
Computer Networks 235 (2023) 109961

Available online 9 August 2023
1389-1286/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A DASH server-side delay-based representation switching solution to
improve the quality of experience for low-latency live video streaming

Román Belda a, Pau Arce a, Juan Carlos Guerri a,*, Ismael de Fez b

a Institute of Telecommunications and Multimedia Applications, Universitat Politècnica de València, Spain
b Universidad Internacional de Valencia, Spain

A R T I C L E I N F O

Keywords:
DASH low latency
Live streaming
Testbed
Multimedia software open source
Performance evaluation

A B S T R A C T

This work addresses the integration of real-time transmission systems, including IP cameras and production
systems (like OBS or vMix), that use protocols such as RTSP (Real Time Streaming Protocol) or SRT (Secure
Reliable Transport), with content distribution technology based on LL-DASH (Low Latency DASH -Dynamic
Adaptive Streaming over HTTP-), taking advantage of the fact that DASH offers significant well-known advan
tages for content distribution over the Internet and via CDNs (Content Delivery Networks). Considering the
limitations of the LL-DASH standard regarding the adaptation to network conditions, this paper proposes a new
solution called Server-Side Representation Switching (SSRS). SSRS uses an approach based on the server
measuring the delay in the requests made by clients, whose variation may be due to a decrease in bandwidth, as
occurs in Wi-Fi networks with a high number of clients. To evaluate the effectiveness of the proposed solution, a
testbed has been developed that allows the performance evaluation of both the LL-DASH system and the solution
based on server-side decision-making. In addition, the developed solution has been compared with known al
gorithms (L2A and LoL+) integrated into the Dash.js player. The results show that the Server-Side Representation
Switching solution offers a good trade-off between the transmitted quality and the final delay measured at the
client, compared to the other algorithms evaluated. Moreover, it holds the advantage of being straightforward to
implement and does not require any modifications to the players used.

• Networks • Network performance evaluation • Network performance analysis.

1. Introduction

It is well known that multimedia content distribution, and in
particular video streaming, currently dominates global Internet traffic,
and its importance will be even greater in the future. In this scenario,
HTTP-based content distribution systems, such as the DASH (Dynamic
Adaptive Streaming over HTTP) standard [1], revolutionized the way
video content is streamed on VoD platforms. Its popularity can be
attributed to its scalability, universality, and compatibility with network
equipment [2]. DASH allows for the use of standard web servers for
content distribution over HTTP (Hypertext Transfer Protocol), enabling
the full benefits of CDNs (Content Delivery Network). Additionally, web
technology can be played on browsers, and multimedia traffic is trans
parent to intermediate routers because of the widespread use of HTTP in
Internet browsing.

Specifically, the main advantages of using DASH can be summarized
in three main points: 1) Reduced management complexity; 2) Cost

reduction; and 3) Improved scalability. Regarding the first advantage,
by allowing HTTP video transmission using TCP ports 80 and 443 and
eliminating the need to deploy and manage a separate caching infra
structure, the management complexity is highly reduced. In addition, in
most corporate networks, some level of restriction at the protocol and
port level are used to minimize the likelihood of attacks. However, ports
80 and 443 are almost always open for generic web traffic flow and
therefore for HTTP video. Likewise, ports using other video streaming
protocols such as RTMP, SRT, RTSP, etc. are not always open, hindering
or blocking these protocols.

With regards to cost-reduction, non-HTTP transmission protocols
increase the cost of the infrastructure as they require specific hardware
and software in the server, forming a parallel infrastructure to the
network of the rest of the services. In addition, inefficient content
caching can increase the amount of bandwidth required to transmit
popular videos over the network. However, HTTP technology leverages
the existing HTTP server network, allowing organizations to save costs

* Corresponding author.
E-mail address: jcguerri@iteam.upv.es (J.C. Guerri).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2023.109961
Received 14 April 2023; Received in revised form 12 July 2023; Accepted 31 July 2023

mailto:jcguerri@iteam.upv.es
www.sciencedirect.com/science/journal/13891286
https://www.elsevier.com/locate/comnet
https://doi.org/10.1016/j.comnet.2023.109961
https://doi.org/10.1016/j.comnet.2023.109961
https://doi.org/10.1016/j.comnet.2023.109961
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computer Networks 235 (2023) 109961

2

that would otherwise be spent on specialized hardware and software.
And as access to video content increases, HTTP caching proxies
dramatically reduce bandwidth costs over accessing uncached video.
Finally, regarding improved scalability, the ubiquity of HTTP servers
and the protocol’s native support for perimeter caching make HTTP the
ideal choice for streaming large-scale live events and on-demand content
for very frequent access.

As more and more streaming platforms emerge, including those that
offer live content (such as Youtube Live or Twitch, among others), low
latency solutions are becoming increasingly necessary. Proposals for
low-latency adaptive HTTP streaming, such as Low-Latency HLS (HTTP
Live Streaming) [3] and Low-Latency DASH [4], are being developed to
minimize the delay from video packetization to playback. However,
other factors can contribute to added delays, such as encoding delay or
acquisition delay through protocols like RTMP (Real Time Messaging
Protocol), SRT (Secure Reliable Transport), or RTSP (Real-Time
Streaming Protocol). These protocols are widely used in commercial IP
(Internet Protocol) cameras and real-time content distribution systems
like Teams, Zoom, IPTV, OBS, and vMix. While DASH relies on clients
requesting video segments, LL-DASH pushes content while it is being
generated, making it unsuitable for standard web servers [5]. Server and
encoder implementations can be found in literature and online re
positories [6], but there are no IP cameras that support DASH or
LL-DASH at a commercial level, making the study and development in
this field interesting.

Another key aspect to consider in the context of low-latency
streaming is the Quality of Experience (QoE) of the viewers. In tradi
tional VoD (Video on Demand) streaming, buffering and slow start times
are common issues that can lead to a poor QoE. In live streaming,
additional challenges arise due to the real-time nature of the content and
the need for low latency. As such, it is important to develop strategies to
minimize rebuffering and maximize QoE in low-latency streaming sce
narios. This could include techniques such as predictive buffering, dy
namic bit rate adaptation, and network-aware streaming algorithms.

Also, another process that has to be properly evaluated and config
ured in live streaming systems to achieve a trade-off between the delay
introduced and the quality observed, is the transcoding process. This
task will allow to properly adapt the input protocol (RTSP, SRT, …) and
the video characteristics (codec, bitrate, resolution, …) to the DASH-
based distribution systems.

In this regard, this paper presents a testbed for LL-DASH [7], aiming
to explore the factors that contribute to end-to-end delay. The evalua
tion of the latency for different video origins and manifest parameters
will help researchers and developers improve the performance of
streaming platforms. This is particularly important in use cases that
require interactivity, like e-learning, online conferences, and gaming. By
minimizing delays, the user experience can be greatly enhanced, leading
to increased engagement and improved satisfaction. As the world of
streaming platforms continues to expand, the demand for live content
and interactivity is increasing, which makes the development of
low-latency solutions for HTTP streaming a primary concern. Further
more, this work also proposes a server-based solution for Low Latency
video streaming whose aim is to improve the Quality of Experience of
the users.

The rest of the paper is organized as follows: Section 2 presents the
state of the art related to LL-DASH streaming technologies; Section 3
presents the main factors and protocols related to latency, such as
encoding, segmentation or network delivery; Section 4 explains the Low
Latency solution proposed in this work; Section 5 introduces the pro
posed testbed, while Section 6 presents the evaluation carried out using
the aforementioned testbed; Finally, Section 7 summarizes the main
conclusions as well as the future work.

2. State of the art

Low-Latency DASH technology is based on a technique called

``chunked transfer encoding’’, which is used in HTTP to send data as a
series of chunks, rather than as a single response. Thus, the server splits
the response into smaller chunks and sends them to the client, each
preceded by a size indicator. This allows the client to begin processing
the response before the server has finished sending it, resulting in faster
and more efficient data transmission. The disadvantage of using this
type of transfer, which allows segments to be generated and sent
simultaneously, is that traditional adaptation algorithms do not
correctly calculate the available bandwidth.

Therefore, there are different solutions in the literature dealing with
this problem. For instance, in Bentaleb et al. [8] authors present the
ACTE (Adaptive Streaming with Chunked Transfer Encoding) algorithm,
which uses a sliding window and an online linear adaptive filter as an
alternative to overcome this drawback. The same authors present in
Bentaleb et al. [9] the Automated Model for Prediction (AMP) algo
rithm, which utilizes a set of bandwidth prediction models that are
dynamically selected to optimize performance in low latency scenarios.
Along the same lines, in Lyko et al. [10] it is presented a new algorithm
called Llama (Low Latency Adaptive Media Algorithm). This algorithm
uses two independent measures of throughput on different time scales:
one to decide whether to decrease the video quality and one to decide
about increasing the video quality. Other algorithms to highlight
regarding low latency scenarios are L2A [11], LoL+ [12], and Stallion
[13]. Precisely both the L2A and LoL+ algorithms are used in this work
in order to carry a comparison regarding the proposed solution. For that
reason, these algorithms will be further explained in Section 5.2.2.

Analyzing the most widely used DASH players, it is important to
highlight Dash.js, the result of an initiative of the DASH Industry Forum.
Aforementioned algorithms, such as L2A and LoL+, are integrated in
this player. In [14] it is presented an implementation of an algorithm
called SARA (Segment Aware Rate Adaptation), in which VBR (Variable
Bitrate) coding is considered and therefore with a different size of
generated segments. However, this algorithm is not oriented for low
latency scenarios. On the contrary, Li et al. [15] presents a solution
called Fleet, which has also been implemented in Dash.js and it is ori
ented for low-latency live video streaming. Fleet is based on a stochastic
model predictive controller that considers networks conditions and
client states in order to carry out bitrate adaptation. Specifically, Fleet
uses a bandwidth measurement module, based on an HTTP chunk
measurement, and a bitrate adaptation module which employs a prac
tical evaluation model. In the same line, a very complete study regarding
evaluation of Dash.js for low-latency scenarios can be found in Taraghi
et al. [16], which presents a framework to assess live streaming.
Although real scenarios are difficult to assess, the results presented in
this paper are obtained using an actual development of an LL-DASH
server and also using Dash.js at the client. However, network conges
tion, packet loss and bandwidth constraints are simulated in order to
evaluate the performance of the proposed approach in specific network
conditions. In this regard, Arunruangsirilert et al. [17] presents a per
formance evaluation of low-latency live streaming using MPEG-DASH
over a commercial 5 G network in Thailand.

Regarding live streaming, one of the most used protocols nowadays
is SRT, which appeared in order to overcome different limitations of
broadcast communications. In [18] authors implement an adaptive
bitrate algorithm for the SRT protocol. In this way, they manage to
include one of the advantages of DASH technology, which is the adap
tation of the bitrate depending on the state of congestion. The same
authors focus the study in Viola et al. [19] considering the need to use
the ``chunked transfer encoding’’ transmission proposed in CMAF
(Common Media Application Format) to reduce the delay in 5G network
applications. A similar solution is proposed in Li et al. [20], where it is
presented a design a fuzzy logic controller based ABR for low latency
live video streaming with Chunked Transfer Encoding (CTE). In order to
make bitrate decisions, the algorithm takes into consideration player
buffer size, throughput mean and throughput standard deviation.

From the point of view of end-to-end delay, in Tashtarian et al. [21]

R. Belda et al.

Computer Networks 235 (2023) 109961

3

the authors focus on providing an end-to-end solution through what they
call HxL3 architecture (HTTP/x-based Low-Latency Live streaming ar
chitecture). This solution is agnostic to the codecs (H.264, H.265, …),
application protocols (HTTP/1.1 or HTTP/2.0), streaming format
(DASH, HLS), transport protocol (TCP -Transport Control Protocol- or
UDP -User Datagram Protocol-) and CDNs. And in Bouzakaria et al. [22],
the authors focus primarily on the study of the overhead introduced by
streaming content using LL-DASH. The use of transmission using
``chunked transfer encoding’’ introduces an increase in headers and
therefore overhead in the network.

Regarding the different low latency solutions, in Durak et al. [23] an
in-depth comparison is made between the low latency solution proposed
by Apple (HLS LL) in 2019, the standard LL-DASH solution of 2019 and
Low-latency HTTP Live Streaming (LHLS) that was first introduced by
Twitter’s Periscope in 2018 and then improved by Twitch in 2019, also
describing the differences between the different solutions. Another
work focused on low latency scenarios for HLS is [24], where the authors
integrate existing LL-DASH ABR schemes in hls.js video player.

Unlike other papers that also present results based on their own test-
beds [21,22,25], this work presents an open-source web service that
supports chunked transmissions as well as FFmpeg scripts to quickly
deploy a LL-DASH evaluation scenario. In addition, this work is an
extension of previous work carried out by the authors regarding the
DASH protocol, specifically on the evaluation of QoE (Quality of Expe
rience) in DASH [26] and the impact of DASH streaming on Energy
Efficient Ethernet [27].

3. Low latency: factors and protocols

According to a report by Bitmovin [28], on the main concerns of
companies in the video streaming sector, the problem of latency comes
first (41%), second is the controlling cost (e.g., bandwidth, storage,)
(33%), and third is device compatibility (32%).

Low latency definition depends to a large extent on the application in
which the distribution system is framed. In fact, depending on the
application (video on demand, live streaming, videoconferencing, etc.)
the latency requirements (in addition to bandwidth requirements, loss
tolerance, etc.) are different. To give an example at each end of the
multimedia applications, it can be seen how video conferencing or

security applications need much lower latency than VoD applications
(such as Netflix, HBO, Youtube…) since video conferencing is an
interactive and real-time application with very demanding delay re
quirements (around 150–200 ms).

Generally, real-time, ultra-low latency and low latency solutions
involve using protocols such as WebRTC, RTP/RTSP or SRT (protocols
used by applications such as Teams, Zoom, Skype, or IPTV services)
while, at the other end, HLS and DASH protocols can be found that offer
latencies in the order of 20–30 s typically (used by applications such as
Netflix, Youtube, HBO, etc.). However, it can be seen that within the
1–5 s range, any protocol can be utilized. At this point, it is important to
note that while WebRTC or RTP/RTSP protocols are implicitly designed
to offer these low latency performances, HLS or DASH protocols need
new functionalities both on the encoding and on the packaging side.

In a simplified form, and considering the presented scenario, the
main processes that introduce delay in the system are shown in Fig. 1. Of
the different processes involved, this work will focus on the transcoding,
segmentation, and communication processes between the player and the
server. Because there is no control over the capture process, and the
video may arrive with different protocols and encoding parameters
(frame rate, bitrate, resolution, etc.), it is not possible to carry out seg
mentation, and a transcoding process is necessary beforehand.

The main aspects that contribute to the final latency observed in the
player and depicted in Fig. 1 are discussed below.

3.1. Encoding

The first aspect to decide is the type of encoder that can be used to
carry out the encoding while minimizing delay. Although previous
studies have analyzed the efficiency of different encoders and the
resulting quality, such as the R-D (rate-distortion) curve, a study is
conducted where both the VMAF (Video MultiMethod Assessment

Fig. 1. Processes introducing delay in multimedia transmission.

Fig. 2. Frames of the videos used to perform encoding analysis.

Fig. 3. Evaluation of spatial information (SI) and temporal information (TI).

R. Belda et al.

Computer Networks 235 (2023) 109961

4

Fusion) and the encoding time will be considered as a comparative
measure to assess the feasibility of encoders. Currently, there are
different encoders widely used by devices such as cell phones, cameras,
tablets, etc., such as H.264/AVC (Advanced Video Coding) and H.265/
HEVC (High Efficiency Video Coding), and recently the specifications of
other encoders, such as H.266/VVC (Versatile Video Coding), have been
published.

To conduct the study, 10 videos have been selected, obtained from
Blender (www.blender.org) and Videvo (https://www.videvo.net), all
with the same characteristics: duration of 30 s, resolution of 1280 × 720,
24 fps, 4:2:0 sampling format (yuv420p), and 8-bit bit depth. Fig. 2
depicts a frame from each video.

Figure 3 shows the spatial information (SI) and temporal information
(TI) values of the 10 videos used for the encoder comparison. Scenes

Fig. 4. Evaluation of VMAF for H.264, H.265 and H.266 codecs.

R. Belda et al.

http://www.blender.org
https://www.videvo.net

Computer Networks 235 (2023) 109961

5

with a lot of detail have higher spatial complexity or information (SI)
than those with less detail. Similarly, scenes with a lot of motion have
higher temporal complexity or information (TI) than those with less
motion. For example, videos such as Vaccine or Agent 327 have scenes
with less detail and less motion compared to sequences like Pedestrians
or Close to bird, where the scenes are more complex due to the presence
of more details and motion. Additionally, the behavior of the different
encoders on each of these scenarios is analyzed and how they affect the
visual quality of the encoded videos.

Among all the possible measures to evaluate video quality (PSNR,
SSIM, VMAF, …), VMAF has been considered for the assessment because
it takes into account perceptual quality factors that are more closely
aligned with how humans perceive video quality. VMAF has been shown
to perform well across a wide range of video content, including high-
motion, low-bitrate, and high-resolution content. This makes it a ver
satile and reliable metric for video quality measurement in a variety of
contexts. Hence, Fig. 4 shows the result of measuring VMAF with respect
to the bitrate for all sequences (128 kbps, 256 kbps, 512 kbps and 1024
kbps), with a resolution of 1280 × 720 pixels and encoded at 24 fps. It
can be seen, for example, that for Agent 327 sequence (Fig. 4(a)), for a
VMAF = 90 requires about 129 kbps with H.266, while H.264 and H.265
require almost 1 Mbps.

Regarding the VMAF values obtained, it is fulfilled in all sequences
that the H.266 encoder offers better quality than H.264 and H.265.
Specifically, the VMAF improvement of H.266 with respect to H.265 in
the Agent 327 sequence is [30.93; 16.87; 7.53; 3.27] points corre
sponding to the bitrates of [128k, 256k, 512k, 1024k], and [58.97;
35.45; 16.06; 6.17] points corresponding to the bitrates of [128k, 256k,
512k, 1024k] with respect to H.264. It is observed in all sequences that
the quality improvement is greater when the bitrate is lower. In this
case, it can be seen that this improvement is much greater in the case of a
128k bitrate. An improvement of 30.93 VMAF points indicates that the
subjective quality perceived by the user is much better in H.266 than in
H.265 for a bitrate of 128 kbps. For the 1024 kbps bitrate, the VMAF
improvement is only 3.27 VMAF points, indicating that the perceived
video quality change when using H.266 is very low compared to using

H.264 or H.265. Regarding the improvement that H.265 introduces over
H.264, it is still significant for low bitrates.

However, for low latency systems, it is necessary to use other metrics,
such as the encoding time used by each encoder. For this, it can be used
the encoding speed relative to the frame rate. According to the results
shown in Fig. 5, for example, for a low-quality (128 kbps) encoding of
the Agent 327 sequence, an encoding speed of 11.2× in H.264 means
that it is capable of encoding 268 fps; in H.265, the speed of 3.67×
implies being able to encode 88 fps; and in H.266, the speed of 0.0109×
allows only encoding 0.26 fps. Comparing the encoding speed for the
bitrate of 1024 kbps, 170 fps, 54 fps, and 0.14 fps could be reached in
H.264, H.265 and H.266, respectively. The same comparison for the
Pedestrian sequence shows that for medium quality (512 kbps), both the
H.265 and H.266 offer inefficient results. In this way, there is a trade-off
between encoding efficiency and speed coding. In the case of low latency
scenarios, where the delay is the key factor, both H.265 and H.266
codecs can be discarded for the transcoding process.

On the other hand, the GoP (Group of Pictures) represents the pattern
of appearance of the frames (I, P, B) in the encoded video. There are
multiple possible GoP configurations: periodic/non-periodic; with/
without B-frames; open/closed GoP; large size/small size; etc. Regarding
latency, whether to use B-frames and the GoP size are of great impor
tance in GoP configuration. And with regards to GoP size and latency,
this feature has less influence on RTP-based protocols (WebRTC) than on
HLS or DASH protocols. The reason is that protocols such as RTP
transmit frame by frame, while HLS or DASH protocols transmit seg
ments (groups of frames) that usually consist of a whole number of GoPs.

3.2. Segmentation

DASH and HLS are based on the transmission of segments using the
HTTP protocol and adaptive algorithms. The fact of using segments in
troduces an intrinsic delay into the system, since it is necessary to wait
for the generation of the segment in order to be able to transmit it.
Typical values for the duration of such segments are 2 s, 4 s, 6 s or 10 s.
Without considering the fact of having to use a buffer in the receiver, the
segmentation process already introduces an unacceptable delay for
many interactive or real-time applications. Figure 6 shows schematically
the structure of a 6 s segment in the fMP4 (fragmented MP4) format.
When using fMP4 file format, the encoded file is divided into segments
that can be downloaded and played back. However, to start playback, it
is necessary for the player to download the complete segment (mdat).

To reduce playback delay, a new container format called CMAF
(Common Media Application Format) has been specified, which allows
the segment to be divided into chunks and to start playback while new
chunks are still being generated. Figure 7 shows how a segment has been
split into one chunk per frame, ideal for real-time applications. How
ever, there is a trade-off between the latency reduction achieved and
other aspects such as the probability of interruptions due to congestion
or the increase in headers for accessing the chunks.

Finally, to minimize the effect of congestion, all players use buffers to

Fig. 5. Evaluation of encoding speed for H.264, H.265 and H.266 codecs.

Fig. 6. Traditional fMP4 segment (e.g., 6 s).

Fig. 7. CMAF chunked segment (e.g., 180 chunks).

R. Belda et al.

Computer Networks 235 (2023) 109961

6

store a certain number of frames or segments before starting playback
(Fig. 8). Again, there is a trade-off between buffer size and the proba
bility of service interruptions. Typical values are in the range of 30 s
buffer. However, depending on the applications (and specifically for real
time) these values must be reduced to obtain a valid service.

Once the factors that affect latency have been analyzed, the protocols
used for video transmission must be considered. In fact, each option will
have different answers regarding latency, scalability, etc. that should be
evaluated.

3.3. Network delivery

On the one hand, the exponential growth of traffic in wireless net
works is posing a challenge due to the limited resource of the frequency
spectrum. As users demand more bandwidth, it is important to seek out
underutilized features of current wireless technologies to optimize
spectrum efficiency. While there are mechanisms, such as MIMO (Mul
tiple-Input Multiple-Output) technology, channel configuration, and
limiting connections per access point, that aim to enhance Wi-Fi
network performance, providing adaptive streaming services with
satisfactory QoE remains a challenge in high-density wireless environ
ments with 50–100 or even 500–600 users.

DASH technology was originally designed for Internet content
broadcasting. However, when deployed in shared Wi-Fi environments,
where there is a high concentration of devices such as in event halls,
stadiums, auditoriums, buses, trains, ferries, etc., not only is the band
width per client reduced, but measuring the available bandwidth be
comes challenging due to the high variability of wireless links. This
variability creates problems for adaptive multimedia systems when
determining the quality of video segments to be downloaded, as in the
case of DASH client-driven architecture, where clients estimate band
width and request the appropriate quality from the server.

In this scenario, clients have limited information as they only mea
sure transmission rates while downloading segments, after winning the
media access contest. Unfortunately, during the next segment request,
contention may increase due to other clients trying to access the channel
again, interference from other networks or electromagnetic signals, or a
loss of signal or coverage due to client mobility or the presence of ob
stacles between the client and the access point. In any of these cases, the
bandwidth measured by the client does not provide an accurate indi
cation of the quality required to maintain continuous playback and
minimize the impact on QoE.

To tackle this issue, tutorials and novel proposals have emerged that
rely on cross-layer solutions and coordination between the server,
network, and clients [29–31]. In this sense, cross-layer mechanisms and,
in particular, Server and Network Assisted DASH (SAND) technology
[32], can serve as effective alternatives for carrying out additional
processing to enhance the overall system performance.

Nevertheless, as mentioned earlier, low latency streaming systems
entail greater complexity due to the need for adaptive algorithmic

solutions that consider chunk-based transmission and highly variable
bandwidth environments.

4. Server-side representation switching

One of the major advantages of using DASH for video streaming is
that video servers do not need to maintain session state for clients. Each
client manages its own playback position and requests the most relevant
representation according to its circumstances (bandwidth, playback
device used…). However, adapting video quality in low-latency
streaming scenarios poses new challenges, in which server-side assis
tance can be useful.

When a video stream has multiple qualities sharing certain codec
parameters, such as resolution and video codec, segments of different
qualities can be interchanged and decoded using the same decoder
instance without errors. For example, if a video is encoded with the same
resolution and codec parameters, but at different bitrates, a single
decoder instance can decode segments of any bitrate, generating deco
ded frames without errors. In this sense, Fig. 9 shows a single video
decoder decoding a stream of segments from different representations.
In the example, the video encoded with a bitrate B has a better quality (a
higher bitrate) that the video encoded with a bitrate A.

Taking this into consideration, this work proposes a new solution for
Low Latency Video streaming based on the information managed by the
server. Thus, the solution proposed, called Server-Side Representation
Switching (SSRS), leverages the aforementioned capability to select the
quality of the representation for each segment that will be transmitted to
video clients. To prevent clients from attempting to change the repre
sentation on their own, SSRS modifies the MPD to contain a single
representation, thus making video players unaware of any change of
representation.

In order for the server to determine which quality to send to each
client for each request, a regular DASH server would need to maintain
information about each client. However, SSRS can take advantage of the
fact that it is broadcasting a Low-Latency DASH video stream to use the
instants of time at which it receives requests for segments to calculate
the representation to transmit. Figure 10 illustrates how the Low-
Latency DASH server can easily calculate the delay of each client by
simply comparing the time at which it receives the request with the
moment it began receiving the required segment. The figure shows a
single video decoder decoding a stream of segments from different
representations.

Thus, SSRS does not need to maintain client state, since it only takes
into account the delay of the request for the segment relative to the time
at which the server began receiving that segment in order to calculate

Fig. 8. Segments in player buffer (e.g., 30 s).

Fig. 9. Example of decoding a stream of segments.

Fig. 10. Example of the performance of SSRS.

R. Belda et al.

Computer Networks 235 (2023) 109961

7

the representation to serve, as shown in the following equation:

repsegment X = max(0, round(rep max − λ ∗ delay)), (1)

where repsegment X is the representation sent to the client for segment X;
rep_max is the representation with the highest quality (that is, the rep
resentation encoded with the maximum bitrate); delay is the time (in

seconds) between the instant of time the PUT request arrives at the
server and the instant of time when the GET request arrives at the server
for a specific segment; and λ is a weighting factor (the higher the λ, the
more conservative the solution in terms of bitrate).

5. Methodology

5.1. Low latency DASH testbed

The situation arises where protocols intended for real-time trans
mission (from cameras, transmission equipment or production software)
such as RTSP or SRT protocols, and the advantages of using LL-DASH
technology for content distribution must coexist. Therefore, it is neces
sary to integrate both technologies to take advantage of the benefits of
both. Figure 11 depicts schematically the proposed scenario for this
purpose.

The figure shows different video content sources (cameras or content
servers). The output of these sources uses RTSP or SRT. The server in
cludes the developed processes that take care of the reception of these
streams and their efficient transformation into video segments
complying with the CMAF format for their use by the LL-DASH tech
nology. On the other hand, a Web server has been implemented in Py
thon that supports the distribution of content using the LL-DASH
standard by sending chunks. Finally, the devices play the contents
through DASH clients (such as Dash.js, Shaka-Player, etc.).

The use of standard HTTP servers for DASH is a key benefit of the
technology but imposes a defined sequence of events where segment
files must be available on the server prior to any request could be suc
cessfully handled. This sequence poses no inconvenience for VoD, where
segments can be available on the servers in advance, or even on live
streaming, where players can be playing some segments behind, but

Fig. 11. Scenario - Real Time Production – LL-DASH Distribution.

Fig. 12. DASH client-server sequence.

Fig. 13. DASH minimum client delay.

Fig. 14. Low Latency DASH client-server sequence.

R. Belda et al.

Computer Networks 235 (2023) 109961

8

generates an unavoidable delay between the generation and the con
sumption of the content. Figure 12 shows how DASH clients must
request, at least, a segment behind the sequence of generated segments
(Y < X) in order to avoid HTTP errors.

This requirement generates a minimum delay equal to the sum of the
time length of the segment, the time of the transmission to the server and

the backoff time to avoid HTTP errors, as Fig. 13 depicts.
As previously stated, this minimum delay may suit some live

streaming scenarios but not those which require low latency. For
achieving low latency when using DASH, HTTP servers can no longer be
static content servers but dynamically handle segment requests.

Figure 14 shows the required behavior of HTTP servers to handle LL-
DASH clients. First, manifest and the initial segment must be uploaded
to the server (events 1 and 2) before the content is accessible to the client
(events 3 and 4). In live DASH, manifest is periodically generated and
uploaded to the HTTP server, but it is omitted from the figure for clarity.
Next, the client will begin to request segments based on the manifest, the
target latency and the current time. In LL-DASH, those segment requests
will reach the HTTP server even before the segment transmission from
the source to the server has started. In this scenario, the HTTP server
must retain the HTTP request long enough to wait the incoming segment
or timeout otherwise, as represented between events 5 and 6 in Fig. 14.

The HTTP server, when the requested segment reception begins

Fig. 15. Fast-ll generate_partial_segment function.

Fig. 16. FFmpeg command line to transform RTSP into LL-DASH.

Table 1
Parameters used for the low latency DASH testbed.

Evaluation parameter □ Latency
Sources □ RTSP camera (RTSP)

□ FFmpeg test source (Gen)
□ SRT source (SRT)

Tools □ Dash.js version 4.7
□ Fast-ll server

Target latency □ 0.2, 0.5, 1 and 2 s

R. Belda et al.

Computer Networks 235 (2023) 109961

9

(event 6), starts sending the content of the segment to the pending re
quests, as it arrives, in the form of chunked transmission.

Aiming to test the described behavior, a Python HTTP server for LL-
DASH has been developed based on FastAPI [33] framework, called
Fast-ll. Figure 15 shows an excerpt of the server where a generator is
created to add received chunks to the response of clients while they are
being received. Fast-ll handles manifest and segments in-memory so no
copy is stored on disk. The HTTP server must be fed using HTTP PUT
requests to add content, and DELETE requests to remove content (when
the segments exceed the windows defined in the manifest, thus no client
will request it). The process of using HTTP methods to manage the
content on the Fast-ll can be done by the FFmpeg tool [34] when the
appropriate set of parameters is provided.

For reference, Fig. 16 includes a complete command-line that uses

FFmpeg to access an SRT or RTSP stream, recodes the video stream,
generates a low latency DASH stream and uploads the different objects
(manifest and segments) to the locally running Fast-ll server.

Specifications for all parameters in Fig. 16 can be found in Kempf
[35]. Among all parameters, there are three of particular relevance: 1)
-ldash 1: specifies the LL-DASH mode; 2) -target_latency 0.5: latency that
the client will try to achieve; and 3) -format_options "movflags=cmaf":
the container format.

The source code of Fast-ll server and the scripts used in the work can
be found in the Git repository https://github.com/robelor/fast-ll [36].

5.2. Evaluation setup

With the development introduced in this work, it is straightforward

Fig. 17. Scenarios used to perform tests.

Fig. 18. Screenshot of the testbed.

R. Belda et al.

https://github.com/robelor/fast-ll

Computer Networks 235 (2023) 109961

10

to setup a test environment to evaluate LL-DASH tools and clients.
In this work, two different types of evaluations have been carried out

in order to evaluate both the Low Latency DASH testbed proposed as
well as the Server-Side Representation Switching solution, explained in
the following sections.

5.2.1. Setup of the low latency DASH testbed

First of all, to demonstrate the suitability of the Low Latency DASH
testbed, an evaluation of the parameter target latency when generating
LL-DASH content using FFmpeg has been performed. The evaluation is

Fig. 19. Example of Fast-ll streaming configuration.

Table 2
Parameters used for the server-side representation switching evaluation testbed.

Evaluation parameters □ Latency
□ Buffer length
□ Bitrate

Algorithms □ SSRS (λ = 1)
□ L2A
□ LoL+

Scenarios □ Wi-Fi AC
□ Ladder (1500 kbps, 800 kbps, 400 kbps)
□ Sinkhole (1500 kbps, 800 kbps, 1500 kbps)

Tools □ Dash.js version 4.7
□ Fast-ll server

Video encoding parameters □ Codec: H.264
□ Representations: 250 kbps, 500 kbps, 1000 kbps
□ Resolution: 480p

Fig. 20. Latency measured by the Dash.js client for different target latency values and source protocols.

Table 3
Latency (in seconds) measured by Dash.js.

0.2 s 0.5 s 1 s 2 s

Gen 0.21078 0.41942 0.95998 1.87212
RTSP 0.35892 0.48984 0.97928 1.98286
SRT 0.20634 0.49404 1.01040 2.02898

R. Belda et al.

Computer Networks 235 (2023) 109961

11

carried out using three different sources: an RTSP camera (RTSP), an
FFmpeg test source (Gen) and SRT source (SRT) generated also using
FFmpeg. Regarding the target latency parameter, the evaluated values
are 0.2, 0.5, 1 and 2 s.

FFmpeg uses the value, in seconds, of this parameter to generate the
Media Presentation Description (MPD) accordingly. For example, when
0.5 is specified as target latency parameter, the resulting MPD will
incorporate "<Latency target="500"/>" inside the ``Service
Description’’ tag as the MPD defines the value to be in milliseconds.

In order to carry out the measurements, two main tools has been
used: Dash.js and Fast-ll server. This tools are explained in the next
section.

Table 1 summarizes the parameters used for the testbed.

5.2.2. Setup of the server-side representation switching evaluation

In order to compare the performance of the Server-Side Represen
tation Switching solution proposed in this work, two well-known algo
rithms have been used: L2A and LoL+. It is worth highlighting that both
algorithms are integrated into the DASH-IF reference video player
(Dash.js). L2A is based on online learning and the Online Convex
Optimization (OCO) theory and does not require any parameter tuning

nor throughput estimation, performing well over a wide spectrum of
network profiles, as shown in Karagkioules et al. [11]. Likewise, LoL+
[12] offers a precise bandwidth prediction and rate adaptation algo
rithm for low latency scenarios, and it was designed in order to provide a
good QoE for any given target latency.

These two algorithms, as well as the SSRS solution hereby presented,
have been tested in three different scenarios: the first consists of a Wi-Fi
scenario (Wi-Fi 802.11 ac), specifically a laboratory sited at Universitat
Politècnica de València; the second, called “ladder” and shown in Fig. 17
(a), presents an initial bandwidth of 1500 kbps, 10 s later the bandwidth
switches to almost the half (800 kbps), and 30 s later the bandwidth
drops until 400 kbps; the third scenario, called “sinkhole” it is equal to
the second scenario except for the last 20 s, where the bandwidth instead
of decreasing, increases until 1500 kbps, as Fig. 17(b) depicts. Therefore,
the duration of each test is 60 s.

In order to carry out the measurements, as in the previous study,
Dash.js has been used [37], specifically version 4.7.0, as shown in
Fig. 18. This tool provides accurate information about the selected
representation (represented by its target average bitrate), the network
latency (time from the request to the response arrival, in seconds) and
live latency (difference between live time and playback position in
seconds) among other parameters.

Fig. 21. Evaluation of the Wi-Fi scenario.

Table 4
Evaluation of the Wi-Fi scenario.

Buffer length (s) Latency (s) Displayed bitrate (kbps)

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS

Average 0.21 0.34 0.43 0.31 0.48 0.47 1000 346.77 1000
Min 0.06 0.06 0.37 0.19 0.44 0.46 1000 250.00 1000
Max 1.04 0.51 0.45 1.05 0.57 0.48 1000 1000.00 1000
Std dev. 0.17 0.15 0.03 0.16 0.03 0.01 0 255.58 0
MSE – – – 0.04 0.08 0.07 – – –

R. Belda et al.

Computer Networks 235 (2023) 109961

12

For the development of the tests, the Fast-ll server has been config
ured to re-encode the video stream from a Hikvision camera accessed via
RTSP at a resolution of 1080p. This camera, depending on factors such
as ambient light intensity, is able to change the frame rate at which it
sends the video stream.

It is important to note that although the video obtained from the
camera is already encoded using H.264, the video server must re-encode
the video streaming to adapt it to the resolutions, frame rates and
bitrates specified in the configuration.

Fast-ll has been configured to access the stream from this camera and
generate three representations. All of them with a resolution of 480p.
Figure 19 depicts an example of the stream configuration, showing the
common parameters to all representations such as targetFps, segment
Duration or fragmentDuration, and the configuration of both the resolu
tion and the bitrate of the three representations presented. The
serverSideStreamSwitching parameter, if the configuration of the different
representation allows it, indicates Fast-ll to use SSRS.

Regarding the SSRS solution, the tests have been carried out fixing λ
= 1, as indicated in Eq. (1).

Finally, Table 2 summarizes the parameters used for the Server-Side
Representation Switching evaluation testbed.

6. Results and discussion

6.1. Evaluation of low latency DASH testbed

Figure 20 shows the average delay identified by Dash.js for each
protocol and target delay. Numeric values can be seen in Table 1. This
measured delay refers to the time between the segmentation process and
the display time of video frames. Naturally, the overall delay will
include delays introduced by the video sources, transport, and seg
mentation (Table 3).

All video sources offer similar results, complying with the target
latency in each case, except RTSP for the most restrictive case (0.2 s).

6.2. Evaluation of server-side representation switching

As aforementioned, in order to assess the new proposed algorithm,
three different scenarios have been considered: a Wi-Fi scenario, a lad
der bandwidth channel and a sinkhole bandwidth channel. The most
representative parameters are targetLatency of 0.2 s, segmentDuration of
1 s, fragmentDuration of 0.1 s, and three encodingTargetBitrates of 250
kbps, 500 kbps and 1000 kbps, as shown in Fig. 19 for all the three
scenarios. Starting with the first scenario, Fig. 21 shows the behavior of
the three algorithms analyzed regarding the buffer length, the latency

Fig. 22. Evaluation of the ladder scenario.

Table 5
Evaluation of the ladder scenario.

Buffer length (s) Latency (s) Displayed bitrate (kbps)

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS

Average 0.12 0.36 0.13 4.58 0.88 1.47 838.71 250.00 688.52
Min 0.00 0.02 0.02 0.35 0.41 0.47 500.00 250.00 250.00
Max 0.40 0.70 0.41 13.26 2.32 2.42 1000.00 250.00 1000.00
Std dev. 0.09 0.19 0.10 4.02 0.64 0.68 237.60 0.00 301.58
MSE – – – 34.85 0.85 2.06 – – –

R. Belda et al.

Computer Networks 235 (2023) 109961

13

and the displayed bitrate at the client side. A summary of the results is
shown in Table 4, which shows the average, minimum, maximum, and
standard deviation values of the evaluated parameters. Also, regarding
the latency, the table shows the Mean Squared Error (MSE) taking as a
reference the target latency of 0.2 s.

Regarding buffer length, Fig. 21(a) and Table 4 reveal that the most
stable solution is SSRS, with a buffer length around 0.45 s throughout all
the transmission. L2A is the algorithm that provides the minimum
average buffer length, with a remarkable peak of more than 1 s when t =
42 s. Both L2A and LoL+ offer a more fluctuating behavior regarding the
buffer length. In the case of latency, both LoL+ and SSRS behave rather
similar. The three algorithms provide good values regarding the MSE,
thus fulfilling the target latency. Although L2A is the algorithm that
provides the best average latency, it also has a remarkable peak with a
latency higher than 1 s. Finally, with regards to displayed bitrate, Fig. 21
reflects that with L2A and SSRS, the displayed bitrate is the maximum
available (1000 kbps), which is the expected result considering that
there is no bandwidth throttling. On the contrary, LoL+ has a more
conservative behavior, using the minimum quality (250 kbps) for the
most of the transmission.

The results are not so stable when analyzing the different algorithms
in more challenging channels. Regarding the ladder scenario, Fig. 22
depicts that there is a notable fluctuation in terms of buffer length. In

this case, L2A and SSRS behave rather similar, providing alike values of
average, minimum, maximum, and standard deviation according to
Table 5. However, this similarity disappears when considering the la
tency, since the latency using L2A increases considerably when the
channel bandwidth decreases (with values of more than 10 s at the end
of the transmission). In the case of the proposed solution SSRS, the la
tency increases to 2.42 s. LoL+ provides the best results regarding la
tency (and it is the only algorithm that fulfills the target latency) at the
expense of providing the worst displayed bitrate (250 kbps). Again, SSRS
offers similar results to L2A, although providing slightly lower displayed
bitrate.

The last scenario assessed is the sinkhole channel and results are
shown in Fig. 23 and Table 6. The conclusions remain unchanged from
the previous scenario: SSRS is the solution that offers the best trade-off
among buffer length, latency and displayed bitrate. In this scenario, the
SSRS provides the minimum MSE of the latency. Likewise, in this
particular case, it is worth mentioning that the maximum buffer length
of SSRS is higher than 1 s in the particular instant of time when the
channel bandwidth increases, and that SSRS is the solution that offers
minimum latency.

Finally, it is worth highlighting that a small buffer length entails
better performance, as a longer buffer length results in higher latency
during playback. However, if the buffer length reaches zero at any point

Fig. 23. Evaluation of the sinkhole scenario.

Table 6
Evaluation of the sinkhole scenario.

Buffer length (s) Latency (s) Displayed bitrate (kbps)

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS

Average 0.16 0.41 0.22 5.80 1.93 1.42 774.19 266.13 709.02
Min 0.00 0.03 0.00 0.31 0.40 0.46 500.00 250.00 250.00
Max 0.48 0.85 1.03 10.45 4.14 2.41 1000.00 500.00 1000.00
Std dev. 0.12 0.25 0.19 3.54 1.19 0.89 252.94 62.43 329.71
MSE – – – 43.50 4.36 2.25 – – –

R. Belda et al.

Computer Networks 235 (2023) 109961

14

meaning the buffer has emptied, this may indicate that the video could
experience interruptions and degrade the QoE.

7. Conclusion

Currently, integration of real-time sources (using protocols such as
SRT or RTSP) for distribution over the Internet or CDNs, using LL-DASH
technology, is an interesting topic from a performance analysis point of
view.

As the main contribution, this work presents a content distribution
system for live streaming using Low Latency DASH along with a proposal
for the selection of the transmitted quality, based on a server-side de
cision-making process called SSRS (Server-Side Representation Switch
ing), to improve the offered QoE in certain scenarios. The evaluated
parameters in the implemented testbed have been buffer length, latency,
and displayed bitrate. Regarding the Low Latency DASH testbed, both
RTSP camera, SRT source and FFmpeg test source, in general, comply
with the target latency in each case (0.2, 0.5, 1 and 2 s).

Additionally, tests have been carried out in a real Wi-Fi environment
without restrictions, as well as in two scenarios (ladder and sinkhole)
where variations in the available bandwidth occur. The proposed solu
tion has been compared to the L2A and LoL+ algorithms included in the
Dash.js player. Analysing the results, it can be seen that the SSRS solu
tion is the option that offers the best trade-off among the evaluated
parameters. Specifically, in the ladder scenario, SSRS provides low
values of latency (1.47 s) with a good displayed rate (688.52 kbps), in
contrast to a latency of 4.58 provided by L2A and a displayed bitrate of
250 kbps of the LoL+ algorithm. In the sinkhole scenario, SSRS provides
an average displayed bitrate of 709.02 kbps (close to 774.19 kbps pro
vided by L2A) with an average and maximum latency (1.42 s and 2.41 s,
respectively) much lower than the average and maximum latency of L2A
(5.80 s and 10.45 s, respectively).

In conclusion, the work presents a promising approach for improving
the user experience quality in real-time transmission systems and sug
gests possible future research lines in this area. The source code needed
to deploy and run the presented LL-DASH testbed and the integration
with RTSP and SRT source protocols is available on GitHub [36].

An interesting future work includes the development of a content
source agnostic measurement system to be able to measure the delay in
an automated way. Moreover, proposing new algorithms based on the
SSRS solution from the server-side point of view is a worthwhile
approach that can be explored further.

CRediT authorship contribution statement

Román Belda: Conceptualization, Methodology, Investigation,
Software, Validation, Writing – original draft, Writing – review & edit
ing. Pau Arce: Conceptualization, Methodology, Investigation, Soft
ware, Validation, Writing – original draft, Writing – review & editing.
Juan Carlos Guerri: Conceptualization, Investigation, Software, Vali
dation, Supervision, Writing – review & editing. Ismael de Fez:
Conceptualization, Methodology, Investigation, Software, Validation,
Writing – original draft, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

I have shared the code in the git repository indicated in the paper

Acknowledgments

This work is supported by the Centro para el Desarrollo Tecnológico
Industrial (CDTI) from the Government of Spain under the project
“Nueva plataforma a bordo basada en redes 5G y Wi-Fi 6 para medios de
transporte terrestre” (CDTI IDI-20210624).

References

[1] ISO/IEC 23009-1:2014. 2014. Dynamic adaptive streaming over HTTP (DASH) -
Part 1: media presentation description and segment formats.

[2] A. Bentaleb, B. Taani, A.C. Begen, C. Timmerer, R. Zimmermann, A survey on
bitrate adaptation schemes for streaming media over HTTP, IEEE Commun. Surv.
Tutor. 21 (1) (2019) 562–585, https://doi.org/10.1109/COMST.2018.2862938.

[3] HTTP Live Streaming, second ed. (Internet-Draft), Internet Engineering Task Force
(IETF), 2022.

[4] T. Stockhammer, C. Poole, T. Swindells, W. Law, I. Sodagar, A. Begen, T. Lohmar,
and K. Hughes. 2017. DASH-IF/DVB Report on Low-Latency Live Service with
DASH.

[5] DASH Industry Forum, Guidelines For Implementation: DASH-IF Interoperability
Points, DASH Industry Forum, 2018.

[6] W. Law. 2020. Meeting live broadcast requirements – the latest on DASH Low
Latency. DASH Industry Forum.

[7] DASH Industry Forum. 2020. Low-latency Modes for DASH. Retrieved from https
://dashif.org/docs/CR-Low-Latency-Live-r8.pdf.

[8] A. Bentaleb, C. Timmerer, A.C. Begen, R. Zimmermann, Bandwidth prediction in
low-latency chunked streaming, in: 29th ACM SIGMM Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’19), Amherst,
MA, USA, ACM, New York, NY, USA, 2019, p. 7, https://doi.org/10.1145/
3304112.3325611.

[9] A. Bentaleb, A.C. Begen, S. Harous, R. Zimmermann, Data-driven bandwidth
prediction models and automated model selection for low latency, IEEE Trans.
Multimed. 23 (2021) 2588–2601, https://doi.org/10.1109/TMM.2020.3013387.

[10] T. Lyko, M. Broadbent, N. Race, M. Nilsson, P. Farrow, S. Appleby, Llama - low
latency adaptive media algorithm, in: Proceedings IEEE International Symposium
on Multimedia, ISM 2020, 2020, pp. 113–121, https://doi.org/10.1109/
ISM.2020.00027.

[11] T. Karagkioules, R. Mekuria, D. Griffioen, A. Wagenaar, Online learning for low-
latency adaptive streaming, in: Proceedings of the 11th ACM Multimedia Systems
Conference (MMSys ’20), New York, NY, USA, Association for Computing
Machinery, 2020, pp. 315–320, https://doi.org/10.1145/3339825.3397042.

[12] A. Bentaleb, M.N. Akcay, M. Lim, A.C. Begen, R. Zimmermann, Catching the
moment with LoL+ in twitch-like low-latency live streaming platforms, IEEE Trans.
Multimed. 24 (2022) 2300–2314, https://doi.org/10.1109/TMM.2021.3079288.

[13] C. Gutterman, B. Fridman, T. Gilliland, Y. Hu, G. Zussman, Stallion: video
adaptation algorithm for low-latency video streaming, in: Proceedings of the 11th
ACM Multimedia Systems Conference (MMSys ’20), New York, NY, USA,
Association for Computing Machinery, 2020, pp. 327–332, https://doi.org/
10.1145/3339825.3397044.

[14] A.C. Begen, M.N. Akcay, A. Bentaleb, A. Giladi, Adaptive streaming of content-
aware-encoded videos in Dash.js, SMPTE Motion Imaging J. 131 (4) (2022) 30–38,
https://doi.org/10.5594/JMI.2022.3160560.

[15] Y. Li, X. Zhang, C. Cui, S. Wang, S. Ma, Fleet: improving quality of experience for
low-latency live video streaming, in: IEEE Transactions on Circuits and Systems for
Video Technology, 2023, https://doi.org/10.1109/TCSVT.2023.3243901.

[16] B. Taraghi, H. Hellwagner, C. Timmerer, LLL-CAdViSE: live low-latency cloud-
based adaptive video streaming evaluation framework, IEEE Access 11 (2023)
25723–25734, https://doi.org/10.1109/ACCESS.2023.3257099, 2023.

[17] K. Arunruangsirilert, B. Wei, H. Song, J. Katto, Performance evaluation of low-
latency live streaming of MPEG-DASH UHD video over commercial 5G NSA/SA
network, in: Proc. of the 2022 International Conference on Computer
Communications and Networks (ICCCN), Honolulu, HI, USA, 2022, pp. 1–6,
https://doi.org/10.1109/ICCCN54977.2022.9868877.

[18] R. Viola, Á. Martín, J.F. Mogollón, Á. Gabilondo, J. Morgade, M. Zorrilla,
J. Montalbán, P. Angueira, Adaptive rate control for live streaming using SRT
protocol, in: IEEE International Symposium on Broadband Multimedia Systems and
Broadcasting, BMSB, 2020, https://doi.org/10.1109/BMSB49480.2020.9379708.

[19] R. Viola, Á. Gabilondo, Á. Martín, J.F. Mogollón, M. Zorrilla, J. Moltalbán, QoE-
based enhancements of Chunked CMAF over low latency video streams, in: IEEE
International Symposium on Broadband Multimedia Systems and Broadcasting,
BMSB, 2019, https://doi.org/10.1109/BMSB47279.2019.8971894.

[20] Y. Li, X. Zhang, S. Wang, S. Ma, A fuzzy-based adaptation controller for low latency
live video streaming, in: Proc. of the 2021 IEEE International Conference on Image
Processing (ICIP), Anchorage, AK, USA, 2021, pp. 2169–2173, https://doi.org/
10.1109/ICIP42928.2021.9506065.

[21] F. Tashtarian, A. Bentaleb, A. Erfanian, H. Hellwagner, C. Timmerer,
R. Zimmermann, HxL3: optimized delivery architecture for HTTP low-latency live
streaming, IEEE Trans. Multimed. (2022), https://doi.org/10.1109/
TMM.2022.3148587.

[22] N. Bouzakaria, C. Concolato, J. Le Feuvre, Overhead and performance of low
latency live streaming using MPEG-DASH, in: Proc. IISA 2014 - 5th International
Conference on Information, Intelligence, Systems and Applications, 2014,
pp. 92–97, https://doi.org/10.1109/IISA.2014.6878732.

R. Belda et al.

https://doi.org/10.1109/COMST.2018.2862938
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0003
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0003
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0005
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0005
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://dashif.org/docs/CR-Low-Latency-Live-r8.pdf
https://doi.org/10.1145/3304112.3325611
https://doi.org/10.1145/3304112.3325611
https://doi.org/10.1109/TMM.2020.3013387
https://doi.org/10.1109/ISM.2020.00027
https://doi.org/10.1109/ISM.2020.00027
https://doi.org/10.1145/3339825.3397042
https://doi.org/10.1109/TMM.2021.3079288
https://doi.org/10.1145/3339825.3397044
https://doi.org/10.1145/3339825.3397044
https://doi.org/10.5594/JMI.2022.3160560
https://doi.org/10.1109/TCSVT.2023.3243901
https://doi.org/10.1109/ACCESS.2023.3257099
https://doi.org/10.1109/ICCCN54977.2022.9868877
https://doi.org/10.1109/BMSB49480.2020.9379708
https://doi.org/10.1109/BMSB47279.2019.8971894
https://doi.org/10.1109/ICIP42928.2021.9506065
https://doi.org/10.1109/ICIP42928.2021.9506065
https://doi.org/10.1109/TMM.2022.3148587
https://doi.org/10.1109/TMM.2022.3148587
https://doi.org/10.1109/IISA.2014.6878732

Computer Networks 235 (2023) 109961

15

[23] K. Durak, M.N. Akcay, Y.K. Erinc, B. Pekel, A.C. Begen, Evaluating the performance
of apple’s low-latency HLS, in: IEEE 22nd International Workshop on Multimedia
Signal Processing (MMSP), 2020, https://doi.org/10.1109/
MMSP48831.2020.9287117.

[24] A. Bentaleb, Z. Zhan, F. Tashtarian, M. Lim, S. Harous, C. Timmerer,
H. Hellwagner, R. Zimmermann, Low latency live streaming implementation in
DASH and HLS, in: Proc. of the 30th ACM International Conference on Multimedia
(MM ’22), New York, NY, USA, Association for Computing Machinery, 2022,
pp. 7343–7346, https://doi.org/10.1145/3503161.3548544.

[25] A. El Essaili, T. Lohmar, M. Ibrahim, Realization and evaluation of an end-to-end
low latency live DASH system, in: Proc. IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting, BMSB, 2018, https://doi.org/
10.1109/BMSB.2018.8436922.

[26] P. Guzmán, P. Arce, J.C. Guerri, Automatic QoE evaluation of DASH streaming
using ITU-T standard P.1203 and google puppeteer, in: Proc. of the 16th ACM
International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor,
& Ubiquitous Networks (PE-WASUN ’19), New York, NY, USA, Association for
Computing Machinery, 2019, pp. 79–86, https://doi.org/10.1145/
3345860.3361519.

[27] T.R. Vargas, J.C. Guerri, P. Arce, Study on the impact of DASH streaming services
using energy efficient ethernet, in: Proc. of the 18th ACM Symposium on
Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks (PE-
WASUN ’21), New York, NY, USA, Association for Computing Machinery, 2021,
pp. 89–94, https://doi.org/10.1145/3479240.3488527.

[28] Bitmovin Video Developer Report. 2021. Retrieved from https://bitmovin.com.
[29] E. Thomas, M.O. van Deventer, T. Stockhammer, A.C. Begen, J. Famaey, Enhancing

MPEG DASH performance via server and network assistance, SMPTE Motion
Imaging J. 126 (1) (2017) 22–27, https://doi.org/10.5594/JMI.2016.2632338.

[30] J.W. Kleinrouweler, B. Meixner, P. César, Improving video quality in crowded
networks using a DANE, in: Proc. of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, 2017, pp. 73–78, https://doi.org/
10.1145/3083165.3083167.

[31] A.H. Zahran, J.J. Quinlan, K.K. Ramakrishanan, C.J. Sreenan, SAP: stall-aware
pacing for improved DASH video experience in cellular networks, in: Proc. ACM
MMSys, 2017, pp. 13–26, https://doi.org/10.1145/3083187.3083199.

[32] International Organization for Standardization. 2017. Information technology –
Dynamic adaptive streaming over HTTP (DASH) – Part 5: server and network
assisted DASH (SAND). ISO/IEC 203009-5:2017. Available online at: https://www.
iso.org/standard/69079.html.

[33] FastAPI webpage. 2023. Retrieved from https://fastapi.tiangolo.com.
[34] FFmpeg webpage. 2023. Retrieved from https://ffmpeg.org.
[35] J.-B. Kempf, Implementing DASH Low Latency in FFmpeg, DASH Industry Forum,

2020.
[36] Git repository – robelor. 2023. Fast-II. Retrieved from https://github.com/robelo

r/fast-ll.
[37] DASH Industry Forum. 2023. Reference Client 4.7.0. Retrieved from: https://refer

ence.dashif.org/Dash.js/nightly/samples/dash-if-reference-player/index.html.

Román Belda received the Computer Science degree in 2004
and the M.S. in Telematics in 2013 from the Universitat
Politècnica de València (UPV), Valencia, Spain. In 2021 he
obtained his Ph.D. in Telecommunications from the UPV. He
currently works as a researcher at the Institute of Telecom
munications and Multimedia Applications (iTEAM) and as a
Lecturer at UPV and Universidad Internacional de Valencia.
His areas of interest are mobile applications and multimedia
transmission protocols.

Pau Arce received his Telecommunications Engineering de
gree and the M.S. in Telematics from the Universitat
Politècnica de València (UPV), Spain, in 2005 and 2007
respectively. In 2014 he obtained his Ph.D. in Telecommuni
cations from the UPV. Currently he is assistant professor and
works as a researcher at the Institute of Telecommunications
and Multimedia Applications (iTEAM). His research interests
include multimedia QoS, routing on wireless ad hoc networks
and performance evaluation of computer systems.

Juan Carlos Guerri received the M.S. and Ph.D. (Dr.Ing.) de
grees, both in Telecommunication Engineering, from the Uni
versitat Politècnica de València (UPV), Valencia, Spain, in
1993 and 1997, respectively. Since 2017 he has held the po
sition of University Professor in E.T.S. Telecommunications
Engineering at the UPV, where he leads the Multimedia Com
munications research group (COMM) of the iTEAM Institute.
Currently the group’s research lines are focused on the devel
opment of multimedia content distribution systems using
adaptive systems (DASH, DASH LL) as well as on the evaluation
of the quality of experience (QoE) through objective and sub
jective measures. His areas of interest also include the perfor
mance evaluation of new video codecs (such as VCC, LCEVC) as

well as the design of codecs based on Artificial Intelligence.

Ismael de Fez received the Telecommunications Engineering
degree and the M.S. degree in Telematics from the Universitat
Politècnica de València (UPV), Valencia, Spain, in 2007 and
2010, respectively. In 2014, he obtained his Ph.D. in Tele
communications from the UPV. Currently, he is a researcher at
the Multimedia Communications research group (COMM) of
the Institute of Telecommunications and Multimedia Applica
tions (iTEAM), UPV. His areas of interest are multimedia
transmission over wireless networks and file transmission over
unidirectional environments.

R. Belda et al.

https://doi.org/10.1109/MMSP48831.2020.9287117
https://doi.org/10.1109/MMSP48831.2020.9287117
https://doi.org/10.1145/3503161.3548544
https://doi.org/10.1109/BMSB.2018.8436922
https://doi.org/10.1109/BMSB.2018.8436922
https://doi.org/10.1145/3345860.3361519
https://doi.org/10.1145/3345860.3361519
https://doi.org/10.1145/3479240.3488527
https://bitmovin.com
https://doi.org/10.5594/JMI.2016.2632338
https://doi.org/10.1145/3083165.3083167
https://doi.org/10.1145/3083165.3083167
https://doi.org/10.1145/3083187.3083199
https://www.iso.org/standard/69079.html
https://www.iso.org/standard/69079.html
https://fastapi.tiangolo.com
https://ffmpeg.org
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0035
http://refhub.elsevier.com/S1389-1286(23)00406-1/sbref0035
https://github.com/robelor/fast-ll
https://github.com/robelor/fast-ll
https://reference.dashif.org/Dash.js/nightly/samples/dash-if-reference-player/index.html
https://reference.dashif.org/Dash.js/nightly/samples/dash-if-reference-player/index.html

	A DASH server-side delay-based representation switching solution to improve the quality of experience for low-latency live ...
	1 Introduction
	2 State of the art
	3 Low latency: factors and protocols
	3.1 Encoding
	3.2 Segmentation
	3.3 Network delivery

	4 Server-side representation switching
	5 Methodology
	5.1 Low latency DASH testbed
	5.2 Evaluation setup
	5.2.1 Setup of the low latency DASH testbed
	5.2.2 Setup of the server-side representation switching evaluation

	6 Results and discussion
	6.1 Evaluation of low latency DASH testbed
	6.2 Evaluation of server-side representation switching

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

