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Abstract: Renewable energy-based power generation technologies are becoming more and more
popular since they represent alternative solutions to the recent economic and environmental prob-
lems that modern society is facing. In this sense, the most widely spread applications for renewable
energy generation are the solar photovoltaic and wind generation. Once installed, typically outside,
the wind generators and photovoltaic panels suffer the environmental effects due to the weather
conditions in the geographical location where they are placed. This situation, along with the normal
operation of the systems, cause failures in their components, and on some occasions such problems
could be difficult to identify and hence to fix. Thus, there are generated energy production stops
bringing as consequence economical losses for investors. Therefore, it is important to develop strat-
egies, schemes, and techniques that allow to perform a proper identification of faults in systems that
introduce renewable generation, keeping energy production. In this work, an analysis of the most
common faults that appear in wind and photovoltaic generation systems is presented. Moreover,
the main techniques and strategies developed for the identification of such faults are discussed in
order to address the advantages, drawbacks, and trends in the field of detection and classification
of specific and combined faults. Due to the role played by wind and photovoltaic generation, this
work aims to serve as a guide to properly select a monitoring strategy for a more reliable and effi-
cient power grid. Additionally, this work will propose some prospective with views toward the
existing areas of opportunity, e.g., system improvements, lacks in the fault detection, and tendency
techniques that could be useful in solving them.

Keywords: fault conditions; fault diagnosis methodologies; photovoltaic systems; renewable
energy generation; wind turbines

1. Introduction

As the energy needs of the modern society have increased, the processes for power
generation have been forced to evolve. Thus, the idea of a centralized generation where
the sources and the loads are far from each other is less common every day, and new
strategies for distributed generation (DG) are preferred instead [1]. The concept of DG is
possible, in great measure, thanks to the development and inclusion of renewable gener-
ation sources (RGS), such as solar photovoltaic (SPV) and wind power (WP) [2]. The in-
clusion of RGS supposes some well-known benefits: reduction of pollution and green-
house gases, utilization of natural and unlimited energy sources, government incentives
and subsidies, among others; additionally, it has been reported the existence of some chal-
lenges and drawbacks regarding the penetration of RGS being the principal inconvenient
the high intermittence in the generation process related with the variability of the sources
like sunlight and wind. Unfortunately, the variability of the natural resources is
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something that cannot be controlled, and the only solution for dealing with it is the use
energy storage systems and energy management systems that control how the energy is
used. This way, if there is surplus generation, it can be stored and used when the natural
resource is unavailable, but the energy is still required. The erratic nature of the weather
conditions involves some other issues like power factor reduction, overheating of trans-
formers and feeders associated with harmonic contamination, low power quality in the
grid and so on [3-5]. Moreover, and since the power generation with RGS is also a busi-
ness, before installing any wind farm or SPV plant, it is necessary to perform an analysis
of applicable policies, location restrictions, solar/wind resource potential, infrastructure,
among others [6]. Finally, it must be mentioned, that any system is prone to present faults
either for an incorrect installation procedure or for the normal effects of the operation and
wear of the components. In order to avoid financial losses and to guarantee a robust and
reliable power supply for final users, it is necessary to determine the state of operation of
the whole generation system. This last point plays a major role from both a technical and
a scientific point of view. Therefore, a big effort is put in the development of techniques
and strategies for the identification of faults in photovoltaic and wind generation systems.

In terms of SPV systems, a large amount of installed capacity was achieved during
2020 with an estimated power of 139 GW installed that year to reach a global estimated
760 GW around the globe [7]. Although this amount seems to be high, it must be men-
tioned that it represents only around the 1.7% of the global power generation [8]. How-
ever, the amount of SPV installed power is expected to continue growing in a great meas-
ure because the United Nations implemented the Sustainable Development Goals that,
among other things, aim to provide affordable and clean energy highly based in RGS,
without compromising the robustness and reliability of the power supply [9,10]. At this
point, the techniques and strategies for fault identification become of great importance to
ensure this robustness since they can detect an abnormal condition either for preventing
or correcting any malfunctioning. In the literature, there are several works that present
different classifications for the faults that may occur in a SPV system, with the most stud-
ied being the electrical faults, the weather-related faults, and the panel faults [11]. Regard-
ing the electrical faults, they may be associated with problems in the connections or in the
electrical components. Typical examples of this classification are line-to-line faults, line-
to-ground faults, open circuit faults, arc faults, among others [12-14]. Another group in
this classification can be those faults related with the environmental and weather condi-
tions, the partial shading and dust accumulation being the main exponents of this set [15-
17]. Finally, the faults that are directly related with the photovoltaic panel are also a com-
mon classification. Here, some of the most studied faults are damaged diodes, junction
box fault, crack in protective glass, hot spots and connector failures just to mention some
[18-20]. What all these faults have in common is that they directly affect the amount of
energy that can be produced by the SPV system. In all the cases, a faulty condition leads
to a reduction in the generated power, compromising the reliability of the system and, in
some cases, producing financial losses for the investors. Since the number of faults related
with SPV systems is broad and varies, it is important to count with a considerable number
of techniques that allow to identify the different types of faults regardless their nature or
behavior.

Regarding to the WP generation systems, according to the Global Wind Energy
Council (GWEC) in their annual reports, in the last three years the use of WP generation
systems has growth significantly [21]. For instance, in 2019 the new wind power installa-
tions added around 60.8 GW to reach an accumulative worldwide wind power capacity
of 650 GW. Later, in 2020, the respective new wind power installations added almost 93
GW to reach an accumulative global wind power capacity of about 743 GW, meaning a
relative growth of approximately 14% respect to the previous year [22]. Finally, in the last
year, 2021, the new wind power installations added almost 94 GW to reach an accumula-
tive global wind power capacity of about 837 GW, meaning a relative growth of 12% re-
spect to previous year [23]. The above quantities and percentages indicate a rising in the
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use of WP generation technologies, that are wide distributed around the globe [24], which
can be noticed by the new onshore and offshore installations [25-27]. The main technolo-
gies for WP generation must obey and accomplish the goals established by the 26th United
Nations Climate Change Conference of the Parties (COP26) in Glasgow and focused on
climate sustainability [28]. To this end, the generation system must be operating in opti-
mal conditions. However, several problems may occur of diverse nature [29]. For exam-
ple, some problems can be caused by environmental factors [30] like rain [31], humidity
[32], dust [33], high speed winds [34], low and high temperatures [35], etc. Additional
problems can be caused during installation, e.g., bad design, connection problems [36],
geographical restrictions [37], etc. Other problems are referred to the wind power system
itself, here, two main branches can be described: electrical and mechanical problems.
Thus, from the variety of problems above mentioned that can occur in the WP generation
systems, the electrical and mechanical are those on which this review is majorly focused
on. Some examples of the electrical faults are, for instance, short-circuit [38], converter
faults [39], line to ground fault [40], etc., whereas some examples of mechanical faults
include gearbox faults [41], rolling bearing faults [42], and blade faults [43], among others.
Therefore, the WP generation systems must be continuously monitored, and several in-
vestigations have been performed with the purpose to develop methodologies capable to
diagnose the fault conditions present in them [44—-49]. In summary, the presence of failures
in the WP generation systems depends on the type of technology (onshore or offshore)
and the elements that integrate the generation system. A more detailed explanation about
frequent faults and proposed solutions in the WP systems will be held further.

This work presents an extended overview of some critical concerns involved in the
process of renewable power generation based in the SPV and wind WP technologies that
directly impact on their system efficiency, as well as their maintenance costs. Therefore, a
detailed framework of the main elements that integrate the renewable power generation
systems (SPV or WP) is presented, highlighting those elements that are most frequently
studied in the state of the art and their related fault conditions, causes, and consequences.
Immediately after, the methodologies, techniques, and schemes that have been proposed
for detecting and diagnosing fault conditions in the power generation systems are de-
scribed. Here, a complete analysis of the base techniques adopted for the development of
the proposed approaches and the accuracy in the diagnosis of the fault conditions is car-
ried out. Additionally, a categorization of the methodologies reported is performed,
providing the guidelines on what techniques are better under certain system characteris-
tics and for the type of faults analyzed. Finally, an analysis and discussion are presented
regarding the trends in the fault diagnosis, new aspects that need to be addressed, pro-
posed methodologies drawbacks, and some promising techniques that could be used for
this task. In summary, the review contribution focuses on five main topics: Section 2, (i)
frequent fault conditions present in the SPV systems, Section 3, (ii) current methodologies
reported in the literature for fault diagnosis of SPV systems, Section 4, (iii) frequent fault
conditions present in the WP generation systems, Section 5, (iv) current methodologies
reported in the literature for fault diagnosis of WP systems, and finally, Section 6, (v) pro-
spective and tendencies in the emerging methods for monitoring systems and fault diag-
nosis regarding renewable power generation based on SPV and WTs.

2. Frequent Fault Conditions in SPV Generation Systems

As has been previously mentioned, the use of RGS supposes a series of advantages
and benefits and their use has been widely spread in order to attack some environmental
and economic issues related with power generation around the world. Among all the RGS
the SPV technology presents one of the biggest growth year by year [50]. This situation is
mainly explained because of the low cost associated with this type of generation [51], the
simplicity of installation and maintenance [52], the all-day availability [53], the high num-
ber of National and state-level policies and subsidies [54,55], and so on. Additionally, it
has been reported that the use of SPV generation allows to reduce the emission of COz in
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2.3 gigatons per year [56]. Thus, SPV generation is becoming an essential part of the new
paradigm of the power generation process and, therefore, it is necessary to ensure the
proper operation of every element in the system.

It is well known that the operation principle of a SPV generation system is the pho-
toelectric effect, that allows to a semiconductor material to generate and electric current
when an electromagnetic radiation hits its surface [57-60]. Depending on how the gener-
ated energy is used, a SPV system can work in two different modes: a grid tied mode, and
an islanding mode [61]. When a SPV system operates in the grid tied mode, the energy is
directly delivered to the main conventional power grid accomplishing the voltage, phase
and frequency established by the local standards [62]. On the other hand, the islanding
mode implies that the SPV system operates completely independent of the conventional
grid [63]. Since it has been mentioned that the power generation process is variable in a
SPV system because it depends on the amount of solar radiation that reaches the photo-
voltaic panel, it is necessary to count with a backup for the moments when the generated
power is not enough for satisfying the load requirements. In the case of the grid tied mode,
this backup is provided by the conventional grid, whereas in the case of the islanding
mode it is necessary to install an energy storage system that may be constituted by batter-
ies or capacitors among other elements [64]. Therefore, the operation mode is an important
factor to be considered on the analysis of an RGS, because the components of the system
are different for both operation modes. In a grid tied system, the main components are the
photovoltaic panels and the power inverter that is the one in charge of converting the DC
delivered by photovoltaic panel into the AC with the criteria stablished by the conven-
tional grid. Thus, if a failure exists in the generation system it must be attached to one of
these elements or to the connections between them. On the other hand, for an islanding
mode of operation, in addition to the panels and the power inverter, a fault condition can
appear in the energy storage system or in the regulation system that is in charge of con-
trolling the energy flow. At this point, it is important to mention that from all the SPV
installations worldwide, around the 94% are grid tied and only the 6% operate in islanding
mode [65]. This situation is explained because the islanded SPV systems have been mainly
used for electrifying rural zones where that are not reached by the conventional grid,
whereas grid tied systems now are considered another generation plant just like the con-
ventional ones. In this sense, most of the literature focuses on the detection of faults in
grid tied connected systems, because they are more widespread and they are also seen as
business where a fault may lead to financial losses. Nevertheless and regardless the oper-
ation mode of the system, in terms of what can be considered as a fault, all the authors
agreed that it can be defined as any condition that results in a loss of the expected output
power [12,17]. When the state of fault disappears by itself after a specific period, it is con-
sidered as a temporary fault. In contrast, if the failure remains after an extended period it
is addressed as a permanent fault [11]. Additionally, a permanent fault can be classified
in terms of the severity and the point in the lifetime of the system that occurs; in this sense
they can be classified as early faults, extrinsic faults and deterioration [14]. According with
the reported literature, Figure 1 shows a classification that shows the main type of faults
in SPV systems considering that these faults can be due to environmental factors or a mal-
functioning in any component of the installation, but also taking into account the period
in the lifecycle of the system where the fault occurs and its severity. In this sense, Figure
1 shows a first level of classification with temporary and permanent faults. In order to
understand when a fault is considered temporary and when permanent, five different cri-
teria are selected: duration of the fault, affected components, fault severity, affect on the
output power, and possible causes of the fault. Regarding the duration, a fault is consid-
ered to be temporary if it lasts from a few to minutes to a couple of days. Furthermore,
these faults are self-corrected or they require of almost none human action to be corrected
[16]. Notwithstanding, and to be fair, it must be said that dust accumulation is a tempo-
rary fault that can lead to a high-severity fault in the SPV panel if left unattended [66]. A
permanent fault remains in the system and it cannot be repaired by itself; it necessarily
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requires of the action of an expert and sometimes it cannot be repaired at all [11]. In terms
of the affected components, the temporary fault affects the electric generator, i.e., the SPV
panel and its components, e.g., bypass diodes, or it can also affect the power inverter if a
maximum power point tracking is not implemented because, in this case, the amount of
delivered power could be improved despite de the presence of unfavorable weather con-
ditions. On its part, a permanent fault can also affect the SPV panel and the power inverter,
but it can also damage the cables, the supporting structures, the grounding system and
even the protections [17]. Speaking of fault severity, the temporary conditions can intrin-
sically be classified as low severity faults, whereas the permanent faults go from a medium
to high since they are conditions that cannot be removed for the system at sometimes [18].
Additionally, it must be mentioned that a temporary fault never causes a complete outage
of the production. Rather, it only can reduce the amount of power delivered by the SPV
system. On the other hand, when a permanent fault presents a high severity, it can pro-
duce a complete interruption of the generated power [14]. Finally, the temporary faults
are primarily caused by environmental factors and the permanent faults are caused by
deterioration of the components, incorrect selection of the cables and components, im-
proper connections, and overvoltage or overcurrent coming from outside of the SPV sys-
tem [11]. Continuing with the fault classification, in the case of temporary faults, they are
due to cloud presence, partial shadowing, and dust accumulation. On the other hand, the
permanent faults can be early faults, extrinsic faults or deterioration depending on when
within the lifecycle of the system they occur, and they can be electrical faults or panel
related faults. Additionally, Table 1 summarizes the most common faults of every cate-
gory and provides a brief description of the fault. Table 1 also shows the different types
of faults, temporary and permanent, and it mentions every one of the faults that belong to
each of the categories describing the main characteristics of the fault and providing some
examples of how they are appreciated in an SPV system.

SPV faults

Temporary faults Permanent faults
(weather related)

-

- 4 - - 4

Cloud presence

[Partial shadowingJ [Dust accumulation] [ Early faults ] [ Extrinsic faults ] [ Deterioration ]

[ Electrical faults } [ Panel faults ]

Table 1. Common faults in SPV system and their description.

Figure 1. Type of faults in SPV systems.

Temporary Faults (Weather Related)

Ref. Fault Description Common Examples
This condition is presented when a cloud or
[67-69] Cloud presence a set of cloud passes over the photovoltaic e Temporary loss of power
panels.
[70,71] Partial shadowing The amount of light that reaches the photo- e Temporary loss of power

voltaic panel surface is not uniform because e Temporary hot spots
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some external elements like threes or build-
ings block the pass of the sun light generat-
ing shadows in some parts of the panel.

The dust suspended in the environment is
dragged by the wind and it is accumulated

Temporary loss of power
Temporary hot spots

[66,72,73] Dust accumulation  on the surface of the photovoltaic panel e Corrosion of the photovoltaic
blocking the light to reach the photovoltaic P
cells. panel

Permanent Faults
Ref. Fault Description Common examples
These are faults that appear early in the
lifecycle of the elements of the SPV system o Inverter faults
.. that affect the wires and connections be- . .
Electrical . . e Line to line fault
tween devices or the elements in charge of Ground fault
the energy conversion process like the ot .
[74-77] Early fault power inverter.
These are faults that appear early in the
lifecycle of the photovoltaic panels. These e Junction box fault
Panel faults are located only in the photovoltaic e Bypass diode fault
generator and its components so the DC e Cracked surface
generation process results affected.
The extrinsic faults are considered the mid-
term problems of the system. As in the case . .
e Line to line fault
Electrical of early faults, an electrical fault is mainly re-
e Ground faults
lated with problems in the wiring and con-
[78,79] Extrinsic fault nections of the system.
In this case this term refers to faults that di-
e Broken surface
rectly affect the photovoltaic panel or any of .
Panel | . e Bypass diode fault
its components but considering that the fault. Hot spots
occurs at the middle age of the panel. P
It is intended that every element in the SPV
system will decrease its efficiency and capac- o er faults
. ities as an effect of the work they perform . .
Electrical . .. . Line to line fault
and aging. When this situation affects the e Ground faults
wiring and connections in the SPV system it
occurs an electrical fault bay deterioration.
[80,81] Deterioration The semiconductor material that composes
the photovoltaic cells as well as the outer Corrosion
materials that cover them tend to suffer a Discoloration
Panel degradation over the time. The materials scoloratio
Delamination

that are mainly affected are the silicon cell,
the tempered glass cover, the aluminum
frame and the panel seals.

Damaged seals

Regarding Table 1, it is important to make some clarifications. For instance, all the
weather-related faults are considered temporary, because either a cloud or a partial shad-
ing is a condition that appears only at a specific time during the day and then disappear.
In the case of dust accumulation, this is a situation that can be avoided or corrected by
regularly cleaning the panels. Therefore, if one of these situations becomes persistent, it
can unchain undesired effects that will result in different permanent damages. In this
sense the dust accumulation is the condition that requires the most care, because contrary
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to the general thought, photovoltaic panels are not self-cleaning. Indeed, it is necessary to
schedule maintenance tasks that include the cleaning of the panel surface [72,82]. Other-
wise, the efficiency of the photovoltaic panel dramatically decreases and its operation tem-
perature increases causing hot spots and damage of the internal connections. Another im-
portant thing to be mentioned is that most of the early faults are related with fabrication
defects of any component, a deficient transporting method or an improper installation
[83]. Therefore, the faults that can occur at an early stage in the lifecycle of the system are
practically the same that can appear later due to deterioration. Finally, it is important to
say that the deterioration is a condition that starts at the right moment when the system
starts working [81]. However, the effects are negligible at the beginning as they gradually
grow to become unacceptable at the end of the lifecycle of the SPV system. All of the afore-
mentioned faults have distinctive characteristics that allow to identify their existence.
Thus, several strategies and methodologies have been implemented to properly identify
them in order to take actions to prevent catastrophic damages not only to the equipment,
but to the health and life of the people in the surroundings of the SPV system. In the next
section, an analysis of the different techniques applied for fault monitoring in SPV systems
is presented.

Finally, and to summarize the mains aspects of the operation conditions of SPV sys-
tems, some key points are listed below [7]:

e A total capacity of 942 GW of energy is produced with photovoltaic systems around
the world.

e  The biggest producer of SPV energy is China with around the 31% of the global pro-
duction.

e  The production costs regarding SPV systems are reported to be an average of 0.33 US
dollar per watt-peak.

e Main maintenance actions are cleaning of the panel surface and revision of the con-
nections and cables.

3. Current Methodologies for Fault Diagnosis in SPV Generation Systems

Every fault condition has different behaviors and characteristics that allow to differ-
entiate one among others. That is why several techniques and methodologies prove suit-
able for identifying an abnormal condition right at the moment when it appears. A single
technique or methodology may be capable of detecting more than one fault condition in
a photovoltaic system. Therefore, different strategies are listed and described below for
addressing the fault that can be identified by application.

3.1. Techniques for Temporary Fault Identification

It is important to clarify that, in the case of the temporary faults, most of them are
inevitable. For instance, it is not possible to avoid the existence of cloudy days. In this
sense, most of the methodologies that are being developed for dealing with these types of
faults try to forecast the behavior of the sunlight at a specific location or to establish opti-
mal maintenance schedules for preventing long term faults associated with environmen-
tal factors. Here, three categories of techniques for the weather-related loss of power will
be discussed: the solar forecasting methods, the optimal design methods, and the strate-
gies for dealing with dust accumulation

3.1.1. Solar Forecasting Methods

As the name suggests, the solar forecasting consists of trying to predict the amount
of sunlight that will be available at a specific location and at a specific time, and it is one
of the oldest efforts for dealing with the variability of the renewable energies like SPV [84].
There are two main typical solutions: those that deliver a mathematical model for the pre-
diction (model-based), and those that only receive a set of data as inputs and deliver an
output lacking an equation (data driven). The most common solution for performing a
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solar forecast is the time series analysis that delivers either a value of the amount of solar
radiation or the power delivered by the SPV system at certain hour of the day. Here, the
statistical analysis is a very popular solution for finding the relationship between an input
and a time series output and for delivering a mathematical model explaining such a rela-
tionship. In this sense, the use of simple linear regression models [85] and multiple linear
regression [86] provide simple solutions for this problem; notwithstanding that the sea-
sonal autoregressive integrated moving average (SARIMA) has proven to be more effec-
tive and reliable [87]. In all these cases, the result is a mathematical expression that pre-
dicts the behavior of the output, and it is adaptable to the month and season of the year.
Besides the statistical analysis, the use of the artificial intelligence (AI) techniques has
shown to deliver good results. Here, different configurations of artificial neural networks
(ANN) have been explored. For instance, in [88], a bi-directional long short-term memory
(Bi-LSTM) ANN is used for estimating the time series of the solar radiation in a region in
the south of China, whereas in [89] the authors propose a convolutional neural network
(CNN) for the same purpose. Unlike the statistical regression techniques that deliver a
mathematical model, an ANN only delivers a numerical response according to certain
input values, but an equation is not obtained. This last representation has become more
popular nowadays and techniques such as support vector machines (SVM) represent an-
other option for predicting the solar radiation in terms of different inputs. In this sense, in
[90], it is mentioned that the most used inputs for these types of methodologies are cli-
matic variables, e.g., air temperature, relative humidity, wind speed, pressure, among oth-
ers. Although these methodologies allow the producers and users to be prepared to face
the variability of the solar radiation, this is a condition that cannot be avoided, and it is
necessary to count with backup systems that allow to save energy and use it when re-
quired. This is still an active field where the Al and the machine learning approaches are
becoming especially relevant.

3.1.2. Optimal Design and Planification Methods

Many of the faults that appear in an SPV installation are generated by the operation
of the system. However, there are conditions that can be avoided if a proper planification
is performed before and during the startup of the generation farm. In this sense, the im-
plementation of procedures for risk assessment turns out to be a helpful tool. Since the
photovoltaic panels are located outside, there is a high probability of occurrence for light-
ning events is high. Therefore, the authors in [91] address the importance of implementing
a lightning rod system along with a proper grounding mesh for preventing the damages
associated to the surges caused by lighting events. In that work, the authors mention that
there are two principal schemes for lightning rod systems: attached to the structure and
free-standing. The former considers that the structures where the panels are mounted can
work as a path for the flow of the lightning current and the last uses a system separated
from the mounting structures and directly connected to the ground. Although both solu-
tions are good for prevention, in a lightning rod attached to a structure, the selection of
the construction materials and the quality of connections play a major role. On its part, a
free-standing installation must consider a correct cable routing to minimize the loop and,
therefore, the induced voltages. Due to the importance of the design of lighting and surge
protection, in [92], a description and analysis of a method for the proper selection of the
components and the procedure for the correct connection of the components are pre-
sented. A special attention is put in the best profile for the mounting structures and in the
cable selection. These types of works are relevant because the surges that come with light-
ning events may cause severe damages to the bypass diodes, the power inverters, and to
the cable and connection elements of the SPV system.

On the other hand, partial shading is a detrimental condition that generates that the
cells that receive low solar radiation turn into loads that consume energy from the non-
shaded cells. This situation results in an increment of the cell temperature that causes
long-term damage if not attended. Therefore, it is important to detect this condition and
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take action to diminish its detrimental effects. To overcome the partial shading condition,
a first solution consists in performing an optimal design of the system that minimizes the
zones that are affected by the shading and that maximizes the generated power. In this
regard, the optimization techniques, such as genetic algorithms (GA) [93], particle swarm
optimization (PSO) [94] and Markov chain models [95], deliver accurate results. These
methodologies consider different configurations of the SPV system by varying parameters
like connection among panels and by-pass diodes, orientation of the panels and their lo-
cation; the optimization technique evaluates the performance of each configuration and
deliver as output the system that is less affected by the partial shadow condition. The main
disadvantage with this design strategies is that they are passive, and the configuration
cannot be changed once installed. Thus, if the surroundings of the SPV systems are mod-
ified, then the configuration may not be valid anymore. Therefore, some other authors
propose to use active reconfiguration strategies. A reconfiguration consists in changing
some of the parameters that define the SPV system, e.g., the connection among the photo-
voltaic panels, the way by-pass diodes are connected, and the orientation of the photovol-
taic panels among others [96]. To perform this reconfiguration, a static or a dynamic ap-
proach can be implemented. The static reconfiguration only changes the position of the
photovoltaic panels for relocating the shaded cells. With this relocation, the partial shad-
ing condition does not disappear, but the affected cells are changed so the output power
is maximized and the damage in the cells is reduced. The most explored techniques for
performing this task are the puzzle arrangement-based techniques [97] that consider the
complete photovoltaic panel as a series of matrices and the algorithm searches the matrix
that less affects the performance and orientates the panel so the shadow is directed to this
specific matrix. Another option for SPV system reconfiguration is a dynamic approach
where some switches are located at specific points in the system allowing to dynamically
changing the connection among panels. In this type of approach, the problem to solve
consists of selecting the proper location of the switches and determining the best intercon-
nection strategy for minimizing the effects of the partial shading condition [98]. It is in-
tended that if it is possible to install the SPV system in an open space where no object
interfere with the pass of the solar radiation it is the best option. However, this is not
always possible, and the aforementioned methodologies allow to reduce the risks of prem-
ature faults in the photovoltaic system.

3.1.3. Strategies for Dust Accumulation

Dust is a mix of soil lifted, pollutants, and other solid tiny particles that are sus-
pended in the atmosphere and that are carried by the wind. When dust is deposited on
the surface of the SPV panel, a layer that blocks the pass of the solar radiation to the pho-
tovoltaic cell is formed, generating the same effects as a partial shading condition. To pre-
vent damage associated with dust accumulation, there are two main strategies: techniques
for the detection of abnormal levels of dust, and techniques for SPV panel cleaning. Both
strategies normally cope with the forecasting techniques previously described, because
the prediction allows to know the expected output power and if the measured value pre-
sents a high deviation from the expected one it is indicative that there is something wrong
in the system. Additionally, both approaches require the measure of certain physical var-
iables as solar radiation and cell temperature. However, the former uses the values of the
environmental data only for detecting when the output power is highly reduced by the
effect of dust accumulation. In this regard, the use of statistical analysis through multiple
linear regression analysis can properly detect when the levels of dust are not tolerable
[99]. The main advantage of the statistical analysis is the simplicity of the implementation
and the obtaining of a mathematical model that describes the relationships among all the
variables. Notwithstanding, these techniques suffer when the relationship among varia-
bles is nonlinear. To overcome this situation, again, the Al is a good alternative, and in
[100], the use of an ANN is proposed for characterizing, analyzing, and quantifying the
level and distribution of the dust accumulation in the surface of a SPV panel. An
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alternative for identifying dust accumulation that does not require environmental varia-
bles consists in using a camera for taking photographs of the SPV panel, and with the use
of image processing techniques, such as morphological transformations, it is possible to
determine whether the panel is clean or not [101]. Although this methodology delivers
accurate results, it is less preferred since the cameras are sensitive equipment that can be
easily damaged if they are outdoors.

Regarding the SPV panel cleaning, there have been developed different materials that
can be used as coats in SPV panels that allow a self-cleaning process. These are hydropho-
bic materials that allow to prevent not only dust accumulation, but also the droplet for-
mation related with rain, snow, and ice [102,103]. It has been reported that the use of hy-
drophobic materials helps to reach an improvement up to 25% in the performance of the
system. The main drawback of these coating materials is that they should be integrated
since the panel is built, increasing the complexity of fabrication and the production costs.
Therefore, the design and implementation of strategies for performing an automatic clean-
ing of regular SPV panels remain preferred. An interesting solution is the use of electro-
dynamic devices for dust cleaning [104]. These devices work along with a methodology
for determining the level of dust accumulation. When an undesired level of dust is
reached, an electric current is directed to the cleaning device generating dielectrophoresis
forces that make the dust in the vicinity flow up in the device leaving the panel; i.e., the
device acts as sort of a vacuum cleaner for SPV panels. Another option is the use of robotic
arms [105] or automatic brush systems [106] that are activated when it is detected that the
output power is below a threshold. These machines implement a system that can provide
water and soap during the cleaning process resulting in a clean SPV panel. These devices
are somehow complex and high cost. Thus, the use of techniques that determine when the
dust accumulation is high and perform a manual cleaning of the panels is still preferred.

3.2. Fault Detection Based on Current-Voltage (I-V) Curves

Every SPV panel can be described by two characteristic curves: the current-voltage
(I-V) curve, and the power-voltage (P-V) curve. The I-V curve shows the relationship be-
tween the current and the voltage delivered by a SPV panel at a specific value of solar
radiation, and it considers important values as the short circuit current (I5;) and the open
circuit voltage (Vy¢). On the other hand, the P-V curve shows how the output power of
the SPV panel are related. In this last curve it is possible to identify the point where the
output power is maximum (P,,,,) and by combining both curves it is possible to find the
current and voltage at the point of maximum power (I, and V},,, respectively). All these
values are different from one panel to another, and they depend on factors like the peak
power of the panel, the construction material, and the surface area among others. These
curves can be observed in Figure 2 for a single value of solar radiation. Here, the maxi-
mum current that can be delivered by the panel, I, and the maximum voltage reached
by the panel, Vj, are observed The point where the output power is maximum is known
as the maximum power point (MPP) and it always considers values of current and voltage
lower than I, and V., respectively. Most of the manufacturers design their SPV panels
to operate at an irradiation of 1000W /m?. However, it is impossible to keep this level of
radiation all the time due to the presence of clouds, the season of the year, and some other
environmental factors that may affect the level of radiation that reaches the panel. There-
fore, the SPV panel manufacturers usually generate a family of I-V curves considering
different levels of solar radiation. In Figure 3a, a family of I-V curves for the SPV panel
STKP-60-250 from Solar Electric is presented [107]. By looking at Figure 3a, it can be ob-
served that the lower the irradiation is, the lower the I, becomes. Although V) is also
affected by the variations in the irradiation, it is not as sensitive to these variations, and it
can be considered as almost constant for every level of irradiation. Moreover, the solar
radiation is not the only variable that affect the behavior of the I-V curves, the temperature
can also severely modify them. Figure 3b presents how the temperature variations alter
the performance of the I-V curves. Contrary to what happens in the case of irradiance,
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temperature variations affect the V. (lower temperatures generate higher V,. values),
whereas the I5c remains almost constant regardless the temperature. Finally, it is ex-
pected that if the voltage and current performances are modified, then the MPP is modi-
fied too. Hence, as in the case of the I-V curves, there exists a family of P-V curves for any
SPV panel. It is important to mention that the highest variations of the MPP are generated
by irradiance variations. Thus, the family of P-V curves is generated only considering dif-
ferent levels of irradiation and the temperature variations are left aside. Figure 4 shows
the characteristic P-V curves for the STKP-60-250 panel, and it is observed that a reduction
of the solar radiation results in a decay of the maximum power. This is a more or less
expected situation since it was previously mentioned that when the radiation that
reaches the panel is reduced, the Is; getslower and the V,,; remains constant. Therefore,
a reduction of the DC power is expected.
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Figure 2. I-V and P-V curves of a SPV panel (adapted with permission from Ref [108] Copyright
2015, Kumar, P., et al.).
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Figure 3. I-V curves of an SPV panel for (a) different solar radiation conditions and (b) different

temperature conditions (adapted with permission from Ref. [107] Copyright 2022, Solar Electric
London UK).



Energies 2022, 15, 5404

12 of 37

_ Power-Voltage Curve STKP-250
2
v o
3 a 1000W/m?
o
& 800W/m?
2
- 600W/m?
8
- 400W/m?
o
" 200W/m?

0 5 10 15 20 25 30 35 40
Voltage (V)

Figure 4. P-V curves of an SPV panel for different solar radiation conditions (adapted with permis-
sion from Ref. [107] Copyright 2022, Solar Electric London UK).

The curves in Figures 3 and 4 are extremely important in SPV systems because, as
previously mentioned, they define the expected behavior of the SPV panel at a specific
solar radiation. Therefore, any deviation from the values on these curves represents an
unexpected situation. There are some works that assume this characteristic and use it to
perform a fault identification in SPV systems. This technique is suitable for finding any
fault that is characterized by a fluctuation in the voltage or current levels delivered by the
SPV panel. For instance, in [108], a low-cost system that can compute the characteristic I-
V curve of a SPV panel by periodically measuring its I, and V,, with the aim of identi-
fying abnormal conditions is presented. Moreover, in [109], the authors propose the use
of the I-V characteristics of the panel long with a probabilistic strategy based on feature
extraction and learning algorithms for the identification of line-line faults in PV systems.
Since the I-V curves are different depending on the amount of solar radiation that reaches
the PV panel, in [110], the variables of temperature and solar radiation are considered to
work along with the I-V curve with the purpose of identifying short circuit, open circuit,
and degradation faults in the SPV system. By this data fusion, it is possible to enhance the
obtained results and to perform a better identification of more than one fault condition.
Finally, a methodology for the detection of line-line faults, open circuit, and bypass diode
fault is developed in [111] using the I-V curves and the k-nearest neighbors (kNN) tech-
nique for the detection and classification of the different faults. The use of I-V curves is a
powerful technique because it directly considers the operation principle of the SPV panels.
However, to obtain the best results from this approach, it is necessary to combine the I-V
curve analysis with other techniques, such as statistical analysis or Al methods. This is
why its use is becoming less popular because these last techniques can be also used by
themselves, as shown next.

3.3. Statistical Analysis for Fault Detection

Statistical analysis is a very versatile technique that is applied not only in the identi-
fication of faults in SPV systems, but also in many other branches of the science and engi-
neering. With statistics, it is possible to extract trends in the behavior of different physical
variables and any deviation in the normal trend is addressed as an abnormal condition.
Among all the techniques that are applied in the field of statistics, the analysis of variance
(ANOVA) has proven to be effective for the detection of faults in SPV systems. In [112],
data from the local temperature, irradiance, and output power for different days in an
SPV system with different faults are recorded: bypass diode, open circuit, and degrada-
tion. In this work, ANOVA is used for determining variations in the data sets that exceed
a threshold and they are associated with a fault condition in the system. Commonly, the
statistical analysis is combined with other digital signal processing techniques, as is the
case of [113] where the discrete wavelet transform (DWT) is used for separating the fault
behavior from the regular operation and then with the exponentially weighted moving
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average (EWMA) the fault is characterized for its identification. This work requires the
measurement of the voltage and frequency from the grid, the current and voltage in the
DC and the AC sides of the system, the local temperature, and the solar irradiance and it
can identify faults in the SPV array, the junction box, wiring, protections, and the inverter.
What all the methodologies that use statistical analysis have in common is that they try to
find tendencies in the descriptive variables that are related with the response. It is ex-
pected that any fault is companied with a particular tendency and there is where the sta-
tistical analysis work for differentiate among faults. Some other well explored techniques
in this field are the generalized likelihood ratio test (GLRT) [114] and the principal com-
ponent analysis (PCA) [115].

3.4. Artificial Intelligence Techniques for Fault Detection

Al is a wide branch of the computer science that, among other things, tries to make
decisions that commonly require of human intelligence. All the Al techniques are de-
signed to seek and learn specific trends and characteristics that describe a specific condi-
tion. Therefore, their use is suitable in the identification and classification of faults in SPV
systems. In this sense, the ANN probably represents the most explored technique. There
is a wide variety of ANNSs in the fault identification field , including the multilayer per-
ceptron [116], the convolutional neural network (CNN) [117], the probabilistic neural net-
work (PNN), etc. [118]. All these ANN require a data set for training, and data must con-
tain information regarding the faults that are going to be identified so the ANN can
“learn” to identify any disturbance. Once the network is familiar with the fault condition,
it is able to detect it. Another effective technique for the classification of faults is the fuzzy
logic. For instance, in [119], a Sugeno type fuzzy logic system is used, not only for identi-
fying the fault in the system, but also the number of damaged modules. Fuzzy logic is a
methodology that delivers good results, but the set of rules for solving a problem can
become complex, requiring a high computational effort. Finally, it is important to mention
that all these techniques consider that the algorithms learn how to identify an abnormal
condition. Therefore, they also belong to the machine learning classification. This is a more
or less new term for addressing Al applications that predict an outcome without being
explicitly programmed to do it.

3.5. Infrarred Termography

Every object with a temperature higher than the absolute zero emits infrared radia-
tion, and the infrared thermography (IRT) cameras are devices capable of capturing the
heat dissipation associated with this infrared radiation. Thus, IRT is the perfect technique
for the detection of hot spots in SPV panels. In this sense, in [120], a FLIR thermal camera
is used for acquiring infrared images from SPV panels. The images are passed through an
image enhance and noise removal filter and then the RGB image is converted in a gray
scale image. Next a feature extraction is performed by means of obtaining texture features
and some statistical features of the histogram. Finally, a support vector machine (SVM) is
used to determine whether or not the hot spot existence. The result is a high accuracy
machine learning methodology that uses thermal images as inputs. Another variant of
this approach is presented in [121]. Whereas in the previous case, thermal images as used
as inputs and a pre-processing stage that uses DWT over the images is implemented to
perform the feature extraction over the resultant modes. In this work, the fault classifica-
tion is carried out by a CNN. Again, this is a processing signal strategy that works along
with the IRT. Like these examples, there are many cases with similar procedures, varying
only the feature extraction and the classification procedures. For instance, in [122], the
transform invariant low-rank textures (TILT) method is used for feature extraction and
the PCA for fault detection. In this sense, it must be mentioned that the use of machine
learning strategies has proven to be an effective solution for the detection of faults in SPV
systems when combined with IRT.
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3.6. Machine Learning for Fault Detection in SPV Systems

Among all the modern approaches, the use of machine learning algorithms is one of
the most promising in the area of condition monitoring in SPV systems. This strategy be-
longs to the data-driven methodologies and its operation principle is based on three
stages: preprocessing, training, and prediction. The aim of the machine learning tech-
niques is to perform a data analysis to predict an unknown outcome based in the infor-
mation merged in the data set, i.e., considering a set of inputs that contain the character-
istics of a specific process it is possible to determine when exists a condition that generates
a deviation from the normal operation conditions. This is why the authors in [123] used
machine learning for predicting the output power delivered by an SPV system. There, the
electric variables of the system (voltage and current) and the environmental variables
(temperature and solar radiation) are used as inputs to form the data set to be analyzed.
The authors performed a feature extraction of the aforementioned date using the correla-
tion feature selection (CFS) and relief feature selection (ReliefF) techniques. Then, they
used a simple regression model, a Gaussian process regression, and an ANN to determine
which of these methodologies delivers the best prediction. They concluded that the ANN
is the best tool in this particular case. Another use of machine learning techniques is pre-
sented in [124], where the characteristic I-V curves of a SPV panel are used as inputs for
the detection of line to line and line to ground faults. From these curves, they extract a
total of 16 features that describe the functioning of the system and then use the sequential
forward search to select only the best features. Next, using a hierarchical classification
technique (HCT) based on three different classifiers (SVM, naive Bayes, and logistic re-
gression) to identify the fault that is present in the system. Moreover, it is worth noticing
that some of the works mentioned in the previous sections also implement a machine
learning scheme. For instance, in [120], the input data are IRT images and a series of filters
is used as a preprocessing stage to obtain statistical features from them later. Finally, an
SVM is used as classifier to perform the detection of the fault condition. In summary, ma-
chine learning plays a major role in the condition monitoring of SPV systems since it pro-
vides a robust and reliable tool not only for the detection of faults, but also for the predic-
tion of the output power delivered by a generation system. This is one of the approaches
expected to continue growing with the development of more strategies for the condition
monitoring of electric systems.

Finally, Table 2 summarizes the main techniques presented in this section, address-
ing the types of faults that can be detected with each one of them. Here, it is observed that
there are different techniques for identifying the same fault, and the same technique can
be useful for the detection of more than one fault.

Table 2. Summary of the main techniques for fault detection in SPV systems.

Ref. Year Classification Technique Fault
Solar forecasting
[85] 2020 Model-based Simple linear regression e Power loss due to clouds
[86] 2020 Model-based Multiple linear regression e Power loss due to clouds
[87] 2020 Model-based SARIMA o Power loss due to clouds
[88] 2021 Data-driven Bi-LSTM o Power loss due to clouds
[89] 2020 Data-driven CNN o Power loss due to clouds
[90] 2021 Data-driven SVM e Power loss due to clouds
Optimal design methods

[93] 2018 Data-driven GA e Partial shading

[94] 2021 Data-driven PSO e Partial shading

[95] 2021 Data-driven Markov chain models o Partial shading

Static reconfiguration with puz-
(]

[97] 2022 Data-driven
zle arrangement.

Partial shading
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[98] 2021 Data-driven Dynamic reconfiguration e Partial shading
Strategies for dust accumulation
[99] 2018 Model-based Multiple linear regression e Dust accumulation
[100] 2022 Data-driven Deep residual neural network e Dust accumulation
[101] 2020 Data-driven Image processing and ANN e Dust accumulation
[102] 2020 Not applicable Self-cleaning coat e Dust accumulation
[103] 2022 Not applicable Self-cleaning coat e Dust accumulation
[104] 2020 Data-driven Electrodynamic cleaner e Dust accumulation
[105] 2019 Data-driven Robotic arm e Dust accumulation
[106] 2018 Data-driven Automatic brush system e Dust accumulation
Fault detection based on I-V curves
[108] 2022 Data-driven I-V curve o Power loss
[109] 2020 Data-driven I-Y curve with probabilistic anal-e L%ne—line fault
ysis e Line-ground fault
. IV curve with environmental Short c1.rcu1.t
[110] 2019 Data-driven . e Open circuit
conditions .
e Degradation
e Line-line fault
[111] 2018 Model-based I-V curve and the kNN techniquee Open circuit
* Bypass diode fault
Statistical analysis
e Bypass diode fault
[112] 2020 Model-based ANOVA e Open circuit
e Degradation
e Faults in the SPV array
e Junction box faults
[113] 2018 Data-driven DWT with EWMA * Lineine fault
¢ Line-ground fault
e Fault in protections
e Inverter faults
[114] 2019 Data-driven GLRT * Mismatch
e Bypass diode fault
[115] 2021 Data-driven PCA : Eﬁs:lgliloeufr&:gl;’jults
Artificial intelligence techniques
[116] 2020 Data-driven Multilayer perceptron ANN e Panel disconnection
¢ Open circuit
[117] 2020 Data-driven CNN e Line-line fault
e Arc fault
e Short circuit
[118] 2018 Data-driven PNN e Open circuit
e Abnormal aging
[119] 2020 Data-driven ANN and Fuzzy logic : ;f’(fr? ;1:;‘1111:
Infrared thermography
[120] 2020 Data-driven IRT with SVM e Hot spots
[121] 2021 Data-driven IRT with CNN e Hot spots
[122] 2021 Data-driven IRT with TILT and PCA e Hot spots
Machine Learning
[122] 2019 Data-driven CFS-ReliefF-ANN e Output power forecasting
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HCT with SVM, Naive Bayes, e Line toline

12 2021 Data-dri
[123] 0 ata-driven and Logistic Regression. * Line to ground

Before continuing, it is important to say that although Table 2 presents a classification
of the main techniques used for the fault detection in SPV systems, some the works listed
there can fall within more than one of these categories since they are composite methods.
For instance, the work in [109] uses the characteristic curves of the SPV panel, but it also
uses statistical analysis. On their part, the works [120-122] all consider the use of as well
as a machine learning approach. This is a common practice that tries to use the strengths
of two or more methodologies and combine them to improve the results. In this sense, it
is expected that these types of methodologies continue being implemented for the condi-
tion monitoring of SPV systems.

4. Frequent Faults Conditions in WP Generation Systems

In general, wind power is one of the three major renewable energy sources along
with solar power and hydropower, and as energy source, wind is well distributed around
the globe being suitable to be exploited in human activities for the general society welfare,
even having the disadvantages of intermittency and unpredictability [125]. For that rea-
son, the use of the technologies that extract energy from the wind, better known as wind
turbines (WTs), is nowadays very important and requires continuous actions for keeping
their operation as optimal as possible in order to reach the goals established by the inter-
national regulatory dependencies [10,28]. Thereupon, it is well known that current WTs
are modern machines that convert the kinetic energy of the wind into mechanical energy
and in turn into electrical energy, where different aspects are considered for maximizing
the output, minimizing the maintenance costs, and increasing the efficiency and the reli-
ability [126,127]. In this way, the WP systems have been, year to year, increasing their
installations capacity because both sectors, public and business, face the necessity to move
away from fossil fuels toward alternative and sustainable technologies, for solving the
problems of energy security, climate change, and affordability [23,28].

Regarding the wind power generation technologies, a categorization of the WTs can
be performed according to [125,128] by considering different aspects, e.g.:

e according to the geographical location for installation
e the turbine power output capacity

e the turbine blade rotor-axis configuration

e  the airflow path to the turbine rotor

e the rotor-generator coupling (drivetrain)

e the power supply connection mode

According to the previous points, the WTs are classified based on their geographical
location in two main branches: onshore and offshore. In this field, the onshore WTs are
those located on land having easiness to access, low costs of maintenance and installation,
and easier integration to the electrical grid [129]. By its part, the offshore WTs are those
located in coastal waters having, respectively, excellent and continuous wind resource,
higher power output generated, more operating time along the year, less environmental
restrictions [130]. According to the power output capacity, the WTs are classified like mi-
cro (a few kW), small (<100 kW), medium (100 kW-1 MW), large (1 MW-10 MW), and
ultra-large (>10 MW). For example, in some zones where the electric network is not avail-
able, the use of micro-WTs operating at moderated wind speeds for minor functions, such
as street lighting and water pumping, is preferable [131]. The small WTs are typically in-
stalled in rural zones for residential houses, farms, and small facilities of some telecom-
munication companies that require electric energy [132]. The medium WTs consider ap-
plications for powering villages, hybrid facilities, power plants, among others, and can be
connected on-grid, or off-grid [133]. Meanwhile, the large WTs and ultra-large WTs are
used for industrial applications typically with inter-connection to the grid [134].
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According to the blade rotor-axis configuration, the WTs are divided in two branches:
horizontal-axis and vertical-axis. Most of the WTs installed are horizontal-axis, because
the wind flow is parallel to the rotation axis of the blades [135]. By its part, the vertical-
axis WTs can acquire the wind flow from any direction [136]. According to the airflow
path in relation to the turbine rotor, the horizontal-axis WTs can be divided in two types:
upwind and downwind. In the first ones, the rotor face directly the wind, meanwhile, in
the second ones, the wind flows first through the nacelle and tower and finally the rotor
blades [137]. According to the generator-driving, there exist two types of WTs: direct-
drive and geared-drive. In the direct-drive WTs, the blade rotor and the generator are
directly connected by a shaft, increasing their efficiency, reliability, and design simplicity
[138]. In the case of geared-drive WTs, a multistage gearbox is used for the coupling be-
tween the blade rotor and the generator to increase the rotation speed achieving higher
power output [139]. Finally, according to the power supply mode, the WTs can be
grouped as: on-grid and off-grid. The off-grid WTs are generally those of micro and small
size, used for domestic applications in rural zones, residential houses, etc. [140]. The on-
grid WTs are commonly those of medium and large size, used for grid connections [141].
In addition to the previous categories, there exists an alternative classification of the hor-
izontal-axis WT (HAWT) and the vertical-axis WT (VAWT) [142,143]. From these, differ-
ent subcategories can be defined, like those depicted in the Figure 5 in the tree diagram.
As observed from Figure 5, the rotor-axis configuration is classified according to two main
types of WTs: HAWTs and VAWTs. For HAWTs, a subclassification considers Dutch,
multibladed, and propeller types of WTs. In turn for the propeller type WT there exist
variations according to the number of rotor-blades as one-blades, two-blades, three-
blades, etc. Meanwhile, the VAWTs are divided in Savonius and Darrieus type WTs.

[ Rotor-Axis Configuration ]

Wind Turbines
Horizontal-Axis Vertical-Axis
Wind Turbines Wind Turbines
(HAWT) (VAWT)

Dutch Type
WTs

|

Multi-Bladed Propeller Savonius Darrieus
Type WTs Type WTs Type WTs Type WTs

One-Bladed

Two-Bladed Three-Bladed
Type WTs Type WTs Type WTs

Four-Bladed
Type WTs

Figure 5. Classification of WTs according to the rotation-axis like HAWTs and VAWTs type
(adapted with permission from Ref. [142] Copyright 2021, Bhattacharjee, S).

There exist specific characteristics for each one of the subvariants of Figure 5. How-
ever, for the sake of simplicity and considering that in the classifications the common gen-
eral branches are HAWT and VAWT, they will be adopted and referred to in the future.
Although several authors agree that most of the WTs installed around the world are the
HAWT types because of the technology mature and their performance, recently these tur-
bines have faced several challenges for the generation of multi mega-watt range, and the
VAWT types could be a possible solution [144-146]. Therefore, it is important to identify
the main components for these two types of WTs. In one hand, the VAWTs are omni-
directional wind catchers devises, a reason for which they have fewer components than
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HAWTs and require less maintenance, but their main components also depend on the

turbine subtype (Darrieus or Savonius) [145]. In general terms, the components of VAWTs

look to achieve, like any other devise, the best efficiency, obeying three basic aspects

namely the airfoil, the solidity, and the blade design [146], so the elements can be grouped

as [125,142,147]:

e  Blades, which could be curved (bend) or straight (flat) [146].

e Rotor shaft ensemble, that considers the rotor shaft, the upper and lower bearings,
the brake system (disk and caliper), rubber isolators, torque sensors, and the coupling

to the drivetrain [147].

e  Tower or foundation, enclosing the drivetrain and control system, gearbox, and gen-

erator [147].

e  Rotor column or stator shaft, possibly including the upper and lower hubs, and the

guy wires [142].

On the other hand, the modern HAWTs vary in terms of design and power ratings,
but the majority are the propeller type [128], from the three-blade type (most common) to
multiple blades [125]. Several authors, consider as main components the followings
[36,39,125,128,142,143,148]:

e  The foundation, in general terms, is a base structure for giving support to the WT by
connecting the tower to the ground [128].

. Tower: This component is a structure that supports the nacelle, the rotor, and the
blades allowing them to reach an adequate height for catching the wind flow [142].

e Blades: Components designed to catch the wind flow for converting kinetic energy
of the wind into mechanical energy, that means, movement of the WT rotor [143].

e Nacelle: A structure that encloses and protect the drivetrain of a WT from environ-
mental conditions, i.e., a housing for the coupling of the kinematic chain break-gear-
box-generator [125].

e Break: Normally the WTs do not operate at extreme rotational torque or speeds, for
these cases a brake system is designed to slow down the turbine at a cut-out wind
speed for safeguard it [143].

o Gearbox: A mechanical element that connects the blade rotor to the generator for
matching the speed difference between them, by converting the low-speed high-
torque from the blade rotor shaft into high-speed low-torque of the generator shaft,
to raise the power output of the WT [36].

e  Generator: Converts the mechanical power into electrical power thanks to the high
rotation speed achieved by the gearbox from the blade rotor, thus the energy is ob-
tained by spinning cooper windings in a magnetic field [39].

e  Power converter: Many WTs are equipped with a devise that converts the AC power
output to a DC signal for storage purposes [148].

Having identified the general components of HAWTs and VAWTs, following in this
study is an analysis of the frequent failures or fault conditions. Prior to this, however, a
general classification of those faults will be adopted by considering two groups: Electrical
and Mechanical.

A brief summary of the main aspects regarding the operating conditions of WP gen-
eration systems is listed below [7]:

e Around 845 GW of energy are generated using WP around the world;

e  The biggest producer of this type of energy is China with the 40.5% of the global
production;

e  The global weighted-average cost of electricity for WP projects has reached the 0.033
US dollars per kWh, making this energy the cheapest;

e  Since WTs include many mobile parts, their maintenance is complicated and requires
a shutdown of energy production;
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. Main maintenance tasks include the lubrication of the moving parts, revision of the
blades, the connections, cables, and protection of the whole system.

4.1. Faults in the Electrical Components of WTs

In relation to the most common faults, regarding the electrical components of
HAWTSs and VAWTs, some sensible components are prone to fail, e.g., the generator, the
power converter, and the controller, among others [147,148]. For example, in [30], a col-
lection of environmental conditions, including humidity, temperature, and salt conditions
of the geographical location, negatively affects the lifetime of the electrical components of
a WT installation, by wearing and corroding elements, e.g., contacts and wirings, and even
the materials of the foundation, nacelle, and blades are deteriorated. In addition, the in-
vestigations carried out by [32] clearly indicate how the amount of humidity cause a re-
duction in the kinetic energy of the wind. As a consequence, the amount of power pro-
duction by a WT is reduced, yielding less production in winter than summer. On another
topic, some works address the relation between the wind speed and possible failures in
the power converter system since the reliability of a power device depends on factors,
such as its topology, the electronics components’ reliability, the operating temperature,
etc. In this sense, a failure in the semiconductor is directly related with their junction com-
ponent temperature, so, the wind speed defines the power flow through the converter and
so will the components temperature of the junctions [34]. By other part, the WTs that are
connected to the grid can be affected by the faults present in the power lines, e.g., tripping
of transmission lines, short-circuits, or loss in the production capacity, causing, for in-
stance, malfunctioning in the operation of the generator and the power converter [36].
Moreover, during short circuits in WTs connected to the grid, the current could yield in a
voltage drop in the generator terminals that spur an electromagnetic torque reduction that
leads to a rotor acceleration and voltage reduction. As a result, as voltage decreases, high
current transients are generated in the generator stator and rotor, affecting the power con-
verter [39]. By the other part, some problems are present when the WTs are connected in
wind farms and the collector system uses a set-up substation transformer in a delta con-
nection at the collector side, because this system is non-effectively grounded. Therefore, a
single-phase-to-ground fault can be developed to a three-phase-to-ground fault. It is
worthwhile to mention that these faults are caused by improper fault isolation [40]. More-
over, several studies have revealed that power converter failures are the principal cause
for WT stops and shutdowns mainly caused by the presence of short-circuit faults and
open-circuit faults in the power switch, making the converter replacement very expensive
[148]. Therefore, the failure of power converters is very common, but faults can also be
caused by abnormal operations of the grid, the loads, as well as the generator problems
[49]. Additionally, when the power converter fails, this can in turn damage the peripheral
components of the WT, e.g., the generator and other electrical elements, generating abnor-
mal operation of the whole system [149]. Other examples of faults are the short-circuits
than occur in the large power ratings WTs, which are typically in the high temperature
superconducting (HTS) generators, characterized by their small reactance making them
sensible to higher fault currents and large torques [38]. These HTS generators can be dam-
aged by the presence of short-circuits in the three phases, phase to phase clear of earth,
phase to phase earth, and phase earth, caused by large forces from the WT rotor. Finally,
when the stator, or the rotor, in generators of offshore WTs present problems due to the
high electric and thermal stresses, then asymmetries are introduced into the generator
causing faults that are reflected as a temperature rising observed by the supervisory con-
trol and data acquisition (SCADA) system of the turbine [150].
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4.2. Faults in the Electrical Components of WTs

On the other hand, the faults regarding the mechanical components of HAWTs and
VAWTs consider those problems that could be present in the components like the gear-
box, the blades, the main bearings of the WTs, among others [41]. For example, the work
in [21] presents an overview of the failure modes of the WT bearings for large-scale power
generation. This review presents three main aspects: a subdivision of WT bearings like
gearbox bearings and adjustment system bearings, failure modes of the bearings, and
causes and consequences. Therefore, it is mentioned that typically the main bearings in
WTs suffer from changes in their temperature due to load variations and changes in the
rotation speed. However, there also exist other factors that affect the normal operation of
the bearings connected, for instance, to the gearbox, e.g., unbalance, rolling bearing break-
age, or grease excess in the bearings, caused by load variations, changes in rotation speed,
or bad maintenance [42]. The rolling bearings of WTs installed in wind farms are subject
to adverse conditions variations like the wind speed, for long-term periods, also icing and
dust accumulation in the rotor-blades cause load variations in the main shafts of the
drivetrain affecting these elements causing elements wear [151]. Besides, WTs gearboxes
are one of the principal components that could lead to shutdowns of the entire drivetrain
causing major economic losses, some factors like cracking or breakage in the elements,
broken tooths, elements wear or aging, corrosion, among others, may cause a problem in
the gearbox [152]. In this sense, during WT operation, if the gearbox has faults on its ele-
ments, such as journal damage in the gearbox [44] or bearing imbalance [45], then sudden
drops in the generated power, voltage, current, and rotation speed are observed in the
generator output, even when the wind speed keep into their normal ranges for system
operation. In contrast, in the work presented by [48], planetary gearbox faults are studied
by using a real WT but simulating the faults. That study considers damages in two prin-
cipal elements of the planetary gearbox: bearings (inner race, outer race, inner-outer race,
balls) and gear (broken tooth and gear wear). Last, but not least, some studies handle with
the problems related to the WTs rotor-blades failures. In this field, the work in [31] con-
tains a study of the coating rotor-blades of WTs that get fatigued by the impact of
raindrops or rain erosion. This study considers a variety of raindrop characteristics, such
as impact speed, impact angle, drop size, and shape (flat, spherical, and spindle). From
that work can be concluded that erosion by rain in the coating rotor-blades material may
lead to a crack initiation and propagation, which is very harmful for the blade structure
integrity. However, not only the rain, but also the effect of the dust in the wind may
change the rotor-blade properties. For instance, the work presented in [33] presets an in-
vestigation of the effects of dust on the rotor-blade surface, concluding that roughness is
altered by the accumulation of dust particles. In this same line, it can be said that other
environmental factors, such as temperature, specifically speaking about very low values,
affect the rate of erosion mechanisms of the coating of rotor-blades as described in [35]. In
such research, it is found that low temperatures affect the wear-related properties of the
coating polymer, such as its ductility, and hence, erosion caused by dust, sand, and hail-
stones is accelerated, damaging mainly the leading-edges coating of the rotor-blades.

In Table 3, the most frequent faults in the WTs (HAWTs and VAWTSs) are presented,
summarizing the year, reference number, type of fault, a simplified description, and some
examples.
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Table 3. Summary of the common faults of WTS reported in the literature. Considering electrical
and mechanical components faults.

Electrical Components Faults

Ref.  Year Fault Description Examples
. Wheatear, or environmental conditions, affect the Corrosion in contacts, wires,
[30] 1999 Degradation . .
electric materials of the WTs components. and generator elements
P ; 1 the on_ori - 1 . hort-cir
[36] 2015 Power disturbs ower disturbs in the on-grid connection damage Vo‘ tage variations, short-cir
the generator and power converter of WTs. cuits, and voltage unbalance.
[39] 2009 Failure of power Torque reduction in WTs cause current transients Short-circuit in the on-grid con-
converter in the generator affecting the power converter.  nection.
[49] 2021 Failure of power Problems caused by anomalies in the grid, loads Power disturbs, variations in
converter and generator problems. load, generator problems
(2] 2019 Loss power gener- Humidity changes air density reducing the Loss of power in the generator
ation amount of power production in WTs output.
Ch in wind d th th h
Failure of power anges in win sPee S vaty the powet throtlg Temperature changes of the
[34] 2012 the converter, causing temperature changes af-
converter .. power converter hardware.
fecting its hardware.
Failures of the eH_Large forces cause short-circuits in high-tempera- Short-circuit in high-tempera-
[38] 2017 erator 8 ture superconducting generators affecting their ~ ture superconducting genera-
operation. tors.
. Collector systems of WTs are not effectively . .
Sigle-phase-to- Sigle-phase-to- d fault
[40] 2018 1giepaseto grounded and substation transformers are delta 16 Cphaseogrotnd fauttm
ground fault . collector system
connected at collector line side.
Short circuits faults and -
Failure of power Short circuits faults and open-circuits fault cause or' cireurs ‘aul 's and open
[148] 2022 . . circuits faults in the power con-
converter failures in the power converter of WTs.
verter.
Failure of the sen The stator and rotor problems usually occur be-
150] 2021 8" cause of the high electric and thermal stresses in- Thermal stress in the generator
erator & &
troducing asymmetries in the generator of WTs.
Mechanical components faults
Ref.  Year Fault Description
Overview about failure modes of two main Faults in gearbox bearings and
[21] 2020 Bearings faults branches of bearing in WTs: gearbox bearings and adjustment
WT adjustment system bearings. system bearings
[42] 2020 Bearings faults Damaged Py factors like load variations, fatigue, Imbalana.e, breakag.e, and excess
or bad maintenance. of grease in the rolling bearing.
Adverse conditions like long-term and variable = Bearing fault: ball fault, inner
[151] 2021 Bearings faults wind speed, variable load can compromise the in- raceway fault, outer raceway
tegrity of WTs bearings. fault.
Th 1 t ks, Rotor imbal
[152] 2021 Gearbox faults e ge.arbox can be damaged by elements cracks, Rotor imbalance and gearbox
corrosion, aging, wear, etc. faults
When gearbox components are damaged drops in Gearbox bearings failure, or
[44] 2022 Gearbox faults voltage, current and power of the generator are . .
journal damage in the gearbox.
observed.
Industrial WTs have imbalance problems in the Imbalance in the searbox bear
[45] 2022 Gearbox faults gearbox caused by damages in the gearbox bear- ines 8
ings, gear aging or breakage. 8
Simulated faults are induced in a real WT consid- Planetary searbox: outer race
[48] 2021 Gearbox faults ering damage in the main bearings, broken tooth, Y8 )

fault, inner race fault, inner-
and gear wear of a planetary gearbox.
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outer race fault, ball’s fault, gear
wear, broken tooth.

Raindrops can induce fatigue to the WTs blades

[31] 2021 Rotor-blades faults, . .
by impact erosion.

Blade coating fatigue.

[33] 2007 Rotor-blades faults Dust in the wind cause chfmges in the rot.or—blade Bla'de surface roughness modifi-
surface roughness by particles accumulation. cation.

L ion of leading- Blade leading- i -
[35] 2021 Rotor-blades faults ow tempe%‘atures t.:aus.e erosion of leading-edges . ade leading-edge coating ero
and protective coating in rotor-blades. sion.

As seen from table, the most frequent faults according to the number of works re-
ported in the literature rely in the following components of WTs: the generator, the power
converter, the gearbox, main gearings, and turbine blades. Although there exist other ele-
ments that integrate the WP generation system, they have not been addressed due to the
particularity and complexity of the system. This means that some subsystems of HAWTs
and VAWTs are very particular. Hence, a generalized approach for fault diagnosis cannot
be proposed as in the classical fault studies.

5. Current Methodologies for Fault Diagnosis in WP Generation Systems

In the last section, several works were analyzed to define the most frequent faults
studied in the literature of the WP generation systems, which leads to considering what
solutions have been proposed to identify and diagnose such fault conditions. Therefore,
this section will address the state-of-the-art regarding the proposed methodologies for
identification and fault diagnosis, better known as fault detection and diagnosis methods
(FDDMs) [43], in the HAWTs and VAWTs. In the reported work, the FDDMs can be di-
vided in three main groups: model-based, knowledge-based, and data-driven [43,148].
Model-based FDDMs require a mathematical representation, or a parameterized model,
of the system [153]. Knowledge-based FDDMs need the expertise knowledge about the
system analyzed, sometimes these methods are named signal-based because the tech-
niques used to treat the signals require such knowledge [154]. Data-driven FDDMs make
use of statistical analysis or data mining to perform the diagnosis, and their results depend
directly on the data quality [155]. At the end of the section, a table will be presented sum-
marizing the reported methods considering type of FDDM, fault addressed, techniques
used, and accuracy reached. However, in the next lines, several works reported in the
literature will be described detailing the methodology used for the fault detection and
diagnosis (FD) in the electrical and mechanical components of WTs.

Before starting the in-detail revision of the methodologies for the fault detection in
WP generation systems, it is important to mention that, as in the case of SPV systems,
these types of installations are highly exposed to the presence of surges due to lightning
events. In fact, the standard IEC 61400-24 defines the criteria that must be met for every
lightning protection system (LPS) in wind generation [156]. The higher the WT is located,
the greater the probability of being struck by lightning. Therefore, the high-power wind
generator are more prone to result hurt [157]. Moreover, due to their geometry and loca-
tion, the blades of the WTs are the most exposed parts, and they are constantly damaged
by the action of lightning resulting in unexpected outages in the generation process. Ac-
cording to [158], a conventional LPS can be divided into three parts: an external lightning
protection system, an internal lightning protection system, and the grounding system. The
external protection system is the part of the LPS that is in direct contact with the lightning,
and it composed of an air-termination system and a down conduction system to conduct
the current to the ground. The internal lightning protection system is composed of an
equipotential bonding that considers the correct selection of the cables, the separation be-
tween conductors, the routing and shielding, as well as surge protection devices. Finally,
and as is well-known, there is the system in charge of dissipating the discharge currents,
avoiding hazards. All these elements must work together to achieve a reliable and efficient
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LPS. The use of these protection systems must be considered before the wind farm starts
working and its implementation may prevent some fault conditions in the blades, nacelle,
and tower of the wind generator. Notwithstanding, there are many other sources of faults
in WP generation systems and they can be treated using the techniques described below.

5.1. FDDM Regarding Electrical Components of WTs

Regarding the FDDM proposed for faults present in electrical components of WTs,
the work presented in [49] analyses power converters when the available data from
SCADA are insufficient, or with a small-scale. Therefore, to overcome this drawback, the
authors proposed a methodology that integrates the parameters-based transfer learning
(PBTL) and the convolutional autoencoder (CAE). The general procedure consists in trans-
ferring information from a similar WT to a target WT with the aim of using the infor-
mation about the failure’s properties. The data used come from a SCADA system consid-
ering real conditions. The component with the highest frequency was the power converter
system and the accuracy achieved by this approach was of 97.7% in the fault prediction.

In relation to problems in the generators of WTs and the proposed approaches for
FDD, several works have handled this issue. For instance, in [150], a data-driven approach
is proposed for monitoring the generator conditions of offshore WTs. The approach first
applies a processing of data coming from a SCADA system consisting in data re-sampling,
outlier treatment, removal of redundant information, and extraction of the optimal k-best
features. Later, an ensemble model of the extreme gradient boosting (XGBoost) frame-
work is applied for estimating and predicting the state conditions of the system. In coun-
terpart, SCADA systems could also generate large volume of data with multivariable time
series having high spatio-temporal correlations that are a challenging task. Here, the re-
search presented in [159] handled this drawback by proposing a spatio-temporal fusion
neural network scheme to generate fault condition labels. First, feature extraction is per-
formed considering spatial and temporal features through a multi-kernel fusion convolu-
tional neural network (MKFCNN). The MKFCNN uses multiple convolution kernels of
different sizes and learns about multi-scale spatial features; it also reduces the number of
parameters required for training. Later, a long short-term memory (LSTM) scheme obtains
the correlations among the spatial features extracted. Finally, the classification of fault
conditions is made by means of a SoftMax classifier achieving average accuracies of 97.6%
and 93.8% for historical dataset and real SCADA values, respectively. Meanwhile, the re-
lationship between SCADA data of wind speed, turbine ambient temperature, and gener-
ator temperature by means of a sensor model (SM), or parameterized model, for FDD in
WTs is studied in [160]. The parameters of the model provide information related to the
fault, and these parameters are updated every day by using an estimation procedure to
reflect changes in the relationship in real time. Then, the parameters of the model are
taken, or extracted, e.g., sensitive features, using a nonlinear output frequency response
function (NOFRF). The validation of the model is performed on three WTs, identifying
generator faults related to rotor winding short circuits.

In addition, when WTs reflect power loss faults, some methodologies, as in [161],
apply FDD for WTs based on fuzzy logic systems (FLS) and artificial neural networks
(ANN). Thus, the ANN constructs the membership functions considering SCADA data
and application environment, so the wind speed and active power are measured to con-
struct the FLS. Posteriorly, SCADA data are grouped to calculate average values and the
error is obtained between measured and predicted data. Hence, error and average values
are input to the FLS with extended data-driven membership functions for detecting
changes in the system that can be considered as anomalies. By its part, the single-phase-
to-ground fault is studied in [40] by developing a resonance model of a wind farm with
distributed parameters. Later, the correct lines from the collector wires are selected to
identify the fault through a method based in Dempster-Shafer theory (D-S T). Then, two
strategies for isolating faults are proposed to avoid overvoltage: gradual tripping of WTs
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and installation of a breaker at the WTs side. The proposed scheme achieves an accuracy
of 99.6% for the correct line selection with the faults.

Finally, some problems of the pitch control system are treated in [162] for a spar-type
floating WT model, focusing on the faults of the pitch sensor (bias value and fixed output)
and the directional control valve (excessive friction, slit lock on spool, wrong voltage, and
circuit shortage). The proposed scheme uses a Kalman filter (KF) to estimate the pitch
angle and the valve spool position. Then, a residual signal between the estimated and the
measured output is compared with a threshold to identify conditions changes in the sys-
tem. Next, the KF output is fed to an artificial neural network (ANN) for performing the
diagnosis, achieving an accuracy of 98%.

5.2. FDDM Regarding Mechanical Components of WTs

Regarding the FDDM proposed for faults present in mechanical components of WTs,
many investigations have addressed the problems of the gearbox. For example, the work
in [44] uses a statistical approach based on the Wilcoxon rank sum test (WRST) for detect-
ing and categorizing fault conditions: abnormal operation, fault in the gearbox, and nor-
mal condition. This approach is applied in statistical hypothesis tests for the fault condi-
tions and the normal operation is the null hypothesis, achieving a 95% of confidence level
for the detected fault. Furthermore, a novel scheme based on data-driven FDD of gear-
boxes is presented in [48] using two techniques, the refined time-shift multiscale fluctua-
tion-based dispersion entropy (RTSMFDE) and the cosine pairwise-constrained super-
vised manifold mapping (CPCSMM). The RTSMFDE generates a high-dimensional set of
features that is reduced to a low dimensional representation through the CPCSMM. Then,
the classification is performed in simulations through a beetle antennae search-based sup-
port vector machine (BAS-SVM) with an 100% of accuracy reached. Likewise, a scheme
for performing FDD of gearboxes through a multi-channel convolutional neural network
(MC-CNN) on a benchmark model considering a 5 MW WT is presented in [152]. This
scheme first converts the time-domain signals acquired from the system into images. Pos-
teriorly, the images are processed by the MC-CNN applying multiple parallel local heads
to observe the changes in every measured variable separately to detect faults of rotor im-
balance and gearbox damage. The accuracy achieved by this scheme is of 99.85% for the
database. Another scheme for FDD in gearboxes of a wind farm is developed in [155],
where a relief series algorithm (ReliefF) extracts important information (features) regard-
ing the system conditions from a SCADA data set. As the number of features extracted is
of high dimensionality, a reduction is performed through the principal component anal-
ysis (PCA) avoiding information redundancy. Then, a deep neural network (DNN) per-
forms diagnosis for single and for multiple faults, achieving accuracies in the diagnosis of
98.5% and 96%, respectively. Similarly, in [163], a methodology that combines the convo-
lutional neural network (CNN), the long short-term memory (LSTM), and the attention
mechanism (AM) is developed for differentiating anomalies in gearboxes during WTs op-
eration. The analyzed data come from a SCADA system for being preprocessed. Thus, the
CNN extracts main features from data, allowing the LSTM algorithm to learn the system
operation, while the AM enhances the accuracy of the detection of faults. This methodol-
ogy reaches a confidentiality of 97.7% based on the statistical indicator R2. In this same
field, the developed work of [164] proposes a method for diagnosis compound faults in
WTs gearboxes. The approach uses the fast spectral kurtosis (FSK) for transforming the
measured signal from a vibration sensor into a two-dimensional image named fast kurto-
gram. After that, a multi-branch convolutional neural network (MBCNN) takes the image
of the FSK as an input feature map for selecting the optimal branch for the convolutional
stage, finally yielding the output fault pattern. The validation of the method achieves 90%
and 97% of accuracy in the diagnosis for signals with and without noise, respectively.
Finally, FDD in planetary gearbox bearings for WTs by using an enhanced sparse repre-
sentation-based intelligent recognition (ESRIR) is tackled in [165]. Here, a first stage de-
sign is structured using dictionaries by means of an overlapping segmentation strategy
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through measurements of vibration sensors, taking advantage of the periodic self-similar-
ity and shift-invariance property of planetary bearings. At a second stage, fault recogni-
tion is achieved by a sparsity-based diagnosis strategy using a minimum sparse recon-
struction error criterion. The scheme obtains between 99.9% and 100% of accuracy for the
considered conditions.

By the other part, the FDD applied over the rotor-blades of WTs shows works that
have proposed some approaches, like the study presented in [31] that describes a compu-
tational framework to model the wind turbine blade coating fatigue caused by raindrop
impact. The analysis presents a stochastic rain field simulation (SRFS), considering the
size, impact speed, impact angle, and different raindrop shapes, e.g., spherical, flat, and
spindle. Later, the raindrop impact stress is computed through the smooth particle hydro-
dynamics (SPH). Then, the analysis of coating fatigue modeling is performed through the
mass-loss-rate (MLR) increasing period, reaching 97% of accuracy in the model prediction.
In this same line, the fault conditions of WTs blades are also analyzed in [43] by means of
a data-driven approach adopting a SCADA system. In this study, the proposal integrates
a hybrid FDD approach based on three techniques: generalized regression neural network
ensemble for single imputation (GRNN-ESI), recursive principal component analysis
(RPCA), and wavelet-based probability density function (PDF). The GRNN-ESI is applied
to impute the noise and missing data. Then, RPCA performs dimensionality reduction
from the dataset to obtain meaningful features, and PDF detects incipient faults in blades
with an accuracy of 88.7%. Otherwise, the work developed in [153] presents a mixed
model-based and a signal-based FDD for rotor-blades of floating offshore WTs. The
model-based scheme uses the fault detection and approximation estimator (FDAE) and
the fault isolation estimator (FIE) for detecting and isolating faults in the system. Then,
the signal-based method uses the frequency domain analysis through short time Fourier
transform (STFT) and a K-nearest neighbor (KNN) classifier for detecting and isolating
mooring lines faults. The validation is made for a 10MW WT benchmark implemented in
Simulink. Additionally, the problems caused by icing in rotor blades is tackled in [166]
where a scheme that handles data characterized by sets of high dimensionalities, data im-
balance, and differences in statistical distributions is proposed. In general, the analyzed
data from SCADA are preprocessed with re-sampling and normalizing. Later, data are
divided for model construction and model verification. The model construction considers
subsets for training and testing, and here the machine learning algorithm K-nearest neigh-
bor (KNN) and transfer learning algorithm TrAdaBoost are applied. The TrAdaBoost
reaches above 99% of accuracy in the diagnosis.

Addressing the FDDMs focused on bearing faults, the investigation described in
[151] develops a methodology based on a hybrid attention improved residual network
(HA-ResNet) for diagnosing faults in the main bearings of WTs. First, the wavelet package
transformation (WPT) is applied to highlight the main band frequencies of the wavelet
coefficients. Later, the extraction of features is improved by a channel attention framework
for the diagnosis, so, the proposal achieves a 98.79% of accuracy for simulated drivetrain
and real data from a wind farm. Moreover, the study in [167] addresses the FDD for WTs
rolling bearings by proposing an intelligent method based on three stages: feature extrac-
tion, dimensionality reduction, and pattern recognition. The extraction of features is per-
formed through the multiscale permutation entropy (MPE) from the vibration signals of
rolling bearings, yielding a set of features of high dimensionality. Since the MPE measures
the complexity of time series detecting weak changes, then if rolling bearings have faults,
their non-linear dynamic will change accordingly. The dimensionality reduction of fea-
tures is performed through a manifold learning algorithm, named Mahalanobis semi-su-
pervised mapping (MSSM), to overcome the problems of Euclidean distance. Thus, the
pattern recognition of faults is conducted by means of a heuristic approach known as the
beetle antennae search (BAS) that optimizes the parameters of a support vector machine
(SVM) reaching a 100% of diagnosis accuracy.
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At last, but not least, some other problems of diverse nature must be considered to
define alarms that allow the WTs keep at safe ranges. In this sense, the work in [168] ad-
dresses the frequent principal fault detection and localization (FPFDL) approach. This ap-
proach first applies an improved oversampling algorithm to generate and develop the
balanced data from the imbalanced dataset of real wind farms. The oversampling is
achieved through a synthetic and dependent wild bootstrapped oversampling technique
(SDWBOTE) that combines the dependent wild bootstrap (DWB) and a modified synthetic
minority oversampling technique (SMOTE). Finally, a one-dimensional convolutional
neural network (1D-CNN) model based on FPFDL automatically extracts features from
the pre-processed data for fault identification with 99% diagnosis accuracy.

Table 4 presents a summary of the previously discussed works presenting them in
two branches of FDDMs regarding electrical and mechanical components. Into this divi-
sion, the works are depicted indicating the year, the fault handled, the type of methodol-
ogy (model-based or data-driven), the techniques used or integrated, and the accuracy
reached, if available.

Table 4. Summary of the reported FDDMs.

FDDM Regarding Electrical Components

Ref. Year Fault FDDM Techniques Accuracy
[49] 2021 Power converter faults Data-driven CAE + PBTL 92.5%
[150] 2021 Generator faults Data-driven XBoost -
[159] 2020 Generator faults Data-driven MKFCNN + LSTM + SoftMax 93.8%
[160] 2020 Generator faults Model-based SM + NOFRF -
[161] 2020 Loss power generation Data-driven ANN +FLS -—-
[40] 2018 Sigle-phase-to-ground fault = Model-based D-ST 99.6%
[162] 2021  Pitch control system faults Model-based KF + ANN 98%
FDDM regarding mechanical components
Ref. Year Fault FDDM Techniques Accuracy
[44] 2020 Gearbox faults Data-driven WRST 95%
[48] 2021 Gearbox faults Data-driven =~ RTSMFDE + CPCSMM, BAS + SVM 100%
[152] 2021 Gearbox faults Data-driven MC-CNN 99.85%
[155] 2021 Gearbox faults Data-driven ReliefF + PCA + DNN 96-98.5%
[163] 2021 Gearbox faults Data-driven CNN +LSTM + AM 97.7%
[164] 2021 Gearbox faults Data-driven FSK + MBCNN 90-97%
[165] 2021 Gearbox faults Data-driven ESRIR 99.9-100%
[31] 2021 Rotor-blade faults Model-based SRFS + SPH + MLR 97%
[43] 2020 Rotor-blade faults Data-driven GRNN-ESI + RPCA + PDF 88.7%
[153] 2021 Rotor-blade faults Model-based FDAE + FIE and STFT + kNN -—-
[166] 2021 Rotor-blade faults Data-driven TrAdaBoost + TL 99.1-99.8%
[151] 2021 Bearings faults Data-driven HA-ResNet + WPT 98.79%
[167] 2020 Bearing faults Data-driven MPE + MSSM + BAS-SVM 100%
[168] 2021 Diverse nature faults Data-driven SDWBOTE + CNN 99%

At this point, it becomes relevant to make some clarifications. First, it has been pre-
viously mentioned that the machine learning implementations are very promising in the
field of condition monitoring of electric systems such as SPV and WP generators. In this
sense, most of the works presented in this section that adopt a data-driven approach also
use machine learning methods [49,155,159,167]. This situation reinforces the fact that ma-
chine learning is a versatile tool that can be adapted to solve a wide variety of problems.
Therefore, the role of the machine learning in the fault detection in WP generators consists
in characterizing the system, detecting deviations from the normal operating conditions,
and classifying the fault that is present in the system. This promises to be of great help for
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the operators around the world that will be allowed to perform a diagnosis even without
having an in-depth knowledge of al the theoretical principles involved in SPV and WP
generation systems.

Moreover, as in the case of SPV systems, it is common to fuse different techniques for
the condition monitoring of WP systems in order to improve the results delivered by each
methodology separately. An example of this situation is presented in [155] where the sta-
tistical analysis is combined with the Al to obtain a machine learning approach that can
identify mechanical faults with high accuracy. Additionally, in [48], heuristic algorithms
are combined with SVM and they also prove to be effective for the detection and classifi-
cation of faults in a WT. Therefore, composite methods represent a very popular solution
for the condition monitoring of WP generation systems since they help to improve the
accuracy in the detection of specific faults. These methodologies are expected to continue
providing reliable and robust solutions for the renewable generation industry by facilitat-
ing the maintenance and reducing the unexpected stops in the production due to faults.

6. Prospective and Tendencies in the Emerging Methods for Monitoring Systems and
Fault Diagnosis Regarding Renewable Power Generation Based on SPV and WTs

In this section, the prospects and trends of SPV systems and WPG systems will be
discussed. The main purpose of this discussion is to highlight the areas of opportunity
considering possible contributions of future methodological developments in both the
faults of the systems (SPV and WPG) and FDDMs.

6.1. Prospective and Trends for SPV Systems Studies

It is clear that SPV systems have highly evolved and they are capable of supplying a
good part of the energy requirements of modern society. Notwithstanding, right now, it
is hard to believe that in the context of an electrical system constituted only for renewable
energies. More important than the fault detection, already a well-studied field, it is neces-
sary to develop efficient and reliable strategies for dealing with the variability of the nat-
ural resources as sun and wind. Nowadays, the energy storage systems try to fulfill this
need. These energy storage systems are primarily based on batteries and capacitors, but
these elements remain sensitive and inefficient. Therefore, an important part that is ex-
pected to find relevance is the monitoring and diagnosis of energy storage systems. This
task is already performed, but mainly at a small scale. The development of large-scale
storage systems is likely and it will be essential to count with devices and strategies that
guarantee the correct operation and maintenance of such systems.

Additionally, and in the light of this research, it is noticeable that most of the current
methodologies for fault detection in SPV systems focus on the detection of faults on the
DC side of the system. Problems associated with the SPV panels, e.g., partial shading, dust
accumulation, hot spots, and bypass diode faults, are vastly treated in the literature. The
same situation occurs with the faults related with the interconnection among SPV panels
where line-line faults, line to ground, arc faults, open circuit, and short circuit faults are
highly boarded. This is not a weird situation considering that all the generation process is
carried out in DC and then the energy is converted into AC by means of an inverter. In
this sense, if the electric generator (the SPV panels in this case) fails, the inverter is unable
to take some action to continue with the generation process. This is why it is important to
pay special attention in the operation of the SPV panels and their interconnections. Not-
withstanding, the inverter plays a major role in terms of efficiency, reliability and quality
of the supply. The power quality is still a hot topic, and several concerns related with this
issue appear when speaking of renewable energies. In this sense, a marked trend in SPV
systems consists in the design of new topologies for power inverters that increase the
quality and reliability of the power supply. These designs include reactive power com-
pensators, high speed switching devices, harmonic filters, and some other modules that
pretend to increase the quality in the energy conversion process. Therefore, more attention
must be paid to the monitoring of inverters and problems in the AC side of the system
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since all of the equipment that is connected to the grid, at industrial and residential levels,
operates with AC and a low quality causes damages to the loads that reduces their lifetime
and generates unexpected stops in industries, representing financial loses.

Finally, there is a wide variety of algorithms that deliver good results for the identi-
fication and classification of different faults in SPV systems, but the most recent strategies
are mainly based on the use of machine learning. This is a tendency that is expected to
continue because of the versatility of these techniques. The main advantage of the machine
learning techniques is that they can work with a broad type of inputs that go from weather
conditions and electrical signal to images. In this sense, the upcoming methodologies are
expected to be hybrid approaches that fuses the advantages of different areas. For in-
stance, signal analysis based on space transforms, e.g., Fourier transform, wavelets, and
empirical mode decomposition, can work along with statistical analysis-based techniques
and with Al-based classifiers to perform an accurate and reliable monitoring of the con-
dition of any system. Such methodologies have been widely explored in other areas of the
engineering and they have started to being used in the fault detection and classification
in SPV systems. These schemes present a high adaptability to new conditions making
them robust and efficient. Moreover, the new trends of novelty detection and transfer
learning are strategies becoming popular in some fields of science and engineering that
have the potential to be useful in the condition monitoring of SPV systems.

6.2. Prospective and Trends for WPG Systems Studies

The revision of the reported literature makes it clear that wind power is today, and
will remain in future, a very important source of renewable energy that faces important
changes and a rapid development. The design and development of new WP generation
technologies has allowed to install a wide variety of WTs that match with some classifica-
tions seen in previous sections. Nevertheless, they are still prone to fail due to environ-
mental adversities, malfunctioning, as well as aging and wearing due to their operation
through the time. As seen from the revision of the reported works, there are several ele-
ments that integrate the WTs. However, the main elements that have been addressed for
research are the generator, the power converter, the gearbox, the main bearings of the
drivetrain, and the rotor-blades. This fact does not imply that the rest of the elements on
the WTs are less important, it simply reflects that much effort and research has been fo-
cused on such elements because of their importance and effects in the final power gener-
ation capacity, maintenance, and costs. Now, it was also observed that the faults that are
most commonly analyzed and diagnosed are precisely of the variety of problems associ-
ated to the elements previously mentioned, i.e., generator short-circuits, wiring faults,
power loss, hardware heating of the converter, broken teeth of gear, damage in the rolling
bearings, and in general aging, wear, and corrosion of mechanical elements. Perhaps it is
worthwhile to mention that many of the faults studied can be simulated in the physical
WTs, in other cases through test benches, or the authors could access historical datasets,
or model using a benchmarking framework. This gives the general perspective that such
faults are still going to be studied since technological developments concerning WTs will
continue to be seen in new contexts of application, installation, and environments, among
others. However, there also exists an area of opportunity in those elements and their as-
sociated faults that has not yet been completely explored and exploited due to the inherent
complexity or particularity.

In relation to the FDDMs, it can be said that some years ago the proposed solutions
for FDD use to rely on the signal-based and knowledge-based schemes, where the focus
was on measuring and monitoring signals coming from sensors like current, voltage, tem-
perature, encoders, and vibrations. Such approaches used to pre-process and process the
measured signals by means of some space-transformation technique to analyze the result-
ing information in a particular domain: time, frequency, or time-frequency. However,
some limitations and drawbacks, e.g., non-linearities, datasets of high dimensionality,
multiple or combined conditions, among others, have prompted investigations to look for
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new approximations with better benefits. Thus, as an alternative solution, the model-
based methodologies have been considered for performing FDD for any type of WT tech-
nology since a physical system is not required. Moreover, a hybrid approach model-pre-
diction and physical system can be used, but the main disadvantage of these approaches
is the inherent inaccuracy when system conditions change. Therefore, a clear tendency in
the adoption and development of data-driven methodologies is highly noticeable, as seen
in Table 2. In this sense, most of the current works used machine learning and deep learn-
ing techniques for solving the FDD problem. It is also remarkable for data-driven schemes
that the classical space transform techniques, e.g., STFT, WPT, FLS, etc., are commonly
used for data pre-processing, while techniques, such as TL, PCA, LSTM, etc., perform fea-
ture extraction and dataset reduction, and variants of ANN, e.g.,, DNN, CNN, or SVM,
etc., perform fault classification.

Up to now, most investigations have been performed on the common HAWTs for
both onshore and offshore installation due to the reliability, maintenance, and cost. How-
ever, currently, these WP generation systems are facing major challenges in terms of
power generation capacity in the large-scale range, and new investigations are moving
towards VAWTs due to the technological gap limiting these technologies being reduced.
Therefore, this situation also represents an area of opportunity since the design, modeling,
implementation, and study of VAWTSs remain complex and underexplored, but with the
new advances in software modelling, the machine learning implementations, and deep
learning techniques, it is possible to explore solutions for these systems.

7. Conclusions

This paper presents a general overview of the two main renewable energy generation
systems, namely the SPV and the WP, regarding two main topics of interest: faults present
in the generation system and the proposed methodologies for fault identification. Since
the SPV generated energy reaching a global capacity of 760 GW and the WP generated
energy reaching an accumulative global capacity of 837 GW, it is very important to keep
these systems in optimal operation conditions, and for that reason fault detection and di-
agnosis are of such importance in this work. Therefore, the first aspect considered in this
review was to present an analysis of the most frequent faults present in both the SPV and
the WP. In summary, the faults present in the SPV systems can be classified as temporary
faults and permanent faults. Thus, the temporary faults are related with the weather con-
ditions, e.g., cloud presence, partial shadowing, and dust accumulation. In the case of the
permanent faults, a study considering early, extrinsic, and deterioration faults can be per-
formed. By its part, the faults present in the WP generation systems can be divided in two
main branches, namely faults related to electrical components and faults related to me-
chanical components. On one side, the faults related to the electrical components in turn
are those that affect the performance of an electrical element of a WT, such as the generator
or the power converter. On the other side, the faults related to mechanical components
are those that affect some mechanical part, such as the gearbox, the main bearings, or the
rotor-blade. All the faults analyzed in this review affect main aspects of the operation con-
dition in the SPV and WP generation systems, e.g., reducing their power output capacity,
disrupting maintenance actions, and increasing the operation costs. Therefore, as a com-
plement and to provide a solution to these problems, several methodologies have been
reported in the literature for performing fault detection and diagnosis. It is very interest-
ing how in both SPV and WP the tendency in the investigations is towards the use of data-
driven methodologies that implement machine learning and use deep learning tech-
niques. It worthwhile to mention that the general current schemes for fault detection and
diagnosis imply in general five main steps: data acquisition, data pre-processing, features
extraction, feature dimensionality reduction, and classification. There exist several areas
of opportunity regarding the energy generation systems, specifically considering fault de-
tection and diagnosis. For instance, there are few works of WP generation systems that
handle elements, other than generators, power converters, gearboxes, and blades, that
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have not been deep explored. Besides, although the data-driven approaches are used with
most frequency today, there are still drawbacks, limitations, and optimizations that need
to be considered, and the combination of techniques in the five main steps previously
mentioned still requires attention.
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