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A B S T R A C T   

This work addresses the integration of real-time transmission systems, including IP cameras and production 
systems (like OBS or vMix), that use protocols such as RTSP (Real Time Streaming Protocol) or SRT (Secure 
Reliable Transport), with content distribution technology based on LL-DASH (Low Latency DASH -Dynamic 
Adaptive Streaming over HTTP-), taking advantage of the fact that DASH offers significant well-known advan
tages for content distribution over the Internet and via CDNs (Content Delivery Networks). Considering the 
limitations of the LL-DASH standard regarding the adaptation to network conditions, this paper proposes a new 
solution called Server-Side Representation Switching (SSRS). SSRS uses an approach based on the server 
measuring the delay in the requests made by clients, whose variation may be due to a decrease in bandwidth, as 
occurs in Wi-Fi networks with a high number of clients. To evaluate the effectiveness of the proposed solution, a 
testbed has been developed that allows the performance evaluation of both the LL-DASH system and the solution 
based on server-side decision-making. In addition, the developed solution has been compared with known al
gorithms (L2A and LoL+) integrated into the Dash.js player. The results show that the Server-Side Representation 
Switching solution offers a good trade-off between the transmitted quality and the final delay measured at the 
client, compared to the other algorithms evaluated. Moreover, it holds the advantage of being straightforward to 
implement and does not require any modifications to the players used. 

• Networks   • Network performance evaluation   • Network performance analysis.   

1. Introduction 

It is well known that multimedia content distribution, and in 
particular video streaming, currently dominates global Internet traffic, 
and its importance will be even greater in the future. In this scenario, 
HTTP-based content distribution systems, such as the DASH (Dynamic 
Adaptive Streaming over HTTP) standard [1], revolutionized the way 
video content is streamed on VoD platforms. Its popularity can be 
attributed to its scalability, universality, and compatibility with network 
equipment [2]. DASH allows for the use of standard web servers for 
content distribution over HTTP (Hypertext Transfer Protocol), enabling 
the full benefits of CDNs (Content Delivery Network). Additionally, web 
technology can be played on browsers, and multimedia traffic is trans
parent to intermediate routers because of the widespread use of HTTP in 
Internet browsing. 

Specifically, the main advantages of using DASH can be summarized 
in three main points: 1) Reduced management complexity; 2) Cost 

reduction; and 3) Improved scalability. Regarding the first advantage, 
by allowing HTTP video transmission using TCP ports 80 and 443 and 
eliminating the need to deploy and manage a separate caching infra
structure, the management complexity is highly reduced. In addition, in 
most corporate networks, some level of restriction at the protocol and 
port level are used to minimize the likelihood of attacks. However, ports 
80 and 443 are almost always open for generic web traffic flow and 
therefore for HTTP video. Likewise, ports using other video streaming 
protocols such as RTMP, SRT, RTSP, etc. are not always open, hindering 
or blocking these protocols. 

With regards to cost-reduction, non-HTTP transmission protocols 
increase the cost of the infrastructure as they require specific hardware 
and software in the server, forming a parallel infrastructure to the 
network of the rest of the services. In addition, inefficient content 
caching can increase the amount of bandwidth required to transmit 
popular videos over the network. However, HTTP technology leverages 
the existing HTTP server network, allowing organizations to save costs 
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that would otherwise be spent on specialized hardware and software. 
And as access to video content increases, HTTP caching proxies 
dramatically reduce bandwidth costs over accessing uncached video. 
Finally, regarding improved scalability, the ubiquity of HTTP servers 
and the protocol’s native support for perimeter caching make HTTP the 
ideal choice for streaming large-scale live events and on-demand content 
for very frequent access. 

As more and more streaming platforms emerge, including those that 
offer live content (such as Youtube Live or Twitch, among others), low 
latency solutions are becoming increasingly necessary. Proposals for 
low-latency adaptive HTTP streaming, such as Low-Latency HLS (HTTP 
Live Streaming) [3] and Low-Latency DASH [4], are being developed to 
minimize the delay from video packetization to playback. However, 
other factors can contribute to added delays, such as encoding delay or 
acquisition delay through protocols like RTMP (Real Time Messaging 
Protocol), SRT (Secure Reliable Transport), or RTSP (Real-Time 
Streaming Protocol). These protocols are widely used in commercial IP 
(Internet Protocol) cameras and real-time content distribution systems 
like Teams, Zoom, IPTV, OBS, and vMix. While DASH relies on clients 
requesting video segments, LL-DASH pushes content while it is being 
generated, making it unsuitable for standard web servers [5]. Server and 
encoder implementations can be found in literature and online re
positories [6], but there are no IP cameras that support DASH or 
LL-DASH at a commercial level, making the study and development in 
this field interesting. 

Another key aspect to consider in the context of low-latency 
streaming is the Quality of Experience (QoE) of the viewers. In tradi
tional VoD (Video on Demand) streaming, buffering and slow start times 
are common issues that can lead to a poor QoE. In live streaming, 
additional challenges arise due to the real-time nature of the content and 
the need for low latency. As such, it is important to develop strategies to 
minimize rebuffering and maximize QoE in low-latency streaming sce
narios. This could include techniques such as predictive buffering, dy
namic bit rate adaptation, and network-aware streaming algorithms. 

Also, another process that has to be properly evaluated and config
ured in live streaming systems to achieve a trade-off between the delay 
introduced and the quality observed, is the transcoding process. This 
task will allow to properly adapt the input protocol (RTSP, SRT, …) and 
the video characteristics (codec, bitrate, resolution, …) to the DASH- 
based distribution systems. 

In this regard, this paper presents a testbed for LL-DASH [7], aiming 
to explore the factors that contribute to end-to-end delay. The evalua
tion of the latency for different video origins and manifest parameters 
will help researchers and developers improve the performance of 
streaming platforms. This is particularly important in use cases that 
require interactivity, like e-learning, online conferences, and gaming. By 
minimizing delays, the user experience can be greatly enhanced, leading 
to increased engagement and improved satisfaction. As the world of 
streaming platforms continues to expand, the demand for live content 
and interactivity is increasing, which makes the development of 
low-latency solutions for HTTP streaming a primary concern. Further
more, this work also proposes a server-based solution for Low Latency 
video streaming whose aim is to improve the Quality of Experience of 
the users. 

The rest of the paper is organized as follows: Section 2 presents the 
state of the art related to LL-DASH streaming technologies; Section 3 
presents the main factors and protocols related to latency, such as 
encoding, segmentation or network delivery; Section 4 explains the Low 
Latency solution proposed in this work; Section 5 introduces the pro
posed testbed, while Section 6 presents the evaluation carried out using 
the aforementioned testbed; Finally, Section 7 summarizes the main 
conclusions as well as the future work. 

2. State of the art 

Low-Latency DASH technology is based on a technique called 

``chunked transfer encoding’’, which is used in HTTP to send data as a 
series of chunks, rather than as a single response. Thus, the server splits 
the response into smaller chunks and sends them to the client, each 
preceded by a size indicator. This allows the client to begin processing 
the response before the server has finished sending it, resulting in faster 
and more efficient data transmission. The disadvantage of using this 
type of transfer, which allows segments to be generated and sent 
simultaneously, is that traditional adaptation algorithms do not 
correctly calculate the available bandwidth. 

Therefore, there are different solutions in the literature dealing with 
this problem. For instance, in Bentaleb et al. [8] authors present the 
ACTE (Adaptive Streaming with Chunked Transfer Encoding) algorithm, 
which uses a sliding window and an online linear adaptive filter as an 
alternative to overcome this drawback. The same authors present in 
Bentaleb et al. [9] the Automated Model for Prediction (AMP) algo
rithm, which utilizes a set of bandwidth prediction models that are 
dynamically selected to optimize performance in low latency scenarios. 
Along the same lines, in Lyko et al. [10] it is presented a new algorithm 
called Llama (Low Latency Adaptive Media Algorithm). This algorithm 
uses two independent measures of throughput on different time scales: 
one to decide whether to decrease the video quality and one to decide 
about increasing the video quality. Other algorithms to highlight 
regarding low latency scenarios are L2A [11], LoL+ [12], and Stallion 
[13]. Precisely both the L2A and LoL+ algorithms are used in this work 
in order to carry a comparison regarding the proposed solution. For that 
reason, these algorithms will be further explained in Section 5.2.2. 

Analyzing the most widely used DASH players, it is important to 
highlight Dash.js, the result of an initiative of the DASH Industry Forum. 
Aforementioned algorithms, such as L2A and LoL+, are integrated in 
this player. In [14] it is presented an implementation of an algorithm 
called SARA (Segment Aware Rate Adaptation), in which VBR (Variable 
Bitrate) coding is considered and therefore with a different size of 
generated segments. However, this algorithm is not oriented for low 
latency scenarios. On the contrary, Li et al. [15] presents a solution 
called Fleet, which has also been implemented in Dash.js and it is ori
ented for low-latency live video streaming. Fleet is based on a stochastic 
model predictive controller that considers networks conditions and 
client states in order to carry out bitrate adaptation. Specifically, Fleet 
uses a bandwidth measurement module, based on an HTTP chunk 
measurement, and a bitrate adaptation module which employs a prac
tical evaluation model. In the same line, a very complete study regarding 
evaluation of Dash.js for low-latency scenarios can be found in Taraghi 
et al. [16], which presents a framework to assess live streaming. 
Although real scenarios are difficult to assess, the results presented in 
this paper are obtained using an actual development of an LL-DASH 
server and also using Dash.js at the client. However, network conges
tion, packet loss and bandwidth constraints are simulated in order to 
evaluate the performance of the proposed approach in specific network 
conditions.  In this regard, Arunruangsirilert et al. [17] presents a per
formance evaluation of low-latency live streaming using MPEG-DASH 
over a commercial 5 G network in Thailand. 

Regarding live streaming, one of the most used protocols nowadays 
is SRT, which appeared in order to overcome different limitations of 
broadcast communications. In [18] authors implement an adaptive 
bitrate algorithm for the SRT protocol. In this way, they manage to 
include one of the advantages of DASH technology, which is the adap
tation of the bitrate depending on the state of congestion. The same 
authors focus the study in Viola et al. [19] considering the need to use 
the ``chunked transfer encoding’’ transmission proposed in CMAF 
(Common Media Application Format) to reduce the delay in 5G network 
applications. A similar solution is proposed in Li et al. [20], where it is 
presented a design a fuzzy logic controller based ABR for low latency 
live video streaming with Chunked Transfer Encoding (CTE). In order to 
make bitrate decisions, the algorithm takes into consideration player 
buffer size, throughput mean and throughput standard deviation. 

From the point of view of end-to-end delay, in Tashtarian et al. [21] 
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the authors focus on providing an end-to-end solution through what they 
call HxL3 architecture (HTTP/x-based Low-Latency Live streaming ar
chitecture). This solution is agnostic to the codecs (H.264, H.265, …), 
application protocols (HTTP/1.1 or HTTP/2.0), streaming format 
(DASH, HLS), transport protocol (TCP -Transport Control Protocol- or 
UDP -User Datagram Protocol-) and CDNs. And in Bouzakaria et al. [22], 
the authors focus primarily on the study of the overhead introduced by 
streaming content using LL-DASH. The use of transmission using 
``chunked transfer encoding’’ introduces an increase in headers and 
therefore overhead in the network. 

Regarding the different low latency solutions, in Durak et al. [23] an 
in-depth comparison is made between the low latency solution proposed 
by Apple (HLS LL) in 2019, the standard LL-DASH solution of 2019 and 
Low-latency HTTP Live Streaming (LHLS) that was first introduced by 
Twitter’s Periscope in 2018 and then improved by Twitch in 2019, also 
describing the differences between the different solutions.  Another 
work focused on low latency scenarios for HLS is [24], where the authors 
integrate existing LL-DASH ABR schemes in hls.js video player. 

Unlike other papers that also present results based on their own test- 
beds [21,22,25], this work presents an open-source web service that 
supports chunked transmissions as well as FFmpeg scripts to quickly 
deploy a LL-DASH evaluation scenario. In addition, this work is an 
extension of previous work carried out by the authors regarding the 
DASH protocol, specifically on the evaluation of QoE (Quality of Expe
rience) in DASH [26] and the impact of DASH streaming on Energy 
Efficient Ethernet [27]. 

3. Low latency: factors and protocols 

According to a report by Bitmovin [28], on the main concerns of 
companies in the video streaming sector, the problem of latency comes 
first (41%), second is the controlling cost (e.g., bandwidth, storage,) 
(33%), and third is device compatibility (32%). 

Low latency definition depends to a large extent on the application in 
which the distribution system is framed. In fact, depending on the 
application (video on demand, live streaming, videoconferencing, etc.) 
the latency requirements (in addition to bandwidth requirements, loss 
tolerance, etc.) are different. To give an example at each end of the 
multimedia applications, it can be seen how video conferencing or 

security applications need much lower latency than VoD applications 
(such as Netflix, HBO, Youtube…) since video conferencing is an 
interactive and real-time application with very demanding delay re
quirements (around 150–200 ms). 

Generally, real-time, ultra-low latency and low latency solutions 
involve using protocols such as WebRTC, RTP/RTSP or SRT (protocols 
used by applications such as Teams, Zoom, Skype, or IPTV services) 
while, at the other end, HLS and DASH protocols can be found that offer 
latencies in the order of 20–30 s typically (used by applications such as 
Netflix, Youtube, HBO, etc.). However, it can be seen that within the 
1–5 s range, any protocol can be utilized. At this point, it is important to 
note that while WebRTC or RTP/RTSP protocols are implicitly designed 
to offer these low latency performances, HLS or DASH protocols need 
new functionalities both on the encoding and on the packaging side. 

In a simplified form, and considering the presented scenario, the 
main processes that introduce delay in the system are shown in Fig. 1. Of 
the different processes involved, this work will focus on the transcoding, 
segmentation, and communication processes between the player and the 
server. Because there is no control over the capture process, and the 
video may arrive with different protocols and encoding parameters 
(frame rate, bitrate, resolution, etc.), it is not possible to carry out seg
mentation, and a transcoding process is necessary beforehand. 

The main aspects that contribute to the final latency observed in the 
player and depicted in Fig. 1 are discussed below. 

3.1. Encoding 

The first aspect to decide is the type of encoder that can be used to 
carry out the encoding while minimizing delay. Although previous 
studies have analyzed the efficiency of different encoders and the 
resulting quality, such as the R-D (rate-distortion) curve, a study is 
conducted where both the VMAF (Video MultiMethod Assessment 

Fig. 1. Processes introducing delay in multimedia transmission.  

Fig. 2. Frames of the videos used to perform encoding analysis.  

Fig. 3. Evaluation of spatial information (SI) and temporal information (TI).  
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Fusion) and the encoding time will be considered as a comparative 
measure to assess the feasibility of encoders. Currently, there are 
different encoders widely used by devices such as cell phones, cameras, 
tablets, etc., such as H.264/AVC (Advanced Video Coding) and H.265/ 
HEVC (High Efficiency Video Coding), and recently the specifications of 
other encoders, such as H.266/VVC (Versatile Video Coding), have been 
published. 

To conduct the study, 10 videos have been selected, obtained from 
Blender (www.blender.org) and Videvo (https://www.videvo.net), all 
with the same characteristics: duration of 30 s, resolution of 1280 × 720, 
24 fps, 4:2:0 sampling format (yuv420p), and 8-bit bit depth. Fig. 2 
depicts a frame from each video. 

Figure 3 shows the spatial information (SI) and temporal information 
(TI) values of the 10 videos used for the encoder comparison. Scenes 

Fig. 4. Evaluation of VMAF for H.264, H.265 and H.266 codecs.  
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with a lot of detail have higher spatial complexity or information (SI) 
than those with less detail. Similarly, scenes with a lot of motion have 
higher temporal complexity or information (TI) than those with less 
motion. For example, videos such as Vaccine or Agent 327 have scenes 
with less detail and less motion compared to sequences like Pedestrians 
or Close to bird, where the scenes are more complex due to the presence 
of more details and motion. Additionally, the behavior of the different 
encoders on each of these scenarios is analyzed and how they affect the 
visual quality of the encoded videos. 

Among all the possible measures to evaluate video quality (PSNR, 
SSIM, VMAF, …), VMAF has been considered for the assessment because 
it takes into account perceptual quality factors that are more closely 
aligned with how humans perceive video quality. VMAF has been shown 
to perform well across a wide range of video content, including high- 
motion, low-bitrate, and high-resolution content. This makes it a ver
satile and reliable metric for video quality measurement in a variety of 
contexts. Hence, Fig. 4 shows the result of measuring VMAF with respect 
to the bitrate for all sequences (128 kbps, 256 kbps, 512 kbps and 1024 
kbps), with a resolution of 1280 × 720 pixels and encoded at 24 fps. It 
can be seen, for example, that for Agent 327 sequence (Fig. 4(a)), for a 
VMAF = 90 requires about 129 kbps with H.266, while H.264 and H.265 
require almost 1 Mbps. 

Regarding the VMAF values obtained, it is fulfilled in all sequences 
that the H.266 encoder offers better quality than H.264 and H.265. 
Specifically, the VMAF improvement of H.266 with respect to H.265 in 
the Agent 327 sequence is [30.93; 16.87; 7.53; 3.27] points corre
sponding to the bitrates of [128k, 256k, 512k, 1024k], and [58.97; 
35.45; 16.06; 6.17] points corresponding to the bitrates of [128k, 256k, 
512k, 1024k] with respect to H.264. It is observed in all sequences that 
the quality improvement is greater when the bitrate is lower. In this 
case, it can be seen that this improvement is much greater in the case of a 
128k bitrate. An improvement of 30.93 VMAF points indicates that the 
subjective quality perceived by the user is much better in H.266 than in 
H.265 for a bitrate of 128 kbps. For the 1024 kbps bitrate, the VMAF 
improvement is only 3.27 VMAF points, indicating that the perceived 
video quality change when using H.266 is very low compared to using 

H.264 or H.265. Regarding the improvement that H.265 introduces over 
H.264, it is still significant for low bitrates. 

However, for low latency systems, it is necessary to use other metrics, 
such as the encoding time used by each encoder. For this, it can be used 
the encoding speed relative to the frame rate. According to the results 
shown in Fig. 5, for example, for a low-quality (128 kbps) encoding of 
the Agent 327 sequence, an encoding speed of 11.2× in H.264 means 
that it is capable of encoding 268 fps; in H.265, the speed of 3.67×
implies being able to encode 88 fps; and in H.266, the speed of 0.0109×
allows only encoding 0.26 fps. Comparing the encoding speed for the 
bitrate of 1024 kbps, 170 fps, 54 fps, and 0.14 fps could be reached in 
H.264, H.265 and H.266, respectively. The same comparison for the 
Pedestrian sequence shows that for medium quality (512 kbps), both the 
H.265 and H.266 offer inefficient results. In this way, there is a trade-off 
between encoding efficiency and speed coding. In the case of low latency 
scenarios, where the delay is the key factor, both H.265 and H.266 
codecs can be discarded for the transcoding process. 

On the other hand, the GoP (Group of Pictures) represents the pattern 
of appearance of the frames (I, P, B) in the encoded video. There are 
multiple possible GoP configurations: periodic/non-periodic; with/ 
without B-frames; open/closed GoP; large size/small size; etc. Regarding 
latency, whether to use B-frames and the GoP size are of great impor
tance in GoP configuration. And with regards to GoP size and latency, 
this feature has less influence on RTP-based protocols (WebRTC) than on 
HLS or DASH protocols. The reason is that protocols such as RTP 
transmit frame by frame, while HLS or DASH protocols transmit seg
ments (groups of frames) that usually consist of a whole number of GoPs. 

3.2. Segmentation 

DASH and HLS are based on the transmission of segments using the 
HTTP protocol and adaptive algorithms. The fact of using segments in
troduces an intrinsic delay into the system, since it is necessary to wait 
for the generation of the segment in order to be able to transmit it. 
Typical values for the duration of such segments are 2 s, 4 s, 6 s or 10 s. 
Without considering the fact of having to use a buffer in the receiver, the 
segmentation process already introduces an unacceptable delay for 
many interactive or real-time applications. Figure 6 shows schematically 
the structure of a 6 s segment in the fMP4 (fragmented MP4) format. 
When using fMP4 file format, the encoded file is divided into segments 
that can be downloaded and played back. However, to start playback, it 
is necessary for the player to download the complete segment (mdat). 

To reduce playback delay, a new container format called CMAF 
(Common Media Application Format) has been specified, which allows 
the segment to be divided into chunks and to start playback while new 
chunks are still being generated. Figure 7 shows how a segment has been 
split into one chunk per frame, ideal for real-time applications. How
ever, there is a trade-off between the latency reduction achieved and 
other aspects such as the probability of interruptions due to congestion 
or the increase in headers for accessing the chunks. 

Finally, to minimize the effect of congestion, all players use buffers to 

Fig. 5. Evaluation of encoding speed for H.264, H.265 and H.266 codecs.  

Fig. 6. Traditional fMP4 segment (e.g., 6 s).  

Fig. 7. CMAF chunked segment (e.g., 180 chunks).  
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store a certain number of frames or segments before starting playback 
(Fig. 8). Again, there is a trade-off between buffer size and the proba
bility of service interruptions. Typical values are in the range of 30 s 
buffer. However, depending on the applications (and specifically for real 
time) these values must be reduced to obtain a valid service. 

Once the factors that affect latency have been analyzed, the protocols 
used for video transmission must be considered. In fact, each option will 
have different answers regarding latency, scalability, etc. that should be 
evaluated. 

3.3. Network delivery 

On the one hand, the exponential growth of traffic in wireless net
works is posing a challenge due to the limited resource of the frequency 
spectrum. As users demand more bandwidth, it is important to seek out 
underutilized features of current wireless technologies to optimize 
spectrum efficiency. While there are mechanisms, such as MIMO (Mul
tiple-Input Multiple-Output) technology, channel configuration, and 
limiting connections per access point, that aim to enhance Wi-Fi 
network performance, providing adaptive streaming services with 
satisfactory QoE remains a challenge in high-density wireless environ
ments with 50–100 or even 500–600 users. 

DASH technology was originally designed for Internet content 
broadcasting. However, when deployed in shared Wi-Fi environments, 
where there is a high concentration of devices such as in event halls, 
stadiums, auditoriums, buses, trains, ferries, etc., not only is the band
width per client reduced, but measuring the available bandwidth be
comes challenging due to the high variability of wireless links. This 
variability creates problems for adaptive multimedia systems when 
determining the quality of video segments to be downloaded, as in the 
case of DASH client-driven architecture, where clients estimate band
width and request the appropriate quality from the server. 

In this scenario, clients have limited information as they only mea
sure transmission rates while downloading segments, after winning the 
media access contest. Unfortunately, during the next segment request, 
contention may increase due to other clients trying to access the channel 
again, interference from other networks or electromagnetic signals, or a 
loss of signal or coverage due to client mobility or the presence of ob
stacles between the client and the access point. In any of these cases, the 
bandwidth measured by the client does not provide an accurate indi
cation of the quality required to maintain continuous playback and 
minimize the impact on QoE. 

To tackle this issue, tutorials and novel proposals have emerged that 
rely on cross-layer solutions and coordination between the server, 
network, and clients [29–31]. In this sense, cross-layer mechanisms and, 
in particular, Server and Network Assisted DASH (SAND) technology 
[32], can serve as effective alternatives for carrying out additional 
processing to enhance the overall system performance. 

Nevertheless, as mentioned earlier, low latency streaming systems 
entail greater complexity due to the need for adaptive algorithmic 

solutions that consider chunk-based transmission and highly variable 
bandwidth environments. 

4. Server-side representation switching 

One of the major advantages of using DASH for video streaming is 
that video servers do not need to maintain session state for clients. Each 
client manages its own playback position and requests the most relevant 
representation according to its circumstances (bandwidth, playback 
device used…). However, adapting video quality in low-latency 
streaming scenarios poses new challenges, in which server-side assis
tance can be useful. 

When a video stream has multiple qualities sharing certain codec 
parameters, such as resolution and video codec, segments of different 
qualities can be interchanged and decoded using the same decoder 
instance without errors. For example, if a video is encoded with the same 
resolution and codec parameters, but at different bitrates, a single 
decoder instance can decode segments of any bitrate, generating deco
ded frames without errors. In this sense, Fig. 9 shows a single video 
decoder decoding a stream of segments from different representations. 
In the example, the video encoded with a bitrate B has a better quality (a 
higher bitrate) that the video encoded with a bitrate A. 

Taking this into consideration, this work proposes a new solution for 
Low Latency Video streaming based on the information managed by the 
server. Thus, the solution proposed, called Server-Side Representation 
Switching (SSRS), leverages the aforementioned capability to select the 
quality of the representation for each segment that will be transmitted to 
video clients. To prevent clients from attempting to change the repre
sentation on their own, SSRS modifies the MPD to contain a single 
representation, thus making video players unaware of any change of 
representation. 

In order for the server to determine which quality to send to each 
client for each request, a regular DASH server would need to maintain 
information about each client. However, SSRS can take advantage of the 
fact that it is broadcasting a Low-Latency DASH video stream to use the 
instants of time at which it receives requests for segments to calculate 
the representation to transmit. Figure 10 illustrates how the Low- 
Latency DASH server can easily calculate the delay of each client by 
simply comparing the time at which it receives the request with the 
moment it began receiving the required segment. The figure shows a 
single video decoder decoding a stream of segments from different 
representations. 

Thus, SSRS does not need to maintain client state, since it only takes 
into account the delay of the request for the segment relative to the time 
at which the server began receiving that segment in order to calculate 

Fig. 8. Segments in player buffer (e.g., 30 s).  

Fig. 9. Example of decoding a stream of segments.  

Fig. 10. Example of the performance of SSRS.  
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the representation to serve, as shown in the following equation: 

repsegment X = max(0, round(rep max − λ ∗ delay)), (1)  

where repsegment X is the representation sent to the client for segment X; 
rep_max is the representation with the highest quality (that is, the rep
resentation encoded with the maximum bitrate); delay is the time (in 

seconds) between the instant of time the PUT request arrives at the 
server and the instant of time when the GET request arrives at the server 
for a specific segment; and λ is a weighting factor (the higher the λ, the 
more conservative the solution in terms of bitrate). 

5. Methodology 

5.1. Low latency DASH testbed 

The situation arises where protocols intended for real-time trans
mission (from cameras, transmission equipment or production software) 
such as RTSP or SRT protocols, and the advantages of using LL-DASH 
technology for content distribution must coexist. Therefore, it is neces
sary to integrate both technologies to take advantage of the benefits of 
both. Figure 11 depicts schematically the proposed scenario for this 
purpose. 

The figure shows different video content sources (cameras or content 
servers). The output of these sources uses RTSP or SRT. The server in
cludes the developed processes that take care of the reception of these 
streams and their efficient transformation into video segments 
complying with the CMAF format for their use by the LL-DASH tech
nology. On the other hand, a Web server has been implemented in Py
thon that supports the distribution of content using the LL-DASH 
standard by sending chunks. Finally, the devices play the contents 
through DASH clients (such as Dash.js, Shaka-Player, etc.). 

The use of standard HTTP servers for DASH is a key benefit of the 
technology but imposes a defined sequence of events where segment 
files must be available on the server prior to any request could be suc
cessfully handled. This sequence poses no inconvenience for VoD, where 
segments can be available on the servers in advance, or even on live 
streaming, where players can be playing some segments behind, but 

Fig. 11. Scenario - Real Time Production – LL-DASH Distribution.  

Fig. 12. DASH client-server sequence.  

Fig. 13. DASH minimum client delay.  

Fig. 14. Low Latency DASH client-server sequence.  
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generates an unavoidable delay between the generation and the con
sumption of the content. Figure 12 shows how DASH clients must 
request, at least, a segment behind the sequence of generated segments 
(Y < X) in order to avoid HTTP errors. 

This requirement generates a minimum delay equal to the sum of the 
time length of the segment, the time of the transmission to the server and 

the backoff time to avoid HTTP errors, as Fig. 13 depicts. 
As previously stated, this minimum delay may suit some live 

streaming scenarios but not those which require low latency. For 
achieving low latency when using DASH, HTTP servers can no longer be 
static content servers but dynamically handle segment requests. 

Figure 14 shows the required behavior of HTTP servers to handle LL- 
DASH clients. First, manifest and the initial segment must be uploaded 
to the server (events 1 and 2) before the content is accessible to the client 
(events 3 and 4). In live DASH, manifest is periodically generated and 
uploaded to the HTTP server, but it is omitted from the figure for clarity. 
Next, the client will begin to request segments based on the manifest, the 
target latency and the current time. In LL-DASH, those segment requests 
will reach the HTTP server even before the segment transmission from 
the source to the server has started. In this scenario, the HTTP server 
must retain the HTTP request long enough to wait the incoming segment 
or timeout otherwise, as represented between events 5 and 6 in Fig. 14. 

The HTTP server, when the requested segment reception begins 

Fig. 15. Fast-ll generate_partial_segment function.  

Fig. 16. FFmpeg command line to transform RTSP into LL-DASH.  

Table 1 
Parameters used for the low latency DASH testbed.  

Evaluation parameter  □ Latency 
Sources  □ RTSP camera (RTSP)  

□ FFmpeg test source (Gen)  
□ SRT source (SRT) 

Tools  □ Dash.js version 4.7  
□ Fast-ll server 

Target latency  □ 0.2, 0.5, 1 and 2 s  
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(event 6), starts sending the content of the segment to the pending re
quests, as it arrives, in the form of chunked transmission. 

Aiming to test the described behavior, a Python HTTP server for LL- 
DASH has been developed based on FastAPI [33] framework, called 
Fast-ll. Figure 15 shows an excerpt of the server where a generator is 
created to add received chunks to the response of clients while they are 
being received. Fast-ll handles manifest and segments in-memory so no 
copy is stored on disk. The HTTP server must be fed using HTTP PUT 
requests to add content, and DELETE requests to remove content (when 
the segments exceed the windows defined in the manifest, thus no client 
will request it). The process of using HTTP methods to manage the 
content on the Fast-ll can be done by the FFmpeg tool [34] when the 
appropriate set of parameters is provided. 

For reference, Fig. 16 includes a complete command-line that uses 

FFmpeg to access an SRT or RTSP stream, recodes the video stream, 
generates a low latency DASH stream and uploads the different objects 
(manifest and segments) to the locally running Fast-ll server. 

Specifications for all parameters in Fig. 16 can be found in Kempf 
[35]. Among all parameters, there are three of particular relevance: 1) 
-ldash 1: specifies the LL-DASH mode; 2) -target_latency 0.5: latency that 
the client will try to achieve; and 3) -format_options "movflags=cmaf": 
the container format. 

The source code of Fast-ll server and the scripts used in the work can 
be found in the Git repository https://github.com/robelor/fast-ll [36]. 

5.2. Evaluation setup 

With the development introduced in this work, it is straightforward 

Fig. 17. Scenarios used to perform tests.  

Fig. 18. Screenshot of the testbed.  
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to setup a test environment to evaluate LL-DASH tools and clients. 
In this work, two different types of evaluations have been carried out 

in order to evaluate both the Low Latency DASH testbed proposed as 
well as the Server-Side Representation Switching solution, explained in 
the following sections. 

5.2.1. Setup of the low latency DASH testbed 

First of all, to demonstrate the suitability of the Low Latency DASH 
testbed, an evaluation of the parameter target latency when generating 
LL-DASH content using FFmpeg has been performed. The evaluation is 

Fig. 19. Example of Fast-ll streaming configuration.  

Table 2 
Parameters used for the server-side representation switching evaluation testbed.  

Evaluation parameters  □ Latency  
□ Buffer length  
□ Bitrate 

Algorithms  □ SSRS (λ = 1)  
□ L2A  
□ LoL+

Scenarios  □ Wi-Fi AC  
□ Ladder (1500 kbps, 800 kbps, 400 kbps)  
□ Sinkhole (1500 kbps, 800 kbps, 1500 kbps) 

Tools  □ Dash.js version 4.7  
□ Fast-ll server 

Video encoding parameters  □ Codec: H.264  
□ Representations: 250 kbps, 500 kbps, 1000 kbps  
□ Resolution: 480p  

Fig. 20. Latency measured by the Dash.js client for different target latency values and source protocols.  

Table 3 
Latency (in seconds) measured by Dash.js.   

0.2 s 0.5 s 1 s 2 s 

Gen 0.21078 0.41942 0.95998 1.87212 
RTSP 0.35892 0.48984 0.97928 1.98286 
SRT 0.20634 0.49404 1.01040 2.02898  
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carried out using three different sources: an RTSP camera (RTSP), an 
FFmpeg test source (Gen) and SRT source (SRT) generated also using 
FFmpeg. Regarding the target latency parameter, the evaluated values 
are 0.2, 0.5, 1 and 2 s. 

FFmpeg uses the value, in seconds, of this parameter to generate the 
Media Presentation Description (MPD) accordingly. For example, when 
0.5 is specified as target latency parameter, the resulting MPD will 
incorporate "<Latency target="500"/>" inside the ``Service
Description’’ tag as the MPD defines the value to be in milliseconds. 

In order to carry out the measurements, two main tools has been 
used: Dash.js and Fast-ll server. This tools are explained in the next 
section. 

Table 1 summarizes the parameters used for the testbed. 

5.2.2. Setup of the server-side representation switching evaluation 

In order to compare the performance of the Server-Side Represen
tation Switching solution proposed in this work, two well-known algo
rithms have been used: L2A and LoL+. It is worth highlighting that both 
algorithms are integrated into the DASH-IF reference video player 
(Dash.js). L2A is based on online learning and the Online Convex 
Optimization (OCO) theory and does not require any parameter tuning 

nor throughput estimation, performing well over a wide spectrum of 
network profiles, as shown in Karagkioules et al. [11]. Likewise, LoL+
[12] offers a precise bandwidth prediction and rate adaptation algo
rithm for low latency scenarios, and it was designed in order to provide a 
good QoE for any given target latency. 

These two algorithms, as well as the SSRS solution hereby presented, 
have been tested in three different scenarios: the first consists of a Wi-Fi 
scenario (Wi-Fi 802.11 ac), specifically a laboratory sited at Universitat 
Politècnica de València; the second, called “ladder” and shown in Fig. 17 
(a), presents an initial bandwidth of 1500 kbps, 10 s later the bandwidth 
switches to almost the half (800 kbps), and 30 s later the bandwidth 
drops until 400 kbps; the third scenario, called “sinkhole” it is equal to 
the second scenario except for the last 20 s, where the bandwidth instead 
of decreasing, increases until 1500 kbps, as Fig. 17(b) depicts. Therefore, 
the duration of each test is 60 s. 

In order to carry out the measurements, as in the previous study, 
Dash.js has been used [37], specifically version 4.7.0, as shown in 
Fig. 18. This tool provides accurate information about the selected 
representation (represented by its target average bitrate), the network 
latency (time from the request to the response arrival, in seconds) and 
live latency (difference between live time and playback position in 
seconds) among other parameters. 

Fig. 21. Evaluation of the Wi-Fi scenario.  

Table 4 
Evaluation of the Wi-Fi scenario.   

Buffer length (s) Latency (s) Displayed bitrate (kbps)  

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS 

Average 0.21 0.34 0.43 0.31 0.48 0.47 1000 346.77 1000 
Min 0.06 0.06 0.37 0.19 0.44 0.46 1000 250.00 1000 
Max 1.04 0.51 0.45 1.05 0.57 0.48 1000 1000.00 1000 
Std dev. 0.17 0.15 0.03 0.16 0.03 0.01 0 255.58 0 
MSE – – – 0.04 0.08 0.07 – – –  
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For the development of the tests, the Fast-ll server has been config
ured to re-encode the video stream from a Hikvision camera accessed via 
RTSP at a resolution of 1080p. This camera, depending on factors such 
as ambient light intensity, is able to change the frame rate at which it 
sends the video stream. 

It is important to note that although the video obtained from the 
camera is already encoded using H.264, the video server must re-encode 
the video streaming to adapt it to the resolutions, frame rates and 
bitrates specified in the configuration. 

Fast-ll has been configured to access the stream from this camera and 
generate three representations. All of them with a resolution of 480p. 
Figure 19 depicts an example of the stream configuration, showing the 
common parameters to all representations such as targetFps, segment
Duration or fragmentDuration, and the configuration of both the resolu
tion and the bitrate of the three representations presented. The 
serverSideStreamSwitching parameter, if the configuration of the different 
representation allows it, indicates Fast-ll to use SSRS. 

Regarding the SSRS solution, the tests have been carried out fixing λ 
= 1, as indicated in Eq. (1). 

Finally, Table 2 summarizes the parameters used for the Server-Side 
Representation Switching evaluation testbed. 

6. Results and discussion 

6.1. Evaluation of low latency DASH testbed 

Figure 20 shows the average delay identified by Dash.js for each 
protocol and target delay. Numeric values can be seen in Table 1. This 
measured delay refers to the time between the segmentation process and 
the display time of video frames. Naturally, the overall delay will 
include delays introduced by the video sources, transport, and seg
mentation (Table 3). 

All video sources offer similar results, complying with the target 
latency in each case, except RTSP for the most restrictive case (0.2 s). 

6.2. Evaluation of server-side representation switching 

As aforementioned, in order to assess the new proposed algorithm, 
three different scenarios have been considered: a Wi-Fi scenario, a lad
der bandwidth channel and a sinkhole bandwidth channel. The most 
representative parameters are targetLatency of 0.2 s, segmentDuration of 
1 s, fragmentDuration of 0.1 s, and three encodingTargetBitrates of 250 
kbps, 500 kbps and 1000 kbps, as shown in Fig. 19 for all the three 
scenarios. Starting with the first scenario, Fig. 21 shows the behavior of 
the three algorithms analyzed regarding the buffer length, the latency 

Fig. 22. Evaluation of the ladder scenario.  

Table 5 
Evaluation of the ladder scenario.   

Buffer length (s) Latency (s) Displayed bitrate (kbps)  

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS 

Average 0.12 0.36 0.13 4.58 0.88 1.47 838.71 250.00 688.52 
Min 0.00 0.02 0.02 0.35 0.41 0.47 500.00 250.00 250.00 
Max 0.40 0.70 0.41 13.26 2.32 2.42 1000.00 250.00 1000.00 
Std dev. 0.09 0.19 0.10 4.02 0.64 0.68 237.60 0.00 301.58 
MSE – – – 34.85 0.85 2.06 – – –  
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and the displayed bitrate at the client side. A summary of the results is 
shown in Table 4, which shows the average, minimum, maximum, and 
standard deviation values of the evaluated parameters. Also, regarding 
the latency, the table shows the Mean Squared Error (MSE) taking as a 
reference the target latency of 0.2 s. 

Regarding buffer length, Fig. 21(a) and Table 4 reveal that the most 
stable solution is SSRS, with a buffer length around 0.45 s throughout all 
the transmission. L2A is the algorithm that provides the minimum 
average buffer length, with a remarkable peak of more than 1 s when t =
42 s. Both L2A and LoL+ offer a more fluctuating behavior regarding the 
buffer length. In the case of latency, both LoL+ and SSRS behave rather 
similar. The three algorithms provide good values regarding the MSE, 
thus fulfilling the target latency. Although L2A is the algorithm that 
provides the best average latency, it also has a remarkable peak with a 
latency higher than 1 s. Finally, with regards to displayed bitrate, Fig. 21 
reflects that with L2A and SSRS, the displayed bitrate is the maximum 
available (1000 kbps), which is the expected result considering that 
there is no bandwidth throttling. On the contrary, LoL+ has a more 
conservative behavior, using the minimum quality (250 kbps) for the 
most of the transmission. 

The results are not so stable when analyzing the different algorithms 
in more challenging channels. Regarding the ladder scenario, Fig. 22 
depicts that there is a notable fluctuation in terms of buffer length. In 

this case, L2A and SSRS behave rather similar, providing alike values of 
average, minimum, maximum, and standard deviation according to 
Table 5. However, this similarity disappears when considering the la
tency, since the latency using L2A increases considerably when the 
channel bandwidth decreases (with values of more than 10 s at the end 
of the transmission). In the case of the proposed solution SSRS, the la
tency increases to 2.42 s. LoL+ provides the best results regarding la
tency (and it is the only algorithm that fulfills the target latency) at the 
expense of providing the worst displayed bitrate (250 kbps). Again, SSRS 
offers similar results to L2A, although providing slightly lower displayed 
bitrate. 

The last scenario assessed is the sinkhole channel and results are 
shown in Fig. 23 and Table 6. The conclusions remain unchanged from 
the previous scenario: SSRS is the solution that offers the best trade-off 
among buffer length, latency and displayed bitrate. In this scenario, the 
SSRS provides the minimum MSE of the latency. Likewise, in this 
particular case, it is worth mentioning that the maximum buffer length 
of SSRS is higher than 1 s in the particular instant of time when the 
channel bandwidth increases, and that SSRS is the solution that offers 
minimum latency. 

Finally, it is worth highlighting that a small buffer length entails 
better performance, as a longer buffer length results in higher latency 
during playback. However, if the buffer length reaches zero at any point 

Fig. 23. Evaluation of the sinkhole scenario.  

Table 6 
Evaluation of the sinkhole scenario.   

Buffer length (s) Latency (s) Displayed bitrate (kbps)  

L2A LoL+ SSRS L2A LoL+ SSRS L2A LoL+ SSRS 

Average 0.16 0.41 0.22 5.80 1.93 1.42 774.19 266.13 709.02 
Min 0.00 0.03 0.00 0.31 0.40 0.46 500.00 250.00 250.00 
Max 0.48 0.85 1.03 10.45 4.14 2.41 1000.00 500.00 1000.00 
Std dev. 0.12 0.25 0.19 3.54 1.19 0.89 252.94 62.43 329.71 
MSE – – – 43.50 4.36 2.25 – – –  
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meaning the buffer has emptied, this may indicate that the video could 
experience interruptions and degrade the QoE. 

7. Conclusion 

Currently, integration of real-time sources (using protocols such as 
SRT or RTSP) for distribution over the Internet or CDNs, using LL-DASH 
technology, is an interesting topic from a performance analysis point of 
view. 

As the main contribution, this work presents a content distribution 
system for live streaming using Low Latency DASH along with a proposal 
for the selection of the transmitted quality, based on a server-side de
cision-making process called SSRS (Server-Side Representation Switch
ing), to improve the offered QoE in certain scenarios. The evaluated 
parameters in the implemented testbed have been buffer length, latency, 
and displayed bitrate. Regarding the Low Latency DASH testbed, both 
RTSP camera, SRT source and FFmpeg test source, in general, comply 
with the target latency in each case (0.2, 0.5, 1 and 2 s). 

Additionally, tests have been carried out in a real Wi-Fi environment 
without restrictions, as well as in two scenarios (ladder and sinkhole) 
where variations in the available bandwidth occur. The proposed solu
tion has been compared to the L2A and LoL+ algorithms included in the 
Dash.js player. Analysing the results, it can be seen that the SSRS solu
tion is the option that offers the best trade-off among the evaluated 
parameters. Specifically, in the ladder scenario, SSRS provides low 
values of latency (1.47 s) with a good displayed rate (688.52 kbps), in 
contrast to a latency of 4.58 provided by L2A and a displayed bitrate of 
250 kbps of the LoL+ algorithm. In the sinkhole scenario, SSRS provides 
an average displayed bitrate of 709.02 kbps (close to 774.19 kbps pro
vided by L2A) with an average and maximum latency (1.42 s and 2.41 s, 
respectively) much lower than the average and maximum latency of L2A 
(5.80 s and 10.45 s, respectively). 

In conclusion, the work presents a promising approach for improving 
the user experience quality in real-time transmission systems and sug
gests possible future research lines in this area. The source code needed 
to deploy and run the presented LL-DASH testbed and the integration 
with RTSP and SRT source protocols is available on GitHub [36]. 

An interesting future work includes the development of a content 
source agnostic measurement system to be able to measure the delay in 
an automated way. Moreover, proposing new algorithms based on the 
SSRS solution from the server-side point of view is a worthwhile 
approach that can be explored further. 
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