
preterm delivery in women with regular check-ups, with no significant differences
with the term-labor group, such as normalized energy or Teager energy [10].

6.1.2 Analysis of non-linear EHG features

The physiological mechanisms of biological systems are widely recognized to be non-
linear processes that change over time. These systems can be modeled as non-linear
dynamic systems due to the coupling between billions of interconnected cells and the
complex feedback networks inherent to them. This nonlinearity is a fundamental
characteristic of biological systems [4]. During the transition from pregnancy to la-
bor, the properties of EHG signals such as complexity and randomness, experience a
significant decline [5, 14], while regularity and predictability tend to increase [5, 14].
These physiological changes are reflected in different measures such as Lempel-Ziv,
SD1/SD2 (Poincaré ellipse minor axis (SD1) and major axis (SD2)), sample, fuzzy
and spectral entropy [5, 8, 14, 15, 16, 17]. Preterm EHG records are expected to
show patterns that closely resemble those observed during labor rather than in term
deliveries [4, 5].

Sample entropy has been widely used to detect preterm labor in women under-
going regular check-ups and identify imminent labor in cases of threatened preterm
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birth. Previous studies have indicated better discriminatory capability in the FWH
than WBW bandwidth [4, 6, 8, 18], which aligns with the findings of the present
thesis [10, 19]. Fuzzy entropy and spectral entropy obtained a similar performance in
differentiating between term and preterm deliveries [16, 17]. We obtained a similar
result [10, 19] to previous studies for Lempel-Ziv and Poincaré derived measures [5,
8].

Our results showed the Katz Fractal Dimension as an efficient discriminator be-
tween preterm and term labor, regardless of whether it was computed in the FWH or
WBW bandwidths [10]. Our observations revealed that time reversibility could not
distinguish between preterm and term labor [10], in agreement with other studies,
which suggests that time reversibility may be insensitive to subtle electrophysiologi-
cal changes occurring well before delivery, while it may be more suitable for identifying
imminent labor in women with threatened preterm labor [5, 20, 21].

We propose two new biomarkers in this thesis (dispersion entropy and bubble
entropy) to enhance the separability of the preterm and term groups [19]. Our find-
ings suggest that bubble entropy better discriminates women who deliver at term
from those who deliver prematurely than dispersion entropy, while both outperform
sample, fuzzy, and spectral entropy [19]. These results agree with those of Azami
et al., who showed that dispersion entropy outperformed classical entropy measures
(sample, fuzzy and permutation entropy) in detecting Alzheimer’s disease, with the
additional advantage of less computation time [22]. Our findings also align with those
of previous studies that found that dispersion entropy outperforms sample entropy
in characterizing the intrinsic dynamics of gait maturation and discriminating non-
invasive blood pressure signals in hypertensive rats [23]. However, they disagree with
Romero-Morales et al., who found that dispersion entropy outperforms bubble entropy
in distinguishing between preterm and term deliveries when computed in the FWH
bandwidth [24]. This discrepancy may be due to various factors: firstly, Romero-
Morales et al. only considered women in the 27th to 33rd week of gestation and
subsampled term delivery records to match the sample size with a minority class (17
preterm vs. 17 term). Neither did they discard the corrupted EHG segments, which
could have significantly altered the data distribution in both groups [24]. Based on
these results, we speculate that dispersion entropy is in fact a robust measure against
motion artifacts and would be suitable for real-time application. On the other hand,
bubble entropy seems to be more vulnerable to motion and respiratory artifacts than
dispersion entropy as it better discriminates artifact-free signals, although its perfor-
mance can be compromised by noisy signals with both motion and breathing artifacts
[19, 24]. Further research is required to validate this hypothesis and compare the
effectiveness of these measures in EHG recordings with artifact removal.

6.1.3 Analysis of synchronization EHG features

During pregnancy, uterine myoelectrical activity is reduced and uncoordinated to fa-
cilitate fetal growth and development. As labor approaches, there is a down-regulation
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of progesterone, responsible for maintaining uterine quiescence, while the expression
of hormone receptors such as prostaglandin and oxytocin, which promote uterine con-
tractility, is up-regulated [25]. During the transition from pregnancy to labor, there is
also an association with the formation of gap junctions comprising connexin proteins
which facilitate a low-resistance pathway for the propagation of inter-cell action po-
tentials. This enhanced electrical coupling propagates action potentials throughout
the uterus, giving rise to high-intensity and better synchronized uterine electrical ac-
tivity [3, 26]. The synchronization of the different uterine regions thus plays a crucial
role in determining labor proximity.

Bivariate analysis of multichannel EHG recorded from electrode arrays has shown
this increased coupling. Measures such as the non-linear correlation coefficient, the
imaginary part of coherency, and normalized permutation and cross mutual informa-
tion have shown this association [27, 28], and, as expected, a significant difference
was also found in uterine electrical coupling during labor and for 1 week postpartum
[29].

It is recommended to strategically position the electrodes across a wide area of the
uterus, rather than focusing on a localized region, to analyze synchronization, also
to maintain an interelectrode-distance greater than 5-6 cm to minimize the blurring
effect of volume conduction, regardless of the synchronization measure [30]. However,
multichannel EHG recordings increase the recording system’s complexity, which hin-
ders the system’s transfer to clinical practice. In this thesis we therefore focused on
temporal, spectral and non-lineal features to characterize EHG signals and develop a
clinical preterm labor prediction system [10, 19, 31].

6.2 Overcoming the curse of dimensionality

6.2.1 Effective feature selection strategies for preterm labor
prediction

As mentioned above, a large number of features have been used to characterize dif-
ferent phenomena involved in uterine contraction efficiency, including intensity, ex-
citability, and non-linear dynamics [3]. They are often used as input features in
preterm labor prediction systems, giving rise to the phenomenon known as the “curse
of dimensionality” [32]. High-dimensional input feature data not only pose a signif-
icant computational burden, but also increase the risk of overfitting, compromising
the performance of the prediction model. Since input data could contain complemen-
tary, redundant and noisy features, their identification and processing are necessary
to overcome this issue. The principal component analysis (PCA) has been widely
used for reducing the dimensionality of input features to predict preterm labor [4].
However, it is not very useful in determining complementarity and redundancy in
the features or discarding noisy information, since PCA essentially results in linear
combinations of the original data [33]. However, feature selection techniques have
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been shown to be more effective than PCA in dealing with redundancy and noise [34].
In this regard, filter methods have been used to deal with the features that cannot
distinguish between term and preterm labor [4, 35]. Other studies have suggested
that filter methods performed worse than wrapper methods, which find the most in-
formative feature subset by minimizing misclassifying classes by the machine learning
algorithm [36, 37, 38].

Sequential forward selection is a widely used wrapped method for feature selection
in preterm labor prediction from EHG signals [24, 36, 39]. This latter starts with an
empty feature set and iteratively adds one feature at a time, based on the performance
of a machine learning model [40]. Alternatively, Particle Swarm Optimization (PSO)
and genetic algorithm are other wrapper methods, while evolutionary algorithms,
which evaluate a fitness function for multiple random feature subsets to combine the
feature subsets with the best performance to iteratively converge in the optimum
feature subset [40]. PSO and the genetic algorithm mainly differ in the way they
create the new population of feature subsets [41]. The genetic algorithm is more
suitable for discrete optimization, as in feature selection, while PSO is better for
continuous optimization [41]. According to Alamedine et al., SFS performs worse
than (PSO) in predicting labor and pregnancy contractions by LDA, QDA, and KNN
as classification methods [36]. Benalcazar et al. also used PSO and neural networks to
predict labor induction success [42]. Similarly, the genetic algorithm has been shown
to perform better than filter methods for predicting pregnancy and labor contractions
by KNN [43] and outperformed both forward and backward selection when predicting
central nervous system embryonal tumor outcomes based on gene expression [37]. In
the present thesis, we show the genetic algorithm’s potential to optimize the feature
subspace with the maximum complementary information between them, eliminating
redundant and noisy features [10, 19]. However, we also consider that PSO could
yield similar results to the genetic algorithm in this context, as has been found in
similar applications [40, 41].

6.2.2 Genetic algorithm and imbalanced datasets: tailoring
feature selection for preterm birth prediction

Starting from an initial set with more than 140 features, we obtained a different op-
timized feature subspace using KNN, LDA and logistic regression [10]. This agrees
with other authors who found that the wrapper method drastically reduced feature
subspace dimensionality [39]. In fact, there may not be an absolute optimal feature
subset with the best performance, as research has shown that the presence of comple-
mentary and redundant information can lead to multiple optimized feature subsets
(multiple local solutions in an optimization problem) of similar performance [36, 44,
45, 46]. Moreover, it is worth noting that in our specific application, there could be a
large number of features with redundant information. In this case, the absence of one
feature could easily be replaced by another with similar classification performance.
So, we found that few features appeared repeatedly in the four different optimum
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feature subsets (Dec5, spectral entropy, Lempel-Ziv, SDRR, and week of gestation)
[10, 19] and thus seem to provide significant information to predict preterm labor. It
is worth noting that Dec5 has been shown to be a reliable predictor of preterm labor
in previous studies [4, 5, 8] and has also been included in the optimal feature subset of
a similar research project [36], while bubble entropy was the most frequently selected
non-linear feature in the initial feature set [19]. Romero-Morales et al. reported that
dispersion and bubble entropy were also selected repeatedly in their optimal feature
subset for predicting preterm labor [24]. However, in terms of obstetric data, only
gestational age was found to be relevant in predicting preterm labor [10, 19], probably
because the values of EHG features change intrinsically as gestational age increases
[8, 47, 48], while maternal age, parity and abortions were determined to be irrelevant
for the algorithm [10, 19], despite being associated in the literature with risk factors
for preterm delivery [49]. Future work with a larger database should be carried out
to confirm this.

Our findings also indicate that the strategy used to deal with imbalanced data
has a strong impact on feature subspace representation. In other words, the optimum
feature set obtained by the genetic algorithm consisted of 12 and 58 features when
using resampling-partitioning [19] and partitioning-resampling [31] pipeline, respec-
tively. These results align with a previous study on imbalanced real-life heart failure
prediction, which showed that the resampling-partitioning pipeline outperformed the
partitioning-resampling approach in terms of achieving better performance with a
lower-dimensional feature subset [50]. This suggests that data oversampling before
splitting could lead to an information leakage across partitions, thereby reducing the
complexity of the classification task [51] and giving rise to a lower-dimensional opti-
mized feature subspace. However, when using the partitioning-resampling pipeline in
highly imbalanced datasets, the classification task would be more challenging, which
is reflected in a high-dimensional optimized feature subset (58 vs. 12 features) [19,
31]. As the greater the imbalance ratio and overlap between classes, the more com-
plex the classification task [52], so that a larger number of features will be necessary
to increase the sensitivity of the minority class and improve the separability of the
minority and majority class [53].

In addition, we examined the impact of resampling (undersampling, oversampling
and hybrid methods) of the training and validation partition on the performance of the
genetic algorithm. Our results indicated a significant improvement in the performance
of the genetic algorithm when using a balanced-by-undersampling validation set as
compared to the imbalanced set [31]. This suggests a better approximation to the
objective function of the genetic algorithm, i.e. allowing it to focus on preterm births
and increase the visibility of preterm samples with respect to term samples. This
approach of balancing the target data to find the best feature subset has been proposed
previously: balancing before feature selection yielded better results than balancing
after feature selection in 79% of the study cases [54]. Other works have tailored
the genetic algorithm by modifying the fitness function to enhance the “visibility” of
the minority class [53, 55, 56]. Our opinion is that similar results can be obtained
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by modifying the fitness function as when balancing the validation partitions (our
approach), provided that the fitness function is modified to allow the genetic algorithm
to focus on the minority class, i.e. premature cases. For instance, Jain et al. used
a weighted sum of recall and specificity as the fitness function, with more weight
assigned to recall [55]. By doing so, the minority samples became more representative
in the fitness function, enhancing their classification [55]. Our conclusion is therefore
that using the genetic algorithm for feature selection can be an effective approach in
addressing imbalanced datasets, a method that allows for the selection of meaningful
features while reducing classification complexity and improving the visibility of the
minority class [31].

6.3 Imbalanced data learning for a preterm labor
prediction system: challenges and perspectives

6.3.1 Resampling before partitioning in preterm labor predic-
tion from EHG signals

Various preterm labor prediction systems with promising results have been proposed
[4, 57], although many of them overestimate the system performance from EHG reg-
isters due to the method used. Their main flaw is oversampling the preterm class by
generating synthetic samples to match the number of term delivery samples before
splitting the dataset into training and test partitions. This practice can lead to in-
formation leakage from the training partition to the testing partition, compromising
the integrity of the evaluation process [51]. Most preterm delivery prediction systems
published to date have been implemented have used this method. Despite their limi-
tation, these studies still offer significant insights since they show the EHG potential
for predicting preterm labor and encourage the scientific community to further study
in this field. Regardless of the methodology bias, these studies serve as a fundamental
basis for preterm labor prediction systems, providing valuable information for bench-
marking new machine learning algorithms. In the present thesis, we therefore first
developed a preterm delivery prediction system using this flawed approach to compare
our specific pipeline with others in the literature.

Using a data resampling-partitioning strategy and the genetic algorithm to opti-
mize the feature subspace, we demonstrated the feasibility of developing a preterm
labor prediction system by assessing their generalization capacity with simple and
easy to interpret algorithms such as logistic regression, LDA and KNN. These indi-
vidual base classifiers achieved an F1-score of over 80% for the testing partition [10,
19]. Our results are thus hardly comparable to numerous prior works on preterm
birth prediction systems that used cross-validation techniques to design and validate
the classifiers without determining the true generalization capacity of the classifiers
for incoming data that had never been encountered before [4, 11, 58, 59, 60]. More-
over, these works typically achieve accuracy scores and an AUC over 90% but have
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had little impact on clinical practice. This is mainly because of using complex algo-
rithms like neural networks or support vector machines that are difficult to interpret,
making it hard for obstetricians to trust their predictions [61]. However, thanks to
the simplicity and easy-to-interpret algorithms, the classification algorithms in the
present thesis could potentially boost obstetricians’ confidence in the preterm labor
prediction model’s outcome and bring the EHG technique closer to clinical practice.

We also assessed the superior performance of an ensemble classifier to that of base
classifiers for preterm labor prediction [10]. Ensemble methods, which combine the
output of individual weak classifiers, have been effective in producing accurate predic-
tions for various classification tasks [62]. The success of these methods is attributed
to their ability to improve accuracy and rectify misclassifications across a multitude
of simple and different base classifiers [63, 64]. Successful ensemble methods seek to
achieve a balance between the diversity and accuracy of the base classifiers [65]. Ren
et al. compared four simple classifiers and two ensemble classifiers to create a preterm
birth classifier based on EHG features. The two ensemble classifiers, AdaBoost and
Random Forest, obtained an AUC of 98.6% and 95.7% and outperformed the best
simple classifier, a Bayesian Network, with an AUC of 91.2% [66]. Idowu et al. also
achieved better results in preterm labor prediction by applying the Random Forest
ensemble classifier, with an AUC of 94.2 ±1.4%, compared with the Penalized Logistic
Regression classifier with an AUC of 91.9 ±3%. Moreover, the variability performance
(σ/µ) of the simple classifier (∼3.2) is twice that of the ensemble classifier (∼1.5%)
[67]. Our research supports the fact that adding a basic ensemble classifier, which
relies on a majority voting strategy at the meta-level and uses outputs from easy-to-
interpret base classifiers, can enhance individual classification performance of these
latter, e.g. the best base classifier achieved an AUC of 94.7 ±2.5%, whereas the en-
semble classifier achieved a notably higher value of 98.1 ±1.3% [10]. This approach
yielded increased average metrics and minimized variations across partitions [67, 68,
69], which affects the reduction of the performance variability of ensemble classifiers
with respect to base classifiers [10, 67].

6.3.2 Partitioning before resampling in preterm labor predic-
tion from EHG signals

Applying resampling methods before data partitioning, the prediction system perfor-
mance was drastically reduced to an AUC of <65% and average precision of <40%
[31]. This is in line with Vandewiele et al. [51], who were the first to report that
balancing the database by generating synthetic samples of preterm delivery records
before splitting the dataset into training and test partitions could provide unrealisti-
cally promising results. The information from the training partition thus ends up by
leaking into the testing partition, i.e. oversampling before data partition reduces the
complexity of the classification task but overestimates generalization capability [70].
It is crucial for testing samples to be completely “new” and “unseen” throughout
the entire machine learning pipeline, as the final evaluation is representative of the
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forecasting algorithm’s performance in real-world situations. If the testing partitions
contain leakage information from the training data, the performance results become
unrealistic and is a hindrance to use in clinical practice [51].

Different strategies have been proposed to improve labor prediction results bet-
ter than earlier studies, using the data partitioning-resampling pipeline [4, 51, 57].
While these studies were able to increase the AUC to between 65% and 80%, the
metrics evaluating the precision of the algorithm to detect true preterm labor were
still lower than 40% [71, 72]. Lou et al. reported the best benchmark scores with the
partitioning-oversampling pipeline, achieving a sensitivity of 84 ±10%, specificity of
66 ±6%, and an AUC of 84 ±7% [73]. However, they did not report on precision,
F1-score, or average precision, which are essential in assessing the classifier’s ability
to identify true preterm labor. Instead, the use of threshold-independent metrics like
AUC in conjunction with AP is stronger [74, 75, 76, 77]. Conventional evaluation
metrics such as accuracy, recall, precision or specificity are not suitable for evalu-
ating classifier performance in imbalanced scenarios, presenting an overly optimistic
view with imbalanced data [75, 76]. In a study comparing various classifier metrics,
skewed distributions attenuated all of these except for threshold-independent metrics
[74]. Precision-recall curves are now commonly used for evaluating performance in
imbalanced data learning because they provide more informative results [78, 79]. It is
important to note that in these scenarios, the same AUC curve can yield a different
precision-recall curve [78, 79]. We therefore consider that our preterm labor prediction
system, based on EHG features, outperforms all previous studies with a realistic and
unseen partition for classifier assessment, achieving an AUC of 94.5 ±4.6% and AP of
84.8 ±11.7% [31]. The prediction model was developed by subsampling the validation
partition during feature selection by a genetic algorithm. After obtaining the optimal
feature subset, there is no need to resample the validation set [31]. Oversampling
does not provide additional information and undersampling can worsen model perfor-
mance due to information loss [31, 57, 80]. The proposed EHG-based preterm labor
prediction method is expected to have high transferability to clinical use due to its
simplicity: the final method relies only on a set of features and a straightforward LDA
classifier, making it easy for clinical staff to understand and use it with confidence.

6.4 Limitations and future work

Despite promising results, our studies are not exempt from limitations. Firstly, the
databases were not only highly imbalanced, but were also small [8, 81], which are
common problems in the published databases of term and preterm EHG records.
This problem mainly arises from the absence of a standard protocol for electrode
placement in EHG recordings, which makes it difficult to compare databases [82]. It
is thus crucial to establish a standard for EHG signal acquisition to generate bigdata,
which can provide the groundwork for the development of reliable and transferable
preterm birth prediction systems for clinical application. In this regard, IoT systems
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could help to create large databases by conducting multicenter studies [83].

Due to the nature of small databases, it is especially challenging to detect preterm
labor risk with high sensitivity. Regardless of the method used, the preterm labor
group may not be representative of the total population, so that future studies are still
needed to further corroborate the generalization capability of these labor prediction
systems. Increasing the number of observations of preterm and term labor would help
to establish a more realistic boundary between the preterm and term classes. However,
regardless of the sample size, there may be a theoretical upper limit to a prediction
systems’ maximum performance [84, 85, 86] due to the inherent overlapping of the
preterm and term classes, which makes the classification task even more difficult.

Besides the resampling method used to deal with the imbalanced data problem,
cost sensitive learning has also been proposed to predict preterm labor [57] although
they use a data resampling-partitioning scheme that may overestimate the generaliza-
tion capacity of the prediction model [51, 57]. Future work should be directed toward
cost-sensitive learning with data the partitioning-resampling pipeline to estimate the
“unbiased” generalization capability for predicting preterm labor.

Most preterm labor prediction systems are based on the classical approach, which
defines EHG features with physical interpretation by specialists in the field. Convo-
lutional neural networks (CNN) with automatic feature extraction capability could
be another disruptive technique for predicting preterm labor. This approach has al-
ready been used to classify basal and contraction segments in EHG signals [87, 88].
However, possibly due to the need for a large amount of data to develop a consis-
tent CNN [89], we have not found any delivery prediction system based on automatic
feature extraction from EHG signals. In this regard, future work should be directed
towards estimating the prediction model’s performance of CNN-based systems by the
data partitioning-resampling pipeline. It should also include transfer learning from
pretrained models. Transfer learning can enhance the performance of CNN-based
prediction models using the knowledge and representations learned from large-scale
datasets, even with limited labeled data [90, 91]. This makes the models able to cap-
ture relevant features and patterns associated with preterm labor and improves their
overall predictive capabilities.

In the present thesis we only analyzed demographic data for the detection of
the risk of preterm labor due to the fact that EHG signals are typically recorded
during routine check-ups in asymptomatic women with no preterm labor risk. In the
literature, cervix measurement and chemical biomarkers such as cervical length, fetal
fibronectin, and interleukin 6 are known to be effective predictors of preterm birth [4,
8, 81]. Including these clinical data could potentially enhance the performance of the
preterm birth prediction models [16].

The present thesis has focused only on forecasting preterm labor from EHG record-
ings of singleton women who attended routine check-ups and therefore had no early
labor onset symptoms. In clinical practice, tocolytic drugs are usually administered
at the first signs of Threatened Preterm Labor (TPL). Previous studies showed that
the EHG characteristics of undergoing alterations across various stages of tocolytic
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therapy [4, 6, 18] make imminent/preterm labor prediction based on EHG more chal-
lenging. Regardless of the tocolytic treatment phase at the EHG recording, there
is evidence indicating that EHG can offer meaningful data for predicting imminent
labor (time to delivery < 7/14 days) in single-gestation women with TPL using data
resampling-partitioning, achieving an AUC of 91% [92]. Future research should be
carried out on developing a prediction model for imminent/preterm labor in women
with TPL using data partitioning-resampling and/or cost-sensitive learning. It will
also be necessary to consider the phase of the tocolytic drug therapy at the time of
recording.

Another limitation of the current study is that we only validated the prediction
model in singleton gestations, while multiple gestation pregnancies have a higher
incidence of preterm birth (up to 60%), with the risk increasing with the number of
fetuses [93]. Multiple gestations are also associated with a higher very premature risk
(19.19% vs 2.11%) [94]. The conventional treatments for single gestation, including
tocolytic therapy, progesterone, and cervical cerclage, have shown limited effectiveness
in multiple gestation pregnancies [95].In other words, multiple gestation pregnancies
may involve specific pathways that contribute to increased uterine contractility, which
in turn can lead to preterm birth [96]. Future work should be in this direction and
would provide healthcare clinicians with a more reliable tool for preventing preterm
labor in multiple gestation pregnancies, leading to improved clinical maternal-fetal
outcomes.

However, EHG recordings are not the only promising techniques for developing
effective preterm labor predictors for patients who have routine examinations. Grig-
orescu et al. recently used 157 neonatal T2-weighted magnetic resonance imaging
records (MRI) of infants born between 23–42 weeks of gestation to predict preterm
labor, using a 3D convolutional neural network (CNN) with layer-wise relevance prop-
agation, which provides visual interpretation of the network’s decisions. The outcomes
were very encouraging, with an accuracy of 94%, a true positive rate of 100%, and a
true negative rate of 86%. Their results showed that the most prominent feature to
distinguish between preterm and term pregnancies was the infant’s cerebrospinal fluid
[97]. However, despite the promising results, MRI has major drawbacks for clinical
practice. MRI machines are expensive to purchase and maintain and can take a long
time to perform, sometimes up to an hour or more. This can be difficult for patients
who are unable to remain still for that amount of time, as in pregnant women. These
machines are not as widely available as other imaging technologies, especially in rural
or low-income areas [98].

Although our study has its limitations, we believe that our results accurately reflect
the models’ generalization capacity for new data, achieving recall rates ranging from
79.6% to 89.8%, which is considerably higher than the methods currently used in
clinical practice [99, 100, 101, 102]. These results contribute to improving prediction
and prevention of preterm labor, which is important in clinical settings. Accurate
prediction of preterm labor could eliminate false preterm labor cases, with estimated
savings of $32,325 per patient [103], a significant cost saving for public healthcare
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systems. It would also enable clinicians to provide better and more personalized
care for real preterm labor cases, potentially improving survival rates for extremely
premature infants by prolonging pregnancy and reducing long-term morbidity and
lifelong disabilities in the survivors.

6.5 References

[1] R. E. Garfield, L. Murphy, K. Gray, and B. Towe, Review and Study of Uter-
ine Bioelectrical Waveforms and Vector Analysis to Identify Electrical and
Mechanosensitive Transduction Control Mechanisms During Labor in Preg-
nant Patients, Reproductive Sciences, vol. 28, no. 3, pp. 838–856, 2021, issn:
19337205. doi: 10.1007/s43032-020-00358-5.

[2] J. M. MARSHALL, Regulation of activity in uterine smooth muscle. Physio-
logical reviews. Supplement, vol. 5, pp. 213–27, 1962, issn: 0554-1395.

[3] D. Devedeux, C. Marque, S. Mansour, G. Germain, and J. Duchêne, Uterine
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[24] H. Romero-Morales, J. N. Muñoz-Montes de Oca, R. Mora-Martı́nez, Y. Mina-
Paz, and J. J. Reyes-Lagos, Enhancing classification of preterm-term birth
using continuous wavelet transform and entropy-based methods of electrohys-
terogram signals, Frontiers in Endocrinology, vol. 13, no. January, pp. 1–11,
2023, issn: 16642392. doi: 10.3389/fendo.2022.1035615.

[25] A. R. Fuchs, F. Fuchs, P. Husslein, and M. S. Soloff, Oxytocin receptors in
the human uterus during pregnancy and parturition, American Journal of
Obstetrics and Gynecology, vol. 150, no. 6, pp. 734–741, 1984, issn: 00029378.
doi: 10.1016/0002-9378(84)90677-X.

[26] H. Leitich, M. Brunbauer, A. Kaider, C. Egarter, and P. Husslein, Cervical
length and dilatation of the internal cervical os detected by vaginal ultra-
sonography as markers for preterm delivery: A systematic review, American
Journal of Obstetrics and Gynecology, vol. 181, no. 6, pp. 1465–1472, 1999,
issn: 00029378. doi: 10.1016/S0002-9378(99)70407-2.

[27] N. Nader, M. Hassan, W. Falou, M. Khalil, B. Karlsson, and C. Marque, Uter-
ine muscle networks: Connectivity analysis of the ehg during pregnancy and
labor, arXiv: Quantitative Methods, 2019. doi: https://doi.org/10.48550/
arXiv.1904.05021.

134

https://doi.org/10.3390/s21186071
https://doi.org/10.1016/j.medengphy.2014.01.009
https://doi.org/10.1016/j.medengphy.2014.01.009
https://doi.org/10.1109/TBME.2017.2723933
https://doi.org/10.1109/EMBC.2016.7592197
https://doi.org/10.3390/e20030210
https://doi.org/10.3390/e20030210
https://doi.org/10.3389/fendo.2022.1035615
https://doi.org/10.1016/0002-9378(84)90677-X
https://doi.org/10.1016/S0002-9378(99)70407-2
https://doi.org/https://doi.org/10.48550/arXiv.1904.05021
https://doi.org/https://doi.org/10.48550/arXiv.1904.05021


6.5. References

[28] R. C. Young, Myocytes, myometrium, and uterine contractions, Annals of the
New York Academy of Sciences, vol. 1101, pp. 72–84, 2007, issn: 17496632.
doi: 10.1196/annals.1389.038.

[29] A. Diab, S. Boudaoud, B. Karlsson, and C. Marque, Performance comparison
of coupling-evaluation methods in discriminating between pregnancy and labor
EHG signals, Computers in Biology and Medicine, vol. 132, no. August 2020,
p. 104 308, 2021, issn: 18790534. doi: 10.1016/j.compbiomed.2021.104308.

[30] R. C. Young and P. Barendse, Linking Myometrial Physiology to Intrauterine
Pressure; How Tissue-Level Contractions Create Uterine Contractions of La-
bor, PLoS Computational Biology, vol. 10, no. 10, 2014, issn: 15537358. doi:
10.1371/journal.pcbi.1003850.

[31] F. Nieto-del-Amor et al., Combination of Feature Selection and Resampling
Methods to Predict Preterm Birth Based on Electrohysterographic Signals
from Imbalance Data, Sensors, vol. 22, no. 14, p. 5098, 2022, issn: 1424-8220.
doi: 10.3390/s22145098.

[32] L. O. Jimenez and D. A. Landgrebe, Supervised classification in high-
dimensional space: Geometrical, statistical, and asymptotical properties of
multivariate data, IEEE Transactions on Systems, Man and Cybernetics Part
C: Applications and Reviews, vol. 28, no. 1, pp. 39–54, 1998, issn: 10946977.
doi: 10.1109/5326.661089.

[33] G. Doquire and M. Verleysen, A comparison of multivariate mutual infor-
mation estimators for feature selection, in ICPRAM 2012 - Proceedings of
the 1st International Conference on Pattern Recognition Applications and
Methods, vol. 1, 2012, pp. 176–185, isbn: 9789898425980. doi: 10 . 5220 /

0003726101760185.

[34] M. Pett, N. Lackey, and J. Sullivan, Making sense of factor analysis: The use
of factor analysis for instrument development in health care research. 2003.
doi: 10.4135/9781412984898.

[35] J. Xu et al., Network Theory Based EHG Signal Analysis and its Application
in Preterm Prediction, IEEE Journal of Biomedical and Health Informatics,
vol. 26, no. 7, pp. 2876–2887, 2022, issn: 21682208. doi: 10.1109/JBHI.2022.
3140427.

[36] D. Alamedine, M. Khalil, and C. Marque, Comparison of different EHG fea-
ture selection methods for the detection of preterm labor, Computational and
Mathematical Methods in Medicine, vol. 2013, 2013, issn: 17486718. doi: 10.
1155/2013/485684.

[37] W. Bouaguel, A New Approach for Wrapper Feature Selection Using Genetic
Algorithm for Big Data, in Intelligent and Evolutionary Systems, 2016, pp. 75–
83. doi: 10.1007/978-3-319-27000-5_6.

135

https://doi.org/10.1196/annals.1389.038
https://doi.org/10.1016/j.compbiomed.2021.104308
https://doi.org/10.1371/journal.pcbi.1003850
https://doi.org/10.3390/s22145098
https://doi.org/10.1109/5326.661089
https://doi.org/10.5220/0003726101760185
https://doi.org/10.5220/0003726101760185
https://doi.org/10.4135/9781412984898
https://doi.org/10.1109/JBHI.2022.3140427
https://doi.org/10.1109/JBHI.2022.3140427
https://doi.org/10.1155/2013/485684
https://doi.org/10.1155/2013/485684
https://doi.org/10.1007/978-3-319-27000-5_6


Chapter 6. General Discussion

[38] N. A. Nnamoko, F. N. Arshad, D. England, J. Vora, and J. Norman, Evaluation
of Filter and Wrapper Methods for Feature Selection in Supervised Machine
Learning, 34th International Conference on Machine Learning, ICML 2017,
no. September, 2014.

[39] A. Cheng et al., Novel Multichannel Entropy Features and Machine Learning
for Early Assessment of Pregnancy Progression Using Electrohysterography,
IEEE Transactions on Biomedical Engineering, vol. 69, no. 12, pp. 3728–3738,
2022, issn: 15582531. doi: 10.1109/TBME.2022.3176668.

[40] B. Remeseiro and V. Bolon-Canedo, A review of feature selection methods in
medical applications, Computers in Biology and Medicine, vol. 112, no. July,
p. 103 375, 2019, issn: 18790534. doi: 10.1016/j.compbiomed.2019.103375.

[41] Voratas Kachitvichyanukul, Comparison of Three Evolutionary Algorithms:
GA, PSO, and DE, Industrial Engineering & Management Systems, vol. 11,
no. 3, pp. 215–223, 2012.

[42] C. Benalcazar-Parra et al., Prediction of Labor Induction Success from the
Uterine Electrohysterogram, Journal of Sensors, vol. 2019, pp. 1–12, 2019,
issn: 1687-725X. doi: 10.1155/2019/6916251.

[43] D. Alamedine, M. Khalil, and C. Marque, Comparison of Feature selection
for Monopolar and Bipolar EHG signal, in Journees Recherche en Imagerie et
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Chapter 7

Conclusions

This chapter discusses the conclusions reached and evaluates whether they represent
a novel contribution, in accordance with the specific objectives set out in Chapter 2.

Objective 1. To extract relevant features from EHG signals to discrimi-
nate the preterm versus term labor in women undergoing regular prenatal
check-ups

We assessed the ability of temporal, spectral, and non-linear features to discriminate
between preterm and term labor cases. Our results support previous results in the
literature regarding the fact that spectral features are more reliable than amplitude-
related features in distinguishing between these two groups. We also confirmed the
suitability of classical non-linear features (sample entropy, fuzzy entropy, spectral en-
tropy, Lempel Ziv, spectral entropy, Poincaré ellipse plot derivates, time reversibility
and Kazt’s fractal dimension) for differentiating between preterm and term deliveries.

For the first time, we used dispersion and bubble entropy to characterize EHG
signals. Both novel entropy measures effectively distinguished between term and
preterm cases and outperformed even the classical entropy metrics. Also, bubble
entropy surpassed dispersion entropy and is seen as a promising feature for identifying
preterm labor.

Objective 2. To determine the complementary, redundant and noisy in-
formation of EHG features to optimize the feature subspace for predicting
preterm delivery

We have demonstrated the ability of the genetic algorithm to obtain an optimum fea-
ture subspace while maximizing complementary information and rejecting redundant
or noisy features.

The optimal feature subset mainly depends on the classification algorithm, giving
rise to different prediction models with a similar performance, but inferior to that of
ensemble method, such as the majority voting strategy.
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Chapter 7. Conclusions

We also confirmed that resampling before or after partitioning has a large impact
on the complexity of the classification task. The resampling-partitioning approach
facilitates classification due to the information leakage between the training and test
datasets, leading to a lower-dimensional optimal feature subset. On the other hand,
the partitioning-resampling pipeline presents a more complex challenge, as reflected
in a high dimensional optimized feature subset.

Objective 3. To assess different imbalanced data learning strategies to
achieve a robust and generalizable preterm birth prediction system

In this thesis, our findings further support the claim that balancing the database by
generating synthetic samples of preterm delivery records before splitting the database
into training and test partitions can result in unrealistic outcomes. The resampling-
partitioning scheme reduces the classification task complexity and overestimates the
generalization capability. It is essential to use partitioning-resampling to maintain
completely “new” and “unseen” testing samples for accurate model performance eval-
uation.

We have also confirmed the feasibility of combining different resampling methods
in feature selection and LDA as a simple and easy-to-interpret classifier algorithm
to deal with the imbalanced data problem in preterm labor prediction. We found
the best strategy to mitigate imbalanced data consisted of balancing the validation
dataset to 1:1 by using undersampling methods.

This predictive model surpasses the results of studies in the literature that used
a partitioning-resampling pipeline almost comparable with those obtained by the
resampling-partitioning approach, reaching an AUC of 94% and AP of 84%. The
maximum F1-score is about 80% and the recall is about 80%. When we maximized
the mean of G-mean, the recall of the best model was about 90% and the F1-score
was about 72%.

This approach paves the way for the development of an integral preterm birth
prediction system based on the EHG technique for use in clinics that would allow
patient-oriented strategies to be designed for better preterm labor prevention and
improve maternal-fetal well-being, besides the optimal management of hospital re-
sources.
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