

19

Advances in Production Engineering & Management ISSN 1854-6250
Volume 18 | Number 1 | March 2023 | pp 19–31 Journal home: apem-journal.org
https://doi.org/10.14743/apem2023.1.454 Original scientific paper

A matheuristic approach combining genetic algorithm and
mixed integer linear programming model for
production and distribution planning in the supply chain
Guzman, E.a,*, Poler, R.a, Andres, B.a
aResearch Centre on Production Management and Engineering (CIGIP), Universitat Politècnica de València (UPV), Alcoy,
Alicante, Spain

A B S T R A C T A R T I C L E I N F O
A number of research studies has addressed supply chain planning from vari-
ous perspectives (strategical, tactical, operational) and demonstrated the ad-
vantages of integrating both production and distribution planning (PDP). The
globalisation of supply chains and the fourth industrial revolution (Industry
4.0) mean that companies must be more agile and resilient to adapt to volatile
demand, and to improve their relation with customers and suppliers. Hence the
growing interest in coordinating production-distribution processes in supply
chains. To deal with the new market’s requirements and to adapt business pro-
cesses to industry’s regulations and changing conditions, more efforts should
be made towards new methods that optimise PDP processes. This paper pro-
poses a matheuristic approach for solving the PDP problem. Given the complex-
ity of this problem, combining a genetic algorithm and a mixed integer linear
programming model is proposed. The matheuristic algorithm was tested using
the Coin-OR Branch & Cut open-source solver. The computational outcomes re-
vealed that the presented matheuristic algorithm may be used to solve real
sized problems.

 Keywords:
Production and distribution plan-
ning;
Supply chain;
Matheuristic;
Genetic algorithm;
Mixed integer linear programming
model

*Corresponding author:
eguzman@cigip.upv.es
(Guzman, E.)

Article history:
Received 29 April 2022
Revised 21 December 2022
Accepted 27 December 2022

Content from this work may be used under the terms of
the Creative Commons Attribution 4.0 International Li-
cence (CC BY 4.0). Any further distribution of this work
must maintain attribution to the author(s) and the title of
the work, journal citation and DOI.

1. Introduction
The globalisation of markets has lee to companies to optimise their processes and resources to
remain competitive. Nowadays, optimisation is a relevant factor for improving firms’ perfor-
mance, and for turning the challenges that they face into competitive advantages [1]. One optimal
strategy for profits that can minimise a company's total costs is to integrate different business
functions, such as purchasing, inventory management, production and distribution [2]. Therefore,
it is an important factor for optimizing supply chain enterprises to establish greater integration
production and distribution planning (PDP) [3]. The PDP problem is defined by Safaei et al. [4] as
a firm’s scheduling process to manufacture the right products and to ship the quantities of the
right products to the right place at the right time.

Increasing pressure to minimise total production and logistic costs means that supply chain
agents are having to re-examine production-distribution policies, and to maximise the use of

Guzman, Poler, Andres

20 Advances in Production Engineering & Management 18(1) 2023

physico-technological assets [5]. Properly coordinating PDP in supply chains is a challenging
problem because companies expand internationally and move to a competitive environment that
requires greater collaboration. Efficient supply chain cooperation involves many coordinated de-
cisions being made at several decision levels (e.g., strategical, tactical, operational) about prod-
ucts, financial resources and information.

In this context, the present research work develops an efficient matheuristic approach to solve
the integrated PDP problem. A matheuristic algorithm is defined by Boschetti et al. [6] as “the
interoperation of metaheuristics and mathematical programming techniques". There are different
approaches for combining metaheuristics with exact methods, and each technique has its individ-
ual advantages and disadvantages. However, the aim is to benefit from synergy. Several research-
ers present a taxonomy that classifies this type of cooperation. Table 1 shows several approaches
by different authors, although some have similar characteristics.

When designing a matheuristic, the question is, which components can work together to gen-
erate an efficient algorithm? Although supplying a collaboration rule does not seem a feasible ap-
proach, the matheuristic design involves functionality and architecture. Thus, the cooperation
level can be ranked according to its hierarchy, as in Table 2.

Table 1 Classification of matheuristic approaches
Approach Classes
Cooperation between
exact and local search
methods [7] based on
Dumitrescu & Stützle [8]

• Exact algorithms to browsing through neighbourhoods in local search algorithms.
• Exact algorithms intended for specific hybrid metaheuristics procedures.
• Explore boundaries in constructive heuristics.
• Local searches or constructive algorithms guided by data from integer programming

model relaxations.
• Exact algorithms for smaller problems using solutions from local searches

Combination between
exact techniques and
metaheuristic algo-
rithms [9], [10]

Collaborative combinations
Algorithms exchange information. None is con-
tained in any other. Both procedures can be exe-
cuted sequentially, interlaced or in parallel.

Subclasses
• Sequential execution
• Parallel and intertwined execu-

tion

Integrative combinations
One technique is component-integrated into an-
other technique with a master-slave structure. An
exact or metaheuristic algorithm can be presented
with a master-type structure and at least one inte-
grated slave.

• Incorporating exact algorithms
into metaheuristics

• Incorporating metaheuristics
into exact algorithms

“MASTER-SLAVE” struc-
ture with a guiding pro-
cess and application
process [11]

• Metaheuristics operate at the master level and, thereby, control and guide actions to
the exact technique.

• The exact method operates as a master to call/control by the metaheuristic ap-
proach.

Table 2 Hierarchical matheuristic classification [12]

Hierarchy Description
LRH (low-level relay
hybrid)

It depicts hybrid schemes in which a metaheuristic approach is included in an exact ap-
proach to improve the search strategy

LTH (low-level team-
work hybrid)

It describes one search element of a metaheuristic to be replaced with another exact algo-
rithm

HRH (high-level relay
hybrid)

Autonomous algorithms are executed in a sequence. The stage can be either pre-processing
or post-processing, i.e., two groups of algorithms (metaheuristics + exact algorithms) are
provided with some data in sequence

HTH (High-level
Teamwork Hybrid)

A combination of metaheuristics and exact algorithms that performs a parallel search and
cooperate to find relaxed optimal solutions, better lower or upper bounds, optimum sub-
problem solutions, partial solutions, etc. Metaheuristics and exact algorithms solve partial,
specialised or global optimisation problems and exchange helpful information.

Recent studies, such as that presented by Kumar et al. [13] , provide a literature review of the

quantitative approaches applied to combined PDP. These authors concluded that the main mod-
elling approaches for this problem type are MILP (mixed integer linear programming), while the

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 21

main applied solution approaches are those that resort to optimisation software, followed by ge-
netic algorithms (GAs). Computational experiments in small instances use mainly LINGO and
CPLEX to solve MILP and Matlab and C++ in large instances to solve heuristic and metaheuristic
methods. In this review, we observe that matheuristic methods have not yet been discussed in-
depth. As far as the authors know, to date no research has addressed the PDP problem using this
type of matheuristic.

In this context, we propose developing a solution strategy for the PDP problem with a mathe-
matical algorithm that is positioned in the hierarchical classification described in Table 2 as a
High-level Teamwork Hybrid. This strategy is useful because the search space of the MILP model
is considered to be too big for a solver to solve it. Therefore, we employ a GA that exchanges in-
formation in parallel to the MILP model to diminish the search space.

Given the complexity of PDP problems, they prove difficult when implementing large datasets
or solving real SME problems with a MILP model. For this reason, some companies choose to use
commercial solvers for this type of problem. However, some SMEs cannot afford to buy a commer-
cial solver because of its high cost but, as digitisation needs are accelerating, many companies are
considering how to be equipped with a digital infrastructure insofar as it does not constrain them
and does not cost too much. So those SMEs that have implemented open-source software have
made significant savings in technology spending because they do not have to pay annual software
licences and have not run the risk of software becoming obsolete when licences expire [14].

Accordingly, this article contributes: (i) a new matheuristic approach to solve the PDP problem;
(ii) the matheuristic algorithm was tested and compared to a non-commercial Coin-Branch & Cut
(CBC) solver and employs a free open-source operating system (Linux). The proposed approach’s
effectiveness is proven by solving randomly generated test datasets with real data sizes.

The rest of this article is arranged as follows. Section 2 briefly presents a literature review
about the integrated approach to supply chain PDP. Section 3 offers a mathematical model. Section
4 details the matheuristic algorithm for solving the planning-distribution problem. Section 5 pre-
sents the evaluation of the matheuristic algorithm using large instances to simulate real-life com-
panies. Finally, Section 6 defines some conclusions and future research directions.

2. Related works
This section reviews the literature about integrating decisions from PDP functions, along with the
solution approaches suggested for these problems. This problem has been paid plenty of attention
in recent years. Literature reviews like that by Chen [15] indicate several future research lines.
One of them states that more effort should be made to create heuristic or metaheuristic methods
for this type of problems, which are NP-hard, as there are very few solution algorithms for this
type of problems. Years later Fahimnia et al. [16] describe that the use of heuristic, metaheuristic
and simulation techniques predominate in the literature, but propose employing new techniques,
and suggest having to extend the effectiveness of solution techniques to deal with realistic PDP
problems as most techniques have been applied to deal with small- and medium-sized problems.
Lastly, the work by Kumar et al. [13] indicates the extensive use of metaheuristic algorithms like
heuristic algorithms, GAs and exact methods, but does not reveal the use of matheuristic algo-
rithms.

Accordingly, related work like that of Raa et al. [5] proposes an aggregate PDP model for injec-
tion moulding production in the many facilities of a plastics manufacturer. This MILP is solved by
the Gurobi solver for small instances. For large instances, these authors employ an iterative
matheuristic that utilises a decomposition heuristic. Bilgen and Çelebi [1] offer a combined simu-
lation and MILP approach for integrated production and distribution problems in the dairy indus-
try. The MILP model is solved with CPLEX and the hybrid approach employs ARENA.

Su et al. [17] propose combining distinct algorithms like the GA and particle swarm optimisa-
tion (PSO). The GA comes with a learning scheme, and a hybrid algorithm that combines PSO tech-
niques with the GA and a learning scheme to solve both partner selection and the PDP problem in
a manufacturing chain design. Moattar Husseini et al. [18] put forward bi-objective MILP for inte-
grated PDP with manufacturing partners. One of the objectives of this model is to minimise the

Guzman, Poler, Andres

22 Advances in Production Engineering & Management 18(1) 2023

total cost by covering production, inventory holding purchases from partners and transport-dis-
tribution costs. Another objective aims to maximise the quality level of the products that partners
supply on the planning horizon. For this problem, they employ LINGO to solve the model in small
instances. However, as the problem in large instances is classified as NP-hard, the authors solve it
by a Non-Dominant GA II (NSGA-II) and a Multi-Objective PSO (MOPSO) algorithm. The computa-
tional results confirm the suitability and practicality of these two algorithms, but the MOPSO al-
gorithm obtains better results in most instances. Devapriya et al. [19] report a PDP problem with
a perishable product. The problem is modelled by MILP, is solved with CPLEX, employs a memetic
algorithm to solve the problem in large instances, and obtains good solutions in a relatively
shorter computational time.

Kazemi et al. [3] put forward a hybrid algorithm that combines a multi-agent system and three
metaheuristic algorithms, including a GA, a tabu search and simulated annealing. They propose a
MILP model that is solved with LINGO. They employ Matlab to evaluate the hybrid approach. Their
results reveal that LINGO better works in small instances, while the hybrid approach delivers bet-
ter solutions in large instances. In a multifactory supply chain, Gharaei and Jolai [20] study a multi-
agent scheduling problem with distribution decisions. To do so, they propose using a MILP for-
mulation to solve the problem with CPLEX by employing small and medium instances. They also
develop a multi-objective evolutionary algorithm based on decomposition by combining the Bees
algorithm and using Matlab, which well performs in long instances. Marandi and Fatemi Ghomi
[21] put forward an integrated production-distribution scheduling problem. They aim to simulta-
neously find a production schedule and a vehicle routing solution to minimise the sum of delay
and transportation costs. They apply CPLEX for small problems and propose a new algorithm for
medium and large problems, namely the Improved Imperialist Competitive Algorithm, which ap-
plies a local search algorithm based on a simulated annealing algorithm.

The literature review highlights a growing research tendency to integrate PDP functions. It re-
veals that companies tend to collaborate with manufacturing partners to better respond to de-
manding market conditions, and they focus more on their core activities. Interest is shown in heu-
ristic and metaheuristic methods, which are frequently employed to solve these problems with
large instances. These instances normally represent the size of the data actually employed by real
companies, although different variants of the PDP problem exist. Models tend to be solved mostly
with a commercial solver, of which CPLEX is the most widespread. Despite previous works having
discussed some combinations of the above algorithms, other combinations have not yet been ad-
dressed by the literature, such as those using matheuristic algorithms in practice.

Based on these results, this study considers an integrated PDP problem formulated as a MILP
model. As the literature reports the potential effectiveness of GA-based algorithms [18], a com-
bined solution approach with a GA and a mathematical model is herein considered. A non-com-
mercial solver and an open-source operating system are also implemented. The next sections dis-
cuss the particulars of the posed problem, its formulation and the solution approach.

3. Problem definition
This section offers details of the studied problem and formulates the proposed model. The PDP
problem herein contemplated is based on Park [22].

The MILP model takes these assumptions:

• For the production stage: many production plants produce multiple items with a limited
capacity per time period. Each product type has a setup cost, while production plants have
a limited storage capacity, and produced items are shipped directly to points of sale.

• For the distribution stage: distribution is performed with a fleet of homogeneous vehicles,
which are parked in production plants.

• The vehicle movement incurs on: (i) a fixed cost in relation to the depreciation of vehicles,
insurance, etc.; (ii) a variable cost according to the transported item, quantity and route.

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 23

For points of sale: an item’s demand during a period at a point of sale consists of two compo-
nents: (i) “core demand”: the amount of main demand that the point of sale must meet by loyal
customers in the long term; (ii) “forecasted demand”: the total amount, including core demand.
Unmet demand at a point of sale is considered a stockout (rejected demand) and does not allow
deferred demand. Each point of sale can maintain a limited amount of inventory at a very high
cost. An overview of the considered problem is demonstrated in Fig. 1.

Fig 1 Illustration of the integrated production and distribution planning problem

3.1 Notation

The PDP problem nomenclature is shown below.
Table 3 The MILP model nomenclature

Notation Description
Sets
i Index of plants i ∈{1,…, I}
j Index of points of sale, j ∈{1,…, J}
k Index of products (parts) k ∈{1,…, K}
t Index of time periods t ∈{1,…, T}
Parameters
Cik cost of producing 1 unit of product k in plant i
sik cost of setup for product k in plant i
oik time of producing 1 unit of product k in plant i
uik time of setup for product k in plant i
hpik unit holding cost per period for product k in plant i
Li production capacity per period of plant i
dijk cost of transporting 1 unit of product k from plant i to point of sale j
g fixed cost per vehicle
B capacity per vehicle
Ejkt core demand of product k at point of sale j during period t
Fjkt forecasted demand of product k at point of sale j during period t
pjk price of sale of 1 unit of product k at point of sale j
hrjk unit holding cost per period for product k at point of sale j
Wrj inventory capacity of point of sale j
vjk unit stockout cost of item k at point of sale j
Variables
xikt amount of product k produced at plant i during period t
qijkt amount of product k transported from plant i to point of sale j during period t
Yikt 1 if product k is produced a plant i during period t; 0 otherwise
apikt inventory level of product k at plant i during period t
arjkt inventory level of product k at point of sale j during period t
zijt number of vehicles needed for distribution from plant i to point of sale j during period t

The objective function maximises sales revenues at points of sale, minus the costs of setup, pro-
duction and inventory at plants, the costs of inventory and stockout at points of sale, and the costs
of vehicles and transport.

Guzman, Poler, Andres

24 Advances in Production Engineering & Management 18(1) 2023

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ��𝑝𝑝𝑗𝑗𝑗𝑗 ∙ ��𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗−1 + �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖

�
𝑡𝑡𝑘𝑘𝑗𝑗

− ���𝑐𝑐𝑖𝑖𝑖𝑖 ∙�𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + ��𝑆𝑆𝑖𝑖𝑖𝑖 ∙�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑡𝑡𝑘𝑘𝑖𝑖𝑡𝑡𝑘𝑘𝑖𝑖

��ℎ𝑝𝑝𝑖𝑖𝑖𝑖 ∙�𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 +
𝑡𝑡𝑘𝑘𝑖𝑖

�

− ���ℎ𝑟𝑟𝑗𝑗𝑗𝑗 ∙�𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 + ��𝑣𝑣𝑗𝑗𝑗𝑗 ∙
𝑘𝑘𝑗𝑗𝑡𝑡𝑘𝑘𝑗𝑗

 ��𝐹𝐹𝑗𝑗𝑗𝑗𝑗𝑗 − 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗−1
𝑡𝑡

+ �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡

�� − �𝑔𝑔 ∙���𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 + ���𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

∙
𝑗𝑗𝑖𝑖𝑡𝑡

 �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑗𝑗𝑖𝑖

�

(1)

Subject to:

Material flow constraints

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖−1 + 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗

 ∀𝑖𝑖, 𝑘𝑘, 𝑡𝑡 (2)

𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗−1 + �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

− 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 ≥ 𝐸𝐸𝑗𝑗𝑗𝑗𝑗𝑗 ∀𝑗𝑗, 𝑘𝑘, 𝑡𝑡 (3)

𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗−1 + �𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖

− 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝐹𝐹𝑗𝑗𝑗𝑗𝑗𝑗 ∀𝑗𝑗, 𝑘𝑘, 𝑡𝑡 (4)

Constraint Eq. 2 guarantees the inventory of all products in each plant at the end of every period.
Constraint Eq. 3 ensures meeting "core demand" at each point of sale per product during each
time period. Constraint Eq. 4 ensures that the demand served for any product at any point in time
at any point of sale never exceeds the expected demand (“forecast demand”).

Physical resource limitations

�𝑜𝑜𝑖𝑖𝑖𝑖
𝑘𝑘

⋅ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 + �𝑢𝑢𝑖𝑖𝑖𝑖
𝑘𝑘

⋅ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐿𝐿𝑖𝑖 ∀𝑖𝑖, 𝑡𝑡 (5)

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 <= 𝑀𝑀 ⋅ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑖𝑖, 𝑘𝑘, 𝑡𝑡 (6)
�𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗
𝑘𝑘

⋅ ≤ 𝑊𝑊𝑊𝑊𝑗𝑗 ∀𝑗𝑗, 𝑡𝑡 (7)

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖�
𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐵𝐵

𝑘𝑘

 ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (8)

𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖0 = 0, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖0 = 0 ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘 (9)

Constraint Eq. 5 guarantees that, per plant during each period, the capacity consumption due to
the processing and preparation times of processed items never exceeds the plant’s available pro-
duction capacity. Constraint Eq. 6 ensures that if a quantity of a certain product is produced in a
plant during a period, a setup of this product is necessary. Constraint Eq. 7 ensures that the
amount of products stored at a point of sale during every period must never exceed the point of
sale’s storage capacity. Constraint Eq. 8 computes the number of vehicles required to transport
products from every plant to each point of sale during all periods. Constraint Eq. 9 represents the
initial inventory levels in plants and at points of sale.

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1} ∀𝑖𝑖, 𝑘𝑘, 𝑡𝑡 (10)
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ℤ ∀𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑡𝑡 (11)

Constraints Eq. 10 and Eq. 11 indicate the binary nature of 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 and the integer nature of some
variables.

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 25

4. Proposed matheuristic solution method
The PDP problem is a complex one to solve given the number of integer variables that corresponds
to produced and transported products, the inventory level in the plant and at points of sale, and
the vehicles needed for distribution, plus the binary variable that indicates in which plants prod-
ucts are produced. Given the difficulty of this problem, a solution methodology is offered and de-
scribes how the GA is combined with the MILP model to evaluate the solutions for the PDP prob-
lem.

4.1 Initial population

Each individual in the population corresponds to binary decision variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, which takes 1 if
product k is produced in plant i during period t, and 0 otherwise. An individual’s length is a one-
dimensional matrix of size 𝐼𝐼 × 𝐾𝐾 × 𝑇𝑇 (multiplication of the quantities of every index). The popula-
tion takes a binary structure and is generated randomly from a uniform distribution with a 50 %
probability of 1 appearing on an individual's chromosome. The computational results indicate
that fewer infeasible individuals are generated if this probability is applied. Population size Npop
equals 10, so we employ this small size to increase the GA’s speed. Koljonen and Alander [23]
confirm that a small population size increases the optimisation speed to a certain extent. We prove
that using this population size suffices to obtain good solutions.

4.2 Evaluation function

The fitness function measures the quality of an individual in the population. The problem looks
for solutions that maximise the benefits that the objective function represents. The PDP problem’s
computational difficulty focuses mostly on binary variable 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖, which refers to the decisions made
about which product to produce in which plant. This means that the GA is in charge of producing
a suitable binary chromosome with equal dimensions to the binary variable.

As this binary chromosome corresponds to each individual in the population, the evaluation of
each individual is made by formulating the mathematical model. The computational and execution
times of a MILP versus a linear programming (LP) model are longer given the SIMPLEX algorithm’s
computational efficiency versus the algorithms dedicated to solve problems with integer or binary
variables, along with the problem’s difficulty, which is considered NP-hard. The proposed MILP
model comprises one binary variable and five integer variables. Thus, to improve matheuristic
performance, we apply MILP model relaxation. The MILP relaxation to obtain LP is given by trans-
forming integer variables into continuous variables, and by transforming the binary variable into
data.

At this time the solver is in charge of solving LP and the GA is responsible for supplying the
binary variable. The binary variable of the GA is fixed to LP. Thus, when executing the matheuris-
tic, it can be quickly solved even for very large problems. In our experiments, on average LP ob-
tains better results than MILP by 3.84 %. Thus, to obtain a final result, we employ the best binary
chromosome obtained during the evaluation process and launch MILP to gain a final result. This
is explained in Section 4.6.

4.3 Selection

In the selection stage, a set of individuals from the current population is chosen to be used as the
parents for the crossing stage. The roulette wheel approach [24] is taken to select the individuals
with the best fitness values in accordance with the uniform probability of selection distributed
over the range [0...1], and the worst individuals are eliminated from one generation to another so
that the best individuals are more probably selected.

4.4 Crossover

The single point crossover technique [25] is applied. Two parents (P1 and P2) are selected by the
fortune roulette wheel selection technique. Then the P1 and P2 chromosomes are cut at a point
that is randomly generated and a new offspring (OF) is generated with the genetic information of
its parents, as illustrated in Fig. 2.

Guzman, Poler, Andres

26 Advances in Production Engineering & Management 18(1) 2023

0 0 0 0 1 1 1 1 P1
 OF 0 0 0 1 0 0 0 0

1 1 1 1 0 0 0 0 P2

Fig 2 Single-Point Crossover

4.5 Mutation

Mutation allows the GA to explore a bigger region of the ranges of potential solutions by including
random genetic changes, which are produced by introducing variations into individuals, and thus
allowing the GA to not fall into local optima [26]. The swap mutation operator is implemented
here. This mutation method randomly selects two genes from offspring and then exchanges the
gene content in its offspring, as shown in Fig. 3.

The offspring that undergo mutation are selected with uniform probability Pm=1. This means
that all offspring are mutated but, in order not to lose the normal offspring, both the normal and
mutated offspring remain in the resulting population. This avoids losing a good solution obtained
by the crossing process as a mutation can provide a worse fitness value [27]. Then the two off-
spring (normal and mutated) are included in the population by replacing the two worst individu-
als in that population to leave a constant population size.

Randomly selects two genes.

1 0 1 0 1 1 1 0 Normal offspring

1 0 1 1 1 1 0 0 Mutated offspring

Fig. 3 The Swap mutation operator

4.6 The matheuristic approach procedure

The best individual with the best fitness is selected at the end of the calculation time (stopping
criterion) of the matheuristic GA. With this binary chromosome, MILP is launched.

In the evaluation function, MILP is relaxed to LP to reduce computational effort and to obtain
a sufficiently good solution. To obtain a definitive solution, MILP is used, i.e., by removing relaxa-
tion and employing the binary chromosome of the individual with the best fitness provided by the
GA.

The binary chromosome is set at the 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖variable of MILP. This means that the binary chromo-
some becomes a parameter for the model. Then the MILP model is launched, the solver solves the
integer variables and the GA provides the binary variable

The advantage of using matheuristic, and not directly using the solver, lies in the search space
of the MILP model being significantly reduced when a matheuristic is employed to deal with bi-
nary variables.

5. Results and discussion: Numerical experiment case study
In the present section, a set of synthetic data is used to evaluate our approach. In this type of
problem, real data sets are generally large, which renders it unsolvable with many plants, prod-
ucts, outlets and periods. To assess how the matheuristic and the non-commercial solver perform,
in computational tests we apply large instances, which are randomly generated according to the
outlined parameters and formulations in Park [22]. To create these data, we created a synthetic
data generator, which appears at: https://bit.ly/synthetic_data_generator.

 Park [22] analysed large datasets with similar characteristics to those in Table 4. Park used
CPLEX to solve MILP but did not present any results for large instances because of the problems’
computational difficulty, which is why he applied this solver only for small instances. We use the
same data for plant size (5), points of sales (from 40 to 65), products (5) and periods (from 10 to
12), as presented in the above-mentioned study.

The software followed in this research is a non-commercial optimisation solver from the Com-
putational Infrastructure for Operation Research (COIN-OR) community called COIN-OR Branch

https://bit.ly/synthetic_data_generator

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 27

and Cut Solver (CBC) [28]. This open-source solver is generally employed for MILP problems. The
MILP model and matheuristic were implemented in Python with the Pyomo package [29]. Exper-
iments were run by an Intel Core i7 2.80 GHz processor (6 GB RAM) in an Ubuntu 20.04.1 LTS
operating system.

The performances of the matheuristic approach and the proposed MILP through computa-
tional experiments were compared to one another to identify the best performing method. The
resulting GAP of the MILP solved by CBC and the matheuristic is calculated as indicated in Equa-
tion (12).

𝐺𝐺𝐺𝐺𝐺𝐺(%) =
|𝑈𝑈𝑈𝑈 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠|

|𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠|
 (12)

Where UB indicates the upper solver bound, and Bestsol refers to the best solution generated
by either the mathematical model or the matheuristic approach.

5.1 Experimental results

In order to demonstrate the proposed approach’s efficiency and performance, the computational
experiments with different large instances are provided. Table 4 compares the solution’s effi-
ciency among the solutions obtained by solving MILP with CBC and the matheuristic one with CBC.
The first column in this table denotes the name of the instance, followed by the number of plants
(I), points of sale (J), products (K) and periods (T). For all the instances, the applied criterion is the
same calculation time that corresponds to 14,400 seconds. We executed the matheuristic algo-
rithm 20 times for each instance in order to evaluate and avoid atypical performance.

The MILP solved by CBC obtained solutions for two (I2, I4) of the six instances, but it was una-
ble to find optimal or good solutions. The matheuristic gave good solutions for all the instances.
Fig. 4 illustrates the total profit obtained by matheuristic and CBC. I2a and I4a show how the
matheuristic approach evolves and converges towards good solutions, along with how CBC per-
forms at around 7,200 computation seconds, while I4b and I4b show the behaviour of both the
matheuristic and CBC at 14,400 processing seconds. For the I2 instance, CBC gave a feasible solu-
tion at 5,152.76 seconds (see Fig. 4) with GAP = 17.10 %. GAP improved up to 14,400 seconds by
0.02 %. For the matheuristic for the same instance, it obtained feasible solutions from 71.05 sec-
onds, with GAP less than 10 % at 1,880 seconds (see Fig. 5).

Table 4 Performance comparison between CBC and Matheuristic

Instance Problem CBC Matheuristic

 I J K T Total profit Upper
bound GAP Total

profit GAP

I1 5 40 5 12 Unfeasible solu-
tion found

5746740.5 - 5117847 12.28 %

I2 5 50 5 10 5873321 6876383.6 17.08 % 6347862 8.33 %

I3 5 45 5 12 Unfeasible solu-
tion found

6785206.6 - 6157783 10.18 %

I4 5 60 5 10 6643133 8037979.9 21.00 % 7487111 7.36 %

I5 5 50 5 12 Unfeasible solu-
tion found

6932259.4 - 6294622 10.13 %

I6 5 65 5 10 Unfeasible solu-
tion found

8272162.9 - 7640947 8.26 %

Guzman, Poler, Andres

28 Advances in Production Engineering & Management 18(1) 2023

Fig 4. Time spent by matheuristic to find a feasible solution

With the I4 instance, CBC performance visibly improves. It obtains solutions in 4,097 seconds
and becomes the best solution in 5,538 seconds (see Fig. 5). Matheuristic better performs than
CBC by reaching feasible solutions in shorter computational times and reaches a GAP below 10 %
after 2,735 seconds (see Fig. 5). This means that matheuristic outperforms CBC by 13.64 %.

 Fig. 5 Comparison of matheuristic and MILP-CBC performance

The complexity of the instances and the size of the problem mean that CBC is unable to find
feasible solutions. Nevertheless, the combination of a GA with CBC gives better results with feasi-
ble solutions in shorter computational times. A matheuristic’s efficiency is linked with the solver’s
speed because the solver is in charge of evaluating solutions by the GA’s evaluation function. More-
over, as the evaluation function is the principal component of GAs [30], employing a non-commer-
cial solver combined with a GA offers good results, as herein shown, and the matheuristic is more
efficient in solving problems with many variables and parameters, and can be a useful alternative
for large instances. When utilising a non-commercial solver like CBC, a matheuristic can support
the solver to find better solutions.

In order to further demonstrate the efficiency of the proposed matheuristic, we compare it to
Gurobi 9.1.1, i.e., the MILP and LP of the matheuristic are solved with Gurobi. We employ the same
aforementioned computational conditions and apply a processing time of 14,400 seconds. The
computational results given by Gurobi are better than those of CBC. Thus Gurobi obtains feasible
solutions in all the instances in much shorter solution times. However, the matheuristic is better
for achieving a lower GAP than Gurobi in all instances (see Fig. 6).

5600000
5700000
5800000
5900000
6000000
6100000
6200000
6300000
6400000

0 2000 4000 6000 8000

To
ta

l
pr

of
it

CPU (sec)
I2a

Matheuristic MILP - CBC
5600000
5700000
5800000
5900000
6000000
6100000
6200000
6300000
6400000

0 5000 10000 15000

To
ta

l
pr

of
it

CPU (sec)
I2b

Matheuristic MILP - CBC

6500000
6600000
6700000
6800000
6900000
7000000
7100000
7200000
7300000
7400000
7500000
7600000

0 2000 4000 6000 8000

To
ta

l
pr

of
it

CPU (sec)
I4a

Matheuristic MILP - CBC
6500000
6600000
6700000
6800000
6900000
7000000
7100000
7200000
7300000
7400000
7500000
7600000

0 5000 10000 15000
To

ta
l

pr
of

it
CPU (sec)

I4b

Matheuristic MILP - CBC

0%

5%

10%

15%

20%

25%

0 5000 10000 15000

GA
P

(%
)

CPU (sec)
I2

GAP Matheuristic
GAP MILP - CBC

0%

5%

10%

15%

20%

25%

0 5000 10000 15000

GA
P

(%
)

CPU (sec)
I4

GAP Matheuristic
GAP MILP - CBC

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 29

Fig. 6 Comparison of matheuristic and Gurobi performance

6. Conclusion
The PDP problem has long since been studied for the practical applications that it can offer indus-
try. One such case is enterprises with different manufacturing plants in several locations, perhaps
in the same city or country, or in others, which must decide the amount of products to be produced
in plants, the quantity of products to be stored in plants during each period, the number of prod-
ucts to deliver to various points of sale according to product demand and the inventory of finished
products at points of sales. Although several resolution techniques have been used for this prob-
lem and its variations, heuristic and metaheuristic algorithms can provide excellent results as
combined or hybrid approaches. Likewise, combinations between metaheuristic techniques and
exact approaches can offer better results for real-life problems because these combinations make
the most of the benefits of both techniques [7]. In this context, the present paper intends to solve
the PDP problem in real-world large data sizes. The problem is modelled as MILP, and a
matheuristic solution approach is presented that combines a GA and an LP model.

 Computational tests were performed on a large dataset capable of simulating real-world prob-
lems. The development of this approach stems from SMEs having to use open-source tools and the
need to digitise companies because they must compete in today's market. Many SMEs cannot have
access to software with paid licenses, due to the high-costs they may have to adapt the software
to the needs of the enterprises. The main research contribution is about applying a matheuristic
approach by employing a non-commercial solver (CBC). We also tested the performance of the
non-commercial solver with an NP-hard MILP model. The computational tests run on different

0%

10%

20%

30%

40%

50%

60%

70%

0 5000 10000 15000

GA
P

(%
)

CPU(sec)
I1

GAP Matheuristic
GAP MILP - GUROBI

0%

10%

20%

30%

40%

50%

60%

0 5000 10000 15000

GA
P

(%
)

CPU(sec)
I2

GAP Matheuristic
GAP MILP - GUROBI

0%

10%

20%

30%

40%

50%

60%

70%

0 5000 10000 15000

GA
P

(%
)

CPU(sec)
I3

GAP Matheuristic
GAP MILP - GUROBI

0%

10%

20%

30%

40%

50%

60%

0 5000 10000 15000
GA

P
(%

)
CPU(sec)

I4

GAP Matheuristic
GAP MILP - GUROBI

0%

10%

20%

30%

40%

50%

60%

70%

0 5000 10000 15000

GA
P

(%
)

CPU(sec)
I5

GAP Matheuristic
GAP MILP - GUROBI

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0 5000 10000 15000

GA
P

(%
)

CPU(sec)
I6

GAP Matheuristic
GAP MILP - GUROBI

Guzman, Poler, Andres

30 Advances in Production Engineering & Management 18(1) 2023

instances showed that our approach offers markedly improved results than the exact method.
Matheuristic obtained competitive results in a short time. When solving MILP, CBC is unable to
acquire feasible solutions for four of the six computed instances. However with our proposed
matheuristic, and by also using CBC for solving relaxed LP, our results were good for all instances.
Matheuristic can perform better even when using a commercial solver like Gurobi. Therefore,
matheuristic can offer a real technical and economical application and is affordable mainly for
SMEs that cannot pay a commercial solver or do not recurrently resort to one. This approach is
feasible thanks to the proposed model’s simplicity. The matheuristic also offers the benefit of mak-
ing the most of the solver’s features, regardless of them being commercial or not, because the
matheuristic improves the solver’s performance. The proposed approach has the limitation that
its effectiveness depends on the selected solver, since the solutions of the matheuristic with a
commercial solver (Gurobi) are better than those obtained with a non-commercial solver (CBC).

Other metaheuristics can be used for future work, such as memetic algorithms, ant colony op-
timisation or tabu search, and other highly complex problems can also be tested. Other genetic
operators can be evaluated, or specific heuristics can be used to improve the GA’s performance.

Acknowledgement
This work was supported by the Conselleria de Educación, Investigación, Cultura y Deporte - Generalitat Valenciana for
hiring predoctoral research staff with Grant (ACIF/2018/170) and European Social Fund with Grant Operational Pro-
gram of FSE 2014-2020, the Valencian Community. The research leading to these results received funding from the
European Union H2020 Programme with grant agreement No. 958205 "Industrial Data Services for Quality Control in
Smart Manufacturing" (i4Q) and the Regional Department of Innovation, Universities, Science and Digital Society of the
Generalitat Valenciana entitled "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PRO-
METEO/ 2021/065)

References
[1] Bilgen, B., Çelebi, Y. (2013). Integrated production scheduling and distribution planning in dairy supply chain by

hybrid modelling, Annals of Operations Research, Vol. 211, No. 1, 55-82, doi: 10.1007/s10479-013-1415-3.
[2] Armentano, V.A., Shiguemoto, A.L., Løkketangen, A. (2011). Tabu search with path relinking for an integrated pro-

duction-distribution problem, Computers & Operations Research, Vol. 38, No. 8, 1199-1209, doi: 10.1016/j.cor.
2010.10.026.

[3] Kazemi, A., Zarandi, M.H.F., Azizmohammadi, M. (2017). A hybrid search approach in production-distribution
planning problem in supply chain using multi-agent systems, International Journal of Operational Research, Vol.
28, No. 4, 506-527, doi: 10.1504/IJOR.2017.082611.

[4] Safaei, A.S., Moattar Husseini, S.M., Farahani, R.Z., Jolai, F., Ghodsypour, S.H. (2010). Integrated multi-site produc-
tion-distribution planning in supply chain by hybrid modelling, International Journal of Production Research, Vol.
48, No. 14, 4043-4069, doi: 10.1080/00207540902791777.

[5] Raa, B., Dullaert, W., Aghezzaf, E.H. (2013). A matheuristic for aggregate production-distribution planning with
mould sharing, International Journal of Production Economics, Vol. 145, No. 1, 29-37, doi: 10.1016/j.ijpe.2013.01.
006.

[6] Boschetti, M.A., Maniezzo, V., Roffilli, M., Bolufé Röhler, A. (2009). Matheuristics: Optimization, simulation and
control, In: Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A. (eds.), Hybrid metaheuristics, HM
2009. Lecture notes in computer science, Vol. 5818, Springer, Berlin, Germany, 171-177, doi: 10.1007/978-3-642-
04918-7_13.

[7] Jourdan, L., Basseur, M., Talbi, E.G. (2009). Hybridizing exact methods and metaheuristics: A taxonomy, European
Journal of Operational Research, Vol. 199, No. 3, 620-629, doi: 10.1016/j.ejor.2007.07.035.

[8] Dumitrescu, I., Stützle, T. (2003). Combinations of local search and exact algorithms, In: Cagnoni, S., Johnson, C.G.,
Romero Cardalda, J.J., Marchiori, E., Corne, D.W., Meyer, J.-A., Gottlieb, J., Middendorf, M., Guillot, A., Raidl, G.R., Hart,
E. (eds.), Applications of evolutionary computing, EvoWorkshops 2003, Lecture notes in computer science, Springer,
Berlin, Germany, 211-223, doi: 10.1007/3-540-36605-9_20.

[9] Raidl, G. R., Puchinger, J. (2008). Combining (integer) linear programming techniques and metaheuristics for com-
binatorial optimization, In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.), Hybrid metaheuristics. studies in
computational intelligence, Springer, Berlin, Germany, 31-62, doi: 10.1007/978-3-540-78295-7_2.

[10] Puchinger, J., Raidl, G.R. (2005). Combining metaheuristics and exact algorithms in combinatorial optimization: A
survey and classification, In: Mira, J., Álvarez, J.R. (eds.), Artificial intelligence and knowledge engineering applica-
tions: A bioinspired approach, IWINAC 2005, Lecture notes in computer science, Springer, Berlin, Germany, 41-53,
doi: 10.1007/11499305_5.

https://doi.org/10.1007/s10479-013-1415-3
https://doi.org/10.1016/j.cor.2010.10.026
https://doi.org/10.1016/j.cor.2010.10.026
https://doi.org/10.1504/IJOR.2017.082611
https://doi.org/10.1080/00207540902791777
https://doi.org/10.1016/j.ijpe.2013.01.006
https://doi.org/10.1016/j.ijpe.2013.01.006
https://doi.org/10.1007/978-3-642-04918-7_13
https://doi.org/10.1007/978-3-642-04918-7_13
https://doi.org/10.1016/j.ejor.2007.07.035
https://doi.org/10.1007/3-540-36605-9_20
https://doi.org/10.1007/978-3-540-78295-7_2
https://doi.org/10.1007/11499305_5

A matheuristic approach combining genetic algorithm and mixed integer linear programming model for production and …

Advances in Production Engineering & Management 18(1) 2023 31

[11] Caserta, M., Voß, S. (2010). Metaheuristics: Intelligent problem solving, In: Maniezzo, V., Stützle, T., Voß, S. (eds.),
Matheuristics. Annals of information systems, Vol 10, Springer, Boston, USA, 1-38, doi: 10.1007/978-1-4419-
1306-7_1.

[12] Talbi, E.-G. (2016). Combining metaheuristics with mathematical programming, constraint programming and ma-
chine learning, Annals of Operations Research, Vol. 240, No. 1, 171-215, doi: 10.1007/s10479-015-2034-y.

[13] Kumar, R., Ganapathy, L., Gokhale, R., Tiwari, M.K. (2020). Quantitative approaches for the integration of produc-
tion and distribution planning in the supply chain: A systematic literature review, International Journal of Produc-
tion Research, Vol. 58, No. 11, 3527-3553, doi: 10.1080/00207543.2020.1762019.

[14] Reshad, A., Sinha, S. (2020). Open source software solution for small and medium enterprises, international journal
of computer sciences and engineering, Vol. 8, No. 6, 86-90.

[15] Chen, Z.-L. (2010). Integrated production and outbound distribution scheduling: Review and extensions, Opera-
tions Research, Vol. 58, No. 1, 130-148, doi: 10.1287/opre.1080.0688.

[16] Fahimnia, B., Farahani, R.Z., Marian, R., Luong, L. (2013). A review and critique on integrated production-distribu-
tion planning models and techniques, Journal of Manufacturing Systems, Vol. 32, No. 1, 1-19, doi: 10.1016/j.jmsy.
2012.07.005.

[17] Su, W., Huang, S.X., Fan, Y.S., Mak, K.L. (2015). Integrated partner selection and production-distribution planning
for manufacturing chains, Computers & Industrial Engineering, Vol. 84, 32-42, doi: 10.1016/j.cie.2015.01.015.

[18] Moattar Husseini, Z., Karimi, B., Moattar Husseini, S.M., Ghodsipour, S.H. (2015). Multi-objective integrated pro-
duction distribution planning concerning manufacturing partners, International Journal of Computer Integrated
Manufacturing, Vol. 28, No. 12, 1313-1330, doi: 10.1080/0951192X.2014.972460.

[19] Devapriya, P., Ferrell, W., Geismar, N. (2017). Integrated production and distribution scheduling with a perishable
product, European Journal of Operational Research, Vol. 259, No. 3, 906-916, doi: 10.1016/j.ejor.2016.09.019.

[20] Gharaei, A., Jolai, F. (2018). A multi-agent approach to the integrated production scheduling and distribution prob-
lem in multi-factory supply chain, Applied Soft Computing, Vol. 65, 577-589, doi: 10.1016/j.asoc.2018.02.002.

[21] Marandi, F., Fatemi Ghomi, S.M.T. (2019). Integrated multi-factory production and distribution scheduling apply-
ing vehicle routing approach, International Journal of Production Research, Vol. 57, No. 3, 722-748, doi:
10.1080/00207543.2018.1481301.

[22] Park, Y.B. (2005). An integrated approach for production and distribution planning in supply chain management,
International Journal of Production Research, Vol. 43, No. 6, 1205-1224, doi: 10.1080/00207540412331327718.

[23] Koljonen, J., Alander, J.T. (2006). Effects of population size and relative elitism on optimization speed and reliabil-
ity of genetic algorithms, In: Proceedings of 9th Scandinavian Conference on Artificial Intelligence (SCAI 2006), Es-
poo, Finland, 54-60.

[24] Zhong, J., Hu, X., Zhang, J., Gu, M. (2005). Comparison of performance between different selection strategies on
simple genetic algorithms, In: Proceedings of International Conference on Computational Intelligence for Modelling,
Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Com-
merce (CIMCA-IAWTIC'06), Vienna, Austria, 1115-1120, doi: 10.1109/cimca.2005.1631619.

[25] Chelly Dagdia, Z., Mirchev, M. (2020). When evolutionary computing meets astro- and geoinformatics, In: Škoda,
P., Adam, F. (eds.), Knowledge discovery in big data from astronomy and earth observation, Elsevier, Amsterdam,
Netherlands, 283-306, doi: 10.1016/B978-0-12-819154-5.00026-6.

[26] Wang, S., Liu, M. (2013). A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem, Comput-
ers & Operations Research, Vol. 40, No. 4, 1064-1075, doi: 10.1016/j.cor.2012.10.015.

[27] Valero-Gomez, A., Valero-Gomez, J., Castro-Gonzalez, A., Moreno, L. (2011). Use of genetic algorithms for target
distribution and sequencing in multiple robot operations, In: Proceedings of 2011 IEEE International Conference
on Robotics and Biomimetics, Karon Beach, Thailand, 2718-2724, doi: 10.1109/ROBIO.2011.6181716.

[28] Cbc: Version 2.9.9, from https://zenodo.org/record/1317566, accessed May 27, 2021.
[29] Bynum, M.L., Hackebeil, G.A., Hart, W.E., Laird, C.D., Nicholson, B.l., Siirola, J.D., Watson, J.P., Woodruff, D.L. (2021).

Pyomo - Optimization Modeling in Python, Springer, Cham, Switzerland, doi: 10.1007/978-3-030-68928-5.
[30] Michalewicz, Z. (1999). The significance of the evaluation function in evolutionary algorithms, In: Davis, L.D., De

Jong, K., Vose, M.D., Whitley, L.D. (eds.), Evolutionary Algorithms, The IMA Volumes in Mathematics and its Applica-
tions, Vol. 111, Springer, New York, USA, 151-166, doi: 10.1007/978-1-4612-1542-4_8.

https://doi.org/10.1007/978-1-4419-1306-7_1
https://doi.org/10.1007/978-1-4419-1306-7_1
https://doi.org/10.1007/s10479-015-2034-y
https://doi.org/10.1080/00207543.2020.1762019
https://doi.org/10.1287/opre.1080.0688
https://doi.org/10.1016/j.jmsy.2012.07.005
https://doi.org/10.1016/j.jmsy.2012.07.005
https://doi.org/10.1016/j.cie.2015.01.015
https://doi.org/10.1080/0951192X.2014.972460
https://doi.org/10.1016/j.ejor.2016.09.019
https://doi.org/10.1016/j.asoc.2018.02.002
https://doi.org/10.1080/00207543.2018.1481301
https://doi.org/10.1080/00207543.2018.1481301
https://doi.org/10.1080/00207540412331327718
https://doi.org/10.1109/cimca.2005.1631619
https://doi.org/10.1016/B978-0-12-819154-5.00026-6
https://doi.org/10.1016/j.cor.2012.10.015
https://doi.org/10.1109/ROBIO.2011.6181716
https://zenodo.org/record/1317566
https://doi.org/10.1007/978-3-030-68928-5
https://doi.org/10.1007/978-1-4612-1542-4_8

