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A B S T R A C T  A R T I C L E   I N F O 
A number of research studies has addressed supply chain planning from vari-
ous perspectives (strategical, tactical, operational) and demonstrated the ad-
vantages of integrating both production and distribution planning (PDP). The 
globalisation of supply chains and the fourth industrial revolution (Industry 
4.0) mean that companies must be more agile and resilient to adapt to volatile 
demand, and to improve their relation with customers and suppliers. Hence the 
growing interest in coordinating production-distribution processes in supply 
chains. To deal with the new market’s requirements and to adapt business pro-
cesses to industry’s regulations and changing conditions, more efforts should 
be made towards new methods that optimise PDP processes. This paper pro-
poses a matheuristic approach for solving the PDP problem. Given the complex-
ity of this problem, combining a genetic algorithm and a mixed integer linear 
programming model is proposed. The matheuristic algorithm was tested using 
the Coin-OR Branch & Cut open-source solver. The computational outcomes re-
vealed that the presented matheuristic algorithm may be used to solve real 
sized problems. 
 

 Keywords: 
Production and distribution plan-
ning;  
Supply chain; 
Matheuristic;  
Genetic algorithm; 
Mixed integer linear programming 
model  

*Corresponding author:  
eguzman@cigip.upv.es 
(Guzman, E.) 

Article history:  
Received 29 April 2022 
Revised 21 December 2022 
Accepted 27 December 2022 

 
Content from this work may be used under the terms of 
the Creative Commons Attribution 4.0 International Li-
cence (CC BY 4.0). Any further distribution of this work 
must maintain attribution to the author(s) and the title of 
the work, journal citation and DOI. 

 
 
1. Introduction 
The globalisation of markets has lee to companies to optimise their processes and resources to 
remain competitive. Nowadays, optimisation is a relevant factor for improving firms’ perfor-
mance, and for turning the challenges that they face into competitive advantages [1]. One optimal 
strategy for profits that can minimise a company's total costs is to integrate different business 
functions, such as purchasing, inventory management, production and distribution [2]. Therefore, 
it is an important factor for optimizing supply chain enterprises to establish greater integration 
production and distribution planning (PDP) [3]. The PDP problem is defined by Safaei et al. [4] as 
a firm’s scheduling process to manufacture the right products and to ship the quantities of the 
right products to the right place at the right time. 

Increasing pressure to minimise total production and logistic costs means that supply chain 
agents are having to re-examine production-distribution policies, and to maximise the use of 
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physico-technological assets [5]. Properly coordinating PDP in supply chains is a challenging 
problem because companies expand internationally and move to a competitive environment that 
requires greater collaboration. Efficient supply chain cooperation involves many coordinated de-
cisions being made at several decision levels (e.g., strategical, tactical, operational) about prod-
ucts, financial resources and information. 

In this context, the present research work develops an efficient matheuristic approach to solve 
the integrated PDP problem. A matheuristic algorithm is defined by Boschetti et al. [6] as “the 
interoperation of metaheuristics and mathematical programming techniques". There are different 
approaches for combining metaheuristics with exact methods, and each technique has its individ-
ual advantages and disadvantages. However, the aim is to benefit from synergy. Several research-
ers present a taxonomy that classifies this type of cooperation. Table 1 shows several approaches 
by different authors, although some have similar characteristics. 

When designing a matheuristic, the question is, which components can work together to gen-
erate an efficient algorithm? Although supplying a collaboration rule does not seem a feasible ap-
proach, the matheuristic design involves functionality and architecture. Thus, the cooperation 
level can be ranked according to its hierarchy, as in Table 2. 

Table 1 Classification of matheuristic approaches 
Approach Classes  
Cooperation between 
exact and local search 
methods [7] based on 
Dumitrescu & Stützle [8] 

• Exact algorithms to browsing through neighbourhoods in local search algorithms. 
• Exact algorithms intended for specific hybrid metaheuristics procedures. 
• Explore boundaries in constructive heuristics. 
• Local searches or constructive algorithms guided by data from integer programming 

model relaxations. 
• Exact algorithms for smaller problems using solutions from local searches 

Combination between 
exact techniques and 
metaheuristic algo-
rithms [9], [10] 

Collaborative combinations 
Algorithms exchange information. None is con-
tained in any other. Both procedures can be exe-
cuted sequentially, interlaced or in parallel. 

Subclasses 
• Sequential execution 
• Parallel and intertwined execu-

tion 

Integrative combinations 
One technique is component-integrated into an-
other technique with a master-slave structure. An 
exact or metaheuristic algorithm can be presented 
with a master-type structure and at least one inte-
grated slave. 

• Incorporating exact algorithms 
into metaheuristics 

• Incorporating metaheuristics 
into exact algorithms 

“MASTER-SLAVE” struc-
ture with a guiding pro-
cess and application 
process [11] 

• Metaheuristics operate at the master level and, thereby, control and guide actions to 
the exact technique. 

• The exact method operates as a master to call/control by the metaheuristic ap-
proach. 

Table 2 Hierarchical matheuristic classification [12] 

Hierarchy Description 
LRH (low-level relay 
hybrid) 

It depicts hybrid schemes in which a metaheuristic approach is included in an exact ap-
proach to improve the search strategy 

LTH (low-level team-
work hybrid) 

It describes one search element of a metaheuristic to be replaced with another exact algo-
rithm 

HRH (high-level relay 
hybrid) 

Autonomous algorithms are executed in a sequence. The stage can be either pre-processing 
or post-processing, i.e., two groups of algorithms (metaheuristics + exact algorithms) are 
provided with some data in sequence 

HTH (High-level 
Teamwork Hybrid) 
 

A combination of metaheuristics and exact algorithms that performs a parallel search and 
cooperate to find relaxed optimal solutions, better lower or upper bounds, optimum sub-
problem solutions, partial solutions, etc. Metaheuristics and exact algorithms solve partial, 
specialised or global optimisation problems and exchange helpful information. 

 
Recent studies, such as that presented by Kumar et al. [13] , provide a literature review of the 

quantitative approaches applied to combined PDP. These authors concluded that the main mod-
elling approaches for this problem type are MILP (mixed integer linear programming), while the 
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main applied solution approaches are those that resort to optimisation software, followed by ge-
netic algorithms (GAs). Computational experiments in small instances use mainly LINGO and 
CPLEX to solve MILP and Matlab and C++ in large instances to solve heuristic and metaheuristic 
methods. In this review, we observe that matheuristic methods have not yet been discussed in-
depth. As far as the authors know, to date no research has addressed the PDP problem using this 
type of matheuristic. 

In this context, we propose developing a solution strategy for the PDP problem with a mathe-
matical algorithm that is positioned in the hierarchical classification described in Table 2 as a 
High-level Teamwork Hybrid. This strategy is useful because the search space of the MILP model 
is considered to be too big for a solver to solve it. Therefore, we employ a GA that exchanges in-
formation in parallel to the MILP model to diminish the search space. 

Given the complexity of PDP problems, they prove difficult when implementing large datasets 
or solving real SME problems with a MILP model. For this reason, some companies choose to use 
commercial solvers for this type of problem. However, some SMEs cannot afford to buy a commer-
cial solver because of its high cost but, as digitisation needs are accelerating, many companies are 
considering how to be equipped with a digital infrastructure insofar as it does not constrain them 
and does not cost too much. So those SMEs that have implemented open-source software have 
made significant savings in technology spending because they do not have to pay annual software 
licences and have not run the risk of software becoming obsolete when licences expire [14].  

Accordingly, this article contributes: (i) a new matheuristic approach to solve the PDP problem; 
(ii) the matheuristic algorithm was tested and compared to a non-commercial Coin-Branch & Cut 
(CBC) solver and employs a free open-source operating system (Linux). The proposed approach’s 
effectiveness is proven by solving randomly generated test datasets with real data sizes. 

The rest of this article is arranged as follows. Section 2 briefly presents a literature review 
about the integrated approach to supply chain PDP. Section 3 offers a mathematical model. Section 
4 details the matheuristic algorithm for solving the planning-distribution problem. Section 5 pre-
sents the evaluation of the matheuristic algorithm using large instances to simulate real-life com-
panies. Finally, Section 6 defines some conclusions and future research directions. 

2. Related works  
This section reviews the literature about integrating decisions from PDP functions, along with the 
solution approaches suggested for these problems. This problem has been paid plenty of attention 
in recent years. Literature reviews like that by Chen [15] indicate several future research lines. 
One of them states that more effort should be made to create heuristic or metaheuristic methods 
for this type of problems, which are NP-hard, as there are very few solution algorithms for this 
type of problems. Years later Fahimnia et al. [16] describe that the use of heuristic, metaheuristic 
and simulation techniques predominate in the literature, but propose employing new techniques, 
and suggest having to extend the effectiveness of solution techniques to deal with realistic PDP 
problems as most techniques have been applied to deal with small- and medium-sized problems. 
Lastly, the work by Kumar et al. [13] indicates the extensive use of metaheuristic algorithms like 
heuristic algorithms, GAs and exact methods, but does not reveal the use of matheuristic algo-
rithms.  

Accordingly, related work like that of Raa et al. [5] proposes an aggregate PDP model for injec-
tion moulding production in the many facilities of a plastics manufacturer. This MILP is solved by 
the Gurobi solver for small instances. For large instances, these authors employ an iterative 
matheuristic that utilises a decomposition heuristic. Bilgen and Çelebi [1] offer a combined simu-
lation and MILP approach for integrated production and distribution problems in the dairy indus-
try. The MILP model is solved with CPLEX and the hybrid approach employs ARENA.  

Su et al. [17] propose combining distinct algorithms like the GA and particle swarm optimisa-
tion (PSO). The GA comes with a learning scheme, and a hybrid algorithm that combines PSO tech-
niques with the GA and a learning scheme to solve both partner selection and the PDP problem in 
a manufacturing chain design. Moattar Husseini et al. [18] put forward bi-objective MILP for inte-
grated PDP with manufacturing partners. One of the objectives of this model is to minimise the 
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total cost by covering production, inventory holding purchases from partners and transport-dis-
tribution costs. Another objective aims to maximise the quality level of the products that partners 
supply on the planning horizon. For this problem, they employ LINGO to solve the model in small 
instances. However, as the problem in large instances is classified as NP-hard, the authors solve it 
by a Non-Dominant GA II (NSGA-II) and a Multi-Objective PSO (MOPSO) algorithm. The computa-
tional results confirm the suitability and practicality of these two algorithms, but the MOPSO al-
gorithm obtains better results in most instances. Devapriya et al. [19] report a PDP problem with 
a perishable product. The problem is modelled by MILP, is solved with CPLEX, employs a memetic 
algorithm to solve the problem in large instances, and obtains good solutions in a relatively 
shorter computational time. 

Kazemi et al. [3] put forward a hybrid algorithm that combines a multi-agent system and three 
metaheuristic algorithms, including a GA, a tabu search and simulated annealing. They propose a 
MILP model that is solved with LINGO. They employ Matlab to evaluate the hybrid approach. Their 
results reveal that LINGO better works in small instances, while the hybrid approach delivers bet-
ter solutions in large instances. In a multifactory supply chain, Gharaei and Jolai [20] study a multi-
agent scheduling problem with distribution decisions. To do so, they propose using a MILP for-
mulation to solve the problem with CPLEX by employing small and medium instances. They also 
develop a multi-objective evolutionary algorithm based on decomposition by combining the Bees 
algorithm and using Matlab, which well performs in long instances. Marandi and Fatemi Ghomi 
[21] put forward an integrated production-distribution scheduling problem. They aim to simulta-
neously find a production schedule and a vehicle routing solution to minimise the sum of delay 
and transportation costs. They apply CPLEX for small problems and propose a new algorithm for 
medium and large problems, namely the Improved Imperialist Competitive Algorithm, which ap-
plies a local search algorithm based on a simulated annealing algorithm. 

The literature review highlights a growing research tendency to integrate PDP functions. It re-
veals that companies tend to collaborate with manufacturing partners to better respond to de-
manding market conditions, and they focus more on their core activities. Interest is shown in heu-
ristic and metaheuristic methods, which are frequently employed to solve these problems with 
large instances. These instances normally represent the size of the data actually employed by real 
companies, although different variants of the PDP problem exist. Models tend to be solved mostly 
with a commercial solver, of which CPLEX is the most widespread. Despite previous works having 
discussed some combinations of the above algorithms, other combinations have not yet been ad-
dressed by the literature, such as those using matheuristic algorithms in practice.  

Based on these results, this study considers an integrated PDP problem formulated as a MILP 
model. As the literature reports the potential effectiveness of GA-based algorithms [18], a com-
bined solution approach with a GA and a mathematical model is herein considered. A non-com-
mercial solver and an open-source operating system are also implemented. The next sections dis-
cuss the particulars of the posed problem, its formulation and the solution approach. 

3. Problem definition 
This section offers details of the studied problem and formulates the proposed model. The PDP 
problem herein contemplated is based on Park [22].  

The MILP model takes these assumptions: 

• For the production stage: many production plants produce multiple items with a limited 
capacity per time period. Each product type has a setup cost, while production plants have 
a limited storage capacity, and produced items are shipped directly to points of sale. 

• For the distribution stage: distribution is performed with a fleet of homogeneous vehicles, 
which are parked in production plants. 

• The vehicle movement incurs on: (i) a fixed cost in relation to the depreciation of vehicles, 
insurance, etc.; (ii) a variable cost according to the transported item, quantity and route. 
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For points of sale: an item’s demand during a period at a point of sale consists of two compo-
nents: (i) “core demand”: the amount of main demand that the point of sale must meet by loyal 
customers in the long term; (ii) “forecasted demand”: the total amount, including core demand. 
Unmet demand at a point of sale is considered a stockout (rejected demand) and does not allow 
deferred demand. Each point of sale can maintain a limited amount of inventory at a very high 
cost. An overview of the considered problem is demonstrated in Fig. 1. 

 
Fig 1 Illustration of the integrated production and distribution planning problem 

3.1 Notation  

The PDP problem nomenclature is shown below. 
Table 3 The MILP model nomenclature  

Notation Description 
Sets 
i Index of plants i ∈{1,…, I} 
j Index of points of sale, j ∈{1,…, J} 
k Index of products (parts) k ∈{1,…, K} 
t Index of time periods t ∈{1,…, T} 
Parameters 
Cik cost of producing 1 unit of product k in plant i 
sik cost of setup for product k in plant i 
oik time of producing 1 unit of product k in plant i 
uik time of setup for product k in plant i 
hpik unit holding cost per period for product k in plant i 
Li production capacity per period of plant i 
dijk cost of transporting 1 unit of product k from plant i to point of sale j 
g fixed cost per vehicle 
B capacity per vehicle 
Ejkt core demand of product k at point of sale j during period t 
Fjkt forecasted demand of product k at point of sale j during period t 
pjk price of sale of 1 unit of product k at point of sale j 
hrjk unit holding cost per period for product k at point of sale j 
Wrj inventory capacity of point of sale j 
vjk unit stockout cost of item k at point of sale j 
Variables 
xikt amount of product k produced at plant i during period t 
qijkt amount of product k transported from plant i to point of sale j during period t 
Yikt 1 if product k is produced a plant i during period t; 0 otherwise 
apikt inventory level of product k at plant i during period t 
arjkt inventory level of product k at point of sale j during period t 
zijt number of vehicles needed for distribution from plant i to point of sale j during period t 

The objective function maximises sales revenues at points of sale, minus the costs of setup, pro-
duction and inventory at plants, the costs of inventory and stockout at points of sale, and the costs 
of vehicles and transport. 
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Constraint Eq. 2 guarantees the inventory of all products in each plant at the end of every period. 
Constraint Eq. 3 ensures meeting "core demand" at each point of sale per product during each 
time period. Constraint Eq. 4 ensures that the demand served for any product at any point in time 
at any point of sale never exceeds the expected demand (“forecast demand”).  

Physical resource limitations 
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𝑘𝑘

 ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (8) 

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖0 = 0, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖0 = 0  ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (9) 

Constraint Eq. 5 guarantees that, per plant during each period, the capacity consumption due to 
the processing and preparation times of processed items never exceeds the plant’s available pro-
duction capacity. Constraint Eq. 6 ensures that if a quantity of a certain product is produced in a 
plant during a period, a setup of this product is necessary. Constraint Eq. 7 ensures that the 
amount of products stored at a point of sale during every period must never exceed the point of 
sale’s storage capacity. Constraint Eq. 8 computes the number of vehicles required to transport 
products from every plant to each point of sale during all periods. Constraint Eq. 9 represents the 
initial inventory levels in plants and at points of sale.  

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  ∈ {0,1} ∀𝑖𝑖, 𝑘𝑘, 𝑡𝑡 (10) 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖  ∈ ℤ ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑡𝑡 (11) 

Constraints Eq. 10 and Eq. 11 indicate the binary nature of 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖  and the integer nature of some 
variables. 
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4. Proposed matheuristic solution method  
The PDP problem is a complex one to solve given the number of integer variables that corresponds 
to produced and transported products, the inventory level in the plant and at points of sale, and 
the vehicles needed for distribution, plus the binary variable that indicates in which plants prod-
ucts are produced. Given the difficulty of this problem, a solution methodology is offered and de-
scribes how the GA is combined with the MILP model to evaluate the solutions for the PDP prob-
lem.  

4.1 Initial population 

Each individual in the population corresponds to binary decision variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, which takes 1 if 
product k is produced in plant i during period t, and 0 otherwise. An individual’s length is a one-
dimensional matrix of size 𝐼𝐼 × 𝐾𝐾 × 𝑇𝑇 (multiplication of the quantities of every index). The popula-
tion takes a binary structure and is generated randomly from a uniform distribution with a 50 % 
probability of 1 appearing on an individual's chromosome. The computational results indicate 
that fewer infeasible individuals are generated if this probability is applied. Population size Npop 
equals 10, so we employ this small size to increase the GA’s speed. Koljonen and Alander [23] 
confirm that a small population size increases the optimisation speed to a certain extent. We prove 
that using this population size suffices to obtain good solutions. 

4.2 Evaluation function  

The fitness function measures the quality of an individual in the population. The problem looks 
for solutions that maximise the benefits that the objective function represents. The PDP problem’s 
computational difficulty focuses mostly on binary variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, which refers to the decisions made 
about which product to produce in which plant. This means that the GA is in charge of producing 
a suitable binary chromosome with equal dimensions to the binary variable. 

As this binary chromosome corresponds to each individual in the population, the evaluation of 
each individual is made by formulating the mathematical model. The computational and execution 
times of a MILP versus a linear programming (LP) model are longer given the SIMPLEX algorithm’s 
computational efficiency versus the algorithms dedicated to solve problems with integer or binary 
variables, along with the problem’s difficulty, which is considered NP-hard. The proposed MILP 
model comprises one binary variable and five integer variables. Thus, to improve matheuristic 
performance, we apply MILP model relaxation. The MILP relaxation to obtain LP is given by trans-
forming integer variables into continuous variables, and by transforming the binary variable into 
data.  

At this time the solver is in charge of solving LP and the GA is responsible for supplying the 
binary variable. The binary variable of the GA is fixed to LP. Thus, when executing the matheuris-
tic, it can be quickly solved even for very large problems. In our experiments, on average LP ob-
tains better results than MILP by 3.84 %. Thus, to obtain a final result, we employ the best binary 
chromosome obtained during the evaluation process and launch MILP to gain a final result. This 
is explained in Section 4.6. 

4.3 Selection 

In the selection stage, a set of individuals from the current population is chosen to be used as the 
parents for the crossing stage. The roulette wheel approach [24] is taken to select the individuals 
with the best fitness values in accordance with the uniform probability of selection distributed 
over the range [0...1], and the worst individuals are eliminated from one generation to another so 
that the best individuals are more probably selected. 

4.4 Crossover 

The single point crossover technique [25] is applied. Two parents (P1 and P2) are selected by the 
fortune roulette wheel selection technique. Then the P1 and P2 chromosomes are cut at a point 
that is randomly generated and a new offspring (OF) is generated with the genetic information of 
its parents, as illustrated in Fig. 2. 
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0 0 0 0 1 1 1 1 P1  
  OF 0 0 0 1 0 0 0 0 

1 1 1 1 0 0 0 0 P2  

Fig 2 Single-Point Crossover 

4.5 Mutation  

Mutation allows the GA to explore a bigger region of the ranges of potential solutions by including 
random genetic changes, which are produced by introducing variations into individuals, and thus 
allowing the GA to not fall into local optima [26]. The swap mutation operator is implemented 
here. This mutation method randomly selects two genes from offspring and then exchanges the 
gene content in its offspring, as shown in Fig. 3. 

The offspring that undergo mutation are selected with uniform probability Pm=1. This means 
that all offspring are mutated but, in order not to lose the normal offspring, both the normal and 
mutated offspring remain in the resulting population. This avoids losing a good solution obtained 
by the crossing process as a mutation can provide a worse fitness value [27]. Then the two off-
spring (normal and mutated) are included in the population by replacing the two worst individu-
als in that population to leave a constant population size. 

Randomly selects two genes. 

1 0 1 0 1 1 1 0 Normal offspring 
         
1 0 1 1 1 1 0 0 Mutated offspring 

Fig. 3 The Swap mutation operator 

4.6 The matheuristic approach procedure  

The best individual with the best fitness is selected at the end of the calculation time (stopping 
criterion) of the matheuristic GA. With this binary chromosome, MILP is launched.  

In the evaluation function, MILP is relaxed to LP to reduce computational effort and to obtain 
a sufficiently good solution. To obtain a definitive solution, MILP is used, i.e., by removing relaxa-
tion and employing the binary chromosome of the individual with the best fitness provided by the 
GA. 

The binary chromosome is set at the 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖variable of MILP. This means that the binary chromo-
some becomes a parameter for the model. Then the MILP model is launched, the solver solves the 
integer variables and the GA provides the binary variable 

The advantage of using matheuristic, and not directly using the solver, lies in the search space 
of the MILP model being significantly reduced when a matheuristic is employed to deal with bi-
nary variables. 

5. Results and discussion: Numerical experiment case study 
In the present section, a set of synthetic data is used to evaluate our approach. In this type of 
problem, real data sets are generally large, which renders it unsolvable with many plants, prod-
ucts, outlets and periods. To assess how the matheuristic and the non-commercial solver perform, 
in computational tests we apply large instances, which are randomly generated according to the 
outlined parameters and formulations in Park [22]. To create these data, we created a synthetic 
data generator, which appears at: https://bit.ly/synthetic_data_generator. 

 Park [22] analysed large datasets with similar characteristics to those in Table 4. Park used 
CPLEX to solve MILP but did not present any results for large instances because of the problems’ 
computational difficulty, which is why he applied this solver only for small instances. We use the 
same data for plant size (5), points of sales (from 40 to 65), products (5) and periods (from 10 to 
12), as presented in the above-mentioned study. 

The software followed in this research is a non-commercial optimisation solver from the Com-
putational Infrastructure for Operation Research (COIN-OR) community called COIN-OR Branch 

https://bit.ly/synthetic_data_generator
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and Cut Solver (CBC) [28]. This open-source solver is generally employed for MILP problems. The 
MILP model and matheuristic were implemented in Python with the Pyomo package [29]. Exper-
iments were run by an Intel Core i7 2.80 GHz processor (6 GB RAM) in an Ubuntu 20.04.1 LTS 
operating system.  

The performances of the matheuristic approach and the proposed MILP through computa-
tional experiments were compared to one another to identify the best performing method. The 
resulting GAP of the MILP solved by CBC and the matheuristic is calculated as indicated in Equa-
tion (12). 

𝐺𝐺𝐺𝐺𝐺𝐺(%) =  
|𝑈𝑈𝑈𝑈 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠|

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠|
 (12) 

Where UB indicates the upper solver bound, and Bestsol refers to the best solution generated 
by either the mathematical model or the matheuristic approach. 

5.1 Experimental results 

In order to demonstrate the proposed approach’s efficiency and performance, the computational 
experiments with different large instances are provided. Table 4 compares the solution’s effi-
ciency among the solutions obtained by solving MILP with CBC and the matheuristic one with CBC. 
The first column in this table denotes the name of the instance, followed by the number of plants 
(I), points of sale (J), products (K) and periods (T). For all the instances, the applied criterion is the 
same calculation time that corresponds to 14,400 seconds. We executed the matheuristic algo-
rithm 20 times for each instance in order to evaluate and avoid atypical performance. 

The MILP solved by CBC obtained solutions for two (I2, I4) of the six instances, but it was una-
ble to find optimal or good solutions. The matheuristic gave good solutions for all the instances. 
Fig. 4 illustrates the total profit obtained by matheuristic and CBC. I2a and I4a show how the 
matheuristic approach evolves and converges towards good solutions, along with how CBC per-
forms at around 7,200 computation seconds, while I4b and I4b show the behaviour of both the 
matheuristic and CBC at 14,400 processing seconds. For the I2 instance, CBC gave a feasible solu-
tion at 5,152.76 seconds (see Fig. 4) with GAP = 17.10 %. GAP improved up to 14,400 seconds by 
0.02 %. For the matheuristic for the same instance, it obtained feasible solutions from 71.05 sec-
onds, with GAP less than 10 % at 1,880 seconds (see Fig. 5).  

Table 4 Performance comparison between CBC and Matheuristic 

Instance Problem  CBC Matheuristic 

 I J K T  Total profit Upper 
bound GAP  Total 

profit GAP 

I1 5 40 5 12  Unfeasible solu-
tion found 

5746740.5 -  5117847 12.28 % 

I2 5 50 5 10  5873321 6876383.6 17.08 %  6347862 8.33 % 

I3 5 45 5 12  Unfeasible solu-
tion found 

6785206.6 -  6157783 10.18 % 

I4 5 60 5 10  6643133 8037979.9 21.00 %  7487111 7.36 % 

I5 5 50 5 12  Unfeasible solu-
tion found 

6932259.4 -  6294622 10.13 % 

I6 5 65 5 10  Unfeasible solu-
tion found 

8272162.9 -  7640947 8.26  % 
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Fig 4. Time spent by matheuristic to find a feasible solution 

With the I4 instance, CBC performance visibly improves. It obtains solutions in 4,097 seconds 
and becomes the best solution in 5,538 seconds (see Fig. 5). Matheuristic better performs than 
CBC by reaching feasible solutions in shorter computational times and reaches a GAP below 10 % 
after 2,735 seconds (see Fig. 5). This means that matheuristic outperforms CBC by 13.64 %. 

 
 Fig. 5 Comparison of matheuristic and MILP-CBC performance 

The complexity of the instances and the size of the problem mean that CBC is unable to find 
feasible solutions. Nevertheless, the combination of a GA with CBC gives better results with feasi-
ble solutions in shorter computational times. A matheuristic’s efficiency is linked with the solver’s 
speed because the solver is in charge of evaluating solutions by the GA’s evaluation function. More-
over, as the evaluation function is the principal component of GAs [30], employing a non-commer-
cial solver combined with a GA offers good results, as herein shown, and the matheuristic is more 
efficient in solving problems with many variables and parameters, and can be a useful alternative 
for large instances. When utilising a non-commercial solver like CBC, a matheuristic can support 
the solver to find better solutions. 

In order to further demonstrate the efficiency of the proposed matheuristic, we compare it to 
Gurobi 9.1.1, i.e., the MILP and LP of the matheuristic are solved with Gurobi. We employ the same 
aforementioned computational conditions and apply a processing time of 14,400 seconds. The 
computational results given by Gurobi are better than those of CBC. Thus Gurobi obtains feasible 
solutions in all the instances in much shorter solution times. However, the matheuristic is better 
for achieving a lower GAP than Gurobi in all instances (see Fig. 6). 
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Fig. 6 Comparison of matheuristic and Gurobi performance 

6. Conclusion 
The PDP problem has long since been studied for the practical applications that it can offer indus-
try. One such case is enterprises with different manufacturing plants in several locations, perhaps 
in the same city or country, or in others, which must decide the amount of products to be produced 
in plants, the quantity of products to be stored in plants during each period, the number of prod-
ucts to deliver to various points of sale according to product demand and the inventory of finished 
products at points of sales. Although several resolution techniques have been used for this prob-
lem and its variations, heuristic and metaheuristic algorithms can provide excellent results as 
combined or hybrid approaches. Likewise, combinations between metaheuristic techniques and 
exact approaches can offer better results for real-life problems because these combinations make 
the most of the benefits of both techniques [7]. In this context, the present paper intends to solve 
the PDP problem in real-world large data sizes. The problem is modelled as MILP, and a 
matheuristic solution approach is presented that combines a GA and an LP model. 

 Computational tests were performed on a large dataset capable of simulating real-world prob-
lems. The development of this approach stems from SMEs having to use open-source tools and the 
need to digitise companies because they must compete in today's market. Many SMEs cannot have 
access to software with paid licenses, due to the high-costs they may have to adapt the software 
to the needs of the enterprises. The main research contribution is about applying a matheuristic 
approach by employing a non-commercial solver (CBC). We also tested the performance of the 
non-commercial solver with an NP-hard MILP model. The computational tests run on different 
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instances showed that our approach offers markedly improved results than the exact method. 
Matheuristic obtained competitive results in a short time. When solving MILP, CBC is unable to 
acquire feasible solutions for four of the six computed instances. However with our proposed 
matheuristic, and by also using CBC for solving relaxed LP, our results were good for all instances. 
Matheuristic can perform better even when using a commercial solver like Gurobi. Therefore, 
matheuristic can offer a real technical and economical application and is affordable mainly for 
SMEs that cannot pay a commercial solver or do not recurrently resort to one. This approach is 
feasible thanks to the proposed model’s simplicity. The matheuristic also offers the benefit of mak-
ing the most of the solver’s features, regardless of them being commercial or not, because the 
matheuristic improves the solver’s performance. The proposed approach has the limitation that 
its effectiveness depends on the selected solver, since the solutions of the matheuristic with a 
commercial solver (Gurobi) are better than those obtained with a non-commercial solver (CBC). 

Other metaheuristics can be used for future work, such as memetic algorithms, ant colony op-
timisation or tabu search, and other highly complex problems can also be tested. Other genetic 
operators can be evaluated, or specific heuristics can be used to improve the GA’s performance. 
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