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ABSTRACT

Background and objective: Prostate cancer is one of the most common diseases affecting men. The main
diagnostic and prognostic reference tool is the Gleason scoring system. An expert pathologist assigns a
Gleason grade to a sample of prostate tissue. As this process is very time-consuming, some artificial in-
telligence applications were developed to automatize it. The training process is often confronted with
insufficient and unbalanced databases which affect the generalisability of the models. Therefore, the aim
of this work is to develop a generative deep learning model capable of synthesising patches of any se-
lected Gleason grade to perform data augmentation on unbalanced data and test the improvement of
classification models.

Methodology: The methodology proposed in this work consists of a conditional Progressive Growing GAN
(ProGleason-GAN) capable of synthesising prostate histopathological tissue patches by selecting the de-
sired Gleason Grade cancer pattern in the synthetic sample. The conditional Gleason Grade information
is introduced into the model through the embedding layers, so there is no need to add a term to the
Wasserstein loss function. We used minibatch standard deviation and pixel normalisation to improve the
performance and stability of the training process.

Results: The reality assessment of the synthetic samples was performed with the Frechet Inception Dis-
tance (FID). We obtained an FID metric of 88.85 for non-cancerous patterns, 81.86 for GG3, 49.32 for GG4
and 108.69 for GG5 after post-processing stain normalisation. In addition, a group of expert pathologists
was selected to perform an external validation of the proposed framework. Finally, the application of our
proposed framework improved the classification results in SICAPv2 dataset, proving its effectiveness as a
data augmentation method.

Conclusions: ProGleason-GAN approach combined with a stain normalisation post-processing provides
state-of-the-art results regarding Frechet’s Inception Distance. This model can synthesise samples of non-
cancerous patterns, GG3, GG4 or GG5. The inclusion of conditional information about the Gleason grade
during the training process allows the model to select the cancerous pattern in a synthetic sample. The
proposed framework can be used as a data augmentation method.

© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

been suggested by clinical examination or laboratory tests, the
main tool for diagnosis is a prostate biopsy. Tissue samples are re-

Prostate cancer is the second most common cancer in men, moved with a needle, laminated, stained with haematoxylin and
with almost 1.4 million new cases in 2020. Once its presence has eosin (H&E) and stored in glass. The tissue sample is then anal-
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ysed microscopically by an expert pathologist to determine the
presence of cancerous patterns following the Gleason [1] classifi-
cation system. This system groups the different tumour patterns

E-mail address: algolsan@i3b.upv.es (A. Golfe).

https://doi.org/10.1016/j.cmpb.2023.107695
0169-2607/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)


https://doi.org/10.1016/j.cmpb.2023.107695
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107695&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:algolsan@i3b.upv.es
https://doi.org/10.1016/j.cmpb.2023.107695
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Golfe, R. del Amor, A. Colomer et al.

Computer Methods and Programs in Biomedicine 240 (2023) 107695
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Fig. 1. Examples of patches presenting different Gleason patterns. (a) Non-cancerous well-differentiated glands; (b) Region containing GG3 atrophic dense patterns; (c) GG4

containing individual poorly-formed glands; (d) GG5 containing files of isolated cells.

into grades according to the cancer prognosis. According to Silva
et al. [2], the Gleason grade system categorizes prostate cancer
based on the patterns observed in the tissue. The GG3 grade in-
cludes regions with atrophic well-differentiated and dense glandu-
lar patterns. The GG4 grade contains patterns such as cribriform,
ill-formed, large-fused, and papillary glandular patterns. The GG5
grade includes isolated cells, files of cells, nests of cells without
lumina formation, and pseudo-rosetting patterns. Some examples
of cancerous patterns belonging to different grades are shown in
Fig. 1.

Pathologists detect the presence of one or more Gleason pat-
terns by visual inspection and grade them according to the most
prominent grades (e.g. a sample with two main Gleason patterns,
first grade 4 followed by grade 3, would be assigned a combined
grade of 4+ 3 = 7). This combined Gleason score ranges from 6 to
10 and is assigned at the biopsy level.

In recent decades, digital pathology has become increasingly
prevalent. This is a subfield of pathology that focuses on the in-
formation in digitised data and involves scanning glass slides to
produce whole slide images (WSI). These high-resolution WSIs are
often divided into patches of a specific resolution to obtain de-
tailed information on all regions present in the WSI. Patch ex-
traction allows deep learning models to process the information
in them, whereas WSIs are difficult to handle due to the amount
of information contained in these pyramidal images. The success
of artificial intelligence and machine learning solutions combined
with this type of data promotes the development of computer vi-
sion applications to automate diagnoses, prognoses and disease
predictions. Deep learning (DL) approaches have shown potential
in many tasks in digital pathology, as mitosis detection [3], tis-
sue classification [4], brain tumor classification [5] and glioma
grading [6].

Gleason grading is a highly time-consuming task for expert
pathologists. This problem prompted the creation of artificial intel-
ligence models capable of performing Gleason grade classification
of a patch. There are many examples in the literature, e.g. Silva-
Rodriguez et al. [2] and Linkon et al. [7], Arvaniti et al. [8], Bulten
et al. [9]. The availability of a suitable dataset strongly conditions
the performance of this models. A balanced dataset with enough
samples for each class to allow learning is needed for these mod-
els to perform adequately, but this is often not possible [10]. In
medical imaging and many other applications, we often deal with
data where we have one sample from the minority class against
hundreds of the majority. Such problems pose a challenge for pre-
dictive deep learning (DL) algorithms as most classification mod-
els have been designed under the assumption of a balanced and
sufficient number of samples per class, resulting in poor classifica-
tion performances, especially for minority classes. All these limita-
tions motivate the development of a generative DL model capable
of synthesising WSI patches to overcome the imbalance between
classes to increase the classification model’s accuracy. The very na-

ture of the problem requires the implemented model to be able to
synthesise samples conditioned to the target class (i.e. the Gleason
grade to be synthesised).

In this work, we propose a conditional progressive growing GAN
(ProGleason-GAN) framework able to synthesise patches of a spe-
cific Gleason grade. To the best of the author’s knowledge, this is
the first time in the literature that an original Progressive Growing
GAN framework is modified to become a conditional GAN capable
of synthesising patches of any desired Gleason grade. In the follow-
ing lines, we summarize the main contributions of this paper: (i)
a novel conditional Progressive Growing GAN framework for con-
ditional image synthesis (ii) synthesis of patches of any Gleason
Grade (iii) evaluation of the synthetic data by the Frechet Incep-
tion Distance (iv) validation of the model as a data augmentation
method for increasing the accuracy of Gleason grading classifica-
tion (v) comparison with related works in the literature (vi) sys-
tematic validation of the performance of the implemented model
by a selected group of experts.

The rest of the paper is organized as follows. In Section 2, we
introduce the related work present in the literature. In Section 3,
we describe the database used in this work, SICAPv2, which is to
the best of the author’s knowledge, the largest dataset of prostate
whole slide images with pixel-level annotations of the Gleason
grades at patch level by expert pathologists. In Section 4, we de-
scribe the methodology followed in this research to obtain the Pro-
gressive Growing conditional GAN model. In Section 5, we show
the results obtained for evaluating of the synthetic data and vali-
dating the improvement in the classification model’s accuracy. Fi-
nally, Section 6 summarizes the conclusions extracted from the
carried-out experiments.

2. Related work
2.1. Generative models for image synthesis

Generative Adversarial Networks (GANs) were presented by
Goodfellow et al. [11] in 2014. These networks are comprised of
two separate neural networks, the generator G and the discrimina-
tor D. G takes a random noise vector z € p, as input and outputs
synthetic data G(z); D takes as input the output of the generator
G(z) and real images x € p,ata to classify them as real or synthetic.
The goal of training D is to maximize the probability of assigning
the correct label to real D(x) and synthetic data D(G(z)). Simulta-
neously, G is trained to minimize log(1 — D(G(z))). Hence, G and D
play a two-player min-max game with value function V (G, D):

mGin mDax V(D, G) = Ex-py,, [108D(X)] + E,p, ) [1 —10g D(G(2))]
(1)

After Goodfellow et al. introduced the first GAN framework,
they left the door open to improve this architecture to synthe-
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sise data conditioned to an input label. This idea prompted the de-
velopment of a conditional GAN by Mirza and Osindero [12]. This
Conditional GAN used a supervised approach allowing control of
the class of the generated results, and had the advantage of provid-
ing better representations for a multimodal generation. GANs can
be converted into conditional models by adding additional infor-
mation (y) for both the generator and the discriminator. y could
be auxiliary information, such as class labels or other modalities.
The Eq. (1) is updated to:

min max V(D, ) = Ex-p,,,[logD(x | y)]
+Ezep,[1 —logD(G(z [ y)] (2)

The previous GANs approaches showed some problems with
stability and convergence. These problems encouraged the proposal
of an upgraded version increasing the complexity of the network
by adding CNN layers. This GAN was named Deep Convolutional
GAN (DCGAN). After that, an extension to synthesise two dimen-
sion images was presented by Wu et al. [13]. They introduced
GANSs that were capable of synthesising 3D data using volumetric
convolutions. This approach synthesises novel objects like chairs,
tables and cars. Additionally, they proposed a method to map 2D
images to 3D objects.

Later, X Chen et al. proposed in [14] a method that, rather than
employing an unstructured noise vector z, decomposes the noise
vector into two parts, one with incompressible noise and the other
with significant structured semantic features, called c. The incom-
pressible noise part is uncorrelated with the output, and the se-
mantic feature part captures the structured information of the in-
put. The authors aimed to learn a representation of the data that
disentangles the high-level semantics from the incompressible fac-
tors of variation. To achieve this, the authors introduced a mutual
information term in the GAN objective function, which encourages
the generator to produce outputs highly dependent on the seman-
tic features. Specifically, the mutual information term measures the
information shared between the semantic feature vector and the
generated output. By maximizing this term, the generator learns
to create outputs that contain meaningful and structured informa-
tion captured by the semantic feature vector. This approach tries
to solve the following expression:

mGin mng Vi(D,G) =V (D, G) — Ml(c;G(z,¢)) 3)

where V (D, G) is the objective function presented in the original
GAN approach, I is the mutual information, G(z, ¢) is the synthetic
sample, and XA is a regularization parameter. The objective is to
maximize the mutual information between ¢ and G(z, ¢) maximiz-
ing I(c; G(z, c)). The difference between InfoGAN with conditional
GANSs is that the latent code c is not known, it is learned during
the training process.

All proposed methods created synthetic samples from random
input noise but could not do the reverse operation. To address this,
Donahue et al. proposed the BiGAN model [15]. This was the first
time in the literature where the synthetic samples are mapped
to their latent vector representation to determine which features
better represent the characteristics in the generated samples. An
architecture present in the literature that has been employed for
style transfer is CycleGAN [16]. Style transfer refers to transforming
an image from one domain to another while preserving its content.
CycleGAN, consisting of two generators and two discriminators, en-
ables style transfer without needing paired image datasets. This in-
novation allows for applying different styles to images, even when
paired style-reference images are not available. The Pix2Pix archi-
tecture [17] is also noteworthy for style transfer but requires paired
images for training. Moreover, Karras et al. [18] proposed the first
approach by introducing progressive growth training. This frame-
work was named Progressive Growing GAN (ProGAN) and repre-
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sented the central core of this paper. This fact motivates an in-
depth explanation in the following sections of this paper, in which
we also remark on the contributions of our proposed framework.

Furthermore, a prominent architecture in the literature for style
transfer is StyleGAN [19]. This architecture is designed explic-
itly for generating high-quality images with fine-grained control
over the style and appearance of the output. It has been success-
fully utilized in various applications, including artistic style trans-
fer and domain adaptation. StyleGAN introduces a novel mapping
network that enables the disentanglement of style and structure,
allowing for the transfer of different visual characteristics across
domains.

2.2. Generative models for histological image synthesis

There are numerous applications of GANs in histological image
analysis [20]. Specifically, significant applications include stain nor-
malisation, stain and domain adaptation, segmentation with super-
vised models, synthesis enabling weakly supervised and unsuper-
vised learning, and data generation and augmentation for classifi-
cation purposes.

Stain normalisation involves mapping an original image to a
normalised domain, reducing variability. In the study by Zhou et al.
[21], they introduced a stain normalisation technique by lever-
aging CycleGAN tailored for this purpose. Another approach to
stain normalisation, as described in Zanjani et al. [22], involved
utilizing InfoGAN, where the latent information was substituted
with the lightness channel of the source image. In this scenario,
the generator was trained using mutual information loss to learn
the structured colour space, enabling the transformation of colour
from the original domain to the normalised domain. CycleGAN has
also been utilized for stain and domain adaptation. The distinc-
tion from the previously mentioned method lies in its focus on
domain shifting between different staining techniques. Some ex-
amples in this field include the study by Xu et al. [23], where they
adapted the CycleGAN architecture to handle samples with other
stainings, such as H&E and IHC. Furthermore, in the approach pre-
sented in Swiderska-Chadaj et al. [24], the creation of histologi-
cal image patches is proposed by cropping and combining differ-
ent patches with a smooth blending of the seams using a Cycle-
GAN. This method is referred to as multi-patch blending. Another
architecture employed for this purpose is Pix2Pix [17]. In contrast
to the approaches mentioned above that utilize unpaired data, this
architecture uses paired data. An example of the application of this
architecture can be found in Rana et al. [25], where Pix2Pix is em-
ployed to obtain unstained images from H&E images.

The aforementioned Pix2Pix network has proven to be an al-
ternative to conventional fully convolutional methods [26]. In this
study, the architecture was adapted to the field of histology for the
basal membrane segmentation of microinvasive cervix carcinoma.
Another application of this architecture for segmentation can be
found in Cheng et al. [27]. In this work, masks are generated from
generated points, which are then translated into synthetic tissue
samples.

Regarding the use of GANs for data generation and augmen-
tation, which is the main focus of this article, several note-
worthy works in the literature are mentioned below. Wei et al.
[28] adapted the CycleGAN architecture for data augmentation. In-
stead of performing domain adaptation, they trained their network
to switch between normal and abnormal domains. In this way,
they successfully implemented a generative model that, given sam-
ples from one class, could generate their equivalents in the other
class.

Examples of using the DCGAN architecture in histological image
synthesis can be found in Xue et al. [29], Krause et al. [30]. In the
work by Y. Xue et al., they introduced modifications to the original
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DCGAN architecture to enable conditional synthesis of cervical can-
cer samples based on their class. This framework was designed as
a data augmentation method to enhance their classification mod-
els’ accuracy for different cervical cancer classes. They reported an
increase in accuracy from 66.3% to 71.7%. The generated samples
had a resolution of 256x128; however, objective metrics assessing
the quality of the generated data were not provided, with the fo-
cus being solely on the improved accuracy of sample classification.
Furthermore, J. Krause et al. proposed a novel DCGAN approach for
synthesizing histopathological images of colorectal cancer. This ar-
chitecture incorporated an embedding layer to concatenate label
information with the input data, enabling conditional synthesis by
the DCGAN. The approach adopted in Oyelade et al. [31] shares
similarities with the DCGAN methodology but with a specific focus
on abnormalities associated with breast images. The training was
carried out on a category-based basis, emphasizing the detection
and characterization of breast abnormalities.

By leveraging the DCGAN framework, the authors in Karimi
et al. [32] presented an application of conditional GAN and DCGAN
for synthesizing prostate patches of size 1922 based on the Glea-
son score. Specifically, the conditional GAN network was able to be
trained on the entire dataset, while their DCGAN approach lacked
conditional capability, leading them to train a separate model for
each class. Another example in the literature combining the ideas
of conditional GAN and DCGAN is the ProstateGAN approach pro-
posed in Hu et al. [33]. This architecture was used to synthesize
focal prostate diffusion images of size 322.

In [34], a ProGAN approach that could synthesise brain tumour
histopathological images was presented. In this study, two dis-
tinct ProGAN models were trained separately, each focusing on one
of the two classes in their dataset. The authors demonstrate that
training a dedicated ProGAN model for each class and incorporat-
ing synthetic data into the dataset resulted in a 5% increase in
their classification models’ accuracy. Another work using this ar-
chitecture was presented by Teramoto et al. [35]. In this case, a
ProGAN architecture was used to synthesise lung cancer histolog-
ical images. They aimed to improve the accuracy of their classifi-
cation models to classify their samples into benign or malignant.
More specifically, they reported a 4.3% increase in the accuracy
of their models. It is worth noting that the last two frameworks
presented did not have the capacity for conditional synthesis. In
[36], they proposed a multi-scale conditional GAN for high- reso-
lution, large-scale histopathology image generation and segmenta-
tion. This model is composed of a hierarchical arrangement of GAN
structures, with each level dedicated to generating and segmenting
images at a distinct scale.

Moreover, a novel conditional deep learning architecture based
in StyleGAN [19] and BigGAN [37] was proposed in Quiros et al.
[38] in which colorectal and breast cancer samples were synthe-
sised. In recent years, modern architectures such as transform-
ers have been employed in histological imaging for image syn-
thesis. For instance, in MedViTGAN [39], the use of a conditional
GAN without convolutions based on transformers is proposed as a
method for data augmentation.

Therefore, this work proposes an approach that combines
the progressive training technique with conditional synthesis for
histopathological image synthesis, specifically for generating 10x
magnification patches containing the specified cancerous pattern
based on the input condition related to the Gleason scale. More-
over, the evaluation using the FID metric and a publicly available
dataset with pixel-level annotations of the Gleason grade for the
patches enables a more objective assessment for future research
and comparisons. As discussed in this article, this dataset exhibits
sufficient diversity of patterns in local structures that the model
can learn. This fact offers an advantage over other methods pro-
posed in the literature as it can learn more complex and diverse

Computer Methods and Programs in Biomedicine 240 (2023) 107695

patterns. Additionally, the performance improvement of classifica-
tion models is evaluated using the proposed method as a data aug-
mentation technique. Furthermore, to enhance the present study’s
completeness and validity, a group of expert pathologists was se-
lected to conduct a study that directly evaluates the quality of rep-
resentation for each cancerous pattern in the synthetic samples, as
described in this article. The combination of all these aspects rep-
resents an innovative approach within the current literature, high-
lighting the unique contribution of our proposed method to the
field.

3. Materials: SICAPv2 database

The database used in this study was presented in Silva-
Rodriguez et al. [2] and it is publicly available at SICAPv2 dataset.
This is the most extensive public collection of prostate H&E biop-
sies with patch-level annotations of Gleason grades.

To the best of the author’s knowledge, there exist five main
databases containing prostate cancer tissue images. The Cancer
Genome Atlas project released the largest database of up to 720
prostate biopsy slides [40]. However, the absence of annotations
for Gleason grades at both the local and biopsy levels restricts the
utility of these data [2]. Another database shared by Arvaniti et al.
[8] provides pixel-level annotations of Gleason patterns for 886
small regions of slides (cores of TMAs). Unfortunately, these cores
do not adequately represent the diverse patterns found in local
structures of prostate cancer and benign lesions, thus lacking clin-
ical relevance for slide-level Gleason score diagnosis. Similar limi-
tations exist in the database presented at the Gleason19 challenge
in the MICCAI 2019 conference [41], which includes 331 annotated
cores by different pathologists and the dataset used in Ing et al.
[42] comprising 625 isolated patches. Finally, another large dataset
was presented in the PANDA challenge [43]; however, its Gleason
score labels were at the biopsy level, making it not directly appli-
cable to this study.

SICAPv2 includes 155 biopsies from 95 patients who signed
informed consent. Tissue samples were sliced, laminated, stained
with Hematoxylin and Eosin (H&E) and digitised using the Ven-
tana iScan Coreo scanner at 40x magnification to obtain WSI. Ex-
pert pathologists analysed the slides obtained at Hospital Clinico
of Valencia and assigned a combined Gleason score per biopsy. In
cases where the Gleason grade of a sample was uncertain, experts
set the label by consensus to avoid inter-observer variability. To
handle large WSI, we down-sampled them to patches of 10x reso-
lution of size 5122 and overlap of 50% between them. Patches with
less than 20% of tissue without cancerous patterns annotated by
the pathologists were discarded. After this procedure, SICAPv2 con-
tained 4417 non-cancerous patches, 2222 labelled as GG3, 4494 as
GG4, and 948 as GG5. A summary of the database description is
presented in Table 1.

Table 1

SICAPv2 description. Amount of WSI with their respec-
tive biopsy-level and number of patches for each Glea-
son Grade.

WSI

Non cancerous GG3 GG4 GG5 Total

37 60 97 16 182

Patches

Non cancerous GG3 GG4 GG5 Total

4417 2222 4494 948 12,081
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Fig. 2. Overview of the proposed prostate histopathological image synthesis with conditional progressive growing generative adversarial network.

4. Methodology

The proposed framework is based on a conditional progressive
growing GAN (ProGleason-GAN) able to synthesise prostate histol-
ogy patches of any Gleason grade. The workflow, which is com-
posed of a generator 8 and discriminator 69, is presented in Fig. 2.
The details of each component are given in Appendix A.

4.1. CGAN for prostate image synthesis

The methodological core of this work is based on a conditional
generative adversarial network. In this sense, the generator model
aims to produce synthetic prostate histology patches containing
the cancerous pattern associated with the Gleason grade. Formally,
we denote the random input noise as Z = {zy, ..., z, ..., zu}, Where
z; is the ith instance obtained from a normal distribution N (t =
0,0 =1) and M is the total number of generated samples. We note
as N the total number of patches in the dataset, and for conve-
nience, we give M the same value as N. Additionally, the genera-
tor is provided with the specified Gleason grade. We denote it as
GG ={gg1,...,88i, ..., g8}, where gg; represents the ith Gleason
grade associated with the ith noise instance. The values of the gg;
instances range from 0 to 3 for non-cancerous, GG3, GG4 and GG5,
respectively. Therefore, the synthetic patch generation is defined as
follows:

I = f(Z GG; 69) (4)

where I € Z™"<3 represents all the generated synthetic prostate
histology patches. Here, m represents the height, n represents the
width, and the number 3 refers to the three RGB channels. Addi-
tionally, 6% denotes the model weights.

The discriminator model aims to classify input patches as real
(1) or fake (0). Let us define X = {xq,...,%;, ..., Xy}, Where x; repre-
sents the ith instance of real prostate histology patches. The input
to the discriminator is B = X U1 The objective is to predict (¥) for
each instance, which can be defined as follows:

Y, = f(B, GG; 6%) (5)

where ¢ denotes the discriminator model weights.

In the following subsections, we explain the minibatch standard
deviation and pixel normalisation methods, which are used to en-
rich the variety of learning on the training data and guarantee their
stability. Finally, we introduce the loss function used in this frame-
work.

Minibatch standard deviation. GANs naturally tend to learn
only a subset of the training dataset. To solve this problem, we use
a “minibatch discrimination” [44]. We compute the standard de-
viation across the feature maps in the minibatch, encouraging the

generated images to show similar statistics to training images. The
proposal does not have any learnable parameters or hyperparame-
ters. First, we compute the standard deviation for each feature in
each spatial location across the minibatch. We reduce all the statis-
tics computed to a single value by averaging over all the features
and spatial locations. Then, we replicate this value and concate-
nate it to all spacial locations across the minibatch, creating an
additional feature map. We can place this layer anywhere in the
discriminator, but it performs better if inserted towards the end.

Pixel normalisation. Sometimes the magnitudes of the gener-
ated values in the generator and the discriminator spiral out of
control due to their competition. To solve these problems, we nor-
malise the feature vector in each pixel to unit length in the gen-
erator after each convolution layer. We use a variant of the “lo-
cal response normalisation” proposed in Hinton et al. [45]. The ex-
pression of the pixel normalisation is shown in Eq. (6), where L
represents the number of feature maps, (a,{,y) the pixel to be nor-
malised, and € the error to avoid zero values.

Loss function. To optimize the proposed model, we used the
Wasserstein GAN with Gradient Penalty (WGAN-GP) loss function
[46]. First, we set the learning rate 1, the ¢ value that sets the max-
imum oscillation range of the gradients to [—c,c] and the batch
size bs. A batch of real x® and synthetic data G(z) is sampled.
The loss function of the discriminator is implemented as Eq. (7):

bs bs
1 . 1 .
- . @yy - — . (i)
fossp = g+ (O = - 3 DG (7)
After computing the gradients, the weights of the discriminator are

updated. Then, we define the loss function of the generator as fol-
lows:

bs
lossi = 5+ > (D(GE")) (®)
i=1

WGAN-GP improves the training of GAN as it aims to minimize
the distance between two probabilistic distributions, which are the
distribution of the real data and the synthetic one.

4.2. ProGleason-GAN

Due to the complexity of the problem, the CGAN framework
cannot learn to synthesise patches of the target resolution 2562. It
is necessary to train the model progressively at lower resolutions
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Fig. 3. Fade-in new resolution layers to the discriminator and generator.

to solve this problem. Progressively increasing the size of the net-
work has several benefits. As we increase the resolution little by
little, we ask the network to learn a more straightforward question
than learning how to generate the target resolution from scratch.
We start training with 42 resolution patches and then progressively
increase the resolution to 2562, adding layers to the networks as
described in Fig. 3. This way of training allows the model to learn
high-level features of the image distribution first and then progres-
sively increase the complexity of the details instead of learning the
whole information at once.

The original Progressive Growing GAN architecture proposed by
Karras et al. [19] is modified to introduce conditional information
about the Gleason grade. This modification allows the trained net-
work to synthesise patches containing the specified Gleason grade
cancerous pattern. The generator and the discriminator receive this
information during the training process. In the generator case, the
Gleason grade is given after an embedding layer in charge of con-
verting the value to a fixed-length vector of defined size. This vec-
tor is concatenated to the input noise. Moreover, the discrimina-
tor receives the information about the Gleason grade, and the em-
bedding layer transforms it into a fixed-length vector concatenated
to the input data as an additional channel. In this work, we per-
form the conditional synthesis without introducing any additional
term to the loss function. The introduction of the embedding in-
formation about the Gleason grade encourages the generator and

the discriminator to learn the features and the difference between
each class.

The generator and the discriminator grow both simultaneously.
All layers in both networks remain trainable during the training
process. We add new resolution layers, fading them as illustrated
in Fig. 3. This method prevents previous smaller-resolution layers
from suffering a sudden shock. Fading in the new layers provides
more stability to the training process when we double the reso-
lution of the generator (G) and discriminator (D). Figure 3 shows
how it was increased from the prior resolution (PR) in (a) to the
upscaled resolution (UR) in (c) in the case of the generator, while
the reverse is done in the discriminator. Transition (b) shows how
the new resolution layers are treated as residual blocks whose
weight « increases linearly from O to 1. This value rises progres-
sively, starting from a small value until it reaches 1 in the last
training epoch. In this way, the new layer is introduced gradually
to prevent destabilization of the training process. TORGB represents
a layer that transforms feature vectors to RGB space and does the
reverse operation from RGB. We use an upscale method with the
nearest neighbour algorithm to increase the resolution in the gen-
erator and average pooling to do the opposite in the discriminator,
both by a factor of two.

We start training both generator (G) and discriminator (D) at
the lowest resolution, 42 increasing the resolution by a factor of 2
until we reach the target resolution, 2562.



A. Golfe, R. del Amor, A. Colomer et al.

Table 2
SICAPv2 split. Number of patches selected for the
training and test subsets.

Train partition

Non cancerous GG3 GG4 GG5 Total

3773 1829 3641 716 9959

Test partition

Non cancerous  GG3 GG4 GG5  Total

644 393 853 232 2122

5. Experiments and results

This section shows the experiments carried out to validate the
proposed framework. First, the results of the proposed method
(ProGleason-GAN) are shown and compared with the original Pro-
GAN. In addition, the ProGleason-GAN’s performance is validated
using a staining normalisation method to reduce the variability of
the different stains. Then, the synthetic sample quality and its abil-
ity to represent the different Gleason grades are validated by a
group of experts. Finally, the effectiveness of the proposed model
as a data augmentation strategy is quantitatively evaluated.

5.1. Experimental setting

Database partitioning. We used the partition given in Silva-
Rodriguez et al. [2] to split the database in the training and test
sets. To avoid model overestimation, the splitting was performed
at patient level (see Table 2).

Implementation. All the validated experiments were imple-
mented using Pytorch version 1.9.1 and Python 3.7. Experiments
were conducted on the NVIDIA DGXA100 system. The code is pub-
licly available on ProGleason-GAN GitHub repository

Model hyper-parameters. The optimal hyper-parameters com-
bination was achieved by training the models during 100 epochs,
using Adam optimizer, with a 0 value for B; and 0.99 for B,, a
learning rate of 0.001 and the WGAN-GP as loss function. In the
case of batch size, it was set to 64 for resolutions from 42 to 1282
and 32 for 2562. The optimal size of the generator input was 512.

Evaluation. We used the Frechet Inception Distance (FID)
[47] to evaluate the proposed model. This metric allows assess-
ing the difference between two multidimensional Gaussian distri-
butions. In this case, features corresponding to synthetic and real
patches were extracted using the Inception V3 model trained on
the ImageNet dataset [48]. We denote the feature distribution of
synthetic and real patches as M (i, C) and N (uw, Cw), respectively.
The FID expression is shown in the following equation:

FID = jt = pw II> +Tr(C + Gy — 2(C-Cy)?) 9)

Note that FID € [0, +o0], being O the optimal value. We obtained
the FID metric for each Gleason grade and a weighted average to
obtain the global FID (see Table 3 for the class weight). The pur-
pose of using these weights is based on the fact that each Gleason

Table 3
SICAPv2 weight distribution
for the test subset.

Class weights

Gleason grade Test

Non-cancerous 0.3035
G3 0.1852
G4 0.4020
G5 0.1093
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Table 4

Weighted FID results for all the frameworks
considered in this work: CGAN, ProGAN and
ProGleason-GAN. Additionally, we provide the
metrics obtained after the stain normalisation

process.
Method FID
CGAN 160.55
CGAN + Stain Norm 207.22
ProGAN 126.51
ProGAN + Stain Norm 86.13
ProGleason-GAN 120.14

ProGleason-GAN + Stain Norm  77.85

grade has a different number of samples and, therefore, different
representations in the dataset.

In addition, we calculated the area under the ROC curve (AUC)
of the classification carried out by the expert group, and precision,
F1-Score and accuracy metrics for the data augmentation strategy
validation.

5.2. Ablation experiments

Quantitative results. Table 4 shows the weighted FID results
for all the frameworks considered in this work: CGAN, ProGAN and
ProGleason-GAN. Progressive training using the ProGAN framework
provides a significant performance improvement compared to the
CGAN approach. However, as previously mentioned, the ProGAN
architecture has no conditional synthesis capacity. The proposed
conditional progressive framework (ProGleason-GAN) provides the
best performance regarding the FID metric evaluation. After the
staining normalisation process proposed in Macenko et al. [49],
the best results are obtained by the proposed method, particu-
larly, a 35.2% improvement in the weighted FID metric. The effect
of stain normalisation has been evaluated on all proposed meth-
ods to assess its impact on the FID metric results. It is remark-
able that, in the case of CGAN, it leads to a degradation of the re-
sults. This can be attributed to the low quality of the generated
samples and their dissimilarity to the original ones, which may
result in the stain normalisation excessively altering these sam-
ples and further deviating them from the originals. Conversely, for
ProGAN and ProGleason-GAN, stain normalisation improves the re-
sults. ProGleason-GAN achieves the best outcomes, even when the
effect of stain normalisation is eliminated.

Table 5 shows the FID results obtained for the different frame-
works at each Gleason grade. As the original ProGAN method has
no conditional synthesis capacity, its results were not included in
Table 5.

These results show the underperformance of the CGAN archi-
tecture compared to the proposed model, as the complexity of the
network is not adequate to learn the features of the input images.
As expected, since non-cancerous and GG4 have more patches for
learning, ProGleason-GAN obtains the best results for these classes.

Qualitative results. To qualitatively evaluate the proposed
method, we provide images synthesised by the CGAN, ProGAN and

Table 5
FID for conditional experiments. NC for non cancerous patterns and GG3, GG4,
GG5 for each Gleason grade.

Test

NC GG3 GG4 GG5
CGAN 198.45 172.51 152.2 165.7
CGAN + Stain Norm 21943 21743 191.18  214.98
ProGleason-GAN 92.14 128.53 127.86 155.35
ProGleason-GAN + Stain Norm 88.85 81.86 59.32 108.69
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Fig. 4. Synthetic patches generated with CGAN framework. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5.

ProGleason-GAN frameworks. Figure 4 shows some patches gener-
ated with the CGAN approach. This framework cannot learn the
morphology and features of each Gleason grade. It captures color
properties and spatial distribution but cannot produce complex
structures such as glands or nuclei.

Some patches generated with the ProGAN are shown in Fig. 5.
This framework is able to generate samples with the real patch
morphology and distribution, but it can not reproduce with detail
the cancerous patterns present in SICAPv2. The structure morphol-
ogy is unclear and seems to be a combination of different struc-
tures in all Gleason grades but not representing each.

Figure 6 shows some synthesised examples by ProGleason-GAN.
By introducing conditional information in a progressive training, it
is observed that samples of different Gleason grades are different
and share features with samples of the same class. Therefore, the
proposed model can identify each class’s intrinsic features.

Figure 7 shows some samples generated for each Gleason grade
by ProGleason-GAN after the stain normalisation post-processing.
The generated samples and the real data showed more homogene-
ity. The non-cancerous images show well-differentiated glands.
GG3 images show how the density of glands increases and ir-
regularities appear. Furthermore, GG4 represents a high-grade and
poorly differentiated carcinoma. Finally, GG5 shows the least dif-
ferentiated cancerous pattern, where a high density of disorga-
nized nuclei characterizes chaotic tissue behavior. Therefore, syn-
thetic images show the same patterns as the real ones.

ProGleason-GAN is capable of synthesizing prostate tissue
patches that are sufficiently realistic. One of the advantages pro-
vided by our model is the absence of a specific term in the loss
function for conditional synthesis. This simpler approach reduces
complexity in the network and promotes stability in the learning
process during training. Additionally, employing the FID metric for

Fig. 5. Synthetic patches generated with the original ProGAN framework.
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Fig. 6. Synthetic patches generated with ProGleason-GAN. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5.

evaluation enables future comparisons with other GAN architec-
tures trained on the same dataset for this task. A direct compar-
ison with the existing literature would be inaccurate since the em-
ployed metric is conditioned on the dataset used. Another notable
contribution of this approach is that it represents a step forward
in the on-demand synthesis of complete WSI, enabling not only
the synthesis of the constituent patches but also the selection of
the cancerous pattern contained within them.

Our method outperforms existing approaches in several vital as-
pects. In [32], they focus on synthesizing patches of size 1922. In
contrast, our method achieves a higher resolution of 2562, result-
ing in more detailed and visually appealing synthetic images. Ad-
ditionally, the study by Karimi et al. [32] does not provide a com-
prehensive evaluation metric such as FID, which is essential for ob-
jectively assessing the quality of the generated images. In contrast,
our method incorporates FID evaluation, allowing for more objec-
tive comparison and validation of the results. Furthermore, their
DCGAN approach requires training a separate model for each class,
whereas our method is capable of handling all data in a more uni-

P
i

Fig. 7. Synthetic patches generated with ProGleason-GAN framework and stain normalisation. (a) Non cancerous; (b) GG3; (c) GG4; (d) GG5.

fied manner. This simplifies the training process and enables our
model to capture and synthesize the distinctive features of various
classes effectively. Regarding the work presented in Hu et al. [33],
their focus lies in synthesizing prostate diffusion images at a res-
olution of 32 x 32, which is significantly lower and of a different
typology compared to the approach presented in this study. The
complexity of this type of images is also considerably lower than
the images addressed in our work. In [36], they employ the FID
metric for evaluating their results; however, their baseline model
is not the standard InceptionV3, preventing direct comparison. Fur-
thermore, their dataset is smaller, consisting of approximately 1500
patches. Additionally, their dataset does not have participant-level
partitioning, making it uncertain whether patches from the same
patient are used in both the training and testing phases.

5.3. External validation protocol

To demonstrate the usefulness of the proposed method, a panel
of experts validated the quality of the synthetic images. Experts

o~ gl
o :‘3‘;
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Fig. 8. Confusion matrix for expert pathologist classification. (Left) Classification for real and synthetic samples; (Middle) Gleason grade classification for real samples; (Right)

Gleason grade classification for synthetic ones.

were asked to identify whether a sample was real or synthetic and
to establish its Gleason grade. In total, 320 samples (160 real and
160 synthetic) were analysed. In addition, all Gleason grades were
equally represented, resulting in 40 samples for each grade and
image type (real and synthetic).

Figure 8 shows the results obtained by the expert panel. Ex-
pert pathologist incorrectly identified on average 20.6% of the real
samples as synthetic. As for synthetic images, approximately 31%
were considered to be real. Regarding the Gleason grading, GG4
was better detected in synthetic samples, and approximately the
75% of the GG5 samples were identified in synthetic images, one
of the most critical cancerous patterns to be appropriately recog-
nized due to their advanced tumoral stage.

Finally, we tested if there was a statistically significant differ-
ence in establishing gleason grade on synthetic or real images. For
this purpose, the area under the ROC curve (AUC) metric was used.
Table 6 shows the AUC metric for classifying synthetic (S) and real
(R) patches for each expert pathologist. In addition, the p-value
(with o = 0.05) is provided.

Table 6 show no statistically significant difference between
performing the grading with real or synthetic images. This fact
demonstrates that the implemented model correctly learned to
distinguish and represent the different Gleason grades. Regarding
GG4 detection by the Expert 2, a p-value close to the 95% con-
fidence interval limit is obtained. This could be due to the same
patch may contain different cancer patterns according to the Glea-
son scale. This fact introduces inaccuracies during the learning pro-

Table 6

AUC metric for gleason grading with real (AUC-R) and synthetic (AUC-
S) images and p-value from the statistical inference study in the expert
group.

Expert 1 Expert 2

AUC-R AUC-S p-value  AUC-R AUC-S p-value
NC 0.8078  0.7201  0.1886 09125 0.8458 0.1964
GG3  0.7183  0.7192  0.9904 0.8458 0.8166  0.6239
GG4 05947 05281  0.3767 0.8833  0.775 0.0667
GG5 0.7441 0.6643  0.2625 0.8583  0.8291 0.6132
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Table 7

Results for the patch-level Gleason grading in the test set for the model
proposed in Silva-Rodriguez et al. [2] with the original SICAPv2 dataset
(S) and upsampling with our proposed data augmentation method (S + P).
The metrics presented are precision, F1-Score, computed per class, and
global accuracy.

Precision F1-S ACC
S S+P S S+P S S+P
NC 0.8081 0.8376 0.8348 0.8473 - -
GG3 05096 0.5529 0.4908 0.5981 - -
GG4 0.6394 0.7087 0.6667 0.6934 - -
GG5 05714 0.6284  0.4301 0.5542 - -
Avg 0.6321 0.6819 0.6056 0.6733 0.6673  0.7078

cess, as the most prevalent Gleason grade of a sample was consid-
ered as a label.

5.4. Data augmentation strategy validation

This section shows the validation of the proposed method as
a data augmentation strategy. For this purpose, we compare the
classification model used in Silva-Rodriguez et al. [2] trained with
SICAPv2 and SICAPv2 augmented with the proposed model. Specif-
ically, the minority classes (GG3 and GG5) were augmented by
20%, increasing 366 GG3 samples and 144 GG5 samples. The re-
sults obtained are shown in Table 7. The proposed model sig-
nificantly improves the classification model performance for all
classes. This fact supports the effectiveness and validity of the pro-
posed work as a patch synthesis method and data augmentation
strategy.

6. Conclusions

In this study, we propose a conditional Progressive Growing
GAN framework to synthesize prostate tissue patches with any
Gleason Grade. The proposed framework obtained a weighted FID
metric for all Gleason grades of 77.85, compared to the 160.55 and
120.14 achieved by the CGAN and ProGAN, respectively. To asses
the quality of the synthetic samples, a group of expert pathologists
performed an external validation. The statistical study determined
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no significant difference in establishing the Gleason grade with
synthetic or real samples. Additionally, we pretrained a classifica-
tion model using the synthesized images and SICAPv2 dataset. The
proposed method improved the classification accuracy by 4.05%
compared to the network fine-tuned only with SICAPv2. These
findings confirmed the effectiveness of the use of ProGleason-GAN-
generated images.

Concerning the limitations of this study, the resolution and gen-
erated image size, as well as the amount of training data, may
also pose challenges to the model’s applicability in clinical settings.
For instance, while the model’s resolution was adequate for this
study, using higher resolutions may be necessary for clinical envi-
ronments, where images with more detail are required for diagno-
sis and treatment planning. It should be noted that in this work,
the resolution of the synthesized images was constrained to 2562
due to hardware restrictions. Achieving higher resolutions, such as
5122 or 10242, is possible by incrementing the model complexity
of the proposed approach (and, of course, the hardware resources).

Moreover, the limited size of the training database, coupled
with the inherent variability of clinical data, may reduce the
model’s generalizability to different clinical scenarios. It is worth
emphasizing that obtaining databases with pixel-level annotation
of prostate patches based on the Gleason score pattern can be a
challenging task.

In conclusion, while this study provides valuable insights into
the potential utility of deep learning in prostate cancer detection,
it is essential to acknowledge the identified limitations, including
those of the model’s applicability in clinical settings. Future re-
search should strive to address these limitations and evaluate the
model’s performance in real-world clinical scenarios. In future di-
rections, our research will be centred on the synthetic generation
of complete Whole Slide Images (WSIs) leveraging the findings and
insights from this study.
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Appendix A. Detailed generator and discriminator architectures

Tables A.8 and A.9.

Architecture of the generator for 2562 resolution.

Generator

Latent vector + Embedding (Gleason Grade) -

Pixel Norm

Conv transpose 4 x 4
Conv 3 x 3

Upsample

Conv 3 x 3 + Pixel Norm
Conv 4 x 4 + Pixel Norm
Upsample

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Upsample

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Upsample

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Upsample

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Upsample

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Conv1x1

Activation Output shape
(512+512) x 1 x 1

- 1024 x 1 x 1
Leaky ReLU 512 x4 x4
Leaky ReLU 512 x4 x4

- 512 x8 x 8
Leaky ReLU 512 x 8 x 8
Leaky ReLU 512 x8x 8

- 512 x 16 x 16
Leaky ReLU 512 x 16 x 16
Leaky ReLU 512 x 16 x 16
- 512 x 32 x 32
Leaky ReLU 512 x 32 x 32
Leaky ReLU 512 x 32 x 32
- 512 x 64 x 64
Leaky ReLU 256 x 64 x 64
Leaky ReLU 256 x 64 x 64

- 256 x 128 x 128
Leaky ReLU 128 x 128 x 128
Leaky ReLU 128 x 128 x 128
- 128 x 256 x 256
Leaky ReLU 64 x 256 x 256
Leaky ReLU 64 x 256 x 256
Leaky ReLU 3 x 256 x 256

1
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Table A.9
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Architecture of the discriminator for 2562 resolution.

Discriminator

Input image + Embedding (Gleason Grade)

Conv 1 x 1 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling

Conv 3 x 3 + Pixel Norm
Conv 3 x 3 + Pixel Norm
Average Pooling
Minibatch standard deviation
Conv 3 x 3 + Pixel Norm
Conv 4 x 4 + Pixel Norm
Conv 1x1
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