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a b s t r a c t

This paper presents a new approach for the multiobjective optimal design of robust controllers in
systems with stochastic parametric uncertainty. Traditionally, uncertainty is incorporated into the
optimization process. However, this can generate two problems: (1) low performance in the nominal
scenario; and (2) high computational cost. For the first point, it is possible to ensure that the
controllers produce an acceptable performance for the nominal scenario in exchange for being lightly
robust. For the second point, the methodology proposed in this work reduces the computational cost
significantly. This approach addresses uncertainty by analyzing the robustness of optimal and nearly
optimal controllers in the nominal scenario. The methodology guarantees obtaining controllers that
are similar/neighboring to lightly robust controllers. Two examples of controller design are shown:
one for a linear model and another for a nonlinear model. Both examples demonstrate the usefulness
of the proposed new approach.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the design process of a control system, the designer
ust choose a structure for the controller and adjust its pa-

ameters. As in many other engineering designs, the parameter
uning of the controller can be formulated as an explicit opti-
ization problem [1]. In this case, the objectives that will mea-
ure the performance of the controller are chosen, for example:
he overshoot; rise or peak time; settling time; tracking error;
nd control effort for reference tracking or disturbance rejection.
any of these objectives conflict and result in a multi-objective
ptimization problem (MOP [2–4]).
In addition, it is common to have a certain degree of un-

ertainty in the process models used for controller design and
uning. This uncertainty will have an impact on the performance
f the designed control. Consequently, an optimal controller could
e nearly optimal or totally inadequate when applied in the actual
rocess. Therefore, to obtain a good controller, two characteris-
ics are desirable: good performance in the nominal model and
obustness (insensitivity to model uncertainties).

For this purpose, it is helpful for the designer to analyze
nd incorporate uncertainties in the controller tuning procedure.
hen considering parametric uncertainty, an effective approach

nvolves using stochastic programming [5]. In this case, the model
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019-0578/© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is a

org/licenses/by-nc-nd/4.0/).
parameters are considered as random variables, where each com-
bination of parameters (possible model) is considered as a sce-
nario. This approach is especially useful with nonlinear models
[6]. In this way, it is possible to choose a robust controller with
an adequate performance in all scenarios.

MOPs and uncertainty have been deeply and independently
studied in the literature. However, the development of a robust
optimization theory for uncertain multi-objective optimization
problems (UMOP) has been initiated only recently [7–9].

A widely extended alternative is the point-based minmax
robust efficiency [7]. Under this approach, the supremum value
for each objective function is optimized separately for each con-
troller and considering all scenarios. However, this may generate
controllers with low performance in the nominal scenario. As a
consequence, the concept of light robustness for UMOPs [7,9–
11] arises. This approach ensures that in exchange for being
lightly robust, the controllers have an acceptable performance
in the nominal scenario. Finding these robust controllers as-
sumes incorporating in the optimization process the scenarios to
be considered (including the nominal scenario). This involves a
high computational cost that increases linearly with the number
of scenarios and sometimes makes the optimization problem
unaffordable.

This paper presents a new proposal that is computationally
efficient for characterizing lightly robust controllers. For this pur-
pose, an MOP is proposed on the nominal scenario, and both
optimal and nearly optimal controllers [12–14] (also called ap-
proximate or ϵ-efficient controllers) that are non-dominated in
n open access article under the CC BY-NC-ND license (http://creativecommons.
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heir neighborhood [15] are characterized. The analysis of these
ontrollers to determine which are robust is left for the decision-
aking phase. In this type of problem, computational costs are
ept low by considering a limited but relevant number of con-
rollers in the optimization stage. There are already algorithms
e.g. nevMOGA [16]) that enable a proper and simultaneous char-
cterization of sets of optimal and nearly optimal controllers.
Two approaches are compared to show the benefits of using

elevant nearly optimal solutions for obtaining lightly robust con-
rollers. Approach 1 (traditional way) incorporates uncertainty in
he optimization stage, adding constraints to avoid overly degrad-
ng performance in the nominal scenario. Approach 2 (proposed
n this work) obtains the optimal and relevant nearly optimal
olutions with the optimization process for the nominal model
nd identifies the most robust solutions (which will characterize
he lightly robust controllers) in the decision-making phase.

Both approaches are applied to two examples: a linear SISO
odel (which is an illustrative example) and a nonlinear MIMO
odel. The tuned controllers are PID type. Both examples show

hat approach 2 characterizes the lightly robust controllers de-
ermined by approach 1: but with a significantly lower com-
utational cost. In addition, as shown in the second example,
OPs can have multimodalities, i.e., different controllers produc-

ng the same values in the design objectives. These multimodali-
ies are very common when the objectives are composed of an
ggregation of partial functions. For example, in the control of
ultivariable systems, an objective could be the total control
ffort obtained from an aggregation of the control effort of each
nput in the process. Approach 2 obtains multimodal solutions if
hey are significantly different in the parameter space and these
ill be available for the designer to study their robustness and
ther characteristics. These solutions may vary the designer’s
inal decision.

Therefore, the main contribution of this paper are the follow-
ng:

• To present a novel methodology to characterize lightly ro-
bust controllers.

• To guarantee mathematically that this methodology obtains
controllers similar/neighboring to lightly robust controllers.

• To reduce the computational cost of obtaining lightly robust
controllers, with acceptable performance in the nominal
scenario.

• Finally, to apply and validate the methodology presented in
this work.

This paper is structured as follows. Section 2 presents some
efinitions that are used to describe MOPs, UMOPs, and lightly
obust controllers. Section 3 defines the robust design approaches
hat are compared in this work. Section 4 presents examples of a
ightly robust controller design for a linear model, and Section 5
resents the example of the nonlinear and multivariable model.
inally, Section 6 discusses the conclusions.

. Background

This work seeks to tune a controller x using a multi-objective
ptimization approach considering uncertainty in the process
odel. We assume that the uncertainty is associated with the pa-

ameters ξ of the model. In the problem formulation, uncertainty
s incorporated as scenarios which are defined by a combination
f parameter values ξ = [ξ1, ξ2, . . . , ξp].
Given a scenario ξ, a multi-objective optimization problem1

an be defined as follows:

1 A maximization problem can be easily converted into a minimization
roblem. For each of the objectives f i(x, ξ) that have to be maximized it can be
hanged by −f (x, ξ).
i

144
min
x∈Q

f (x, ξ) (1)

where Q can be defined2 as:

xi ≤ xi ≤ xi, i = [1, . . . , k] (2)

with x = [x1, . . . , xk] as a decision vector in the domain Q ⊂ ℜ
k

nd with f : Q → ℜ
m as the vector of the objective functions

(x, ξ) = [f1(x, ξ), . . . , fm(x, ξ)]. xi and xi are the lower and upper
bounds of each component of x.

The function f (x, ξ) incorporates different objectives that mea-
sure the quality of control (performance, control efforts, etc.).

Definition 1 (Dominance [3,17]). Given a scenario ξ, a deci-
sion vector x1 is dominated by any other decision vector x2 if
fi(x2, ξ) ≤ fi(x1, ξ) for all i ∈ [1, . . . ,m] and fj(x2, ξ) < fj(x1, ξ) for
at least one j, j ∈ [1, . . . ,m]. This is denoted as x2 ⪯ x1.

Definition 2 (Pareto Set). The Pareto set (denoted by Pξ ) is the
set of solutions in Q that are nondominated by another solution
in Q for a scenario ξ:

Pξ

Q := {x ∈ Q | ̸ ∃xo ∈ Q : xo ⪯ x}

In addition to the optimal solutions Pξ

Q (see Definition 2), there
is a set of nearly optimal solutions Pξ

ϵ (see Definition 4) that can
be useful to the designer.

Definition 3 (−ϵ-Dominance [18]). Defined ϵ = [ϵ1, . . . , ϵm] as
the maximum acceptable performance degradation. Given a sce-
nario ξ, a decision vector x1 is −ϵ-dominated by another decision
vector x2 if fi(x2, ξ) + ϵi ≤ fi(x1, ξ) for all i ∈ [1, . . . ,m] and
fj(x2, ξ) + ϵi < fj(x1, ξ) for at least one j, j ∈ [1, . . . ,m]. This is
denoted by x2 ⪯−ϵ x1.

Definition 4 (ϵ-Efficiency [19]). The set of ϵ-efficient solutions
(denoted by Pξ

ϵ ) is the set of solutions in Q which are not −ϵ-
dominated by another solution in Q for a scenario ξ:

Pξ
ϵ := {x ∈ Q | ̸ ∃xo ∈ Q : xo ⪯−ϵ x}

However, finding all the nearly optimal solutions can con-
siderably increase the number of alternatives obtained and this
increases the computational cost of the optimization algorithms
and makes the decision stage more difficult. To restrict the num-
ber of solutions, it is proposed to consider only non-dominated
solutions in their neighborhood Pξ

n (see Definition 7). Pξ
n charac-

terizes all neighborhoods where nearly optimal solutions exist.
These solutions are potentially helpful since they offer the de-
signer nearly optimal alternatives in the objective space but differ
significantly in the parameter space. In this way, the diversity of
solutions in the parameter space is preserved without excessively
increasing the number of possible alternatives.

Definition 5 (Neighborhood [20]). Define n = [n1, . . . , nk] as
the maximum distance between neighboring solutions. Two de-
cision vectors x1 and x2 are neighboring solutions (x1 =n x2) if
|x1i − x2i | < ni for all i ∈ [1, . . . , k].

Definition 6 (n-Dominance [20]). A decision vector x1 is n-
dominated by another decision vector x2 if they are neighboring
solutions (Definition 5) and x2 ⪯ x1. This is denoted by x2 ⪯n x1.

Definition 7 (n-Efficiency [20]). The set of n-efficient solutions
(denoted by Pξ

n ) is the set of solutions of Pξ
ϵ which are not

n-dominated by another solution in Pξ
ϵ for a scenario ξ:

Pξ
n := {x ∈ Pξ

ϵ | ̸ ∃xo ∈ Pϵ : xo ⪯n x}

2 In general, any other constraints can be included.
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Uncertainty can be taken into account in the optimization or
decision-making stages. When uncertainty is considered in the
decision-making stage, the design objectives are evaluated under
a nominal model ξ0 (by means of Eq. (1)). Once the Pareto set
has been obtained Pξ0 (or Pξ0

n when nearly optimal solutions
are considered), it is possible to analyze the uncertainty of these
solutions. For this purpose, a set of scenarios is defined as U .
ubsequently, the performance of the solutions Pξ0 (or Pξ0

n ) is
analyzed for the different scenarios ξ ∈ U .

When uncertainty is incorporated into the optimization pro-
cess, a uncertain multi-objective optimization problem (UMOP)
rises where the design objectives contemplate such uncertainty.

efinition 8. An uncertain multi-objective optimization problem
(U) = (P(ξ), ξ ∈ U) is defined as the family of parametrized
roblems [7]:

(ξ) : min
x∈Q

f (x, ξ) (3)

here P(ξ) is an instance of P(U). Consequently, an UMOP is
efined as a family of optimization problems where each problem
btains a different Pareto set. From here, it would be necessary to
nalyze all these fronts to establish which solutions are the most
obust. Nevertheless, this analysis is not feasible since each front
ffers different controllers in differing scenarios.

To obtain a robust controller (that does not excessively de-
rade performance for all scenarios) it is necessary to evaluate
uch a controller in the optimization stage for all scenarios con-
idered. Thus, a controller x generates a set of points in the
bjective space, one for each scenario ξ contemplated in U:

U := {f (x, ξ) : ξ ∈ U}

Once this set is obtained, it is possible to make an analysis us-
ng different robustness criteria. In the literature, different possi-
ilities are presented [7–9]: flimsily and highly robust efficiency;
et-based minmax robust efficiency; lightly robust efficiency;
oint-based minmax robust efficiency; etc. These criteria enable
ransforming the UMOP into a deterministic problem [7,8] and so
olving a single optimization problem for the set of scenarios U .
The robustness criteria can be set-based or point-based. In
set-based approach, each solution has a representative set of
(obtained from analyzing FU ). The concept of dominance be-

ween sets must be defined for the analysis of these representa-
ive sets, and the multi-objective optimization algorithms must
e modified. In the case of point-based analysis, it is necessary
o obtain a point representing U (obtained from FU ). With this
epresentative, the definition of dominance is used (see Defini-
ion 1), and the Pareto set is obtained as in a traditional MOP (see
efinition 2).
A widely extended alternative is the point-based minmax ro-

ust efficiency [7]. Under this approach, each solution x defines as
epresentative the supremum value for every objective function
eparately and considering all scenarios ξ ∈ U . In this paper, we
ill use this definition to obtain robust solutions in a UMOP. Thus,
e can define a robust UMOP (hereinafter RUMOP) as:

in
x∈Q

f max
U (x) (4)

max
U (x) = [sup

ξ∈U
f1(x, ξ), sup

ξ∈U
f2(x, ξ), . . . , sup

ξ∈U
fm(x, ξ)]

The Pareto set obtained with this RUMOP will be denoted
s PU

R. However, optimizing the supremum value can signifi-
antly degrade the performance in the nominal scenario. To avoid
his problem, the concept of light robustness for UMOPs [7,9]
rises, where the obtained robust solutions are guaranteed to

ave acceptable performance in the nominal case. This concept

145
Fig. 1. Illustrative example of a UMOP problem. There are three possible
cenarios: nominal ξ0 (stars); ξ1 (squares); and ξ2 (triangles). The asterisks show
the supremum value f max

U of each solution.

for single-objective optimization problems has been introduced
in [10]. Furthermore, this concept was generalized in [11]. Based
on the point-based minmax robust efficiency concept, a lightly
robust UMOP (hereafter LRUMOP) is defined as:

min
x∈Q

f max
U (x)

.t. x ∈ Pξ0

ϵ

(5)

The Pareto set obtained with this LRUMOP will be denoted as
PU
LR.
Let us consider an example. Suppose we want to go from point

A to point B. There are three possible paths: (1) x1 is the shortest
path through the city center, (2) x2 is the intermediate path with a
single-lane road, and (3) x3 is the longest path with a wide multi-
lane road and a toll. We want to minimize travel time and travel
cost (design objectives).

For normal conditions (no traffic, no rain), a nominal scenario
ξ 0 is defined. Fig. 1 shows the performance obtained by each
solution for ξ 0 (f (xi, ξ 0), stars). Under this scenario, path x1 has
a shorter travel time and lower cost (f (x1, ξ 0) = [1, 1]). x2 has
a slightly worse performance than x1 (f (x2, ξ 0) = [1.5, 1.25]).
Finally, x3 has a significantly higher travel time and cost than the
other options (f (x3, ξ 0) = [5, 3]).

However, in addition to the nominal scenario ξ 0, there are
two possible alternatives: (1) it starts raining (scenario ξ 1) and
(2) there is a traffic jam (scenario ξ 2). In Fig. 1, the performance
of each solution for the two new scenarios proposed (f (xi, ξ 1),
squares, and f (xi, ξ 2), triangles) is plotted. In addition, the supre-
mum value for every objective function is plotted separately for
the set of scenarios proposed (f max

U (xi), asterisks). For the last two
scenarios, the path x3 has a slightly worse performance compared
to the nominal scenario (f max

U (x3) = [6, 5]). This is due to the
fact that it is a wide road with several lanes, and therefore, it is
less sensitive to rain and traffic (ξ 1 and ξ 2). On the other hand,
x1 is very sensitive to the scenarios ξ 1 and ξ 2 because the road
crosses the city center and is therefore susceptible to traffic jams
(f max

U (x1) = [10, 10]). Finally, x2 obtains a better f max
U than x1 and

worse than x3 for the scenarios (f max
U (x2) = [7.5, 5.75]).

Based on the point-based minmax robust efficiency concept,
x3 is the most robust solution. However, this solution performs
significantly worse than its contenders in the nominal case ξ 0
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the most probable one). To avoid this significant loss, we use the
oncept of light robustness. Under this concept, x2 can be consid-
ered a lightly robust solution because it has the best f max

U with
a nearly optimal behavior in the nominal scenario ξ 0 (slightly
worse than x1).

3. Methodology proposed

In the previous section, alternatives for considering robust-
ness in a UMOP have been mentioned. In general, uncertainty
can be considered in either: (1) the optimization stage; or (2)
the decision-making phase. Both approaches will be stated and
compared below.

3.1. First approach

This approach considers uncertainty at the optimization stage.
Based on the concept of point-based minmax robust efficiency,
a RUMOP can be defined as shown in (4). However, these solu-
tions can be significantly degraded in the nominal scenario. To
avoid this problem, the LRUMOP (lightly robust UMOP) arises,
where in addition to robust, the solutions guarantee an acceptable
performance in the nominal model. To obtain these solutions, we
proceed as follows:

1. Using the nominal scenario ξ0 we obtain Pξ0,∗ as an ap-
proximation to the Pareto set Pξ0 (see MOP defined in
(1)).

2. We define ϵ as the maximum acceptable loss over design
objectives for the nominal scenario.

3. We obtain PU,∗
LR as an approximation to the set of lightly

robust solutions PU
LR (see LRUMOP defined in (5))

n this case, for each controller analyzed in the optimization
rocess, it is first checked if it has a nearly optimal performance
n the nominal scenario. If so, then f max

U (x) for the set of defined
cenarios is obtained.
The advantage of approach 1 is that lightly robust controllers

re obtained, but it has a high computational cost because:

• It needs to carry out a pre-optimization to determine Pξ0,∗.
• It needs to carry out an optimization, considering the set of

scenarios U , to determine PU,∗
LR .

To obtain the approximations to the Pareto sets Pξ0,∗ and PU,∗
LR

he algorithm evMOGA3 is used — although any other multi-
bjective optimization algorithm could be used.

.2. Second approach

This approach analyzes uncertainty at the decision-making
tage. In this case, the following steps are followed:

1. We define ϵ as the maximum acceptable loss over the
design objectives for the nominal scenario.

2. Neighborhood n is defined as the maximum distance be-
tween neighboring controllers.

3. An MOP is defined for the nominal scenario ξ0 (see MOP
(1)). But now, in addition to the optimal controllers, the
optimization also obtains Pξ0,∗

n .
4. In the decision-making phase, the robustness is evaluated

on Pξ0,∗
n , through its representative f max

U (x) and a robust
controller is chosen.

3 evMOGA [21] available on Matlabcentral https://es.mathworks.com/
atlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-
lgorithm?s_tid=srchtitle_evMOGA_1.
 l

146
The set Pξ0

n characterizes all neighborhoods where optimal or
nearly optimal solutions exist for the nominal scenario (Pξ0

ϵ ). Pξ0

n
ill always obtain at least one neighboring solution of any robust
olution x ∈ Pξ0

ϵ (regardless of what is considered a robust solu-
ion). Therefore, we can affirm that Pξ0

n characterizes any robust
set R ⊂ Pξ0

ϵ (regardless of the concept of robustness applied).
This statement is proved mathematically by Theorem 1 with the
sets Pξ0

n and PU
LR. This theorem is extrapolable to any robust

set R ⊂ Pξ0
ϵ . Moreover, the characterization will be better or

worse depending on the neighborhood n defined by the designer.
Therefore, it is the designer who defines how similar will be, in
the worst case, the set Pξ0

n obtained and any set R ⊂ Pξ0
ϵ .

This approach has a low computational cost since it is only
ecessary to evaluate the set of scenarios U over a bounded
et of controllers |Pξ0,∗

n | (number of optimal and nearly optimal
ontrollers obtained for the nominal scenario Pξ0,∗

n ). Moreover,
he relevant nearly optimal controllers are significantly different
rom the optimal controllers in the parameter space, and this can
roduce significant differences in their robustness.
The limitations of this proposed approach are:

• Using a specific algorithm that characterizes Pξ0,∗
n

• Definition of the neighborhood n
• Number of solutions to consider in the optimization stage.

The need to use an algorithm that can determine Pξ0,∗
n (opti-

al and nearly optimal solutions) is a handicap in this approach.
n this work, the algorithm nevMOGA4 is used. nevMOGA was de-
ined and validated in [20], showing that it is stochastically robust
n characterizing the set of optimal and nearly optimal solu-
ions non-dominated in its neighborhood. In addition, a statistical
nalysis of three archivers (strategy that selects and updates a
olution set during the evolutionary process) used by algorithms
haracterizing optimal and nearly optimal solutions is performed
n [22]. There it is shown that the archiver used by nevMOGA
btains a better approximation, with lower variability, and fewer
olutions. The definition of the neighborhood n is not trivial when
he decision variables are physically meaningless. For the correct
efinition of the neighborhood n, it is recommended to perform
sensitivity analysis of the parameters and observe which vari-
tion produces significant changes in the system. This approach
nalyzes a wider number of solutions in the optimization process
optimal and nearly optimal). Therefore, we must be careful with
he number of solutions considered, if we want to avoid a high
omputational cost. Choosing an excessively high value of ϵ, or
n excessively low value of the neighborhood n, can cause an
xcessive number of solutions to be considered, and with it, a
igh computational cost. A large number of design objectives can
lso lead to high computational cost.

.3. Analysis of the defined approaches

As mentioned above, Pξ0

n characterizes any robust set R ⊂ Pξ0
ϵ .

his statement is proved for the sets Pξ0

n and PU
LR by means of

heorem 1. A Venn diagram5 [23] is shown in Fig. 2 to help
nderstand Theorem 1 and some of its lemmas.

emma 1. In a LRUMOP (defined in (5)), the set PU
LR belongs to

he set Pξ0
ϵ (PU

LR ⊂ Pξ0
ϵ ).

4 nevMOGA [20] available on Matlabcentral https://es.mathworks.com/
atlabcentral/fileexchange/71448-nevmoga-multiobjective-evolutionary-
lgorithm.
5 A Venn diagram is a figure that uses overlapping circles to illustrate the

ogical relationships between two or more sets of items.

https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm?s_tid=srchtitle_evMOGA_1
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm?s_tid=srchtitle_evMOGA_1
https://es.mathworks.com/matlabcentral/fileexchange/31080-ev-moga-multiobjective-evolutionary-algorithm?s_tid=srchtitle_evMOGA_1
https://es.mathworks.com/matlabcentral/fileexchange/71448-nevmoga-multiobjective-evolutionary-algorithm
https://es.mathworks.com/matlabcentral/fileexchange/71448-nevmoga-multiobjective-evolutionary-algorithm
https://es.mathworks.com/matlabcentral/fileexchange/71448-nevmoga-multiobjective-evolutionary-algorithm
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Fig. 2. Venn diagram for the sets PU
LR (1), Pξ0

n (2) and Pξ0
ϵ (4). PU

LR ∪Pξ0

n forms
the area (3).

Lemma 2. The set of optimal and non-dominated nearly optimal
solutions in its neighborhood Pξ0

n (see Definition 7) belongs to the
set Pξ0

ϵ (Pξ0

n ⊂ Pξ0
ϵ ).

Lemma 3. If a solution x ∈ Pξ0

n , there is no other solution xo ∈ Pξ0
ϵ

that dominates it in its neighborhood (see Definition 7, if x ∈ Pξ0

n ⇒

∄x◦
∈ Pξ0

ϵ : x◦
⪯n x).

Lemma 4. Based on Definition 7 and Lemma 3, if a solution x
belongs to the set Pξ0

ϵ , and does not belong to the set Pξ0

n , there exists
another solution xo belonging to the set Pξ0

n that dominates it in its
neighborhood (if x ∈ (Pξ0

ϵ − Pξ0

n ) ⇒ ∃x◦
∈ Pξ0

n : x◦
⪯n x).

Theorem 1. Any lightly robust solution x ∈ PU
LR has at least one

neighboring solution in the set of optimal and non-dominated nearly
optimal solutions in their neighborhood in the nominal scenario Pξ0

n

(∀x ∈ PU
LR, ∃xo ∈ Pξ0

n |x =n xo).

Proof. There are two possible cases for solution x ∈ PU
LR:

• (Case 1) x ∈ (PU
LR ∩ Pξ0

n ) ⇒ ∃xo ∈ Pξ0

n |x =n xo

• (Case 2) x ∈ (PU
LR−Pξ0

n ). If x ∈ PU
LR then x ∈ Pξ0

ϵ (Lemma 1).
If x ∈ (Pξ0

ϵ − Pξ0

n ) then ∃xo ∈ Pξ0

n |xo ⪯n x (Lemma 4)
⇒ ∃xo ∈ Pξ0

n |x =n xo.

Therefore, we can affirm that:

∀x ∈ PU
LR, ∃xo ∈ Pξ0

n |x =n xo □

Theorem 1 starts from four true lemmas in any MOP. The sets
PU
LR and Pξ0

n belong to the set of optimal and nearly optimal
solutions in the nominal scenario Pξ0

ϵ (see sets (1), (2) and (4) in
Fig. 2). Lemma 3 states that given any optimal or non-dominated
nearly optimal solution in its neighborhood in the nominal sce-
nario (x ∈ Pξ0

n ), there is no other optimal or nearly optimal solu-
tion in the nominal scenario that dominates it in its neighborhood
(∄xo ∈ Pξ0

ϵ : x◦
⪯n x). Lemma 4 states that given an optimal or

nearly optimal solution in the nominal scenario (x ∈ Pξ0
ϵ ), which

is not an optimal or nearly optimal solution non-dominated in its
neighborhood (x /∈ Pξ0

n ), there is another solution that dominates
it in its neighborhood (xo ∈ Pξ0

n : x◦
⪯n x).

Once the previously introduced lemmas are assumed, a solu-
tion x ∈ PU can: (1) also belong to the set Pξ0 (set (3) in Fig. 2),
LR n
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(2) not belong to the set Pξ0

n (set (1) in Fig. 2). In the first case,
the solution x is part of the sets PU

LR and Pξ0

n . Therefore, there is
obviously a solution in Pξ0

n neighboring x (x itself). In the second
case, the conclusion is not so trivial. Firstly, if x ∈ PU

LR then
x ∈ Pξ0

ϵ (Lemma 1). Secondly, if x ∈ (Pξ0
ϵ −Pξ0

n ) (shaded area with
black lines in Fig. 2), there is at least one solution xo ∈ Pξ0

n such
that xo dominates x (Lemma 4) in its neighborhood. Therefore,
it can be stated that any solution in PLRU has a neighboring
solution in Pξ0

n . This theorem can be extrapolated to any robust
set R ⊂ Pξ0

ϵ .

4. Example 1: Control of a linear system with uncertainties

This section presents a robust controller design for a linear
process with uncertainty by applying multi-objective optimiza-
tion.

4.1. Description of the problem

The model used in this example is:

y(s) = G(s)u(s) (6)

G(s) =
K11e−θ11s

s(τ11s + 1)
(7)

where y is the process output to be controlled and u is the
process input (control action). The uncertainty is associated with
the delay, gain, and time constant of the model. Therefore, the
scenarios are defined by the vector ξ as follows:

ξ = [K11, θ11, τ11] (8)

and the nominal scenario ξ0 is defined as:

ξ0 = [1, 1, 1] (9)

The control system is implemented by using a PI controller:

u(s) =Kc
(
e(s) +

1
Ti · s

e(s)
)

(10)

Once the control system is established, the corresponding MOP
s defined (see Eq. (11)). Two design objectives are chosen. The
irst, f1, evaluates the output performance by applying the IAE
integral absolute error). The second, f2, evaluates the control
ffort of the system by applying the IAU (integral absolute control
ction). The design objectives measure IAE and IAU when a uni-
ary disturbance is introduced at the process input. Considering
AE and IAU as independent objectives in an MOP enables the
hoice of a controller to be balanced in performance and control
ffort according to the designer’s preferences a posteriori.

in
x∈Q

f (x, ξ0) (11)

(x, ξ0) = [f1(x, ξ0) f2(x, ξ0)]

1(x, ξ0) =

∫ tf

0
|e|dt

2(x, ξ0) =

∫ tf

0
|u|dt

f = 1000 s

ubject to:

x ≤ x ≤ x

f (x, ξ0) < 500 ; f (x, ξ0) < 100
1 2
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Fig. 3. Envelope response for the 8 models of U given a unit input u = 1
n t = 100 s. The response in the nominal model is shown in red. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

These constraints are included in the objectives to define the
ertinence zone of the front. The vector of parameters is defined
s:

= [Kc, Ti]

x = [1, 100]; x = [0.01, 1]

To take uncertainty into account, eight models are considered.
ach scenario considers each extreme case, varying ±20% the
ominal value of the parameters ξ0. The open-loop envelope
esponse shown in Fig. 3 is obtained with this set of models.
hese eight scenarios constitute the set U . Thus, f max

U (x) is the
upremum value for every objective function separately for the
et of eight models (see Eq. (4)). This value will be the function
o be minimized by the RUMOP (see Eq. (12)).

in
x∈Q

f max
U (x) (12)

ubject to:

table in closed-loop

In addition, in (13), LRUMOP is defined and this ensures that
he controllers have an acceptable performance in the nominal
odel.

min
x∈Q

f max
U (x) (13)

ubject to:

∈ Pξ0

ϵ

1(x, ξ0) < 500 ; f2(x, ξ0) < 100

.2. Results and discussion

This section shows the results obtained after applying the
pproaches presented in Section 3. Approach 1 obtains the set
U,∗
LR and approach 2 obtains the set Pξ0,∗

n . These sets are analyzed
or the nominal scenario ξ0 and for the set of scenarios U . The first
xample, since it is simpler, enables us to analyze in detail many
f the sets described in Section 2 (Pξ0 , PU

R, PU
LR and Pξ0

n ). The
dvantages and disadvantages of each regarding the robustness
f their obtained controllers are shown. To make the compari-

on as fair as possible, the evMOGA and nevMOGA algorithms
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to obtain the above-mentioned sets) are used with the same
ettings: NindP = 400 (initial population), Generations = 3075,
indGA = 8 (evaluations per iteration), ndiv = 40 (number of
ivisions for each dimension in the objective space grid). The
ptimization stage is carried out with 25,000 evaluations of the
bjective function.
Fig. 4 shows the Pareto set Pξ0,∗ obtained from solving the

OP defined in (11) for this example. In addition, the set PU,∗
R

btained from solving the RUMOP defined in (12) is also shown.
he performance of these controllers is plotted in the nominal
cenario ξ0 (using f ) and over the set of scenarios U (using
f max
U ). Note that several controllers of Pξ0,∗ obtain a f max

U which is
outside the scale of the figure. As expected, the set PU,∗

R is more
robust than Pξ0,∗ (robust is understood as the set of controllers
with the best f max

U ). However, the set Pξ0,∗ performs better on the
nominal scenario. From the set Pξ0,∗ the compromise controller
x1,ξ0 and the controller x2,ξ0 (which will serve as the controller
to perform the sensitivity analysis described below) are selected.
From the set PU,∗

R the compromise controller xU,R is selected.
In Fig. 5, the output and control action of the system with

the three selected controllers is observed in the nominal model.
The three controllers obtain significantly different responses. The
controller x1,ξ0 obtains the smallest error.

To choose the parameter ϵ (maximum acceptable degradation
in the nominal model), it is recommended to carry out a previ-
ous analysis. To perform this analysis is necessary to choose a
reference controller (controller with good performance). In this
case, taking advantage of the previously selected controllers, we
define x1,ξ0 as the reference controller. Subsequently, we select
the controller xU,R as the controller with the worst performance.
The controller xU,R obtains a significantly higher error than
x1,ξ0 . Therefore, xU,R could be considered to have unacceptable
performance in the nominal model. This analysis facilitates the
definition of ϵ.

To guarantee that the obtained controllers have an accept-
able performance in the nominal model, the concept of light
robustness can be applied. At this point, the Pareto front Pξ0,∗ is
available. Subsequently, based on the previous analysis, we define
ϵ = [15, 2] as the maximum acceptable degradation in the
nominal model ξ0 (gray shaded area in Fig. 6). We are now in
a position to deal with the LRUMOP problem defined in (13).
Fig. 6 shows the obtained set of lightly robust controllers (PU,∗

LR)
(approach 1 is described in Section 3.1). As can be seen, PU,∗

LR , in
contrast to PU,∗

R , only obtains controllers in the acceptable area
Pξ0,∗

ϵ in the nominal model (gray shaded area).
To choose the parameter n (neighborhood), it is recommended

to perform a sensitivity analysis on the parameters of the problem
(Kc and Ti). To carry out this analysis it is necessary to choose a
reference controller. Taking advantage of the previously selected
controllers, we define x1,ξ0 (see Fig. 4) as a reference controller.
We also select a controller with a variation in Kc and a similar Ti
with respect to x1,ξ0 . This controller is xU,R (see Fig. 4, controller
with a variation of 0.1 in Kc with respect to x1,ξ0 ). These two
controllers obtain significantly different responses (see Fig. 5). We
also select a controller with a similar Kc and a variation in Ti with
respect to the reference controller. This controller is x2,ξ0 (see
Fig. 4, controller with a variation of 3 in Ti with respect to x1,ξ0 ).
Again, x1,ξ0 and x2,ξ0 obtain significantly different responses (see
Fig. 5). Therefore, a variation of 0.1 in the Kc (variation between
x1,ξ0 and xU,R) and 3 in the Ti (variation between x1,ξ0 and
x2,ξ0 ) produces significant changes in the output of the process.
This simple sensitivity analysis will facilitate the definition of
neighborhood n.

Finally, we obtain the relevant nearly optimal controllers un-
der the nominal scenario and uncertainty is analyzed (approach
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Fig. 4. The set Pξ0,∗ is shown in red and the set PU,∗
R is shown in green. The decision space is shown on the right. The objective space is shown on the left. (For
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Fig. 5. The response of the controller x1,ξ0 is shown in red and the response of
ontroller x2,ξ0 is shown in black. The response of the controller xU ,R is shown
n green. The system output y is at the top. The control action u is below.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

described in Section 3.2). First, we define ϵ = [15, 2] as in
he previous approach. Subsequently, based on the previous sen-
itivity analysis on the parameters Kc and Ti, the neighborhood

= [0.03, 1] (a variation that produces significant changes,
ee Definition 5) is defined. The definition of this parameter
onditions the results obtained for the designer’s criteria.
149
In Fig. 7 we observe the set Pξ0,∗
n (approach 2) obtained by

olving the MOP defined in (11). Several of the obtained con-
rollers have a f max

U that is outside the scale of the figure, and
hese are the least robust controllers. The same figure also depicts
he previously obtained lightly robust controllers PU,∗

LR (approach
). We can see that Pξ0,∗

n obtains, among others, controllers with
robustness to uncertainty similar to that obtained by PU,∗

LR .
We next focus on the most robust solution set of Pξ0,∗

n . This
et is defined as:
U,∗
n := {x ∈ Pξ0,∗

n | ̸ ∃xo ∈ Pξ0,∗
n : xo ⪯ x} (14)

where dominance is assessed with the function f max
U (x).

In Fig. 8 the sets PU,∗
n and PU,∗

LR are shown. Additionally, the
neighborhood of each controller that constitutes PU,∗

LR is shown in
yellow. As can be seen, both sets have similar robustness. This
is because the controllers which compose PU,∗

LR always have a
neighboring controller in the set Pξ0,∗

n (see yellow area).
If the designer chooses a smaller neighborhood n, then Pξ0,∗

n
and PU,∗

LR are expected to be more similar in exchange for a
larger number of solutions and a higher computational cost. If
the designer chooses a larger neighborhood, predictably Pξ0,∗

n and
PU,∗
LR will be less similar, in exchange for a smaller number of

solutions and lower computational cost. Therefore, in the second
approach, it is the designer who has the task of deciding how
similar will be the obtained set Pξ0,∗

n to PU,∗
LR by defining the

neighborhood n.
From the set Pξ0,∗

n , the controller xξ0,n is selected, since it
has a compromise f max

U . From the set PU,∗
LR we select the con-

troller xU,LR, neighbor of xξ0,n. xU,LR is a bit more robust than
Fig. 6. The decision space is shown on the right and the objective space on the left. f is represented by dots, f max
U by circles.
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Fig. 7. The decision space is shown on the right. The objective space is shown on the left. f is represented by dots and f max
U is represented by circles.
Fig. 8. On the right is the decision space. On the left is the objective space. f is represented by dots, f max
U is represented by circles.
u

ξ0,n. However, xξ0,n performs better than xU,LR in the nominal
cenario.
To validate the controllers xξ0,n and xU,LR, Fig. 9 shows the

nvelopes of the output and control action (y, u) in a closed-loop
or the eight models analyzed. As can be seen, both controllers
btain similar envelopes for both output and control actions.
herefore, both controllers have similar robustness based on the
ost essential performance criteria. Both controllers obtain an
nvelope with a peak amplitude between approximately 2.5 and
.5. In addition, they reject the disturbance in a very similar time.
hus, it is confirmed that the defined neighborhood is correct
two neighboring solutions produce similar responses).

Table 1 shows the computational cost of obtaining each set6
before optimization, during the optimization stage, and in the
ecision stage). The set Pξ0,∗ has the lowest computational cost.
owever, this set does not guarantee robust solutions (or simi-
ar). The sets PU,∗

R and PU,∗
LR have the highest computational cost

ecause they evaluate all scenarios in the optimization process.
hese sets guarantee the most robust solutions (with any per-
ormance in the nominal scenario). The set Pξ0,∗

n has a small
omputational cost (slightly greater than Pξ0,∗). In addition, as
reviously observed (and proved in Theorem 1), Pξ0,∗

n obtains
ontrollers that are similar/neighboring to those obtained by PU,∗

LR
see Fig. 8).

Some final conclusions are as follows:

1. Set Pξ0,∗ obtains optimal controllers in the nominal sce-
nario ξ0, but they are not very robust (see Fig. 4).

6 CPU processor Intel Core i7, 3.2 GHz with 16 GB RAM.
150
Fig. 9. Envelopes obtained with the set of scenarios ξ ∈ U for the controllers
xξ0,n and xU ,R . Above is the output of the system y. Below the control action
.

2. Set PU,∗
R obtains the most robust controllers, but may result

in undesirable performance over ξ0 (see Fig. 6). Moreover,
obtaining PU,∗

R has a high computational cost (see Table 1).
3. Set PU,∗

LR (approach 1) obtains the most robust controllers
with acceptable performance over ξ0 (see Fig. 6). However,
obtaining PU,∗

LR has a high computational cost (see Table 1).
4. Pξ0,∗

n (approach 2) obtains controllers with similar robust-
ness to PU,∗ (see Fig. 8) and with acceptable performance
LR
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Table 1
Computational cost of example 1.
Set Computational cost

Before optim. Optim. stage Decision stage Total cost

Pξ0,∗ – 3836 s 24 s 3860 s

PU,∗
R – 31593 s 2 s 31595 s

PU,∗
LR 3836 s 25922 s – 29758 s

Pξ0,∗
n – 4054 s 170 s 4224 s

over ξ0. However, approach 2 has a significantly lower
computational cost (see Table 1).

. Example 2: Control of the boiler–turbine system

This section presents a robust controller design for a non-
inear multivariable process with uncertainty and applying multi-
bjective optimization.

.1. Description of the problem

The process to be controlled consists of a non-linear MIMO
3x3) boiler–turbine unit for electric power generation. The model
as proposed in [24] and corresponds to boiler–turbine plant
16/G16 at the Sydsvenska Kraft AB plant in Malmö, Sweden. This
ystem presents significant non-linearities, and strong coupling
etween its input–output variables [25,26]. The first-principles
odel of the system is shown in Eqs. (15)–(19).

˙1 = ξ1 u2x
9/8
1 + ξ2 u1 + ξ3 u3 (15)

ẋ2 = (ξ4 u2 + ξ5) x
9/8
1 + ξ6 x2 (16)

ẋ3 = (ξ7 u3 − (ξ8 u2 − ξ9) x1) (17)

y1 = x1; y2 = x2 (18)

y3 = 0.05 (0.13073 x3 + ξ10 acs +
qe
9

− 67.975) (19)

1 (boiler pressure [Kg/cm2]), x2 (electrical power output [MW]),
and x3 (fluid density [Kg/m3]) are the state variables of the
system. Inputs u1, u2, and u3 are the valve position for fuel
flow, steam control, and feedwater flow control, respectively. The
outputs are y1 (boiler pressure [Kg/cm2]), y2 (electrical power
output [MW]), and y3 (water level in the boiler manifold with
respect to the reference level for the nominal operating point
[m]). The output y3 can be either positive or negative and depends
on the steam quality acs and the evaporation rate qe:

cs =
(1 − 0.001538 x3) (0.8 x1 − 25.6)

x3 (1.0394 − 0.0012304 x1)
(20)

qe = (0.854 u2 − 0.147) x1 + 45.59 u1 − 2.514 u3 − 2.096 (21)

The actuators in the system have physical limitations and
ertain restrictions defined below:

0 ≤ui ≤ 1; i = 1, 2, 3
−0.007 ≤u̇1 ≤ 0.007

−2 ≤u̇2 ≤ 0.02
−0.05 ≤u̇3 ≤ 0.05

(22)

The uncertainty (ξ) is associated with the coefficients of the
model Eqs. (15), (16) and (17), as well as the parameter that
151
Table 2
Operating point p4 .
Operating point x01 x02 x03 u0

1 u0
2 u0

3 y03
p4 108 66.65 428 0.34 0.69 0.433 0

multiplies the term acs of Eq. (19) (as proposed in [27]). Therefore,
the scenarios are defined by the vector ξ as follows:

ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9, ξ10] (23)

nd the nominal scenario ξ0 is defined as:
0

= [−0.0018, 0.9, −0.15, 0.073, −0.016,
− 0.1, 141/85, 1.1/85, 0.19/85, 100]

(24)

In this example, we use a typical operating point p4 defined
in [24] and shown in Table 2. A multi-loop control structure with
controllers 1DOF-PI and antiwindup is proposed. The pairing:
y1 − u1, y2 − u2 and y3 − u3 will be used. Therefore:

1(s) =Kc1
(
e1(s) +

1
Ti1·s e1(s)

)
2(s) =Kc2

(
e2(s) +

1
Ti2·s e2(s)

)
3(s) =Kc3

(
e3(s) +

1
Ti3·s e3(s)

) (25)

here Kci are the proportional gains and Tii are the integral times
n seconds for each loop i. e1 = r1−y1, e2 = r2−y2 and e3 = r3−y3
re the output errors, being r1, r2, and r3 the set-points for each
losed-loop.
The MOP is defined in Eq. (26).

in
x∈Q

f (x, ξ0) (26)

(x, ξ0) = [f1(x, ξ0) f2(x, ξ0)]

1(x, ξ0) =

∫ tf

0

|e1|
64.8

+
|e2|

113.13
+

|e3|
1.95  

r1=y01+∆r1, r2=y02, r3=y03

dt

+

∫ tf

0

|e1|
64.8

+
|e2|

113.13
+

|e3|
1.95  

r1=y01, r2=y02+∆r2, r3=y03

dt

f2(x, ξ0) =

∫ tf

0

⏐⏐⏐⏐du1

dt

⏐⏐⏐⏐ +

⏐⏐⏐⏐du2

dt

⏐⏐⏐⏐ +

⏐⏐⏐⏐du3

dt

⏐⏐⏐⏐  
r1=y01+∆r1, r2=y02, r3=y03

dt

+

∫ tf

0

⏐⏐⏐⏐du1

dt

⏐⏐⏐⏐ +

⏐⏐⏐⏐du2

dt

⏐⏐⏐⏐ +

⏐⏐⏐⏐du3

dt

⏐⏐⏐⏐  
r1=y01, r2=y02+∆r2, r3=y03

dt

tf = 2500 s

subject to:

x ≤ x ≤ x

f1(x, ξ0) < 5000 ; f2(x, ξ0) < 50

The constraints on f1 and f2 are used to define the pertinence zone
of the front. The parameter vector is defined as:

x = [Kc1, Ti1, Kc2, Ti2, Kc3, Ti3]

x = [10, 150, 2.5, 150, 15, 150];
x = [0.001, 1, 0.001, 1, 0.001, 1]
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Fig. 10. Envelope response to a model parameter variation of ±10%. On the left with a input variation of ∆u = [0.05 0 0] at the operating point p4 . On the right
with an input variation of ∆u = [0 0.05 0]. The nominal model response is shown in red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
f

The first objective design, f1, evaluates the performance of
each output by applying the integral absolute error (IAE). These
errors have been normalized so that they have the same relative
weight. For this, each error is divided by the range of each output,
determined from the operating points p1 to p7 described in [24].
In this way, we avoid, for example, that output y3 has a smaller
weight on f1 (because the range of values of this output is much
smaller than y1 and y2).

The second objective, f2, measures the control effort of the
system by applying the IADU (integral of the absolute value of
the derivative control signal). The design objectives measure the
IAE and the IADU when a step is introduced in the reference r1
(boiler pressure) going from y01 = 108 Kg/cm2 to 120 Kg/cm2

(∆r1 = 12 Kg/cm2) and, in the reference r2 (the electrical output
power) going from y02 = 66.65 MW to 86.65 MW (∆r2 = 20 MW).
Again, considering IAE and IADU as separate objectives allows the
designer to choose a controller with a trade-off in performance
and control effort.

To analyze the uncertainty, 50 models are considered in which
the parameters are randomly varied ±10% concerning the nom-
inal scenario ξ0. In this way, the set of scenarios U is generated.
With this set of models, we obtain the open-loop envelope re-
sponse seen in Fig. 10. Since the output y3 is unstable in open
loop, the envelope on this output has been obtained by a propor-
tional controller with gain 2. Thus, f max

U (x) is the supremum value
for every objective function separately for the set of 50 scenarios
(see Eq. (4)). In addition, the obtained controllers should have an
acceptable performance in the nominal model (x ∈ Pξ0

ϵ ), i.e. they
should be lightly robust (see LRUMOP defined in (27)).

min
x∈Q

f max
U (x) (27)

subject to:

x ∈ Pξ0
ϵ o

152
f1(x, ξ0) < 5000 ; f2(x, ξ0) < 50

5.2. Results and discussion

This section shows the results obtained after applying the
approaches presented in Section 3. To make the comparison as
fair as possible, both approaches use the algorithms with the
same settings: NindP = 200 (initial population), Generations =

1000, NindGA = 8 (evaluations per iteration), ndiv = 20 (number
of divisions for each dimension in the objective space grid). The
optimization is carried out with 10,000 evaluations of the objec-
tive function. No further evaluations have been performed due to
the high computational cost of taking uncertainty into account in
the optimization stage.

For both examples, we define ϵ = [25, 0.2] as the maximum
acceptable degradation in the nominal scenario. Under the first
approach, the set PU,∗

LR (LRUMOP defined in (27)) is obtained. For
approach 2, as in example 1, a sensitivity analysis is performed
on the parameters Kci and Tii. Thus, we define the neighborhood
n = [0.5, 50, 0.5, 50, 3, 50] (see Definition 5), and obtain the
set Pξ0,∗

n (MOP defined in (26)). Fig. 11 shows the obtained sets.
The decision space is shown on the right. To show the decision
variables, we use the level diagram (LD7[28,29]) visualization tool
and using 2-norm (∥ · ∥2). The LD tool is based on level diagrams,
where each design objective and parameter is represented on a
separate diagram. In this way, each level diagram represents the
objective value or parameter on the abscissa axis and its norm
value on the ordinate axis. The objective space is shown on the
left. These sets are analyzed under the nominal scenario using

7 Available in Matlab Central: https://es.mathworks.com/matlabcentral/
ileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-
ptimization-with-level-diagrams.

https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams
https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams
https://es.mathworks.com/matlabcentral/fileexchange/62224-interactive-tool-for-decision-making-in-multiobjective-optimization-with-level-diagrams
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t

Fig. 11. The decision space by level diagram is shown on the right. The objective space is shown on the left. f is represented by dots, f max
U is represented by circles.
Table 3
Controllers in Zone 4 of Fig. 11.

Set Kc1 Ti1 Kc2 Ti2 Kc3 Ti3 f f max
U

x1,U PU,∗
LR 0.36 50.5 0.002 8.5 5.6 66.0 [120.5 3.1] [234.8 4.2]

x2,ξ0,n Pξ0,∗
n 0.50 47.7 0.003 6.9 5.5 69.6 [97.2 3.2] [180.9 4.6]

x3,ξ0,n Pξ0,∗
n 0.17 44.9 0.001 4.8 9.2 53.8 [133.9 3.2] [262.7 4.6]

x4,ξ0,n Pξ0,∗
n 2.32 39.3 1.171 12.3 1.8 91.5 [125.3 3.7] [253.3 4.6]

x5,ξ0,n Pξ0,∗
n 0.31 64.2 0.004 6.4 2.5 74.4 [115.0 3.1] [233.0 4.3]

x6,ξ0,n Pξ0,∗
n 1.05 54.7 0.950 14.1 1.8 75.3 [120.3 3.7] [231.5 4.6]

x7,ξ0,n Pξ0,∗
n 0.86 33.2 0.001 4.0 5.2 34.9 [121.6 3.2] [236.9 4.4]

x8,ξ0,n Pξ0,∗
n 0.25 65.9 0.807 16.9 1.6 69.9 [133.6 3.5] [257.8 4.3]
f or under uncertainty using f max
U (several controllers of Pξ0,∗

n
obtain a f max

U which is outside the scale of the figure).
As can be seen, in the objective space of Fig. 11, the set

f max
U (Pξ0,∗

n ) adequately characterizes the set f max
U (PU,∗

LR). This figure
shows the zones 1 (blue), 2 (purple), and 3 (black). There are two
neighboring controllers in these zones, one obtained by approach
1, and another obtained by approach 2. The same could be ex-
trapolated to all the controllers in PU,∗

LR , since each of them has
at least one similar (neighboring) controller in Pξ0,∗

n . Therefore,
it can be concluded that approach 2 has found neighboring con-
trollers (neighborhood n defined by the designer) to controllers
of approach 1.

Furthermore, in this example, there is multimodality due to
aggregation in the design objectives (see Eq. (26)). Therefore,
not only the most robust controllers are helpful. Some signif-
icantly different controllers perform similarly in the objective
space due to aggregation [20]. An example of this is seen in
the selected Zone 4 in Fig. 11 (brown square). The parameters
and performance of the controllers in this zone are shown in
Table 3. The controller x1,U , is the only controller obtained by
PU,∗
LR in this area. However, Pξ0,∗

n is able to obtain seven different
controllers with similar robustness to x1,U (x2,ξ0,n to x8,ξ0,n). From
hese seven controllers, x2,ξ0,n is a neighboring controller to x1,U
(neighborhood n = [0.5, 50, 0.5, 50, 3, 50]). However, all the
other controllers, in particular x3,ξ0,n and x4,ξ0,n, are controllers
significantly different to x1,U and x2,ξ0,n (non-neighbors). This
diversity makes approach 2 even more interesting.

To validate these controllers, in Fig. 12 we observe the en-
velope obtained for the 50 scenarios ξ ∈ U when a step is
introduced in r1. The controller x3,ξ0,n obtains an envelope with
higher overshoot and settling time on y1 and y2. The controller
x4,ξ0,n has significantly lower overshoot on y . The controller
2
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x4,ξ0,n has a significantly larger settling time than the other con-
trollers on y3. The controller x2,ξ0,n obtains an envelope similar to
x1,U .

Fig. 13 shows this envelope when the step is in r2. The con-
troller x3,ξ0,n obtains an envelope with a greater overshoot on
y1. The controller x4,ξ0,n has significantly smaller overshoot on y1
and y2. The controller x4,ξ0,n has a significantly higher oscillation
and settling time than the other controllers on y3. The controller
x2,ξ0,n obtains an envelope similar to x1,U .

As can be seen, controllers x1,U and x2,ξ0,n obtain a similar
envelope. However, the controllers x3,ξ0,n and x4,ξ0,n obtain sig-
nificantly different envelopes. x4,ξ0,n performs better on y1 and y2
than its competitors but worse on y3.

This results confirms the good choice of the neighborhood
n. The neighboring controllers x1,U and x2,ξ0,n obtain similar
responses. The non-neighboring controllers (x1,U and x3,ξ0,n, x1,U

and x4,ξ0,n, etc.) obtain significantly different responses. x3,ξ0,n

and x4,ξ0,n are characterized by Pξ0,∗
n due to the fact that despite

not being optimal under the nominal scenario (only x2,ξ0,n is op-
timal), they are nearly optimal and nondominated in their neigh-
borhood. These controllers are omitted by PU,∗

LR (because they
obtain worse robustness than x1,U ). However, these controllers
are also relevant and provide interesting alternatives to the de-
signer before making the final decision. The same phenomenon
occurs at other points on the Pareto front.

Table 4 shows the computational cost8 required by each ap-
proach. The set PU,∗

LR obtains the most robust controllers (see
Fig. 11). However, obtaining this set has a high computational
cost as it must evaluate the controllers over the 50 scenarios U
in the optimization process. Moreover, before the optimization,

8 CPU processor Intel Core i7, 3.2 GHz with 16 GB RAM.
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Fig. 12. Envelope response of controllers x1,U , x2,ξ0,n , x3,ξ0,n and x4,ξ0,n for the 50 scenarios ξ ∈ U when the step is set in r1 .
Fig. 13. Envelope response of controllers x1,U , x2,ξ0,n , x3,ξ0,n and x4,ξ0,n for the 50 scenarios ξ ∈ U when the step is set in r2 .
Table 4
Computational cost of example 2.
Set Computational cost

Before optim. Optim. stage Decision stage Total cost

PU,∗
LR 428 min. 17333 min. – 17761 min.

Pξ0,∗
n – 454 min. 167 min. 621 min.
154
the computation of Pξ0,∗ is required. The set Pξ0,∗
n has a sim-

ilar robustness to PU,∗
LR (see Fig. 11) with a significantly lower

computational cost (28 times less). Moreover, this set can obtain
significantly different controllers with similar robustness to that
obtained by PU,∗

LR . Therefore, approach 2: (1) obtains controllers
with similar robustness to approach 1 and with a significantly
lower computational cost; and (2) provides a greater diversity of
solutions to the designer. This greater diversity can modify the
final decision of the designer.
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. Conclusions

In this work, we have shown a computationally efficient
ethodology to characterize lightly robust controllers for lin-
ar and nonlinear systems. This has been done under a multi-
bjective optimal design approach and considering stochastic
arametric uncertainty. It has been shown mathematically that
he proposed approach characterizes lightly robust solutions. The
roposed methodology addresses the uncertainty by analyzing
he robustness of optimal and nearly optimal controllers in the
ominal scenario.
Two examples of robust controllers design have been used to

ompare the traditional approach and the one proposed in this
aper, the first example in a linear single-input single-output
ystem and the second example for a multiple-inputs multiple-
utputs system.
The first example has only one proportional integral controller

o tune and eight scenarios, and it has been used to clearly
ompare the robust controllers obtained with both approaches.
he choice of the maximum allowable degradation (ϵ) and the
eighborhood (n) are parameters that condition the lightly robust
ontrollers and their characterization, respectively. Both parame-
ers make physical sense, and the designer’s preferences will be
sed to set them. In this example, with the approach proposed
n this paper, the computational cost is seven times lower than
ith the traditional approach. In addition, it has been shown that
ll lightly robust controllers found with the traditional approach
ave been correctly characterized with the approach proposed
n this paper as neighbor/similar controllers have been found for
ach of them.
The second example produces similar conclusions. In this case,

0 scenarios have been considered with a model with ten un-
ertainty parameters. The greater the number of scenarios, the
ore interesting the computational cost reduction offered by

he proposed approach; in this example, it was 39 times lower.
here is also another advantage of the proposed approach. A
ultimodality issue arises when the design objectives to be opti-
ized are formed based on the aggregation of partial objectives.
ultimodality causes the apparition of significantly different con-

rollers that obtain similar performance in the space of the opti-
ized objectives. These controllers are also relevant and provide

nteresting alternatives to the designer as they offer different
alues on the partial objectives. These controllers are also charac-
erized in the approach presented in this paper, and this cannot
e done with the traditional approach.
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