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ABSTRACT: Cu-exchanged zeolites rely on mobile solvated Cu+
cations for their catalytic activity, but the role of the framework
composition in transport is not fully understood. Ab initio
molecular dynamics simulations can provide quantitative atomistic
insight but are too computationally expensive to explore large
length and time scales or diverse compositions. We report a
machine-learning interatomic potential that accurately reproduces
ab initio results and effectively generalizes to allow multinano-
second simulations of large supercells and diverse chemical
compositions. Biased and unbiased simulations of [Cu(NH3)2]+
mobility show that aluminum pairing in eight-membered rings
accelerates local hopping and demonstrate that increased NH3
concentration enhances long-range diffusion. The probability of
finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al
content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity
tests of Cu-CHA catalysts with a controlled chemical composition.

■ INTRODUCTION
Copper-exchanged zeolites play a crucial role as redox catalysts
for some environmentally relevant processes, such as the
partial methane oxidation to methanol or the selective catalytic
reduction of nitrogen oxides with ammonia (NH3−SCR−
NOx). In both cases, the small pore Cu-SSZ-13 zeolite with the
CHA structure has been reported as an efficient catalyst.1−11

The NH3−SCR−NOx reaction is currently employed for the
removal of nitrogen oxides (NOx) from exhaust gases in diesel
vehicles and stationary plants through a redox catalytic cycle in
which Cu+ is oxidized to Cu2+ by O2, NO2, or NO + O2 and
then reduced to Cu+ by the reaction of NH3 and NO forming
harmless N2 + H2O (Scheme 1).12−16 This understanding of
the reaction mechanism has enabled the development of
optimized catalysts by tuning the framework topology,
composition, and copper speciation. In the as-prepared
catalysts, Cu+ and Cu2+ cations are directly coordinated to
the zeolite framework forming heterogeneous active sites, while
under reaction conditions NH3 solvates the Cu+ cations
forming mobile [Cu(NH3)2]+ complexes that act as dynamic
active sites, resembling homogeneous catalysts but within the
confinement of the zeolite pores. At low temperature, that is,
between 423 and 523 K, the oxidation step involves transient
dimeric [Cu(NH3)2−OO−Cu(NH3)2]2+ species whose for-
mation requires the simultaneous presence of two [Cu-
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Scheme 1. Illustration of the Low-Temperature SCR-NOx
Redox Cycle
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(NH3)2]+ monomers in the same cha cage. The hops between
adjacent cha cages are modulated by size exclusion effects and
also by the attractive interaction between the positively
charged [Cu(NH3)2]+ complexes and the negatively charged
framework Al sites.8,9,15,17,18 Thus, structural properties such as
the Al content and distribution, Cu loading, and Brønsted acid
site density as well as the interaction of the Cu active sites with
the reactants, in particular, NH3, might affect the mobility of
Cu cations and consequently the NH3−SCR−NOx reaction
rate. This has been evidenced by recent studies combining
catalytic activity tests with operando XAS or EPR spectrosco-
py,19−23 and ab initio molecular dynamics (AIMD) simulations
have been successfully applied to provide atomistic insight into
the dynamic nature of the Cu+ cations under reaction
conditions.9,17,18

The cost of AIMD simulations limits their applicability to a
few selected systems at a time, at small length scales in the
nanometer range and short time scales of ∼100 ps, while the
faster classical force fields are not suited to describe the specific
interactions involved in the systems investigated.24 For these
reasons, the systematic exploration of parameters such as the
Si/Al ratio, Al distribution, Cu/Al ratio, NH3 concentration,
and the presence of Brønsted acid sites and compensating
NH4

+ cations has not yet been possible. Another possible
avenue is to use machine learning potentials, which despite
being slower than classical force fields allow access to the
nanosecond scale.25

Machine learning (ML) has demonstrated broad applic-
ability in materials science26,27 and heterogeneous cataly-
sis.28−31 Machine learning potentials (MLPs), when trained
with a sufficiently large and diverse data set, can match the

accuracy of quantum chemistry methods at a fraction of the
computational cost.32−38 This allows the study of larger and
more realistic systems and more complex scientific prob-
lems,27,39−41 in particular, those requiring the use of molecular
dynamics simulations.42−44 A broad variety of MLPs based on
neural networks, so-called neural network potentials (NNPs),
have been developed in the last few years (ANI,45−48 deep
tensor neural networks,49 SchNet,50 DeepPotentialNet,51

MEGNet,52 DimeNet,53 OrbNet,54 PaiNN,55 NequIP56) and
have been successfully used to study solid systems,40,57−59 ion
diffusion,60 and chemical reactions,61−63 but the number of
applications in the field of zeolite catalysis is still rather
limited.58,64,65

Here, we leveraged these innovations and trained a NNP
capable of describing [Cu(NH3)2]+ species in aluminosilicate
CHA with varying composition and NH3 concentration. The
trained NNP proved accurate and transferable, and acquiring
all of the training data was less costly than one traditional
AIMD simulation. Biased MD simulations reproduced free-
energy profiles from DFT and provided insight into transport
for over a dozen combinations of the Al distribution and the
presence of NH4

+. Unbiased MD simulations were scaled to
thousands of atoms for nanoseconds and achieved a more
realistic representation of the importance of Al density and
distribution, Cu loading, and adsorbed NH3 in the mobility of
Cu+ cations in Cu-CHA catalysts.
These results show that the activation free energy for

[Cu(NH3)2]+ hops between adjacent cages is lower for
windows containing Al pairs but also that this is a local effect
with only a weak influence on long-range mobility. [Cu-
(NH3)2]+ migration to remote cages requires the simultaneous

Figure 1. Neural network potential. (a) Illustration of the active learning cycle. At each iteration, an ensemble of NNPs is trained on the available
labeled data contained in the database, initially obtained from previous PBE+D3 MD simulations. Then, biased MD trajectories are generated with
these NNPs, and based on the force uncertainty of an ensemble of three NNPs, new geometries are collected, and their corresponding PBE+D3
energies and forces are computed and included in the data set. In the next loops, the newly generated data are combined with the existing data to
train an updated NNP. (b) Distribution of the chemical composition of the 42K models included in the final data set, comprising models with Si/Al
ratios of 13, 31 and 47, and with the negative charges arising from Al substitution compensated by [Cu(NH3)2]+, NH4

+, or H+. (c) Correlation
between the predicted and target energies (left) and forces (right) of the last-generation NNP.
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displacement of charge-compensating NH4
+, which shows a

lower mobility that is enhanced by excess NH3. Finally,
simulations with large supercells show that the probability of
finding two [Cu(NH3)2]+ complexes in the same cage, a
prerequisite for the SCR-NOx reaction, increases with Cu
loading and also with the Al content in the zeolite. We confirm
these trends experimentally through catalytic tests of Cu-CHA
samples with controlled Si/Al and Cu/Al ratios.

■ RESULTS AND DISCUSSION
Neural Network Potential. NNPs are highly accurate, but

they struggle to extrapolate outside their training data. In order
to ensure robust and accurate production simulations, our
NNP was trained on data gathered through multiple
generations of active learning (AL) using a query-by-
committee approach.66−74 A committee (ensemble) of NNPs
was trained on the available labeled data at each iteration, and
new data was collected based on the disagreement (variance)
of the prediction of the committee members on newly
generated geometries, as illustrated in Figure 1a. (See a more
detailed description in the Methods section in the Supporting
Information.) The first generation of the potential was trained
on a randomly collected subset of the DFT data from a
previous study18 and from three biased simulations performed
with DFT at 423 K, used as reference ground truth. In total,
there were ∼9000 geometries in the initial data set. This
pretrained potential was then retrained in four active learning
loops using the 2 × 2 × 2 triclinic supercell described in the
Methods section and depicted in Figure S1. For each loop,
biased MD trajectories were generated with the learned
interatomic potential of the previous loop at temperatures of
298, 423, 500, and 550 K. The selection of the new geometries
from the MD trajectories was carried out using as a criterion
the force uncertainty from an ensemble of three NNPs. The
variances among the forces within the ensemble of potentials
were ranked in descending order, and the first geometries were
selected to increase the data set in 10%. The nonphysical
geometries and those with low uncertainty, <2 kcal/mol, were
discarded. Up to this point, the data set contained only
structures with the H12Al2Cu2N4O192Si94 composition (see
Table 1 and the light-green bar in Figure 1b), where the
negative charges generated by framework Al atoms were always
compensated with [Cu(NH3)2]+ species so that the trained
potential did not properly describe local environments of Al
compensated with NH4

+ or H+. The acquisition of new
geometries with new compositions including NH4

+ and H+ was
performed using an adversarial attack75 for six more
generations with NNPs trained on the last generation of active

learning. Systems with only two Al substitutions per unit cell
(Si/Al = 47) were included in the data set to control the
distribution of Al pairs in the 8MR windows and to provide
specific environments for regions with low local Al
concentration. Then, five more generations of active learning
were used, with biased MD simulations at temperatures
ranging from 600 to 1000 K to force larger deviations from the
equilibrium structures, thus ensuring a better configurational
sampling. The last generation of the NNP was trained on a
complete data set containing 42K revPBE+D3 force calcu-
lations on structural models containing from 290 to 323 atoms
per supercell, with a diverse set of atomic local environments in
which the negative charges arising from Al substitution were
compensated with [Cu(NH3)2]+, NH4

+, or H+75−77 as
summarized in Table 1 and plotted in Figure 1b.
The active learning strategy was capable of automatically

adding new, diverse, and informative chemical environments to
the training pool at each of the preselected compositions
through a combination of MD and uncertainty quantification.
It generated informative training data for a number of chemical
processes that occur during the reaction but were not present
in the initial training data. These include adsorption and
protonation of NH3 on the Brønsted acid sites to form NH4

+

cations, exchange between a gas-phase NH3 molecule and one
of the two NH3 ligands of the [Cu(NH3)2]+ complex, and
proton transfer from NH4

+ to NH3. The diffusion of
[Cu(NH3)2]+ complexes through the 8R windows that connect
adjacent cha cages has a higher activation barrier. Therefore,
representative training data was obtained through the same
enhanced sampling approach as the production simulations
(Figure S2).
This strategic combination of biased MD with uncertainty

quantification allowed efficient sampling of the relevant regions
on the PES with a small and diverse number of DFT
evaluations. Figure S3 illustrates the structural diversity in the
final data set by means of a 2D projection of the local chemical
environments around each Al atom in our data using UMAP78

on the feature vectors learned by the NNP.79 Atoms with
similar local environments have similar feature vectors and
appear close to the UMAP plot. The overlap among the
chemical compositions suggests a nearly continuous sampling
of the Al local environment.
Figure 1d shows the correlation between predicted and

target energies and forces for a held-out test set. The mean
absolute error of the predicted energies and forces are 0.98 and
1.2 kcal/mol/Å, respectively, indicating that the NNP is
capable of predicting the energies and forces with chemical
accuracy.

Table 1. Chemical Composition, Cationic Species, and Molecules Included in the Triclinic T96O192 Supercell Models Used for
Active Learning and Adversarial Attack

Formulas Si/Al Al Si [Cu(NH3)2]+ NH4
+ NH3 H+

H2Al2O192Si94 47 2 94 0 0 0 2
H8Al2N2O192Si94 47 2 94 0 2 0 0
H12Al3N3O192Si93 31 3 93 0 3 0 0
H15Al3N4O192Si93 31 3 93 0 3 1 0
H18Al3N5O192Si93 31 3 93 0 3 2 0
H28Al7N7O192Si89 12.7 7 89 0 7 0 0
H12Al2Cu2N4O192Si94 47 2 94 2 0 0 0
H10Al2Cu1N3O192Si94 47 2 94 1 1 0 0
H18Al2Cu2N6O192Si94 47 2 94 2 0 2 0
H16Al3Cu2N5O192Si93 31 3 93 2 1 0 0
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Effect of Al Distribution on [Cu(NH3)2]+ Diffusion
through 8R Windows from Biased Simulations. The
favorable speed of the NNP accelerates US MD simulations by
orders of magnitude over DFT, and it enabled a systematic
exploration of the role of Al distribution in well-converged
simulations. Ten different structural models with the same
H12Al2Cu2N4O192Si94 composition corresponding to Si/Al =
47 but with different Al distributions were built (Figure 2a,b).
The two Al atoms were placed either in the same 8R window
(structures labeled SR1, SR2, SR3, and SR4), in different 8R
windows (structures labeled DR1, DR2, DR3, and DR4) in the
same 4R (S4R), or in the same 6R (S6R), and each framework
Al was compensated with a [Cu(NH3)2]+ cationic complex
(entry 7 in Table 1).
Because the error of the predicted forces is not a sufficient

metric for true performance in production simulations,25 the
NNPs were further validated by comparing NNP and DFT
free-energy profiles for [Cu(NH3)2]+ diffusion through the 8R
window of SR1, SR4, and DR2 models. Due to the high
computational cost of producing reference DFT biased
simulations, a smaller hexagonal 126-atom unit cell was used.
The free-energy profiles for SR1, SR4, and DR2 (Figure 2c)
and the activation free energies (ΔFact) calculated as the energy
difference between the maximum and the minimum on the
profile, 5.2 and 5.3 kcal/mol for SR1, 4.8, and 4.8 kcal/mol for

SR4, and 6.1 and 6.4 kcal/mol for DR2, are in excellent
agreement at both computational levels.
The smoother NNP traces are a consequence of more

abundant sampling (4.8 ns total as compared to 0.8 for DFT)
given the advantageous computational cost of NNPs (20 ps of
AIMD required over a week on CPU Intel(R) Xeon(R) E5-
2650 cores as compared to 20 min on a Tesla V100-32 GB
GPU for NNPs).
Then, the free-energy profiles for [Cu(NH3)2]+ diffusion

between neighboring cages in the 10 systems depicted in
Figure 2a,b were obtained from NNP biased simulations at 423
K using the larger H12Al2Cu2N4O192Si94 models. The profiles
are plotted in Figure 3, and the corresponding values of
activation (ΔFact) and reaction (ΔF) free energies are
summarized in Table S1. The shaded area in each profile
shows the standard error calculated from three independent
simulations using three different NNPs trained on the same
data set. The average value of the standard error, 0.1 kcal/mol
in all cases, indicates a low uncertainty in the prediction of the
free energy and well-converged statistics.
For the systems with two Al atoms in the same 8R (orange

profiles in Figure 3a), ΔFact values range from 3.9 to 5.4 kcal/
mol and the reaction is slightly endergonic with ΔF values
between 0.4 and 2.3 kcal/mol. In all other cases, ΔFact is higher
than 6 kcal/mol and ΔF is larger than 3 kcal/mol, with the

Figure 2. Structural models and accuracy of NNP biased simulations. (a, b) Representation of the different Al pair distributions used in the biased
simulations. Si and O atoms are depicted as orange and red sticks, respectively. Al atoms are depicted as light-brown balls. The Si and O in the 8R
window through which the [Cu(NH3)2]+] complex diffuses are highlighted as orange and red balls. (c) Comparison of free-energy profiles for
[Cu(NH3)2]+ diffusion through the 8R window of SR1 (orange), SR4 (blue), and DR2 (green) systems obtained from DFT (solid line)- and NNP
(dashed line)-based biased simulations at 423 K.
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only exception of the DR4 system for which the process is
slightly exergonic. The Al distribution in the DR4 model is the
same as in the SR1 model, but the diffusion of the
[Cu(NH3)2]+ complex proceeds through different 8R windows

of the same model, highlighted in Figure 3b. In both cases, the
stability of the final state with the two [Cu(NH3)2]+ complexes
in the same cage is similar to that of the initial state with the
two complexes in different cages, which suggests that this

Figure 3. NNP biased simulations of [Cu(NH3)2]+ diffusion. (a) Free-energy profiles for the diffusion of one [Cu(NH3)2]+ complex from cage A
to neighboring cage B occupied by another [Cu(NH3)2]+ complex. (b) Snapshots of the initial and final minimum states corresponding to the
diffusion of [Cu(NH3)2]+ through the 8R windows of SR1 and DR4 systems at 423 K. (c) Free-energy profiles for [Cu(NH3)2]+ diffusion between
neighboring cages in the presence of one NH4

+ cation initially placed in the 8R to be crossed in three systems with different Al distributions
obtained from NNP-based biased simulations at 423 K and snapshots of the initial and final minimum states in the systems SR1, SR2, and SR3. Si,
O, Al, H, Cu, and N atoms are depicted in orange, red, light brown, white, green, and blue, respectively. The atoms in the 8R window through
which [Cu(NH3)2]+ diffuses are highlighted.
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particular Al distribution might favor the formation of the
[Cu(NH3)2]+−OO−[Cu(NH3)2]+ dimers involved in the low-
temperature NH3−SCR−NOx reaction. In contrast, distribu-
tions with two Al atoms in the same 4R or 6R hinder the
formation of such dimeric intermediates because only one of
the two [Cu(NH3)2]+ complexes can stay near the Al atoms,
while the second [Cu(NH3)2]+ is forced to remain too close to
the first, resulting in its diffusion through a different 8R to
another empty cage. These results demonstrate that the Al
distribution affects the movement of [Cu(NH3)2]+ species
between cages and the stability of pairs of [Cu(NH3)2]+
complexes in the same cage and points to a positive effect of
Al pairs in 8R on the rate of the low-temperature NH3−SCR−
NOx reaction.
Effect of NH4

+ on the Diffusion of [Cu(NH3)2]+
through 8R Windows from Biased Simulations. The
mobility of [Cu(NH3)2]+ complexes within the zeolite
microporous structure is affected by the presence of other
molecules involved in the reaction, among which NH3 is the
most abundant and the one with the largest impact on
diffusion and reactivity.17,18,21,22,80,81 Under reaction condi-
tions, NH3 is readily protonated on the Brønsted acid sites
forming NH4

+ cations that remain coordinated to the
framework AlO4

− units and might partly block the diffusion
of [Cu(NH3)2]+ complexes through the 8R windows. To
analyze this possibility, we first performed NNP biased

simulations at 423 K using the previously described
H10Al2Cu1N3O192Si94 models with two framework Al atoms
compensated now with one [Cu(NH3)2]+ complex initially
placed in the center of cavity A (see Figure S2) and one NH4

+

cation initially placed in the plane of the 8R through which
[Cu(NH3)2]+ will diffuse. The free-energy profiles obtained for
the three Al distributions considered (SR1, SR2, and SR3), as
plotted in Figure 3c, are clearly different from those depicted in
Figure 3a, and the calculated activation free energies for
[Cu(NH3)2]+ diffusion are also reflective of how the strong
coordination of NH4

+ modifies transport.
In the previous simulations without NH4

+ the most stable
minimum for the initial state occurs at ξ ≈ −2.5 Å, with
[Cu(NH3)2]+ relatively close to the 8R, which is the case only
for SR1 in the presence of NH4

+ (blue profile in Figure 3c). In
SR2 and SR3 models (orange and green profiles), the most
stable minimum lies at ξ ≈ −4.8 Å, with the [Cu(NH3)2]+
complex closer to the center of the cavity and at a larger
distance from the 8R to be crossed. The calculated ΔFact, 5.2,
7.6, and 13.1 kcal/mol for SR1, SR2, and SR3, respectively,
and ΔF values, 3.2, 5.0, and 11.4 kcal/mol for SR1, SR2, and
SR3, respectively, are higher than those obtained for the
corresponding systems in the absence of NH4

+. The snapshots
of the final state at ξ ≈ 2.5 Å for SR1 and SR2 in Figure 3c
show that the NH4

+ cation has been displaced from its initial
position in the plane of the 8R to a position relatively close to

Figure 4. Mobility of NH4
+ and [Cu(NH3)2]+. (a) Mean square displacement (MSD) of the N atoms in NH4

+ and (b) MSD of the Cu atoms in
the [Cu(NH3)2]+ complexes obtained from NPP-based unbiased MD simulations at 500 K. (c) Number of distinct cages visited by the Cu atoms.
The apparent contradiction with the MSD plots is explained by the fact that the diffusion of [Cu(NH3)2]+ does not occur along a preferential
direction. One Al pair in an 8R can accelerate the diffusion of [Cu(NH3)2]+ between two neighboring cages in multiple forward and backward steps
so that only two distinct cages are visited by this complex. (d) Average minimum Cu−Al distances. All plots were obtained from the same
simulations. See the Supporting Information for details on the calculation of MSD.
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one of the AlO4
− units. In SR3, however, the NH4

+ cation has
been displaced to the opposite side of the cage, far from the
two AlO4

− sites present in the model, which would explain the
instability of the system. The deviation across replicate profiles
is wider in some regions, which we attribute to the fact that our
simulations occasionally, but not exhaustively, sample the
spontaneous reversible deprotonation of NH4

+ cations to form
NH3 and a Brønsted acid site, which is typically not accessible
to traditional simulations.
Altogether, the results from the biased simulations suggest a

potential blocking effect of the NH4
+ cations. However, their

own mobility, as either NH4
+ or NH3 following proton transfer

to deprotonated AlO4
−, and possible migration from the 8R

toward other nearby AlO4
− units that are not present in this

model might modify this conclusion. The NNPs developed
here open the possibility of running long-time unbiased MD
simulations on larger systems with more realistic chemical
compositions, allowing one to capture the dynamics of
[Cu(NH3)2]+ and NH4

+ globally and to observe long-range
diffusion of both cationic species.
Long-Range Diffusion of NH4

+ and [Cu(NH3)2]+
Species from Unbiased MD Simulations. A large
T768O1536 supercell with a dimension of ∼37 Å was used to
construct eight models representing three Al contents, low (L,
Si/Al ≈ 30) with 26 Al atoms in the unit cell, medium (M, Si/
Al ≈ 14) with 50 Al atoms in the unit cell, and high (H, Si/Al
≈ 10) with 68 Al atoms in the unit cell, as described in detail in
the Methods section and Figure S4 in the Supporting
Information. The framework Al were compensated with
combinations of [Cu(NH3)2]+, NH4

+, and H+ as summarized
in Table S2. Each model’s name contains a letter indicating the
Al content (L, M, or H) followed by two numerical values
indicating the number of [Cu(NH3)2]+ and NH4

+ compensat-
ing cations. Thus, L(20-6) indicates low Al content, with 26 Al
atoms in the unit cell compensated with 20[Cu(NH3)2]+ and
6NH4

+ cations. Unbiased MD simulations were conducted for
at least 5 ns on each ∼2000-atom system using a slightly higher
T, 500 K, in order to enhance the mobility of the [Cu(NH3)2]+
cations and increase the probability of hopping events between
neighboring cavities.
Figure 4a,b tracks the time evolution of the mean square

displacements (MSDs) of the N atoms in the NH4
+ cations

and of the Cu atoms in the [Cu(NH3)2]+ complexes,
respectively. While both species have a net charge of +1,
[Cu(NH3)2]+ is much more mobile while NH4

+ cations are
more closely attached to the AlO4

− units (Figures S5 and S6).
This is because the positive charge in the [Cu(NH3)2]+
complexes is highly shielded by the two NH3 ligands.
The similarity among the MSD profiles of N atoms suggests

that the mobility of NH4
+ cations is rather independent of the

zeolite framework composition and Cu content (Figure 4a),
while the MSD traces for Cu (Figure 4b) suggest slightly lower
mobility of [Cu(NH3)2]+ in the systems with high Al content
(Si/Al ≈ 10, Figure 4b). The trends are similar in the number
of distinct cages visited by the [Cu(NH3)2]+ complex over
time (Figure 4c), but they are more stratified and more clearly
show an increase in mobility with decreasing copper content
(orange and red dashed lines higher than solid lines in Figure
4c). In 5 ns, each [Cu(NH3)2]+ complex visits on average
fewer than three different cages in the models with high Al
content, which increases to three to four for intermediate Al
and reaches a maximum of over five different cages visited for
the L4 model, which has the lowest Al content and thus few Al

pairs in 8R. This is in apparent contradiction to the biased
simulation results for small models, which showed a lower
hopping free-energy barrier for Al pairing in 8R. A potential
explanation is that the hopping landscape is statically and
dynamically heterogeneous, with the local chemical environ-
ment of each initial and final cage and transient cage
occupation by other mobile molecules influencing the mobility
of copper complexes. Figure S5 shows the diversity in length
and tortuosity in example trajectories of Cu atoms inside the
zeolite microporous structure. While MSD profiles represent-
ing the average movement of the [Cu(NH3)2]+ species are
relatively similar across catalyst models (∼40−60 Å2), the local
mobility of each individual [Cu(NH3)2]+ complex depends on
its local chemical environment.
Once the influence of Al content was established, we

analyzed the effect of NH4
+ on the mobility of [Cu(NH3)2]+

complexes in systems with a constant Si/Al ratio. Increasing
the amount of NH4

+ from 30 to 46 cations (compare M(20−
30) with M(4−46) models in Figure 4c) or from 6 to 22
cations (compare L(20−6) with L(4−22) in Figure 4c)
increases the number of cages visited, suggesting a positive
effect of NH4

+ on the long-range diffusion of [Cu(NH3)2]+. A
proposed explanation is that adsorbed NH4

+ shields the
attractive interaction between the AlO4

− anionic sites and the
[Cu(NH3)2]+ complexes. Each NH4

+ forms two strong
hydrogen bonds with the AlO4

− site, hence the lower mobility
of NH4

+, while [Cu(NH3)2]+ interacts with the zeolite through
the H atoms of the coordinating NH3 molecules. This
“crowding” of the anionic sites by the harder NH4

+ can be
observed statistically in the simulations. The average distances
between the Cu atoms and the closest framework Al atoms
plotted in Figure 4d are ∼4.5 Å in the L and M models (orange
and red lines) and increase to ∼5.0 Å in the systems with
higher Al content and thus a larger amount of charge-balancing
NH4

+ (green lines). The H(20−48)bias model has a
heterogeneous Al distribution, and its anomalously high Cu−
Al distance is due to [Cu(NH3)2]+ complexes in Al-poor
regions.
Previous studies have suggested that [Cu(NH3)2]+ migra-

tion is fast only among the three cages sharing a common
framework Al, while long-range diffusion to nonadjacent cages
is limited to ∼9 Å due to the decaying electrostatic interaction
between the [Cu(NH3)2]+ and the anionic AlO4

− site.9,18,20

This argument is rigorously true when the final cages contain
no additional Al sites, as in our model systems from the first
section. In real systems, however, the long-range diffusion is
easily explained through a sequence of local steps combining
the crossing of 8R windows into adjacent Al-containing cages,
followed by the exchange of NH4

+ as a compensating cation
(Scheme S1 in the Supporting Information). The low mobility
of NH4

+ revealed by the present simulations suggests that a
limiting factor for such long-range diffusion of [Cu(NH3)2]+
complexes is the slower rate of countermigration of the charge-
compensating NH4

+. While [Cu(NH3)2]+ could act as a
migrating compensating cation, this results in no net migration
of Cu.
To explore this hypothesis, two additional MD simulations

of 5 ns were run using two modified M20 models, one of them
containing 30 protons as compensating cations, labeled as
M20-H+, and another one with 60 additional NH3 molecules
added to the system, labeled as M20-NH3. Protons on the
Brønsted acid sites are fairly static and localized within the four
oxygen atoms directly attached to Al, so the long-range charge-
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Figure 5. Influence of framework charge shielding on the mobility of [Cu(NH3)2]+. (a) Mean square displacement (MSD) of Cu atoms in the
[Cu(NH3)2]+ complexes, (b) average minimum Cu−Al distances, and (c) number of distinct cages visited obtained from NPP-based unbiased MD
simulations at 500 K in models with different charge-compensating cations and additional NH3 molecules. See the Supporting Information for
details on the calculation of MSD.

Figure 6. Probability of formation of the active sites and catalytic results for the NH3-SCR-NOx reaction. (a,b) Time evolution of the average
number of [Cu(NH3)2]+ pairs in the same cage for the eight systems in Figure S4. The geometric centers of every cage in the unit cell are
determined, and two Cu atoms are considered to be in the same cage when both have the same cage center as the nearest cage center. (c) Turnover
frequency (TOF) values on a per Cu ion basis for the ∼1.5 wt % Cu-containing zeolites with different Si/Al molar ratios and the CHA07 sample
(Si/Al ≈ 7) with two different Cu contents (∼1.5 and ∼3 wt % Cu). (d) Arrhenius plots for the same experiments including the corresponding
values of apparent activation energy obtained from the slope of each plot.
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compensation diffusion of H+ should be hindered. In contrast,
additional NH3 should facilitate the movement of the positive
charges via proton transfer from NH4

+ to NH3 via a Grotthuss-
like chain of proton transfers, thus allowing faster charge
compensation between separated AlO4

− units without the need
to physically displace the strongly attached NH4

+ cations.
The plots in Figure 5 confirm this hypothesis. The MSD of

Cu atoms in Figure 5a does not change when NH4
+ cations are

substituted by protons (black lines) with a similar electrostatic
shielding effect as NH4

+. However, the Cu mobility increases
significantly in the presence of excess NH3 molecules (brown
lines), suggesting that free NH3 facilitates the charge re-
equilibrium following [Cu(NH3)2]+ crossing 8R. The average
distances between the Cu atoms and the closest framework Al
atoms increase from ∼4.5 to ∼6.0 Å with the added NH3
(Figure 5b). Finally, the number of distinct cages visited by
[Cu(NH3)2]+ (Figure 5c) indicates again a slightly lower long-
range mobility of [Cu(NH3)2]+ in the model containing
Brønsted acid sites and enhanced diffusion in the presence of
an excess of NH3.
Our results provide theoretical backing to recent exper-

imental observations of the enhancing effect of gas-phase NH3
during the solid-state ion exchange of copper using mixtures of
copper oxides and zeolites, which allows the fast preparation of
Cu-exchanged zeolites at low temperatures (473−523 K).80,81

After ∼4000 ps, the three models reached similar steady states
with ∼3.5 distinct cages being visited by each complex,
corresponding to the final state of the ion-exchange process
with a random distribution of [Cu(NH3)2]+ complexes
occupying the whole unit cell.
Bimolecular Complexes and Mechanistic Implica-

tions for the NH3−SCR−NOx Reaction. According to the
proposed mechanism,9 the reaction rate depends directly on
the number of dimeric intermediates formed by the pairing of
two [Cu(NH3)2]+ complexes in the same cage. Figure 6a,b
tracks the time evolution of the average number of [Cu-
(NH3)2]+ pairs, that is, two [Cu(NH3)2]+ ions simultaneously
in the same cage, formed in each of the eight models analyzed
in the previous section. As expected,9,19,20 the number of
[Cu(NH3)2]+ pairs depends directly on the total amount of Cu
in the system (compare yellow and red dashed lines with
yellow and red full lines). More interestingly, for a given Cu
content, the number of [Cu(NH3)2]+ pairs formed along the
simulation is systematically larger in the systems with higher Al
content, in agreement with recent work by Krishna et al.
showing that the fraction of Cu+ cations that can be oxidized
by O2 increases with increasing Al content in Cu-CHA zeolites
of varying composition.20 On the other hand, the four models
with the same Cu content, same Si/Al ratio of ∼10, and
different Al distributions H(20−48)6R, H(20−48)8R, H(20−
48)rand, and H(20−48)bias (see Methods section, Figure S4,
and Table S2) exhibit quite similar but not fully equivalent
behavior. The time evolution plots in Figure 6b suggest a
higher probability of [Cu(NH3)2]+ pairing in the H(20−48)8R
models containing two framework Al atoms in the same 8R, in
agreement with the lower activation free energies (ΔFact)
obtained for [Cu(NH3)2]+ diffusion through these Al-pair-
containing 8R windows.
Experimental Validation for the Low-T NH3-SCR-NOx

Reaction Catalyzed by Cu-CHA Zeolites with Controlled
Composition. To experimentally validate the computational
predictions, three CHA samples with different Si/Al molar
ratios ranging from 7.3 to 23.3, which translates to a broad

range of 1.4 to 0.5 Al sites per cha (see Table S3 in the
Supporting Information) were synthesized as described in the
Methods section. Then, the same Cu loading (∼1.5 wt % Cu)
was introduced within the three CHA materials, which resulted
in a similar amount of initial Cu atoms per cha cage, ∼0.17, but
different Cu/Al ratios (from 0.11 to 0.35, see Table S4). In
addition, the CHA sample with a Si/Al ratio of ∼7.3 was also
loaded with 3.0 wt % Cu, resulting in an additional sample with
an increased number of initial Cu atoms per cha cage (0.3).
The Si/Al ratios in these samples and in the industrial catalysts
are lower than those considered in some systems of the
training data set and in some simulations. The reason is that in
macroscopic systems the Al atoms are not uniformly
distributed along the crystal, and the training of the NNP
should include local environments with higher and lower Si/Al
ratios to avoid extrapolations.
The catalytic tests to evaluate the low-temperature SCR-

NOx activity of the different Cu-CHA materials were
performed at very high space velocities (1800000 mL/h·g of
catalyst) to ensure low NO conversions (<20%). Turnover
frequency values (TOF) were obtained for each Cu-CHA
sample at five different temperatures (Figure 6c). The TOF
values obtained for the three catalysts with different Si/Al
molar ratios and the same Cu content (∼1.5 wt % Cu) exhibit
a continuous activity enhancement as the Al/cha cage ratio
increases from 0.5 to 1.4 (see Figure 6c), in agreement with
the theoretical conclusion that the probability of simulta-
neously finding two [Cu(NH3)2]+ complexes in the same cha
cage increases with increasing the Al content in the zeolite. A
comparison of the TOF values obtained for samples with the
same Si/Al ratio and different Cu content (full and dotted
green lines in Figure 6c) or even with similar Cu/Al ratios and
different Cu content (red and dotted green lines in Figure 6c)
confirms that the catalytic activity clearly improves with
increasing the Cu/cha ratio, in good agreement with the
theoretical conclusion that the probability of forming [Cu-
(NH3)2]+ pairs in the same cha cage directly correlates with the
total amount of Cu in the system.
The experimental apparent activation energies (Figure 6d)

are similar for all samples irrespective of the Si/Al ratio, Cu
content, or catalytic activity, ranging from 10.4 ± 0.8 to 11.9 ±
0.3 kcal/mol. The catalytic activity measured by the TOF and
normalized by Cu content, however, increases in parallel with
the calculated likelihood of two copper encounters in the same
cage (Figure 6a,b). This supports the argument that the
formation of [Cu(NH3)2]+ pairs in the same cha cage is
responsible for the generation of the binuclear active sites that
catalyze the reaction, although copper diffusion may not
necessarily be the rate-determining step of the global process.

■ CONCLUSIONS
Biased and unbiased MD simulations using a newly trained
NNP have achieved high accuracy, chemical diversity, and
good length and time scales, allowing the systematic
investigation of the influence of catalyst composition and
adsorbed NH3 on the mobility of [Cu(NH3)2]+ cations in Cu-
CHA catalysts.
Biased simulations on small systems showed that single

[Cu(NH3)2]+ cation hops between adjacent cha cages are very
sensitive to the Al distribution, and in general, Al pairs in 8R
windows lower the free-energy barrier for diffusion and
stabilize the product configuration with two [Cu(NH3)2]+
cations in the same cage. This might be taken to suggest
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that the rate of the SCR-NOx reaction could be accelerated by
selectively positioning the Al atoms as Al pairs. However, even
though those results are well beyond the limits of traditional
AIMD, the simulation cells employed are overly simple and
lack realistic Al and NH4

+ concentrations.
Unbiased MD simulations using time scales of multiple

nanoseconds and supercells with over 2300 framework atoms
at a variety of Si/Al ratios and Cu+, NH4

+, and NH3 loadings
show that [Cu(NH3)2]+ cations can visit on average 3 to 4
cages and diffuse as far as 30 Å in a few nanoseconds. They
also show that long-range migration to remote cages requires
the simultaneous displacement of a charge-compensating NH4

+

cation. An excess of NH3 facilitates the movement of the
positive charges via proton transfer from NH4

+ to NH3, thus
enhancing the long-range diffusion of [Cu(NH3)2]+ complexes.
Regarding catalytic activity, we observed that the probability

of finding two [Cu(NH3)2]+ complexes in the same cage,
which is necessary for the SCR-NOx reaction at low
temperature, correlates directly with the Cu content and the
Al content but not so much with the Al distribution. These
trends were confirmed experimentally through testing the
SCR-NOx reaction at low temperatures using Cu-CHA zeolites
with different Si/Al and Cu/Al molar ratios, where we found
increasing catalytic performance with increasing Al and Cu
loading.
These results demonstrate the power of combining high-

throughput DFT calculations, machine learning, and molecular
dynamics simulations for simulating transport in nanoporous
catalysts. The collection of the training data and the training of
the NNP had a lower total computational cost than a single
traditional AIMD simulation and resulted in scalable, fast, and
accurate simulations.
This overall strategy is broadly applicable to other unsolved

questions in nanoporous catalysts since it enables DFT
accuracy and nanosecond-long MD simulations for thousands
of atoms and possibly beyond by combining ML and enhanced
sampling techniques.82
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