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a b s t r a c t 

Background and objective: Prostate cancer is one of the most common diseases affecting men. The main 

diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a 

Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial in- 

telligence applications were developed to automatize it. The training process is often confronted with 

insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim 

of this work is to develop a generative deep learning model capable of synthesising patches of any se- 

lected Gleason grade to perform data augmentation on unbalanced data and test the improvement of 

classification models. 

Methodology: The methodology proposed in this work consists of a conditional Progressive Growing GAN 

(ProGleason-GAN) capable of synthesising prostate histopathological tissue patches by selecting the de- 

sired Gleason Grade cancer pattern in the synthetic sample. The conditional Gleason Grade information 

is introduced into the model through the embedding layers, so there is no need to add a term to the 

Wasserstein loss function. We used minibatch standard deviation and pixel normalisation to improve the 

performance and stability of the training process. 

Results: The reality assessment of the synthetic samples was performed with the Frechet Inception Dis- 

tance (FID). We obtained an FID metric of 88.85 for non-cancerous patterns, 81.86 for GG3, 49.32 for GG4 

and 108.69 for GG5 after post-processing stain normalisation. In addition, a group of expert pathologists 

was selected to perform an external validation of the proposed framework. Finally, the application of our 

proposed framework improved the classification results in SICAPv2 dataset, proving its effectiveness as a 

data augmentation method. 

Conclusions: ProGleason-GAN approach combined with a stain normalisation post-processing provides 

state-of-the-art results regarding Frechet’s Inception Distance. This model can synthesise samples of non- 

cancerous patterns, GG3, GG4 or GG5. The inclusion of conditional information about the Gleason grade 

during the training process allows the model to select the cancerous pattern in a synthetic sample. The 

proposed framework can be used as a data augmentation method. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Prostate cancer is the second most common cancer in men, 

ith almost 1.4 million new cases in 2020. Once its presence has 
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een suggested by clinical examination or laboratory tests, the 

ain tool for diagnosis is a prostate biopsy. Tissue samples are re- 

oved with a needle, laminated, stained with haematoxylin and 

osin (H&E) and stored in glass. The tissue sample is then anal- 

sed microscopically by an expert pathologist to determine the 

resence of cancerous patterns following the Gleason [1] classifi- 

ation system. This system groups the different tumour patterns 
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Fig. 1. Examples of patches presenting different Gleason patterns. (a) Non-cancerous well-differentiated glands; (b) Region containing GG3 atrophic dense patterns; (c) GG4 

containing individual poorly-formed glands; (d) GG5 containing files of isolated cells. 

i

e

b

c

l

i

g

l

o

F

t

p

fi

g  

1

p

f

p

o

t

t

i

o

o

w

s

p

i

s

g

p

l

o

R  

e

t

s

e

m

d

h

d

e

s

t

t

o

c

t

s

g

(

c

t

G

o

i

a

d

G

t

m

t

t

b

 

i

w

t

w

g

s

g

t

d

n

c

2

2

G

t

t  

s  

G

T

t  

n  

p

m

nto grades according to the cancer prognosis. According to Silva 

t al. [2] , the Gleason grade system categorizes prostate cancer 

ased on the patterns observed in the tissue. The GG3 grade in- 

ludes regions with atrophic well-differentiated and dense glandu- 

ar patterns. The GG4 grade contains patterns such as cribriform, 

ll-formed, large-fused, and papillary glandular patterns. The GG5 

rade includes isolated cells, files of cells, nests of cells without 

umina formation, and pseudo-rosetting patterns. Some examples 

f cancerous patterns belonging to different grades are shown in 

ig. 1 . 

Pathologists detect the presence of one or more Gleason pat- 

erns by visual inspection and grade them according to the most 

rominent grades (e.g. a sample with two main Gleason patterns, 

rst grade 4 followed by grade 3, would be assigned a combined 

rade of 4 + 3 = 7 ). This combined Gleason score ranges from 6 to

0 and is assigned at the biopsy level. 

In recent decades, digital pathology has become increasingly 

revalent. This is a subfield of pathology that focuses on the in- 

ormation in digitised data and involves scanning glass slides to 

roduce whole slide images (WSI). These high-resolution WSIs are 

ften divided into patches of a specific resolution to obtain de- 

ailed information on all regions present in the WSI. Patch ex- 

raction allows deep learning models to process the information 

n them, whereas WSIs are difficult to handle due to the amount 

f information contained in these pyramidal images. The success 

f artificial intelligence and machine learning solutions combined 

ith this type of data promotes the development of computer vi- 

ion applications to automate diagnoses, prognoses and disease 

redictions. Deep learning (DL) approaches have shown potential 

n many tasks in digital pathology, as mitosis detection [3] , tis- 

ue classification [4] , brain tumor classification [5] and glioma 

rading [6] . 

Gleason grading is a highly time-consuming task for expert 

athologists. This problem prompted the creation of artificial intel- 

igence models capable of performing Gleason grade classification 

f a patch. There are many examples in the literature, e.g. Silva- 

odríguez et al. [2] and Linkon et al. [7] , Arvaniti et al. [8] , Bulten

t al. [9] . The availability of a suitable dataset strongly conditions 

he performance of this models. A balanced dataset with enough 

amples for each class to allow learning is needed for these mod- 

ls to perform adequately, but this is often not possible [10] . In 

edical imaging and many other applications, we often deal with 

ata where we have one sample from the minority class against 

undreds of the majority. Such problems pose a challenge for pre- 

ictive deep learning (DL) algorithms as most classification mod- 

ls have been designed under the assumption of a balanced and 

ufficient number of samples per class, resulting in poor classifica- 

ion performances, especially for minority classes. All these limita- 

ions motivate the development of a generative DL model capable 

f synthesising WSI patches to overcome the imbalance between 

lasses to increase the classification model’s accuracy. The very na- 

t

2 
ure of the problem requires the implemented model to be able to 

ynthesise samples conditioned to the target class (i.e. the Gleason 

rade to be synthesised). 

In this work, we propose a conditional progressive growing GAN 

ProGleason-GAN) framework able to synthesise patches of a spe- 

ific Gleason grade. To the best of the author’s knowledge, this is 

he first time in the literature that an original Progressive Growing 

AN framework is modified to become a conditional GAN capable 

f synthesising patches of any desired Gleason grade. In the follow- 

ng lines, we summarize the main contributions of this paper: (i) 

 novel conditional Progressive Growing GAN framework for con- 

itional image synthesis (ii) synthesis of patches of any Gleason 

rade (iii) evaluation of the synthetic data by the Frechet Incep- 

ion Distance (iv) validation of the model as a data augmentation 

ethod for increasing the accuracy of Gleason grading classifica- 

ion (v) comparison with related works in the literature (vi) sys- 

ematic validation of the performance of the implemented model 

y a selected group of experts. 

The rest of the paper is organized as follows. In Section 2 , we

ntroduce the related work present in the literature. In Section 3 , 

e describe the database used in this work, SICAPv2, which is to 

he best of the author’s knowledge, the largest dataset of prostate 

hole slide images with pixel-level annotations of the Gleason 

rades at patch level by expert pathologists. In Section 4 , we de- 

cribe the methodology followed in this research to obtain the Pro- 

ressive Growing conditional GAN model. In Section 5 , we show 

he results obtained for evaluating of the synthetic data and vali- 

ating the improvement in the classification model’s accuracy. Fi- 

ally, Section 6 summarizes the conclusions extracted from the 

arried-out experiments. 

. Related work 

.1. Generative models for image synthesis 

Generative Adversarial Networks (GANs) were presented by 

oodfellow et al. [11] in 2014. These networks are comprised of 

wo separate neural networks, the generator G and the discrimina- 

or D . G takes a random noise vector z ∈ p z as input and outputs

ynthetic data G (z) ; D takes as input the output of the generator

 (z) and real images x ∈ p d ata to classify them as real or synthetic. 

he goal of training D is to maximize the probability of assigning 

he correct label to real D (x ) and synthetic data D (G (z)) . Simulta-

eously, G is trained to minimize log (1 − D (G (z))) . Hence, G and D

lay a two-player min-max game with value function V (G, D ) : 

in 

G 
max 

D 
V (D, G ) = E x ∼p data 

[ log D (x )] + E z∼p z (z) [1 − log D (G (z))] 

(1) 

After Goodfellow et al. introduced the first GAN framework, 

hey left the door open to improve this architecture to synthe- 
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ise data conditioned to an input label. This idea prompted the de- 

elopment of a conditional GAN by Mirza and Osindero [12] . This 

onditional GAN used a supervised approach allowing control of 

he class of the generated results, and had the advantage of provid- 

ng better representations for a multimodal generation. GANs can 

e converted into conditional models by adding additional infor- 

ation (y ) for both the generator and the discriminator. y could 

e auxiliary information, such as class labels or other modalities. 

he Eq. (1) is updated to: 

in 

G 
max 

D 
V (D, G ) = E x ∼p data 

[ log D (x | y )] 

+ E z∼p z (z) [1 − log D (G (z | y ))] (2) 

The previous GANs approaches showed some problems with 

tability and convergence. These problems encouraged the proposal 

f an upgraded version increasing the complexity of the network 

y adding CNN layers. This GAN was named Deep Convolutional 

AN (DCGAN). After that, an extension to synthesise two dimen- 

ion images was presented by Wu et al. [13] . They introduced 

ANs that were capable of synthesising 3D data using volumetric 

onvolutions. This approach synthesises novel objects like chairs, 

ables and cars. Additionally, they proposed a method to map 2D 

mages to 3D objects. 

Later, X Chen et al. proposed in [14] a method that, rather than 

mploying an unstructured noise vector z, decomposes the noise 

ector into two parts, one with incompressible noise and the other 

ith significant structured semantic features, called c. The incom- 

ressible noise part is uncorrelated with the output, and the se- 

antic feature part captures the structured information of the in- 

ut. The authors aimed to learn a representation of the data that 

isentangles the high-level semantics from the incompressible fac- 

ors of variation. To achieve this, the authors introduced a mutual 

nformation term in the GAN objective function, which encourages 

he generator to produce outputs highly dependent on the seman- 

ic features. Specifically, the mutual information term measures the 

nformation shared between the semantic feature vector and the 

enerated output. By maximizing this term, the generator learns 

o create outputs that contain meaningful and structured informa- 

ion captured by the semantic feature vector. This approach tries 

o solve the following expression: 

in 

G 
max 

D 
V I (D, G ) = V (D, G ) − λI(c; G (z, c)) (3) 

here V (D, G ) is the objective function presented in the original 

AN approach, I is the mutual information, G (z, c) is the synthetic 

ample, and λ is a regularization parameter. The objective is to 

aximize the mutual information between c and G (z, c) maximiz- 

ng I(c; G (z, c)) . The difference between InfoGAN with conditional 

ANs is that the latent code c is not known, it is learned during 

he training process. 

All proposed methods created synthetic samples from random 

nput noise but could not do the reverse operation. To address this, 

onahue et al. proposed the BiGAN model [15] . This was the first 

ime in the literature where the synthetic samples are mapped 

o their latent vector representation to determine which features 

etter represent the characteristics in the generated samples. An 

rchitecture present in the literature that has been employed for 

tyle transfer is CycleGAN [16] . Style transfer refers to transforming 

n image from one domain to another while preserving its content. 

ycleGAN, consisting of two generators and two discriminators, en- 

bles style transfer without needing paired image datasets. This in- 

ovation allows for applying different styles to images, even when 

aired style-reference images are not available. The Pix2Pix archi- 

ecture [17] is also noteworthy for style transfer but requires paired 

mages for training. Moreover, Karras et al. [18] proposed the first 

pproach by introducing progressive growth training. This frame- 

ork was named Progressive Growing GAN (ProGAN) and repre- 
3 
ented the central core of this paper. This fact motivates an in- 

epth explanation in the following sections of this paper, in which 

e also remark on the contributions of our proposed framework. 

Furthermore, a prominent architecture in the literature for style 

ransfer is StyleGAN [19] . This architecture is designed explic- 

tly for generating high-quality images with fine-grained control 

ver the style and appearance of the output. It has been success- 

ully utilized in various applications, including artistic style trans- 

er and domain adaptation. StyleGAN introduces a novel mapping 

etwork that enables the disentanglement of style and structure, 

llowing for the transfer of different visual characteristics across 

omains. 

.2. Generative models for histological image synthesis 

There are numerous applications of GANs in histological image 

nalysis [20] . Specifically, significant applications include stain nor- 

alisation, stain and domain adaptation, segmentation with super- 

ised models, synthesis enabling weakly supervised and unsuper- 

ised learning, and data generation and augmentation for classifi- 

ation purposes. 

Stain normalisation involves mapping an original image to a 

ormalised domain, reducing variability. In the study by Zhou et al. 

21] , they introduced a stain normalisation technique by lever- 

ging CycleGAN tailored for this purpose. Another approach to 

tain normalisation, as described in Zanjani et al. [22] , involved 

tilizing InfoGAN, where the latent information was substituted 

ith the lightness channel of the source image. In this scenario, 

he generator was trained using mutual information loss to learn 

he structured colour space, enabling the transformation of colour 

rom the original domain to the normalised domain. CycleGAN has 

lso been utilized for stain and domain adaptation. The distinc- 

ion from the previously mentioned method lies in its focus on 

omain shifting between different staining techniques. Some ex- 

mples in this field include the study by Xu et al. [23] , where they

dapted the CycleGAN architecture to handle samples with other 

tainings, such as H&E and IHC. Furthermore, in the approach pre- 

ented in Swiderska-Chadaj et al. [24] , the creation of histologi- 

al image patches is proposed by cropping and combining differ- 

nt patches with a smooth blending of the seams using a Cycle- 

AN. This method is referred to as multi-patch blending. Another 

rchitecture employed for this purpose is Pix2Pix [17] . In contrast 

o the approaches mentioned above that utilize unpaired data, this 

rchitecture uses paired data. An example of the application of this 

rchitecture can be found in Rana et al. [25] , where Pix2Pix is em- 

loyed to obtain unstained images from H&E images. 

The aforementioned Pix2Pix network has proven to be an al- 

ernative to conventional fully convolutional methods [26] . In this 

tudy, the architecture was adapted to the field of histology for the 

asal membrane segmentation of microinvasive cervix carcinoma. 

nother application of this architecture for segmentation can be 

ound in Cheng et al. [27] . In this work, masks are generated from 

enerated points, which are then translated into synthetic tissue 

amples. 

Regarding the use of GANs for data generation and augmen- 

ation, which is the main focus of this article, several note- 

orthy works in the literature are mentioned below. Wei et al. 

28] adapted the CycleGAN architecture for data augmentation. In- 

tead of performing domain adaptation, they trained their network 

o switch between normal and abnormal domains. In this way, 

hey successfully implemented a generative model that, given sam- 

les from one class, could generate their equivalents in the other 

lass. 

Examples of using the DCGAN architecture in histological image 

ynthesis can be found in Xue et al. [29] , Krause et al. [30] . In the

ork by Y. Xue et al., they introduced modifications to the original 
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Table 1 

SICAPv2 description. Amount of WSI with their respec- 

tive biopsy-level and number of patches for each Glea- 

son Grade. 

WSI 

Non cancerous GG3 GG4 GG5 Total 

37 60 97 16 182 

Patches 

Non cancerous GG3 GG4 GG5 Total 

4417 2222 4494 948 12,081 
CGAN architecture to enable conditional synthesis of cervical can- 

er samples based on their class. This framework was designed as 

 data augmentation method to enhance their classification mod- 

ls’ accuracy for different cervical cancer classes. They reported an 

ncrease in accuracy from 66.3% to 71.7%. The generated samples 

ad a resolution of 256x128; however, objective metrics assessing 

he quality of the generated data were not provided, with the fo- 

us being solely on the improved accuracy of sample classification. 

urthermore, J. Krause et al. proposed a novel DCGAN approach for 

ynthesizing histopathological images of colorectal cancer. This ar- 

hitecture incorporated an embedding layer to concatenate label 

nformation with the input data, enabling conditional synthesis by 

he DCGAN. The approach adopted in Oyelade et al. [31] shares 

imilarities with the DCGAN methodology but with a specific focus 

n abnormalities associated with breast images. The training was 

arried out on a category-based basis, emphasizing the detection 

nd characterization of breast abnormalities. 

By leveraging the DCGAN framework, the authors in Karimi 

t al. [32] presented an application of conditional GAN and DCGAN 

or synthesizing prostate patches of size 192 2 based on the Glea- 

on score. Specifically, the conditional GAN network was able to be 

rained on the entire dataset, while their DCGAN approach lacked 

onditional capability, leading them to train a separate model for 

ach class. Another example in the literature combining the ideas 

f conditional GAN and DCGAN is the ProstateGAN approach pro- 

osed in Hu et al. [33] . This architecture was used to synthesize 

ocal prostate diffusion images of size 32 2 . 

In [34] , a ProGAN approach that could synthesise brain tumour 

istopathological images was presented. In this study, two dis- 

inct ProGAN models were trained separately, each focusing on one 

f the two classes in their dataset. The authors demonstrate that 

raining a dedicated ProGAN model for each class and incorporat- 

ng synthetic data into the dataset resulted in a 5% increase in 

heir classification models’ accuracy. Another work using this ar- 

hitecture was presented by Teramoto et al. [35] . In this case, a 

roGAN architecture was used to synthesise lung cancer histolog- 

cal images. They aimed to improve the accuracy of their classifi- 

ation models to classify their samples into benign or malignant. 

ore specifically, they reported a 4.3% increase in the accuracy 

f their models. It is worth noting that the last two frameworks 

resented did not have the capacity for conditional synthesis. In 

36] , they proposed a multi-scale conditional GAN for high- reso- 

ution, large-scale histopathology image generation and segmenta- 

ion. This model is composed of a hierarchical arrangement of GAN 

tructures, with each level dedicated to generating and segmenting 

mages at a distinct scale. 

Moreover, a novel conditional deep learning architecture based 

n StyleGAN [19] and BigGAN [37] was proposed in Quiros et al. 

38] in which colorectal and breast cancer samples were synthe- 

ised. In recent years, modern architectures such as transform- 

rs have been employed in histological imaging for image syn- 

hesis. For instance, in MedViTGAN [39] , the use of a conditional 

AN without convolutions based on transformers is proposed as a 

ethod for data augmentation. 

Therefore, this work proposes an approach that combines 

he progressive training technique with conditional synthesis for 

istopathological image synthesis, specifically for generating 10 ×
agnification patches containing the specified cancerous pattern 

ased on the input condition related to the Gleason scale. More- 

ver, the evaluation using the FID metric and a publicly available 

ataset with pixel-level annotations of the Gleason grade for the 

atches enables a more objective assessment for future research 

nd comparisons. As discussed in this article, this dataset exhibits 

ufficient diversity of patterns in local structures that the model 

an learn. This fact offers an advantage over other methods pro- 

osed in the literature as it can learn more complex and diverse 
4 
atterns. Additionally, the performance improvement of classifica- 

ion models is evaluated using the proposed method as a data aug- 

entation technique. Furthermore, to enhance the present study’s 

ompleteness and validity, a group of expert pathologists was se- 

ected to conduct a study that directly evaluates the quality of rep- 

esentation for each cancerous pattern in the synthetic samples, as 

escribed in this article. The combination of all these aspects rep- 

esents an innovative approach within the current literature, high- 

ighting the unique contribution of our proposed method to the 

eld. 

. Materials: SICAPv2 database 

The database used in this study was presented in Silva- 

odríguez et al. [2] and it is publicly available at SICAPv2 dataset . 

his is the most extensive public collection of prostate H&E biop- 

ies with patch-level annotations of Gleason grades. 

To the best of the author’s knowledge, there exist five main 

atabases containing prostate cancer tissue images. The Cancer 

enome Atlas project released the largest database of up to 720 

rostate biopsy slides [40] . However, the absence of annotations 

or Gleason grades at both the local and biopsy levels restricts the 

tility of these data [2] . Another database shared by Arvaniti et al. 

8] provides pixel-level annotations of Gleason patterns for 886 

mall regions of slides (cores of TMAs). Unfortunately, these cores 

o not adequately represent the diverse patterns found in local 

tructures of prostate cancer and benign lesions, thus lacking clin- 

cal relevance for slide-level Gleason score diagnosis. Similar limi- 

ations exist in the database presented at the Gleason19 challenge 

n the MICCAI 2019 conference [41] , which includes 331 annotated 

ores by different pathologists and the dataset used in Ing et al. 

42] comprising 625 isolated patches. Finally, another large dataset 

as presented in the PANDA challenge [43] ; however, its Gleason 

core labels were at the biopsy level, making it not directly appli- 

able to this study. 

SICAPv2 includes 155 biopsies from 95 patients who signed 

nformed consent. Tissue samples were sliced, laminated, stained 

ith Hematoxylin and Eosin (H&E) and digitised using the Ven- 

ana iScan Coreo scanner at 40x magnification to obtain WSI. Ex- 

ert pathologists analysed the slides obtained at Hospital Clínico 

f Valencia and assigned a combined Gleason score per biopsy. In 

ases where the Gleason grade of a sample was uncertain, experts 

et the label by consensus to avoid inter-observer variability. To 

andle large WSI, we down-sampled them to patches of 10 × reso- 

ution of size 512 2 and overlap of 50% between them. Patches with 

ess than 20% of tissue without cancerous patterns annotated by 

he pathologists were discarded. After this procedure, SICAPv2 con- 

ained 4417 non-cancerous patches, 2222 labelled as GG3, 4494 as 

G4, and 948 as GG5. A summary of the database description is 

resented in Table 1 . 

https://data.mendeley.com/datasets/9xxm58dvs3/1
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Fig. 2. Overview of the proposed prostate histopathological image synthesis with conditional progressive growing generative adversarial network. 
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. Methodology 

The proposed framework is based on a conditional progressive 

rowing GAN (ProGleason-GAN) able to synthesise prostate histol- 

gy patches of any Gleason grade. The workflow, which is com- 

osed of a generator θ g and discriminator θd , is presented in Fig. 2 . 

he details of each component are given in Appendix A . 

.1. CGAN for prostate image synthesis 

The methodological core of this work is based on a conditional 

enerative adversarial network. In this sense, the generator model 

ims to produce synthetic prostate histology patches containing 

he cancerous pattern associated with the Gleason grade. Formally, 

e denote the random input noise as Z = { z 1 , . . . , z i , . . . , z M 

} , where

 i is the i th instance obtained from a normal distribution N (μ = 

 , σ = 1) and M is the total number of generated samples. We note

s N the total number of patches in the dataset, and for conve- 

ience, we give M the same value as N. Additionally, the genera- 

or is provided with the specified Gleason grade. We denote it as 

G = { gg 1 , . . . , gg i , . . . , gg M 

} , where gg i represents the i th Gleason

rade associated with the i th noise instance. The values of the gg i 
nstances range from 0 to 3 for non-cancerous, GG3, GG4 and GG5, 

espectively. Therefore, the synthetic patch generation is defined as 

ollows: 

 = f (Z, GG ; θ g ) (4) 

here I ∈ Z 

m ×n ×3 represents all the generated synthetic prostate 

istology patches. Here, m represents the height, n represents the 

idth, and the number 3 refers to the three RGB channels. Addi- 

ionally, θ g denotes the model weights. 

The discriminator model aims to classify input patches as real 

1) or fake (0). Let us define X = { x 1 , . . . , x i , . . . , x N } , where x i repre-

ents the i th instance of real prostate histology patches. The input 

o the discriminator is B = X ∪ I. The objective is to predict ( ̂  Y ) for

ach instance, which can be defined as follows: 

ˆ 
 b = f (B, GG ; θ d ) (5) 

here θd denotes the discriminator model weights. 

In the following subsections, we explain the minibatch standard 

eviation and pixel normalisation methods, which are used to en- 

ich the variety of learning on the training data and guarantee their 

tability. Finally, we introduce the loss function used in this frame- 

ork. 

Minibatch standard deviation. GANs naturally tend to learn 

nly a subset of the training dataset. To solve this problem, we use 

 “minibatch discrimination” [44] . We compute the standard de- 

iation across the feature maps in the minibatch, encouraging the 
5 
enerated images to show similar statistics to training images. The 

roposal does not have any learnable parameters or hyperparame- 

ers. First, we compute the standard deviation for each feature in 

ach spatial location across the minibatch. We reduce all the statis- 

ics computed to a single value by averaging over all the features 

nd spatial locations. Then, we replicate this value and concate- 

ate it to all spacial locations across the minibatch, creating an 

dditional feature map. We can place this layer anywhere in the 

iscriminator, but it performs better if inserted towards the end. 

Pixel normalisation. Sometimes the magnitudes of the gener- 

ted values in the generator and the discriminator spiral out of 

ontrol due to their competition. To solve these problems, we nor- 

alise the feature vector in each pixel to unit length in the gen- 

rator after each convolution layer. We use a variant of the “lo- 

al response normalisation” proposed in Hinton et al. [45] . The ex- 

ression of the pixel normalisation is shown in Eq. (6) , where L 

epresents the number of feature maps, (a 
j 
x,y ) the pixel to be nor- 

alised, and ε the error to avoid zero values. 

 x,y = 

√ √ √ √ 

1 

L 
·

L −1 ∑ 

j=0 

(a j x,y ) 
2 + ε (6) 

Loss function. To optimize the proposed model, we used the 

asserstein GAN with Gradient Penalty (WGAN-GP) loss function 

46] . First, we set the learning rate η, the c value that sets the max-

mum oscillation range of the gradients to [ −c, c] and the batch 

ize bs . A batch of real x (i ) and synthetic data G (z (i ) ) is sampled.

he loss function of the discriminator is implemented as Eq. (7) : 

oss D = 

1 

bs 
·

bs ∑ 

i =1 

(D (x (i ) )) − 1 

bs 
·

bs ∑ 

i =1 

(D (G (z (i ) ))) (7) 

fter computing the gradients, the weights of the discriminator are 

pdated. Then, we define the loss function of the generator as fol- 

ows: 

oss G = 

1 

bs 
·

bs ∑ 

i =1 

(D (G (z (i ) ))) (8) 

WGAN-GP improves the training of GAN as it aims to minimize 

he distance between two probabilistic distributions, which are the 

istribution of the real data and the synthetic one. 

.2. ProGleason-GAN 

Due to the complexity of the problem, the CGAN framework 

annot learn to synthesise patches of the target resolution 256 2 . It 

s necessary to train the model progressively at lower resolutions 
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Fig. 3. Fade-in new resolution layers to the discriminator and generator. 
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o solve this problem. Progressively increasing the size of the net- 

ork has several benefits. As we increase the resolution little by 

ittle, we ask the network to learn a more straightforward question 

han learning how to generate the target resolution from scratch. 

e start training with 4 2 resolution patches and then progressively 

ncrease the resolution to 256 2 , adding layers to the networks as 

escribed in Fig. 3 . This way of training allows the model to learn

igh-level features of the image distribution first and then progres- 

ively increase the complexity of the details instead of learning the 

hole information at once. 

The original Progressive Growing GAN architecture proposed by 

arras et al. [19] is modified to introduce conditional information 

bout the Gleason grade. This modification allows the trained net- 

ork to synthesise patches containing the specified Gleason grade 

ancerous pattern. The generator and the discriminator receive this 

nformation during the training process. In the generator case, the 

leason grade is given after an embedding layer in charge of con- 

erting the value to a fixed-length vector of defined size. This vec- 

or is concatenated to the input noise. Moreover, the discrimina- 

or receives the information about the Gleason grade, and the em- 

edding layer transforms it into a fixed-length vector concatenated 

o the input data as an additional channel. In this work, we per- 

orm the conditional synthesis without introducing any additional 

erm to the loss function. The introduction of the embedding in- 

ormation about the Gleason grade encourages the generator and 
6 
he discriminator to learn the features and the difference between 

ach class. 

The generator and the discriminator grow both simultaneously. 

ll layers in both networks remain trainable during the training 

rocess. We add new resolution layers, fading them as illustrated 

n Fig. 3 . This method prevents previous smaller-resolution layers 

rom suffering a sudden shock. Fading in the new layers provides 

ore stability to the training process when we double the reso- 

ution of the generator ( G ) and discriminator ( D ). Figure 3 shows

ow it was increased from the prior resolution ( P R ) in (a) to the

pscaled resolution ( UR ) in (c) in the case of the generator, while

he reverse is done in the discriminator. Transition (b) shows how 

he new resolution layers are treated as residual blocks whose 

eight α increases linearly from 0 to 1. This value rises progres- 

ively, starting from a small value until it reaches 1 in the last 

raining epoch. In this way, the new layer is introduced gradually 

o prevent destabilization of the training process. ToRGB represents 

 layer that transforms feature vectors to RGB space and does the 

everse operation from RGB. We use an upscale method with the 

earest neighbour algorithm to increase the resolution in the gen- 

rator and average pooling to do the opposite in the discriminator, 

oth by a factor of two. 

We start training both generator ( G ) and discriminator ( D ) at

he lowest resolution, 4 2 increasing the resolution by a factor of 2 

ntil we reach the target resolution, 256 2 . 
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Table 2 

SICAPv2 split. Number of patches selected for the 

training and test subsets. 

Train partition 

Non cancerous GG3 GG4 GG5 Total 

3773 1829 3641 716 9959 

Test partition 

Non cancerous GG3 GG4 GG5 Total 

644 393 853 232 2122 
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Table 4 

Weighted FID results for all the frameworks 

considered in this work: CGAN, ProGAN and 

ProGleason-GAN. Additionally, we provide the 

metrics obtained after the stain normalisation 

process. 

Method FID 

CGAN 160.55 

CGAN + Stain Norm 207.22 

ProGAN 126.51 

ProGAN + Stain Norm 86.13 

ProGleason-GAN 120.14 

ProGleason-GAN + Stain Norm 77.85 
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. Experiments and results 

This section shows the experiments carried out to validate the 

roposed framework. First, the results of the proposed method 

ProGleason-GAN) are shown and compared with the original Pro- 

AN. In addition, the ProGleason-GAN’s performance is validated 

sing a staining normalisation method to reduce the variability of 

he different stains. Then, the synthetic sample quality and its abil- 

ty to represent the different Gleason grades are validated by a 

roup of experts. Finally, the effectiveness of the proposed model 

s a data augmentation strategy is quantitatively evaluated. 

.1. Experimental setting 

Database partitioning. We used the partition given in Silva- 

odríguez et al. [2] to split the database in the training and test 

ets. To avoid model overestimation, the splitting was performed 

t patient level (see Table 2 ). 

Implementation. All the validated experiments were imple- 

ented using Pytorch version 1.9.1 and Python 3.7. Experiments 

ere conducted on the NVIDIA DGXA100 system. The code is pub- 

icly available on ProGleason-GAN GitHub repository 

Model hyper-parameters. The optimal hyper-parameters com- 

ination was achieved by training the models during 100 epochs, 

sing Adam optimizer, with a 0 value for β1 and 0.99 for β2 , a 

earning rate of 0.001 and the WGAN-GP as loss function. In the 

ase of batch size, it was set to 64 for resolutions from 4 2 to 128 2 

nd 32 for 256 2 . The optimal size of the generator input was 512. 

Evaluation. We used the Frechet Inception Distance (FID) 

47] to evaluate the proposed model. This metric allows assess- 

ng the difference between two multidimensional Gaussian distri- 

utions. In this case, features corresponding to synthetic and real 

atches were extracted using the Inception V3 model trained on 

he ImageNet dataset [48] . We denote the feature distribution of 

ynthetic and real patches as N (μ, C) and N (μw 

, C w 

) , respectively.

he FID expression is shown in the following equation: 

 ID = ‖ μ − μw 

‖ 

2 + T r(C + C w 

− 2(C · C w 

) 
1 
2 ) (9)

Note that FID ∈ [0 , + ∞ ] , being 0 the optimal value. We obtained

he FID metric for each Gleason grade and a weighted average to 

btain the global FID (see Table 3 for the class weight). The pur- 

ose of using these weights is based on the fact that each Gleason 
Table 3 

SICAPv2 weight distribution 

for the test subset. 

Class weights 

Gleason grade Test 

Non-cancerous 0.3035 

G3 0.1852 

G4 0.4020 

G5 0.1093 

7 
rade has a different number of samples and, therefore, different 

epresentations in the dataset. 

In addition, we calculated the area under the ROC curve (AUC) 

f the classification carried out by the expert group, and precision, 

1-Score and accuracy metrics for the data augmentation strategy 

alidation. 

.2. Ablation experiments 

Quantitative results. Table 4 shows the weighted FID results 

or all the frameworks considered in this work: CGAN, ProGAN and 

roGleason-GAN. Progressive training using the ProGAN framework 

rovides a significant performance improvement compared to the 

GAN approach. However, as previously mentioned, the ProGAN 

rchitecture has no conditional synthesis capacity. The proposed 

onditional progressive framework (ProGleason-GAN) provides the 

est performance regarding the FID metric evaluation. After the 

taining normalisation process proposed in Macenko et al. [49] , 

he best results are obtained by the proposed method, particu- 

arly, a 35.2% improvement in the weighted FID metric. The effect 

f stain normalisation has been evaluated on all proposed meth- 

ds to assess its impact on the FID metric results. It is remark- 

ble that, in the case of CGAN, it leads to a degradation of the re-

ults. This can be attributed to the low quality of the generated 

amples and their dissimilarity to the original ones, which may 

esult in the stain normalisation excessively altering these sam- 

les and further deviating them from the originals. Conversely, for 

roGAN and ProGleason-GAN, stain normalisation improves the re- 

ults. ProGleason-GAN achieves the best outcomes, even when the 

ffect of stain normalisation is eliminated. 

Table 5 shows the FID results obtained for the different frame- 

orks at each Gleason grade. As the original ProGAN method has 

o conditional synthesis capacity, its results were not included in 

able 5 . 

These results show the underperformance of the CGAN archi- 

ecture compared to the proposed model, as the complexity of the 

etwork is not adequate to learn the features of the input images. 

s expected, since non-cancerous and GG4 have more patches for 

earning, ProGleason-GAN obtains the best results for these classes. 

Qualitative results. To qualitatively evaluate the proposed 

ethod, we provide images synthesised by the CGAN, ProGAN and 
Table 5 

FID for conditional experiments. NC for non cancerous patterns and GG3, GG4, 

GG5 for each Gleason grade. 

Test 

NC GG3 GG4 GG5 

CGAN 198.45 172.51 152.2 165.7 

CGAN + Stain Norm 219.43 217.43 191.18 214.98 

ProGleason-GAN 92.14 128.53 127.86 155.35 

ProGleason-GAN + Stain Norm 88.85 81.86 59.32 108.69 

https://github.com/cvblab/ProGleason-GAN
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Fig. 4. Synthetic patches generated with CGAN framework. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5. 

P

a

m

p

s

T

m

t

o

t

B

i

a

p

b

T

i

G

r

p

f

n

t

p

v

f

c

p

roGleason-GAN frameworks. Figure 4 shows some patches gener- 

ted with the CGAN approach. This framework cannot learn the 

orphology and features of each Gleason grade. It captures color 

roperties and spatial distribution but cannot produce complex 

tructures such as glands or nuclei. 

Some patches generated with the ProGAN are shown in Fig. 5 . 

his framework is able to generate samples with the real patch 

orphology and distribution, but it can not reproduce with detail 

he cancerous patterns present in SICAPv2. The structure morphol- 

gy is unclear and seems to be a combination of different struc- 

ures in all Gleason grades but not representing each. 

Figure 6 shows some synthesised examples by ProGleason-GAN. 

y introducing conditional information in a progressive training, it 

s observed that samples of different Gleason grades are different 

nd share features with samples of the same class. Therefore, the 

roposed model can identify each class’s intrinsic features. 
Fig. 5. Synthetic patches generated with

8 
Figure 7 shows some samples generated for each Gleason grade 

y ProGleason-GAN after the stain normalisation post-processing. 

he generated samples and the real data showed more homogene- 

ty. The non-cancerous images show well-differentiated glands. 

G3 images show how the density of glands increases and ir- 

egularities appear. Furthermore, GG4 represents a high-grade and 

oorly differentiated carcinoma. Finally, GG5 shows the least dif- 

erentiated cancerous pattern, where a high density of disorga- 

ized nuclei characterizes chaotic tissue behavior. Therefore, syn- 

hetic images show the same patterns as the real ones. 

ProGleason-GAN is capable of synthesizing prostate tissue 

atches that are sufficiently realistic. One of the advantages pro- 

ided by our model is the absence of a specific term in the loss 

unction for conditional synthesis. This simpler approach reduces 

omplexity in the network and promotes stability in the learning 

rocess during training. Additionally, employing the FID metric for 
 the original ProGAN framework. 
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Fig. 6. Synthetic patches generated with ProGleason-GAN. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5. 
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5

o

valuation enables future comparisons with other GAN architec- 

ures trained on the same dataset for this task. A direct compar- 

son with the existing literature would be inaccurate since the em- 

loyed metric is conditioned on the dataset used. Another notable 

ontribution of this approach is that it represents a step forward 

n the on-demand synthesis of complete WSI, enabling not only 

he synthesis of the constituent patches but also the selection of 

he cancerous pattern contained within them. 

Our method outperforms existing approaches in several vital as- 

ects. In [32] , they focus on synthesizing patches of size 192 2 . In

ontrast, our method achieves a higher resolution of 256 2 , result- 

ng in more detailed and visually appealing synthetic images. Ad- 

itionally, the study by Karimi et al. [32] does not provide a com- 

rehensive evaluation metric such as FID, which is essential for ob- 

ectively assessing the quality of the generated images. In contrast, 

ur method incorporates FID evaluation, allowing for more objec- 

ive comparison and validation of the results. Furthermore, their 

CGAN approach requires training a separate model for each class, 

hereas our method is capable of handling all data in a more uni- 
Fig. 7. Synthetic patches generated with ProGleason-GAN framework and 

9 
ed manner. This simplifies the training process and enables our 

odel to capture and synthesize the distinctive features of various 

lasses effectively. Regarding the work presented in Hu et al. [33] , 

heir focus lies in synthesizing prostate diffusion images at a res- 

lution of 32 × 32 , which is significantly lower and of a different 

ypology compared to the approach presented in this study. The 

omplexity of this type of images is also considerably lower than 

he images addressed in our work. In [36] , they employ the FID 

etric for evaluating their results; however, their baseline model 

s not the standard InceptionV3, preventing direct comparison. Fur- 

hermore, their dataset is smaller, consisting of approximately 1500 

atches. Additionally, their dataset does not have participant-level 

artitioning, making it uncertain whether patches from the same 

atient are used in both the training and testing phases. 

.3. External validation protocol 

To demonstrate the usefulness of the proposed method, a panel 

f experts validated the quality of the synthetic images. Experts 
stain normalisation. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5. 
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Fig. 8. Confusion matrix for expert pathologist classification. (Left) Classification for real and synthetic samples; (Middle) Gleason grade classification for real samples; (Right) 

Gleason grade classification for synthetic ones. 
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Table 7 

Results for the patch-level Gleason grading in the test set for the model 

proposed in Silva-Rodríguez et al. [2] with the original SICAPv2 dataset 

(S) and upsampling with our proposed data augmentation method (S + P). 

The metrics presented are precision, F1-Score, computed per class, and 

global accuracy. 

Precision F1-S ACC 

S S + P S S + P S S + P 

NC 0.8081 0.8376 0.8348 0.8473 – –

GG3 0.5096 0.5529 0.4908 0.5981 – –

GG4 0.6394 0.7087 0.6667 0.6934 – –

GG5 0.5714 0.6284 0.4301 0.5542 – –

Avg 0.6321 0.6819 0.6056 0.6733 0.6673 0.7078 

c

e

5

a

c

S

i

2

s

ere asked to identify whether a sample was real or synthetic and 

o establish its Gleason grade. In total, 320 samples (160 real and 

60 synthetic) were analysed. In addition, all Gleason grades were 

qually represented, resulting in 40 samples for each grade and 

mage type (real and synthetic). 

Figure 8 shows the results obtained by the expert panel. Ex- 

ert pathologist incorrectly identified on average 20.6% of the real 

amples as synthetic. As for synthetic images, approximately 31% 

ere considered to be real. Regarding the Gleason grading, GG4 

as better detected in synthetic samples, and approximately the 

5% of the GG5 samples were identified in synthetic images, one 

f the most critical cancerous patterns to be appropriately recog- 

ized due to their advanced tumoral stage. 

Finally, we tested if there was a statistically significant differ- 

nce in establishing gleason grade on synthetic or real images. For 

his purpose, the area under the ROC curve (AUC) metric was used. 

able 6 shows the AUC metric for classifying synthetic (S) and real 

R) patches for each expert pathologist. In addition, the p -value 

with α = 0 . 05 ) is provided. 

Table 6 show no statistically significant difference between 

erforming the grading with real or synthetic images. This fact 

emonstrates that the implemented model correctly learned to 

istinguish and represent the different Gleason grades. Regarding 

G4 detection by the Expert 2, a p -value close to the 95% con- 

dence interval limit is obtained. This could be due to the same 

atch may contain different cancer patterns according to the Glea- 

on scale. This fact introduces inaccuracies during the learning pro- 
Table 6 

AUC metric for gleason grading with real (AUC-R) and synthetic (AUC- 

S) images and p-value from the statistical inference study in the expert 

group. 

Expert 1 Expert 2 

AUC-R AUC-S p -value AUC-R AUC-S p -value 

NC 0.8078 0.7201 0.1886 0.9125 0.8458 0.1964 

GG3 0.7183 0.7192 0.9904 0.8458 0.8166 0.6239 

GG4 0.5947 0.5281 0.3767 0.8833 0.775 0.0667 

GG5 0.7441 0.6643 0.2625 0.8583 0.8291 0.6132 
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10 
ess, as the most prevalent Gleason grade of a sample was consid- 

red as a label. 

.4. Data augmentation strategy validation 

This section shows the validation of the proposed method as 

 data augmentation strategy. For this purpose, we compare the 

lassification model used in Silva-Rodríguez et al. [2] trained with 

ICAPv2 and SICAPv2 augmented with the proposed model. Specif- 

cally, the minority classes (GG3 and GG5) were augmented by 

0%, increasing 366 GG3 samples and 144 GG5 samples. The re- 

ults obtained are shown in Table 7 . The proposed model sig- 

ificantly improves the classification model performance for all 

lasses. This fact supports the effectiveness and validity of the pro- 

osed work as a patch synthesis method and data augmentation 

trategy. 

. Conclusions 

In this study, we propose a conditional Progressive Growing 

AN framework to synthesize prostate tissue patches with any 

leason Grade. The proposed framework obtained a weighted FID 

etric for all Gleason grades of 77.85, compared to the 160.55 and 

20.14 achieved by the CGAN and ProGAN, respectively. To asses 

he quality of the synthetic samples, a group of expert pathologists 

erformed an external validation. The statistical study determined 
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o significant difference in establishing the Gleason grade with 

ynthetic or real samples. Additionally, we pretrained a classifica- 

ion model using the synthesized images and SICAPv2 dataset. The 

roposed method improved the classification accuracy by 4.05% 

ompared to the network fine-tuned only with SICAPv2. These 

ndings confirmed the effectiveness of the use of ProGleason-GAN- 

enerated images. 

Concerning the limitations of this study, the resolution and gen- 

rated image size, as well as the amount of training data, may 

lso pose challenges to the model’s applicability in clinical settings. 

or instance, while the model’s resolution was adequate for this 

tudy, using higher resolutions may be necessary for clinical envi- 

onments, where images with more detail are required for diagno- 

is and treatment planning. It should be noted that in this work, 

he resolution of the synthesized images was constrained to 256 2 

ue to hardware restrictions. Achieving higher resolutions, such as 

12 2 or 1024 2 , is possible by incrementing the model complexity 

f the proposed approach (and, of course, the hardware resources). 

Moreover, the limited size of the training database, coupled 

ith the inherent variability of clinical data, may reduce the 

odel’s generalizability to different clinical scenarios. It is worth 

mphasizing that obtaining databases with pixel-level annotation 

f prostate patches based on the Gleason score pattern can be a 

hallenging task. 

In conclusion, while this study provides valuable insights into 

he potential utility of deep learning in prostate cancer detection, 

t is essential to acknowledge the identified limitations, including 

hose of the model’s applicability in clinical settings. Future re- 

earch should strive to address these limitations and evaluate the 

odel’s performance in real-world clinical scenarios. In future di- 

ections, our research will be centred on the synthetic generation 

f complete Whole Slide Images (WSIs) leveraging the findings and 

nsights from this study. 
Table A.8 

Architecture of the generator for 256 2 resolutio

Generator 

Latent vector + Embedding (Gleason Grade)

Pixel Norm 

Conv transpose 4 × 4 

Conv 3 × 3 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 4 × 4 + Pixel Norm 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 3 × 3 + Pixel Norm 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 3 × 3 + Pixel Norm 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 3 × 3 + Pixel Norm 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 3 × 3 + Pixel Norm 

Upsample 

Conv 3 × 3 + Pixel Norm 

Conv 3 × 3 + Pixel Norm 

Conv 1 × 1 
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ppendix A. Detailed generator and discriminator architectures 

Tables A.8 and A.9 . 
n. 

Activation Output shape 

 – (512 + 512) × 1 × 1 

– 1024 × 1 × 1 

Leaky ReLU 512 × 4 × 4 

Leaky ReLU 512 × 4 × 4 

– 512 × 8 × 8 

Leaky ReLU 512 × 8 × 8 

Leaky ReLU 512 × 8 × 8 

– 512 × 16 × 16 

Leaky ReLU 512 × 16 × 16 

Leaky ReLU 512 × 16 × 16 

– 512 × 32 × 32 

Leaky ReLU 512 × 32 × 32 

Leaky ReLU 512 × 32 × 32 

– 512 × 64 × 64 

Leaky ReLU 256 × 64 × 64 

Leaky ReLU 256 × 64 × 64 

– 256 × 128 × 128 

Leaky ReLU 128 × 128 × 128 

Leaky ReLU 128 × 128 × 128 

– 128 × 256 × 256 

Leaky ReLU 64 × 256 × 256 

Leaky ReLU 64 × 256 × 256 

Leaky ReLU 3 × 256 × 256 

https://doi.org/10.13039/100010661
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Table A.9 

Architecture of the discriminator for 256 2 resolution. 

Discriminator Activation Output shape 

Input image + Embedding (Gleason Grade) – (3 + 1) × 256 × 256 

Conv 1 × 1 + Pixel Norm Leaky ReLU 16 × 256 × 256 

Conv 3 × 3 + Pixel Norm Leaky ReLU 16 × 256 × 256 

Conv 3 × 3 + Pixel Norm Leaky ReLU 32 × 256 × 256 

Average Pooling – 32 × 128 × 128 

Conv 3 × 3 + Pixel Norm Leaky ReLU 32 × 128 × 128 

Conv 3 × 3 + Pixel Norm Leaky ReLU 64 × 128 × 128 

Average Pooling – 64 × 64 × 64 

Conv 3 × 3 + Pixel Norm Leaky ReLU 64 × 64 × 64 

Conv 3 × 3 + Pixel Norm Leaky ReLU 128 × 64 × 64 

Average Pooling – 128 × 32 × 32 

Conv 3 × 3 + Pixel Norm Leaky ReLU 128 × 32 × 32 

Conv 3 × 3 + Pixel Norm Leaky ReLU 256 × 32 × 32 

Average Pooling – 256 × 16 × 16 

Conv 3 × 3 + Pixel Norm Leaky ReLU 256 × 16 × 16 

Conv 3 × 3 + Pixel Norm Leaky ReLU 512 × 16 × 16 

Average Pooling – 512 × 8 × 8 

Conv 3 × 3 + Pixel Norm Leaky ReLU 512 × 8 × 8 

Conv 3 × 3 + Pixel Norm Leaky ReLU 512 × 8 × 8 

Average Pooling – 512 × 8 × 8 

Minibatch standard deviation – (512 + 1) × 8 × 8 

Conv 3 × 3 + Pixel Norm Leaky ReLU 512 × 8 × 8 

Conv 4 × 4 + Pixel Norm Leaky ReLU 512 × 1 × 1 

Conv 1 × 1 – 1 × 1 × 1 

R
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