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Abstract: As wind turbine power requirements have evolved from the order of kilowatts (kWs) to 
the order of several megawatts (MWs), wind turbine components have been subjected to more de-
manding and critical operating conditions. The wind turbine must cope with higher wind loads due 
to larger blade sizes, which are also time-varying, and, ultimately, higher power levels. One of the 
challenges in the manufacture of high-power wind turbines lies in the gearbox and consists of 
achieving ever-greater power density without compromising efficiency, i.e., greater load capacity 
with lower weight (and production cost) and reduced power losses. Epicyclic geartrains are used to 
build the gearbox due to various advantages in relation to conventional gear systems, such as higher 
feasible gear ratios, higher efficiency, compactnesss, and lower weight. In this paper, several epicy-
clic geartrains with different structures will be analysed to reveal the influence that certain design 
parameters have on the size and weight of the gearbox components in the selected model and, there-
fore, of the gearbox itself. For this purpose, the theoretical model of the gearbox will be planned and 
the influence of the calculation parameters on the gearbox design will be analyzed following ISO 
6336. Special emphasis is placed on the influence of the material used; the modulus and tooth width 
on the size and weight of the gearbox will be observed. Critical stresses are also calculated. The goal 
is to prepare the theoretical basis for an optimization process subject to geometric, kinematic, and 
dynamic constraints that will result in a gearbox as compact, energy-dense, and light as possible 
without compromising the service life of the components. 

Keywords: wind turbine; gearbox; calculation parameters; tooth width; weight; modulus; allowable 
stress at surface pressure; allowable stress at bending 

MSC: 65P99; 90C47; 49K35 
 

1. Introduction 
As the power requirements of wind turbines have evolved from the order of kilo-

watts (kWs) to the order of several megawatts (MWs), the wind turbine components have 
been subjected to more demanding and critical operating conditions. 

The wind turbine must cope with higher wind loads due to the larger blade size, 
which are also time-varying, and, ultimately, to higher power levels [1]. 

For that reason, is important to consider the dynamic behaviour of a wind turbine as 
a whole in order to analyse its response to operating conditions (usually strong wind), as 
in [2]. 

Moreover, the drive train and gearbox play a key role in a wind turbine. Despite 
continuous advances in this area, the one challenge that the wind turbine bearing and 
gearbox industry has yet to overcome is that of longevity. Gearboxes are usually designed 
for a service life of 20 years, but few exceed 10 years [3]. 
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The environmental and load conditions to which the gearbox is subjected are harsh 
and the need to ensure a high service life has an impact on the high costs involved. It is a 
challenge to design and manufacture this element at low cost for wind turbines of several 
megawatts (MWs) in size and to meet service life expectations. 

Despite the use of design standards and procedures for individual components and 
strict quality controls, failures still occur in these components. 

Fundamental design problems have also been observed in gearboxes [4], such as in-
terference fits resulting in unintended movement and wear, inefficient internal lubrication 
pathways, and sealing problems. 

To reduce the cost of the energy produced by wind turbines, the strength of future 
gearbox, bearing, and lubrication/cooling system designs must be improved [5]. 

Many gearbox failures are due to an underestimation of the rigorous operating con-
ditions of wind turbines. To manufacture more reliable gearboxes, a precise definition of 
the wind turbine’s working environment is necessary. 

Finally, a specific study of the gearbox components is necessary [6, 7]. 
In this paper, we focus on a geartrain model which is analysed to reveal the influence 

that certain design parameters have on the size and weight of the gearbox components in 
the selected model and, therefore, of the gearbox itself. For this purpose, the theoretical 
model of the gearbox will be planned and the influence of the calculation parameters on 
the gearbox design will be analyzed following ISO 6336 [8] . Special emphasis is placed 
on the influence that parameters such as the module, tooth width, and material have on 
the gearbox, and, especially, on the weight and volume of the gearbox, since the goal is to 
achieve the most compact and light gearboxes possible without any loss of efficiency [9]. 
Critical stresses are also calculated. 

2. History of Gearbox Problems 
In the early days, failures during wind turbine operation were common. 
Historically, the gearbox next to the bearings has been the weakest link in the drive 

chain of a modern commercial-scale wind turbine. With the increasing use of higher-
power wind turbines with larger rotor diameters and heavier blades, gearboxes are sub-
jected to more severe operating conditions [10]. 

Part of the problem is due to an underestimation of the working loads and inherent 
deficiencies in gearbox design. Failure to fully account for critical design loads, the non-
linearity or unpredictability of the load transfer between the drive train and its attach-
ment, and the mismatched reliability of individual gearbox components were identified 
as contributing factors to a reduced gearbox life [11]. 

To overcome these and other problems, a set of internationally recognized standards 
for wind turbine gearbox design was created. 

The evolution towards higher powers led to larger turbines with larger towers, 
higher torque, and higher gear ratios. Gearboxes became the subject of optimization ef-
forts. The planetary gearbox offered slightly higher power density and lower weight and, 
above all, a lower production cost [12]. 

The typical service life of a wind turbine is 20 years. It has been observed that gear-
boxes operating in the speed range of between 5 rpm and 1600 rpm typically fail within 5 
years of operation [13]. 

The wind industry has always debated the reliability of gearboxes. Discussions are 
currently shifting from individual component reliability to multi-component system reli-
ability [14]. 

Failures lead to a significant increase in capital and operating costs and downtime of 
a turbine, greatly reducing its profitability and reliability. 

One of the maintenance requirements introduced is the replacement of the gearbox 
every 5 years during the 20-year lifetime of the wind turbine. This is a costly task, as the 
replacement of a gearbox accounts for about 10% of the construction and installation cost 
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of the wind turbine, and will negatively affect the estimated revenue of a wind turbine 
[15]. 

Most gearboxes in the 1.5 MW rated power range of wind turbines use a single or 
two-stage planetary gear system, sometimes referred to as an epicyclic gear system. The 
ring gear would be connected to the rotor hub, while the sun gear would be connected to 
the generator. In practice, however, modern gearboxes are much more complicated. 

The disadvantages of planetary gear systems are the need for very complex designs, 
the general inaccessibility of vital components, and the high loads on the shaft bearings 
[16]. It is the latter that has proven most problematic in wind turbine applications. 

Small improvements in gearbox lubrication and the oil filtration system have in-
creased the reliability of wind turbines, but, to significantly improve gearbox reliability, 
the current planetary gear design must be changed [17]. This reliability improvement is 
especially important for offshore applications, as wind turbines are typically much larger, 
and the maintenance cost is much higher. 

They require large diameters, necessitating the use of large quantities of rare earth 
element permanent magnets, and, consequently, are expensive and require a larger and 
heavier powertrain. In addition, the manufacturing tolerances required are very precise 
and the detailed design to handle the complex loads add another set of challenges that set 
an upper limit on the size of such generators [18]. 

Most wind turbine designs with power ratings around 1.5–3.0 MW still use a plane-
tary gear system. 

They can become competitive with their geared counterparts near the upper end of 
turbine sizes (in the 4–6 MW range) [13]. 

A different attempt to solve the problems associated with gearbox use in wind tur-
bines greater than 2 MW in size is to employ torque splitting. 

Another alternative to the use of gearboxes are continuously variable transmissions, 
(CVTs). But CVTs can be limited by the amount of torque that can be transmitted by chain, 
belt, or hydrostatic means. For this reason, magnetic bearings appear to offer a potential 
solution for a slightly wider range of turbine power ratings than CVTs [19]. 

Another factor to consider in achieving high gearbox life is maintenance. Proper 
maintenance increases the service life of the gearbox. Basically, there are three adjustment 
possibilities: the properties of oil viscosity, oil treatment, and load. It should be noted that 
the design, optimization, and simulation of mechanical elements is a current topic of max-
imum interest in the scientific community and research and higher institutions [20–22], as 
well as the contribution of mechanical component applications to the Sustainable Devel-
opment Goals (SDGs), such as the use of wind turbines to provide renewable energy so-
lutions [23]. 

As previously mentioned, this paper will analyze the influence of the design param-
eters of the gearbox to make it as compact and light as possible. 

3. Types of Epicyclic Geartrains for Use in High-Power Wind Turbines 
The aim is to determine which type of epicyclic geartrain is the most compact [24,25]. 

For this purpose, the following four geartrains shown in Table 1 will be analyzed, using 
Levai’s notation [26]: 
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Table 1. Types of epicyclic geartrains *. 

Model 1 Model 2 Model 3 Model 4 

  
 

 
P(P)N P(PP)N P(PP)P N(PP)N 

* According to Levai’s notation, P stands for external gears (both sun and planet gears) and the letter 
N for internal gears. 

Since we are looking for the most compact and smallest volume solution, we will 
analyze Model 1 and determine how the operating parameters affect the gearbox design. 

4. Kinematic Analysis of the Epicyclic Geartrain Model 1 
The same geartrain can operate in six different ways depending on its fixed element 

according to the following Table 2, from which variants are featured: 

Table 2. Epicyclic geartrain variants. 

Fixed Element Input Output Variant 

Planet carrier 
Sun Ring 1 
Ring Sun 2 

Sun gear 
Ring Planet carrier 3 

Planet carrier Ring 4 

Ring gear 
Sun Planet carrier 5 

Planet carrier Sun 6 

In Table 3, the relationship between the input and output shaft speeds for Model 1 
are shown, where 𝑖௔௣ is the velocity ratio according to the Willis formula, 𝑖௜/௢ is the ratio 
between the input and output velocity, 𝜔ௌ= angular velocity of the sun, 𝜔஻= angular ve-
locity of the planet carrier, 𝑍ோ= number of teeth of the ring, 𝑍ௌ= number of teeth of the 
sun, and 𝑍௉= number of teeth of the planet. For Model Geartrain 1, the highest gear ratios 
occur when the ring is fixed; the input is through the planet carrier arm, and the output is 
through the sun, and their values are shown in Table 4. A diagram for Model 1 is shown 
in Figure 1. 
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Table 3. Relationship between input and output shaft speeds. 

  Model 1 

Willis 
𝜔ௌ − 𝜔஻𝜔ோ − 𝜔஻ = − 𝑍ோ𝑍ௌ  

 
Variant  Fixed Ring 

6 
Input: Planet carrier 

Output: Sun 

𝑖௔௣ = 𝜔ௌ − 𝜔஻−𝜔஻ = − 𝑍ோ𝑍ௌ  𝑖௜/௢ = 𝜔ௌ𝜔஻ = 1 + 𝑍ோ𝑍ௌ = 1 − 𝑖௔௣ 

P stands for Planet, C for Carrier, S for Sun, and R for Ring. 

Depending on the size of the planets and the sun, the gear ratios are as follows: 

Table 4. Gear ratios for Epicyclic Geartrain Model 1. 

 𝒁𝑷 < 𝒁𝑺 𝒁𝑷 > 𝒁𝑺 𝑍௉/𝑍ௌ 1/6 1/5 ¼ 1/3 ½ 1 2 3 4 5 6 𝑖௜/௢ 2.33 2.4 2.5 2.67 3 4 6 8 10 12 14 𝑖௔௣ −1.33 −1.4 −1.5 −1.67 −2 −3 −5 −7 −9 −11 −13 

Considering a maximum tooth ratio of up to 6 for spur gears, a gear ratio 𝑖௜/௢=14 can 
be achieved. 

  

Figure 1. Geartrain Model 1. 

5. Analysis of the Multiplier Gearbox Multiplier 
First, we will analyze the gearbox of a wind turbine for which we have the following 

design-engineering data given in Table 5: 

Table 5. Design-engineering data. 

Rated power (P): 7 MW 
Transmission ratio 𝑖௜/௢ 107 ± 2% 
Optimal rotor speed 14 rpm 
Gear safety coefficient, 𝑋ு = 𝑆ு௉/𝜎ு 1.5 
Driving machine Major shocks 
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Driven machine Uniform operation 
Φ (rotor diameter) 180 m 

where 𝑆ு௉ is the maximum allowable contact stress and 𝑋ு is the safety coefficient 
at maximum pressure. 

We assume a start-up wind speed of 4 m/s, a rated wind speed of 12 m/s, and a wind 
turbine shutdown wind speed of 25 m/s. 

It is considered that the wind delivers the rated maximum power at a wind speed of 𝑣 = 12 𝑚/𝑠, which corresponds, depending on the rotor blade, to a rotor rotational speed 
of 14 𝑟𝑝𝑚, and that the rotational speed of the generator at that time is 𝜔 = 1500 𝑟𝑝𝑚. 
Therefore, the transmission ratio will be considered to be 𝑖௜/௢ = 107 േ 2%. The diameter 
of the rotor blades is 𝐷௥௢௧௢௥ = 180 𝑚. 

The gearbox will have two stages. In each stage, there is an epicyclic geartrain type 
Model 1 Variant 6 (this implies that the ring gear is fixed). 

See Figure 2 and Figure 3 below: 

 
Figure 2. Multiplier gearbox with two stages. 

 

 

Figure 3. Kinematic diagram. 

The influence of the design parameters on the epicyclic geartrain of Stage 1 will be 
analyzed because it is the most critical, the one that bears the highest loads, and, therefore, 
where the highest stresses occur. 

Considering that the gear ratio is the same in each stage, it is considered that 𝑖் = 𝑖௜/௢ = 𝑖ଵ ∙ 𝑖ଶ, with 𝑖ଵ = 𝑖ଶ = 10.35 

The sun is smaller than the planets, i.e., 𝑍௦ < 𝑍௣. 
From the result of the analysis to be carried out, we intended to design a gearbox of 

minimum weight and minimum area and volume, capable of transmitting the rated power 
of the wind turbine P at a transmission ratio of 𝑖௜/௢ = 107 േ 2% and a safety coefficient of 𝑋ு. 
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The volume of a gear is considered to be proportional to the volume of the cylinder 
containing the gear and having the same design parameters as the gear. It is indicated 
because the gear may have a hub and ribs that lighten the volume of the cylinder contain-
ing the gear. 

Therefore: 𝑉௘௡௚௥௔௡ ≈ 𝑉௖௜௟ = 𝜋 ∙ 𝑅௖௜௟ଶ ∙ 𝑏 (1)

where 𝑅௖௜௟ is the radius of the cylinder and 𝑏 its height. See the following figure, Figure 
4: 

 
Figure 4. Cylinder. 

The diameters of the gears Dengra depend on the diameter of the corresponding shaft 
d. 

The shafts must be able to transmit a torque of magnitude T so it must have sufficient 
torsional stiffness according to the following expression: 𝑑 = ට ଷଶ∙்గ∙ீ∙(ఏ ௅⁄ )೘ೌೣర  with (𝜃 𝐿⁄ )𝑚𝑎𝑥 = 1.5°/𝑚. (2)

where 𝑑 is the shaft diameter, 𝑇 is the transmitted torque, 𝐺 is the transverse modulus 
of elasticity of the shaft material, and 𝜃 𝐿⁄  is the torsional angle per unit length that is 
allowed to avoid failure due to a high torsional angle. 

From the maximum rated power that the wind turbine can generate (which, in turn, 
depends on the size of the wind turbine blades), the diameter of the input shaft to the 
gearbox, the diameter of the intermediate shafts, and the output shaft for the Model 1 
epicyclic geartrain will be calculated. 

The pitch diameters of the gears must respect not only the value of the shaft diameter 
but also the desired transmission ratio between the input and output shafts 𝑖௜/௢, and also 
the apparent transmission ratio defined by the Willis formula 𝑖௔௣. 

The mass of each gear may be calculated from the volume of each gear and the den-
sity of the material from which it is manufactured. Thus, for gear or constituent element 
i, the mass will be calculated as 𝑚௜ = 𝜌௜ ∙ 𝑉௜ (3)

In a simplified form, for the calculation of the mass of the epicyclic geartrain, the 
gears involved and the planet carrier will be considered. The real mass of the train will be 
proportional to that obtained in the simplified form. The intervention of auxiliary constit-
uent elements, such as bearings, will not be taken into account at this stage of the analysis. 
Hence, the mass obtained from the present analysis is considered to be proportional to the 
actual mass of the epicyclic geartrain, which can be calculated with sufficient accuracy 
later. 

Once the wind turbine is in operation, the torque transmitted from the blades to the 
gearbox is calculated. The knowledge of the torque value 𝑇 allows us to dimension the 
whole drive train and, in particular, the gearbox. In this work, the most important ele-
ments of the gearbox will be dimensioned, such as the shafts and the constituent gears. 

Therefore, for the study and design of the gearbox, it is essential to know the trans-
mitted torques. 

The maximum torque on the gearbox input shaft is calculated from the maximum 
design rated power of the wind turbine. The wind turbine is considered to produce a rated 
power of P = 7 MW. From the rotor speed 𝜔௘ that produces that maximum rated power, 
the transmitted torque is obtained: 
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𝑇௜ଵ = 𝑃௠௔௫𝜔௜ଵ = 7 ∙ 10଺ 𝑀𝑊 14 ∙ 2𝜋60 𝑟𝑎𝑑𝑠   = 4774.65 kN ∙ m (4)

This torque arrives at the gearbox. It is transmitted to the first stage by the first stage 
epicyclic geartrain planet carrier. See the figure below: 𝑇஼ଵ = 𝑇௜ଵ (5)

It will be assumed that there are no frictional energy losses, which will allow us to 
calculate the torque transmitted on the shafts of this first stage using the following expres-
sions: 1.  𝑃ௌଵ + 𝑃ோଵ + 𝑃஼ଵ = 0 (6)𝑃ௌଵ is the power reaching Sun 1, 𝑃஼ଵ is the power reaching Ring 1, and 𝑃஻ଵ is the 
power reaching Planet Carrier 1 [27]. 2.  𝑇ௌଵ ∙ 𝑤ௌଵ + 𝑇ோଵ ∙ 𝑤ோଵ + 𝑇஼ଵ ∙ 𝑤஼ଵ = 0 (7)𝑇ௌଵ is the torque acting on Sun 1, 𝑇ோଵ is the torque supported by Ring 1, and 𝑇஼ଵ is 
the torque acting on Planet Carrier 1. 3.  𝑇ௌଵ + 𝑇ோଵ + 𝑇஼ଵ = 0 

(It is considered that the geartrain is running at constant speed, or it changes speed 
slowly in a way that does not significantly affect its internal kinetic energy, so static equi-
librium can be assumed). 

Considering that 𝑤ோଵ = 0, since the ring of the first stage is fixed, from Equation (7), 
the torque on the intermediate shaft and, consequently, on the output shaft of the Epicyclic 
Geartrain 1 can be obtained: 𝑇ௌଵ ∙ 𝑤ௌଵ + 𝑇஼ଵ ∙ 𝑤஼ଵ = 0 → 𝑇ௌଵ = − 𝑇஼ଵ ∙ 𝑤஼ଵ𝑤ௌଵ  

Next, the torque on the rest of the axes of each stage is calculated: 
Stage E1: Input by Planet Carrier B1 and output by Sun S1. Considering Equation (5), 

the torque in Sun 1 is: 𝑇ௌଵ = − 𝑤௜ଵ𝑤ௌଵ ∙ 𝑇஼ଵ = − 110.35 ∙ 4774.65 = −461.2748 kN ∙ m 

Stage E2: Input by Planet Carrier C2≡S1 and output by Sun S2. Then, the torque in 
Sun 2 is: 𝑇ௌଶ = − 𝑤ௌଵ𝑤ௌଶ ∙ 𝑇ௌଵ = − 110.34 ∙ (−461.765) = 44.5676 kN ∙ m 

Assuming that the material of the shafts is steel with a transverse stiffness modulus 
G = 81 GPa and imposing a maximum value to the torsional deflection (1.5°/m), the value 
of the diameters of each shaft is calculated. For the input shaft: 

𝑑௖௔௥௥௜௘௥ଵ = 𝑑௜ଵ = ቌ 32 ∙ 𝑇௜ଵ𝜋 ∙ 𝐺 ∙ 𝜃𝐿ቍଵସ = ቌ 32 ∙ 4774.65 ∙ 10ଷ𝜋 ∙ 81 ∙ 10ଽ ∙ 1.5 ∙ 𝜋180ቍଵସ = 0.3891 m = 38.91 cm 

This value is coincident with that of the planet carrier of Stage 1: 
For the intermediate shaft: 

𝑑௜௡௧ଵ = ቌ32 ∙ 𝑇ௌଵ𝜋 ∙ 𝐺 ∙ 𝜃𝐿ቍଵସ = ቌ32 ∙ (−461.2748 ∙ 10ଷ)𝜋 ∙ 81 ∙ 10ଽ ∙ 1.5 ∙ 𝜋180 ቍଵସ = 0.2169 m = 0.2169 cm 
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For the output shaft: 

𝑑௜ଶ = ቌ32 ∙ 𝑇ௌଶ𝜋 ∙ 𝐺 ∙ 𝜃𝐿ቍଵସ = ቌ 32 ∙ 44.5676 ∙ 10ଷ𝜋 ∙ 81 ∙ 10ଽ ∙ 1.5 ∙ 𝜋180ቍଵସ = 0.1209 m = 12.09 cm 

The results for the torques and shaft diameters are shown in Table 6 and Figure 5. 

Table 6. Diameters of epicyclic geartrain shafts. 

 Shaft Diameters (mm) 
di1 389.15 

dint1 216.95 
di2 120.957 

 
Stage 1 Stage 2 Torques 

 

Figure 5. Kinematic diagrams and diameters of epicyclic gear train shafts. 

Next, the pitch diameters of the gears will be calculated. These diameters depend on 
the diameter of the shafts and parameters such as the tooth modulus. 

Usually, as a first approximation, the pitch diameter of each gear will be obtained 
from the following formula: 𝐷௘௡௚௥ = 𝑑௦௛௔௙௧ + 2 ∙ ℎଵ + 2.5 ∙ 𝑚௧ + 4 ∙ 𝑚௧ (8)

As it can be seen, the diameter of each gear 𝐷௘௡௚௥ will depend on the theoretical nor-
mal modulus and ℎଵ, which is the depth of the keyway, which will be obtained from the 
shaft diameter according to the standard DIN 3990 [28]. 

However, in this work and from Equation (8), the pitch diameter of each gear will be 
obtained from the following formula: 𝐷௘௡௚௥ = 𝑑௦௛௔௙௧ + 𝐾௘௡௚௥  (9)

In Figure 6, where 𝐷௘௡௚௥ is the pitch diameter of the gear being analyzed, and it can 
be the sun, planet, or ring gear. 𝑑௦௛௔௙௧ is the diameter of the shaft supporting the gear. It 
must be sufficient to provide the required torsional stiffness. And 𝐾௘௡௚௥ is a constant pa-
rameter that will determine the size of the pitch diameter 𝐷௘௡௚௥ of the gears from the cor-
responding shaft diameter. 
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Figure 6. Pitch diameter. 

This parameter 𝐾௘௡௚௥  considers the apparent gear modulus 𝑚௧ , the tooth height, 
and the value of ℎଵ (the depth of the keyway in the hub). In this work, the influence of 
this parameter on the value of the pitch diameter will be analyzed. 

With the data of shaft diameters and 𝐾௘௡௚௥, the values of the pitch diameters of the 
gears can be obtained. 

On the other hand, the minimum number of teeth must also be considered to avoid 
interferences. As the starting data, the normal pressure angle 𝛼௡ = 20°, and the helix an-
gle 𝛽 = 20° are known for the calculation of the minimum number of teeth, the following 
expressions are used: 𝑡𝑎𝑛(𝛼௡) = 𝑡𝑎𝑛(𝛼௧) ∙ cos(𝛽) → 𝛼௧ = arctan ቆ𝑡𝑎𝑛(𝛼௡)cos(𝛽) ቇ = arctan ቆ𝑡𝑎𝑛(20°)cos(25°)ቇ = 21.88° (10)

𝑍௠௜௡ = 2 ∙ cos (𝛽)𝑠𝑒𝑛(𝛼௧)ଶ = 2 ∙ cos (25°)𝑠𝑒𝑛(21.88°)ଶ = 13.05 𝑡𝑒𝑒𝑡ℎ (11)

In addition, the apparent modulus for spur gears is: 𝑚௧ = 𝑚௡cos (𝛽) (12)

The pitch diameters of the gears must also comply with the required gear ratios. 
A value in the maximum and minimum deviation of the epicyclic gear ratio of 1% 

will be assumed; therefore: 𝑖௠௔௫ = 𝑖் ∙ 1.02 = 107 ∙ 1.02 = 109.14 → 𝑖௜௠௔௫ = √109.14య = 10.44 𝑖௠௜௡ = 𝑖் ∙ 0.98 = 107 ∙ 0.98 = 104.86 → 𝑖௜௠௜௡ = √104.86య = 10.24 

A table with possible solutions from various normalized modulus values will be elab-
orated. It must be considered that the geometrical values of gears obtained must fulfill a 
set of conditions. 

The gearbox consists of two stages, each consisting of an epicyclic planetary gear 
train. The gear ratio will be equal in each stage and will have to be contained between the 
maximum and minimum values previously calculated. 𝑖௜ଵ = 𝑖௜ଶ = ൬1 + 𝑍௖ଵ𝑍௦ଵ൰ = ൬1 + 𝑍௖ଶ𝑍௦ଶ൰ = 10.34 

The transmission ratio for the first stage, applying the Willis formula, is: 𝑖௔௣ଵ = 𝜔௦௨௡ଵ − 𝜔௖௔௥௥௜௘௥ଵ−𝜔௖௔௥௥௜௘௥ଵ = − 𝑧௥௜௡௚ଵ𝑧௦௨௡ଵ  (13)

𝑖௜/௢ ଵ = 𝜔௦௨௡ଵ𝜔௖௔௥௥௜௘௥ଵ = 1 − 𝑖௔௣ଵ (14)

The epicyclic gear Model 1 has some geometrical characteristics that must be taken 
into account. One of them is the following: 



Mathematics 2023, 11, 4137 11 of 19 
 

 

𝐷௥௜௡௚ = 𝐷௦௨௡ + 2 ∙ 𝐷௣௟௔௡௘௧ (15)

That is, the pitch diameter of the ring is equal to the sum of the pitch diameter of the 
sun plus twice the pitch diameter of the planet. 

It is also advisable to introduce as many satellites as possible so that the loads trans-
mitted in the epicyclic train are better distributed and the risk of gear tooth failure is min-
imized. 

The following geometrical conditions must be met for each stage: 
(a) Coaxiality condition, derived from Equation (15): 𝑧௥௜௡௚ = 2 ∙ 𝑧௣௟௔ + 𝑧௦௨௡ (16)

(b) Mounting condition—the number of teeth of the sun plus the ring divided by the 
number of satellites must be a whole number: 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑍௥௜௡௚ + 𝑍௦௨௡𝑛௣௟௔௡௘௧௦  with 𝑁 ∈ ℕା (17)

(c) Contiguity condition—this translates into 𝜋 ∙ 𝐷௠ > 𝑛௣௟௔௡௘௧௦ ∙ 𝐷௣௟௔௡௘௧ , that is to say, 𝜋2 ∙ 𝑍௥௜௡௚ + 𝑍ௌ௨௡𝑍௉௟௔௡௘௧ + 2 cos 𝛽 > 𝑛௣௟௔௡௘௧௦ (18)

(d) Maximum number of planets: 𝑛௣௟௔௡௘௧௦ = ଷ଺଴°ଶ∙(ଽ଴°ି௔௥௖௢௦ ೥೛೗ೌ೙೐೟ శ మ೥ೝ೔೙೒శ೥ೞೠ೙) 
(e) To avoid interference: 𝑧௠௜௡ = 2 ∙ 𝑐𝑜𝑠𝛽sin (𝛼௧)ଶ (19)

For Stage 1, see Figure 7: 

  
Figure 7. Planets, sun, and ring for Stage 1. 

Calculation of the Weight of the Epicyclic Gear Model 1 
In a simplified form, the weight of the epicyclic gear, related to the mass of the train, 

depends on the volume of each of its elements. It is proportional to the volume of the ring 
gear assembly, the planets, the sun, the planet carrier, and the auxiliary elements such as 
bearings and bolts. Therefore: 𝑊௠௢ௗ௘௟ଵ = 𝑚௠௢ௗ௘௟ ∙ 𝑔 (20)𝑚௠௢ௗ௘௟ଵ = 𝑉௠௢ௗ௘௟ଵ ∙ 𝜌 (21)
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With 𝜌 being the density of the material or materials used in the manufacture of the 
gears and other constituent elements of the epicyclic train. 

On the other hand: 𝑉 ௥௔௜௡ଵ = 𝑉௥௜௡௚ଵ + 𝑉௣௟௔௡௘௧ଵ + 𝑉௦௨௡ଵ + 𝑉௖௔௥௥௜௘௥ଵ (22)

where: 

𝑉௥௜௡௚ଵ = 𝜋 ∙ ቂ൫𝐷௦௨௡ଵ + 2 ∙ 𝐷௣௟௔௡௘௧ଵ + 8 ∙ 𝑚௡൯ଶ − ൫𝐷௦௨௡ଵ + 2 ∙ 𝐷௣௟௔௡௘௧ଵ൯ଶቃ ∙ 𝑏4 ∙ 1000ଷ (𝑚ଷ) 

𝑉௦௨௡ଵ = 𝜋 ∙ (𝐷௦௨௡ଵ)ଶ ∙ 𝑏4 ∙ 1000ଷ (𝑚ଷ) 

𝑉௣௟௔௡௘௧ଵ = 𝜋 ∙ ൫𝐷௣௟௔௡௘௧ଵ൯ଶ ∙ 𝑏4 ∙ 1000ଷ ∙ 𝑛௣௟௔௡௘௧ (𝑚ଷ) 

𝑉௖௔௥௥௜௘௥ଵ = 2 ∙ 𝜋 ∙ ൫𝐷௦௨௡ଵ + 𝐷௣௟௔௡௘௧ଵ൯ଶ ∙ 0.1 ∙ 𝑏4 ∙ 1000ଷ (𝑚ଷ) 

In the above expressions, 𝑏 is the width of the tooth, 𝐷௦௨௡ଵ the pitch diameter of the 
sun at Stage 1, 𝐷௣௟௔௡௘௧ଵthe pitch diameter of a planet at Stage 1, 𝑚௡ the normal modulus, 
and 𝑛௣௟௔௡௘௧ the number of planets at Stage 1. Carrier for epicyclic geartrain Model 1 is 
shown in Figure 8: 

 
Figure 8. Planet carrier for epicyclic geartrain Model 1. 

The determinant value to fulfil the geometrical conditions (a), (b), (c), and (d) is the 
pitch diameter of each gear, from which the number of teeth of the gears will be calculated. 
This, in turn, is calculated from the diameter of the corresponding shaft; see Equation (9): 𝐷௘௡௚௥ = 𝑑௦௛௔௙௧ + 𝐾௘௡௚௥ 

For small values of 𝐾௘௡௚௥, the value of 𝐷௘௡௚௥ is also small. This circumstance means 
that the thickness of tooth “𝑏 ”, in order to meet the sizing criteria for a material with 
known strength characteristics, is very high. These criteria are: 

(a) Tension at the base of the tooth: 𝜎ி ≤ ௌಷು௑ಷ  

(b) Surface pressure on the tooth: 𝜎ு ≤ ௌಹು௑ಹమ  

This means that, to obtain reasonable values of “𝑏”, it is necessary to increase the 
value of 𝐾௘௡௚௥. 

Next, a series of results for the gear diameters and for the mass of the epicyclic gear-
train of Stage 1 will be obtained from the following values of normal moduli: 𝑚௡(𝑚𝑚) 10 15 20 25 30 35 40 45 50 60 70 80 90 100 
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The relationship between 𝑚௧ and 𝑚௡ is determined by Equation (3). For the calcu-
lation of 𝜎ு, the stress supported by the teeth due to surface pressure, we use the follow-
ing expression: 

𝜎ு = 𝑍ு ∙ 𝑍ா ∙ 𝑍ఌ ∙ 𝑍ఉ ∙ ඨ 𝐹௧𝑑ଵ ∙ 𝑏ு ∙ 𝑖 + 1𝑖 ∙ ට𝐾஺ ∙ 𝐾௏ ∙ 𝐾ுఈ ∙ 𝐾ுఉ ( 𝑁𝑚𝑚ଶ) (23)

Considering that the following condition must be fulfilled: 𝜎ு ≤ 𝑆ு௉𝑋ுଶ  (24)

where 𝑆ு௉  is the maximum allowable contact stress and 𝑋ு  is the safety coefficient at 
maximum pressure. It will be assumed that 𝑋ு = 1.5. 

From Equation (14), 𝑏ு (the tooth width to avoid surface pressure failure) will be 
obtained. The calculation of the tooth width 𝑏ு follows an iterative process. To start the 
iterative process, a starting material with known allowable stresses 𝑆ு௉, an estimate of the 
type of lubricant required, and an initial modulus will be assumed. The stresses appearing 
at the tooth-to-tooth contact 𝜎ு due to pressure and at the tooth base 𝜎ி due to bending 
will be calculated. These stresses are compared with the allowable stresses of the material. 

In Equation (13): 𝐹௧ is the transmitted tangential force. It is calculated as 𝐹௧ = ௉௡∙ఠభ∙௥భ , with 𝜔ଵ as the 
angular velocity of the pinion (sun), 𝑛 the number of planets, 𝑟ଵ the radius of the pinion 
(sun), and 𝑑ଵ = 𝑧ଵ ∙ 𝑚௧  the pitch diameter of the pinion. 𝑏ு  is the width of the pinion 

tooth to resist the surface pressure. Gear ratio 𝑖. 𝑍ு = ට ଶ∙௖௢௦ఉ್௦௜௡ఈ೟∙௖௢௦ఈ೟ is the geometrical coef-

ficient (𝛼௧ is the apparent pressure angle and 𝛽௕ is the helix angle at the base of the tooth). 𝑍ா = ඨ ଵగ∙ቆభషഌభమಶభ ାభషഌమమಶమ ቇ is the elastic coefficient with 𝜈 and Ε being the Poisson’s coefficient 

and the elastic coefficient of the wheel and pinion. 𝑍ఌ(𝑏) is the driving coefficient. It de-
pends on the tooth width. 𝑍ఉ = ଵඥ௖௢௦ఉ is the helix angle factor. 𝐾஺ is the application coef-

ficient. It is consulted in tables. 𝐾௏(𝑏) = 1 + ቆ ௄భ௄ಲ∙ಷ೟್ + 𝐾ଶቇ ∙ ௩∙௭భଵ଴଴ ∙ 𝐾ଷ ∙ ට ௜మଵା௜మ is the dynamic 

coefficient. The constants 𝐾ଵ, 𝐾ଶ, and 𝐾ଷ depend on the tooth type, finish quality, rota-
tional speed, number of teeth, and gear ratio. 𝐾ுఈ is the transverse load distribution co-
efficient. 𝐾ுఉ is the longitudinal load distribution coefficient. The tooth width is obtained 
by isolating from (23): 

𝑏ு = ቆ𝑍ு ∙ 𝑍ா ∙ 𝑍ఌ(𝑏) ∙ 𝑍ఉ𝜎ு ቇଶ ∙ 𝐹௧𝑑ଵ ∙ ∙ 𝑖 + 1𝑖 ∙ 𝐾஺ ∙ 𝐾௏(𝑏) ∙ 𝐾ுఈ ∙ 𝐾ுఉ(𝑏) (25)

To check for failure by breakage at the base of the tooth, the bending stress supported 
by the teeth is calculated: 𝜎ி = 𝐹௧𝑚௡ ∙ 𝑏ி ∙ 𝑌ி௔ ∙ 𝑌ఌ ∙ 𝑌ௌ௔ ∙ 𝑌ఉ ∙ 𝑌஻ ∙ 𝐾஺ ∙ 𝐾௏ ∙ 𝐾ிఈ ∙ 𝐾ிఉ ( 𝑁𝑚𝑚ଶ) (26)

where 𝑌ி௔ = 38.88 ∙ 𝑧ଵ௩ିଵ.ଶଽ + 2.11  is the shape coefficient, and 𝑧ଵ௩ = ௭భ௖௢௦ఉయ  is the virtual 

number of teeth. 𝑌ఌ = 0.25 + ଴.଻ହఌഀ  is the driving coefficient. 𝜀ఈ is the driving ratio. 𝑌ௌ௔ =0.96 + 0.54 ∙ log (𝑧ଵ௩) is the stress concentrator coefficient. 𝑌ఉ = 1 − 𝜀ఉ ∙ ఉଵଶ଴ ° is the slope 
coefficient. 𝑌஻ = 1 is the hoop thickness coefficient. 𝐾ிఉ = 𝐾ுఉேಷ is the longitudinal load 
distribution coefficient. 𝐾ிఈ is the transverse load distribution coefficient. It depends on 
the finish quality (𝑄௜௦௢ = 5 − 6). Defining the tooth fracture safety coefficient as: 



Mathematics 2023, 11, 4137 14 of 19 
 

 

𝑋ி = 𝑆ி௉𝜎ி  (27)

The process of calculating the tooth width “𝑏” ends when 𝑋ி ≥ 𝑋ு. 

6. Results and Discussion 
For simplicity, only the first stage epicyclic gear train will be analyzed. The following 

design data in Table 7 are assumed: 

Table 7. Design data for epicyclic gear trains stage 1. 

P 7 MW 𝜔௖௔௥௥௜௘௥ଵ 14 rpm 𝜔௦௨௡ଵ 144.9 rpm 𝑖௔௣ଵ −9.35 𝑖ாଵ 10.35 𝑖் 107.1429 

From the solution of Equations (1)–(27), the values represented in the following tables 
are obtained, which provide data on the characteristics of the gears forming the epicyclic 
train of Stage 1. 

Table 8 shows, for different values of the normal values of the normal modulus mn, 
the values of the diameter of the input shaft to the epicyclic gear train of Stage 1, which 
correspond to the planet carrier (dcarr1), diameter of the sun axis in Stage 1 (ds1), the pitch 
diameter of the sun in Stage 1 (Ds1), the number of teeth of the sun (zs1), of the planets (zp1) 
and ring at Stage 1 (zcor1), the apparent gear ratio in Stage 1 (iap1), the tooth width for all 
Stage 1 gears (b) and a proportional estimate of the weight of the epicyclic gear train (W). 
It can be noticed that, for any value of mn, the value of the tooth width is excessive. More-
over, the pitch diameter Ds1 is small due to the low value of 𝐾௘௡௚௥—see Equation (9)— 
which means that the tooth width is too large to comply with the safety coefficients (Equa-
tions (24) and (27)) and the weight of the planetary train of the first stage is excessive. In 
addition, from the normal modulus 25, interference in the sun of Stage 1 is reached—see 
Equation (19)—so that it is not possible to use larger moduli. 

Table 8. For Kengr1=6·mt, and hardening steel. 

 dcarr1 ds1 Ds1 zs1 zp1 zcor1 iap1 b W 
mn = 10 389.15 216.95 280.80 26 109 244 9.38 >2500 No 
mn = 15 389.15 216.95 312.73 20 84 188 9.4 >2500 No 
mn = 20 389.15 216.95 344.65 16 67 150 9.37 >2500 No 
mn = 25 389.15 216.95 376.58 14 59 132 9.42 >2500 No 
mn = 30 389.15 216.95 408.51 14 55 123 9.46 >2500 No 

It is concluded that 𝐾௘௡௚௥ = 6 ∙ 𝑚𝑡 is useless. The data obtained correspond to a case 
hardening steel which has very high permissible stress limits. Any other material with 
lower levels of stress limits would worsen the results. The next step is to increase the value 
of 𝐾௘௡௚௥ and the results are shown in Tables 9–11. The pitch diameters (volume), teeth 
width, and mass of the epicyclic geartrain have been obtained. 

Table 9. For 𝐾௘௡௚௥ଶ = 15 ∙ 𝑚௧. These data are obtained *. 

 dcarrier1 ds1 Ds1 zs1 zp1 zring1 iap1 b2 M2 
mn = 10 389.15 216.95 376.58 35 146 327  >2500 Sin 
mn = 15 389.15 216.95 456.39 29 121 271  >2500 Sin 
mn = 20 389.15 216.95 536.21 25 105 234  >2500 Sin 
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mn = 25 389.15 216.95 616.02 23 96 215  742 138.44 
mn = 30 389.15 216.95 695.83 22 92 206  467 115.60 
mn = 35 389.15 216.95 775.65 21 88 196  353 109.16 
mn = 40 389.15 216.95 855.46 20 84 187  305 112.61 
mn = 45 389.15 216.95 935.27 20 84 187  248 115.87 
mn = 50 389.15 216.95 1015. 19 880 178  227 116.64 
mn = 60 389.15 216.95 1174.7 18 75 168  178 119.39 
mn = 70 389.15 216.95 1334.3 18 75 168  130 118.64 
mn = 80 389.15 216.95 1494 18 75 168  99 117.04 
mn = 90 389.15 216.95 1652.6 17 71 159  87 117.75 

mn = 100 389.15 216.95 1813.2 17 71 159  69 115.84 
* Same material as in Table 11 

Table 10. For 𝐾௘௡௚௥ଷ = 20 ∙ 𝑚௧. These data are obtained *. 

 dcarrier1 ds1 Ds1 zs1 zp1 zring iap1 b3 M3 
mn = 10 389.15 216.95 429.79 40 167 374 9.35 >2500 Sin 
mn = 15 389.15 216.95 536.21 34 142 318 9.35 >2500 Sin 
mn = 20 389.15 216.95 642.62 30 126 282 9.4 611 121.41 
mn = 25 389.15 216.95 749.04 28 117 262 9.35 391 106.66 
mn = 30 389.15 216.95 855.46 27 113 253 9.37 274 100.65 
mn = 35 389.15 216.95 961.88 26 109 244 9.38 230 107.01 
mn = 40 389.15 216.95 1068.3 25 105 235 9.4 196 110.91 
mn = 45 389.15 216.95 1174.7 25 105 235 9.4 157 112.37 
mn = 50 389.15 216.95 1281.1 24 100 224 9.33 139 112.15 
mn = 60 389.15 216.95 1494.0 23 96 215 9.34 105 112.68 
mn = 70 389.15 216.95 1706.8 23 96 215 9.34 76 110.62 
mn = 80 389.15 216.95 1919.6 23 96 215 9.34 57 108.85 
mn = 90 389.15 216.95 2132.5 22 92 206 9.36 49 108.69 
mn = 100 389.15 216.95 2345.3 22 92 206 9.36 39 107.21 

* Same material as in Table 11 

Table 11. For 𝐾௘௡௚௥ସ = 30 ∙ 𝑚௧. These data are obtained *. 

 dcarrier1 ds1 Ds1 zs1 zp1 zring iap1 b4 M4 
mn = 10 389.15 216.95 536.21 50 209 468 9.36 >2500 Sin 
mn = 15 389.15 216.95 695.83 44 184 412 9.36 443 105.26 
mn = 20 389.15 216.95 855.46 40 167 374 9.35 274 95.69 
mn = 25 389.15 216.95 1015.1 38 159 356 9.36 194 96.22 
mn = 30 389.15 216.95 1174.7 37 155 347 9.37 151 102.17 
mn = 35 389.15 216.95 1334.3 36 151 338 9.38 120 104.09 
mn = 40 389.15 216.95 1494 35 146 327 9.34 99 105.55 
mn = 45 389.15 216.95 1653.6 35 146 327 9.34 78 105.74 
mn = 50 389.15 216.95 1813.2 34 142 318 9.35 64 105.99 
mn = 60 389.15 216.95 2132.5 33 138 309 9.36 49 105.46 
mn = 70 389.15 216.95 2451.7 33 138 309 9.36 36 104.2 
mn = 80 389.15 216.95 2771.0 33 138 309 9.36 27 103.05 
mn = 90 389.15 216.95 3090.2 32 134 300 9.37 23 102.53 
mn = 100 389.15 216.95 3409.5 32 134 300 9.37 18 101.69 

* alloy steel, hardened and tempered. 
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Figures 9 and 10 relate the modulus to the width of the tooth and to the weight of the 
epicyclic gear train of Stage 1, respectively. 

 
Figure 9. Tooth width and normal gear module. 

From Figure 9, it can be seen that the tooth width decreases when increasing the 
module and the pitch diameter through the parameter 𝐾௘௡௚௥. The larger the 𝐾௘௡௚௥ (𝐾௘௡௚௥ସ 
> 𝐾௘௡௚௥ଷ > 𝐾௘௡௚௥ଶ) is, the smaller the tooth width is. This result has a major influence on 
the epicyclic geartrain (which is one of the objectives pursued). 

 
Figure 10. Train weight width and normal gear module. 

From Figures 9 and 10, it can be notice that not all modules are usable, either because 
they give rise to interferences in the teeth or because the width “b” of the teeth exceeds 
the value of 2D, which is the recommended value. 

In Figure 10, there is an aspect that is not intuitive and very important: when the size 
of the pitch diameter increases (𝐾௘௡௚௥ସ > 𝐾௘௡௚௥ଷ > 𝐾௘௡௚௥ଶ), the weight decreases. 

Moreover, the weight first decreases, and then it increases as the modulus increases. 
This means that there is a value for 𝐾௘௡௚௥ that minimizes the weight of the epicyclic 

gear train by acting on the value of the diameters and the tooth width. 
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It is also observed that the weight increases above a certain value of the normal mod-
ulus for each 𝐾௘௡௚௥. 

In Figure 11, it is shown that the larger the pitch diameter is, the higher the bending 
strength at the base of the tooth is. 

 
Figure 11. SFP and normal module. 

On the other hand, the bending strength at the base of the tooth decreases slightly as 
the normal tooth modulus increases. 

In Figure 12, it is shown that the greater the pitch diameter, the higher the surface 
pressure resistant limit. On the other hand, the bending strength at the base of the tooth 
increases slightly as the normal tooth modulus increases. 

 
Figure 12. SHP and normal module. 

7. Conclusions 
For very small values of 𝐾௘௡௚௥ (with 𝐾௘௡௚௥ଵ = 6 ∙ 𝑚௧), the resulting gearing is also 

too small and results in the width of tooth “b” being too large to support the stresses gen-
erated in the teeth. 

When 𝐾௘௡௚௥ is small (such as 𝐾௘௡௚௥ଵ), the strength properties of the material must be 
higher; otherwise, the geartrain will have interference or an excessive tooth width, and, 
thus, an unacceptable mass of the epicyclic gear train, and, therefore, the compactness 
target of the epicyclic gear train is unattainable. 

This means that the pitch diameter is also very small. This determines the number of 
gear teeth and the width of the gears. For a small pitch diameter, if large modules are 
used, the number of teeth is too small and causes interference. 
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If the module is reduced by taking low values, the number of teeth increases, over-
coming the problem of interference, but the width of the teeth is too wide to withstand 
the stresses generated. This means that the volume and weight of the gear train is, there-
fore, not operational, or useful. 

This means that the volume and weight of the gear train is excessive, and, therefore, 
these modulus values do not serve to meet our objective of determining a minimum-
weight planetary gear train. 

According to this finding, the value of the pitch diameter must be increased. 
It has also been observed that the width of tooth “b” decreases when the pitch diam-

eter of the gears is increased (this means that 𝐾௘௡௚௥ increases ). The larger the 𝐾௘௡௚௥ 
(𝐾௘௡௚௥ସ > 𝐾௘௡௚௥ଷ > 𝐾௘௡௚௥ଶ) is, the smaller the tooth width is. This has an impact on the 
mass value of the epicyclic train and, therefore, helps to achieve the desired compactness 
of the epicyclic train. 

Therefore, this last result leads to a lower weight of the epicyclic train, as shown in 
Figure 8, which met the paper’s objectives. However, there is a trade-off between the value 
of the tooth width and the volume of the epicyclic train, because, as 𝐾௘௡௚௥ increases, the 
diameter of the gears also increases, which can lead into an increase in gear train volume, 
which is an issue to be considered if compact gear trains are to be obtained. 

Another item observed is that the tooth width decreases as the value of the normal 
modulus increases. 

On the other hand, not all moduli are usable, either because they give rise to interfer-
ences in the toothing or because the width “b” is too large or too small (b > 2D, or b << D, 
far from the recommended values). 

It can also be seen that, when the size of the pitch diameter increases (𝐾௘௡௚௥ସ > 𝐾௘௡௚௥ଷ 
> 𝐾௘௡௚௥ଶ), the weight decreases. 

This means that there is a value for 𝐾௘௡௚௥ that minimizes the weight of the gears by 
acting on the value of the diameters and the value of the tooth width. 

Moreover, there is a value for 𝐾௘௡௚௥ that minimizes the volume of the gears, which, 
altogether, leads to a change in the weight and the volume of the Epicyclic Geartrain 
Model 1. 

Finally, the Epicyclic Geartrain Model 1 allows us to obtain the lowest volumes, the 
lowest weight, and, therefore, the maximum compactness and energy density compared 
to other epicyclic geartrain models. 
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