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Abstract
In this manuscript, we design an iterative step that can be added to any numerical process
for solving systems of nonlinear equations. By means of this addition, the resulting iterative
scheme obtains, simultaneously, all the solutions to the vectorial problem. Moreover, the
order of this new iterative procedure duplicates that of their original partner. We apply this
step to some known methods and analyse the behaviour of these new algorithms, obtaining
simultaneously the roots of several nonlinear systems.

Keywords Iterative procedures · Nonlinear equations and systems · Simultaneous ·
Dynamical analysis

Mathematics Subject Classification 65H05 · 65H10

1 Introduction

In applied sciences, we need to solve a system of equations, and in many cases these systems
are nonlinear. We cannot always solve this type of systems in an exact way, due to the
complexity of the problem. For this reason, we obtain an approach to the solution instead of

Communicated by Baisheng Yan.

B Juan R. Torregrosa
jrtorre@mat.upv.es

Francisco Chinesta
Francisco.CHINESTA@ensam.eu

Alicia Cordero
acordero@mat.upv.es

Neus Garrido
neugarsa@mat.upv.es

Paula Triguero-Navarro
ptrinav@upvnet.upv.es

1 PIMM Lab and ESI Chair, Arts et Metiers Institute of Technology, Paris, France

2 Instituto de Matemática Multidisciplinar, Universitat Politècnica de València, València, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-023-02366-y&domain=pdf
http://orcid.org/0000-0002-9893-0761


227 Page 2 of 10 F. Chinesta et al.

(a) Newton’s scheme (b) Steffensen’s scheme

Fig. 1 Newton’s and Steffensen’s dynamical planes for p(x)

solving it exactly. These systems are described as F(x) = 0, where F : D ⊆ R
m → R

r is a
vectorial function of m variables.

One way to obtain these approximations is by using iterative methods. Iterative methods
create a sequence of approximations starting from a seed that, under specific conditions,
tends to the solution.

But, what if instead of searching for only one of the solutions, we aim to obtain more?
One option would be trying to obtain different solutions by using several different initial
approximations. But with this we have a problem, what happens if both estimates converge
to the same root? In the following, we are going to show this problem by representing the
dynamical planes for Newton’s and Steffensen’s methods to illustrate what we have just
mentioned. What we observe in these cases is if the initial points converge or not to the roots
of our problems. In this case, both methods are applied to p(x) = x2 − 1, with roots 1 and
−1.

We chose a mesh of 400 × 400 points to create the dynamical planes, and what we do
then is apply our methods to each one of these points, taking it as an initial estimation. The X
and Y axes correspond to the real and imaginary part of the initial estimate, respectively. In
addition, we set the maximum number of iterations to 80, and we consider the convergence
of the initial point to a solution if the distance to that root is less than 10−3. In orange, we
mark the initial points that converge to −1, in green those that converge to 1, and in black
those that do not converge to any root.

In this case, if we take in Fig. 1 two different initial approximations and both are in the
same basin of attraction, we obtain two sequences converging to the same solution.

Therefore, if we design a method that calculates simultaneously as many sequences of
approximations as solutions the problem has, we will avoid this problem. This is due to the
process of calculating an iterate takes into account who are the other iterates.

Schemes to find simultaneously roots of scalar equations are usually defined for poly-
nomial functions. They generate, starting with an initial set of estimations, sequences of
approximations that simultaneously tend to several roots. See, for instance (Petković et al.
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(a) Newton (b) Modified Newton

Fig. 2 Dynamical plane of Newton and modified Newton schemes

2014; Proinov 2015; Proinov and Vassileva 2016; Petković et al. 1997; Proinov and Ivanov
2019; Proinov and Vassileva 2019) and their references inside.

From Ehrlich’s method (Ehrlich 1967), the authors in Cordero et al. (2022), design an
iterative procedure that can be added to any root-finding scheme for solving arbitrary non-
linear functions. In addition, if the original iterative method has order of convergence p, the
new scheme will duplicate its order to 2p. In addition, the new procedure can be used for
obtaining the solutions of the equation simultaneously.

Next, we build the dynamical planes of the modified Newton’ and Steffensen’s methods,
applied to the same equation with the same convergence criterion. In this case, one axis
corresponds to one component of the initial estimation x (0)

1 , being the other axis component

x (0)
2 .We represent the initial point in purple if the component of the point on the x (0)

1 converges

to the root −1 and the component in the axis x (0)
2 converges to the root 1. We represent the

initial point in yellow if the part of the point on the x (0)
1 converges to the root 1 and the part

in the axis x (0)
2 converges to the root −1. If there is no convergence, we mark the starting

point in blue.
In Fig. 2, we showNewton’s andmodified Newton’s procedures applied in the polynomial

dynamical planes. The basins of attraction cover the entire space in case of Newton’s scheme,
and also for its variant for finding roots simultaneously.

In Fig. 3, dynamical planes are shown for Steffensen’ and modified Steffensen’s methods.
In this case, as we can see, there is no convergence for Steffensen’s method in some black
zones, for example at z = −5, but its variant converges to the roots at any point, except a
small zone where x (0)

1 = x (0)
2 = 0.

As we can see in the dynamical planes of the modified Newton’ and Steffensen’s methods,
taking suitable initial estimations x (0)

1 = 2 and x (0)
2 = 5 we converge to both roots. This can

not be achieved by iterating both non simultaneous methods in parallel, since both were in
the basin of the attraction of the root 1.

In this paper, we generalize this idea to nonlinear systems, thus designing an iterative pro-
cedure that can be added to any iterative method for solving systems of nonlinear equations.
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(a) Steffensen (b) Modified Steffensen

Fig. 3 Dynamical plane of Steffensen and modified Steffensen

Indeed, the new resultant method duplicates the order of convergence and can get several
solutions simultaneously.

In Sect. 2, we design thementioned step and study the order of convergence of the resulting
method. In the third Section, we carry out some numerical experiments with known iterative
procedures towhichwe add the simultaneous step, to see the performance of the new schemes.
We finish the work in Sect. 4 with some conclusions, derived from the study.

2 Convergence analysis

Let F(x) = 0, F : Rm → R
r , be a system of nonlinear equations, where the number of

unknowns is m and the number of equations is r . Note that the system is written as a column
vector of size r × 1.

Suppose that this system has n solutions, which are denoted by

αi = (
αi1 , αi2 , . . . , αim

)
for i = 1, . . . , n.

We design an iterative scheme to obtain all the solutions simultaneously. Therefore, we

take a set of n initial approximations which we denote by x (0)
i =

(
x (0)
i1

, x (0)
i2

, . . . , x (0)
im

)
,

i = 1, .., n. If we define

1

x (k)
i − x (k)

j

:=
(

1

x (k)
i1

− x (k)
j1

,
1

x (k)
i2

− x (k)
j2

, . . . ,
1

x (k)
im

− x (k)
jm

)

,

then we design the iterative step as:
⎧
⎨

⎩ x (k+1)
i = x (k)

i −
⎛

⎝F ′ (x (k)
i

)
− F

(
x (k)
i

)∑

j �=i

1

x (k)
i − x (k)

j

⎞

⎠

−1

F
(
x (k)
i

)
, (1)

for i = 1, . . . , n and k = 0, 1, . . .
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As we can see, the size of matrix F ′
(
x (k)
i

)
is r × m which matches with the size of the

product of F
(
x (k)
i

)
and

1

x (k)
i − x (k)

j

, j �= i , as the above vectors are a column vector of size

r × 1 and a row vector of size 1 × m, respectively.
We denote this method by PS. Now, we prove that this iterative procedure has quadratic

order.

Theorem 1 Let F : Rm −→ R
r be an enough differentiable function in a neighbourhood of

αi , Di ⊂ R
m. Let us also assume that F(αi ) = 0, for i = 1, ..., n and F ′(αi ) is nonsingular

for i = 1, ..., n. Then, by taking an estimation x (0)
i close enough to αi , i = 1, ..., n, sequence

{x (k)
i } of approximations generated by the PS scheme converges to αi with order 2.

Proof We denote by F = (F1, F2, . . . , Fr ), where Fp : Rm → R, for p = 1, 2, . . . , r . Now,

we consider the Taylor expansion of Fp

(
x (k)
i

)
around αi for p = 1, 2, . . . , r ,

Fp

(
x (k)
i

)
=

m∑

j1=1

∂Fp (αi )

∂x j1
ei,k j1

+
m∑

j1=1

m∑

j2=1

∂2Fp (αi )

∂x j1∂x j2
ei,k j1

ei,k j2
+ O3

(
ei,k

)
, (2)

where ei,k j1
= x (k)

i j1
− αi j1

for j1 ∈ {1, 2, . . . ,m} and i ∈ {1, . . . , n}, and where O3
(
ei,k

)

the elements where the sums of the exponents of ei,k j1
is greater than or equal to 3 with

j1 ∈ {1, 2, . . . ,m}.
If we derive this with respect to the variable xiq , with q = 1, 2, . . . ,m, we get

∂Fp

(
x (k)
i

)

∂xiq
= ∂Fp (αi )

∂xiq
+

m∑

j1=1

∂2Fp (αi )

∂xiq ∂x j1
ei,k j1

+ O2
(
ei,k

)
. (3)

Then,

∂Fp

(
x (k)
i

)

∂xiq
− Fp

(
x (k)
i

) m∑

j �=i

1

xiq − x jq
= ∂Fp (αi )

∂xiq
+

m∑

j1=1

∂2Fp (αi )

∂xiq ∂x j1
ei,k j1

−
m∑

j1=1

∂Fp (αi )

∂x j1
ei,k j1

m∑

j �=i

1

ei,kq − e j,kq + αiq − α jq

+ O2
(
ei,k

)
.

Then, we can rewrite the last equation as

∂Fp

(
x (k)
i

)

∂xiq
− Fp

(
x (k)
i

) m∑

j �=i

1

xiq − x jq
= = ∂Fp (αi )

∂xiq
+

m∑

j1=1

Aiq , j1ei,k j1
+ O2

(
ei,k

)
,

being

Aiq , j1 :=
⎛

⎝∂2Fp (αi )

∂xiq ∂x j1
− ∂Fp (αi )

∂x j1

m∑

j �=i

1

ei,kq − e j,kq + αiq − α jq

⎞

⎠ ,

for j1 ∈ {1, 2, . . . ,m}.
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If we write Aiq := (
Aiq ,1, Aiq ,2, . . . , Aiq ,m

)
, and then write A which rows are Ai1 , Ai2 ,

. . ., Aim we obtain that

F ′ (x (k)
i

)
− F

(
xki

) ∑

j �=i

1

xki − xkj
= F ′ (αi )

(
I + F ′ (αi )

−1 Aei,k
) + O2

(
ei,k

)
.

From the above relationship, it follows that
⎛

⎝F ′ (x (k)
i

)
− F

(
xki

)∑

j �=i

1

xki − xkj

⎞

⎠

−1

= (
I − F ′ (αi )

−1 Aei,k
)
F ′ (αi )

−1 + O2
(
ei,k

)
.

If we apply the above relation, then ei,k+1 has the following form

ei,k+1 = ei,k − (
I − F ′ (αi )

−1 Aei,k
) (
ei,k + C2e

2
i,k

) + O3
(
ei,k

)

= (
F ′ (αi )

−1 A − C2
)
e2i,k + O3

(
ei,k

)
.

It is, therefore, proven that PS has convergence order 2. �	
Let φ(x) be the fixed point of an iterative method. We define PSφ as follows

⎧
⎪⎨

⎪⎩

x (k+1)
i = φ

(
x (k)
i

)
,

x (k+2)
i = PS

(
x (k+1)
1 , . . . , x (k+1)

n

)
, for i = 1, . . . , n and k = 0, 1, . . .

that is, an iterative scheme in which we first perform method described by φ and then the PS
scheme.

Theorem 2 Let F : Rm −→ R
r be a sufficiently differentiable function in a neighbourhood

Di ⊂ R
m, of αi . Let us assume that F(αi ) = 0, for i = 1, ..., n and F ′(αi ) is nonsingular for

i = 1, ..., n. Then, by taking x (0)
i , an seed close enough to αi , for i = 1, ..., n, the sequence

of iterates {x (k)
i } generated by PSφ method converges to αi with order 2p, where p is the

order of convergence of scheme described by φ.

Proof By Theorem 1,

ei,k+2 = (
F ′ (αi )

−1 A − C2
)
e2i,k+1 + O3

(
ei,k+1

)
. (4)

Since we have that φ has order p, this means that ei,k+1 ∼ epi,k . Substituting the last relation
into the equation (4) we obtain that

ei,k+2 ∼ e2i,k+1 ∼
(
epi,k

)2 ∼ e2pi,k .

Thus, it is proven that procedure PSφ has order 2p. �	

3 Numerical experimentation

WeuseMatlab R2021bwith arithmetic precision of one thousand digits for the computational
calculations. As a stopping criterion we compare the mean of the norm of the function
evaluated at the last iterations with a tolerance of 10−50, that is, if we try to find n solutions,

1

n

n∑

i=1

∥∥∥F
(
x (k+1)
i

)∥∥∥ < 10−50.
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We denote by

∥
∥
∥F

(
x (k+1)

)∥
∥
∥ := 1

n

n∑

i=1

∥
∥
∥F

(
x (k+1)
i

)∥
∥
∥

and x (k+1) =
(
x (k+1)
1 , x (k+1)

2 , . . . , x (k+1)
n

)
.

We also use a maximum of 100 iterations as a stopping criterion.
For the numerical experiments, we use three different algorithms. The first one is the

method PS, that we have defined in (1). The others ones are PSN and PSN2 that are the
composition of PS with N and N2, where N denote Newton’s scheme and N2 denote
Newton’s method composed with itself, that is

⎧
⎪⎨

⎪⎩

x (k+1)
i = x (k)

i − F ′ (x (k)
i

)−1
F

(
x (k)
i

)
,

x (k+2)
i = x (k+1)

i − F ′ (x (k+1)
i

)−1
F

(
x (k+1)
i

)
, for i = 1, . . . , n and k = 0, 1, . . .

The numerical results we are going to compare the methods in the different examples are:

• the obtained approximation,
• the mean of the norm of the system evaluated in that set of approximations,
• the distance between the last two sets of iterates,
• the number of iterations needed to achieve the tolerance,
• the computational time and the ACOC (approximate computational convergence order),

defined by Cordero and Torregrosa in Cordero and Torregrosa (2007), defined as follows

p ≈ ACOC = ln
(‖x (k+1) − x (k)‖/‖x (k) − x (k−1)‖)

ln
(‖x (k) − x (k−1)‖/‖x (k−1) − x (k−2)‖) .

We are going to solve the following nonlinear problems.

Example 1 We aim to find the intersection points of the circle centred at (0, 0) with radius√
2 and the ellipse {(x, y) ∈ R

2 : 3x2 + 2xy + 3y2 = 5}, that is, find the points (x, y) that
are solutions of the following system denoted by S(x, y):

x2 + y2 = 2,

3x2 + 2xy + 3y2 = 5.

The exact solutions of this problem are
{(√

1+
√
3
2 , −1√

4+2
√
3

)
,

(
−

√
1+

√
3
2 , 1√

4+2
√
3

)
,

(√
1−

√
3
2 , −1√

4−2
√
3

)
,

(
−

√
1−

√
3
2 , 1√

4−2
√
3

)}
.

Then, we take as initial estimations x (0)
1 = (1,−0.5), x (0)

2 = (−1, 0.5), x (0)
3 = (0.5,−1)

and x (0)
4 = (−0.5, 1).

As we can see in Table 1, all the methods obtain good results for the chosen initial points.
The approximate computational convergence order coincides with the theoretical one or is
greater than that one.

Example 2 The second academical problem to be solved is to obtain all the critical points of
function g (x, y) = 1

3 x
3 + y2 + 2xy − 6x − 3y + 4.
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Table 1 Output for intersection of ellipse and circle

Scheme
∥
∥∥x(k+1) − x(k)

∥
∥∥

∥
∥∥S

(
x(k+1)

)∥
∥∥ Iteration ACOC

PS 2.1809×10−39 1.5874×10−77 8 1.9993

PSN 1.6021×10−94 5.635×10−188 4 3.5975

PSN2 2.5749×10−45 2.6135×10−362 3 9.2015

Table 2 Output of the equation ∇g (x, y) = 0

Scheme
∥
∥∥x(k+1) − x(k)

∥
∥∥

∥
∥∥∇g(x(k+1))

∥
∥∥ Iteration ACOC

PS 3.7423×10−40 5.5804×10−80 8 2.0003

PSN 6.7853×10−61 1.151×10−121 4 4.0

PSN2 2.3299×10−30 8.2801×10−244 3 8.2457

Table 3 Output of the system
F(x) = 0 Method

∥∥∥x(k+1) − x(k)
∥∥∥

∥∥∥F
(
x(k+1)

)∥∥∥ Iteration ACOC

PS 3.637×10−4 3.3385×10−7 17 2.0777

PSN 4.2398×10−4 4.5234×10−7 3 3.2312

PSN2 6.605×10−5 0 2 –

To calculate the critical points, we solve ∇g (x, y) = 0.
As initial approximations we take x (0)

1 = (0, 1) and x (0)
2 = (2,−1).

In this case, for all methods, vectors
(
−1, 5

2

)
and

(
3,− 3

2

)
are obtained as approximations

to the solutions.
As we can see in Table 2, all the methods obtain good results for the chosen initial points.

The approximate computational convergence order matches the theoretical one.

Example 3 Now, we solve the following nonlinear system with size 200 × 200

Fi (x) = (x2i − 1)(x2i+1 − 1) = 0, i = 1, . . . , 199

F200(x) = (x21 − 1)(x2200 − 1) = 0,

where x = (x1, x2, . . . , x199, x200) ∈ R
200.

This system has infinite solutions, but we aim to find two of them. As initial points we choose
x (0)
1 = 0.8(1, 1, . . . , 1) and x (0)

2 = −0.8(1, 1, . . . , 1).
In this case, we use Matlab2021b with arithmetic precision of 10 digits and 10−5 as

tolerance. As we can see in Table 3, the method that does not use a predictor needs 17
iterations to achieve that tolerance.

We conclude that in many cases is very useful to use a predictor scheme, due to the fact
that PSN2 obtains the exact solution in only 2 iterations. It is clear that methods with a higher
order of convergence converge faster.
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4 Outcomes and conclusions

In this paper, we define an iterative step that can be added to any iterative scheme for nonlinear
systems obtaining a new iterative method that simultaneously find several roots, which has
twice the order of the original scheme.

Different known iterative procedures were selected to add this step, and some experiments
were carried out numerically to confirm the good properties of the new iterative procedures.
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