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Abstract—Avionics systems are complex and time-critical
systems that are progressively adopting more flexible (though
equally robust) architectural designs. Although a number of
current avionics systems follow federated architectures, the
Integrated Modular Avionics (IMA) paradign is becoming the
dominant style in the more modern developments. The reason
is that the IMA concept promotes modular designs where
applications with different levels of criticality can execute in an
isolated manner in the same hardware. This approach complies
with the requirements of cost, safety, and weight of the avionics
systems. FACE standard (Future Airborne Capability Environ-
ment) defines the architectural baseline for easing integration in
avionics systems, including the communication functions across
distributed components. As specified in FACE, middleware will
be integrated into avionics systems to ease development of
portable components that can interoperate effectively. This paper
describes the usage of publish-subscribe middleware (precisely,
DDS – Data Distribution Service for real-time systems) into a
fully distributed partitioned system. We describe, from a practical
point of view, the integration of the middleware communication
overhead into the hierarchical scheduling (as compliant with
ARINC 653) to allow the usage of middleware in the partitions.
We explain the design of a realiable communication setting, ex-
emplified on a distributed monitoring application in a partitioned
environment. The obtained implementation results show that,
given the stable communication overhead of the middleware, it
can be integrated in the time windows of partitions.

I. INTRODUCTION

Communication middleware and virtualization technolo-
gies are two main contributions to the development and
maintainability of software systems as well as to machine
consolidation [9]. These were initially used in mainstream
applications, but are progressively entering into the critical
environments and complex systems, where their role is in-
creasingly important. In fact, in the avionics domain, the
combination of IMA [24] and FACE [21] require the usage of
both virtualization technologies to develop partitioned systems
and middleware to ease interoperability and portability of
components. This satisfies key requirement regarding cost,
space, weight, power consumption, and temperature.

On the one hand, middleware brings in the capacity to
abstract the low-level details of the networking protocols

and the associated specifics of the physical platforms (e.g.
endianness, frame structure, and packaging, among others).
Consequently, the productivity of systems development is
augmented by easing the programmability, maintanability, and
debugging.

On the other hand, the penetration of virtualization tech-
nology has opened the door to the integration of heterogeneous
functions over the same physical platform. This effect of
virtualization technology has also arrived to the real-time
systems area. The design of mixed criticality systems (MCS)
[4] is an important trend that supports the execution of various
applications and functions of different criticality levels [30]
in the same physical machine. The term criticality refers to
the levels of assurance over the system execution in what
concerns failures. For example, in avionics systems, software
design follows DO-178B [27] and DO-178C [26] that is a
de facto standard for software safety; software is guided
by DAL (Design Assurance Levels), and failure conditions
are categorized against their consequences: from catastrophic
(DAL A) to no effect (DAL E). Then, an MCS is one that
has, at least, two functions of different criticalities on the same
physical machines.

Over the past 30 years, middleware technology has been
applied in critical domains but, mostly, in those subsystems
of lower criticality levels. This is the case of, e.g., CORBA
applied to combat systems [28] or, recently, DDS [19] applied
to control of interoperability of unmanned aircraft and air
traffic management1, mainly for ground segment control. Still
middleware is mostly used directly on bare machine deploy-
ments; yet it is not used in partitioned software systems.

This paper provides a design of a fully distributed par-
titioned deployment that integrates Data Distribution Service
middleware. To ensure temporal isolation and communication
timeliness, hierarchical scheduling is used as the execution
framework. It is not the purpose of the paper to contribute
new scheduling theory for this domain, but to apply it to
the proposed novel distributed partioned design; this design

1http://www.atlantida-cenit.org



integrates a distribution middleware based on data distribution
system to support timely communication among different
functions located, both, within and across partitions. We
exemplify this concept on a data monitoring application that
has been developed to provide hands on the actual technology,
to analyze the temporal behavior of the overall distributed
partitioned setting.

This paper is an extended version of a previous contri-
bution [8] that introduced the design of the fully partitioned
deployment that made use of DDS middleware. The system
was fully distributed across different physical machines that
would perform data sampling and transmission that was later
received, processed and displayed at a remote node. The nodes
of the monitoring system emulate a mixed criticality system,
with a setting that replicated that of a partitioned system in a
FACE compliant architecture. The paper concentrated on the
design of the software stack and the analysis of the middleware
performance over an Ethernet network that emulates an AFDX
(Avionics Full DupleX) [1] compliant communication. The
present paper extends the previous one in a number of ways:
• A description of FACE standard is provided to better

position the role of the middleware and identify the level
at which it operates to support interoperability.

• We elaborate on the description of the hierarchical
scheduling, providing a practical and simple model that
leverages the elements defined in ARINC 653 scheduling
for partition isolation.

• We provide a simple model to integrate the middleware
communication overhead into the scheduling, considering
application-level requirements with respect to the allowed
safety margins.

• More results have been presented to provide the baseline
performance of DDS. Moreover, the experimental section
has been improved to illustrate the scheduling in the
partitioned scenario. A more thorough presentation of the
system parameters has been carried out with the goal of
illustrating the conceptual part in the experiments.

The rest of the paper is structured as follows. Section II
analyzes the most important characteristics and properties of
communication middleware, and especially of DDS, for dis-
tributed partitioned systems within FACE. Section III presents
the design of the distributed partitioned system, illustrated for a
remote monitoring application. Section IV provides the imple-
mentation of the system and presents the results obtained for
the communication. Section V presents the work background
and selected contributions that are most related to our work,
including concepts and technologies relative to partitioned
systems and distribution middleware technologies for critical
domains. Eventually, section VI draws some conclusions and
describes the future work.

II. MIDDLEWARE IN FACE COMPLIANT DISTRIBUTED
PARTITIONED SYSTEMS

A. Middleware within the FACE Standard
FACE [21] standard defines the software computing envi-

ronment and interfaces designed to support the development

of portable components across the general-purpose, safety, and
security profiles required by the avionics domain. Its goal is to
define the interaction points between the different technologies
that ease systems integration. As a matter of fact, FACE makes
use of industry standards for distributed communications,
programming languages, graphics, and operating systems,
among other areas. Version 2.0 further promoted application
interoperability and portability, with enhanced requirements
for exchanging data among FACE components; also, v2.0
emphasizes on defining common language requirements for
the standard. Precisely, the levels defined by the operating
system segment of FACE are the following, shown in figure 1:
• the portable components segment, that is composed of

the applications, also named application components or
FACE components;

• the transport services segment, where middleware tech-
nologies are employed for interoperability,

• the platform specific services segment for the common
services of a given domain;

• I/O services segment, that is related to the low-level
adapters and drivers to access peripherals including the
network.
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Fig. 1: Overview of the FACE architecture

At the transport services segment, many technological
choices can be employed (e.g. CORBA, Web services, DDS,
etc.). The selection of a specific middleware choice is im-
portant as it influences the properties of the system in what
timeliness, efficiency, and (in the end) will provide compliance
with different criticality levels. Despite the fact that still there
are a number of active distributed systems in the avionics
domain that use technologies such as CORBA, it is the case



that, at the moment, the most widely accepted one is DDS.
It provides a well defined decoupled interaction model based
on publish-subscribe. Also, it supports some degree of fine
tuning of the communication relying on the actual capacity
and behavior of the underlying network infrastructure.

B. Data Distribution Service for real-time systems

The Data Distribution Service (DDS) is an OMG standard
that provides a publish-subscribe (P/S), i.e., a decoupled
interaction model among remote components. DDS relies on
the concept of a global data space where entities exchange
messages based on their type and content. Such entities are
remote nodes or remote processes, although it is also possible
to communicate from within the same local machine.

Entities can take two roles; they can be publishers or
subscribers of a given data type. Types are based on the
concept of topics that are constructions that enable the actual
data exchange. Topics are identified by a unique name, a data
type and a set of QoS policies; also, they can use keys that
enable the existance of different instances of a topic so that
the receiving entities can differentiate the data source.

Applications organize the communicating entities into do-
mains. Essentially, a domain defines an application range
where communication among related entities (an application)
can be established. A domain becomes alive when a partic-
ipant is created. A participant is an entity that owns a set
of resources such as memory and transport. If an application
has different transport needs, then two participants can be
created. A participant may contain the following child entities:
publishers, subscribers, data writers, data readers, and topics.
Publishers and subscribers are an abstraction that manages the
communication part, whereas the data writers and data readers
are the abstractions that inject the data.

One of the most successful elements of DDS is the set
of quality of service parameters that it defines, namely QoS
policies. In fact, not all of them are related to the temporal
behavior of the communication. Most QoS policies provide
other guarantees over the data transmission. A short summary
of policies that influence the communication time (marked as
t) and others affecting the overhead of the system (marked as
o) are indicated in table I. The entities2 to which they apply
are also shown.

C. Middleware communication across partitions

The mainstream design of a critical partitioned system
consists of isolating the communications of a system into one
single partition. One of the partitions is selected as the com-
munications partition (see figure 2) and is, then, responsible
for the transmissions to and from other nodes. Partitioned
systems are executed following simple hierarchical scheduling
schemes. Each partition is assigned an execution time every
given period, and the operating system is in charge of enforc-
ing the assigned processor resource so that temporal isolation
is fully guaranteed. As there is one single communications

2PU: Publisher, SU: Subscriber; DR: Data Reader, DW: Data Writer; T:
Topic; DP: Domain Participant

QoS policy Entity Description
Deadline (t) DR Max expected elapsed time between

arriving data samples (unkeyed data) or
instances (keyed data)

DW Max committed time to pulish samples
or instances

Resource Lim-
its (o)

DP Limit to the allocated memory (mes-
sage queues for history, etc.). It limits
the queue size for History when the
Reliability protocol is used.

History (o) DR, DW Stores sent or received data in cache.
It affects Reliability and Durability (re-
ceive samples sent prior to joining) QoS
policies

Latency
Budget (t)

T, DR,
DR

Indication on how to handle data that
requires low latency. Provides a maxi-
mum acceptable delay from the time the
data is written to the time it is received
by the subscribing applications.

Timed based
Filter (t)

DR Limits the number of data samples sent
for each instance per a give a time
period

Transport
priority (t)

DW Establishes a given priority for the data
sent by a writer. Underspecified: It is
dependent on the actual transport char-
acteristics and also supported by only
some OSs.

Reliability (o) DR, DW Global policy that specifies whether or
not data will be delivered reliably. It
can be configured on a per DataWriter/-
DataReader connection.

TABLE I: Subset of QoS policies affecting overhead

partition, transmissions take place exclusively during the time
assigned to it. When an application or component residing in a
given partition needs to transmit or receive data, it informs the
communications partition via a shared memory space. When
the kernel schedules the partition at its assigned time slot, the
transmission takes place.
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Fig. 2: Typical design of a mixed criticality system

This is the mainstream design approach in avionics, which
has not relied on the usage of distribution middleware. Instead,
a direct implementation of network protocols for ARINC 429
where used to support communication. Recently, standard-
based middleware systems such as DDS are progressively con-
sidered into the actual implementations of critical partitioned
environments; this has emerged with unusual vitality since
the raising of FACE that searches for paths to easy system



integration. The reason is that the avionics industry has long
realized the benefits of using matured commercial technologies
as much as possible in order to improve component portability,
interoperability, cost, integration time, and safe component
reuse.

III. DESIGNING A MIDDLEWARE ENABLED
DISTRIBUTED PARTITIONED SYSTEM

A. System design

Figure 3 shows the major software blocks for the dis-
tributed monitoring system, focusing on the communication
structure provided by the Data Distribution System which uses
data topics. The system has two differentiated subsystems:
System A that is a meteo proximity server (this system is
connected to local –nearby– sensors that collect environmental
readings) and System B that is the Global Monitor (this system
receives the information from other nodes, including the meteo
proximity server, and performs overall monitoring activities on
the global scale).

System A System B 
Temperature 

Humidity 

Configuration 

Sensor 

periodic 
read 

Monitor Configurator 

Data 
fusion 

Fig. 3: Application software design

Two sensors (humidity and temperature) gather data sam-
ples that are passed to System A that is able to perform an
initial basic processing of the data to take basic decisions
on the sensors operation and detect faults. System A passes
these data to System B that is able to perform more complex
analysis over the data, and also it is able to make decisions
on the configuration of the sensors and the overall system
operation. The proximity sensor can do an initial processing
of the samples and later, it sends the data to the global monitor.

Systems A and B run in two different physical machines
that are partitioned emulating an ARINC 653 deployment.
They are connected via an Ethernet link as compliant with
AFDX. All partitions can integrate the communication mid-
dleware, so that any of them can send or receive data to and
from other either local or remote partitions as shown in figure
4. This figure presents a complementary view with respect to
figure 3 as here it is shown the partitions within each node and
the software layers within each partition. The communication
structure shown in figure 3 is encapsulated inside the partition
middleware layer. In this way, communications may take place
during the time slots that the kernel assigns to each of the
partitions as will be presented in the following section III-B.

System A has two partitions: VA1 that monitors the sensor
reads and performs basic analysis, and VA2 that performs data
displays to the operators. System B has two partitions: VB1

that receives the sensor reads and performs complex analysis

Monitoring 
Application 

 

Partition 
OS 

Display 
Application 

 

Partition 
OS 

Partition 
Middleware 

Partition 
Middleware 

Data 
Analysis 

Application 
 

Partition 
OS 

Display 
Application 

 

Partition 
OS 

Partition 
Middleware 

Partition 
Middleware 

System B System A 
VA1 
 

VA2 
 

VB1 
 

VB2 
 

Fig. 4: Proposal architecture- Distributed monitoring
application design in a partitioned system

to guide the system operation, and VB2 that performs data
displays to the remote operators.

Partition VA1 receives the sampled data, and it sends them
to VB1 through the appropriate topics: temperature and hu-
midity, to send temperature and humidity values, respectively.
Also, a configuration topic is used by System B to change the
operation parameters of System A such as the sampling rate.

The topic based communication scheme between System
A and Sytem B is shown in figure 3. Topics are associated
to data types declared in a given programming language. The
system defines a dynamic topic so that it is possible to update
the its parameters (e.g. name or payload in this case). This
favors flexibility and portability. This class contains a method
for the creation and deletion of the topic. Code 1 shows the
topic template.

Code 1: Topic structure template
s t r u c t DataSampleType{

s t r i n g <TOPIC NAME> p r e f i x ;
long s a m p l e I d ;
sequence<o c t e t , TOPIC MAX PAYLOAD SIZE>

p a y l o a d ;
} ;

As the system handles sensor data samples, the needed
topic parameters are sequence number and payload.

The communication settings for this application must be
reliable. The subset of the QoS policies are shown:
• RELIABILITY is set to RELIABLE for guaranteed message

delivery, and it is set both for data reader and data writer.
• HISTORY is set to KEEP ALL that guarantees that sam-

ples will be retained until the subscriber retrives them. It is
set for data reader.
Other properties as TRANSIENT need not be set as no

late joiners are allowed. All connections are configured at
the system start up time. Other parameters such as Avail-
ability, Durability, Durability Service, DataWriterProtocol,
DataReaderProtocol, etc., ensure aspects as the ordered deliv-
ery of items, cache storage, usage of ACK/NACK and sending
frequency. As our system is mapped to a UDP transport
protocol over Fast Ethernet, it is sufficient to use the maximum
allowed frame size as our application data messages payload



is of 1024KB. Also, IP routing is used as compliant with
AFDX in a switched Ethernet setting; IP is enabled by the wire
protocol of DDS that is RTPS (Real-Time Publish-Subscribe)
[20].

RTPS is the protocol that enables interoperability across
different implementations (vendors) of DDS. It was designed
over the Internet Protocol (IP) multicast (one-to-many com-
munication) and over an unreliable, connectionless transport
such as UDP (User Datagram Protocol).

Apart from the default best-effort, RTPS also provides
reliable communication for IP networks. RTPS offers dis-
tributed knowledge, preventing the centralised management of
the system; this is an inherent fault tolerance mechanism which
prevents the network from having a single point of failure.

The general implementation of the reliability mechanism
for RTPS is based on the usage of acknowledgement mes-
sages (ACK). They are similar to a heartbeat mechanism and
ACKNACK. Using a sequence number and a storage space
(cache), it is posible to know which messages have arrived to
the subscriber and which have not. Data writers have access
to this cache. For each message, this cache stores the assigned
sequence number, the history of the sent data values, and the
history of whether the sample has been delivered to the reader.

B. Scheduling the partitions:
hierarchical and ARINC 653 compliant

In IMA systems (that include FACE compliant systems),
temporal partitioning is guaranteed though partition windows.
The operating system kernel applies a deterministic scheduling
algorithm based on a static schedule (defined in a static
configuration file) that indicates the time windows that are
assigned to each partition. This is defined in different operating
systems that are ARINC 653 compliant such as VxWorks [22]
or the MultiPartes approach [29].

The assignment of time windows to partitions (or virtual
machines) defines a hierarchical scheduling model. Time win-
dows enforce temporal isolation across the different partitions
in the system. The timing overhead due to the middleware
communication and transmission functions will be accounted
for in the time window assigned to the partition(s) that
execute(s) those middleware functions. In order to incorporate
the transmission times to the schedule, the temporal bounds
on the communication among the partitioned nodes have to be
analyzed.

Here, it is presented a local schedulability framework with
the intention of showing how the middleware overhead can
be naturally integrated in the hierarchical scheduling model of
partitioned systems. The middleware cost is considered and
integrated within the partitions as follows. Let V be the set
of n partitions of a system such that V = {Vk}, ∀k = 1..n.
The execution requirements of each partition are expressed as
follows. A partition Vk requires to use the processor for C
time units every period of T time units: Vk = (Ck, Tk).

The execution life of a partitioned system based on ARINC
653 (see [22]) follows a hierarchical approach of two main
levels. At the top level, the execution life of a system is defined

by a loop over the same execution structure named major
frame. The major frame is calculated as the hyperperiod of
the periods of the partitions Tk, and let this hyperperiod value
be MAF: MAF= hyp(Tk),∀k.

The major frame is subdivided into a number (q) of
time slots of equal duration called minor frames, and let
their duration value be MIF. Each minor frame j is divided
into a number (rj) of time slots (Sk) of (possibly) different
durations, each one assigned to a specific partition Vk. During
its assigned time slot, a partition has uninterrupted access to
common resources.

The actual time that the processor is active in a major
and minor frames need not be MAF and MIF, respectively.
Let FM be the time that the processor is active during a
major frame and let Fm

j be the time that the processor is
active in minor frame j. It is given by equations (1) and
(2), that summarize the simple scheduling scheme defined in
ARINC 653 partitioned systems. Also, Figure 5 illustrates the
scheduling in a graphical way.

FM =

q∑
j=1

Fm
j (1)

Fm
j ≥

rj∑
i=1

Sk,i ∀Vk ∈ V (2)
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MIF1 MIFn 

1*MIF q*MIF 0 

MAF 

V3#
. . . 

. . . 

(q-1)*MIF 

Fig. 5: Exemplification of hierarchical scheduling for
ARINC-653 partitioned systems

The allocation of partition slots to each minor frame can
be done in such a way that:

• The number of partitions executed in two different minor
frames can vary. As a consequence, each minor frame
structure can be unique.

• The specific partitions (partition IDs) executed in two
different minor frames can be different.

• For efficiency reasons, a partition should be executed at
most once in a given minor frame.

• Each partition must execute at least once during a major
frame.

The calculation of the duration of the minor frames is
straight forward as a divisor of MAF. The duration of the
MIF has an impact on the number of context switches; in
the avionics mainstream approach, the decision is application
dependant.



C. Integrating the middleware overhead: the safety factor

Time windows ensure temporal isolation across partitions.
This provides a natural baseline to integrate middleware com-
munications in the partitions. In this case, the overhead caused
by the middleware communication is integrated in the sched-
ule by assigning additional resources for the communication
functions as follows.

Let EM be the spare time of one major frame, such that:
EM = MAF - FM . There is a relation between the spare time
and the maximum overhead of the communication as enabled
by the middleware that is indicated in equation (3).

EM ≥ ρ · ccom (3)

where ρ is the safety factor, and ccom is the maximum
overhead of the middleware communication. The value of ρ
is an operator selection, so it is given based on application
requirements. ccom is obtained off-line, and this can be done
in different ways:
• real experiments; if actual tools are involved it is needed

to perform real tests and experiments on the specific
software layers that will be used. For this, it should
be considered specific system conditions with values of
interest for data payload and actual load.

• static code analysis and execution simulation; This is a
problem of exponential complexity that does not adjust
well to changes such as the uncertainty the network,
varying payload, etc., This costly model lacks flexibility
and does not take advantage of the partitioned scheme of
ARINC 653.

In the current approach, real tests on a physical setting
are undertaken. A middleware performance is analyzed off-
line. The message size required by the specific application
(1024KB in our case), the required load conditions, and the
specific hardware. To be usable within a partitioned scheme
for the above mentioned application, the specific tested imple-
mentation (DDS RTI Connext in our case) must yield:
• efficient values and stable behavior in different situa-

tions of load and payload transmission. The obtained
middleware overhead values should fit within a feasible
schedule, adjusting to the conditions indicated above,
including the safety factor that is E = 4× ccom.

• the maximum obtained communication overhead ccom is
associated to very exceptional situations. In this proposal,
it is associated to an occurrence of a percentage (δ) of
the execution results. In the present application, δ = 0.1.
As a consequence the system is overprovisioned for most
of its execution, as required by the application domain.

• the partitions that make use of the middleware commu-
nication will integrate the maximum obtained overhead
or cost of communication ccom within the partition time
window value Ck.

IV. RESULTS

Experimental results are presented with the goal of as-
sessing the cost of using DDS in a partitioned context for

supporting remote communication across local and remote
partitions. We intend to validate the suitability of the pro-
posed system design; we analyze the system in terms of
the communication time from the side of the invoking node.
Even for an unreliable setting, we have measured a partition-
level reliable communication implementation, i.e., including
the client response reception. The goal is to show that the
chosen middleware provides communication bounds for this
distributed partitioned system. Also, results show the stability
of the middleware in the partitioned system, that is compared
against the control group (a bare machine deployment in
an unrealiable DDS configuration). Results of the execution
of the implemented system show its feasibility, given the
performance of the middleware in different scenarios over
a sufficiently large number of trials to obtain the maximum
values of the communication enabled by the middleware. The
presented data is compiled from 1000 iterations to provide
meaningful information. The communication results show the
overhead of the whole processing stack of a partition [10].

The monitoring system is implemented with DDS RTI
Connext 5.2.0 over two networked machines connected by a
100Mbps Ethernet link. The hardware of the physical nodes
is a double core Intel E3400 at 2.6Ghz and with 2GB RAM.
Results indicate the minimum (min), maximum (max), and
average (avg) cases as well as the standard deviation (std).
Results shown the real cost to show the efficiency of the
scenario design and the overall performance.

A. Baseline performance experiments

The baseline performance is obtained by an intial exper-
iment on a favourable scenario, acting as a control group
against which to compare the reliable settings. Figure 6 shows
the performance of the middleware on the favorable situation,
i.e., a distributed setting with a best effort configuration set
at the data writer and data reader entities of the distributed
partitions.
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Fig. 6: Bare machine; best effort communication; varing load.

Figure 6(a) (at the left) shows a distributed setting for
two remote bare machines, and Figure 6(b) (right side graph)
shows a fully partitioned distributed setting. This scenario was
analysed on, both, empty load conditions and with progressive



load up to 100%. The resulting data show that the communi-
cation cost was increased by 7x in the partitioned scenario.
Nevertheless, it was shown that the average case times ranged
from 3x to 7x lower than the worst case.

In this control group, it is shown the maximum, minimum,
and average values, as well as the dispersion. The maximum
value is associated to very exceptional situations, although
possible. The average value is produced 99.89% of the time.
Statistical dispersion provides confidence on the statibility of
the middleware behaviour. These measures must be studied
for different situations of the system: load conditions (pro-
gressive load tests) and physical deployments (bare machine
and partitioned). It should be noted the stable trend of the
minimum and average values for both graphs (see two lower
lines for each graph), as they are constantly around the same
value regardless of the load conditions.

Figure 7 shows the results of a bare machine deployment
of the emulated scenario for the distributed monitoring appli-
cation. This scenario fully replicates the system and it also
provides a DDS reliable communication configuration. The
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Fig. 7: Bare machine; reliable communication; varing load.

scenario of figure 7(a) (left side graph) is executed with no
additional load, whereas 7(b) (at the right side) presents a pro-
gressive loaded system. Resulting times follow the expected
pattern, and a similar phenomena as in the previous scenario is
observed. Average behavior for (a) are between 3.7x and 5.33x
smaller than the maximum times. Again, the communication
proves to be very stable; dispersion is around 50µs for all
the cases except for the largest message size that is 98.2µs.
For the scenario (b) that shows progressive load, the average
times are between 11x and 4x smaller that the worst case.
Nevertheless, the system shows to be stable, and the dispersion
is between 47.2µs and 123.20µs. As for the control group, it is
worth noticing that trend of the minimum and average values
for both graphs (see two lower lines for each graph) remains
stable, i.e, constantly around the same value regardless of the
load conditions.

B. Partitioned scenario

This section presents the experimental results on the par-
titioned scenario shown in tables II and III that correspond to
system A of figure 4.

TABLE II: Requirements of the partitioned monitoring system

VAP VDISP

C 50 100
T 150 300
Communication frequency of VAP 150 -

Periodically, partition VAP sends a message on the sensor
readings to a remote system (to system B of figure 4). The
message has a size of 1024B and it is transmitted every
150ms. The system requirements with respect to the mid-
dleware behavior are provided in table III. The safety factor
imposes that the slack time E of the hierarchical schedule is,
at least, 4 times larger than the maximum overhead of the
communication transmission in its worst scenario.

TABLE III: System requirements set by operator calibration wrt
middleware communication

Safety factor (ρ) 4
Occurrence probability (δ) 0.1
Payload size 1024B
Average load 50

A feasible hierarchical schedule derived from the require-
ments of the above partitions is shown in figure 8 that presents
the initial schedule without considering the temporal overhead
of the middleware enabled communication. The slack time,
E, is e1 + e2, and the maximum overhead of the middleware
must be allocated within the slack time. Figure 9 presents a
feasible schedule that accounts for the time overhead of the
middleware. In this case the slack time is reduced to e′1 + e2.

VAP$ VAP$ VAP$
50 100 150 200 250 300 0 

VDISP$ VDISP$

e1 e2 

MIF1 MIF3 
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MIF2 

Fig. 8: Schedule without cmon
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Fig. 9: Schedule with cmon

The value of cmon is obtained by the actual implementation
and testing over different conditions of load and payload for
the system, that do not only include the normal condition of
the system. The results for the implementation of the fully
partitioned sheme are presented in Figure 10. These experi-
ments are performed to check different conditions. On the one



hand, the response of the system for various load situations
is tested. On the other hand, the system is tested for different
communication payload. Figure 10(a) (left side graph) shows
the reliable communication setting on a distributed partitioned
system deployment with no additional load. Figure 10(b) (right
side graph) shows the same scenario with progressive load.
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Fig. 10: Communication cost for a reliable configuration
over partitioned systems

Results show that the system is very stable as standard
deviation (std) is consistently around the same magnitude and
in the order of 300µs for the empty scenario and between 212
and 1400µs for the progressive load. Moreover, the worst case
is, for the empty scenario, between 8x and 18x larger than the
average case. For the progressive load tests, the average case
is between 8x and 39x smaller than the worst case. Also, it can
be seen that the minimum and average cases are very close.
Results show that the fully distributed partitioned environment
yields a stable execution and the communication overhead of
the middleware follows the expected pattern.

From the experiments, it is derived that the maximum over-
head of the communication middleware, cmon, is 18ms. The
spare time E = 75ms and ρ = 5, therefore E ≥ 5 · ccom. So,
75 ≥ 4 ·18→ 75 ≥ 72. values, as well as the dispersion. The
maximum value is associated to very exceptional situations.
The average value is produced 99.61% of the time, which
yields that δ < 0.1. Statistical dispersion provides confidence
on the statibility of the middleware behaviour.

V. BACKGROUND

IMA has been a very successful approach to transition from
the former federated architectures to a more efficient design
and final deployment into avionics systems. In this context,
different standards are proposed to facilitate componentization,
portability and interoperability at different levels of a system.
In this way, ARINC 653 standard decouples the real-time
operating system platform from the application software. For
this purpose, it defines an APEX (APplication EXecutive)
where each application software is called a partition having
its own memory space. Each partition has dedicated time slots
allocated through the APEX API, so that each partition can
have multi-tasking and its own scheduling policy. Overall,
the execution is embodied in a hierarchical scheduling policy
where the top level is a cyclic schedule. Current work is to

enhance ARINC 653 for multi-core processor architectures
[7]. The underlying network is AFDX that uses commercial
technology with redundancy to support safe transmission.
The integration of networked and distributed systems follows
ARINC 429 that is the data bus defining the characteristics of
the data exchanges among the connected subsystems. It defines
the physical and electrical interfaces and a data protocol for a
local avionics network.

In other real-time systems, network scheduling typically
relies on either an off-line and a-priori network schedule that
defines the transmission plan for all the generated traffic (e.g.
[5]); architectures such as TTA (Time Triggered Architecture)
[17]; or distributed component models highly related to the
hardware on-chip design such as Genesis [18].

Nevertheless, in the last decade the trend in the develop-
ment of complex systems is to move to more productive ways
of designing the communication and interaction. The avionics
industry has developed FACE (Future Airborne Capability
Environment) [21] standard to facilitate the development and
easy integration of portable components. The communication
middleware is given a key role as an interoperability enabler.
Different technological choices can be used in FACE such
as CORBA, Web services, or DDS, among others, as FACE
does not bound itself to a specific technology. Each of these
options are suited for different applications domains with
varying criticality levels. The most popular technology at the
moment is (probably) OMG’s DDS standard [19] that has
been applied in a number of domains such as remote systems
control [11]. It provides an asynchronous interoperability via a
publish-subscribe (P/S) paradigm that is data-centric, and the
communication can be fine tuned through quality of service
(QoS) policies.

Most recent works on the literature provide improvements
to different aspects of the middleware such as service times
making it aware of the underlying execution hardware [13].
On the performance side, there are some related works that
contribute a thorough performance study of DDS for desktop
virtualization technologies [10] but was not dealing with
partioned systems; or the execution of DDS over a real-time
hypervisor [23] although the actual network stack processing
was not measured; or [6], [16] for network level P/S evalua-
tion, and [25] for bare machine deployments. Overall, there is
not sufficient analysis on the actual execution characteristics
of specific middleware technologies in general partitioned
environments. Moreover, there are no practical design models
of partitioned systems that can comprehensively put forward
the required software levels integration and there actual perfor-
mance results. This paper contributes in this direction with a
practical design of a distributed partitioned enviroment based
on DDS, providing a study of the behavior of a partitioned
system that communicates using this technology. Overall, it
is remarkable that the values of the minimum and average
cases fully adjust to a stable trend, and this is evidenced for
both graphs (see the two lower lines for each graph). The
new scenario shows that the average and minimum cases are
kept constantly around the same value for the different load



conditions.

VI. CONCLUSION

The paper describes how communication middleware can
be safely used in a time-critical environment, adhering to the
application-level requirements. It provides a practical approach
to the design of distributed partitioned systems that use DDS
middleware to communicate remote partitions. Topics are
defined to support the data centric model, that is exemplified
for a distributed monitoring application. A simple scheduling
model is provided that leverages the natural isolation given
by ARINC 653. The communication overhead caused by
the middleware and the partitioned setting is analyzed for
a sufficient number of trials under different conditions that
go beyond those exposed by the example application. Results
show that the communication performance of middleware is
stable even in presense of heavy load. The average case times
are significanly smaller that the worst case (from 8x to 39x)
and dispersion is 1.4ms for the worst possible scenario. The
stability and communication overhead obtained is crucial in the
approach to allow the integration into the partitioned systems.
We exemplify the model for the case of the partitioned
scenario, showing how it integrates naturally according to the
proposed approach.
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