
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/201821

Li; Li, X.; Lu, Z.; Lloret, J.; Song, H. (2017). Sequential Behavior Pattern Discovery with
Frequent Episode Mining and Wireless Sensor Network. IEEE Communications Magazine.
55(6):205-211. https://doi.org/10.1109/MCOM.2017.1600276

https://doi.org/10.1109/MCOM.2017.1600276

Institute of Electrical and Electronics Engineers



Sequential Behavior Pattern Discovery with Frequent 
Episode Mining and Wireless Sensor Network 

 

Li Li1, Xin Li2*, Zhihan Lu3*, Jaime Lloret4, Houbing Song5* 
1. School of Architecture, Southeast University, China 
2. School of Urban Design, Wuhan University, China 

3. Department of Computer Science, University College London, UK 
4. Department of Communications, Universitat Politecnica de Valencia, Spain 

5. Department of Electrical and Computer Engineering, West Virginia University, Montgomery, WV 25136 USA 
Email: lili_arch@163.com, li-xin@whu.edu.cn, Z.Lu@cs.ucl.ac.uk, jlloret@dcom.upv.es, h.song@ieee.org 

 
 

Abstract—By recognizing patterns in occupants’ daily 
activities, building systems are able to optimize and personalize 
services. Established technologies are available for data 
collection and pattern mining, but they all share the drawback 
that the methodology used for data collection tends to be ill 
suited for pattern recognition. For this research, we developed 
a bespoke wireless sensor network (WSN) and combined it 
with a compact data format for frequent episode mining 
(FEM) to overcome this obstacle. The proposed framework has 
been evaluated with both synthetic data from a smart home 
simulator and with real data from a self-organizing WSN in a 
student’s home. We are able to demonstrate that the 
framework is capable of discovering sequential patterns in 
heterogeneous sensor data. With corresponding scenarios, 
patterns in daily activities can be deduced. The framework is 
self-contained, scalable and energy efficient and is thus 
applicable in multiple building system settings. 

Index Terms—Smart City, Smart Building, Frequent Episode 
Mining, Wireless Sensor Network 

I. INTRODUCTION  
From a technical point of view, a smart city tries to 

improve the quality of life of its citizens in terms of urban 
services by utilizing information and communication 
technology (ICT), data mining (DM), and other new 
technologies to improve urban services. Patterns of daily 
behavior are a decisive factor in many aspects of the urban 
environment, such as traffic, air quality, energy cost, and so 
on. Considering that urban dwellers spend approximately 90 
percent of their lives indoors, it’s no surprise that buildings 
are responsible for about two-thirds of all electrical energy 
consumption. Making cities smarter begins indoors. Utilizing 
data collection to reveal occupants’ behavior patterns enables 
data-driven decisions for smarter buildings. Usage can be 
anticipated, thus reducing the consumption while improving 
the experience[1].  

The data-driven decision for buildings is largely based on 
data acquisition and data mining technologies. Wireless 
sensor networks are widely used for data acquisition since 
wireless is low cost and more flexible than wired solutions 
[2]. Extensive research has been performed on efficiency 
[3][4] and mobility [5-7]. Since it is impossible for the 
system designer to envision all possible contexts beforehand, 
decision making control systems largely rely on data mining 
and machine learning techniques such as an artificial neural 
network (ANN), a support vector machine (SVM), a self-
organizing map (SOM), a hidden Markov model (HMM), 
and frequent pattern mining (FPM)[8]. Artificial intelligence 
provides many benefits for data gathering systems [9]  

A. Existing problem 

In spite of all of the studies conducted on data acquisition 
and data mining for building systems, no practical solution 
has been provided. There are several reasons for this: 

 Too complex. Most of the research was conducted in an 
experimental environment that required expert 
installation, maintenance, and upgrade of the system. 
Some mining algorithms require extensive parameter 
settings that are not intuitive and need professional and 
prior knowledge of the environment. Supervisory 
algorithms need additional training data that is hard to 
obtain in a real world application. 

 Too simple. There are two main types of data that can be 
recorded in a building system: numerical (discrete and 
continuous sensor values) and categorical (such as 
weather conditions: windy, snowy, sunny, etc.). 
Unfortunately, most algorithms can only address one 
type at a time. Although datatypes are interchangeable, 
additional parameters and prior knowledge of the dataset 
are required. 

 Gap in research fields. Established technologies are 
available for data collection and data mining, but they all 



share the drawback that methodology used for data 
collection tends to be ill suited for purposes of data 
mining. WSN developers continue to improve efficiency, 
regardless of the type of data and measuring frequency 
actually needed. DM researchers focus on accuracy of the 
algorithm, without regard for the data source or 
collection efficiency. 

B. Solution 

This research integrates data acquisition and data mining 
techniques efficiently and practically to discover behavior 
patterns. We first propose a compact data format that 
encompasses both sensor data about spontaneous events and 
periodic environmental readings. This format requires less 
data and transmission from WSN. The environmental 
information can be used to reduce redundancy and deduce 
behavior patterns. For data acquisition, a mesh WSN called a 
self-organizing WSN has been designed that requires neither 
planning nor configuration. A frequent episode mining 
(FEM) algorithm is used for mining sequential patterns. It is 
adapted to mine both categorical and numerical data in the 
dataset by introducing a DBSCAN clustering algorithm. 
Finally, a framework is proposed to seamlessly combine all 
of these technologies. Evaluation uses both synthetic data 
from a smart home simulator and real data from a self-
organizing WSN in a student home. We are able to 
demonstrate that the framework is capable of discovering 
sequential patterns in heterogeneous sensor data. By 
applying corresponding scenarios, patterns of daily activities 
can be deduced. The framework is self-contained, scalable 
and energy efficient and is thus applicable to different 
building system settings. 

II. THE COMPACT DATA FORMAT 
A standard building sensor data format has not been 

established. There are two main types of data recording: 
event based and interval based. The event based approach 
only records when the sensor is triggered. Collected data size 
is small, but slowly changing environment parameters may 
be missed. The interval based approach does sampling using 
a fixed rate. Frequency may be increased to avoid missing 
short events, but data size will grow correspondingly. In our 
approach, we mix these two approaches. Building sensor 
data are divided into two categories: event data and ambient 
data. Event data means the sensor records activity triggered 
by the occupant, such as open/close the door, turn on/off the 
light. Ambient data refer to environmental parameters, such 
as temperature and light intensity. It provides the context and 
scenario for events. Time is also regarded as ambient data. 
Using this approach, we keep the sampling rate as low as 
possible without missing an event. 

III. DATA ACQUISITION  
Self-organizing WSN is a mesh network designed to 

minimize settings, configurations and dependence on 
infrastructure during installation so that it can be easily 
deployed or removed. The self-organizing ability enables the 
network to form the mesh network automatically at 
installation or when a new node is added.  

A. Sensor Nodes 

The network consists of three types of nodes: gateway 
nodes, active sensor nodes, and passive sensor nodes. Each 
sensor node is equipped with an ATmega328P micro 
controller for processing and an XBee DigiMesh 2.4 
Wireless RF Module for communication. Additional 
components may be added depending on the node’s task.  

The gateway node is primarily used to record data 
collected from the network. It is also responsible for 
management of network operations, including node 
discovery, adding, deleting, and error control. It is equipped 
with a DS1307 real-time clock module that provides a time 
stamp for each sample. It uses an SD card for data and log 
file storage, and an LCD for displaying real time information 
(Figure 1, a). 

The passive node is used to collect ambient data and will 
send data after receiving an upload request from the gateway 
node. The active node is designed to detect events. It will 
send data whenever specific events occur. This design can 
reduce data transmission and energy consumption by running 
on a relative low sampling rate and can capture instantaneous 
events that occur in sampling intervals. In this experiment, 
the passive node is equipped with temperature, humidity, 
luminous intensity, and passive infrared (PIR) sensors 
(Figure 1, b); the active node is equipped with a reed switch 
to detect the opening and closing of doors and windows. 

a.   

b.   

Figure 1.  Sensor nodes: a, gateway node, b, passive sensor node 

B. Database 

A data managing program is provided, which is a JAVA 
program with MySQL database. It parses raw data stored on 
the gateway node and separates it into a table according to 
the sensor node that is designated by the low 32-bit address 
of the Xbee address. In the table, the first column is the 



timestamp of the sample, and the rest of the columns save 
sensor values. The database managing program can read 
historical data from the database on demand and present the 
data in time series charts. This type of chart helps provide an 
understanding of correlations between different sensor data. 

IV. PATTERN MINING 
The proposed algorithm provides a data mining technique 

that requires fewer parameters and non priori knowledge and 
provides more meaningful sequential patterns. FEM was 
selected as the core algorithm. The advantages of using FEM 
are: (1) It needs only one simple parameter, i.e., minimum 
support. (2) It allows gaps in the pattern, which gives it 
tolerance to randomness and noise in real life data. (3) The 
mining process is unsupervised, no training data are needed, 
and no pre-segmentation is needed. (4) There is no 
randomness in output patterns.  

It also has some disadvantages in mining building sensor 
data: (1) It only works with categorical data. (2) There could 
be many redundancy and meaningless patterns in the mining 
result. In this research, a preprocessing module is introduced 
to convert numerical ambient sensor data into categorical 
data without prior knowledge. By introducing the associated 
ambient sensor data and complex temporal database, 
redundancy can be significantly reduced. With environment 
information in the mining result, patterns of daily activities 
can be deduced. 

By introducing a more complex data structure and 
visualization module, it is also possible to display 
occurrences of patterns in the mining process. 

A. Preliminary 

In 1993, Agrawal invented the Apriori algorithm to find 
all co-occurrence relationships, called associations, among 

data items [10]. He first applied downward-closure property 
to find frequent itemsets in the transaction database. This 
property narrows the search space drastically and enables the 
mining of a large scale database.  

FEM is an Apriori based algorithm mining temporal 
database. For example: 〈(2 4)(1 3 4)(6)(5)(3 7)(6)(2 3)(1 3 
6)(5 8)(7)(6)(2)(1 2 3 )(4 5)〉 is a temporal database. Each 
number inside is called an item. Numbers inside one pair of 
brackets form an itemset. The position of the itemset in the 
database indicates the sequence of their appearances. Items 
in the same itemset appear at the same time. Given a 
minimum support 3, <(2)(1 3)(5)> is one of the frequent 
episodes because it appears ≥ 3 times in the database. 
Similarly, <(6)>:4 and <(2)(1 3)>:3 are frequent episodes 
(the value after the colon represents the frequency of its 
appearance in the database). <(2)(1 3)(5)> and <(6)> are 
called closed frequent episodes because no super sequence 
has the same frequency, <(2)(1 3)> is not closed because 
<(2)(1 3)(5)> have the same frequency. A more formal 
definition can be found in [11]. Our algorithm is able to 
extract closed frequent episodes on the complex temporal 
database consisting of heterogeneous sensor data types. 

B. Preprocessing module 

Both numerical and categorical sensor data have to be 
converted into categorical values (i.e., items) for the 
temporal database. In this case, natural numbers are used to 
represent the item ID. It is not difficult to assign categorical 
values with the item ID. For example, the on/off of one light 
can be designated with “1” and “2”, respectively. For 
numerical values, such as room temperature, ranging from 5 
to 30 degrees, it is impossible to assign a symbol for each 
value recoded. However, only the ambient values at the time 
some event happens are of interest. Such ambient data are 
called associated ambient sensor data, for example, the 

Figure 2 The 1)occurrences and 2)distribution of door opening time in one day based on 15 days observation 



temperature when a certain window is opened.  

People usually perform their daily activities at similar 
times and in similar circumstances. This assumption can be 
demonstrated by data collected for a real life experiment. 
Figure 2 shows the occurrences and distribution of door 
openings in one day based on 15 days of observation. It is 
clear that there are several high density time periods. 

DBSCAN [12] is chosen for clustering associated 
ambient sensor data because: (1) It is a density-based 
clustering algorithm that fits our need. (2) It needs one 
parameter, max distance, and this value can be calculated 
based on historical data. (3) It recognizes isolated data points 
as noise rather than tries to cluster them.  

The creation of the temporal database consists of 3 main 
steps, Figure 3 shows the process:  

First, each event sensor data are assigned an item ID. For 
example, the window open event is assigned ID 1. This will 
be recorded in table b, item ID mapping table.  

Second, select all associated ambient data for each event 
and try to cluster with the DBSCAN algorithm. In table a, 

there are two types of ambient data: time and temperature. 
For example, in sub-table 2, the window-opening event 
occurs at 6:39 A.M., 7:24 A.M., 8:05 A.M., and 6:33 A.M. 
each day. In sub-table 3, we can obtain the temperatures at 
these time points, which are 27.5℃, 26.8℃, 28.4℃, and 
22.5℃. By clustering these data with DBSCAN and 1℃	 as	
max distance, the first three temperatures, 27.5℃, 26.8℃, 
28.4℃, can be clustered into one cluster, while the fourth 
one, 22.5℃, will be defined as noise. No cluster can be 
found for a window-opening and closing event of 15 
minutes. The new found temperature cluster is also assigned 
item ID 5. 

After all associated ambient data clusters are found and 
assigned item IDs, all events will be sorted in an array by 
timestamp. Their associated ambient data will be added to 
the same itemset (in table c). In this case, the temporal 
database will be :〈(1 5)(3)(4 8)(2 6)(1 5)(3)(4 8)(2 6)(1 
5)(3)(4 8)(2 7)(1)(3)(4 8)(2 7)〉. 

C. Frequent episode mining module 

Although FEM derives from FPM and shares many 
similarities, there are still some differences in the algorithm. 

a, sensor data tables 
1 Window sensor 3 Temperature sensor data 

Time stamp state Time stamp value 
08/18 6:39 a.m. open 08/18 6:39 a.m. 27.5 
08/18 5:21 p.m. close 08/18 7:30 a.m. 28.8 
08/19 7:24 a.m. open 08/18 4:22 p.m. 19.9 
08/19 8:14 p.m. close 08/18 5:21 p.m. 18.3 
08/20 8:05 a.m. open 08/19 7:24 a.m. 26.8 

08/20 10:09 p.m. close 08/19 8:15 a.m. 23.7 
08/21 6:33 a.m. open 08/19 4:16 p.m. 21.9 
08/21 9:36 p.m. close 08/19 8:14 p.m. 17.5 

2 Door sensor 08/20 8:05 a.m. 28.4 
Time stamp state 08/20 8:45 a.m. 25.5 

08/18 7:30 a.m. open 08/20 4:19 p.m. 12.4 
08/18 4:22 p.m. close 08/20 10:09 p.m. 22.9 
08/19 8:15 a.m. open 08/21 6:33 a.m. 22.5 
08/19 4:16 p.m. close 08/21 7:50 a.m. 20.4 
08/20 8:45 a.m. open 08/21 4:26 p.m. 15.7 
08/20 4:19 p.m. close 08/21 9:36 p.m. 22.2 
08/21 7:50 a.m. open   
08/21 4:26 p.m. close   

 

b, item ID mapping table 
Events and clusters  Item ID 

Window open 1 
Window close 2 

Door open 3 
Door close 4 

Cluster (27.5Ԩ, 26.8Ԩ, 
28.4Ԩ) 

5 

Cluster (18.3Ԩ,17.5Ԩ) 6 
Cluster (22.9Ԩ, 22,2Ԩ) 7 
Cluster (4:22 p.m., 4:16 

p.m., 4:19 p.m., 4:26 p.m.) 
8 

 

c, create temporal database with item IDs
Date 08/18 08/19 08/20 08/21 

Time 6:39 a.m
. 

8:30 a.m
. 

4:22 p.m
. 

5:21 p.m
. 

7:24 a.m
. 

8:15 a.m
. 

4:16 p.m
. 

8:14 p.m
. 

8:05 a.m
. 

8:25 a.m
. 

4:19 p.m
. 

10:09 p.m
. 

6:33 a.m
. 

8:33 a.m
. 

4:26 p.m
. 

9:36 p.m
. 

Event W
in open 

D
oor open 

D
oor close 
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in close 

W
in open 
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oor open 
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oor close 
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in close 
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in open 
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oor open 
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Temporal 
database 

Item ID 
(event) 

1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2 

Item ID 
(ambient) 

5  8 6 5  8 6 5  8 7   8 7 

Figure 3. Convert sensor data tables into temporal database 



One essential difference in mining the temporal database and 
sequence database is the frequency metric, i.e., the frequency 
of occurrence of a pattern. No measures have been 
commonly accepted in temporal database mining. In this 
paper, a metric called LMaxnR-freq [13], which is short for 
the leftmost maximal non-redundant set of occurrences, is 
adopted.  

In the mining process, the length of each frequent 
episode grows by iteration. Each length L frequent episode 
searches for the L+1 episode in the projected database with 
the metric defined in LMaxnR-freq. All found episodes are 
maintained in a tree structure called the enumeration tree. 
There, episodes will be pruned or kept for the next iteration. 
The actual implementation of the algorithm is described in 
these papers [14, 15]. 

In Figure 3 for example, with a min_sup	 = 3, a frequent 
episode, 〈(1 5)(3)(4 8)(2)〉, can be found. This episode can be 
translated into a behavior pattern: in the morning the window 
will be opened when the temperature is approximately 26.5
℃ and then the door will be opened. Around 4:20 P.M. the 
door will be closed and afterwards the window. 

D. Visualization module 

The visualization module visualizes data created during 
the whole mining process. Unlike most of the algorithms that 
just provide frequent episodes and their supports, the 
visualization module enables researchers to track 
occurrences of patterns and understand actual meaning of the 
patterns. There are three different charts: the sensor data 
table chart, the enumeration tree chart, and the frequent 
episode chart.  

The sensor data table chart displays content of the table, 
metadata from the sensor metadata table, and some statistics 
of the table, such as data type of the sensor value, number of 
different values and size of the table, and so on. 

The enumeration tree chart and frequent episode chart 
work together to display information about the frequent 
episode. In the enumeration tree chart, each circle represents 
a node in the tree structure. Different colors represent 
different states of the node: black is pruned and yellow is not 
pruned. The number in the circle on the left side of the colon 
is the item ID of the node, right side is frequency of the 
episode. The link between the nodes represents the type of 
extension: the solid line is horizontal extension and the 
dashed line is vertical extension. The frequent episode chart 
is a 2D-grid, each row contains occurrences of a certain item 
ID, and each column represents a timestamp in the temporal 
database. When a certain node is selected in the enumeration 
tree chart, the corresponding occurrences of this episode will 
be marked in the frequent episode chart. Each item in one 
occurrence will be connected by a red line (Figure 4).  

V. TEST OF THE FRAMEWORK 

A. The framework of the pattern discovery process 

The framework consists of three parts: data acquisition, 
data managing, and data mining (Figure 5). The data 
acquisition task is performed by the WSN that contains both 
active sensor and passive sensor nodes. The ambient sensor 
periodically records environment parameters. The event 
sensor records events triggered by occupants. Data are stored 
and maintained in the form of tables in the database. There 
are event sensor data and ambient sensor data for different 
recordings. The metadata table provides spatial relationships 
for linking event sensor tables with ambient sensor tables. 
With the data and relationships in the database, the temporal 
database can be created for mining. Then, WSN data can be 
converted into a normal FEM problem. After the mining 
process, discovered frequent episodes can be translated into 
behavior patterns with information in the database. 

Enumeration tree chart 

Frequent episode chart 

Figure 4. Enumeration tree chart and frequent episode chart 



There are several items that can affect output patterns. 
The first is features of input sensor data, including density of 
the sequential pattern, and the average length of patterns. 
The second is parameters for clustering ambient sensor data, 
i.e., the max distance between each data point. The third is 
parameters for the FEM mining algorithm, including 
minimum support of the pattern (min_sup), size of the 
window constrain (max_gap), and degree of approximation 
for pruning the sub-sequence (max_err_bound). These 
parameters can be determined by evaluating the data source 
without additional knowledge.  

Two tests have been conducted. The first is based on 
synthetic data generated by a simulator that can generate 
sensor data records mixed with patterns and noises. The 
second is based on real life data collected from a student 
dormitory that provides a demonstration and evaluation of 
the proposed framework in a real world application. 

B. Experiment with synthetic data 

In this experiment, one long daily pattern is predefined. 
The virtual environment generated 10 days sensor data with 
10% noise data; 320 data samples were collected, 48 items 
were generated to represent all events and associated ambient 
data groups. With minimum support set to 10, the mining 
process lasted for 93 iterations. In the final iteration, 14026 
tree nodes were found, and 14019 of them were pruned. 
Only 7 nodes were left. They were: 

1, <18 15 >:29 

2, <36 33 >:19 

3, <24 30 27 21 >:19 

4, < (18 19) (15 16) >:20 

5, <18 (4 15) 1 >:19 

6, <46 43 >:19 

7, <(24 25 ) (30 31 ) (27 28 ) (18 19 21 22 ) (4 5 15 16 ) 
(1 2 18 19 ) (15 16 46 47 ) (36 37 43 44 ) (33 34 ) (36 38 ) 
(41 42 ) (33 35 46 48 ) (18 20 43 45 ) (4 6 15 17 ) (9 10 ) (1 
3 13 14 ) (11 12 24 26 ) (30 32 ) (27 29 ) (21 23 ) (24 25 ) 
(30 31 ) (27 28 ) (18 19 21 22 ) (4 5 15 16 ) (7 8 ) (1 2 18 19 
) (15 16 46 47 ) (36 37 43 44 ) (39 40 ) (33 34 ) >:9 

Figure 6-a shows occurrences of the seventh pattern. It is 
a length-93 episode that covers the whole daily routine as 
expected. This experiment shows that the algorithm is able to 
detect the entire predefined pattern with noise. 

C. Experiment with real life data 

In this experiment, data collected with the self-organizing 
WSN installed in a room of a student dormitory for a one 
month period is used for testing.  

The test environment was a 12 ㎡ single room. A self-
organizing WSN with eight nodes was installed in the room, 
including one data logging node, five passive sensor nodes, 
and two active sensor nodes. Two passive sensor nodes were 
placed outdoors to monitor the outdoor and corridor 
environment. The remaining three were placed next to the 
desk, bed, and basin. The active sensor nodes were installed 
on the window frame and door frame to monitor the opening 
and closing states. 

In the 30 day period, 732 data sample were recorded. A 
total of 75 items were generated. The min_sup was set to 20 
(there were 20 working days), the constraint window size 
was set to 3, and the max_error_bound was set to 5. The 
search ended with 13 iterations. There were 1613 nodes in 
the enumeration tree (Figure 6-b), 1450 of them were 
pruned, and 163 were left. 

Frequent 
episode 
mining 

Data acquisition Data managing Data mining 

Active sensor  

Passive sensor  

Event sensor 
data table 

Ambient sensor 
data table 

Temporal database  

Frequent episode  
Meta data table 

Figure 5. Diagram for the pattern discovery process 



Frequent episodes with associated ambient value clusters 
can be translated into behavior patterns. For example, the 
pattern <(25 28 34 ) (36 37 45 ) (59 61 67 ) >:20 (Figure 14) 
can be interpreted as desk PIR sensor activated around 6:35 
with room light on, bed PIR sensor deactivated 
approximately 6:45 with room light, lamp turned off 
approximately 7:15, room light off. This was a record of the 
period when the occupant got up in the morning and turned 
off the lamp before leaving the room. The desk PIR sensor 
activated before the bed PIR sensor because there was a 
delay before the PIR sensor deactivated.  

VI. CONCLUSION AND FUTURE WORK 
In conclusion, the proposed framework is able to collect 

sensor data from a building and discover behavior patterns. 
The advantage of the proposed framework is: (1) It is easy to 
deploy. (2) It requires less data collection and calculation. (3) 
It needs very few settings and parameters. (4) It can work 
with both numerical and categorical data, and the output 
pattern contains both sensor events and corresponding 
ambient values. (5) It can first visualize the mining 
processing and result.  

There is some possible future work. First, in the real life 
data test, there is still redundancy. It is caused by parallel 
patterns where some items shifted in sequence. By 
introducing parallel episodes, the output can be condensed. 
Second, the framework is not limited to building sensors; it 

can easily be extended to discover daily routines in the city 
by adding mobile location data, among others. 
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Figure 1 Sensor nodes: a, gateway node, b, passive sensor node 

 
  



 
  

Figure 2 The 1)occurrences and 2)distribution of door opening time in one day based on 15 days observation 



  

a, sensor data tables 
1 Window sensor 3 Temperature sensor data 

Time stamp state Time stamp value 
08/18 6:39 a.m. open 08/18 6:39 a.m. 27.5 
08/18 5:21 p.m. close 08/18 7:30 a.m. 28.8 
08/19 7:24 a.m. open 08/18 4:22 p.m. 19.9 
08/19 8:14 p.m. close 08/18 5:21 p.m. 18.3 
08/20 8:05 a.m. open 08/19 7:24 a.m. 26.8 

08/20 10:09 p.m. close 08/19 8:15 a.m. 23.7 
08/21 6:33 a.m. open 08/19 4:16 p.m. 21.9 
08/21 9:36 p.m. close 08/19 8:14 p.m. 17.5 

2 Door sensor 08/20 8:05 a.m. 28.4 
Time stamp state 08/20 8:45 a.m. 25.5 

08/18 7:30 a.m. open 08/20 4:19 p.m. 12.4 
08/18 4:22 p.m. close 08/20 10:09 p.m. 22.9 
08/19 8:15 a.m. open 08/21 6:33 a.m. 22.5 
08/19 4:16 p.m. close 08/21 7:50 a.m. 20.4 
08/20 8:45 a.m. open 08/21 4:26 p.m. 15.7 
08/20 4:19 p.m. close 08/21 9:36 p.m. 22.2 
08/21 7:50 a.m. open   
08/21 4:26 p.m. close   

b, item ID mapping table 
Events and clusters  Item ID 

Window open 1 
Window close 2 

Door open 3 
Door close 4 

Cluster (27.5Ԩ, 26.8Ԩ, 
28.4Ԩ) 

5 

Cluster (18.3Ԩ,17.5Ԩ) 6 
Cluster (22.9Ԩ, 22,2Ԩ) 7 
Cluster (4:22 p.m., 4:16 

p.m., 4:19 p.m., 4:26 p.m.) 
8 

 

c, create temporal database with item IDs 
Date 08/18 08/19 08/20 08/21 

Time 6:39 a.m
. 

8:30 a.m
. 

4:22 p.m
. 

5:21 p.m
. 

7:24 a.m
. 

8:15 a.m
. 

4:16 p.m
. 

8:14 p.m
. 

8:05 a.m
. 

8:25 a.m
. 

4:19 p.m
. 

10:09 p.m
. 

6:33 a.m
. 

8:33 a.m
. 

4:26 p.m
. 

9:36 p.m
. 

Event W
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Temporal 
database 

Item ID 
(event) 

1 3 4 2 1 3 4 2 1 3 4 2 1 3 4 2 

Item ID 
(ambient) 

5  8 6 5  8 6 5  8 7   8 7 

 
Figure 3. Convert sensor data tables into temporal database 



  

Enumeration tree chart 

Frequent episode chart 

Figure 4. Enumeration tree chart and frequent episode chart 
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Figure 5. Diagram for the pattern discovery process 



 

a. 

b. 

Figure 6. a. Enumeration tree and occurance of pattern 7 with synthetic data, 
 b.Enumeration tree and pattern <(25 28 34 ) (36 37 45 ) (59 61 67 ) > with real life data


