
Universidad Politécnica de Valencia.

Departamento de Informática de Sistemas y Computadores.

EFFICIENT MECHANISMS

TO PROVIDE FAULT TOLERANCE

IN INTERCONNECTION NETWORKS

FOR PC CLUSTERS

PhD thesis by:
José Miguel Montañana Aliaga.

Advisors:

Dr. José Flich Cardo,

Dr. Antonio Robles Martínez.

Valencia, Spain, 2008

Copyright c©2008 by José Miguel Montañana Aliaga. All rights reserved.
The Universidad Politécnica de Valencia is allowed to distribute this thesis only for non-commercial

purposes.
Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to

servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the author.

Copyright and all rights therein are retained by the author.

This thesis was written using LATEX. Figures were plotted using XFIG and GNUPLOT.

Prólogo

El presente documento se ha elaborado bajo la dirección de los profesores D. José

Flich Cardo y D. Antonio Robles Martínez, con la finalidad de obtener el título de

Doctor.

En la primera parte de la presente memoria se presenta el estado del arte en las

redes de interconexión, haciendo énfasis en las técnicas y métodos de tolerancia a

fallos y su análisis.

En la segunda parte se presentan y evalúan las diferentes técnicas que se proponen

para proveer a las redes de interconexión para clusters de aceptables márgenes de

tolerancia a fallos. Dicha actividad investigadora se ha desarrollado en el Grupo

de Arquitecturas Paralelas (GAP) del Departamento de Informática de Sistemas y

Computadoras (DISCA) de la Universidad Politécnica de Valencia (UPV).

En la última parte, se concluye con un resumen de las contribuciones y de las

conclusiones. También se presentan las publicaciones relacionadas con las contribu-

ciones de esta tesis, junto con las direcciones futuras de investigación.

Preface

The current document has been elaborated with the aim to obtain the PhD degree.

This work has been done under the advising and guidance of professors José Flich

and Antonio Robles.

The first part of the document introduces the state-of-art in the interconnection

networks field, specially focusing on fault tolerance issues and their analysis.

In the second part all the research work is presented and evaluated. This research

activity has been developed within the Parallel Architectures Group (GAP) in the

department of computer engineering (DISCA) at the Technical University of Valencia

(UPV).

In the last part, the contributions and conclusions are summarized. Related pub-

lications of the contributions are also presented together with future directions in the

research.

i

This page intentionally left blank

Acknowledgements

I would like to thank for the support and guidance of my advisors, professors José

Flich and Antonio Robles, without their knowledge and research experience this work

would not be possible.

Thanks to professors Timothy Mark Pinkston and Olav Lysne for sharing their

knowledge on reconfiguration protocol.

I want to thank for the support of the people in the research group. Also to my

family and friends for their support.

Additionally to the powerful clusters that had run so many simulations.

This thesis is dedicated to my family and friends, in gratitude for moral support

and help with everyday problems.

iii

This page intentionally left blank

Abstract

Currently, clusters of PCs are considered a cost-effective alternative to large paral-

lel computers. In these systems thousands of components (processors and/or hard

disks) are connected through high-performance interconnection networks. Among

the high-performance network technologies currently available to build clusters, In-

finiBand (IBA) has emerged as a new standard interconnection technology suitable

for clusters. Indeed, has been adopted by many of the most powerful systems cur-

rently built (top500 list).

As the number of nodes increases in these systems, the interconnection network

grows accordingly. Along with the increase in components the probability of faults

increases dramatically, and thus, fault tolerance in the system, in general, and in the

interconnection network, in particular, becomes a necessity.

Unfortunately, most of the fault-tolerant routing strategies proposed for massively

parallel computers cannot be applied because routing and virtual channel transitions

are deterministic in IBA, which prevent packets from avoiding the faults. Therefore,

a new and effective fault-tolerant strategy is needed.

Thus, this thesis focuses on providing mechanisms for provinding adequate levels

of fault tolerance to the routing in PC clusters, specially tailored to IBA networks. We

propose and evaluate in this thesis several mechanisms suitable for interconnection

networks for clusters.

The first mechanism to provide fault tolerance in IBA (referred to as Transition

Fault Tolerant Routing; TFTR) consists of using several disjoint paths between every

source-destination pair of nodes and selecting the appropriate path at the source end

node by using the APM mechanism provided by IBA. It consists of migrating on

the fly the paths affected by the failure to alternative fault-free paths. However, to

this end, an efficient routing algorithm able to provide enough disjoint paths, while

still guaranteeing deadlock freedom, is required. We refer to an efficient routing

algorithm as the one that minimizes the required set of resources and is computed

in a time-efficient manner. We address this issue/approach, in a second effort, by

proposing an scalable fault-tolerance methodology (referred to as SPFTR) for tori in

IBA networks.

As a second contribution of this thesis, we propose a simple and effective fault-

tolerant routing methodology (referred to as Reachability Based Fault Tolerant Rout-

v

ing; RFTR), which can be applied to any topology. RFTR builds new alternative

paths by joining subpaths extracted from the set of already computed paths, thus

being time-efficient.

In the last contribution, we focus on providing fault tolerance based on dynamic

reconfiguration. We propose a simple and fast method for dynamic network recon-

figuration, referred to as Epoch Based Reconfiguration (EBR). EBR guarantees a fast

and deadlock-free reconfiguration, but instead of avoiding deadlocks our mechanism

is based on regressive deadlock recoveries. EBR works in an asynchronous manner,

does not require additional resources and can be applied on any topology.

Most of the proposals made in this thesis are suitable (with no hardware modifica-

tion) to be implemented on commercial network technologies (mainly IBA networks)

currently used in clusters of PCs, and are able to tolerate dynamically a reasonable

number of faults as long as the network remains physically connected.

vi

Resumen

Actualmente, los clusters de PC son un alternativa rentable a los computadores par-

alelos. En estos sistemas, miles de componentes (procesadores y/o discos duros)

se conectan a través de redes de interconexión de altas prestaciones. Entre las tec-

nologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha

emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido

adoptado por muchos de los sistemas más potentes construidos actualmente (lista

top500).

A medida que el número de nodos aumenta en estos sistemas, la red de inter-

conexión también crece. Junto con el aumento del número de componentes la proba-

bilidad de averías aumenta dramáticamente y, así, la tolerancia a fallos en el sistema

en general, y de la red de interconexión en particular, se convierte en una necesidad.

Desafortunadamente, la mayor parte de las estrategias de encaminamiento tol-

erantes a fallos propuestas para los computadores masivamente paralelos no pueden

ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deter-

ministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son

necesarias nuevas estrategias para tolerar fallos.

Por ello, esta tesis se centra en proporcionar mecanismos para proporcionar los

niveles adecuados de tolerancia a fallos al encaminamiento en los clusters de PC, y en

particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos

adecuados para las redes de interconexión para clusters.

El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos

referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR)

consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y selec-

cionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado

por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas

sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encam-

inamiento capaz de proporcionar suficientes rutas disjuntas, que además garantice

la ausencia de situaciones de bloqueo. Definimos un algoritmo de encaminamiento

como eficiente, aquel que reduce al mínimo las necesidades de recursos requeridos

del sistema y se obtiene de una manera eficiente en tiempo de cálculo. Para ello,

proponemos una metodología escalable tolerante a fallos (denominada SPFTR) para

toros en IBA.

vii

Como segunda contribución de esta tesis, proponemos una metodología tolerante

a fallos simple y eficaz (denominada como encaminamiento tolerante a fallos basado

en alcanzabilidad; RFTR), que se puede aplicar a cualquier topología. RFTR com-

pone las rutas alternativas uniendo fragmentos de rutas ya existentes, de un modo

rápido y eficiente.

Como última contribución, nos centramos en proporcionar tolerancia a fallos me-

diante reconfiguración dinámica. Proponemos un método simple y rápido de recon-

figuración dinámica de red, denominado reconfiguración basada épocas (EBR). EBR

garantiza una reconfiguración rápida y la ausencia de bloqueos, pero en vez de evitar

las situaciones de bloqueo nuestro mecanismo se basa en técnicas de recuperación

para evitar los bloqueos. EBR funciona de una manera asincrónica, no requiere re-

cursos adicionales y se puede aplicar en cualquier topología.

La mayor parte de las propuestas hechas en esta tesis son válidas (sin ninguna

modificación del hardware) para ser utilizadas en tecnologías de red comerciales

(principalmente en redes IBA) usadas actualmente en clusters de PC, y pueden tolerar

dinámicamente un número razonable de fallos mientras la red se mantenga conectada

físicamente.

viii

Resum

Actualment, els clústers de PC es consideren un alternativa rendible als computadors

massivament paral·lels. En aquests sistemes, milers de components (processadors i/o

discs durs) estan connectats mitjançant xarxes d’interconnexió d’altes prestacions.

Entre les tecnologies de xarxa d’altes prestacions actualment disponibles per a con-

struir clústers, InfiniBand (IBA) ha emergit com un nou estàndard d’interconnexió

adient per als clústers. De fet, ha sigut adoptat per molts dels sistemes més potents

construïts actualment (llista top500).

A mesura que el nombre de nodes augmenta en estos sistemes, la xarxa d’inter-

connexió també creix. Junt amb l’augment del nombre de components la probabilitat

d’avaries augmenta dramàticament i, així, la tolerància a fallades en el sistema en

general, i de la xarxa d’interconnexió en particular, esdevé una necessitat.

Dissortadament, la major part de les estratègies d’encaminament tolerants a fa-

llades proposades per a les computadores massivament paral·leles no poden ser apli-

cades perquè l’encaminament i les transicions de canal virtual en IBA són determin-

istes, cosa que impedix que els paquets defugen de les fallades. Per tant, és necessària

una estratègia nova i eficaç per a tolerar fallades.

Per això, aquesta tesi se centra a proporcionar mecanismes per proporcionar els

nivells adequats de tolerància a fallades al encaminament en clústers de PC, espe-

cialment confeccionats per a les xarxes IBA. En aquesta tesi proposem i avaluem

diversos mecanismes adients a les xarxes d’interconnexió per a clústers.

El primer mecanisme per a proporcionar tolerància a fallades en IBA (al qual ens

referim com encaminament tolerant a fallades basat en transicions, TFTR) consistix a

usar de diverses rutes disjuntes entre cada parell de nodes origen-destí, i seleccionar-

ne l’apropiada en el node font fent servir el mecanisme APM proporcionat per IBA.

Consistix a migrar dinàmicament de les rutes afectades per la fallada a les rutes alter-

natives lliures de fallades. No obstant això, amb aquest fi, cal un algoritme eficient de

encaminament capaç de proporcionar suficients rutes disjuntes, que a més garantisca

l’absència de situacions de bloqueig. Definim un algoritme d’encaminament com efi-

cient el que reduïx al mínim els recursos del sistema requerits i que es calcula d’una

manera eficient en temps. Nosaltres tractem esta qüestió, en un segon esforç, pro-

posant una metodologia d’encaminament tolerant a fallades i escalable (denominada

SPFTR) per a xarxes IBA amb topologia de torus.

ix

Com a segona contribució d’esta tesi, proposem una metodologia tolerant a fa-

llades simple i eficaç (denominada encaminament tolerant a fallades basat en alcan-

zabilitat, RFTR), que es pot aplicar a qualsevol topologia. RFTR compon les rutes

alternatives unint fragments de rutes ja existents, d’una manera eficient en temps.

Com ultima contribució, ens centrem en proporcionar tolerància a fallades basada

en reconfiguració dinàmica. Proposem un mètode simple i ràpid de reconfiguració

dinàmica de xarxa, denominat reconfiguració basada en èpoques (EBR). EBR garan-

teix una reconfiguració ràpida i l’absència de bloquejos però, en comptes d’evitar

les situacions de bloqueig, el nostre mecanisme es basa en recuperacions regressives

d’aquestes situacions de bloqueig. EBR funciona d’una manera asíncrona, no re-

querix recursos addicionals i es pot aplicar en qualsevol topologia.

La major part de les propostes fetes en esta tesi són vàlides (sense cap modi-

ficació del maquinari) per a ser utilitzades en les tecnologies de xarxa comercials

(principalment en xarxes IBA) usades actualment en clústers de PC, i poden tolerar

dinàmicament un nombre raonable de fallades mentres la xarxa es mantinga connec-

tada físicament.

x

Contents

1 Introduction 1

1.1 Motivation and Objectives . 6

1.2 Contributions . 7

1.3 Organization . 8

2 Interconnection Networks for HPC Clusters 9

2.1 Network Design for Clusters . 10

2.1.1 Data Units . 11

2.1.2 Switching . 12

2.1.3 Virtual Channels . 13

2.1.4 Flow Control . 14

2.1.5 Arbitration . 16

2.1.6 Topology . 17

2.1.7 Routing Algorithm . 20

2.1.7.1 Taxonomy . 20

2.1.7.2 The Deadlock Problem 22

2.1.7.3 The Livelock Problem 24

2.1.7.4 Routing Algorithms for Clusters 25

2.1.8 Network Reconfiguration 27

2.1.8.1 Static and Dynamic Reconfiguration 28

2.1.8.2 Existing Proposals on Dynamic Reconfiguration . 28

2.2 InfiniBand Networks . 29

2.2.1 InfiniBand Architecture 31

2.2.2 Virtual Channels and Flow Control 33

2.2.3 Routing in IBA . 33

2.2.4 Subnet Manager . 36

xi

3 Fault Tolerance for Interconnection Networks 37

3.1 Basic Concepts . 37

3.2 Fault Models . 40

3.3 Fault-Tolerance Mechanisms . 41

3.3.1 Fault-Tolerant Routing Algorithms 42

3.3.1.1 Hardware-Based Fault Tolerant Routing Algorithms 42

3.3.1.2 Software-Based Fault Tolerant Routing Algorithms 46

3.4 Applying Fault Tolerant Mechanisms to PC Clusters 47

3.4.1 Fault Tolerance in IBA . 47

3.4.2 Contributions of the Thesis 48

4 Fault-Tolerant Routing Methodologies Based on Disjoint Paths 51

4.1 Preliminaries . 51

4.2 TFTR Methodology . 55

4.2.1 TFTR Stages . 56

4.2.2 Enhancements to the TFTR Methodology 63

4.2.3 Computational Cost . 66

4.3 SPFTR Methodology . 67

4.3.1 Motivation . 67

4.3.2 SPFTR stages . 69

4.3.3 Routing Algorithm . 70

4.3.4 Route Patterns and Network Regions 71

4.3.5 SLtoVL Table Initialization 73

4.3.6 Extending the Methodology 78

4.3.7 Optimizing the methodology: A-SPFTR 81

5 Fault-Tolerant Routing Methodology Based on Reachability 83

5.1 Motivation . 83

5.1.1 RFTR Preliminaries . 84

5.2 RFTR Description . 86

5.2.1 Direct and Indirect Reachability 86

5.2.2 RFTR Methodology . 87

5.3 RFTR Complexity . 91

5.4 RFTR on InfiniBand . 92

6 Fault-Tolerance Methodology Based on Reconfiguration 95

6.1 Motivation . 95

6.2 Basic EBR Description . 97

xii

6.3 Triggering the EBR Mechanism 98

6.4 Routing Path Computation . 99

6.5 Path Distribution . 100

6.6 Deadlock Recovery Process . 101

6.7 Overlapping Multiple Reconfiguration Processes 104

7 Evaluation Model 107

7.1 Introduction to Simulation Modeling 107

7.1.1 Simulation Tool . 108

7.1.2 Advantages and Disadvantages 109

7.2 Network Model . 110

7.2.1 Topologies . 110

7.2.2 End to End Flow Control 111

7.2.3 Traffic Patterns . 111

7.2.4 Simulation Parameters . 112

7.3 Modelling and Analyzing Faults 113

7.4 Compared Reconfiguration Mechanisms 114

7.5 Collecting Results . 116

7.5.1 Performance Metrics . 118

8 Evaluation 121

8.1 TFTR Methodology . 121

8.1.1 Number of Paths . 122

8.1.2 Singular Cases . 122

8.1.3 Resources Required . 124

8.1.4 Quality of Routing Paths 125

8.1.5 TFTR with Additional Virtual Channels 126

8.1.6 Network Throughput . 126

8.1.7 Computational Cost . 128

8.1.8 Summary . 128

8.2 SPFTR and A-SPFTR Methodologies 129

8.2.1 Singular Cases . 129

8.2.2 Quality of Routing Paths 130

8.2.3 Network Throughput . 131

8.2.4 Computational Cost and Resources Needed 132

8.2.5 Summary . 132

8.3 RFTR Methodology . 133

8.3.1 Singular Cases . 134

xiii

8.3.2 Quality of Routing Paths 134

8.3.3 Resources Required . 136

8.3.4 Computational Cost . 136

8.3.5 Network Throughput . 137

8.3.6 Summary . 142

8.4 EBR Methodology . 143

8.4.1 Traffic Patterns and Topologies 143

8.4.2 Dropped Packets . 146

8.4.3 Average Packet Latency 146

8.4.4 Network Throughput . 147

8.4.5 Scalability . 148

8.4.6 Summary . 150

9 Conclusions 151

9.1 Conclusions . 151

9.2 Contributions . 152

9.3 Publications . 156

9.4 Future Work . 157

A Route Patterns for SPFTR 159

B Acronyms 167

Bibliography 169

Index 183

xiv

List of Figures

1.1 Examples of parallel architectures: (a) Multiprocessor system with

Uniform Memory Access (UMA), (b) Multiprocessor system with

Non-Uniform Memory Access (NUMA), and (c) Multicomputer sys-

tem. 3

1.2 Chip and performance evolution: (a) Growth of transistor counts for

Intel processors (dots) and Moore’s Law, (b) performance measured

in MIPS for Intel processors. 5

1.3 Architectures used by supercomputers on the top500 list. 5

2.1 Different data units in an interconnection network. 11

2.2 Switching mechanisms: (a) store & forward and (b) virtual cut-through. 12

2.3 (a) Example of blocked messages in wormhole. (b) Virtual channels. 13

2.4 Examples of flow control mechanisms: (a) credit-based, (b) on/off,

and (c) ack/nack. 15

2.5 Internal model of a switch. 17

2.6 Examples of direct topologies: (a) 2D mesh, (b) 2D torus, and (c)

hypercube (n–cube). 18

2.7 Examples of indirect topologies: (a) 4× 4 crossbar, (b) irregular net-

work, and (c) bidirectional multistage network. 19

2.8 Taxonomy of the routing algorithms. 21

2.9 Different routing mechanisms: (a) source routing and (b) distributed

routing based on tables. 22

2.10 Example of a deadlock situation: (a) a deadlock situation, and (b)

example of a cycle in the CDG. 23

2.11 Allowed turns in XY routing algorithm. 25

2.12 Link labels for the up∗/down∗ (BFS) routing algorithm. 26

2.13 Global reconfiguration stages. 28

2.14 Interconnection technologies used by supercomputers on the top500

list. 30

2.15 Example of an IBA subnet. 32

xv

2.16 Examples of IBA tables (a) forwarding table and (b) SLtoVL table. . 34

2.17 Example of routing tables with different LMC values. 35

2.18 Mapping conflict example. 35

3.1 MTBF values of some supercomputers and MTBF curves obtained

for different values of reliability. 38

3.2 Taxonomy of fault tolerant routing algorithms. 42

3.3 Example of block faults: (a) rectangular block faults, and (b) a solid

block fault (nonconvex). 43

3.4 Example of disjoint paths. 49

3.5 Example of composing an alternative path from two already existing

routing paths in the presence of faults. 49

4.1 Examples of disjoint paths: (a) Sharing one link, (b) Sharing one in-

termediate switch, (c) Disjoint paths, (d) Multiple NICs at end nodes. 53

4.2 Examples of the degree of disjoint paths: (a) sharing one link and one

switch, and (b) sharing two links and two switches. 54

4.3 Example of disjoint paths. (a) Four disjoint paths in a 5× 5 torus and

(b) the set of routing restrictions enforced by up∗/down∗ on the same

5 × 5 torus (R means root switch). 55

4.4 TFTR Stages. 56

4.5 Example of up∗/down∗ routing restrictions in a 4 × 4 torus. 57

4.6 Example of a cycle and how it can be avoided when using virtual

networks: (a,c) example of a cycle, (b,d) example of virtual network

transition. 58

4.7 Example of a set of four disjoint paths in a 2D torus. 59

4.8 Examples of different ways to solve a mapping conflict. (a) Example

of a mapping conflict, (b) mapping conflict solved by changing the

VL, (c) by using an alternative paths, (d) by using a new SL, and (e)

by discarding one path. 61

4.9 Example of multiple transitions between virtual networks. 62

4.10 Detailed example for a given source destination pair when applying

the TFTR methodology (in a 2D mesh). 64

4.11 Example of disjoint paths. 65

4.12 Link ordering in order to speed up the computing process of the dis-

joint paths: (a) for 2D tori/meshes and (b) for 3D tori/meshes. . . . 66

4.13 (a,b) Examples of two sets of the minimal disjoint paths in a 3D torus. 66

4.14 Stages of the enhanced TFTR version. 67

4.15 Steps followed by SPFTR. 69

xvi

4.16 Routing restrictions of (a) up∗/down∗ routing algorithm and (b) the

ad-hoc underlying routing algorithm used for SPFTR. 71

4.17 Example of a path using SL=0. 72

4.18 Regions in a 6 × 6 torus network when using SPFTR. 73

4.19 An example of route patterns for a source-destination pair of nodes

placed at the same region #0. 74

4.20 Underlying routing algorithm applied: (a) routing restrictions, (b)

SLtoVL table initialization for switch 14. N/D stands for Not De-

fined. X stands for any value. 75

4.21 Initial route patterns used for initial definition of SLtoVL tables. . . 76

4.22 Example of a route pattern. 77

4.23 Example of pattern applied in a (a) 6 × 6 and (b) 7 × 7 torus network. 77

4.24 Regions in 2D torus when using SPFTR. 78

4.25 2D planes in a 3D torus. 79

4.26 Switches in the same position in the XZ planes in a 6 × 6 × 6 torus

are included in the same position in a XY plane. 80

4.27 Pair of links shared between every pair of planes in a 3D torus. . . . 80

4.28 (a) Frontal view of routing restrictions in the XY plane of a 3D torus.

(b) SPFTR regions in a 3D torus. 81

4.29 Regions in 2D torus when using A-SPFTR in (a) 7×7 torus network,

and (b) in a 8 × 8 torus network. 82

5.1 Paths in a 3 × 3 mesh applying DOR. 85

5.2 Paths in a 3 × 3 mesh. 87

5.3 Applying RFTR for one link failure in a 3 × 3 mesh (part 1). 89

5.4 Applying RFTR for one link failure in a 3 × 3 mesh (part 2). 90

5.5 Stages followed by RFTR on IBA. 92

6.1 Cycle in a dynamic reconfiguration not introducing a deadlock. . . . 98

6.2 Stages of the EBR mechanism. 99

6.3 Sequence of routing table updates. The numbers indicate the se-

quence and the distance to the failed component. 100

6.4 Example of a switch status: (a) before and (b) after updating the

routing info. 101

6.5 Example of routing and scheduling during the reconfiguration pro-

cess at switch C (a) before being updated (old and (b) after being

updated (new). 103

6.6 Logic implementing the EBR deadlock recovery mechanism, (a) sim-

ple circuit, (b) extended version. 104

xvii

7.1 Structure of the Discrete-Event Simulation Model. 110

7.2 Reconfiguration schemes evaluated and events that distinguish them. 116

7.3 Determining transient state duration in the simulations. 117

7.4 Plotting latency at (a) reception time or at (b) injection time. 118

8.1 Percentage of singular cases in 2D tori that could not be handled by

the methods. 123

8.2 Network throughput degradation when using TFTR for different torus

networks. 127

8.3 Computational cost of TFTR for computing the set of disjoint paths

on different 2D torus networks. 128

8.4 Singular cases for link failures for (a) up∗/down∗ and (b) SPFTR in

2D and in 3D tori (100,000 combinations evaluated at each point

when the number of fault combinations is higher than 100,000). . . 130

8.5 Singular cases for switch failures for SPFTR in 2D tori (100,000

combinations evaluated at each point when the number of fault com-

binations is higher than 100,000). 130

8.6 Average path length in (a) 2D torus and (b) in 3D torus. 131

8.7 Degradation of performance with faults for SPFTR and A-SPFTR. . 131

8.8 Comparison between TFTR and SPFTR of the required number of

SLs in 2D tori. 132

8.9 Comparison of computational cost of TFTR and SPFTR in a Xeon

3.06 GHz (a) linear scale and (b) logarithmic scale. 133

8.10 Average path length when using RFTR and SR. 135

8.11 Average computational time (a,b) for RFTR and for different number

of failures in 2D and 3D tori, (c,d) for up∗/down∗ and RFTR in 2D

and 3D tori with one failed link. 137

8.12 Events of fault detection, computation and distribution of the new

routing tables evaluated. 138

8.13 Network throughput degradation. 139

8.14 (a,b) Accepted traffic when using RFTR and Simple Reconfiguration

algorithms, respectively. (c) Accumulated number of lost bytes using

RFTR and Simple Reconfiguration algorithms. 140

8.15 Average routing information sent after the first failure. 141

8.16 Average computational time for TFTR,SPFTR, up∗/down∗ and RFTR

on 2D tori. Figure also shows the correlated exponential function for

the computational cost of each mechanism. 142

8.17 Performance and reference traffic injection rates for the 6 × 6 torus

network. 144

xviii

8.18 Reconfiguration time for 6×6 torus network and uniform traffic pattern.145

8.19 Sequence in the distribution of routing tables (may affect the recon-

figuration time). 145

8.20 Dropped and discarded packets for 6 × 6 torus network and uniform

traffic pattern. 146

8.21 Traffic lost when using (a) Synthetic traffic patterns and (b) and traces. 147

8.22 Average latency on 10x10 torus network during the reconfiguration

and the transient time after it, each plot has a close up which shows

the latency during the reconfiguration. 148

8.23 Delivered traffic for 10 × 10 torus network and uniform traffic pattern. 149

8.24 Performance results for different tori and uniform traffic pattern, (a)

Reconfiguration time and (b) Dropped and discarded packets. 149

9.1 Schema for selecting the most suitable fault tolerance mechanism de-

pending on the number of faults and the time required for tolerating

them. 155

9.2 Schema for selecting fault tolerance methodology, depending on MTBF

and MTTR. 155

A.1 Example of route pattern applied. 160

A.2 Complete set of sequences of movements for obtaining all the pat-

terns for 2D direct networks. 161

A.3 Complete set of route patterns for 2D direct networks. Each patter

contains 4 sequences of movement for composing 4 disjoint paths. . 162

xix

This page intentionally left blank

List of Tables

1.1 Comparison of Shared and Distributed Memory Architectures. . . . 4

2.1 Lowest measured interconnect latency (smaller number is better), and

bandwidth (larger number is better) in interconnection networks. . . 10

3.1 MTBF values on Large-Scale HPC Systems. 39

4.1 SLtoVL table for switch Y and SL=0. X stands for any port. 72

4.2 SLtoVL tables for every region in 2D torus network for SPFTR method.

Values imposed by routing restrictions in each region are written in

bold face. X stands for any value. 77

4.3 SLtoVL tables for every region in 2D torus network for A-SPFTR

method. Values imposed by routing restrictions in each region are

written in bold face. X stands for any value. 82

5.1 Example of DRT and IRT tables. 87

6.1 Actions performed by EBR (when no credits are available) based on

the packet (EPCK) and the switch (ERTD and ESCHD) epoch bits.

(No overlapping is supported). 102

6.2 Actions performed by EBR (when no credits are available) based on

the packet (EPCK) and the switch (ERTD and ESCHD) epoch bits.

Overlapping is supported. 105

8.1 Evaluated scenarios for TFTR. 122

8.2 Percentage of end node pairs with n disjoint paths, when using an

unbounded number of SLs. 123

8.3 Percentage of pairs of end nodes with n disjoint paths when using 2

VLs and a bounded number of SLs. 125

8.4 Percentage of paths using a particular SL with a bounded number of

SLs and 2 VLs. 125

xxi

8.5 Routing path metrics for TFTR and up∗/down∗. 126

8.6 Routing path metrics for TFTR when using 4VLs and an unbounded

number of SLs. 127

8.7 Evaluated scenarios for SPFTR and A-SPFTR. 129

8.8 Evaluated scenarios for RFTR. 134

8.9 Fault tolerance achieved and resources required by RFTR, TFTR, and

SPFTR. For SPFTR the minimum network size for 3D torus topology

is 4 × 4 × 4. 135

8.10 Memory requirements. 136

8.11 Evaluated scenarios for EBR. 143

8.12 Summary of the characteristics of the different dynamic reconfigura-

tion mechanisms. 150

9.1 Summary of the advantages and drawbacks of the proposals. 154

A.1 Nomenclature used to define the sequences of movements. 159

xxii

Chapter 1

Introduction

Nowadays, the remarkable cost/performance ratio of personal computers1 (PCs) has

allowed them to become a common element in many environments where intensive

computation is required. Many of the most powerful machines nowadays are built

from commercial-of-the-shelf (COTS) systems as can be observed when examining

the top500 supercomputer list [39].

At the same time, new services and applications require higher computational

capacities, dealing also with higher amounts of information and hosting an increas-

ing number of users connected to Internet. Indeed, the increasing number of users

(through Internet), as well as the use of sophisticated applications is causing a high

computational load on servers where the response time becomes a critical factor.

As a side effect, the limitation of available bandwidth and the increasing neces-

sities in the transmission of information is leading to the use of compression and/or

encoding techniques, in many cases, in real time, thus increasing the requirements

of higher computational power in such systems. Moreover the data centers of large

companies and institutions manage large volumes of information. These companies

use computation intensive techniques such as data warehousing [90] and data min-

ing [80]. These applications often require exchanging information in the order of

terabytes.

The necessity to attend such an increase of users, as well as computational power

and storage capacity, leads to the need of building scalable and flexible systems that

facilitate their expansion in an incremental way and guarantee their long term growth

without degrading performance.

Although the performance of processors has increased steadily in the last years,

there is a physical limit. To break this limit, the logical solution for providing higher

computational power is to coordinate multiple processors in a system to concur-

rently perform the computation tasks, dividing the tasks into subtasks, each one being

1With the term personal computers we also include workstations.

1

2 CHAPTER 1. INTRODUCTION

solved in a different processor. These systems are widely known as parallel comput-

ers.

During the last decades different parallel computer architectures have emerged.

Basically, there are two fundamental types of parallel computers, either a single com-

puter with multiple internal processors sharing all the memory (single memory ad-

dress space), known as a Shared Memory Multiprocessor, or a set of independent

computers interconnected through a network. the second case the memory is dis-

tributed. These systems are known as multicomputers. Next, we briefly describe

each system type:

• Shared memory multiprocessor

A conventional computer consists of a processor and a memory readily accessi-

ble by the processor. The shared memory multiprocessor is a natural extension

where multiple processors are connected to multiple memory modules through

a certain interconnection network and support a single address space through-

out the system. This means that any processor can access any memory location

without the need of copying data from one memory to another. We can classify

multiprocessors in two classes depending on how the memory is shared:

– Multiprocessors with a centralized memory or multiprocessor with uni-

form memory access (UMA), also known as Symmetric multiprocessor

(SMP). In this type of systems the access time is uniform for every mem-

ory module from any processor. Figure 1.1.a shows a multiprocessor

system with a centralized memory with Uniform Memory Access. Exam-

ples of commercial UMA machines are Sun Fire 15000 system with 106

UltraSparc III processors [36], SGI Challenge [33], and IBM POWER3

[31].

– Multiprocessors with Distributed Shared Memory (DSM), also known as

multiprocessors with Non-Uniform Memory Access (NUMA). The mem-

ory is shared but distributed among the processors, therefore the access

time to memory is non-uniform (smaller to the local memory, and larger

to non-local memories). To reduce the effects of non-uniform memory

access, caches can be used. These systems with cache are referred to

as Cache Coherent Non-Uniform Memory Access (CC-NUMA). Figure

1.1.b shows a NUMA multiprocessor system. Examples are BBN Butter-

fly [60], Cray T3D [38], and SGI Origin 2000 [100], which use NUMA,

noncoherent cache NUMA, and CC-NUMA, respectively.

3

• Non-shared memory multiprocessors or multicomputers

A multicomputer consists of independent computers (processor and local mem-

ory) connected via an interconnection network as shown in Figure 1.1.c. Each

processor is able to address only its local memory space. Inter-processor com-

munication is achieved by sending explicit messages from each computer to

another using a message-passing library such as MPI (Message-Passing Inter-

face) [13]. In such a setup, each computer has its own memory address space.

In order to access a certain value from a different computer, it has to be copied

by sending a message to the desired computer. Message-passing multicomput-

ers physically scale easier than shared memory multiprocessors because it is

easier to extend the system by adding more computers. Moreover, these sys-

tems can support shared-memory applications by providing a certain software

layer, such as TreadMarks [92].

CACHE CACHE CACHE

NETWORK

MEMORY MEMORY MEMORY

CPUCPU CPU

(a)

CACHE CACHE CACHE

MEMORY

NETWORK

CPU CPU CPU

MEMORYMEMORY

(b)

NETWORK

MEMORY MEMORY

CACHE

CPU

MEMORY

CPU

CACHECACHE

CPU

(c)

Figure 1.1: Examples of parallel architectures: (a) Multiprocessor system with Uni-

form Memory Access (UMA), (b) Multiprocessor system with Non-Uniform Mem-

ory Access (NUMA), and (c) Multicomputer system.

These systems (multicomputers and multiprocessors) solve challenging problems

of high computational cost like the modeling of protein folders, modeling of the

global climatic change during long periods of time, the evolution of galaxies, the

atomic structure of materials, and so on.

Although these systems are very powerful, they present a series of disadvantages,

being the most important their high costs (due to their reduced volume of sales). Ad-

ditionally, although they are helpful when running highly parallel applications, a high

number of applications exist that are not easily parallelizable or even do not require

their parallelization. Thus, only a reduced set of applications take advantage of these

systems. In addition to this, they present a high cost per node, as they are made up of

expensive components. Another drawback is the need for highly qualified personnel

for their maintenance. Table 1.1 shows a comparison between the different architec-

tures in terms of scalability, software availability, communication, and drawbacks.

Also, some examples are shown.

4 CHAPTER 1. INTRODUCTION

Architecture

CC-UMA CC-NUMA NUMA PC Clusters

Examples

SMPs SGI Origin

Sun Vexx Sequent

DEC/Compaq HP Exemplar Cray T3E Mare Nostrum

SGI Challenge DEC/Compaq

IBM POWER3 IBM POWER4 (MCM)

Communications

MPI MPI

MPI MPI

Threads Threads

OpenMP OpenMP

shmem shmem

Scalability to 10s of to 100s of to 1,000s of to 10,000s of

processors processors processors processors

Drawbacks
Memory-CPU

Memory-CPU bandwidth System administration Memory is

bandwidth
Non-uniform access times Programming is hard to distributed

develop and maintain

Software many
many 1,000s ISVs 100s ISVs

many

availability 1,000s ISVs 1,000s ISVs

ISV: independent software vendor.

Table 1.1: Comparison of Shared and Distributed Memory Architectures.

As previously stated, an attractive solution to build high performance systems

(like supercomputers or web servers) is the use of clusters of PCs. We refer to

a cluster as a group of PCs (or workstations) interconnected among them. The

cost/performance ratio of the PC has improved dramatically in the last years and

nowadays hundreds or even thousands of commercial-off-the-shelf (COTS) proces-

sors can be glued to challenge Massive Parallel Systems (MPPs).

To support this trend it is well known that chips duplicate their number of transis-

tors every 18 - 24 months. A similar trend is observed in the performance achieved

by commercial multiprocesors. Figure 1.2.a and Figure 1.2.b show the number of

transistors and MIPS (million of instructions per second), respectively, for different

Intel processors at their introduction year in the market. Also, in both figures, up-

per line and bottom line represent a trend that duplicates every 18 and 24 months,

respectively. Additionally, PCs decrease their cost/performance ratio by 80% every

year, while the one for supercomputers is decreased only between 20% and 30% [45].

All this together has shifted the use of proprietary parallel computers to a small and

specific market.

Following this trend, more and more cluster-based systems are being included in

the top500 list of supercomputers [39]. Figure 1.3 shows the number of supercom-

puters in the top500 list classified by architecture. It is clear that in the last years

cluster-based systems had become the most used ones in the top500 list. As an exam-

ple, the Abe system [16] with 2,400 quad-core (9,600 cores) Intel Xeon 64 processors

at a frequency of 2.3 GHz is in the eighth position, the Mare Nostrum system [8] with

5

 100

 10000

 1e+06

 1e+08

 1e+10

 1970 1975 1980 1985 1990 1995 2000 2005

N
u

m
b

er
 o

f
tr

an
si

st
o

rs

Year

Moore’s Law

4004

8008

8080
8085

8086
286

386
486 Pentium

Pentium II

Pentium III
Pentium IV

Core 2 Duo

Core 2 Duo Extreme

Number of transitors doubling every 18 months

Number of transitors
doubling every 24 months

o
n

 a
n

 i
n

te
g

ra
te

d
 c

ir
cu

it
.

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1970 1975 1980 1985 1990 1995 2000 2005

M
IP

S

Year

4004

8008

8080

8085
8086

80186

80286

80386 80486

Pentium
Pentium pro

Pentium II

Pentium III

Pentium IV

Core 2 Duo

(b)

Figure 1.2: Chip and performance evolution: (a) Growth of transistor counts for Intel

processors (dots) and Moore’s Law, (b) performance measured in MIPS for Intel

processors.

10,240 processors and a computation capacity of 94.21 teraflops is in the ninth po-

sition, and currently is the most powerful supercomputer in Europe. Additionally,

another domain where PC clusters are dominating is the Internet. Examples of In-

ternet servers based on clusters of PCs are AOL [18], Google [11], Amazon [7] or

Yahoo [41].

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1
9

9
3

1
9

9
5

1
9

9
7

1
9

9
9

2
0

0
1

2
0

0
3

2
0

0
5

2
0

0
7

N
u

m
b

er
 o

f
su

p
er

co
m

p
u

te
rs

 i
n

 t
o

p
5

0
0

 l
is

t

Year

SIMD
Single Processor

SMP
Constellations

MPP
Cluster

(a)

Figure 1.3: Architectures used by supercomputers on the top500 list.

One of the key components that has enabled PC clusters as a platform for High-

Performance Computing (HPC) is the emergence of high-performance interconnec-

6 CHAPTER 1. INTRODUCTION

tion networks like Quadrics [123], Myrinet [49], and InfiniBand [89]. Examples of

these networks are the MareNostrum with 10240 PPC processors using Myrinet, the

SGI Altix ICE-8200 with 14336 Xeon quad core using InfiniBand, and the Tera-10

with 9968 Itanium2 processors at 1.6 GHz using Quadrics. These systems are on the

3rd, the 13th, and the 19th position on the top500, respectively. These commercial

network technologies easily scale to a number of nodes of hundreds and thousands.

Additionally, one key benefit of these systems is that upgrading the system is quite

easy as more memory, processors or nodes can be added to the current system. In

addition, these systems can be easily repaired and maintained, simply by replacing

the damaged component by another with the same or higher performance. This leads

to an efficient maintenance model.

In addition to the offered bandwidth and reduced latencies of such networks,

their interconnection flexibility also promotes their use for building HPC clusters

for small- and medium-sized companies, due to the low cost of PCs. Typically, these

companies connect all their distributed computers using a high performance network.

Although regular topologies should be preferred for performance reasons, the inter-

connection network must be designed, in particular its routing scheme, to support

irregular topologies. Indeed, due to space restrictions, the network topology2 may

become completely irregular. In addition to this the occurrence of faults in the net-

work components (links, switches) may convert a regular topology into an irregular

one.

1.1 Motivation and Objectives

In many of the cluster-based systems, providing fault tolerance is a requirement and

is becoming a necessity. These systems use very large number of components (pro-

cessors, switches, and links). Each individual component can fail, and thus the prob-

ability of failure of the entire system increases with the number of components. Al-

though switches and links are robust, they work close to their technological limit, and

therefore they are prone to faults. Increasing clock frequency leads to higher power

dissipation, and a higher heating could lead to premature faults. So, fault-tolerant

mechanisms in cluster-based systems are becoming a key issue.

Most of the fault-tolerant routing strategies proposed in the literature for mas-

sively parallel computers are not suitable for clusters (see Chapter 6 in [77] for a

description of some of the most outstanding approaches). This is because they of-

ten require certain hardware support that, unlike the proprietary network technolo-

gies commonly used in parallel computers, is not provided by the current commer-

cial interconnect technologies [49, 89]. Additionally, these routing strategies have

2Network topology is the physical connection scheme of end nodes and switches. We classify them

in Section 2.1.6.

1.2. CONTRIBUTIONS 7

been normally designed for specific regular network topologies, like meshes and tori.

However, the switch interconnection pattern in clusters can even be irregular. Fur-

thermore, they cannot be applied to systems with deterministic routing algorithms

(this kind of routing is the most used in cluster networks), which prevents packets

from circumventing the faulty components found along their paths. Also, some of

the routing strategies need to perform virtual channel transitions when the packet is

blocked due to a fault. However, in PC clusters virtual channels either are not sup-

ported by the interconnect technology or cannot be selected at routing time.

Therefore, the main objective of this thesis is to provide fault tolerant solutions

for interconnection networks used to build PC clusters. To reach this overall objective

we need to perform several smaller steps. Thus, the decomposed objectives are:

• Analysis of previous existing works related with fault tolerance on intercon-

nection networks.

• Analysis of existing interconnection networks for PC clusters, mainly Infini-

Band.

• Development of different fault tolerance mechanisms suitable for PC cluster

interconnection networks. These solutions need to provide the maximum fault

tolerance degree while reducing the traffic lost due to failures, maintaining both

the required number of resources (e.g., virtual channels or service levels) and

the elapsed time to tolerate the failure to low values.

1.2 Contributions

As commented above, the fault tolerant routing techniques proposed in the literature

for parallel computers (e.g., MPPs) are not applicable to networks with deterministic

routing, as it is the case of Myrinet and InfiniBand, which are commonly used as

commercial network technologies.

More specifically, in this thesis we develop new fault tolerant techniques for net-

work technologies whose switches support deterministic routing based on routing ta-

bles. In particular, and without loss of generality, we focus on the case of InfiniBand

networks. As concrete contributions of the thesis, we propose:

• The design of a set of simple fault-tolerant routing methodologies based on the

selection of paths at the source end nodes. With these methodologies a set of

alternative disjoint paths is provided for each pair of end nodes, in such a way

that failures are avoided by using alternative paths.

• The design of a fault-tolerant strategy based on routing in stages. The main

goal of this strategy consists of computing alternative paths in a time-efficient

8 CHAPTER 1. INTRODUCTION

manner. The idea consists of composing new paths taking fragments of existing

paths, where the first fragment starts at the source and the last fragment ends

at the destination.

• The design of a fault-tolerant strategy based on applying dynamic reconfigura-

tion of the entire network. In particular, in the presence of failures, the routing

algorithm applied is changed partially or completely.

All these strategies are described and evaluated in this thesis. The aim of the

techniques proposed is to provide an efficient way of dealing with failures in networks

for clusters, specially in systems with an InfiniBand network.

1.3 Organization

This dissertation is organized as follows. First, we introduce the background on

interconnection networks for HPC clusters in Chapter 2. Then, in Chapter 3, we

introduce the concepts and definitions of fault tolerance in networks, together with

an overview of the state of the art in the area.

In Chapters 4, 5, and 6, we present the contributions of this dissertation, describ-

ing the proposed mechanisms based on disjoint paths, routing in stages and reconfig-

uration, respectively.

In Chapter 7 the simulation model and the evaluation methodology are described.

In Chapter 8 the contributions are evaluated and analyzed. Finally, in Chapter 9 the

contributions and conclusions are summarized. Related publications of the contribu-

tions are also presented together with future directions in the research.

Chapter 2

Interconnection Networks for

HPC Clusters

In Chapter 1, clusters were presented as a cost-effective alternative to parallel com-

puters. These systems not only require powerful processors, but also a very efficient

interconnection network offering a high bandwidth and a low latency, able to cope

with the communication needs imposed by the high processing and data transfer rates

reached by current processors. Additionally, clusters have the necessity for intercon-

necting an increasing number of storage devices to cope with the access bandwidth

required by applications that manage huge amounts of information.

Thus, the global performance of the system can be affected by the performance

of the interconnect. The bandwidth and latency are the main performance metrics

of an interconnection network. Bandwidth1 measures how much data a network can

deliver at a time, and latency refers to the time required by an interconnect to deliver

a data packet.

Traditional (and old fashioned) interconnection networks like Ethernet [1] and

FDDI [2] are not a good solution to build an HPC cluster, as these networks exhibit

high transmission latencies which oscillate between 0.1 ms and 1 ms, and reduced

bandwidth between 1 and 100 Mb/s. An additional limitation of these networks is

the fragmentation of the bandwidth between all the processors of the system. There-

fore, these networks do not allow increasing the number of processors in the system

without affecting its global performance. In fact, for a medium number of end nodes,

the interconnection network becomes the bottleneck of the system. Thus, in those

systems applications have to wait long time for the requested piece of information,

1We refer to the term bandwidth as the maximum rate at which information can be transferred,

where information includes packet header and payload. The bandwidth is traditionally measured as bits

per second although bytes per second is sometimes used. The term bandwidth is also used to measure

the speed of network links.

9

10 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

stopping doing any useful task until the requested information is received.

Moreover, the interprocess communication (IPC) characteristics have a signifi-

cant effect on application performance. As a clear example, in the Earth Simulator

[10], the internode MPI commutation latency is 8.6 µs [93] whereas the processor

cycle time is 2 ns. This 4,300x factor significantly limits how parallel computation

can be exploited.

With the new Ethernet technologies (Fast Ethernet [3] and Gigabit Ethernet [20])

the offered bandwidth has been increased remarkably. Moreover, these networks are

switch-based, which allows concurrent communication (higher bandwidth). How-

ever, transmission latencies are still high (tens or hundreds of microseconds).

Currently, new switch-based interconnection network technologies are available

with capacities varying from 1 Gb/s to several Gb/s, offering at the same time low

latencies. Examples of these networks are Myrinet [49], Quadrics [123], and Infini-

Band [89]. Table 2.1 summarizes performance numbers of different network tech-

nologies and implementations extracted from [9, 30, 40, 32, 43, 79, 146].

Technology
Measured Measured

latency bandwidth

PathScale InfiniPath(InfiniBand) 1.31 µs 954MBps

Cray RapidArray 1.63 µs 2 GB/s per link

Quadrics 4.89 µs ∼875-910 MBps

Myrinet 19.00 µs 240 MBps

Myrinet(XP2) 5.7µs ∼495 MBps

Gigabit Ethernet 42.23 µs ∼125 MBps

Fast Ethernet 603.15 µs ∼12 MBps

Table 2.1: Lowest measured interconnect latency (smaller number is better), and

bandwidth (larger number is better) in interconnection networks.

Thus, the interconnection network must be efficient enough in terms of bandwidth

and latency to be able to support the traffic features required by current applications.

In what follows, we provide an overview of the required background on interconnec-

tion networks for HPC clusters.

2.1 Network Design for Clusters

The interconnection network in a cluster allows the communication between end

nodes, which are connected to the network by Network Interface Cards (NIC). The

main components in a network for clusters are switches and links. Switches intercon-

nect end nodes and other switches by point-to-point links. Switches are in charge of

transmitting data through the network.

2.1. NETWORK DESIGN FOR CLUSTERS 11

The interconnection network design is influenced mainly by three design choices:

switching technique, network topology, and routing strategy. The switching mecha-

nism (described in detail in Section 2.1.2) determines the advance of data, and defines

how and when network resources are assigned for such a task. Network topology is

the physical interconnection pattern of the end nodes and switches. We classify them

in Section 2.1.6. Finally, the routing algorithm determines the path to follow by pack-

ets when going from one end node to another in the network. We describe them in

more detail in Section 2.1.7. Additionally, there are many other design choices like

flow control, virtual channels, and arbitration, which are covered in the following

sections.

2.1.1 Data Units

Before describing more complex structures, we first focus on the different types of

data units we might find in a network. Figure 2.1 shows the different data units.

The data to be transmitted is arranged into different units. The message is the

largest unit. It is referred to as the data to be transmitted between two end nodes.

Messages are often packetized into smaller data units, referred to as packets, depend-

ing on the switching mechanism.

Header Payload

Phit

Flits

Packet

Messages

Figure 2.1: Different data units in an interconnection network.

The structure of a packet is composed of a header and a payload (and sometimes

even a tail). The header contains routing and control information, which is used to

route the packet from its source to its destination. The payload contains data to be

delivered to the destination.

Packets are divided into flits (flow control units). Flits are the minimum data that

can be controlled over a link by the flow control mechanism. To transmit a single flit

multiple link cycles may be used. The piece of data transmitted in a single cycle over

the link is referred to as phit (physical unit).

12 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

2.1.2 Switching

The switching technique establishes how network resources are assigned to messages

or packets, and what to do when the message (or packet) is blocked. It includes the

connection between the input and the output ports of a switch and how the transfer

of information takes place. There are three main switching techniques in current

networks: store & forward [62], virtual cut-through [94], and wormhole [65].

In store & forward (SAF) (Figure 2.2.a) a packet arriving to a switch is stored

in a buffer associated to the input port, and only when it is completely received is

routed and forwarded. The packet is forwarded to the next switch or destination node

when it has enough buffer space to be completely stored at the next node or switch.

This mechanism has the disadvantage that the packet latency is proportional to the

distance between the source and destination. An additional problem is the limitation

of the packet size. The maximum packet size is limited by the size of the buffer. ATM

(Asynchronous Transfer Mode) networks [108] use this switching mechanism.

(2) Routing

(3) Forwarding

completely

stored in the

buffer

(1) Packet is Switch

(a)

completely received

routed before being

The packet is

Switch

(b)

Figure 2.2: Switching mechanisms: (a) store & forward and (b) virtual cut-through.

In virtual cut-through (VCT) switching a packet is relayed towards the next

switch as soon as its head is decoded, provided the selected output channel is free,

without waiting for the complete reception of the packet (Figure 2.2.b). When com-

pared with SAF, the latency experienced by a packet is drastically reduced. However,

if the selected output channel is busy, the packet is completely stored in the input

buffer at the current switch until the output becomes available. Therefore, virtual

cut-through switching behaves like store & forward when the output channel is busy

(i.e., as long as the traffic load becomes high). With this switching mechanism, in

absence of contention2, the latency of the packet is largely insensitive to the distance.

As an example, IBA switches use the virtual cut-through switching mechanism.

2Contention occurs when two or more packets request the same output channel. In this situation,

only one packet is granted the requested channel, whereas the rest of packets are blocked until the output

channel becomes free.

2.1. NETWORK DESIGN FOR CLUSTERS 13

b c

a

Switch 1 Switch 2 Switch 3

(a)

Switch 1 Switch 2

(b)

Figure 2.3: (a) Example of blocked messages in wormhole. (b) Virtual channels.

In wormhole (WH) switching, the message (not the packet) is forwarded imme-

diately towards the next switch before the entire message is received, as in virtual

cut-through. However, unlike virtual cut-through, message size is not limited by

buffer size. Only space for a few flits is needed at each buffer. Therefore, when

the required output channel is busy, the message remains stored in place throughout

the buffers that it is occupying at different intermediate switches across the network.

One major advantage of wormhole switching is that switches can be implemented

with little storage space (buffers). Thus, wormhole allows to design fast, simple and

low cost switches. However, the network throughput achieved by wormhole is, often,

low. Wormhole switching causes a higher contention degree in the network, due to

the fact that messages, when blocked, keep the buffers and channels being traversed.

As a consequence, all the messages that request any of the resources occupied by

the blocked message are also blocked, which block in turn other messages, and thus

more and more messages become blocked. All this entails to a low utilization of the

channels, which causes a low throughput in the network. Figure 2.3.a is an example,

in which message a becomes blocked, occupying the channels of the three visited

switches. These channels cannot be used by messages b and c until the blocked

message continues its way towards its destination and releases the resources. Ad-

ditionally, while being blocked, messages b and c will block also other messages.

Myrinet is an example of network using wormhole switching.

2.1.3 Virtual Channels

In order to alleviate the problem of low throughput (due to the contention) achieved

by the wormhole switching mechanism, virtual channels were proposed [59]. Instead

of associating only one buffer to each physical channel, multiple buffers are associ-

ated (see Figure 2.3.b), in such a way the storage space associated to the physical

channel is decoupled from the channel bandwidth. With the use of virtual channels,

14 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

the physical channel bandwidth is shared by the messages instead of being associ-

ated exclusively to only one message. If a message blocks (due to the fact that the

header stored in the reserved buffer cannot advance) the channel will be used by other

messages, thus avoiding wasting the channel bandwidth.

Indeed, although only one physical channel exists, the information can be trans-

mitted as if there were several channels. We denominate to these channels as virtual

channels, and each of them has associated a dedicated set of buffers.

The use of virtual channels provides an important increase in the throughput of

the network, at the expense of increasing the control logic associated to each phys-

ical channel. In particular, flow control should be provided at virtual channel level.

The disadvantage of this mechanism is that the available bandwidth for each mes-

sage is reduced, because it is distributed between the messages sharing the physical

channel. Thus, the messages will advance at a lower speed. In addition, if at least

one of the channels used by the message is multiplexed, then the totality of the mes-

sage advances at a lower speed. Virtual channels can be used as a complementary

mechanism together with wormhole and virtual cut-through.

2.1.4 Flow Control

Packets can be transmitted through a channel when it is available. However, buffer

space is required to temporarily store the packet. In some cases there is no more

available buffer space, and a flow control mechanism is required to stop the transmis-

sion (other options not commonly used in high performance networks is to drop or

reroute the packet).

A flow control mechanism determines when packets can be forwarded, because

it is possible that channel bandwidth (or buffer capacity) can not be allocated. Com-

monly, flow control is tightly coupled to the switching technique. Flow control re-

quires to know the availability of buffers for storing the next flit (wormhole) or the

next packet (store & forward and cut-through).

There are three flow control mechanisms commonly used for managing the avail-

ability of buffers: credit-based, on/off, and ack/nack mechanisms. These mechanisms

should be designed with the aim of maximizing the effective channel bandwidth.

With credit-based flow control, the upstream end of a channel keeps a count of

credits, which corresponds to the number of free flit buffers3at the downstream end

of the channel. Then, each time a flit is forwarded, a downstream buffer is consumed

and the appropriate counter is decremented. If the counter reaches zero, the corre-

sponding downstream buffer may be full and no further flits can be forwarded. Once

the downstream end of the channel forwards a flit and frees the associated buffer, it

3In store & forward and cut-through switching number of credits corresponds to the number of

packets that can be mapped.

2.1. NETWORK DESIGN FOR CLUSTERS 15

sends back a credit to the upstream end of the channel, causing the associated buffer

counter to be incremented (see Figure 2.4.a).

A potential drawback of credit-based flow control is a one-to-one correspondence

between flits and credits. For each flit sent downstream, a corresponding credit is

eventually sent back upstream. This requires a significant amount of upstream sig-

naling, especially for small flits, and can represent a large overhead.

Stop/go flow control, also known as on/off, can greatly reduce the amount of up-

stream signaling in certain cases. With this method, the downstream state is a single

control bit that represents whether the upstream node is permitted to send (on) or not

(off). The round-trip time (RTT) is defined as the time that elapses between the con-

trol signal is sent upstream until traffic is stopped or resumed (this time includes the

travel time of the control signal and the required time by the injected traffic to reach

the end node). Stop/go flow control generates much less control traffic than credit-

based flow control because a signal is sent back upstream only when it is necessary

to change this state. In particular, it is sent when the number of free buffers crosses

a certain threshold. This threshold corresponds to the required buffer size to store

the traffic during the round-trip delay (Figure 2.4.b. shows an example of on/off flow

control, where the stop and go thresholds are referred to as high watermark and low

watermark, respectively). Thus, the required buffer is at least two times the traffic

which can be transmitted during the round-trip delay.

When transmitting

counter
Credit

available downstream
Counter of buffer slots

Switch BSwitch A

2

when a new buffer slot
Credit is sent upstream

is available

credit counter decrements

(a)

Switch A Switch B

(Xoff)

(Xon)

RTT x traffic rate

High watermark

Low watermark

RTT x traffic rate

stop

Buffer

go

(b)

Flit Flit Flit

ACK ACK ACK

Switch A Switch BSource Destination

(c)

Figure 2.4: Examples of flow control mechanisms: (a) credit-based, (b) on/off, and

(c) ack/nack.

16 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

Both credit-based and on/off flow control methods must consider the round-trip

delay trt to avoid buffer under utilization. Also, notice that both mechanisms back-

pressure the sender to avoid dropping packets.

With ack/nack flow control, each switch/end node sends flits whenever they be-

come available. If the downstream node has a buffer available when the flit arrives,

then the flit is accepted and an acknowledge (ack) is sent to the upstream node, other-

wise the flit is dropped and a negative acknowledgment (nack) is sent. The upstream

node, then, keeps each flit until it receives an ack.

Ack/nack flow control reduces buffer needs. Unfortunately there is no net gain

because buffers are needed also at the transmitter side waiting for an acknowledg-

ment, making ack/nack flow control less efficient than credit-based flow control in

terms of buffer usage. It is also inefficient in its use of bandwidth because flits must

be dropped when no buffer is available. Ack/nack flow control is also referred to as

optimistic flow control, since it should be used when the chances of having available

buffers is high.

As a summary, credit-based flow control is typically used in systems with small

number of buffers, and on/off flow control is used in most systems that have large

number of flit buffers. However, ack/nack flow control is rarely used because of its

buffer and bandwidth inefficiency.

2.1.5 Arbitration

Switches as shown in Figure 2.5, have multiple ports with associated buffers and

channels. In this context, it is possible that several incoming messages (from different

input ports) request the same output port or resource at the same time. In order to

describe which of the requesters wins access to the requested resource, an arbitration

mechanism is required. The arbiter assigns the requested resource to one requester

at a time, and the other ones keep waiting. We consider the arbitration time as the

time required by the arbiter to determine the assignment of a requested resource. Fast

arbitration algorithms are crucial to keep low latencies through the switch.

A key property of an arbiter is fairness. The arbiter must provide the same chance

to any request in order to be fair. Different arbiters have been proposed: examples

are [67]: fixed priority, oblivious, and round robin.

The fixed priority arbiter, serves always requests in the same order. Thus, the

order defines the priority assigned to each of them. The oblivious arbiter, however, is

based on selecting randomly a request each time. Both mechanisms do not provide

fairness, since eventually multiple incoming requests from the same input port will

(or may have) higher priorities than a request waiting in another input port. In order

to guarantee fairness the round-robin mechanism can be used. It is based on assigning

the lowest priority to the last served port on the next arbitration cycle.

2.1. NETWORK DESIGN FOR CLUSTERS 17

Crossbar
In

p
u
t

p
h
y
si

ca
l

ch
an

n
el

s

O
u
tp

u
t

p
h
y
si

ca
l

ch
an

n
el

s

buffers
Input

buffers
Output

Arbiting

Routing

Figure 2.5: Internal model of a switch.

2.1.6 Topology

Topology is defined as the arrangement of switches and end nodes, and the connection

pattern through links. The topological distance between two end nodes is defined as

the minimum number of links that must be traversed to reach one of them from the

other.

Clusters of PCs are very flexible in the way network resources can be connected.

Indeed, the topology can be defined completely by the user. Thus, although regular

topologies should be preferred for performance reasons, irregular topologies are also

possible. In what follows, we provide a classification of different topologies.

A. Shared medium networks: These networks, also known as buses, share the

communication medium, which has a limited bandwidth. Therefore, the num-

ber of devices that can be connected is limited (scalability problems). Buses

become a bottleneck as long as the transfer rate and/or the number of connected

devices increases. Additionally, an arbitration mechanism is required to access

the bus.

In these networks the implementation of broadcast is simple and efficient. Lo-

cal area networks such as Ethernet, Fast Ethernet or FDDI and the internal

buses of multiprocessor systems are examples of shared medium networks.

B. Direct networks: Every end node in the system includes a switch/router, which

handles message communication among end nodes. For this reason direct net-

works are also known as router-based networks [77]. The topology is defined,

thus, by connecting end nodes among them accordingly to a certain intercon-

nection pattern.

Most of the implemented systems have an orthogonal topology. In these topolo-

gies, nodes can be allocated into a n–dimensional space, with k nodes along

18 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

each dimension. The position of a node is defined by its coordinates into the

space, that is, a n–tuple (xn−1, . . . , x1, x0), so that 0 ≤ xi < k. In particular,

the most popular topology is the k–ary n–cube topology, where k is the num-

ber of nodes interconnected in each of the n dimensions. Every end node has

at least one link crossing each dimension. The distance between every pair of

end nodes is the sum of the offsets in all the dimensions.

There are two topologies, tori and hypercubes, on which every end node has

two links in each dimension. In particular, hypercubes are a special case of

k–ary n–cube in which k=2. Figures 2.6.b and 2.6.c show a 2D torus and a

binary hypercube, respectively. Examples of real systems are: the KSR first-

level ring [131] which uses a 1D torus network, the Intel/CMU iWarp [24] and

Alpha 21364 [119] which use a 2D torus network, the Cray/SGI T3D [139],

Cray T3E systems [140] and BlueGene/L [44] which use a 3D torus network,

and the Intel iPSC [81] and the nCUBE [118] which use an hypercube network.

In the case of tori, the links used to connect nodes at the boundaries of each

dimension are referred to as wraparound links. Meshes are similar to tori, but

without the wraparound links. Unlike k–ary n–cube, in a mesh topology there

are some nodes with a different number of ports (neighbours), in particular,

those placed at the borders of the network. Figure 2.6.a shows a 2D mesh.

Real systems which use this topology are the Intel Paragon [78] and the MIT

J-Machine [122], using a 2D and 3D mesh, respectively.

(a) (b)
(c)

Figure 2.6: Examples of direct topologies: (a) 2D mesh, (b) 2D torus, and (c) hyper-

cube (n–cube).

C. Indirect networks: In these networks, the end nodes are interconnected through

switches, and the connection to the switch is made by a Network Interface Card

(NIC). Each switch port can be connected to an end node or to a switch, thus

each switch can be connected to several end nodes and/or switches. The most

common indirect topologies are crossbars, multistage networks, and irregular

networks.

• A crossbar allows a connection to be established between any input-

output pair, whenever the output is unassigned (is not being used by a

2.1. NETWORK DESIGN FOR CLUSTERS 19

previous connection). As complexity grows quadratically with the num-

ber of ports, this topology does not scale with system size. Figure 2.7.a

shows an example.

• To overcome the scalability problem of a crossbar multistage intercon-

nection networks (MINs) are used. Switches are organized in stages and

end nodes are connected only to switches on the first stage (case of uni-

directional MINs or fat-trees)4. In unidirectional MINs, the distance be-

tween any pair of nodes is the number of stages plus two (external links

connecting the end nodes). Figure 2.7.b shows an example of a multistage

network (fat-tree).

• Finally, in an irregular network, the connection between switches and end

nodes does not follow any regular pattern. Figure 2.7.c shows an irregular

topology connecting 11 end nodes.

Switch
point

Outputs

In
p

u
ts

(a)

Bidirectional link

Switch

End node

(b)

Level 1

Level 2

Level 3
switch

switch

switch

End nodes

(c)

Figure 2.7: Examples of indirect topologies: (a) 4×4 crossbar, (b) irregular network,

and (c) bidirectional multistage network.

4Networks are referred to as bidirectional MINs, when they are organized in stages, and end nodes

are connected to the first and last stages.

20 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

As can be deduced, the differences between direct and indirect networks are very

subtle. The functionality of a router (in a direct network) and a switch (in an indirect

network) is the same. A network can be seen as a set of point to point links that inter-

connect switches with a certain interconnection pattern, in such a way that a switch

can be connected to one end node, to several end nodes or to none at all. A direct

network is equivalent to an indirect network in which every switch is connected to a

single end node. A crossbar network is a network with a single switch connecting all

the end nodes. A multi-stage network corresponds to the case in which the switches

are organized in several stages, so that switches belonging to intermediate stages are

not connected with any end node. This unified view allows us to apply the same

strategies to route messages through the network. Some common topological metrics

of direct and indirect networks are:

• Diameter: Maximum distance between any pair of end nodes.

• Degree: Number of channels of each switch or router.

• Regularity: All the routers/switches have the same degree.

• Symmetry: The network looks like the same from any router/switch point of

view.

• Connectivity: The minimum number of switches/links necessary to disconnect

the network.

2.1.7 Routing Algorithm

Once defined the topology, we need to route packets within the network. The routing

algorithm determines the path taken across the network by each packet from its source

to its destination. A path is an ordered set of channels, which starts at its source and

ends at its destination. The length of a path is the total number of channels traversed

along it.

Many routing algorithms have been proposed in the last decades for different

interconnection network domains. In this section, we provide a taxonomy of routing

algorithms, and describe later some algorithms suitable for PC clusters.

2.1.7.1 Taxonomy

Figure 2.8 shows a taxonomy of the routing algorithms. This taxonomy has been

obtained from [77]. Routing algorithms can be classified according to the number of

destinations. So, packets can be sent to either only one destination (unicast routing)

or multiple destinations (multicast routing). In particular, when using unicast routing

2.1. NETWORK DESIGN FOR CLUSTERS 21

the path followed by messages/packets can be defined in different ways. The first one,

referred to as centralized routing, consists of all paths being computed at a centralized

controller. A second way, referred to as source routing, consists of each source end

node computing the entire path that each of its packets must follow. Typically, all

the information about the ports to be traversed is included in the packet header, thus,

switches only have to forward the packet according to this information. Each switch

reads the appropriate element at the packet header and uses it to select the output

channel. Notice that the packet has the path fixed on its header from the source and

it cannot be changed. Figure 2.9.a illustrates the source routing mechanism. This

mechanism has the main advantage of switches being simpler and the routing delay

being small. The main disadvantage is that the size of the header depends on the

distance to the destination. This size can be considerably high with respect to the

number of bytes to transmit (specially when short messages are sent).

Routing decisions

Number of destinations

Distributed routingSource routingCentralized routing

Routing based on Tables Finite state machine

Deterministic routing Adaptive Routing

Progressive Backtracking

Partial

Multicast routing

Implementation

Adaptability

Progressive

Number of paths

ROUTING MECHANISMS

Complete

Minimal Non MinimalMinimal path

Multiphase routing

Unicast routing

Figure 2.8: Taxonomy of the routing algorithms.

In distributed routing, however, paths are defined dynamically while packets

travel through the network. The information of the path is distributed in the network,

so each switch knows the output channel to be used based on the destination of the

packet (in some cases also considering the input channel as well). Greater flexibility

is provided as switches are able to decide the output channel, probably based on the

status of the output ports. Also, the size of the packet header is small and constant.

Myrinet is an example of a network using source routing. Figure 2.9.a shows a

packet being routed in a switch using source routing. IBA uses deterministic dis-

tributed routing based on tables (also uses source routing for control packets). Figure

2.9.b illustrates the distributed routing mechanism based on tables, assuming deter-

ministic routing. In the figure the unique output port is selected as a function of the

destination ID indicated by the packet header and the input port.

Hybrid schemes are also possible. In [77] hybrid schemes are referred to as mul-

tiphase routing. In multiphase routing, the source node computes some destination

22 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

Switch

2,1,0

Port 1Port 3

Port 0

Port 2

(a)

Port 1

Input Destination Output
Port 3

Switch

Port 2

Port 3 Port 1

Port 0

d

d

(b)

Figure 2.9: Different routing mechanisms: (a) source routing and (b) distributed

routing based on tables.

nodes. The path between them is established in a distributed manner.

Routing algorithms can be implemented in different ways. The most common

ones consist of either looking at a routing table (table look up) or using a finite-state

machine.

Additionally, routing can be classified as deterministic or adaptive. When using

deterministic routing the path is unique and cannot be changed, whereas adaptive

routing allows modifying the path depending on different criteria (e.g., the network

traffic status).

Depending on whether the message can backtrack or not, adaptive routing can be

further classified as progressive or backtracking. In both cases the adaptive routing

is referred to as minimal routing when the path can only use channels that get the

packet closer to its destination (it is also referred to as profitable routing). Otherwise,

it is referred to as non minimal routing (also known as misrouting). An adaptive

routing algorithm is referred to as fully adaptive when it can use any possible routing

option, taking into account that these options are only minimal. Alternatively, it can

be referred to as partial adaptive when it is not allowed to take all the possible routing

options.

2.1.7.2 The Deadlock Problem

Deadlock occurs when some packets cannot advance toward their destination because

the buffers/channels requested are not released by the packets using them. A depen-

dence is defined between the resource held by a packet and the resource requested

2.1. NETWORK DESIGN FOR CLUSTERS 23

by the same packet. Packets involved in a deadlock (cycle of resource dependences)

keep blocked forever, waiting for the transmission of another packet also in the dead-

lock cycle. This situation arises because network resources are finite, in particular

buffer capacity. As a deadlock blocks the network, it is extremely important to avoid

or remove them when designing a routing algorithm.

For example, Figure 2.10.a shows a deadlock situation. In the figure, the involved

switches are labeled A, B, C and D. The involved buffers are full, and the requested

output link by the message placed at the head of each buffer is represented in the

figure by a curved arrow. Figure shows that these dependencies form a cycle which

can never be broken as none of the messages can advance.

The probability to reach a deadlock situation increases with network traffic and

decreases with the amount of buffer storage. In both store-and-forward and virtual-

cut-through switching mechanisms, deadlock may occur only as a result of cyclic de-

pendencies across adjacent channels. This contrasts with wormhole switching, where

a packet may block holding multiple channels along its path. Therefore wormhole is

prone to deadlocks.

Switch A

Switch CSwitch D

Switch B

(a)

DA BC

AB

CD

(b)

Figure 2.10: Example of a deadlock situation: (a) a deadlock situation, and (b) ex-

ample of a cycle in the CDG.

There are two different ways to deal with deadlocks, the deadlock avoidance and

deadlock recovery.

First, we define the concepts of dependences between channels and the channel

dependency graph, because the deadlock avoidance techniques are based on them.

A dependence from channel i to channel j is defined when there is a routing

option which will route a packet holding the channel i into the channel j. Using

this definition, the channel dependency graph (CDG) is generated considering all

the channel dependencies. The graph is a directed graph where the vertexes are the

channels and the edges represent the dependences between them. The CDG can be

used to detect the existence of cyclic dependences between channels [66].

24 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

Figure 2.10.b shows the corresponding CDG when considering the channels in-

volved in the deadlock situation in Figure 2.10.a. This second figure presents the

dependences between channels. Notice that there is a cycle in the CDG.

The deadlock avoidance theorem when using deterministic routing of messages

was proposed by Dally and Seitz in [64]. They demonstrated that deterministic rout-

ing of messages in the network is deadlock-free if and only if the channel dependency

graph does not contain cycles. This can be achieved by enforcing some routing re-

strictions. Basically, a deterministic routing algorithm defines routing restrictions

between pairs of channels. A routing restriction between two channels forbids the

use of the second channel after using the first one. In some cases, such as k–ary

n–cube topologies, virtual channels must be introduced to break cycles in the CDG.

In particular, in tori physical channels must be splitted into two virtual channels to

avoid deadlock under deterministic routing.

Notice, that Dally and Seitz theorem is a necessary and sufficient condition to

guarantee deadlock freedom when applied to deterministic routing. However, when

applied to adaptive routing, the absence of cycles in the CDG represents only a suffi-

cient condition. That relaxed condition allowed to design great quantity of adaptive

routing algorithms. In most cases, at the expense of introducing large number of

virtual channels to break cyclic channel dependences in the CDG [63, 103].

Later, Duato proposed in [74] a deadlock-avoidance theory for adaptive routing.

According to this theory a routing function is deadlock-free if and only if there ex-

ists a routing subfunction that is connected and has no cycles in its extended channel

dependency graph. That is, it is possible to guarantee that an adaptive routing algo-

rithm is deadlock-free despite allowing cyclic channel dependencies into the CDG,

provided the existence of a routing subfunction that has no cycles in its extended

channel dependency graph. The channels used by the aforementioned routing sub-

function are referred to as escape channels. Removing the necessity of breaking

cycles into the CDG allowed to design deadlock-free adaptive routing algorithms by

using the minimum number of network resources (virtual channels).

The alternative way to deal with the deadlock problem consists of allowing cy-

cles in their channel dependency graph, and using a deadlock recovery mechanism

when a deadlock situation arises. For instance, true fully adaptive routing [47, 46],

which allows any path available in the topology with no restrictions, allows cycles

and requires a deadlock recovery technique for guaranteeing deadlock freedom.

2.1.7.3 The Livelock Problem

Livelock occurs when packets continue to move through the network, but never reach

their destination.

A simple solution to the livelock problem consists of limiting the maximum num-

ber of misroutings of the packet, or by giving higher priority to older packets in the

2.1. NETWORK DESIGN FOR CLUSTERS 25

network. This can be implemented by labeling each packet. Such label can be used

for storing a misrouting counter, or to store the packet age.

2.1.7.4 Routing Algorithms for Clusters

Many routing algorithms have been proposed in the literature, although most of them

are not applicable to clusters. This is because either most routing algorithms require

certain hardware support or resources not available in current interconnects for clus-

ters, or they are defined for some particular topologies whereas clusters adopt any

topology.

Dimension Order Routing (DOR) is one of the most simple and popular rout-

ing algorithms used in MPPs. DOR is a deterministic routing algorithm as it always

supplies the same path between every pair of nodes. It requires, indeed, regular

topologies like hypercubes, meshes, and tori. DOR routes all the packets by crossing

dimensions always in the same order, reducing to zero the offset in one dimension

before routing into the next dimension. Therefore, this deterministic routing algo-

rithm avoids deadlock by prohibiting turns between dimensions out of the defined

order. However, when DOR is applied to torus topologies cycles can still be formed

along the wraparound links. To remove cycles in the CDG each physical channel

must be split into two virtual channels [64] or an alternative mechanism, like bubble

flow control [127], must be used. When applied to 2D meshes or tori DOR is also

referred to as XY routing algorithm (first dimension X, then dimension Y). The four

turns allowed by the XY routing algorithm are shown in Figure 2.11.

X

Y

Figure 2.11: Allowed turns in XY routing algorithm.

Despite the fact that DOR can be applied to PC clusters, this routing scheme can-

not be considered the most suitable for clusters. This is because DOR requires the

use of regular topologies, whereas the topology in PC clusters may be irregular5 due

to either topological constraints of the user capability to define the network layout.

As the topology can be modified by the user, routing schemes valid for any topol-

ogy are preferable. They are known as generic routing or topology-agnostic routing

algorithms.

5Notice also that a regular topology becomes an irregular one in the presence of faults.

26 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

The most popular topology-agnostic routing algorithm is up∗/down∗ (UD) [138].

This algorithm can be used in networks with either source routing or distributed rout-

ing, and can be applied to regular and irregular networks as well. Indeed, it has been

used in commercial networks, including Myrinet [49], Gigabit Ethernet [20] switches

(using the Spanning-Tree Protocol (STP)), and IBA (the OpenSM [27] software in In-

finiBand uses an up∗/down∗ tree).

UD is based on an assignment of direction labels (up or down) to each link. To

this end, the UD algorithm computes a spanning tree, selecting a certain node as

root. Depending on the way the tree is computed we can have a BFS (Breadth-First-

Spanning) tree [138] or a DFS (Depth-First-Spanning) tree [134]. The up direction

is assigned to the channels going upwards the tree (towards the root) and the down

direction to the channels going downwards. If both switches are at the same level,

the direction is assigned based on the identifiers of the switches. For example, up

direction is assigned to the channel that connects to a switch with a smaller identifier.

The algorithm uses the following rule to avoid cycles: packets cannot use channels

in the up direction after they have used channels in the down direction. Figure 2.12

shows the allocation of channels in an irregular network according to the up∗/down∗

routing algorithm based on a BFS Spanning tree. the main difference between usual

UD algorithms based on BFS and DFS trees is that the DFS tree imposes less routing

restrictions, allowing more packets follow minimal paths.

Up direction SWITCH
ROOT

SWITCH

A B C

GFED

SWITCH SWITCH

SWITCH SWITCH SWITCH SWITCH

Figure 2.12: Link labels for the up∗/down∗ (BFS) routing algorithm.

Another routing algorithm we may consider for PC clusters is smart-routing [57].

It computes all possible paths between all source-destination pairs, building at the

same time the CDG. Then, it looks for the existence of cycles in the CDG. By us-

ing an iterative process all cycles are broken (this process tries to balance the traffic

over the channels). This process finalizes when the CDG has no cycles. Although

smart-routing distributes better the traffic than other routing algorithms, it has the

disadvantage of its high computational cost, since it uses a linear algorithm for bal-

ancing the traffic while removing cycles. Smart-routing can be used in networks with

source routing and distributed routing.

2.1. NETWORK DESIGN FOR CLUSTERS 27

Other deterministic routing algorithms are the FleXible routing scheme (FX)

[133] and the left-up-first turn routing algorithm (LTURN) [96]. FX introduces unidi-

rectional routing restrictions to break cycles. LTURN, however, is based on a logical

BFS spanning tree and a left-right directed graph to provide deadlock freedom and to

distribute the traffic over the network.

These routing algorithms (UD, DFS, LTURN, FX, and SMART routing) do not

require the use of virtual channels. There are other deterministic routing algorithms,

however, which require the use of virtual channels. Examples of them are Multi-

ple Roots (MRoots) [107], the Layered Shortest Path (LASH) [142], the Descending

Layers routing (DL) [97], and the Transition Oriented Routing (TOR) [135].

MRoots provides a solution to the congestion experienced when using up∗/down∗.

To achieve this, MRoots distributes traffic over multiple different up∗/down∗ trees

each one on a different virtual channel. LASH routing algorithm provides determin-

istic shortest path routing by dividing the physical network into a set of virtual net-

works using separate virtual channels. Paths are mapped on a virtual channel only if

the CDG of the corresponding virtual network is acyclic. To achieve minimal paths

an unbounded number of virtual channels may be required.

Both routing algorithms (MUD and LASH), use multiple virtual channels and

traffic being routed in one virtual channel can not migrate to another virtual channel.

TOR and DL routing algorithms, however, allow virtual channel transitions (virtual

channels are used in increasing order in order to guarantee deadlock freedom). TOR

uses up∗/down∗ as the underlying routing algorithm in order to decide when traffic

migrates between virtual channels. Similarly, DL uses up∗/down∗ or LTURN as the

underlying routing.

On the other hand, adaptive routing algorithms can not be applied to clusters. For

instance, adaptive trail [130] and minimal adaptive [125] routing algorithms cannot

be used in networks with source routing (for example Myrinet and ASI [6]) neither in

networks with deterministic distributed routing (like IBA), as they require switches

to choose among different alternatives at routing time. Such a hardware support is

not provided by current commercial interconnect technologies.

2.1.8 Network Reconfiguration

Once described the main characteristics of interconnection networks for clusters, for

the sake of completeness, and due to the fact that this thesis is related to fault tolerance

issues, we describe in this section the reconfiguration process of the network and

the main existing reconfiguration proposals. By reconfiguration we mean the entire

process change of the network (possibly due to a failure).

Network reconfiguration consists of three steps (See Figure 2.13). The first step is

intended to detect network devices and their connections (i.e., topology), the second

step consists of computing the new routing info by applying a routing algorithm,

28 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

whereas the last step distributes the new routing info among the network devices to

update routing tables. Notice that a reconfiguration process finishes when the new

routing algorithm has been completely assimilated (it is being used in all network

components).

computation distribution
Routing Routing

Network change detection

Network discovery/

Figure 2.13: Global reconfiguration stages.

2.1.8.1 Static and Dynamic Reconfiguration

Reconfiguration techniques can be either static or dynamic. Static reconfiguration

techniques require completely stopping the traffic in the network before changing

any routing table, so the network is emptied [51, 106]. The routing algorithm used

after the reconfiguration process is different. This implies that all the paths for each

source-destination pair need to be computed. Static reconfiguration largely impacts

on packet latency, due to network down-time, i.e., halting packet injection, which

may cause a strong performance degradation during the reconfiguration process. This

prevents static reconfiguration techniques from being used in systems with high per-

formance requirements. For instance, systems with QoS or real time requirements.

On the other hand, in a dynamic reconfiguration the transition from one routing

function to another is performed while the functional parts of the network are fully

operational, i.e., no network down-time and not halting packet injection. This typi-

cally leads, when compared with static reconfiguration, to a reduction in the number

of packets that miss their QoS deadline. The problem in this approach resides in

the fact that, in general, two different and individually deadlock-free routing func-

tions may be prone to deadlocks if they coexist in the network. This means that,

in a dynamic reconfiguration, there will be a transition phase between the old and

new routing functions where reconfiguration-induced deadlocks may occur. Another

drawback when using dynamic reconfiguration is that it usually requires extra re-

sources.

2.1.8.2 Existing Proposals on Dynamic Reconfiguration

Unlike static techniques, dynamic reconfiguration techniques [51] do not require

completely stopping the traffic in the network. However, some packets must be re-

moved from the network and re-injected later, which could cause a strong degradation

in performance during the reconfiguration time. In the last decade several dynamic

reconfiguration mechanisms have been proposed. Next we describe some of them.

2.2. INFINIBAND NETWORKS 29

The Immunet mechanism [129] tries to minimize the impact of the reconfigura-

tion process on the performance of the system, at the expense of providing a specific

hardware support, which prevents it from being used on current commercial inter-

connects.

In [52], a Partial Progressive Reconfiguration (PPR) technique is proposed, al-

lowing arbitrary networks to migrate between two instantiations of up∗/down∗ rout-

ing. The effect of load and network size on PPR performance is evaluated in [53].

Another approach is the NetRec scheme [120] which requires every switch to main-

tain information about switches some number of hops away. Yet another approach is

the Double Scheme [124] (DS), which uses two sets of virtual channels in the net-

work which act as two disjoint virtual network layers during the reconfiguration. The

basic idea is first to drain one virtual network layer and reconfigure it while the other

is fully up and running, then to drain and reconfigure the other virtual network layer

while the first is up and running. A methodology for deriving new reconfiguration

processes for any given pair of old and new routing function is given in [106]. An

orthogonal approach which may be applicable on top of all of the above techniques

is described in [104], where, for up∗/down∗ routing, only parts of the network (i.e.,

the “skyline”) need to be reconfigured on a network change. Solid theoretical support

on which dynamic reconfiguration design methodologies and techniques are proved

deadlock-free can be found in [76].

In [48] a reconfiguration mechanism is proposed for InfiniBand. The mechanism

computes in a fast manner suboptimal routing tables and distributes them. The reason

for this is to minimize the number of dropped packets through the failed link. Later,

more balanced paths are computed and distributed. In order to avoid deadlocks (only

in the first distribution of paths) some packet transitions are disabled in the network,

thus possibly dropping packets (even if packets do not cause deadlocks).

Recently, a new mechanism was proposed in [106], which is referred to as Simple

Reconfiguration (SR). In SR a token is issued to separate packets routed with the old

routing function from packets routed with the new routing function. Tokens advance

through an output port in a switch once there are no more old packets passing through

the output port (based on input and output dependencies generated from the old rout-

ing function). By doing this, there are no cycles in the network since there will be no

old packets behind new ones.

2.2 InfiniBand Networks

InfiniBand is a clear example of a successful interconnection network. Although it

was created to involve many environments it finally found its niche in data centers

and HPC systems, which require high bandwidth and low latency (see Table 2.1). The

InfiniBand Trade Association (IBTA) is comprised of leading enterprise IT vendors

30 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

including Agilent [17], Dell [19], Hewlett-Packard [15], IBM [21], SilverStorm [28],

Intel [23], Mellanox [25], Network Appliance [26], Oracle [5], Sun [22], Topspin

[14] and Voltaire [29].

The appearance of IBA (during 2001) was due to the necessity to eliminate the

bottleneck that at those days represented the access of processing nodes to I/O devices

in the realm of PC clusters. In this sense, its main contribution consists of replacing

the bus by point to point connections between processors and I/O devices through

switches.

InfiniBand does not solve any problem that has not been solved previously by

other network technologies. The novelty lies in the fact that, until then, previous

technologies had been directed to proprietary systems (for example the case of the

Compaq’s Himalaya [12] or the IBM’s Parallel Sysplex [121]), which prevented a

reduction in costs and their adoption in the market. InfiniBand, however, emerged as

an standard, easing its commercialization, at the time that a reduction in cost progres-

sively allowed its adoption to new and wider sectors. In addition, InfiniBand covers

in a homogeneous form the access to peripheral devices and the inter-processor com-

munication (IPC), whereas most of the proprietary systems only cover some of these

aspects.

Figure 2.14 shows the number of supercomputers in the top500 list as a function

of the interconnection technology. The figure shows that InfiniBand during the last

years is becoming popular, reaching 24% in 2007.

 0

 50

 100

 150

 200

 250

Ju
n
e

2
0
0
3

N
o
v
.

2
0
0
3

Ju
n
e

2
0
0
4

N
o
v
.

2
0
0
4

Ju
n
e

2
0
0
5

N
o
v
.

2
0
0
5

Ju
n
e

2
0
0
6

N
o
v
.

2
0
0
6

Ju
n
e

2
0
0
7

N
o
v
 2

0
0
7

N
u

m
b

er
 o

f
su

p
er

co
m

p
u

te
rs

 i
n

 t
o

p
5

0
0

Date

Other technologies
Myrinet

InfiniBand
Gigabit Ethernet

Figure 2.14: Interconnection technologies used by supercomputers on the top500 list.

2.2. INFINIBAND NETWORKS 31

Some of the major advantages offered by the InfiniBand network architecture

include the following:

• Throughput of 2.5 Gb/s, 10 Gb/s or 30 Gb/s is achievable, depending on the

link width implementation, for simple data rate (SDR). Currently, double or

quadruple data rate is being explored.

• The processor is not involved in message passing. Rather, each network mes-

sage transfer is handled by hardware DMA transfer engines within the network

interface (named channel adapter).

• InfiniBand protocol includes message transfer commands that permit direct

memory-to-memory message transfers between the local memories of two chan-

nel adapters.

• The majority of the protocol layers can be implemented in silicon, thereby

minimizing the burden placed on software and on the processor.

2.2.1 InfiniBand Architecture

InfiniBand defines a System Area Network (SAN) in which a set of processing nodes

and I/O units are connected to the network fabric through point to point links us-

ing Channel Adapters (CA). The network is divided into hierarchized subnets. The

connection between subnets is done through routers. Each subnet is formed by a set

of switches connected to each other by bidirectional point-to-point links forming a

connection pattern defined by the user. Thus, the resulting topology may be irregular.

The specification defines a subnet as a set of ports and associated links with a

common Subnet ID and managed by a common Subnet Manager (SM). Each subnet

exchanges packets solely by traversing switches (not routers). During network con-

figuration, the SM assigns to each of these ports a unique Local ID address (referred

to as the LID address) as well as a common Subnet ID (also referred to as the Subnet

Prefix) that identifies the subnet that a port resides in. Figure 2.15 shows an exam-

ple of an IBA subnet. It shows different components as processing nodes, I/O units,

links, switches, and a router.

The end node (processing node or I/O device in IBA specs) acts either as the

initiator or the ultimate recipient of a packet. The specification defines an end node as

any node that contains a CA (either Host Channel Adapter or Target Channel Adapter

depending on the type of the end node, processing node or I/O device, respectively),

and is allowed to establish connections and generate messages. The processing nodes

include memory modules and one or more CPUs, allowing communication between

processors and between them and I/O devices. I/O devices can be of different types,

from a simple terminal to a RAID disc system.

32 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

SUBNET

Other IBA subnets

WAN

LAN

Process nodes

.....

I/O
Chassis

I/O
Chassis

Process node

T
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

is T
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

isT
C

A

I/
O

 C
h

a
ss

is

Process node

Process node

SWITCHSWITCH

SWITCH SWITCH SWITCH

SWITCH SWITCH

Processor

CPU CPU CPU

HCA Mem HCA

SCSI

SCSI

SCSI

SCSI

SCSI

CPU CPU CPU

HCA Mem HCA

CPU CPU CPU

HCA Mem HCA

Mem

TCA

RAID Subsystem

TCA

Storage

Subsystem

Controller

Router

HCA:InfiniBand Channel Adapter in processor node.

TCA:InfiniBand Channel Adapter in I/O node.

Figure 2.15: Example of an IBA subnet.

The inter-processor communication is handled by the CA, thus releasing the CPU

of the load from the I/O communication. This allows multiple communications at the

same time without the associated overhead of typical communication protocols.

A node can have multiple CAs, and each CA can have multiple ports. Thus,

multiple ports and multiple paths can be used from the source end node. Each CA

port has a unique address assigned during the configuration process. It is possible

to use this multiplicity of ports and paths to provide fault tolerance, as well as to

increase the bandwidth.

Packets are used to send requests or responses from one CA to another. One

packet’s data payload field can contain a maximum of 4096 bytes of data. A CA

sending a message that is larger than a single packet’s data payload field6 must be,

therefore, splitted into a series of two or more packets. Each packet contains a data

payload field, one or two packet routing headers, and CRCs, among other elements.

Links provide bidirectional and high-speed connection between two ports. At a

minimum, it is implemented using one high-speed serial transmission link in each

direction capable of transmitting at 2.5 Gb/s, yielding 250 MB/s throughput7. Op-

tionally, a link may be implemented with four or twelve transmission lines in each

direction, yielding 1 GB/s or 3 GB/s throughput respectively. These values are for a

single data rate (SDR) implementation.

6Message transfer can be whatever from zero to 2 GB in size.
7Note that each 8-bit character is converted to a 10 bit character before transmission (2 Gb/s).

2.2. INFINIBAND NETWORKS 33

2.2.2 Virtual Channels and Flow Control

Each input port at each switch can implement up to 16 virtual lanes (VL0 -VL15)

and 15 service levels. The selection of virtual channels in IBA is based on the use

of service levels (SLs). Virtual lanes are devoted mainly for QoS purposes. Nothing

prevents them, however, for being used for other purposes like deadlock avoidance

and performance improvement. Anyway, its use must be limited for such purposes in

order to not compromise the desired QoS levels of the network. The specs define the

last virtual lane (e.g., VL15) as a control virtual lane for routing control packets. All

the virtual channels except the control channel (VL15) are flow-controlled. It means

that the receiver logic for VL15 is permitted to silently drop packets when the receive

buffer does not have enough room for the packet. In such a case, control packets are

end-to-end flow controlled, thus they are handled by a timeout and retry mechanism.

A particular data VL buffer is, however, only permitted to transmit a packet if the

corresponding VL reception buffer on the other end of the link has sufficient buffer

space available for storing the entire packet. Each data VL receiver sends credits

(a special flow control packet) indicating its available buffer space to its respective

transmission buffer on the other end of the link. A credit corresponds to a 64-byte

data chunk.

2.2.3 Routing in IBA

The IBA architecture uses distributed routing based on tables (forwarding tables)

placed at switches. This routing is deterministic because the forwarding tables keep

a single output port for each destination identifier or DLID. The destination DLID is

indicated in the packet header, which cannot be changed. This prevents packets from

using alternative paths when the corresponding output port is not available. There-

fore, routing in InfiniBand is like source-based routing with the routing information

distributed along the path.

The switch’s forwarding table is set up by the configuration software (see Section

2.2.4) at startup time. Once selected the output port, the virtual lane to be used is

defined by the SLtoVL mapping table, located also on every switch. The new VL to

use at the next switch is computed by indexing the table with the input port, the SL

identifier placed at the packet header and the output port provided by the forwarding

table (see Figure 2.16). The SL label placed at the packet header cannot be changed

by switches. However, the packet header contains the VL identifier that is changed

on every hop. The InfiniBand specification does not establish how to fill none of the

mentioned tables.

Forwarding tables support the virtual addressing mechanism, which allows to

use more than one identifier to address the same destination node. IBA allows a

range of addresses to be assigned to each destination by using a control mask (LMC).

34 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

Destination Port
Output

1

Switch

Port 2

Port 0

Port 3 Port 1Labels
Dest = d
SL=1

d

(a)

VL

SL VL out
VL 0

Port
Input Output

Port

Switch

Port 2

Port 0

Port 3 Port 1Labels
Dest = d
SL=1

13 1

(b)

Figure 2.16: Examples of IBA tables (a) forwarding table and (b) SLtoVL table.

The LMC defines the number of less significative bits to be ignored from the DLID

when the packet is validated at the destination. In this way each destination port has

assigned a consecutive address range with 2LMC values. The value of LMC must be

defined large enough for providing the required address range. In particular, 2LMC

should be greater or equal to R, where R is the maximum number of routing options

between any source-destination pair. Notice that these identifier address bits are not

ignored by switches, therefore they consider them as different addresses. In this way,

it is possible to provide different routing paths to arrive to the same destination port

by using different addresses, or DLIDs.

When a source end node sends a packet to a destination port, the DLID destina-

tion label on the packet header is composed with the local port identifier (LID) and

the LMC bits. The LID is a different identifier assigned to each device port in the

subnet by the SM. If we wish two paths for each destination, then LMC must be set

equal to 1. (e.g., if the destination LID is 3 (0011), the address range of DLIDs is

6–7(00110 and 00111)).These two addresses are considered different by all switches,

since they will have a dedicated entry in the routing table. Therefore, because both

DLIDs are different (though addressing the same physical destination) it is possible

to use a different path for each DLID. See Figure 2.17 for an example.

Notice that the maximum number of virtual addresses is limited, mainly because

the memory size at switches is limited. Notice also that virtual addressing can be used

with any routing algorithm. The maximum value of LMC is 7, thus IBA allows up to

7 bits of the DLID to be used as virtual address (masked at destination). Therefore,

up to 128 virtual addresses can be used per destination port.

The fact of fixing a path with a unique SL and the use of several virtual lanes may

lead to a mapping conflict [137]. It occurs when two packets labeled with the same

2.2. INFINIBAND NETWORKS 35

{
{
{

{

000

000

001

001

010

010

011

011

PORT
OUTPUT

PORT

OUTPUT

LMC=1

LMC=0
DLID

0

1

0

1

0

1

0

1

0

0

1

0

0

2

2

3

0000

0001

0010

0011

0

1

0

2

LID

LID

DLID

Figure 2.17: Example of routing tables with different LMC values.

SL enter a switch through the same input port, and they need to be routed through the

same output port but along different VLs. The problem is that the SLtoVL mapping

table does not consider the input VL in order to determine the output VL. Figure 2.18

shows an example of a mapping conflict situation. At switch V a mapping conflict

arises as it is not possible to distinguish both paths because they are labeled with the

same SL. It has to be noted that this problem arises only when there are paths that

use different VLs. For example, path B initially uses VL0 and from switch Q it uses

VL1.

V

A (SL=1)

B (SL=1)

VL1VL1 VL1

VL1 VL1VL0

VL0

VL0

VL1 VL1

Q

Figure 2.18: Mapping conflict example.

A mapping conflict can be solved only by using different service levels (SLs) for

each path causing the mapping conflict. However, this often leads to an excessive

number of SLs (notice that the total number is limited to 16). Another solution is

to use an alternative path that does not cause a mapping conflict. However, obtain-

ing such alternative path strongly depends on the flexibility provided by the applied

routing algorithm, the available network resources (VLs), and the strategy applied

to obtain SLtoVL mapping tables. As we will see through this thesis, the mapping

conflict issue will influence the applicability of different routing and fault-tolerant

mechanisms to IBA networks.

36 CHAPTER 2. INTERCONNECTION NETWORKS FOR HPC CLUSTERS

2.2.4 Subnet Manager

In InfiniBand, each subnet is managed in a centralized way by the Subnet Manager

(SM), which can be located in any device. The SM is the entity that discovers all

of the devices in the subnet at startup time to obtain the topology and configures

them updating the routing tables. Also, it includes other tasks like the activation of

the devices of the subnet, and performs a periodic sweep of the subnet to detect any

change in the subnet’s topology.

To cope with these tasks, the SM communicates with the subnet management

agents (SMA), allocated in every network device, through control messages using

source routing through the control virtual channel (VL15).

Chapter 3

Fault Tolerance for

Interconnection Networks

In this chapter we first introduce some basic concepts on fault tolerance, focusing

on PC clusters. Later, we describe the different fault models and fault-tolerant tech-

niques proposed in the literature. Finally, we focus on the mechanisms provided in

IBA networks to achieve fault tolerance.

3.1 Basic Concepts

The most relevant terms in fault tolerance are reliability, availability and dependabil-

ity [126]. In what follows, we provide their basic definitions.

Reliability refers to a system’s ability to operate continuously without failure.

Reliability, in its simplest form, is defined by the exponential distribution (Lusser’s

equation), which assumes random failures:

R(t) = e−λt (3.1)

where λ is the failure rate expressed as the percentage of failures per time (usually

expressed as failures per 1,000 hours or as failures per hour). The Mean Time Be-

tween Failures (MTBF) is derived from equation 3.1, as the average time a system

will run between failures. The MTBF is usually expressed in hours and it is defined

as:

MTBF =

∫

∞

0

R(t)dt =

∫

∞

0

e−λtdt =
1

λ
(3.2)

37

38 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

It can be approximated to:

MTBF =
t

1 − R(t)
(3.3)

MTBF can also be defined when considering a system composed of N identical

elements:

MTBF =
t

1 − R(t)N
(3.4)

Figure 3.1 shows MTBF curves for different number of nodes and different val-

ues of R when applying equation 3.4, which allows us to illustrate the MTBF of

some of the most outstanding supercomputers listed in Table 3.1. Values were ob-

tained from [37, 4, 70, 117, 141, 102]. Notice that MTBF is measured in hours, but

complex computation tasks on supercomputers often are measured in days. For in-

stance, the complete simulation of the 50 models of the Hafnium Gate Material takes

approximately 250 days on the BlueGene/L [34]. Currently, most supercomputers

are cluster based. Therefore, in clusters fault tolerance mechanisms are one of the

most important aspects.

 20

 40

 60

 80

 100

 120

 140

 160

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

1

2

3

4

5

6

M
T

B
F

(h
o

u
rs

)

M
T

B
F

(d
ay

s)

Number of Nodes(N)

Google
ASCI-Q

ASCI-W

Lemieux

Abe

BlueGene

MTBF = 1/(1 − 0.9999N)

MTBF = 1/(1 − 0.99999N)

MTBF = 1/(1 − 0.999999N)

Figure 3.1: MTBF values of some supercomputers and MTBF curves obtained for

different values of reliability.

3.1. BASIC CONCEPTS 39

Machine # CPU Medium Time Between Failures

ASCI Q
8,192

MTBI∗ 6.5 hr. 114 unplanned outages/month.

(LANL) HW outage sources: storage, CPU, memory

ASCI White
MTBF 5 hr (2001) and 40 hr (2003)

(LLNL)
8,192 HW outage sources: storage, CPU,

3rd party hardware

Seaborg
6,656

MTBI 14 days. MTTR 3.3 hr Availability 98.74%.

(NERSC) SW is main outage source

Lemieux (PSC) 3,016 MTBI 9.7 hr Availability 98.33%

Google ∼ 15, 000
20 reboots/day. 2-3% machines replaced/year.

HW outage sources: storage, memory

Abe 9,600 cores MTBF 6 hours

BlueGene 65,535
MTBF time of the largest system installation

is about 6.16 days (dominated by memory failure).

*MTBI: Medium Time Between Interruptions.

Table 3.1: MTBF values on Large-Scale HPC Systems.

Availability A(t) is defined as the probability that a system operates correctly and

is available at time t. Availability differs from reliability in that reliability involves

an interval of time while availability involves an instant of time. A system can be

highly available despite experiencing frequent periods of inoperability as long as the

length of each period is extremely short. In other words, the availability of a system

depends not only on how frequently it becomes inoperable but also, how quickly it

can be repaired.

In particular, in case of a network, availability is the average fraction of total

connection time that it is expected to be running. Availability can be computed as

a function of the Mean Time Between Failures (MTBF) and the Mean Time To Re-

pair (MTTR), which includes times for fault detection, dispatch, diagnosis/isolation,

repair and actual restore of service.

Availability = MTBF/(MTBF + MTTR) (3.5)

Dependability is used to encapsulate the concepts of reliability and availability.

Dependability is the quality of service provided by a particular system [99]. Relia-

bility, availability, safety, maintainability, performability, and stability are examples

of measures used to quantify the dependability of a system.

We will use the terms fault tolerance degree and number of singular cases for

characterizing the fault tolerant capabilities of the proposed mechanisms, and for

comparison purposes between different fault tolerant techniques. Fault tolerance

degree corresponds to the maximum number of faulty components in the network

that can be tolerated simultaneously by the routing algorithm (the network is still

40 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

working providing the same connectivity, that is, there is at least a path for every

source-destination pair).

We define a singular case as the fault combination that can not be tolerated by

the routing algorithm, thus, the network is logically disconnected. In other words,

those fault combinations for which the routing algorithm is not able to obtain a valid

path for at least one source-destination pair. Notice, though, that the routing algo-

rithm could continue to provide healthy paths for the rest of source-destination pairs.

However, fault combinations that lead to physically unconnected end nodes as a con-

sequence of the fact that all their link become faulty are not considered as singular

cases.

Notice that when the number of faults is lower than the fault tolerance degree

the number of singular cases is zero. Notice also that for each number of faults the

total number of combinations is different. Therefore, when evaluating the number

of singular cases, we will represent them as the percentage of not tolerated fault

combinations from the total number of fault combinations.

3.2 Fault Models

Faults can be classified as permanent and transient depending on its duration along

the time. A transient fault disappears after a short interval of time. For example, it

can produce a bit-flip which corrupts the header or the payload of a packet. For such

type of faults, error control can be implemented at either link level or end-to-end

level [67]. Routers at the ends of a link work together to deal with transient faults.

Each router stores and checks the incoming flit before forwarding it to the next router.

Alternatively, error control can be implemented at the end-to-end level, that is, at the

end nodes themselves. Transient faults are usually modelled with a Bit-Error Rate

(BER).

On the other hand, permanent faults do not disappear over the time. For instance,

permanent faults can be related to permanent damages of circuits or wires. Permanent

faults are usually described in terms of MTBF, which is usually expressed in hours.

In order to deal with permanent faults in a system, two fault models can be con-

sidered. The first one is the static model. Once a fault is detected, all the processes

running in the system are stopped, the network is emptied, and a process to recover

from the fault is launched. This process computes the new routing tables so that

the use of the failed component is avoided. The network is resumed once all the new

routing tables are updated1. The practical use of the static fault model requires check-

pointing techniques. Checkpointing allows processes to resume their work from a

previous known state when the last checkpoint was performed.

1Commonly, routing tables are computed at a single end node and later are distributed to the rest of

end nodes and switches.

3.3. FAULT-TOLERANCE MECHANISMS 41

The second model is the dynamic fault model. In this model, applications do

not stop and the network is not emptied. Once a fault is detected, actions are taken

in order to appropriately handle the faulty component without stopping the network

traffic. For instance, a source node that detects a faulty component through a path

may change to an alternative path that does not use the failed component. In this

way, the system is kept working, without draining the network traffic, and without

doing any checkpoint to deal with the occurrence of faults.

In this thesis we focus on permanent faults and on both faults models (dynamic

and static).

3.3 Fault-Tolerance Mechanisms

The use of fault tolerance mechanisms will assure, in the case of a component fail-

ure, that the system keeps working, although in a degraded mode, until the failed

component is repaired. Basically, there are three ways to cope with faults in the inter-

connection network: component redundancy, fault tolerant routing algorithms, and

reconfiguration techniques.

Using component redundancy has been the easiest and costly way to provide fault

tolerance. Components in the system are replicated and once a failed component is

detected, it is simply replaced by its redundant copy. An example of using component

redundancy can be found in the Tandem’s Himalaya Servers [12].

Fault tolerant routing algorithms aim at avoiding messages traverse faulty com-

ponents by providing some kind of routing path redundancy. To this end, messages

must be able to be routed trough alternative paths, so circumventing or avoiding faulty

regions over the network. Fault tolerant routing schemes should be designed to tol-

erate a certain number of faults, while still guaranteeing deadlock freedom in the

network. However, to fulfil these requirements, fault tolerant routing strategies often

need to use additional network resources, as virtual channels or additional hardware

at switches or routers.

Applying reconfiguration [51] any number of faults can be tolerated, provided

the network is physically connected. The reconfiguration consists, once a fault is

detected, of discovering the new topology, computing a new routing scheme and

updating the required components in the network. The main disadvantage of recon-

figuration is the high delay packets may suffer during the reconfiguration process.

Reconfiguration techniques often require additional network resources.

Each mechanism or fault tolerant approach has different requirements on re-

sources, and therefore different costs. Those fault tolerant approaches with hardware

requirements usually are costly, more expensive than software-based mechanisms.

When the failure probability is high, or the system has strong fault tolerant require-

ments, like life support systems, usually it is preferable to use hardware-based solu-

42 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

tions that are generally more expensive. On the contrary, for less critical applications,

or when the probability of faults is low, it is preferable to use cheap mechanisms

based on software [143].

3.3.1 Fault-Tolerant Routing Algorithms

A large number of fault-tolerant routing algorithms for multiprocessor systems have

been proposed, especially for systems with mesh and torus topologies. Most of the

techniques have been proposed for wormhole switching. We can classify the fault

tolerant routing algorithms with the taxonomy provided in Figure 3.2. This taxonomy

considers the support type (hardware/software), the need for disabling healthy nodes,

the tolerated fault type and how packets advance through the network.

Block faults Individual faults Progressive Backtracking

Fault Tolerant Routing

Disabling healthy nodes No disabling healthy nodes

Hardware support Software support

Figure 3.2: Taxonomy of fault tolerant routing algorithms.

Next we hint the most relevant fault tolerant routing algorithms. First, we focus

on techniques which require hardware support. These techniques are further divided

into two groups depending on whether they disable healthy nodes or not. Later, we

describe techniques based on software support.

3.3.1.1 Hardware-Based Fault Tolerant Routing Algorithms

Healthy nodes can be disabled to provide fast and simple solutions for tolerating

faults in the network. Some of these approaches are based on block faults [50, 55,

56, 58], whereas others allow individual faults [61, 72, 83].

Techniques based on block faults consider that an entire network area (region

or block) has failed. These techniques can be further classified depending on the

shape of the region: convex or rectangular region and non-convex region. To form

the region some healthy nodes placed in the vicinity of the faults must be marked

as failed. Then, messages are routed around faulty region in a manner that avoids

introducing cyclic channel dependencies in the CDG. However, as several useful end

nodes are discarded, the global capacity of the system is reduced unnecessarily.

3.3. FAULT-TOLERANCE MECHANISMS 43

Chien and Kim [58] proposed a planar-adaptive routing algorithm for 2D meshes.

This approach adds one virtual channel in the vertical dimension, so defining two

virtual networks. Each virtual network provides movement in a unique direction

through the horizontal dimension. Misrouting is allowed only in one virtual network,

thus deadlock is avoided. This routing algorithm can be extended to multidimen-

sional meshes and tori, and requires three and six virtual channels in meshes and

tori, respectively. Routing is adaptive into each plane (formed by two consecutive

dimensions), but planes must be visited in order. Fault regions in these topologies

are constrained to be block faults, so that any (two-dimensional) cross section has a

rectangular form.

An approach to reduce the number of healthy nodes marked as faulty was intro-

duced by Chalasani and Boppana [54], which is based on the concept of fault rings

to support more flexible routing around fault regions. A fault ring is the sequence

of links and nodes that are adjacent to and surround a fault region. If a fault region

includes boundary nodes, the fault ring reduces to a fault chain. Figure 3.3.a shows

an example of fault rings and a fault chain. This method uses four virtual channels

under the assumption that fault rings do not overlap. When applying this technique to

tori four virtual channels are required, although routing restrictions are required also

on the wraparound links. This was improved by Chen and Chiu [56] for meshes by

reducing the number of virtual channels down to three and still allowing fault rings

to overlap.

Fault Ring

Block

fault

fault

Block

Block fault

Fault Chain

Overlapping Rings

(a)

Fault Ring

Block fault

(b)

Figure 3.3: Example of block faults: (a) rectangular block faults, and (b) a solid block

fault (nonconvex).

A technique for non rectangular regions was proposed in [55] to reduce the under

utilization of resources. It is based on extending the concept of fault rings to certain

classes of nonconvex fault regions, referred to as a solid fault model. Figure 3.3.b

shows an example. As in previous techniques, messages can be routed along the fault

ring. This technique requires a set of four virtual channels for implementing different

virtual networks in 2D mesh.

44 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

Origin-based fault-tolerant routing is a paradigm that enables fault-tolerant rout-

ing, but without the addition of virtual channels [87]. Each message progresses

through two phases. In the first phase, the message is adaptively routed toward a

special node (labeled as origin). On reaching this node, the message is adaptively

routed to the destination in the second phase [98]. This phase ordering prevents the

formation of cycles in the channel dependency graph (CDG).

The fault-tolerant implementation of origin-based routing requires the fault re-

gions to be square. The regions are formed by starting from the rectangular fault

regions created by preceding techniques and disabling additional nodes to ensure

that the fault regions are square. Finally an origin node is selected such that the row

and column containing it has no faulty nodes. If this is not possible, this technique

can be applied to the largest fault-free submesh, disabling all remaining nodes. In

such a case a larger number of nodes are disabled.

Previous methodologies provide fault tolerance by disabling blocks of nodes.

However, a method based on disabling individual healthy nodes instead of blocks

of nodes was proposed in [88]. This method reduces the number of healthy nodes

disabled, although it still disables some. It is based on declaring some non faulty

nodes to be "lambs". Each lamb node is used for routing but not for processing, so

a lamb is neither the source nor the destination of a message. The lambs are chosen

so that every "survivor node", a node that is neither faulty nor a lamb, can reach ev-

ery survivor node by at most two rounds of a deterministic routing algorithm (such

as e-cube). In order to guarantee deadlock freedom, a different virtual network is

used in each round. Thus, when performing two rounds a virtual channel transition

is required.

Contrary to the previous techniques, other methods do not require to disable any

healthy node [68, 82]. They rely on either applying adaptive routing (making use

of a certain number of virtual channels), or using a different switching technique

(pipelined circuit switching [68] or scouting [69]).

These mechanisms can be classified into two groups, depending on the way pack-

ets advance in the network. The first group is referred to as progressive as the mech-

anism continuously routes packets towards their destination. The second group is

referred to as backtracking as they allow packets to be backtracked when they can

not advance toward their destination.

A. Progressive

A technique based on the turn model is presented in [84], which tolerates up

to n − 1 faults in n-dimensional meshes. The advantage of this approach is

that no virtual channels are required. However it only tolerates one fault in 2D

meshes.

The technique proposed in [72, 73] combines the theory of deadlock avoidance

based on escape paths [71] with the turn model, for n-dimensional meshes

3.3. FAULT-TOLERANCE MECHANISMS 45

using wormhole switching. This technique uses four virtual networks, and

each one has a virtual channel associated.

In [85] a fault tolerant routing technique based on routing adaptively for some

source-destination pairs to an intermediate node, and routing also adaptively

from it to the destination is proposed. The methodology assumes a static fault

model and the use of a checkpoint/restart mechanism. However, there are sce-

narios where the faults cannot be avoided solely by using one intermediate

node. Thus, an extension of the methodology consists of disabling adaptive

routing, and/or using misrouting on a per-packet basis, and/or the use of more

than one intermediate node for some paths. This technique requires three vir-

tual channel for meshes and tori and tolerates up to five faults. An additional

virtual channel (total of four) is required for obtaining deadlock free minimal

routing (in meshes and tori).

The dimension reversal (DR) approach defined by Dally and Aoki [63] pro-

duces gracefully degradable network performance in the presence of faults by

dividing messages into classes. Each message is permitted to be routed in any

direction. Misrouting is also permitted, although it should be controlled. When

a dimension reversal takes place, the message moves into the next virtual net-

work. The total dimension reversals is limited to the number of virtual channels

used for this technique (r). Thus, messages in the last virtual network (r − 1)

are routed in dimension order (non adaptive). This approach may require a

large number of virtual channels.

In [128] a low cost fault tolerant routing algorithm for VCT switching valid for

any topology was proposed. It uses adaptive routing in a virtual network, and

uses another one with non-minimal routing as escape channel when a fault is

encountered2. The non-minimal routing is obtained using a Hamiltonian path.

This technique requires additional hardware at the switches, for supporting the

escape routing.

B. Backtracking

These fault-tolerant routing strategies were proposed for pipeline circuit switch-

ing (PCS) and/or scouting switching techniques3.

By permitting backtracking and a certain number of misroutes a larger num-

ber of faults can be tolerated. Despite tolerating any number of faults, these

strategies often strongly penalize network performance. One of the families

of fault tolerant routing algorithms based on these strategies is referred to as

2Bubble is also assumed in the escape paths.
3In PCS the path is reserved by the packet header before sending the data flits, whereas in scouting

the data flits follow the packet header by a certain distance. Therefore, in both cases, like wormhole

switching, the header can go backtrack to the previous node searching for a path to the destination.

46 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

MB-m algorithms, where m represents the maximum number of misroutings.

This family of algorithms are proposed for pipeline circuit switching.

Channels are labeled as safe or unsafe [101, 147] depending on the number of

faulty links/nodes within the immediate neighborhood. The routing algorithm

to obtain the path is based on two phases depending on the label of the channel.

Such protocols are referred to as Two-Phase protocols (TP). The first one uses

adaptive deadlock-free routing function based on Duato’s protocol (DP) [71].

The second one (conservative phase) uses a form of MB-m. The switching

technique used is the scouting switching [75], which has a fixed scouting dis-

tance. Each of these phases use different channels for guaranteeing deadlock

freedom.

These techniques require a higher router complexity than the previously described

fault tolerant routing techniques.

3.3.1.2 Software-Based Fault Tolerant Routing Algorithms

The addition of virtual channels and the enforcement of routing restrictions between

them can impact the design and implementation of the switches. However, in en-

vironments where the fault rates are relatively low, the use of expensive, custom,

fault-tolerant switches often cannot be justified. Moreover, contemporary routers are

compact, oblivious, and fast. To overcome the drawbacks of the hardware-based

solutions, a software-based fault-tolerant routing approach [143] can be used. This

technique, referred to as e-sft, provides a solution for tolerating failures with concave

fault regions, which are not tolerated by some of the previous techniques, based on

the removal of messages from the network or absorbed by the local router when they

encounter a faulty component, and later reinjecting them at an intermediate node.

However, some packets may suffer high latencies due to the packet ejection and

reinjection. Notice that memory allocation must have sufficient buffer to store the

messages absorbed to avoid deadlocks. The important characteristic of this approach

is that messages are still routed in dimension order between any pair of intermediate

nodes.

The development of these techniques is governed by the relationship between

the MTBF and the MTTR. When MTTR is much lower than MTBF, the number of

existing faulty components in a repair interval is small. In fact, the probability of the

second or the third fault occurring before the first fault is repaired is very low. In such

environments, software-based rerouting can be a cost-effective and viable alternative.

The software-based approach is based on the observation that the majority of

messages do not encounter faults and should be minimally impacted, while the rela-

tively few messages that do encounter faults may experience substantially increased

latency, although the network throughput may not be significantly affected.

3.4. APPLYING FAULT TOLERANT MECHANISMS TO PC CLUSTERS 47

3.4 Applying Fault Tolerant Mechanisms to PC Clusters

As previously described there are three ways to cope with faults in interconnection

networks. The first one consists of component redundancy, which is the easiest but

the most costly option. The second one consists of applying fault tolerant routing

strategies. However, most of the fault-tolerant routing strategies proposed in the

literature and that we have described above are not suitable for clusters. This is

because they often require certain hardware support that is not provided by current

commercial interconnects [49, 89]. Other strategies rely on the use of adaptive rout-

ing. However, they cannot be applied, as routing in clusters is usually deterministic.

Additionally, some of these routing strategies need to perform dynamic virtual chan-

nel transitions. However, virtual channels either are not supported (e.g., Myrinet) or

they cannot be dynamically selected at routing time (e.g., InfiniBand).

The last fault tolerant techniques consist of applying network reconfiguration.

Recent proposals try to diminish the impact of the reconfiguration process in the

system, the expense of requiring additional hardware support, which might prevent

its use in current commercial networks.

Recently, however one interesting mechanism, referred to as FRoots, has been

presented in [144]. This mechanism is suitable to IBA networks as it uses virtual

channels (VLs) in a static manner. FRoots requires as many virtual channels as re-

quired to guarantee that every switch is a leave in an up∗/down∗ tree. On the occur-

rence of a failure connectivity is ensured by routing packets through the associated

up∗/down∗ tree where the failed switch was a leave. Each up∗/down∗ tree is mapped

onto a different virtual channel. Therefore, as can be detected, the resource require-

ments to implement FRoots are high. (5 VLs for a 16-switch torus network).

Next, we describe the key aspects for fault tolerance in IBA, as the interconnec-

tion network commonly used in current PC clusters, and later we outline the fault

tolerance mechanisms we have proposed in this thesis for PC clusters (focused in

IBA networks).

3.4.1 Fault Tolerance in IBA

As commented in section 2.2, an IBA network is divided into subnets The Subnet

Manager (SM) is the entity that discovers all the devices on an IBA subnet, configures

them, and detects any change in the subnet’s topology. The SM is allocated in a

particular node in the subnet. A change in the topology can be due to devices being

added or removed, or because of a fault. In each network device there exists a Subnet

Manager Agent (SMA), which is responsible for monitoring port’s link integrity.

The IBA standard defines two complementary mechanisms for detecting changes.

On the one hand, the SM performs periodic sweeps of the subnet requesting infor-

mation to each SMA associated to each component. The frequency of these sweeps

48 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

is not defined by the IBA standard, thus it can be adjusted accordingly to parameters

like the size of the subnet or the desired detection time for changes. On the other

hand, each SMA could actively notify to the SM by a control packet whenever a

change is detected. This method is described in the IBA specs as optional, and leaves

to the vendors the decision to implement it or not.

In a congested scenario, control and sweep packets may be discarded. This is

because there is not flow control in the virtual channel reserved (VL15) for control

and sweep packets. Thus, if the SM does not receive an answer before a timeout (this

time will be defined as a function of subnet’s size), it will consider the packet has

been discarded and it will resend it again.

A possible way to provide tolerance to faults in IBA would be by using several

alternative paths between each source-destination pair of end nodes, selecting one of

them in the source node accordingly to the fault pattern. This is possible because,

in IBA, the routing and the selection of virtual channels are made based on the local

identifier of destination (DLID) and the service level (SL) of the packet header. These

two fields are calculated in the source node and they do not change along the path.

Hence, the routing path and the traversed virtual channels are completely determined

by the DLID and SL values established at the source node. Modifying at its source

node the DLID of the packet it is possible to rout it with a different path.

IBA provides a mechanism supported by hardware, denominated Automatic Path

Migration mechanism (APM) [89], which can be used to select one among the avail-

able alternative paths. According to this mechanism, previously to the detection of

the fault, the subnet manager (SM) has loaded the information of the alternative path

(the DLID on the SMA and the entries in the routing tables on switches) and has

armed the APM mechanism for each of the paths in all the end nodes. APM provides

a fast mechanism for the migration of the initial path to the alternative one when a

fault is detected. Once the path migration is completed, the alternative path becomes

the new default path. Therefore, the SM is able to load new alternative paths and to

setup the APM mechanism.

3.4.2 Contributions of the Thesis

In this chapter, we have described fault tolerance as one of the key issues in clus-

ters, we also showed the most important fault tolerance mechanisms proposed in the

literature, concluding they are not suitable for PC clusters.

Thus, in this thesis we focus on providing adequate levels of fault tolerance to

PC clusters, by proposing several mechanisms suitable for interconnection networks

commonly used in clusters. In this section we briefly outline the proposals that we

have developed, which will be described in more detail in the following chapters.

In the thesis, we cover the design a wide set of approaches to cope with faults

in interconnection networks for PC clusters. Some of these approaches are focused

3.4. APPLYING FAULT TOLERANT MECHANISMS TO PC CLUSTERS 49

on fault tolerant routing mechanisms. They are described in Chapters 4 and 5. Con-

cretely the proposals presented in Chapter 4 are based on providing a certain number

of disjoint paths between every pair of end nodes. Paths should be disjoint in order

to guarantee that the same fault can not be found along more than one path. Thus, to

tolerate n faults it is necessary to provide n+1 disjoint paths. These mechanisms are

tailored for InfiniBand networks. Figure 3.4 shows an example of four disjoint paths

from switch S to switch D.

S

D

Figure 3.4: Example of disjoint paths.

The main goal of the mechanisms, after a fault is detected, is to choose a different

non-faulty path for each source-destination pair whose default path is affected by the

fault. As we will see, the mechanisms will focus on different solutions to provide

good sets of disjoint paths in a time efficient manner and requiring the lowest number

of IBA resources (VLs and SLs).

In Chapter 5 we describe a fault tolerant technique based on the concept of reach-

ability. This mechanism will provide in a fast manner, once a fault is detected, all

the needed alternative paths to tolerate the fault. For example, Figure 3.5 shows a

network with a faulty link, thus the path from switch A to switch B is faulty. How-

ever, the paths from switch A to C and from C to E are fault-free. Therefore, a new

path can be composed by joining these two paths. The provided alternative paths will

depend on the resources available for this technique.

X

Y

B

FAULT

C

A

L

(a)

B

FAULT

C

A

L

(b)

Figure 3.5: Example of composing an alternative path from two already existing

routing paths in the presence of faults.

50 CHAPTER 3. FAULT TOLERANCE FOR INTERCONNECTION NETWORKS

Finally, in Chapter 6 the last fault tolerant proposal is presented The new pro-

posal is based on reconfiguration techniques. Notice that when using reconfigura-

tion, any number of faults can be tolerated as long as the network remains connected.

The proposed mechanism will provide a better reconfiguration mechanism than ex-

isting techniques when considering the global reconfiguration time, throughput, and

latency. Additionally, the mechanism will be tailored for interconnection networks

commonly used in clusters, where simplicity and resource requirements saving are a

prime issue.

Chapter 4

Fault-Tolerant Routing

Methodologies Based on

Disjoint Paths

In this chapter we present the methodologies based on the use of disjoint paths to

provide fault tolerance. The aim of the proposed solutions is, when a fail occurs, to

migrate each affected path to an alternative disjoint path which is non-faulty. Two

mechanisms are presented. First, the TFTR methodology uses virtual channels in

order to achieve disjoint paths for any given pair of end nodes. Later, the SPFTR

method is presented, which relies on the use of path patterns to provide scalability and

speed up the process of computing disjoint paths. For each method, implications on

InfiniBand are discussed. Later, in Chapter 8 both methodologies are fully evaluated

and compared.

4.1 Preliminaries

Before describing the proposed mechanisms we detail in this section the basic foun-

dations. The aim is to provide the maximum fault tolerance degree at the lowest

cost from the network point of view. As described in previous chapters, InfiniBand

provides a simple mechanism to tolerate faults in the network. The mechanism is

referred to as APM (Automatic Path Migration) (see section 3.4.1) and is intended to

allow a fast transition from a failed path to a new (non-faulty) path. APM, however,

does not deal with the computation of the paths. Thus, the methods proposed in this

chapter complement the APM mechanism.

51

52

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

Figure 4.1.a shows an example where two paths are available for a given pair of

end nodes1. At the end node connected to switch S APM is configured with both

paths, and one of them is used by default. For instance, path #1 is used by default

and path #2 is reserved for backup purposes. Notice that APM offers, at maximum,

two paths for each possible destination at each source end node.

Let us suppose that at a given point in time link labeled A fails. In such situation,

path #1 becomes unavailable and the APM mechanism is triggered. The result is that

the backup path becomes the default one and the faulty path becomes the backup one.

Thus, both paths are swapped.

We can consider also a different fault scenario, when the faulty component is link

B or switch X . In either case, notice that the fault affects both paths. Thus, the APM

mechanism can not migrate to a non-faulty path.

Therefore, when computing alternative paths for the APM mechanism is impor-

tant to take into account the components (links or switches) shared by the alternative

paths. Notice also that in the presence of a switch failure two paths may fail even if

they do not share any link. An example is shown in Figure 4.1.b in which both paths

share switch C. Thus, the number of shared switches must be also considered when

computing alternative paths.

A possible set of alternative paths for APM can be viewed in Figure 4.1.c. In

this case, paths do not share neither any link nor any switch. Thus, in the presence

of a link or switch failure only one path may be affected. However, notice that in

this case some components are still shared by both paths. The NIC at both end nodes

are shared by both paths. Hence, in order to provide truly disjoint paths it would

be necessary that end nodes have more than one NIC each one attached to a different

switch. Figure 4.1.d shows an example with end nodes having two NICs connected to

different switches. In this thesis, however, we focus on fault tolerance at the network

level, and not at the system level. So, we assume that end nodes have only one NIC

attached to a unique switch. We consider, thus, that if the link connected to the NIC

fails, then the end node is disconnected.

We define a group of paths from the same source-destination pair as disjoint paths

if they do not share any network resource among them, not considering the source

switch, the destination switch and the links connecting both end nodes to the network.

Similarly, we define a group of paths as being partially disjoint paths, when they

share some resources (but not all the resources). In this case, we use the term degree

of disjoint paths as the number of network resources (switches or links) shared by the

paths. Notice that we do not consider percentages. For example, in Figure 4.2 two

different groups of paths are plot. In Figure 4.2.a paths #1 and #2 share one link and

1When we describe the paths, we will refer to the first switch of each path as source switch S (the

source end node is connected to switch S), and the last switch as destination switch D (the destination

end node is connected to switch D).

4.1. PRELIMINARIES 53

P
A

T
H

 1

P
A

T
H

 2

B

A

SOURCE

DESTINATION

ENDNODE

ENDNODE

backup path

default path
APM

path 2

path 1

D

XS

(a)

SOURCE

DESTINATION

END NODE

END NODE

backup path

default path
APM

path 2

path 1

C

S

D

(b)

SOURCE

DESTINATION

END NODE

END NODE

backup path

default path
APM

path 2

path 1

S

D

(c)

SOURCE

DESTINATION

END NODE

END NODE

S

S

D

D

(d)

Figure 4.1: Examples of disjoint paths: (a) Sharing one link, (b) Sharing one inter-

mediate switch, (c) Disjoint paths, (d) Multiple NICs at end nodes.

one switch, and in Figure 4.2.b paths #1 and #2 share two links and two switches.

Notice that paths defined in Figure 4.2.b have a smaller percentage of shared links or

switches, but there are twice more shared components between the paths. Thus, the

probability of one fault affecting both paths is higher (although the shared percentage

54

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

S

D

P
at

h
 1

P
at

h
 2

Path 1: uses 4 switches and 3 links.

Path 2: uses 4 switches and 3 links.

Shared: 1 link and 1 switch.

Shared percentage: 30.0% of links and 25.0% of

switches.

(a)

S

D

P
at

h
 2

P
at

h
 1

Path 1: uses 10 switches and 9 links.

Path 2: uses 10 switches and 9 links.

Shared: 2 links and 2 switches.

Shared percentage: 22.2% of links and 20.0% of

switches.

(b)

Figure 4.2: Examples of the degree of disjoint paths: (a) sharing one link and one

switch, and (b) sharing two links and two switches.

is lower). Therefore, percentages are not representative to qualify the best group of

paths in fault tolerance terms.

Although it is easy to compute disjoint paths for any source-destination pair,

many combinations are not allowed. The reason is that they either may induce dead-

lock situations or they may require too many network resources (to guarantee dead-

lock freedom). Let us focus on the deadlock freedom condition. Figure 4.3.b shows

the routing restrictions enforced by an up∗/down∗ tree in a 5 × 5 torus network. A

routing restriction indicates an illegal turn applied by the routing algorithm. Each

restriction on a switch prevents traffic to be routed between a pair of input and output

links. These restrictions are represented by arrows in the figure. Although the figure

shows the restrictions for an up∗/down∗ tree, any routing algorithm imposes routing

restrictions in order to guarantee deadlock freedom, and this can be represented in

the same way (an exception is when using the bubble flow control mechanism).

When looking for four disjoint paths between each pair of end nodes in the torus

network, it is not possible to find all the paths without crossing any routing restriction.

For example, Figure 4.3.a shows four disjoint paths for a given source-destination

pair. Notice that paths #1 and #2 are computed taking into account that they must be

disjoint and minimal. Any combination of four disjoint paths (minimal) ends up with

these two paths being included. In this situation path #2 requires crossing a forbidden

transition. See Figure 4.3.b.

4.2. TFTR METHODOLOGY 55

S

D

X

P
a

th
 1

P
a

th
 4

Path 2

Path 3

(a)

X

R

(b)

Figure 4.3: Example of disjoint paths. (a) Four disjoint paths in a 5 × 5 torus and

(b) the set of routing restrictions enforced by up∗/down∗ on the same 5 × 5 torus (R

means root switch).

As we have seen, routing restrictions reduce the possible routing paths that can

be computed, thus it becomes a challenge to obtain disjoint paths for all source-

destination pairs in the network.

The main objective of the mechanisms presented in this chapter is to provide fault

tolerance based on disjoint paths. As a first goal, we provide the maximum number of

disjoint paths for each pair of end nodes. Alternatively, we provide partially disjoint

paths with the highest degree of disjoint paths for those cases when the number of

resources available is bounded. These sets of paths are provided to the APM mecha-

nism in InfiniBand.

The second goal in this chapter is to obtain these paths with a low computation

time. Thus, a mechanism is presented to speed up the computation process in torus

topologies for IBA networks.

4.2 TFTR Methodology

In this Section we present the first methodology referred to as Transition-Based
Fault Tolerant Routing (TFTR). TFTR provides a set of alternative disjoint paths

between each pair of end nodes. To this end, the TFTR methodology uses the APM

mechanism to tolerate faults. To provide reliability, while still guaranteeing deadlock

freedom, some virtual channels (VLs) and service levels (SLs) are used in InfiniBand.

This is done in order to increase the flexibility of the computed paths. It is important,

however, to consider the trade-off between the achieved fault tolerance degree and

the number of network resources used.

56

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

Notice also that the methodology presented to compute alternative paths is not

affected by the hardware used for detecting or notifying faults. Indeed, TFTR com-

putes paths and dictates in which order they must be used (shortest paths being used

first).

4.2.1 TFTR Stages

TFTR is divided into six different stages as shown in Figure 4.4. The key point to

achieve an optimal set of alternative paths (from the fault tolerance point of view) is to

have the maximum flexibility when computing those paths. As previously described,

the main limitation in the computation of disjoint paths is due to the routing restric-

tions imposed by the applied routing algorithm. Routing algorithms must provide a

set of paths free from deadlocks. This is usually achieved by imposing routing restric-

tions that limits the flexibility when computing paths. To overcome this limitation,

TFTR relies on the use of additional resources to achieve much higher flexibility.

down up transitions

paths
alternative too much VLs

will not require
Select paths that

Stage 3Stage 2Stage 1

the possible
Compute all

Topology
transitions
forbidden
Compute

virtual

Stage 6Stage 5Stage 4

#SLs

conflicts

Solve
mapping

channels

Balance

tables
IBA

Generate

#VLs

Figure 4.4: TFTR Stages.

Stage 1 Compose the list of virtual addresses. TFTR, at the first stage, com-

putes a certain number of disjoint paths between every pair of end nodes considering

only the network topology, and without taking into account the occurrence of pos-

sible deadlocks. Therefore, at this stage, the methodology does not limit the use of

any possible path, thus obtaining the maximum flexibility and potentially the best set

of alternative paths. At a latter stage, deadlock situations will be solved most of the

time without modifying the computed paths.

Stage 2 The second stage of the methodology is focused on analyzing dead-

locks. For this, the methodology builds and searches for possible cyclic channel

dependencies. In particular, an underlying routing algorithm is used in order to de-

tect possible cycles. We have chosen the up∗/down∗ routing scheme2 because it can

be applied to any topology. We check whether every computed routing path contains

any forbidden transition according to the up∗/down∗ rule (a link in the up direction

2The assignment of up and down directions to links has been performed according to the DFS

methodology [132], instead of the original BFS methodology [138] due to the smaller number of for-

bidden transitions imposed.

4.2. TFTR METHODOLOGY 57

is used after having used one in the down direction), which could lead to a cycle

in the channel dependency graph and, therefore, to a deadlock situation. In order to

guarantee deadlock freedom, we must remove all those forbidden transitions.

Figure 4.5 shows a detailed example on how the forbidden transitions are ob-

tained. Figure 4.5.a shows a 4 × 4 torus network. In this example the up∗/down∗

routing is used, with the root switch labeled R on the top left corner. Figure 4.5.b

shows the assignment of up and down directions to channels and Figure 4.5.c shows

the up∗/down∗ tree. Finally, Figure 4.5.d shows with arrows the routing restrictions

which correspond to transitions from a down channel to an up channel (notice that

all routing restrictions are bidirectional).

Topology

R

(a)

R

UP Direction

BD

BC

D

AD

B

ABA W

L ZXAC

C Y CD

(b)

2

3

4

1

0

Up*/Down* tree
the root switch

R

L

AB AC BC BD CD AD

ZYXW

B CA D

U
p

 d
ir

ec
ti

o
n

Hops to reach

(c)

Routing restriction

(Down Up direction)

(d)

Figure 4.5: Example of up∗/down∗ routing restrictions in a 4 × 4 torus.

Virtual channels may help when dealing with the deadlock problem. Indeed,

the use of virtual channels allows defining virtual networks, each one assigned to

a different virtual channel. The traffic can, then, be separated into different virtual

networks although physically there is only one network. To flexibilize routing and

thus avoid deadlocks we can use virtual channel transitions. In particular, a packet

may change from one virtual network to another within the network.

The transition between virtual networks is done at switches when routing the

packet. As an example, in InfiniBand each packet is assigned a label referred to as

Service Level, and each switch has the SLtoVL Table in which it defines the virtual

channel to be used as a function of the SL and the input and output links used by the

packet.

Transitions through virtual channel can be used, thus, to avoid the routing restric-

tions imposed by the routing algorithm. Figures 4.6.a and 4.6.b show the buffers of

the switches involved in a cycle formed by four packets. Notice that packets form a

cycle in Figure 4.6.a, but not in Figure 4.6.b. At switch D there is a routing restric-

tion imposed by the routing algorithm. By allowing virtual channel transitions, the

routing algorithm is deadlock-free. Indeed, as can be seen in Figure 4.6.b, the packet

reaching switch D requests another virtual channel, thus breaking the cycle. Notice

58

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

that virtual networks (virtual channels) must be crossed by a packet in a stabilised

order to avoid cycles between different virtual networks (virtual channels). Figures

4.6.c and 4.6.d show the same case in a 3D view.

A
B

D
C

Path BC

Path CB

Path AD

Path DA

Switch C

(a)

A

C
D

BPath BC

Path CB

Path AD

Path DA

Switch C

(b)

Virtual Network 1

Virtual Network 0
(c)

Virtual Network 1

Virtual Network 0
(d)

Figure 4.6: Example of a cycle and how it can be avoided when using virtual net-

works: (a,c) example of a cycle, (b,d) example of virtual network transition.

In our methodology, each packet is injected into the network through the VL0

virtual channel. The packet is routed through the same virtual channel until it crosses

a forbidden transition. In that case, the packet is routed through the next virtual

4.2. TFTR METHODOLOGY 59

channel: VL1. So, the packet will change of virtual channel whenever it crosses a

forbidden transition. Notice that the paths that cross the highest number of forbidden

transitions impose the number of virtual channels required. This number depends,

however, on the network topology, the underlying routing algorithm, the set of com-

puted paths, and the number of faults to be tolerated.

Stage 3 In IBA, the use of virtual channels is devoted to purposes like QoS.

Therefore, the number of virtual channels for fault tolerance issues should be limited.

For example, if there are 4 VLs available, and the routing algorithm uses only one VL,

then four QoS levels can be defined. However, if the routing algorithm uses 2 VLs,

then only 2 QoS levels can be used. Therefore, the methodology must be designed to

use a low number of virtual channels. Notice that using n virtual channels for fault

tolerance, the number of ordered transitions between VLs can be at maximum n− 1.

Hence, at the third stage of the methodology (Figure 4.4) we only select those

paths that traverse the lowest number of forbidden transitions. This selection is driven

by the number of VLs available for fault tolerance. Notice that at this stage some

alternative paths may be removed, thus affecting the obtained fault tolerance degree.

The number of computed alternative paths depends on the number of faults to be

tolerated as well. In particular, under a dynamic fault model, n + 1 disjoint paths for

every pair of end nodes are required to guarantee that all the possible combinations

of n faults are tolerated. However, notice that the switch with the smallest number of

ports connecting switches, and with at least one end node attached to it, bounds the

number of tolerated faults. For instance, in a 2D torus network with one end node

attached to each switch, the maximum number of disjoint paths for every source-

destination pair is equal to four. Figure 4.7 shows an example with four disjoint

paths in a 2D torus.

S

D

A

A

A

Figure 4.7: Example of a set of four disjoint paths in a 2D torus.

Stage 4 At the fourth stage the methodology deals with mapping conflicts. In

Section 2.2.3 we showed that mapping conflicts may occur in InfiniBand. They occur

when two paths (used by two packets) pass through the same input and output ports in

60

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

a given switch, they are labeled with the same SL identifier (this label never changes

along the path), but each path (packet) requests a different output virtual channel. In

that situation, the SLtoVL table can not be defined to accomplish the requirements of

both paths.

Whenever a mapping conflict is encountered, the methodology tests firstly if the

path (packet) requiring a smaller number of virtual channels could be modified from

the switch with the conflict until its destination. The modification to be done is to use

the same virtual channel in both paths (packets). As a second alternative, the method-

ology searches an alternative path for one of the paths causing the mapping conflict,

preferably with the smallest possible length. Notice that short paths tend to be the

best option for fault tolerance and to minimize mapping conflicts. This is because

they use a smaller number of links and components which could be shared with other

paths. Additionally, shorter paths have a lower probability of being affected by a new

fault. The alternative new path must be disjoint or, at least, exhibit the minimum

sharing with the rest of paths between the same source-destination pair. As a third

alternative, the methodology uses an available new SL.

Otherwise, if none of the previous solutions work, one of the paths that incurs

in the mapping conflict will be discarded. Notice that, in this case, the total number

of alternative paths is reduced, and it will lead to a decrement in network reliability.

Therefore, the effectiveness of TFTR will depend on the number of service levels

available.

Figure 4.8.a shows an example of a given set of four disjoint paths for a given

source-destination pair. In the switch labeled as T path A requires a transition and

path B (which has a different source and destination) requires to keep routing trough

the same virtual channel. Remember that each packet has an associated SL, and it

can not be changed along their path. In the example, paths A and B have the same

SL, therefore there is a mapping conflict at switch X as both paths require different

output virtual channels and both use the same input and output port. The four possible

solutions to the problem are shown in the figure. Firstly, both paths use the same VL

at switch X (Figure 4.8.b). Secondly, an alternative path not introducing mapping

conflicts is computed (Figure 4.8.c). Thirdly, a different SL is used for one of the

paths (Figure 4.8.d). And finally, one of the paths is removed (Figure 4.8.e).

Stage 5 From the previous stage, the use of virtual channels is unbalanced, as

traffic is mainly mapped to virtual channels with lower IDs. In particular, most of the

traffic is usually mapped to VL0. All paths start using VL0, whereas only a relative

low percentage of paths cross at least one routing restriction. This causes a traffic

unbalance over virtual channels. Indeed, near all the traffic is mapped to the first VL.

This may lead to a high degree of Head-of-Line blocking (HoL) at each switch and,

thus, it will impact network performance.

4.2. TFTR METHODOLOGY 61

T

XV
L

0

VL0 VL0

V
L

1
V

L
1

V
L

0
V

L
0

V
L

0
V

L
0

VL1D

S

Path A(SL0)

Path B(SL0)

(a)

T

XV
L

0

VL0 VL0

V
L

1
V

L
1

VL1D

S

Z

Y

V
L

1
V

L
1

V
L

0
V

L
0

Path A(SL0)

Path B(SL0)

(b)

S

V
L

1
V

L
1

VL0VL0VL0

V
L

0
VL1VL1D

V
L

0
V

L
0

V
L

0
V

L
0

Z

Y

Path A(SL0)

Path B(SL0)

(c)

T

XV
L

0

VL0 VL0

V
L

1
V

L
1

V
L

0
V

L
0

V
L

0
V

L
0

VL1D

S

Path A(SL1)

Path B(SL0)

(d)

X

T

V
L

0
V

L
0

V
L

0
V

L
0

D

S

Only three paths defined

from S to D

Path B(SL0)

(e)

Figure 4.8: Examples of different ways to solve a mapping conflict. (a) Example of

a mapping conflict, (b) mapping conflict solved by changing the VL, (c) by using an

alternative paths, (d) by using a new SL, and (e) by discarding one path.

The Head-of-Line blocking phenomenon happens when the packet placed at the

header of a buffer (switch input buffer) is blocked as the required output channel is

busy (different packets compete for the same channel), preventing the packets behind

the blocked packet in the buffer (probably requiring a free output channel) from being

routed. The main problem of the HoL blocking is the reduction of the transmission

speed of the buffers while packets are waiting. The contention is back propagated,

and packets which do not require the contented resource become contented also. This

effect influences negatively network performance, as shown in [136].

62

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

At the fifth stage, traffic is distributed among virtual channels. Most the paths do

not traverse any forbidden transition, they would be mapped only on VL0. To balance

traffic among virtual channels, some of these paths can be mapped on other VLs.

This can be easily achieved by modifying the SL assigned to the path. This change is

carried out only if it does not introduce a new mapping conflict. On the other hand,

it is also possible that a packet transitions to a new virtual channel even if it is not

crossing a forbidden transition (with the aim of avoiding mapping conflicts). Thus,

when modifying the SL of a path an additional VL transition needs to be introduced.

Remember that packets are allowed to move from virtual network i to virtual network

j only if j >= i (j > i in the case of crossing a forbidden transition). For instance,

Figure 4.9 shows a path which is injected using virtual channel #0, and later uses

virtual channels in increasing order.

00 1

1

1

22 2

Virtual Network 0

Virtual Network 1

Virtual Network 2

Figure 4.9: Example of multiple transitions between virtual networks.

Stage 6 Finally, at the sixth stage, the routing information is computed using the

IBA format. This includes obtaining the forwarding tables, the SL-to-VL mapping

tables, and the tables that map destination ID’s with SLs at end nodes.

Notice that in a network with deterministic distributed routing, packets are routed

in the network only using the destination ID located at the header of the packet. In

order to provide multiple paths to reach the same destination we need to use the

virtual addressing mechanism provided in IBA. Each destination will have, then, an

address range. Each of these addresses (DLIDs) will have a different entry at the

forwarding table on every switch. Therefore, because DLIDs are different (though

they represent the same physical destination) it is possible to define multiple routing

paths for the same source-destination pair. In order to use the smallest number of

DLIDs for each destination, the same DLIDs will be reused from different sources

when possible.

4.2. TFTR METHODOLOGY 63

As a summary, Figure 4.10 shows a simple example of the TFTR method when

applied to a particular source-destination pair. The example shows the case for the

path starting at the source end node attached to switch S and ending at the destina-

tion end node attached to switch D. In the first stage all paths are computed. In the

example, up to 9 paths are considered. At the second stage, all the routing restrictions

due to the applied routing algorithm are computed. In the example, the routing re-

strictions obtained from the routing algorithm are plotted in blue. At the third stage,

all those paths which require more VLs than the available ones are discarded. In the

example only two virtual channels are available for fault tolerant issues. As can be

seen, paths #8 and #9 in the figure cross more than one forbidden transition and, thus,

are discarded. At the fourth stage, mapping conflicts are solved, and the final SL

value is assigned to each path. Additionally, those paths labelled with a SL higher

than the bounded number of SLs are discarded. Paths # 2 and #4 are discarded at

stage 4 as they introduce mapping conflicts. At the fifth stage, the final set of disjoint

paths is selected, choosing those paths with the maximum degree of disjoint paths.

Also, some SLs are modified in order to balance the traffic over the different virtual

channels. For instance, paths #1 and #6 are discarded at stage 5, keeping paths #3,

#5, and #7 since they exhibit the highest degree of disjointness. Finally, in the sixth

stage, the IBA tables are obtained.

4.2.2 Enhancements to the TFTR Methodology

At the first stage, the way paths are computed is critical for the methodology. As

network size increases, the number of possible paths for each source-destination

pair grows exponentially, and therefore the computation time can be extremely high.

Even, computing all the paths may become infeasible. Thus, an efficient way of

computing paths must be used to keep the computation time low. Two solutions are

provided to solve this problem. When both solutions are combined the computation

time of disjoint paths is significantly reduced.

A first improvement consists of bounding the complexity of the first stage of

TFTR by reducing the total number of possible paths. We limit the length of the

disjoint paths to be searched. In particular, for 2D tori we have limited the length

of the paths to the topological distance between nodes plus 4. Notice that when

applying the methodology we discard the longest paths and we keep the shortest

ones. Therefore, is not worth computing large paths that will be discarded and will

only contribute to increase the computation time.

64

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

87

6

4 53

21

9

Topology

Solve Mapping Conflicts

STAGE 4 STAGE 5
STAGE 3

STAGE 1 STAGE 2

Final Disjoint Set

Select Paths with a
Select Paths with a

bounded number of VLs.
limited number of SLs.

Compute Forbidden Transitions.Compute Disjoint Paths.

20

18 19171615

10 11 12 13 14

98765

0 1 2 3 4

232221 24

7

6

4 53

21

7

6

53

21

7

53

maximum degree of disjoint paths

Select paths with the

Balance Virtual Channels.

STAGE 6
Generate the IBA tables.

SLtoVL mapping table.

LINKin VLoutLINKoutSL Destination SLDLID LINKout

Forwarding Table. SL selection table.

D

S

D

S

D

S

D

S

D

S

(Down Up direction)

Routing restriction

Figure 4.10: Detailed example for a given source destination pair when applying the

TFTR methodology (in a 2D mesh).

The methodology takes into account that each possible disjoint path for a partic-

ular source-destination pair must use different ports both at the source switch (the

switch where the source end node is attached to) and at the destination switch (the

switch where the destination end node is attached to). Therefore, in the case of a 2D

torus network and other planar topologies, the methodology can be further improved.

In particular, an established order in which links are considered when computing the

different disjoint paths may speed up the computation stage as well. Consider as an

example the case of a 2D mesh in Figure 4.11.a. Three disjoint paths have been al-

ready computed for a particular source-destination pair. However, in that situation it

4.2. TFTR METHODOLOGY 65

is impossible to obtain a fourth disjoint path as some links are not reachable with-

out sharing a link or a switch with the already computed paths. Notice that the first

computed path influences on the chances of obtaining the remaining three disjoint

paths. The path starting from the west port at switch S and the path starting from the

east port at switch S, prevent a path starting from the south port from reaching the

destination switch D without sharing any link or switch with the other paths.

A way to solve this problem, and at the same time to compute paths in a fast

and efficient manner, is by considering ports at the source switch in the clockwise

direction and ports at the destination switch in the counter-clockwise direction. By

doing so, the set of disjoint paths will be quickly computed. Figure 4.11.b shows an

example of four possible disjoint paths that follow this rule.

S

D

(a)

S

D

(b)

Figure 4.11: Example of disjoint paths.

This process will be repeated for the source-destination pair but considering a

different initial port at the source switch and a final port at the destination switch.

Thus, only 16 combinations are searched. This is the second optimization included

in TFTR.

For other network topologies, similar rules should be extracted in order to keep

a low computation time. Considering there are N dimensions and each link has two

links in each dimension, links at the source switch and destination switch are ordered

in such a way that one channel for each dimension is considered before considering

the remaining channels. Figure 4.12.a shows the search order for 2D topologies, and

Figure 4.12.b for 3D topologies.

Figure 4.13.a shows two switches labelled as S and D. The minimum distance

between them is three hops (one hop in each dimension). For these two switches,

there are only two possible sets of three disjoint minimal paths. Figures 4.13.a and

4.13.b show the two possible sets of three minimal disjoint paths. As can be deduced,

the solution follows the optimization just described above.

Alternatively, in the case both source and destination switches are in the same

plane (XY , XZ or Y Z), four of the disjoint paths must be in the same plane in order

66

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

3

2

1

0

(a)

0

1

2

3

4

5

(b)

Figure 4.12: Link ordering in order to speed up the computing process of the disjoint

paths: (a) for 2D tori/meshes and (b) for 3D tori/meshes.

D
S

(a)

D
S

(b)

Figure 4.13: (a,b) Examples of two sets of the minimal disjoint paths in a 3D torus.

to optimize the average path length. The way these four paths (in the same plane) are

computed follows the rule described for 2D topologies.

As a summary, Figure 4.14 shows the stages of the enhanced TFTR method (in-

cluding both optimizations). Now, TFTR computes one by one the n paths for each

source-destination pair of end nodes. Initially the entries in the SLtoVL tables are

not defined. They are updated whenever a new set of n paths for a given source-

destination pair of end nodes is computed. The process of computing disjoint paths

is repeated for each source-destination pair.

4.2.3 Computational Cost

As may be expected, the complexity of TFTR is quite high (please refer to Section

8.1.7) since each path must be computed considering a large number of options (the

4.3. SPFTR METHODOLOGY 67

Is a valid path?
Are there n

disjoint paths? YES

Update the
SLtoVL
tables

NO YES

channels
virtual

Balance

tables
IBA

Generate

Stage 6Stage 5

NO

down up transitions

for a source destination pair
Compute a set of paths

Compute one path

#VLs

Stage 1 Stage 2 Stage 3

Topology

#SLs

conflicts
mapping

Solve

Stage 4

next

source−destination pair

Consider next

disjoint path

Compute* Compute
forbidden
transitions

Select paths that
will require a
low number

of VLs

evaluated?

All pairs

* At stage 1 links are considered in an ordered sequence.

Figure 4.14: Stages of the enhanced TFTR version.

computational cost of the algorithm is driven by the first stage). However, it must be

pointed that this process is done offline. Nevertheless, the mechanism in the follow-

ing chapter will address this issue, because it has to compute the solution online.

4.3 SPFTR Methodology

In the previous section we have introduced the TFTR methodology. The most im-

portant benefit of the methodology is that it allows the computation of alternative

disjoint paths. However, at the down-side the computation process is not scalable

and it may take too much time. This is mainly due to the fact that mapping conflicts

may occur during the computation process. To overcome this problem we present

in this section a methodology that delivers the maximum number of disjoint paths

between every pair of end nodes3 allowed by the torus topology when implemented

in IBA, in such a way that the computation time is extremely low and the number of

resources used (VLs and SLs) is minimum and remains constant regardless of net-

work size. The mechanism is referred to as Scalable Pattern-Based Fault-Tolerant

Routing (SPFTR).

4.3.1 Motivation

The TFTR methodology provides fault tolerance by means of the use of alternative

disjoint paths for any topology. In order to obtain a rich set of paths, this methodology

allows transitions between virtual channels. This is achieved using an underlying

routing algorithm.

As it will be seen in Chapter 8, the TFTR methodology requires the use of only

two virtual channels to obtain four disjoint paths for every pair of end nodes in a 2D

3Remember that we do not consider the NICs at end nodes nor the first and last links along the paths.

68

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

torus network. Unfortunately, SL requirements increase with network size (results are

shown in Chapter 8) due to the occurrence of mapping conflicts. Mapping conflicts

are solved by using a different path (if any) or by using a new SL (not causing a

mapping conflict). Taking into account that in InfiniBand the maximum number of

SLs is 16 and they are intended for other purposes (mainly QoS), we may conclude

TFTR does not scale. For instance, TFTR requires using 2 VLs and 7 SLs for a

10 × 10 torus network. Therefore, only two traffic classes could be used at most in

conjunction with TFTR, which would significantly limit the QoS capabilities offered

by IBA technology. Additionally, it has to be noted that, as network size increases,

the average length of paths also increases. Therefore, more mapping conflicts arise,

leading to an increase in the number of SLs required. This is a serious problem for

IBA and requires an effective solution.

To this end, the SPFTR method uses a bounded set of resources (virtual channels

and service levels) regardless of network size. To achieve such results, we need

to apply a new methodology to compute disjoint paths, introducing novel concepts,

models and computation strategies. SPFTR computes four disjoint paths for a 2D

torus network by requiring only two VLs and four SLs regardless of network size.

Thus, it guarantees the existence of up to four QoS channels and, at the same time,

tolerates up to 3 faults. Moreover, the methodology generates a database of route

patterns, which allows the computation of the disjoint routing paths in a time-efficient

manner for any network size. In particular, the cost of the methodology is O(N2),
where N is the number of switches in the system. Also, the methodology is easily

extended to higher dimensional torus networks, without increasing the number of

resources required.

The aim of SPFTR is to compute the forwarding and SLtoVL tables for IBA torus

networks in such a way that they provide the maximum number of disjoint routing

paths (2n) between every pair of nodes in a n-dimensional torus. Thus, up to 2n − 1
faults are tolerated. To achieve this goal the methodology must deal at the same time

with different issues:

• It must ensure that any combination of the computed disjoint paths (2n for

every source-destination pair) does not lead to deadlock. Deadlock freedom is

ensured by the routing algorithm used.

• It must use only 4 SLs and 2 VLs, regardless of network size. This is achieved

by computing the SLtoVL tables in an appropriate manner.

• It must be scalable. To achieve this, network regions whose switches require

the same contents for their SLtoVL tables are defined.

• It must be simple enough in order to be computed in a time-efficient manner

in large networks. SPFTR will obtain a set of route patterns to be used as

templates to define the set of final disjoint paths.

4.3. SPFTR METHODOLOGY 69

All these issues have direct dependencies between them, and this fact makes ob-

taining the methodology quite challenging. The choice of the routing algorithm in-

fluences the route patterns that can be used. At the same time, the route patterns

used influence the definition of the SLtoVL tables. In the other way, the definition of

SLtoVL tables influences also the route patterns that can be applied.

Next, we describe the methodology using a 6 × 6 torus as an example. Later,

the methodology is extended to larger 2D and higher dimensional torus networks.

The methodology is evaluated in terms of fault tolerance, performance, and cost in

Chapter 8.

4.3.2 SPFTR stages

Figure 4.15 shows the three stages followed by the methodology. Firstly, SLtoVL

tables are initialized according to some initial rules: up to two virtual lanes can be

used and transitions among virtual lanes can be done only in increasing order (first

VL0, then VL1) in order to avoid deadlocks.

Forwarding Tables

Compute Compute

Route Patterns

YES

NO
mapping
Are there

conflicts?

Modify
SLtoVL Tables

SLtoVL Tables

Initial set of

Figure 4.15: Steps followed by SPFTR.

In the second step, we look for a set of route patterns that accomplishes the re-

strictions imposed by the SLtoVL tables. This step tries to get short paths, and is

repeated as many times as required in order to get the final set of paths without intro-

ducing mapping conflicts. In other words, once route patterns are computed, mapping

conflicts are searched. If there is at least a mapping conflict, then the set of SLtoVL

tables is changed accordingly and a new iteration is performed.

Obviously, the computational cost of this procedure is not bounded and could

become very high (in the same sense TFTR is). However, SPFTR takes advantage

on the fact that once all the routes have been successfully computed, it generates a

unique definition of SLtoVL tables and route patterns that can be used in any 2D

torus regardless of its size. Therefore, the methodology requires a low computational

cost when applied to larger networks (once it was successfully applied to a small

2D torus). In particular, the computational cost is O(N2), where N is the number

of end nodes. This is because the SLtoVL tables are already computed for each

70

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

source-destination pair. Therefore, we only need to apply the already computed route

patterns to obtain the new forwarding tables.

Comparing TFTR and SPFTR, both are strategies are based on the use of disjoint

paths. However, the stages followed by SPFTR seem to be in the opposite order.

Mainly, TFTR computes the paths at the first stages, and the selected paths define

the entries of the SLtoVL tables. On the contrary, SPFTR, in order to minimize the

number of mapping conflicts and the number of required SLs, defines at the first

place the entries of the SLtoVL tables, and later the paths that match with them. An

important difference is that SPFTR is able to provide a set of disjoint paths by keeping

minimal the SL and VL requirements, whereas the number of SLs required by TFTR

may prevent its use on large networks. A second difference, is that SPFTR requires

lower computational cost when applied to larger networks (once it was successfully

applied to a small 2D torus) than TFTR.

4.3.3 Routing Algorithm

The methodology assumes a deterministic routing algorithm which guarantees dead-

lock freedom by building an acyclic channel dependency graph (CDG). This is

achieved by enforcing some routing restrictions at the switch level, which prevents

packets from traversing some consecutive links (forbidden transitions).

To do this, an underlying deadlock-free routing algorithm is used (in the same

way as in TFTR). This routing algorithm indicates where the forbidden transitions

are placed. In order to increase the routing flexibility when looking for disjoint paths,

some virtual lane transitions are allowed. As commented, the proposed methodology

will use only 2 VLs. This means that every path can traverse at most one forbidden

transition (i.e. only one virtual lane transition can be carried out by a packet at most).

In addition, virtual lanes must be used in an ordered way (for example, first VL0,

then VL1), in order to avoid cycles in the CDG.

Thus, the key factor when defining our routing scheme is the selection of the

appropriate underlying routing algorithm. This algorithm must be selected in such

a way that it guarantees four disjoint paths for every pair of end nodes and it allows

also route patterns that are valid regardless of the network size.

To achieve this we propose an ad-hoc routing algorithm. The algorithm is derived

from the up∗/down∗ routing algorithm. In our case, the labeling of links is slightly

different from that performed by the original up∗/down∗ routing. This assignment of

directions to links is performed by building a certain spanning tree from the network

graph. To do this, the switch in the top left corner is selected as the root (according to

Figure 4.16.b). Unlike the original up∗/down∗ routing, which builds a spanning tree

from the complete network graph, the proposed strategy proceeds to remove all the

wraparound links of the torus before building the BFS spanning tree. The BFS span-

ning tree is then computed from the root switch, and switches are grouped in levels

4.3. SPFTR METHODOLOGY 71

based on the topological distance to the root switch. The root switch corresponds

with the switch with the smaller identifier (in the plots the root switch is identified

with an R label). This scheme has the property that once the root switch is selected,

the rest of switches is distributed automatically on a tree. Once the BFS spanning tree

is built, the wraparound links are added, and a particular set of routing restrictions is

added in order to break cyclic channel dependencies in the CDG. In particular, we

identify all the possible cycles that can be formed and proceed to remove them by

imposing the corresponding routing restrictions. The distribution of the routing re-

strictions can be seen in Figure 4.20.b. Deadlock freedom is guaranteed by verifying

that the resulting CDG is acyclic. Also, connectedness is guaranteed.

R

(a)

R

(b)

Figure 4.16: Routing restrictions of (a) up∗/down∗ routing algorithm and (b) the ad-

hoc underlying routing algorithm used for SPFTR.

The main advantage of this new routing algorithm is that, in most places, the

orientation of the routing restrictions is the same, as can be seen in Figure 4.20.a,

which definitely will contribute to simplify the computation process of SLtoVL tables

carried out by the methodology4.

Notice that this algorithm has not been designed with the aim of providing min-

imal paths between every pair of nodes nor minimizing the number of routing re-

strictions. Instead, it is only used as an underlying routing algorithm to guarantee

deadlock freedom and, most important, to provide the symmetry required to simplify

the methodology. Notice that this scheme is still able to provide minimal paths by

traversing at most a forbidden transition and carrying out the corresponding virtual

channel transition.

4.3.4 Route Patterns and Network Regions

Route patterns constitute templates that can be used to obtain all the disjoint routing

paths between every pair of end nodes. A route pattern is defined by a sequence of

4We have considered other routing algorithms, such as DOR and up∗/down∗. However they are not

able to provide an scalable methodology using the minimum number of SLs.

72

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

movements (e.g., “go to next switch on the left” or “go to the left until reaching the

destination’s column”) and a SL, which defines the virtual channel to be used at each

hop of the path. This sequence of movements must be compatible with the routing

scheme applied in order to guarantee deadlock freedom. Moreover, the SL identifier

must be selected in such a way that mapping conflicts are avoided.

In order to illustrate how the virtual channel is selected as a function of the SL,

we consider as an example the path shown in Figure 4.17. The Figure shows a path

between two end nodes. The links at switch Y are input link #3 and output link #1.

Then, considering that the path uses SL0, the value of the virtual channel to be used

when leaving switch Y is obtained from Table 4.1, which indicates virtual channel

number #0.

Link labels
S

Y D

0

1

2

3
0

Figure 4.17: Example of a path using SL=0.

Input Output
SL

Output

port port VL

0 1 0 0

0 2 0 0

0 3 0 1

1 0 0 0

1 2 0 0

1 3 0 0

2 0 0 0

2 1 0 0

2 3 0 0

3 0 0 1

3 1 0 0
3 2 0 0

local X 0 0

X local 0 1

Table 4.1: SLtoVL table for switch Y
and SL=0. X stands for any port.

Additionally, the methodology defines network regions. A network region is built

by neighbour switches with the same SLtoVL table definition. Network regions are

defined taking into account two conditions. The first one is that all the switches in

a region must have the same routing restrictions (this is obvious as they must have

the same SLtoVL table). And, second, in order to help the methodology to scale, the

same distribution of regions should be kept regardless of network size. Figure 4.18

shows the final regions defined for the 6 × 6 torus network. As can be observed,

four regions have been defined so that fulfil the two conditions referred above: every

switch in a region has the same SLtoVL table definition, and the same definition of

regions can be obtained for larger networks.

The main advantage of using regions is that it minimizes the number of required

route patterns. Route patterns depend on the regions where source and destination

end nodes are located (the same or different) and their relative positions (i.e., they

4.3. SPFTR METHODOLOGY 73

29

0 1

32

Figure 4.18: Regions in a 6 × 6 torus network when using SPFTR.

may be located either in the same row and/or column or in different rows and/or

columns). To generate the route patterns, we try to obtain four disjoint paths (as short

as possible) between every pair of end nodes. To this end, it is necessary to establish

the path followed by the pattern (sequence of movements) and the SL to be used. The

former is accomplished by following the restrictions imposed by the applied routing

algorithm (required VL transitions were already introduced in the initial SLtoVL

tables). The latter is carried out according to the current SLtoVL table entries and

the bounded number of SLs used (4 SLs), checking that mapping conflicts are not

introduced. If it is not possible to obtain a set of valid route patterns, SLtoVL tables

must be slightly updated (manually) and a new try to obtain route patterns is carried

out. Thus, an iterative process is performed through the two steps until a valid set of

route patterns is found.

To illustrate the process of computing route patterns, let us consider a source-

destination pair of switches belonging to the same region. Without loss of generality,

let us consider neighbor switches sharing the same row. Figure 4.19 shows possible

route patterns able to provide four disjoint paths between the end nodes (depending

on their position). Several alternative sets of route patterns must be considered. For

example, in sets #1 and #4, if both S and D switches are moved one row down, the

first set of patterns can not be applied, as one of the paths would cross three forbidden

transitions (two additional forbidden transitions). In this case, the other sets of paths

can be used: set #2 substitutes set #1, and set #3 substitutes set #4.

4.3.5 SLtoVL Table Initialization

As commented above, the first step of the methodology is to initialize the SLtoVL

tables. In particular, SLtoVL tables must initially contain those entries corresponding

74

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

SET 1 SET 3

SET 4SET 2

D S

S D D S

S D

Figure 4.19: An example of route patterns for a source-destination pair of nodes

placed at the same region #0.

to switch transitions (In Port - Out Port) that require performing a virtual lane tran-

sition (i.e., transitions forbidden by the underlying routing algorithm). For instance,

Figure 4.20.b shows the initial SLtoVL table corresponding to a switch in the center

of the network. The labeling of links5 is shown in Figure 4.20.a. Specifically, the

entries corresponding to link transitions 0 - 3 and 3 - 0 are forced to use VL1 (shown

in bold face in Figure 4.20.b) because both link transitions are forbidden, as can be

seen in Figure 4.20.a.

However, note that setting the SLtoVL table in such a way does not guarantee

on its own deadlock freedom. In order to enforce deadlock freedom packets using

these entries should enter the switch exclusively through VL0. This fact must be

taken into account when computing the routing paths. The rest of SLtoVL entries

5This labeling in 2D topologies is used throughout the entire document.

4.3. SPFTR METHODOLOGY 75

0 1 32

8
11

5
4

109

15 16
17

23

29

35

28

2221

27

33 3432

26

20

13

6

12

7

19

25

3130

24

18

Link labels

LOCAL

0

13

2

14

(a)

Input Output
SL

Output

port port VL

0 1 X N/D

0 2 X N/D

0 3 X 1
1 X X N/D

2 X X N/D

3 0 X 1
3 1 X N/D

3 2 X N/D

local X X N/D

X local X N/D

(b)

Figure 4.20: Underlying routing algorithm applied: (a) routing restrictions, (b)

SLtoVL table initialization for switch 14. N/D stands for Not Defined. X stands

for any value.

are not enforced at this stage by SPFTR. The methodology will update those entries

accordingly in the next stage.

Entries corresponding to packets coming from an end node (input port is local)

are assigned to 0 (VL0). This is done to allow the packet the chance to migrate later

to a higher VL if needed. Similarly, packets leaving the network (output port is local)

will use VL1. These entries will not be modified at any stage of the methodology.

The remaining entries, however, will be modified when searching for SLtoVL tables

and route patterns.

Within each network region, all the switches have the same contents in their

SLtoVL table. Thus, when mapping a path into the region, each time the path crosses

a switch, the output VL required by the path must coincide with the appropriate entry

in the SLtoVL table of the region (corresponding to the SL and the input and output

links used). Figure 4.21 shows some examples of paths mapped into the same region

for four different values of SLs. At each switch a number indicates the VL value,

which matches the appropriate entry on the SLtoVL table. Notice that the two paths

for each SL define all the possible entries in the SLtoVL table. Therefore, because all

switches in the region have the same SLtoVL table, any of these paths can be placed

at any place on the region without introducing mapping conflicts. Notice also that in

figure, virtual channels transitions only occur when the packet experiences a change

in its direction. This fact allows paths (in the figure) to be extended along the same

axis. In particular, at switches where the path does not change its direction. Indeed,

mapping conflicts at those switches can not happen. This, (taking this into account)

76

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

final SLtoVL tables and route patterns are computed in a fast manner. In particular,

the VL values used in the examples (Figure 4.21) are used as the initial values for

the SLtoVL tables of region #0. This reduces the computation time of the final route

patterns and SLtoVL tables.

SL 1SL 0

Link labels

SL 3SL 2

Pattern 5: −1X +2Y +3X −2Y −1X

Pattern 6: −1Y +2X +3Y −2X −1Y

Pattern 7: +1X −2Y −3X +2Y +1X

Pattern 8: +1Y −2X −3Y +2X +1Y

Pattern 2: −1X +2Y +3X −2Y −1X

Pattern 1: −1Y +2X +3Y −2X −1Y

Pattern 4: +1X −2Y −3X +2Y +1X

Pattern 3: +1Y −2X −3Y +2X +1Y

+X

+Y

1

1 1

1

11

1

1

11

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

0

0 0 0

0

0 0

0 0

00 0

0

0

2

0

131 1

1

1

11

1

1 1

0

1

1 1

1

1

1 1

1

10 0

00

0

0 0

0

0000

0

0 0 0

0

00

0 0

In the switches is indicated the used VL for routing.

Figure 4.21: Initial route patterns used for initial definition of SLtoVL tables.

The remaining SLtoVL entries are set when defining each route pattern. This pro-

cess requires some iterations until all the final patterns (not introducing any mapping

conflict) are obtained. The SLtoVL table entries are progressively modified along the

iterations. Notice that the table entries corresponding to forbidden transitions (those

imposed by the underlying routing algorithm) should not be modified.

Table 4.2 shows the final SLtoVL table entries for every region defined on a

6 × 6 torus. These tables have been computed taking into account the route patterns

applied for every source-destination pair. The contents of the final SLtoVL tables are

the same for all the switches belonging to the same region. According to the defined

regions and the possible relative positions of every pair of nodes, 236 route patterns

have been obtained (see Appendix A).

To illustrate the process of computing the routing paths from the route patterns,

without loss of generality, let us consider a pair of switches located in the same row

in region 0 (the relative position of the switches and the regions will determine the

4.3. SPFTR METHODOLOGY 77

Region 0 Region 1 Region 2 Region 3 Region 0 Region 1 Region 2 Region 3

In Out SL SL SL SL In Out SL SL SL SL

port port 0-1-2-3 0-1-2-3 0-1-2-3 0-1-2-3 port port 0-1-2-3 0-1-2-3 0-1-2-3 0-1-2-3

0 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 2 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

0 2 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1 2 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1

0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 3 1 0 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1

1 3 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 3 2 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 1

loc. X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 loc. loc. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X loc. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4.2: SLtoVL tables for every region in 2D torus network for SPFTR method.

Values imposed by routing restrictions in each region are written in bold face. X

stands for any value.

pattern to use). The route patterns defined for computing the routing paths can be

shown in Figure 4.22. The computed routing paths in a 6 × 6 torus network can be

shown in Figure 4.23.a.

path 1 SL0:

path 2 SL0:

path 3 SL0:

path 4 SL2:
path 2

path 1

path 3

path 4

DS

Y+

X+

R

1HL (DST−2)D (DST+2)R U L

1HD R U

1HU R D

ROUTE PATTERNS:

Figure 4.22: Example of a route pattern.

Destination

Source

������������������S D

S

D

(a)

S D

(b)

Figure 4.23: Example of pattern applied in a (a) 6 × 6 and (b) 7 × 7 torus network.

78

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

4.3.6 Extending the Methodology

In this Section we show how SPFTR can be applied to larger and higher dimensional

torus networks. First, the methodology is extended to larger 2D torus networks, thus

scaling the methodology. In a second effort, we extend SPFTR to 3D torus networks.

Extending SPFTR to a larger 2D torus. A larger 2D torus network can be

viewed as a 6 × 6 torus network with additional rows and/or columns of switches.

These new rows and/or columns are added in the middle of the torus network (taking

as a reference Figure 4.24). Therefore, the new components will belong to regions 0

and 2 in the case of a column or to regions 0 and 1 in the case of a row. By doing

this, the distribution of regions will remain the same as in the 6× 6 torus. Therefore,

SLtoVL tables of new switches are already defined. Also, the route patterns to use for

every new switch to all the destinations have been already computed as each switch

can use the route patterns of any of the switches within their same region. As an

example, Figure 4.23(b) shows the paths computed for a given pair of switches for a

7 × 7 torus when using the route patterns shown in Figure 4.22.

29

0 1

32

Figure 4.24: Regions in 2D torus when using SPFTR.

Extending SPFTR to larger n-D torus. In order to extend the methodology

to n-dimensional torus networks, we use the same underlying routing algorithm de-

scribed in Section 4.3.3, which defines the routing restrictions (Figure 4.28.a shows

an example for a 3 × 3 × 3 torus network). In particular, for every plane in the 3D

torus (see Figure 4.25) we can find an orientation with all the restrictions located in

the same position as in the 2D torus shown in Figure 4.24. As an example, Figure

4.28.a shows a frontal view of the routing restrictions found in a 2D plane of the 3D

torus.

4.3. SPFTR METHODOLOGY 79

Taking into account that each entry in the SLtoVL table is defined for a certain

SL value and a certain pair of links, and that both links are located in a plane, we can

use the SLtoVL tables already defined for a 2D torus (shown in Table 4.2) in order to

compute all the entries in the SLtoVL table for the n-dimensional torus.

X

Y

X

Y

Z

Z

Y

Z

X

Figure 4.25: 2D planes in a 3D torus.

SLtoVL tables must be compatible at the plane level in order to extend the method-

ology to more than two dimensions. To achieve this, it is important to emphasize that

every pair of links placed in the same direction is included in more than one plane (in

two planes in the case of the 3D torus). Therefore, given that we define the SLtoVL

entries for each plane independently of its position, and each table entry can only de-

fine a unique VL value, we add an additional rule: entries for the pair of links shared

between planes (links along the same direction) must contain the same values in all

these planes. We refer to this property as symmetry, and it restricts the definition of

network regions and SLtoVL tables.

For instance, Figure 4.26 shows in the left hand side the six XZ planes in a 6×6×
6 torus. Switches colored in red are in the same position when considering only the

XZ planes, thus, they are in the same region in the XZ plane and have the same entry

in the SLtoVL table when the input and output links are in the X direction. Next, we

consider the XY plane which includes these switches (in red). This XY plane is shown

on the right hand side of the figure. Notice that red switches in the XZ plane (in the

same column) are in more than one region. Therefore, some entries in the SLtoVL

table defined for a plane force some values in other planes. Also different regions

in the same plane (red switches in the XY plane in the figure) must have the same

definition. These relationships appear on each possible pair of plains that intersect

(see the Figure 4.27).

The route patterns for all the pairs of end nodes in the same plane are defined

using the patterns obtained for the 2D torus (236 patterns). Notice that there are three

planes in a 3D torus (XY,XZ, and YZ), thus we consider three times the quantity of

patterns for the 2D torus.

When a source-destination pair is in the same plane, the route patterns for the

four disjoint paths included also in this plane are the same defined for the 2D torus

80

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

XY plane

X
Z

 p
la

n
es

X

Y

X

Z

Y

Figure 4.26: Switches in the same position in the XZ planes in a 6 × 6 × 6 torus are

included in the same position in a XY plane.

XY and YZ planes

must have the same value when input and output link are in the X direction.

All the entries in the SLtoVL table for all the regions along the Y and Z axis

XY and XZ planes

X

Y

X

Y

XZ and YZ planes

must have the same value when input and output link are in the Y direction.
All the entries in the SLtoVL table for all the regions along the X and Z axis

X
Y

Z

Z

must have the same value when input and output link are in the Z direction.

All the entries in the SLtoVL table for all the regions along the X and Y axis

Z

Y

X

Z Y axis

Z axis

Z axis

X axis

X axis

Y axis

Figure 4.27: Pair of links shared between every pair of planes in a 3D torus.

4.3. SPFTR METHODOLOGY 81

��
��
��

��
��
��

��
��
��

��
��
��

Root switch

Leaf switch

restriction
Routing

(a)

1 Switch

1
 S

w
it

ch

There is only 1 switch

(b)

Figure 4.28: (a) Frontal view of routing restrictions in the XY plane of a 3D torus.

(b) SPFTR regions in a 3D torus.

case. In particular, when the pair of end nodes are in the same axis, all the six disjoint

paths can be defined also with the same route patterns for the 2D torus. However,

new route patterns are needed for the pairs of end nodes which are not in the same

axis.

The solution we obtain, which fits with these restrictions, provides in a 3D torus

the total amount of 2322 route patterns and 8 regions. These regions are shown in

Figure 4.28.b.

4.3.7 Optimizing the methodology: A-SPFTR

As an additional result from the proposed methodology, we have successfully ob-

tained an alternative set of route patterns and SLtoVL table definitions that only re-

quires 2 VLs and 3 SLs. The solution we obtain, 10 regions (show in Figure 4.29.a

)in a 2D torus and uses similar set of route patterns as SPFTR for 2D torus.

This solution has been achieved by sacrificing the scalability in terms of higher

dimensional torus networks, thus being only valid for 2D tori. However, scalability

in terms of number of nodes is guaranteed. The resulting algorithm is referred to as

Asymmetric-Scalable Pattern-based Fault Tolerant Routing (A-SPFTR). In this case,

new rows can be added along regions 3, 4, 5, and 6, and new columns along regions

1, 5, and 8, keeping the same region structure shown in Figure 4.29.a. For instance,

Figure 4.29.b shows an example of a 7 × 7 torus obtained from a 6 × 6 torus once

an additional row and column is added. The final definition of the SLtoVL tables for

each region is shown in Table 4.3.

82

CHAPTER 4. FAULT-TOLERANT ROUTING METHODOLOGIES BASED ON

DISJOINT PATHS

3

1 20

6

98

54

7

(a)

6

8

53 4

1

7 9

0 2

(b)

Figure 4.29: Regions in 2D torus when using A-SPFTR in (a) 7 × 7 torus network,

and (b) in a 8 × 8 torus network.

Regions

0 1 2 3 4 5 6 7 8 9

In Out SL SL SL SL SL SL SL SL SL SL

Port Port 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2 0-1-2

0 1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 0 1 1 1

0 2 0 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1

0 3 1

1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1

1 2 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0

1 3 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1

2 3 0 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

3 0 1

3 1 1 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1

3 2 0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1

loc. X 0

X loc. 1

Table 4.3: SLtoVL tables for every region in 2D torus network for A-SPFTR method.

Values imposed by routing restrictions in each region are written in bold face. X

stands for any value.

Chapter 5

Fault-Tolerant Routing

Methodology Based on

Reachability

In this chapter we present a new mechanism to provide fault tolerance. Once a fault

is detected some actions are performed and new alternative paths are computed to

tolerate the fault. This is opposite to previous TFTR and SPFTR mechanisms, in

which the alternative paths are computed ”a priori”. Thus, this new mechanism is

dynamic in the sense that new paths are computed when needed. The main objective

of this new approach is to tolerate more faults than the previous mechanisms.

5.1 Motivation

The methodology presented in this chapter is focused on the dynamic fault model

(see section 3.2) when applied to networks with deterministic routing, which is the

common case in commercial network technologies currently applied to PC clusters.

In this scenario, there is no doubt that applying reconfiguration techniques is a good

choice, because when using reconfiguration any fault scenario can be tolerated if

the network keeps physically connected. That is, any fault combination could be

tolerated with an appropriate reconfiguration mechanism. The term reconfiguration

must be taken, however, carefully, since a single bit change or a change of the entire

routing algorithm may be viewed as a reconfiguration process. However, the effects

of changing a bit or the entire tables will be completely different.

At this stage, we can differentiate two situations where reconfiguration is needed.

In a first scenario, we may need to compute a small set of new paths to overcome a

new fault that has been detected within the network. With small modifications at the

affected switches and end nodes the new fault can be tolerated. This procedure can

83

84

CHAPTER 5. FAULT-TOLERANT ROUTING METHODOLOGY BASED ON

REACHABILITY

be defined as local reconfiguration since only a part of the network is reconfigured.

As the process of reconfiguration is local it is expected that the entire process will be

fast as well.

On the other hand, the occurrence of consecutive faults leads to consecutive local

reconfiguration processes. Although the connectivity is maintained, the overall per-

formance may be affected. In that situation, a complete change at the network level

may be needed to recover the lost performance. To this end, a global reconfiguration

process can be carried out where all the end node pairs are provided with a new path.

As this process requires more paths to be computed it is obvious that it will take much

time.

In this chapter we develop a solution for the first scenario. In particular, the

proposed RFTR (Reachability-based Fault Tolerant Routing) methodology computes

only new paths to those pair of end nodes affected by a new fault. This process is

optimized to reduce the elapsed time between the fault detection until an alternative

path is provided. The main goal, thus, is to speed up the processing of new fault-free

paths. RFTR is not limited to a given set of faults tolerated. Indeed, it is able to

compute new paths provided a sufficient set of resources (VLs and SLs in IBA) are

available.

In the next chapter we propose a totally different approach based on a global

reconfiguration process that deals with the second scenario: a total change of the

routing algorithm. With this method all the paths for every source-destination pair

are computed again and distributed among the end nodes and/or network switches.

That means an important disturbance on the network. Additionally, dynamic recon-

figuration often requires additional hardware resources in order to guarantee deadlock

freedom during the reconfiguration process. This is because combinations of packets

routed with both routing schemes (before and after the reconfiguration process) could

form cycles. In the next chapter we will see how to handle this situation.

5.1.1 RFTR Preliminaries

When faults appear in the network they usually only affect to some paths. As an

example, Figure 5.1 shows a 3×3 mesh using Dimension Order Routing (DOR). For

the sake of simplicity, we assume that end nodes are attached only to switches A, B,

and C. When link L fails, the path from A to B is affected, whereas the rest of paths

are not affected at all by the fault. Thus, we need to compound only a new path from

A to B. However, notice that DOR is no longer able to provide a fault-free path from

A to B. Therefore, both end nodes are logically disconnected. In this situation, a

reconfiguration process is required to restore connectivity.

As described in Section 4.2.1, virtual channels can be used to improve the flexi-

bility of a routing algorithm. In this sense, it is possible to obtain a path from A to B
with a (Y → X) transition at switch C. To this end, a virtual channel transition on C

5.1. MOTIVATION 85

X

Y

B

FAULT

C

A

L

Figure 5.1: Paths in a 3 × 3 mesh applying DOR.

must be performed. Notice that by using virtual channel transitions the new path is

fully compatible with the previous set of paths, thus guaranteeing that deadlocks can

not arise. Indeed, a path performing a virtual channel transition can be viewed as two

joined subpaths, each one on a different virtual channel or layer. Since each subpath

does not introduce an illegal transition in its virtual channel, and virtual channels are

used in an established order, deadlock freedom is guaranteed. Thus, a full reconfigu-

ration process is not needed, and simply the new routing info for the new path can be

distributed without stopping network traffic.

Notice that the new computed path can be obtained from the set of paths previ-

ously computed (before the fault). Indeed, the new path can be viewed as the A-C
and C-B subpaths joined. Thus, instead of computing new paths (by a new routing

algorithm), we can extract new ones from the already computed set of paths for only

those pairs of end nodes affected by the fault. This will let us to achieve the following

benefits:

• Firstly, the required amount of routing information to be updated (at end nodes

and/or switches) will be lower, leading to send less control data.

• Secondly, the traffic not affected by the fault will be left unmodified (a kind of

local reconfiguration process will suffice).

• Thirdly, the method will take less computation time (compared with a full re-

configuration method), as only affected paths will be computed.

As a consequence, the total required time would be smaller, causing a smaller

percentage of packets to be lost during the reconfiguration process due to the fault.

Thus, the key issue consists of finding an effective methodology able to compute

an alternative path for each path affected by the fault from the set of already computed

paths. Moreover, this methodology should be able to compute the new paths in a

time-efficient manner by using as few virtual channels as possible.

In order to undertake these challenges, we describe in this chapter a new fault-

tolerant routing methodology referred to as Reachability-Based Fault-Tolerant Rout-

ing (RFTR). The method provides new paths by joining already computed subpaths

and using virtual channel transitions when required. As a result, RFTR is suitable to

86

CHAPTER 5. FAULT-TOLERANT ROUTING METHODOLOGY BASED ON

REACHABILITY

any topology, tolerates dynamically a large number of faults with a very small num-

ber of virtual channels, and exhibits a very low computational cost for any network

size. This last benefit minimizes the number of lost packets during the process of

fixing the fault.

It has to be noted that the methodology does not depend on neither the hardware

used for detecting faults, nor the way faults are notified. Anyway, as an example of

applicability, RFTR is applied to IBA. In Section 8.3 the methodology is evaluated

in terms of fault tolerance, performance, and resource requirements when applied to

IBA. Also, RFTR is compared with the previous fault-tolerant mechanisms proposed

in this thesis.

5.2 RFTR Description

In this Section RFTR is described in detail. The methodology is based on the con-

cepts of direct and indirect reachability. Thus, we first introduce both concepts and

then present the methodology.

5.2.1 Direct and Indirect Reachability

Given a routing algorithm and a pair of switches (A and B), it is said that switch B is

directly reachable from switch A if the routing algorithm provides a path from A to

B. Similarly, switch A is indirectly reachable from switch B if the routing algorithm

provides a valid path from A to B.

Notice that reachability can be defined regardless of the type of routing algorithm

used (adaptive or deterministic). However, we are interested in deterministic routing.

Moreover, a deterministic routing (oblivious routing) may provide several paths for

some pair of end nodes. Thus, it can be viewed also as a set of deterministic paths.

We select just one path for each source-destination pair. Each path consists of a list of

links and switches. Based on this view, let us define the reachability concept related

to a given deterministic path: Every switch listed in a path is directly reachable from

the source switch of the path (the switch the source node is attached to) and indirectly

reachable from the destination switch of the path (the switch the destination node is

attached to) 1.

In order to achieve a simple and fast computation method of alternative routing

paths we create two tables, one to identify directly reachable switches and one to

identify indirectly reachable switches. As an example, the first table (Table 5.1.a),

referred to as direct reachability table (DRT), allocates entries for each path depicted

in Figure 5.2.

1Notice that the definition does not include all the reachability info provided by the path, as reacha-

bility among intermediate switches is not considered. However, as it will be seen in the evaluation, this

will not impact on the fault tolerance properties of RFTR.

5.2. RFTR DESCRIPTION 87

Path 3

Path 2

P
at

h
 1

A

L

B

C D E

Link labels

2

0

13

Figure 5.2: Paths in a 3 × 3
mesh.

Src Dst Reach Trans. In. Link Hops

A C B - 2 1

A C C - 2 2

C E D - 1 1

C E E - 1 2

DRT (a)

Src Dst Reach Trans. Out. Link Hops

A C B - 0 1

A C A - 0 2

C E D - 3 1

C E C - 3 2

IRT (b)

Table 5.1: Example of DRT and IRT tables.

Each path defines an entry on the table for every visited switch. These entries are

consecutively allocated in the table in the same order switches are visited, starting

from the source switch (switches with smaller number of hops from the source switch

appear first). For each entry, the table contains the source and destination switches,

the input link ID used at the reachable switch, the number of hops needed to arrive

from the source to the reachable switch, and the number of transitions (if any) of vir-

tual channels required along the path to arrive from the source to the switch (initially

none).

The second table (Table 5.1.b), referred to as indirect reachability table (IRT), is

similarly defined, but the info is acquired in the opposite order, i.e., starting from the

destination switch. In the same sense, it contains the source and destination switches,

the output link used at the reachable switch, the number of hops needed to arrive to

destination from the reachable switch, and the number of transitions (if any) of virtual

channels required along the path to arrive from the switch to the destination (initially

none).

5.2.2 RFTR Methodology

The description of RFTR is done through a complete example, showing all the steps

performed by the methodology in the presence of a fault in a 3 × 3 mesh network.

The example and all the steps followed by RFTR are shown in Figures 5.3 and 5.4.

For the sake of explanation and ease of understanding, we only consider existing

paths between few sources and destinations. In particular, we consider paths from

end nodes attached to switch B to end nodes attached to switches G, H , and I , and

from the end nodes attached to switch G to end nodes attached to switch I . In this

way, reachability tables in the example can be small.

88

CHAPTER 5. FAULT-TOLERANT ROUTING METHODOLOGY BASED ON

REACHABILITY

Initially, the paths for every source-destination pair are computed by applying a

certain underlying deterministic routing algorithm. Then, the method computes the

DRT and IRT tables from the computed paths. Figure 5.3.a shows four initial paths

and the tables obtained. Whenever the notification of a new fault arrives to the SM

(Subnet Manager) the method is triggered. Figure 5.3.b shows the localization of a

link failure. The SM entity is placed on one or more end nodes, and is responsible to

manage the network, that is, for computing the routing algorithm and applying this

methodology. This entity stores DRT and IRT tables in local memory 2.

The mechanism requires an efficient way to identify the location of the fault

within the network. This is achieved by using the ID of the switch attached to the

failed link and the label of the port that has failed. The method tolerates switch and

link failures. In the case of a switch failure, the switch ID will be provided. In the

case of a link failure, the link label and the ID of one switch attached to the failed

link will be provided.

The main goal of the methodology is to compute, in a time-efficient manner,

alternative paths for every pair of source-destination end nodes whose path have been

involved in a fault. Thus, as a first step, RFTR identifies the paths affected by the

fault. This is achieved by sweeping both tables (DRT and IRT). Whenever the failed

link and/or switch is found in an entry (the failed switch appears as reachable and the

failed link appears as input link for DRT or output link for IRT), the associated path

is annotated as failed. Figure 5.3.c shows the entries (affected by the fault) found in

the (DRT and IRT) reachability tables and the obtained list of faulty paths. Notice

that the list of faulty paths is very small compared with the total number of paths.

All the table entries affected by the failed paths are removed in both DRT and

IRT tables (they are no longer reachable using the path). The entries to be removed

are shown in the example as yellow shadowed in Figures 5.3.c and 5.3.d.

Once a given path is annotated as failed, RFTR builds two sets of switches. The

first one is compounded by the switches directly reachable from the source of the

affected path, and the second one by the switches indirectly reachable from the desti-

nation of the affected path. In order to build the set of directly reachable switches, the

method sequentially sweeps the DRT table searching for directly reachable switches

from the source. The set includes only the indexes to the DRT table (there is no need

to store a copy of the entries of the table). The same is done for the IRT table in order

to build the set of indirectly reachable switches. Note that a switch may appear in any

set several times (replicas) as it can be reached by the source (or indirectly reached

by the destination) through different paths. Also, each replica may require different

number of virtual channel transitions3 and may be at a different distance from the

source (or destination). The method keeps the replicas on each set in order to get the

2The memory requirements are in the same order as the memory requirements of the routing tables.
3Initially, paths have no virtual channel transitions. They may appear later as long as the methodol-

ogy computes new paths to cope with faults.

5.2. RFTR DESCRIPTION 89

Example of IRT

from destination I

DRTDRT

IRTIRT

IRT

DRT

from source B

Example of DRT

A C

FD

G I

E

H

B

Next Page

A C

FD

G I

E

H

B

F

H
G

INITIAL PATHS

0

F 0
3

0
1

0I

Src Dst Reach Trans In Link Hops

G 2

B I

1

Src Dst Reach Trans In Link Hops

IG 13

Failure F−0
B I

0
0
3 1

G GB
B G

CB I

H
EB H

HB

These entries
are discarded.

H

1

H
EB H

HB

B
B
B
B

I
G
G
G

1
2

3
2
1A

D
G
C

C 2

B
G
G

B

B 2

C 2
B I
B I

H 1

1
2G

G

I

I
I

H
H

B B
E

G
H

FB

2BB I

11

(a) NETWORK INITIALIZATION

(c) IDENTIFY ALL AFFECTED PATHS

(b)FAILURE DETECTION

INITIAL REACHABLE TABLES

B I
Src Dst

List of affected paths

0

13

2

B
B

Src Dst Reach Trans Out Link HopsSrc Dst Reach Trans Out Link Hops
G

I
G
G

B

D
A
B 3

2
2

3
2
1

3

2

2
1
2
1

1

2
2

1

GB A
D

I

IG

I 3

1
2

3

2

1
3
2
1

B
B
B
B

I
G
G
G

H
I
I

HB
B
G 1

1

B
E 2

2 2

3

2

1
3
2
12

2
3
1

D
G

E
H
H

II

3

F 0I
B
B

I I

0

0

0

3 2

2
1

2

3
2
11

0
0
3C

AG
G
G

IB
B
B
B

B
B

G

H
H

D
A
B
F

(d) BUILD REACHABLE SETS

B

G
G

B
B

B

B
3
0
0
0
0

3

0
0

C
F

H

A
D

I

G

G
G

G
2
3
1
2

2
E

H

B
B

B

I
I

H
H
I
I 2

1

3
1

1

3

1

B

B

B
B

B
B
B
B
G
G

2
1

3

3
2
1

A
B

C
B

2
2

3
1
2
2
2
2
1
1

D

F

I

I

G
G

G

I
I
I
H
H
I
I

Src Dst Reach Trans In Link Hops

Src Dst Reach Trans Out Link Hops

I

I
I

Dst Reach Hops

1
2

1

B
E 1

2
H
G

1
2

Link labels

C−2

F−0

HopsReachDstSrc

Failure C−2

Src

G
G
B

Figure 5.3: Applying RFTR for one link failure in a 3 × 3 mesh (part 1).

best option when computing the final path. Figure 5.3.d shows the directly reachable

switches from switch B and indirectly reachable switches from switch I .

90

CHAPTER 5. FAULT-TOLERANT ROUTING METHODOLOGY BASED ON

REACHABILITY

Updated

entries IRT

DRT

B H I

hops

2

B

Src Reach

3
D
A

C
E

H

G

from source B

Example of DRT

(f) SELECTION OF THE BEST CANDIDATE

(g) UPDATE THE ROUTING TABLES

FINAL REACHABLE TABLES

Total hops 2+1=

Total hops 3+2=

3

5

Reach hopsDst

F

I
G

H 1

2

from destination I

Example of IRT

(e) LIST OF INTERMEDIATE CANDIDATES FOR EACH FAULTY PATHS

B
B
B 3

2
1

A
B

2
2

3

D
G
G

G

Src Dst Reach Trans Out Link Hops

G

B 3B 2I
B 22I E
B I H 1 1

IG

G I H 1

2
2

1

2
1
2
1

1
1

B H B
EHB

B

B 0
0

A
D

G

G
G

G
2
3

B
11

Src Dst Reach Trans In Link Hops

G
G

B
0
0 2

B 1

I

H
H
I
I

H
H
E

IB
B I 1
B 3I

I
H
E

0
0 2

1

3

3 2
13

(h) UPDATE THE REACHABLE TABLES

A C

FD

G

E

H

B

I

FINAL PATHS

1

Forbidden transition crossed

at switch H

Figure 5.4: Applying RFTR for one link failure in a 3 × 3 mesh (part 2).

Remember that the aim of the methodology is to compute a new valid path by

joining two already computed subpaths. The join point (switch) of both subpaths

will be referred to as intermediate switch. Therefore, once sets are computed for a

given affected path, the method will select the appropriate intermediate switch from

the intersection of both sets. The new path will consist of the union of two subpaths,

5.3. RFTR COMPLEXITY 91

one from the source to the intermediate switch, and the other from the intermediate

switch to destination.

The method uses the following criteria to select the intermediate switch: the final

path will have the minimum number of virtual channel transitions and, in case of a

tie, the shortest path will be selected. In order to compute the number of required

virtual channel transitions, the method takes into account the number of virtual chan-

nel transitions already used in each subpath (extracted from both tables) and whether

a virtual channel transition is required (according to the routing algorithm applied).

To compute this, the method needs to know the input and output ports used at the

intermediate switch. This info is found in the DRT and IRT tables. Figure 5.4.e

shows the set of directly reachable switches from switch B and the set of indirectly

reachable switches from switch I . The common reachable switches from both sets

are highlighted. Also, the figure shows the number of hops to reach the intermediate

switch and the total number of hops for the possible final path. In Figure 5.4.e two

candidates to become intermediate switch are considered: G and H . The selected

one is H , with a total of three hops (G requires a total of five hops). Notice that the

selection of the best candidate does not require to sort the candidate list.

Once a new path is obtained the new reachability info provided by the new path is

added to DRT and IRT. Once the new paths are computed, the new routing info must

be distributed to switches and end nodes. Figure 5.4.g shows the final paths obtained

once RFTR is applied to the example. However, how info is distributed and routing

tables are updated depends on the RFTR implementation and the network technology

used. Finally, it has to be noted that once all the new paths are computed, DRT and

IRT tables are ready to be used in the presence of a new switch or link failure. Figure

5.4.h shows the new reachability tables which have new entries corresponding to the

new path.

5.3 RFTR Complexity

The computational cost is an important aspect of the proposed fault tolerant routing

mechanism, since during that time a certain fraction of traffic is lost due to the fault.

Also, the main goal of RFTR is to minimize its computation time.

In this section we analyze the cost of RFTR. This involves the amount of time

from the fault detection until the complete routing solution is obtained. We do not

consider here the time to distribute the new routing info, since this is technology

dependent. To help in the description of the cost, we refer to Figures 5.3 and 5.4.

The main parameters RFTR depends on are the number of end nodes in the net-

work (N), the average path length (L) and the number of faulty links in the network

(F). DRT and IRT tables require each one N2L entries.

92

CHAPTER 5. FAULT-TOLERANT ROUTING METHODOLOGY BASED ON

REACHABILITY

RFTR, after the detection of the fault, identifies the faulty paths and builds the

reachable sets. These stages are shown in Figures 5.3.c and 5.3.d, respectively. Each

one of these tasks is done by one sweep of both tables (DRT and IRT), each one hav-

ing a complexity of O(N2L). As an optimization, notice that both sweeps (the one

for detecting affected paths and the one for computing the sets) can be done at the

same time (only one sweep is needed). The remaining stages require a lower compu-

tation time since they operate over a reduced set of intermediate switch candidates.

This cost can be further reduced by using more memory structures at the SM. For

instance, linked lists of pointers can be used for each link and each source-destination

pair, thus, only entries affected by the faults are searched. This reduces the cost down

to O(FL). Anyway, in Chapter 8 we provide measurements of a real implementation.

5.4 RFTR on InfiniBand

In the previous section we described the methodology independently of the architec-

ture of the network. As an example of applicability, in this section we adapt the RFTR

methodology to InfiniBand (IBA). To do this, we describe how faults are detected and

managed in IBA, and how the entire process can be integrated with RFTR.

Figure 5.5 shows the steps followed by the methodology once integrated in IBA.

At the first stage SM carries out sweeps in order to detect changes or faults in the

subnet. When the SM encounters a fault, it triggers the RFTR methodology. The

method works as described in section 5.2.2. However, as SLs are used in InfiniBand, a

new criteria for selecting the appropriate intermediate switch is needed. In particular,

higher priority is given to those paths not introducing a mapping conflict (thus not

requiring an additional SL). In case of a tie, the switch that leads to a shorter final

path is preferred.

detected

for detecting changes
in the topology

A change isSM sweeps the network

SM updates the new LIDS

to the SMA

updating completion

SM is reported about the

SM updates routing entries

in the switches

RFTR

Figure 5.5: Stages followed by RFTR on IBA.

In order to differentiate both paths (the new one and the failed one) from the

subnet point of view, the methodology assigns a new virtual address (LID) to each

5.4. RFTR ON INFINIBAND 93

new path. Once all the new paths are computed, SM sends the new routing info (only

the additional info for the routing tables and SLtoVL tables) to the corresponding

switches, and the new LIDs to the end nodes. Notice that the size of the information

sent will be different for each switch or end node (even some switches will do not

receive new routing information at all).

To send the new control information a special routing mechanism (Directed-

Route) is used. According to the IBA specs, Directed-Route is used for routing con-

trol packets through VL15. The entire path of each packet is established at the header

by specifying all the output ports along the switches to be crossed. As it defines the

routing paths port by port, the fault will be avoided by the SM.

When SM has finished sending the new routing info, it waits until the reception

of an acknowledgment from all the switches whose tables have been updated. This is

required in order to ensure that messages can be appropriately routed when using the

new LIDs. Otherwise, they might be discarded. Upon reception of acknowledgment

from every updated switch, SM sends to the SMAs placed in all the end nodes the new

LIDs corresponding to the new paths. Upon reception, the new injected data packets

will use the new LIDs, thus being appropriately routed by the switches according to

the new routing info.

Please, note that the underlying routing algorithm is not modified, only some

paths are modified. When the new paths perform a transition between virtual net-

works when they require to cross a routing restriction. This is the reason of the

required resources by the mechanism.

This page intentionally left blank

Chapter 6

Fault-Tolerance Methodology

Based on Reconfiguration

In the previous Chapter we have proposed a local reconfiguration mechanism able to

tolerate most fault combinations. The proposed mechanism, however, relies on the

original routing algorithm for computing new paths (using virtual channel transitions

if required). This may lead to achieve drops in performance as faults accumulate and

the topology changes. In this situation a global reconfiguration may be required, thus

using a completely different routing algorithm. In this Chapter we propose a new

global dynamic reconfiguration mechanism to achieve such purposes.

6.1 Motivation

The main challenge of a dynamic reconfiguration process is to avoid deadlock anoma-

lies. In a global reconfiguration process, the system migrates from a routing algorithm

(Rold) to a new one (Rnew). Although both routing algorithms are deadlock-free

when isolated, during the reconfiguration process both algorithms coexist and they

may induce cyclic dependencies between packets (old packets and new packets). As

a second challenge, dynamic reconfiguration processes must reduce packet dropping

rate while keeping restrictions on packet injection and forwarding minimal. Current

approaches (described in section 2.1.8.2) fall in one of the next categories. Either

they require the existence of extra network resources like e.g., virtual channels, their

complexity is so high that their practical applicability is limited, or they severely

impact on the performance during the reconfiguration process.

In particular, PPR [52] only works between two routing functions that adhere

to the up∗/down∗ scheme. NetRec [120] is specially tailored for re-routing mes-

sages around a faulty node. It basically provides a protocol for generating a tree that

95

96

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

connects all the nodes that are neighbors to a fault, and drops packets to avoid dead-

locks in the reconfiguration phase. The DoubleScheme [124] is more flexible, in the

sense that it can handle any topology and perform a transition between any pair of

deadlock-free routing functions. However, it requires the presence of two sets of vir-

tual channels. The methodology proposed in [106] requires complex computation in

order to derive a safe reconfiguration process once the new routing function has been

decided. This will take time, and thus limits the practical applicability of the method-

ology. Regarding the mechanism proposed for InfiniBand [48], it discards packets in

order to avoid deadlocks. Finally, the SR mechanism [106] requires a token to be dis-

tributed over the entire network. Although it separates old and new traffic, it has two

important drawbacks. The first one is that its implementation is not straightforward.

The token distribution is based on the dependencies of the old routing function. Also,

the mechanism is suitable for routing functions that consider the input port for rout-

ing (C ×N → C, provided the input channel C and the destination ID N the routing

function provides the output channel C). For routing mechanisms based only on the

destination (N × N → C) the SR mechanism is not directly applicable. The second

drawback is that inherently adds some extra blocking to packets since new packets

must wait for the tokens to advance and these tokens have many dependencies. This

is analyzed on Chapter 8.

To overcome these problems we present in this chapter a simple and powerful

method for dynamic network reconfiguration. The mechanism, referred to as Epoch-

Based Reconfiguration (EBR), guarantees a fast and deadlock-free transition from

the Rold to the Rnew routing function, but instead of avoiding deadlocks the mech-

anism is based on regressive deadlock recoveries. Thus, EBR allows cycles to be

formed, and in the situation of a deadlock some packets may be dropped. However,

only in high traffic conditions beyond congestion packets need to be dropped to re-

cover from deadlocks. Therefore, no packets need to be dropped in the working zone

of the system. Also, the mechanism works in an asynchronous manner as switches

start using the new tables as soon as they are received. By doing this, EBR greatly

reduces the dropping rate of packets due to faults in the network, when compared to

previous dynamic reconfiguration proposals.

EBR does not require additional resources and works on any topology using the

virtual cut-through or store-and-forward switching mechanisms (as in InfiniBand).

Also, EBR works with any distributed routing function based on the destination ID

of packets for routing (N×N → C). For minimizing the number of dropped packets,

EBR uses an epoch marking system that guarantees that only packets potentially lead-

ing to a deadlock will be removed, and only during the reconfiguration process. The

previous contributions described in previous chapters can be applied in IBA without

any modification. However, EBR can not be directly applied to IBA since the imple-

mentation of the deadlock recovery mechanism requires some hardware modification

at switches, although this modification is small.

6.2. BASIC EBR DESCRIPTION 97

6.2 Basic EBR Description

We consider the use of two routing algorithms, that we refer to as Rold and Rnew.

Both are separately deadlock-free and are based on the destination IDs (N×N → C)

for routing. Routing information is distributed along the switches by using routing

tables. Also, we do not consider data virtual channels.

The mechanism is based on the fact that deadlock situations are rare. Indeed,

the probability of deadlock is proportional to the traffic injection rate and inversely

proportional to the availability of resources. Assuming that the network works on

a non-congested scenario, the probability of deadlock is minimum. Notice that in

small and medium traffic loads the contention levels within the network is low, thus,

packets roughly leave queues at the same rate they reach input ports. Therefore, on

average, there is at maximum only one packet at each queue at any time.

The EBR mechanism will allow cycles to be formed (see Figure 6.1). A deadlock

is potentially formed when a packet can not advance due to a cycle occurrence. Such

a cycle can be only formed when different switches route packets with different rout-

ing algorithms (Rold and Rnew) at the same time. For example, Figure 6.1 shows a

cycle formed in a reconfiguration process. It is formed since there is a cyclic depen-

dence among all the packets/queues. Notice that a packet routed with the new routing

function is waiting (in the cycle) behind a packet routed with the old routing function,

and in the same cycle a packet routed with the old routing function is waiting behind

a packet routed with the new routing function.

However, notice that if queues involved in the cycle have space for the packets

to advance, the network will not deadlock. Also, if we assume the use of virtual

cut-through switching the packet located at switch 1 (corresponds to a packet routed

with the old routing function) can also be forwarded even if it is using a forbidden

transition defined in Rnew. Indeed, once forwarded, the cycle disappears.

In the case queues are full, however, packets can not advance and, thus, a dead-

lock occurs. To solve this situation, the mechanism will discard some packets in

order to remove the deadlock. Notice that the EBR is proposed as a reconfiguration

mechanism for tolerating faults and reducing the traffic lost due to faults during the

process, and although EBR may drop some packets it reduces the total number of

lost packets in fault scenarios. Notice also that retransmission mechanisms are still

needed in networks with fault scenarios, thus dropped packets by EBR (if any) will

be retransmitted.

Packets to be discarded must be carefully selected in order to minimize the drop-

ping rate. Provided that virtual cut-through is used, it can easily be demonstrated that

in a cycle forming a deadlock configuration there is at least one packet at the head of

one input queue introducing a dependence not defined in the new routing function.

Figure 6.1 shows the case. Therefore, the mechanism must discard packets introduc-

ing dependences not defined in the new routing only when they are at the head of a

98

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

queue and can not advance (no credits are available). In any other case, the mech-

anism does not drop any packet (the mechanism potentially may drop packets only

during a reconfiguration process).

To accurately select the packets that need to be dropped, an epoch marking system

is used. With this system every switch discards only packets that could be causing a

deadlock.

with Rnew
for the packet
output port
possible

with Rnew
packet routed

with Rold
packet routed

switch 1

queue A

Rnew

link

restriction
routing

Rold

queue A

Rnew

switch 1

Figure 6.1: Cycle in a dynamic reconfiguration not introducing a deadlock.

For the sake of explanation, EBR is described as a fully deployed mechanism

following the entire reconfiguration process, from the occurrence of the topological

change (i.e., a fault) to the normal and final functioning of the network with the

new routing algorithm. Figure 6.2 summarizes all the steps followed in the EBR

reconfiguration process at the different network components. The following sections

describe each step.

6.3 Triggering the EBR Mechanism

EBR is applied whenever a new routing algorithm is required for the network. In

some situations the change in the topology does not necessarily lead to a change in

the routing algorithm. This is the case of adding/removing end nodes to/from the

system. As the routing algorithm is not changed there is no probability of deadlock,

thus not requiring a global reconfiguration process. On the other hand, it may happen

that a new switch or link is added, thus changing the topology. In that case, a change

of the routing algorithm could lead to achieve higher performance thus triggering a

reconfiguration process. Also, it may happen that the routing algorithm needs to be

changed even if no topological change occurs. For instance, in those cases in which

changing the routing algorithm leads to achieve higher performance.

6.4. ROUTING PATH COMPUTATION 99

and computation
Path

distribution
Path

Topological
change

detection

Scheduler Unit

if (credits_available) then

end

update epoch
forward the packet

elsif (epochs differ)

 drop the packet

Routing and Scheduling at switches

Stages at network level

Routing Unit

arrives

packet

of the switch

Annotate the Epoch

Stages at switch level

and epoch

routing
tables

tables
routing

Update

Route packet with current tables

New

New

scheduler
gets the
a queue
head of
at the
Packet

Figure 6.2: Stages of the EBR mechanism.

However, the most interesting topological change is when a switch or link fails

(or a group of them). In this case it is required to change the routing algorithm, as

some parts of the network may be disconnected and packets will be dropped through

the failed component. For the sake of explanation, we will describe the mechanism

only in the situation that a fail occurs.

In all these cases the EBR reconfiguration mechanism is triggered. To do so,

a selected end node runs an instance of the Network Manager (NM) in charge of

detecting any topological change. To do this, NM sends control packets periodically

to all the switches. Switches reply with the current status of their links and neighbor

components (switches and end nodes). With this provided information, NM builds

the current topology. If a change is detected, the EBR reconfiguration process is

triggered.

To send the new control information the Directed-Route mechanism provided in

IBA is used. How control packets are sent is implementation specific.

6.4 Routing Path Computation

Once the topological change has been detected new routing tables need to be com-

puted. Usually this stage is the dominant of the entire process (from fault occurrence

to normal operation). The computation time required depends on many factors like

the complexity of the routing algorithm, the processing capacity of the computer be-

ing used, and so on. During the computation phase it is reasonable to think that pack-

ets are continuously being injected and therefore some of them are dropped through

the failed component at a constant rate. Indeed, the number of dropped packets may

be proportional to the computation time.

100

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

Most of the proposed reconfiguration mechanisms have focused on the table up-

date process, thus they do not consider the computation phase. However, different

techniques may be applied to alleviate the negative effects of this phase. As previ-

ously proposed in this thesis, a solution is to provide several disjoint paths per each

source-destination pair. Therefore, once a topological change is detected, the end

nodes are notified (by the NM) and from that moment they use the alternate paths

that avoid the failed link. Therefore, during the long computation phase packets are

not dropped. However, notice that using alternate paths is an additional mechanism

not related with the reconfiguration process. We focus, thus, only in the reconfigura-

tion process (table updates).

6.5 Path Distribution

Once the paths are computed, they must be distributed. To do this, the NM sends all

the new routing tables to the switches in the network. In order to reduce the traffic

lost through the failed components, the new routing info is distributed to the switches

in an ordered way, starting at switches surrounding the failed components. Figure 6.3

shows two examples of the sequence used to update the switches.

02

2

4 3 2 3 4

2 1 2 33

3 2 1 3

2 3 434

1 1 2F

(a) Failure at Switch F

2

1

1

2

0

2

3 4

2 3

3

3 4

1 2

2

1

1

2

02

4 3

23

3 2

34

1 F

(b) Failure at Link F

Figure 6.3: Sequence of routing table updates. The numbers indicate the sequence

and the distance to the failed component.

Additionally, in order to reduce the overhead control traffic, the NM may send

only the differences between the old and the new routing tables to every switch. De-

pending on the similarity of the routing algorithms the percentage of control traffic

reduction may be significant. Indeed, we will see in the evaluation that this improve-

ment will affect the effectiveness of the mechanism.

Once a switch receives the new paths, it updates its routing table, removing the

old one. Therefore, from that moment packets will not be routed with the old routing

6.6. DEADLOCK RECOVERY PROCESS 101

function anymore. Notice that packets already routed and mapped into queues at the

switch will not be routed again.

Figure 6.4 shows an example of the updating process in a switch. Figure 6.4.a

shows the status of the switch before updating the routing table. Some packets have

been routed with the Rold routing algorithm (red packets) where as other packets have

not yet been routed (yellow packets). Figure 6.4.b shows the same switch once the

routing info has been updated. As can be noticed, previous packets routed with Rold

are not routed again. New packets being routed, however, use the new routing table,

thus they are routed with Rnew (green packets).

0

crossbar

Destination Linkout

Not routed.

Routed with R old

R old Table

Epoch bit

(a)

newR Table

crossbar

Destination Linkout

1
Epoch bit

Routed with R

Routed with R

old

new

(b)

Figure 6.4: Example of a switch status: (a) before and (b) after updating the routing

info.

6.6 Deadlock Recovery Process

As may be noticed, updating switches asynchronously may lead to introduce cycles

in the network. These cycles are made of old packets and new packets.

In order to keep track of packets that potentially may introduce cycles, EBR uses

a novel epoch marking system. An epoch consists of an ID (typically one bit) that

represents the routing algorithm used to route a packet (e.g., a zero for the old routing

function and a one for the new routing function). In this sense, every switch is labelled

with the epoch bit corresponding to the routing algorithm applied by its routing tables

(ESCHD). Figure 6.4 shows the epoch bit. Upon reception of a new routing table the

epoch bit of the switch is changed accordingly.

Packets are labeled also with the epoch bit (EPCK). Each end node has an epoch

bit, which is used for labeling each packet injected into the network. On every visited

102

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

switch, once successfully forwarded to the next switch, the epoch bit of the packet is

updated with the epoch of the routing algorithm used for forwarding the packet (the

epoch bit of the switch; ESCHD). This means that a packet’s epoch may be changed

several times as it crosses different switches with different epochs.

One of the problems EBR must face is that the process of routing and packet

forwarding are not usually performed at the same time, thus when routing a packet it

is unknown if the packet will have credits at the next switch or end node. To solve

this problem, EBR routes packets regardless of whether they later have credits or not.

Later, when the packet is being scheduled, EBR drops the packet only if there are no

credits available and the packet could lead to deadlock.

Whenever a new packet arrives to a switch the packet is routed and an internal

epoch is associated with the packet (ERTD). The internal epoch (ERTD) is set with

the same value of the epoch of the switch at that moment (at routing time). Once the

packet reaches the head of its queue and is scheduled, the EBR deadlock recovery

mechanism comes into action. Table 6.1 shows all the possible combinations that

may occur when scheduling a packet. Table shows the epoch of the packet (EPCK),

the epoch of the switch at the time the packet was routed (ERTD) and the epoch of the

switch at the current time the packet is being scheduled (ESCHD). The table shows

whether the deadlock recovery mechanism discards or not a packet when it can not be

forwarded (e.g., has not credits available). If, on the contrary, the packet has credits

it is simply forwarded.

Case EPCK ERTD ESCHD Discard packet

#1 0 0 0 No

#2 0 0 1 Yes

#3 0 1 0 Impossible case

#4 0 1 1 Yes

#5 1 0 0 No, transient

#6 1 0 1 Yes

#7 1 1 0 Impossible case

#8 1 1 1 No

Table 6.1: Actions performed by EBR (when no credits are available) based on the

packet (EPCK) and the switch (ERTD and ESCHD) epoch bits. (No overlapping is

supported).

The first combination EPCK = ERTD = ESCHD = 0 corresponds to an old

packet that was routed with the old routing function and is being scheduled. In that

situation the packet is not discarded. Simply it will be scheduled the next arbitration

cycle. Notice that this packet in a reconfiguration process could introduce a deadlock

along a cycle with packets routed with the new routing function. However, if this

is the case, the packet will finally be discarded as the switch will receive the new

6.6. DEADLOCK RECOVERY PROCESS 103

routing function and the epoch of the switch will change (ESCHD), thus migrating to

the second entry on Table 6.1. In that situation, the packet is discarded (if no credits

are available).

Entries #3 and #7 have no meaning since they represent the case when the switch

downgrades from a new routing function to an old routing function. In cases #4 and

#6 packets will be discarded (if no credits are available). In case #4 it may happen

that an old packet is using a forbidden transition in the new routing algorithm (it has

been routed with Rnew but could cross the switch through a transition between ports

forbidden by Rnew) and therefore it could introduce a deadlock.

In case #6 a special case arises: a new packet is routed with the old routing

function but when being scheduled the routing table has been updated (RSCHD = 1).

In that situation the packet must be discarded (if no credits are available). Figure

6.5.a shows four switches in the network during the reconfiguration process. Switch

D has its routing table and epoch label updated. Switch C routes packets with Rold,

although they have been routed with Rnew at the previous switch. Figure 6.5.b shows

the case once table at switch C has been updated. Packets mapped at switch C are

routed with Rold, although the switch has just updated its routing table to Rnew.

Notice, that the packet which was routed at the previous switch with Rnew, keeps

routed at this switch with Rold even if the switch has been updated (packets are not

rerouted after updating the routing tables). In this case, if no credits are available, the

packet will be discard at scheduling time.

Routed with Rold

Epoch
bit

Epoch
bit

Epoch
bit

Epoch
bit

Packet routed previously with Rnew

and now is routed with R old

Switch B

Routed with Rnew

Switch A

Switch C Switch D

R

 r
es

tri
ct

io
n

ol
d0

0 0

1

(a)

Routed with Rold

Epoch
bit

Epoch
bit

Epoch
bit

Epoch
bit

Switch B

Routed with Rnew

Switch A

Switch C Switch D
ol

d
R

 r
es

tri
ct

io
n

new
keeps routed with R old
in a switch with R table new

Packet routed previously with R

11

0 0

(b)

Figure 6.5: Example of routing and scheduling during the reconfiguration process at

switch C (a) before being updated (old and (b) after being updated (new).

104

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

Case #5 is a transient state that will evolve to case #6, thus there is no need to

drop any packet in that situation. This is because we assume that control packets will

be reinjected and safely source routed with the new routing info. Finally the last case

(#8) corresponds to a new packet being routed with the new routing function. Thus,

the packet is not dropped.

Notice that only packets routed and scheduled with different epochs can be dis-

carded (provided no credits are available), thus only during a reconfiguration process

packets may be discarded leading to remove the deadlock.

The routing unit at switches is not modified. Simply, when the new paths (rout-

ing tables) are available to the switch they are used for the incoming packets. Once a

packet is routed, the obtained output port and the current epoch of the switch (ERTD)

are attached to the packet until the packet reaches the head of its queue, thus contend-

ing for the requested output port.

However, the scheduler needs to behave differently. In particular, the packet will

be arbitrated and on success (credits are available) the packet will be forwarded, even

if the packet is using a forbidden transition defined in the new routing algorithm. On

the contrary, if there are no credits for the packet at the requested output port, then

the switch potentially may drop the packet. To do this, the epoch of the packet is

compared with the current epoch of the switch and the epoch of the switch when the

packet was routed (ERTD). In some cases the packet is simply discarded (as depicted

in Table 6.1). If not, the packet will be arbitrated the next arbitration cycle. A simple

circuit implementing all the possible cases is shown in Figure 6.6.a.

ROUTED

DISCARD

E

E PCKT

E SCHED

(a)

CMP
A

B
A<B

CMP
A

B
A<B

E

E

E

E

SCHED

SCHED

PCKT

ROUTED

DISCARD

(b)

Figure 6.6: Logic implementing the EBR deadlock recovery mechanism, (a) simple

circuit, (b) extended version.

6.7 Overlapping Multiple Reconfiguration Processes

The mechanism can be easily extended to support different overlapping reconfigu-

ration processes. Simply the epoch field at packets, switches, and end nodes, must

be extended. With two bits up to four reconfiguration processes can be overlapped.

In this situation, EBR allows the overlapping of different reconfiguration processes.

6.7. OVERLAPPING MULTIPLE RECONFIGURATION PROCESSES 105

That is, a new reconfiguration process may start before the previous once is still un-

derway. Even an intermediate reconfiguration process can be aborted with no harm

of deadlocks or inconsistencies.

When overlapping multiple reconfiguration processes with an extended epoch

field new scenarios are possible. Therefore, Table 6.1 must be extended to consider

the new possible cases. Similarly to the non overlapping case, a packet is dropped

only if the packet at the header of the queue (being scheduled) has no credits, and the

epoch of the packet (EPCK) or the epoch used when it was routed is lower than the

current epoch of the switch (ESCHD). Figure 6.6.b shows a possible implementation

with two comparators and an OR gate. Table 6.2 shows all the possible situations

when using up to 3 different routing algorithms (epochs 0, 1, and 2). The actions

described in the table are performed only if the packet being scheduled has no credits

available.

Case EPCK ERTD ESCHD Discard packet

#1 0 0 0 No

#2 0 0 1 Yes

#3 0 0 2 Yes

#4 0 1 0 Impossible case

#5 0 1 1 Yes

#6 0 1 2 Yes

#7 0 2 0 Impossible case

#8 0 2 1 Impossible case

#9 0 2 2 Yes

#10 1 0 0 No, transient

#11 1 0 1 Yes

#12 1 0 2 Yes

#13 1 1 0 Impossible case

#14 1 1 1 No

#15 1 1 2 Yes

#16 1 2 0 Impossible case

#17 1 2 1 Impossible case

#18 1 2 2 Yes

#19 2 0 0 No, transient

#20 2 0 1 No, transient

#21 2 0 2 Yes

#22 2 1 0 Impossible case

#23 2 1 1 No, transient

#24 2 1 2 Yes

#25 2 2 0 Impossible case

#26 2 2 1 Impossible case

#27 2 2 2 No

Table 6.2: Actions performed by EBR (when no credits are available) based on the

packet (EPCK) and the switch (ERTD and ESCHD) epoch bits. Overlapping is sup-

ported.

106

CHAPTER 6. FAULT-TOLERANCE METHODOLOGY BASED ON

RECONFIGURATION

Notice that cases #19 and #20 are transients situations as it is expected that the

new outing table (epoch 2) reaches the switch. Thus, both cases evolve to case #21,

eve if reconfiguration associated to epoch 1 is aborted (case #20 does not happen).

Chapter 7

Evaluation Model

In this chapter we provide all the details of the evaluation model we have chosen.

In particular, we describe the network simulation model, the traffic patterns, and the

topologies used for evaluating the proposed mechanisms.

First, we introduce the concept of modeling a system with simulation tools. Later,

we describe the simulator and the parameters used in this thesis. Once the simulation

tool is presented, we describe the scenarios modeled. Finally, at the end of the chapter

we describe how results are collected and the main performance metrics used.

7.1 Introduction to Simulation Modeling

The performance of a system can be evaluated in different ways [91]:

• Evaluating a real system: With this method the measures are obtained from

a real system. Thus, it requires the real system to be available, which in most

cases is expensive or even not feasible.

• Evaluating a simulated system: This is the most popular way for many re-

searchers. With a simulation tool it is possible to accurately evaluate any sys-

tem. However, the main problem of this method is that the required time is

larger than in real systems.

• Evaluating with analytical models: This way becomes the cheapest method.

It can provide results in a short period of time, although the evaluated model

must be simplified. Therefore, this way provides the less accurate results. In

this dissertation we don’t use it since we are interested in a high detail model.

The evaluation of the contributions of this thesis is done with an ad-hoc simula-

tor. The main reason for this choice is because we evaluate different methodologies

107

108 CHAPTER 7. EVALUATION MODEL

applied to different scenarios. A proper simulation tool allows many configurations

to be evaluated. Also, given the current available processing power in the research

group, many evaluations can be searched in parallel thus speeding up the research.

7.1.1 Simulation Tool

As a starting point we have used one of the in-house simulators developed by the re-

search group. In particular, the simulator models an IBA network at clock cycle level,

following most of the specifications of IBA [89]. In order to evaluate the different

proposals, we have upgraded the simulator with new functionalities.

We define the state of a system as the collection of all the variables necessary to

describe the system at a particular time, relative to the parameters and objectives of a

study. Depending on the state variables, systems to be simulated can be categorized

into two types: discrete and continuous.

The simulator models the network as a discrete system, because the network state

variables change only at a countable number of points in time. The system is defined

as a finite number of components, like end nodes, switches, links, and buffers. For

example, a switch is a discrete system since its state variables, e.g., the free buffers

in their queues change only when a flit is received or when a flit is sent. Instead,

in a continuous system the state variables change continuously with respect to time.

Examples of variables in a continuous system are temperature, position or speed.

Discrete event-driven simulation concerns the modeling of a system as it evolves

over time by a representation in which the state variables change only at a countable

number of points along the time. These points are the ones at which an event occurs,

where an event is defined as an instantaneous occurrence which may change the state

of the system. Although a discrete-event simulation could conceptually be done by

hand, the amount of data that must be stored and manipulated for most real-world

systems dictates those discrete-event simulations to be done on a computer.

Although simulation has been applied to a great diversity of systems, all of them

share a number of common components and there is a common logical organization

for these components. In particular, the following components will be found in most

discrete event-driven simulation models:

• System state: Represents the collection of state variables necessary to describe

the system at a particular time.

• Initialization routine: Initialize the simulation model and the initial events at

time zero.

• Simulation clock: It provides the current value of simulated time.

• Event list: It contains the events pending for processing.

7.1. INTRODUCTION TO SIMULATION MODELING 109

• Statistics: Stores statistical information about system performance.

• Event routine: Updates the system state when a particular type of event occurs

(typically there is one event routine for each event type).

• Timing routine: Determines the next event from the event list and advances the

simulation clock to the time when that event should happen.

• Main program: Calls the timing routine to determine the next event and trans-

fers control to the corresponding routine to run the current event and update

the system state appropriately.

• Report generator: Computes estimates (from the statistical counters) of the

desired measures of performance and prints a report when the simulation ends.

Figure 7.1 shows the basic structure of a discrete event-driven simulation model.

The simulation begins with the initialization routine, where the simulation clock is

set to zero, the system sate and the statistical counters are reset, and the event list is

initialized. Then, the timing routine is called to determine the next event to process.

As an example, we consider the next one is event i. The simulation clock advances

to the time that event i will occur. Then, the event routine i is called, where typically

three types of activities occur: (1) updating the system state to account for the fact that

an event of type i has occurred, (2) gathering information about system performance

by updating the statistical counters, and (3) computing the future events due to this

event (this information is added to the event list). After processing the event, the

simulator checks if the simulation process has finished (reaching a time stamp or

a certain number of processed messages. If so, the statistics are dumped and the

process finishes.

7.1.2 Advantages and Disadvantages

Using simulation tools may exhibit benefits but also inconveniences. A list of benefits

follows:

• Most complex, real-world systems with stochastic elements cannot be accu-

rately described by a mathematical model which could be evaluated analyti-

cally. Thus, simulation is often the only way of investigation possible.

• Simulation allows to estimate the performance of an existing system under

same projected set of operating conditions.

• Alternative proposed system designs (or alternative operating policies for a

single system) can be compared via simulation to see which one better meets a

specified requirement.

110 CHAPTER 7. EVALUATION MODEL

Update statistical counters

NO
Is simulation over?

YES

Set simulation clock =0

Update system state.

.

Compute estimates of interest.

Print report.

Initialize event list.
Initialize system state and statistical counters.

TIMING ROUTINE

Advance the simulation clock.

MAIN PROGRAM

ROUTINE
INITIALIZATION

GENERATOR
REPORT

Determine the next event type, say,

i

i

Generate future events and add them to the event list.

EVENT ROUTINE

Figure 7.1: Structure of the Discrete-Event Simulation Model.

• In a simulation we can maintain much better control over experimental condi-

tions than would generally not be possible when experimenting with the real

system.

• Simulation allows to study in a short time the system running for a long time

(e.g., an economic system), or alternatively a detailed study a system running

in a short period of time.

The main drawback is the large required time to develop the simulation model,

which must be a "valid" representation of the system under study for providing con-

fidence simulation results.

7.2 Network Model

In this section we describe different aspects of the networks evaluated, as topologies,

end-to-end flow control, traffic patterns and simulation parameters.

7.2.1 Topologies

Often, clusters and networks of workstations are arranged on regular network topolo-

gies when the performance is the primary concern. Low dimensional tori (2D and

3D) are one of the most widely used topologies in commercial parallel computers.

Furthermore, recent proposals, such as Alpha 21364 [119] and BlueGene/L [44], use

7.2. NETWORK MODEL 111

2D and 3D tori, respectively. For this reason we have performed the evaluation of

the proposed methodologies on tori networks. Notice that TFTR, RFTR and EBR

proposals can be applied to any topology, even irregular topologies. However, the

SPFTR and A-SPFTR are only suitable for tori.

7.2.2 End to End Flow Control

When considering faults in the network, some packets can be lost and some process-

ing nodes might be blocked waiting for them, possibly blocking an application until

the packet is received. Thus, an end-to-end flow control protocol is required (even if

using a lossless network).

The flow control we have modelled consists of each end node keeps a copy of

each packet it sends. Each destination notifies the received packets by sending an

acknowledgment to the corresponding source end node. Thus, when the source re-

ceives the ACK, it discards the corresponding copy of the packet. A timer is used at

the source end node to detect failed transmissions, thus triggering a retransmission of

the packet. If the source end node does not receive the ACK of a packet before the

timer expires, it re-sends the packet again.

Notice that it is possible that a packet correctly received be retransmitted because

the ACK packet is lost or it arrives late at the source end node. In those cases the

destination receives multiple copies of the same packet. All the redundant copies

will be discarded, by using sequence numbers per flow (all these copies must be also

notified to the source end node for stopping new retransmissions).

Finally, we also consider that many applications require that packets and mes-

sages are delivered in order. Thus, we modelled into the simulator a reorder buffer

as a solution for such cases when packets are delivered out of order (due to packets

being lost and retransmissions).

7.2.3 Traffic Patterns

We consider different traffic patterns when evaluating the network behaviour: syn-

thetic patterns and traces.

Synthetic patterns are widely used because they allow to evaluate the network

in the most generic way. When we use them, every end node has the same traffic

injection rate. We evaluate the complete range of traffic injection rate, from low

levels up to saturation point. The different synthetic traffic patterns used are: uniform,

bitreversal, and hotspot. Each one has a different distribution of packet’s destination.

Next we describe each of them:

• For uniform traffic, each source end node sends packets to all the destinations

with the same probability.

112 CHAPTER 7. EVALUATION MODEL

• For bitreversal, each source end node sends traffic only to one end node. The

end node is computed by reversing all the bits of the source ID. Some numerical

algorithms exhibit this type of distribution of destinations [42, 95].

• For hotspot, 10% of the sources (selected randomly) inject traffic to the same

destination (selected randomly), the rest of end nodes inject traffic to random

destinations. This traffic pattern allows to model the situation when one or

more end nodes are frequently accessed by the remaining end nodes (a disk

server, for instance).

On the other hand, traces are based on capturing the traffic when running real

applications. Traces contain the source, destination, injection time, and the size of

each packet sent. They allow to obtain results in more realistic scenarios and let

compare with the results obtained when using synthetic patterns. In this thesis, some

results obtained with this type of traffic pattern are shown.

The traces used were extracted under the execution of the FFT [145] and MP3D

applications from SPLASH-2 [35] suite in a shared-memory multiprocessors. This

type of applications are widely used when simulating multiprocessor systems, on

engineering and scientific computations, and graphics processing:

• The FFT application processes a set of n × n real numbers. Data is organ-

ised into
√

n/p ×
√

n/p matrixes to be distributed between p processors. The

computation process requires three stages, all of them requiring all-to-all com-

munication.

• MP3D: This application paralelizes the computation tasks by dividing the sim-

ulated system into different cells. For instance, this application is used on

evaluating air flow dynamics in aeronautics.

7.2.4 Simulation Parameters

Next, we describe the main simulator parameters used in all the evaluations. Param-

eter values have been fixed following the IBA specs [89].

In IBA, packets are routed at each switch by accessing the forwarding table. This

table contains the output port to be used at the switch for each possible destination.

The routing time at each switch is set to 100 ns. This time includes the time to access

the forwarding tables, the crossbar arbiter time, and the time to set up the crossbar

connections.

We model a non-multiplexed crossbar on each switch. This crossbar supplies

separate ports for each VL. IBA switches may support up to 16 Virtual Lanes (VLs).

Buffers are used both at the input and the output side of the crossbar. Buffer size is

fixed in both cases to 1 KB.

7.3. MODELLING AND ANALYZING FAULTS 113

Links in InfiniBand are serial. In the simulator, the link injection rate is fixed to

the 1X configuration [89]. 1X cables have a link speed of 2.5 Gbps. Therefore, a

bit can be injected every 0.4 ns. With 8/10 coding [89] a new byte can be injected

into the link every 4 ns. We also model the fly time (time required by a bit to reach

the opposite link side). We model 20 m copper cables with a propagation delay of 5

ns/m. Therefore, the fly time is set to 100 ns.

The IBA specification defines a credit-based flow control scheme for each virtual

lane with independent buffer resources. A packet is transmitted over the link if there

is enough buffer space (credits of 64 bytes) to store the entire packet. IBA defines

different packet sizes. In particular, MTU (Maximum Transfer Unit) is defined be-

tween 256 and 4096 bytes. Additionally, the virtual cut-through switching technique

is used.

Packet size (both data and control packets) is fixed to 58 bytes, 32 bytes of pay-

load and 26 bytes for the header. Flow control packets are 6 bytes long. Also, when

evaluating the different reconfiguration schemes control packets are also considered.

In particular, tokens carrying routing information are sized accordingly.

The values of the parameters for the end-to-end flow control have been opti-

mized to achieve a good trade-off among a reduced retransmission time, the required

memory resources for the pending packets at source and destination, and a reduced

network overhead.

7.3 Modelling and Analyzing Faults

We consider link failures between switches1. Notice that to cope with failed links

connecting switches to end nodes, it would be necessary to use either CAs with sev-

eral ports or more than one CA per end node. Indeed, the failure of a link connecting

an end node to a switch does not change the topology.

The fault tolerance degree of a mechanism is obtained by analyzing, for a cer-

tain number of faults, whether all the fault combinations keep the network logically

connected. The method is n-fault tolerant if it provides for any combination of n fail-

ures a valid path for each source-destination pair. To this end, we should analyze all

the possible fault combinations for every number of faults considered. However, as

the number of faults increases, the number of possible fault combinations increases

exponentially. Thus, from a particular number of faults upwards, it is impossible

to explore all the fault combinations in a reasonable amount of time, specially in

medium- and large-sized networks. To overcome this problem, we evaluate all the

combinations on small network sizes2, as performed in [86]. When the number of

1Note that a switch failure can be viewed as if all its links had failed.
2Notice that if a certain number of faults is tolerated by a small network, we can reasonably admit

that it is also tolerated in larger networks.

114 CHAPTER 7. EVALUATION MODEL

fault combinations to be analyzed is too large from a computational point of view, we

perform a statistical analysis (as followed in [86]), in which a representative subset

of the total number of fault combinations is analyzed.

In Section 3.4.1 the mechanism to detect failures in InfiniBand is described. We

have implemented the detection mechanism into the simulator. In particular, the SM

sweeps the network periodically. The frequency of these sweeps is not defined by the

IBA standard, thus it can be adjusted accordingly to parameters like the size of the

network or the desired detection time for changes. We consider the sweep time fixed

to 200,000 cycles (0.07ms).

Depending on the sweep time, the traffic lost due to the link failure will vary.

With small sweep times the lost traffic will be low. However, more control packets

(sweep packets) will be needed. The simulation considers also the required control

traffic. As described in section 5.4, a special routing mechanism (Directed-Route) is

used for sending the control packets.

We also modeled how the new routing info is distributed with control packets,

and the confirmation of its reception since the control packets can also be discarded.

In order to carry out the performance evaluation under the occurrence of faults,

we evaluate the network before any link failure happens, then we inject the failure

and keep the simulation process until all the transitory effects of the applied fault-

tolerant method disappear. To do this, we monitorize the network throughput and

average packet latency.

7.4 Compared Reconfiguration Mechanisms

In the next chapter, the EVER reconfiguration mechanism will be evaluated and com-

pared with recently proposed mechanisms.

In this section, we detail how the reconfiguration mechanisms, have been mod-

eled in the simulator. In particular, we have implemented SR, DS and a static recon-

figuration mechanism.

In all cases there exists a subnet manager (SM) located on an arbitrary end node

(the same for all cases) that monitorizes the network for changes. This is achieved

by sending periodically control packets to all the switches through the control virtual

channel (VL15 in IBA).

For comparison purposes, two data virtual channels are modelled (VL0 and VL1)

along with one control virtual channel for all the reconfiguration mechanisms, as DS

requires at least two virtual channels. Notifications and routing table updates are sent

through the control virtual channel in the same way as it is specified in InfiniBand

(VL15). In particular, in all the reconfiguration mechanisms, once a topology change

is detected, SM sends the new routing tables along with a control packet through the

control virtual channel.

7.4. COMPARED RECONFIGURATION MECHANISMS 115

In DS, once a topology change is detected, SM computes the new routing tables

and, afterwards, it distributes them to all end nodes and switches. At the same time,

SM sends a “virtual channel drain” control packet to every switch and end node.

Upon reception of the control packet the switch drains one of the two data virtual

channels (i.e., VL1). Packets mapped in the data virtual channel are moved to the

other data virtual channel (VL0) at each switch. Drainage thus occurs in parallel

across all the network switches. Once VL1 is empty3 and the new routing table is

already updated4, the SM is notified. SM then signals the end nodes and switches

(via broadcasting a control packet) to start using both data virtual channels with the

new routing function. The drained virtual channel (VL1) is used as the escape path

for any packet in the other data virtual channel (VL0). Reconfiguration completes

once all end nodes and switches are able to use both data virtual channels again.

In the case of SR two versions are considered. The first one, referred to as SR-

PDA (SR Packet Dropping Aware), issues the tokens that separate the old and new

traffic at the same time tables are sent to switches. Thus, tables are sent in paral-

lel with a “reconfiguration” control packet that is broadcasted by the SM to all end

nodes and switches, signaling nodes to generate reconfiguration tokens. This mech-

anism tends to reduce the number of dropped packets as it minimizes the time that

Rold is in use, thus minimizing the number of packets that could be dropped due to

routing across failed links/switches (at the expense of possibly longer average packet

latencies). The second one, referred to as SR-LA (SR Latency Aware), first dis-

tributes the new routing tables and then sends the tokens to separate the traffic. SM

first distributes and stores the new routing tables into a secondary location in the end

nodes and switches before it broadcasts a “reconfiguration” control packet. It po-

tentially reduces average packet latency at the expense of possibly exhibiting longer

reconfiguration times.

In static reconfiguration (ST), once the topology change is detected, SM broad-

casts a “network drain” control packet to all end nodes, instructing them to halt packet

injection. At the same time, SM starts computing the new routing tables. Once the

tables are computed and distributed to all end nodes and switches, and after the net-

work is completely drained of all data packets, the SM broadcasts a control packet

instructing the end nodes to resume packet injection. Reconfiguration completes once

all nodes are allowed to inject packets again.

Figure 7.2.a compares the actions taken by each reconfiguration scheme. As can

be observed in Figure 7.2.a, all the methods have in common the computation and

distribution of routing tables. While computing the new routing tables one data vir-

tual channel (DS) or the entire network (ST) is drained. Another detail is that in

3A distributed protocol is used for detecting that the data virtual channel is empty on every

switch [124]. Each switch sends a notification to the SM once the data virtual channel is empty and

there are no data packets injected through the output links sent by the switch.
4It requires each switch to store two different routing tables at the same time.

116 CHAPTER 7. EVALUATION MODEL

SR-PDA routing table distribution and tokens distribution occur in parallel, whereas

in SR-LA it occurs sequentially. In DS and SR, SM issues control packets in order to

inform switches that new routing tables are ready to be used. Finally, ACK packets

are issued by switches to the SM in DS and SR (not in EBR) in order to acknowl-

edge that reconfiguration has finished. In EBR the only task requested is the routing

table distribution. Figure 7.2.b shows the different events for each of the simulated

reconfiguration schemes.

NEW ROUTING TABLES

DISTRIBUTION TOKENS

NEW ROUTING TABLES

DISTRIBUTION CONTROL

COMPUTE NEW ROUTING TABLES
CONTROL

DRAIN NETWORK

COMPUTE NEW ROUTING TABLES

COMPUTE NEW ROUTING TABLES

NEW ROUTING TABLES

DISTRIBUTION

PACKETS

ACK’s

ACK’s

PACKETS

DS DS

DISTRIBUTION TOKENS

PACKETS
CONTROL

DRAIN VL1

NEW ROUTING TABLES

NEW ROUTING TABLES

DISTRIBUTION

NEW ROUTING TABLES

DISTRIBUTION

ACK’s

ACK’sDRAIN VL1DF.I.

F.I.

F.I.

D

D DRAIN NETWORKD

D

DF.I.

F.I.

F.I.

CONTROL
PACKETS

(a) (b)

ST

NEW ROUTING TABLES

DISTRIBUTION
COMPUTE NEW ROUTING TABLES

NEW ROUTING TABLES

DISTRIBUTION

F.I. D DF.I.

EBR

NEW ROUTING TABLES

DISTRIBUTION

TOKENS

COMPUTE NEW ROUTING TABLES

TOKENS

NEW ROUTING TABLES

DISTRIBUTION

F.I. D DF.I.

EBR

ST

SR−PDA

SR−LA

SR−PDA

SR−LA

F.I.: Fault injection

D: Fault detection

Figure 7.2: Reconfiguration schemes evaluated and events that distinguish them.

7.5 Collecting Results

For each simulation run (with synthetic traffic patterns), we assume that the packet

generation rate is constant and the same for all the end nodes. In the simulations

we have considered the delivery of the first 80,000 packets to be a transient state.

Then, we inject the failure 0.02 secs (50,000,000 cycles) after the transient state. The

simulation time varies depending on network load. For example, the reconfiguration

process takes much more time when the network is congested. Therefore, we keep

the simulation running until the process has finished and the network has reached a

steady state after the failure.

Figure 7.3.a shows the performance achieved (accepted traffic is overage packet

latency) for a 10 × 10 torus network with uniform traffic pattern. The second and

third row of figures show the throughput evolution for the highest traffic injection

rate before saturation (the simulated point just before the system is entering satura-

tion corresponds to point 7 in Figure 7.3.a). The second row shows the throughput

7.5. COLLECTING RESULTS 117

evolution as a in function of simulation time. Whereas, the third row shows the evo-

lution as a function of the number of delivered packets.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 0.002 0.004 0.006 0.008

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
cy

cl
es

)

Traffic (flits/cycle/switch)

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.01 0.02 0.03 0.04 0.05

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Simulation Time(ms)

With Reset
Without Reset

(b.1)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.05 0.1 0.15 0.2 0.25 0.3

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Simulation Time(ms)

With Reset
Without Reset

(b.2)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 0.5 1 1.5 2 2.5

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Simulation Time(ms)

With Reset
Without Reset

(b.3)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Delivered packets

With Reset
Without Reset

(c.1)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 2000 4000 6000 8000 10000

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Delivered packets

With Reset
Without Reset

(c.2)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 20000 40000 60000

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Delivered packets

With Reset
Without Reset

(c.3)

Figure 7.3: Determining transient state duration in the simulations.

In each figure we plot the throughput for each interval of 10 received packets, con-

sidering both reset statistics for each interval (green series) and no reset statistics
(blue series). When reset statistic is activated, the throughput is measured as a func-

tion only of the 10 messages received for each given point (notice that there is high

variability as the time period is very small, just 10 messages), whereas when reset
is deactivated, the throughput is measured as a function of all the messages received

until a given point. Each column of figures represents a different zoom degree, being

the one with greater zoom the first one.

As can be noticed in Figure 7.3.c.2, the average network throughput (blue series)

is well stable for 2,000 packets. Therefore, it seems quite reasonable that 80,000

packets is by far sufficient for the transient state (see Figures 7.3.b.3 and 7.3.c.3),

118 CHAPTER 7. EVALUATION MODEL

since results throughput curve is almost flat after a few thousands of packets are de-

livered. This way of selection the transient state period is advocated also in [67].

Notice that the x-axis in figures 7.3.c.1, 7.3.c.2, and 7.3.c.3 shows the absolute num-

bers of the total delivered packets from the start time, whereas y-axis shows relative

numbers to an instant of time.

7.5.1 Performance Metrics

In all the evaluations, we represent the average latency, measured in nanoseconds,

versus the accepted average traffic, measured in bytes/ns/switch. The latency corre-

sponds to the elapsed time from the packet injection until the last byte of the packet

arrives to its destination. The accepted traffic is the accepted amount of information

in the network by time unit. Also, we represent the evolution of the average latency

of the packets and the average latency from the generation time. The latency from the

generation time is the elapsed time from the generation of the packet in the source

node until it is delivered to the destination node.

Traditionally, the latency provided by the network has been plotted as the latency

of packets at delivery time. Figure 7.4.a shows the traditional plot. At point x the

plot indicates that the packets that arrived at time x exhibited an average latency of

y cycles. In this document, however, the latency is plotted also at generation time.

That is, latency of packets is accumulated at their generation time. For instance, in

the new plot (Figure 7.4.b), packets generated at time x exhibited an average latency

of y. By doing this, the impact of the reconfiguration on packets is better appreciated.

Delivery

A
v
er

ag
e

p
ac

k
et

 l
at

en
cy

x

y

(a)

Generation

A
v
er

ag
e

p
ac

k
et

 l
at

en
cy

x

y

(b)

Figure 7.4: Plotting latency at (a) reception time or at (b) injection time.

Packet latency is broken down in the following components: queue latency, net-

work latency, and token latency. Queue latency is the time the packets spend at the

source end node waiting to be injected. The network latency is the time the packets

spend within the network. Finally, token latency is the time packets are blocked at the

head of a queue waiting for a token (only when SR is applied). Results for average

latencies are presented.

7.5. COLLECTING RESULTS 119

Some results, presented in this thesis, require an confidence interval in order to

quantitatively evaluate how representative they are. In such cases, the confidence

interval we provide corresponds to a range that contains the true mean in terms of a

confidence coefficient of 95% (it is the most commonly used).

This page intentionally left blank

Chapter 8

Evaluation

In this Chapter we evaluate all the contributions made in this thesis. As the main

metrics, we are interested in the fault tolerance degree achieved by each mechanism.

Moreover, we want to analyze the resources required by each contribution to achieve

a certain fault tolerance degree. Therefore, as the main metric we analyze the trade-

off between fault tolerance and resources needed. We also, however, analyze other

metrics like network throughput, latency, and path quality. Evaluation is performed

assuming the network parameters defined by IBA specs (described in the previous

chapter).

This chapter is organized as follows. In Section 8.1 we evaluate the TFTR

methodology. In Section 8.2 we evaluate the SPFTR and the A-SPFTR methods.

In Section 8.3 the RFTR mechanism is evaluated. Finally, in Section 8.4 we evaluate

the EBR mechanism.

8.1 TFTR Methodology

The TFTR methodology computes disjoint paths to tolerate multiple faults without

disconnecting any pair of end nodes. However, the number of disjoint paths that can

be obtained depends on the minimum degree of any switch in the network. As is a

maximum of 4 disjoint paths in a 2D torus (6 in a 3D torus), 3 faults can be tolerated

at most in 2D tori (5 in a 3D tori). Therefore, the main goal of the evaluation is to

know the number of resources required to achieve such a fault tolerance degree.

In particular, different number of SLs is granted in order to evaluate the fault

tolerance degree achieved by the methodology. Regarding virtual channels, TFTR

obtains the complete set of disjoint paths in the evaluated 2D and 3D tori using only

two virtual channels. However, we have also evaluated TFTR when using four virtual

channels in 2D tori. Also, for comparison purposes, we analyze the fault tolerance

achieved by the up∗/down∗ routing algorithm.

121

122 CHAPTER 8. EVALUATION

Different scenarios are evaluated in order to obtain different conclusions from the

TFTR mechanism. Table 8.1 summarizes the different scenarios considered, showing

for each one the routing algorithms, topologies, resources, traffic patterns, injection

rates, and failure combinations evaluated.

Routing
Max Max Traffic Injection

algorithm or
VLs SLs

Faults Topologies
pattern rate

mechanism

UD 1 1 0 . . . 4 4 × 4 . . . 10 × 10 torus not required

TFTR 2 unbounded 0 . . . 4 4 × 4 . . . 10 × 10 torus not required

TFTR 4 unbounded 0 . . . 4 4 × 4 . . . 7 × 7 torus not required

TFTR 2 2,3,4 0 4 × 4 . . . 8 × 8 torus not required

TFTR 2 unbounded 0 . . . 4 4 × 4 . . . 8 × 8 torus uniform Full range*

TFTR 2 unbounded 0 . . . 6 4 × 4 × 4 torus not required

* means from low up to high injection rate when the network reaches the saturation point.

Table 8.1: Evaluated scenarios for TFTR.

8.1.1 Number of Paths

Table 8.2 shows the number of alternative disjoint paths obtained by the up∗/down∗

and TFTR routing algorithms. One virtual channel is used for up∗/down∗ and two

virtual channels for TFTR1. The table shows the percentage of source-destination

pairs for which one, two, three or four disjoint paths could be computed. Results for

any combination of routing algorithm and topology are shown.

As we can observe, TFTR obtains the maximum number of disjoint paths for all

the pairs of end nodes, i.e., four disjoint paths for all the evaluated 2D tori and six

paths for the evaluated 3D tori. So, TFTR tolerates up to 3 and 5 failures in 2D and

3D tori, respectively, using only two virtual channels. On the other hand, up∗/down∗

is not able to find a sufficient number of disjoint paths for every source-destination

pair. Indeed, for all network sizes there is a significant number of source-destination

pairs with a unique up∗/down∗ path. So, up∗/down∗ is not able to tolerate even 1-link

failure.

8.1.2 Singular Cases

Figure 8.1 shows the percentage of singular cases2 when using up∗/down∗ and TFTR

for different number of faults (in 2D tori). All fault combinations have been exam-

ined except for 5 and 6 faults, where a random set of fault combinations has been

analyzed. In situations where the number of combinations become too large, only

1Notice that an additional virtual channel with up∗/down∗ does not allow new paths to be used.
2Definition of singular case appears on page 40.

8.1. TFTR METHODOLOGY 123

Torus SLs

Percentage of end node pairs

with n disjoint paths

n=1 n=2 n=3 n=4

TFTR (2 VLs)

4 × 4, 5 × 5 3 0.00% 0.00% 0.00% 100.00%

6 × 6, 7 × 7 4 0.00% 0.00% 0.00% 100.00%

8 × 8 5 0.00% 0.00% 0.00% 100.00%

9 × 9 6 0.00% 0.00% 0.00% 100.00%

10 × 10 7 0.00% 0.00% 0.00% 100.00%

up∗/down∗ (1 VL)

4 × 4 1 19.17% 30.00% 33.33% 17.50%

5 × 5 1 22.00% 38.00% 30.00% 10.00%

6 × 6 1 25.87% 42.54% 25.08% 6.51%

7 × 7 1 26.53% 47.11% 21.77% 4.59%

8 × 8 1 28.13% 49.80% 18.65% 3.42%

9 × 9 1 28.09% 52.78% 16.48% 2.65%

10 × 10 1 28.83% 54.55% 14.51% 2.12%

Torus SLs n=1 n=2 n=5 n=6

TFTR (2 VLs)

4 × 4 × 4 3 0.00% 0.00% 0.00% 100.00%

Table 8.2: Percentage of end node pairs with n disjoint paths, when using an un-

bounded number of SLs.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

P
er

ce
n

ta
g

e
o

f
si

n
g

u
la

r
ca

se
s

Number of link failures

4x4, TFTR
4x4, UD

5x5, TFTR
5x5, UD

6x6, TFTR
6x6, UD

7x7, TFTR
7x7, UD

8x8, TFTR
8x8, UD

Figure 8.1: Percentage of singular cases in 2D tori that could not be handled by the

methods.

100,000 randomly generated cases are evaluated. Confidence intervals are used for

those cases.

124 CHAPTER 8. EVALUATION

We can observe that TFTR does not present any singular case for one, two, and

three fault cases, as it is able to obtain four disjoint paths. Therefore, the methodology

is 3-fault tolerant with 2 VLs for 2D tori. However, for more than 3 faults, the

proposed methodology is not able to tolerate all combinations. For example, up to

30% of 4-faults combinations are not tolerated in a 4 × 4 torus. This percentage

decreases slightly as network size increases, and increases as the number of faults

in the network increases. For six faults, almost none of the failure combinations is

tolerated by the methodology when it is applied to 2D tori. However, it is to notice

that the up∗/down∗ routing algorithm has a pretty worse behavior. Nearly, all fault

combinations, even for the one fault case, are not tolerated by this algorithm. Notice

that, when a singular case arises, the only solution is to launch a (local or global)

network reconfiguration process to compute new routing tables.

8.1.3 Resources Required

Once confirmed that two virtual channels are enough to tolerate three faults for 2D

tori and five faults for 3D tori, we analyze the number of service levels that are re-

quired in order to correctly use these virtual channels in InfiniBand. Table 8.2 shows

also the number of required service levels (in an unbounded scenario). The need of

SLs increases as network size increases. In particular, 3 SLs are required for a 4 × 4
torus network and 7 SLs for a 10 × 10 torus network. As paths get longer, the prob-

ability of mapping conflicts increases, and thus, additional SLs are required. It is

important to note also that for the 3D torus network, only 3 SLs are required. This

is an important observation since it may be used to select the final topology. As an

example, a network with 64 end nodes can be designed by using a 4 × 4 × 4 torus

in order to obtain a fault-tolerant system with only 3 SLs, rather than using a 8 × 8
torus requiring 5 SLs.

Taking into account that IBA allows up to 16 SLs, the number of SLs required by

TFTR for some topologies limits the applicability of SLs to other purposes, like QoS.

Therefore, a bounded scenario where the number of available SLs is limited should

be also evaluated. Table 8.3 shows the number of disjoint paths obtained by TFTR

when the number of SLs is bounded. Notice that results for just one SL are not shown

as it does not allow to use any VL transition, and therefore results would be the same

as in the case of up∗/down∗.

When reducing the number of SLs from 5 down to 4, the TFTR strategy can

only guarantee to tolerate two faults in large networks. Using 3 SLs it is possible to

tolerate only one single link failure, from a 6× 6 network and upwards. However, in

4 × 4 and 5 × 5 tori, it is still possible to tolerate up to 3 link failures. Finally, when

using only 2 SLs one link failure is tolerated for all network sizes.

When limiting the number of SLs, the number of available disjoint paths de-

creases for some source-destination pairs. In particular, Table 8.3 shows that from

8.1. TFTR METHODOLOGY 125

Torus SLs

Percentage of end node pairs

with n disjoint paths

n=1 n=2 n=3 n=4

4 × 4 2 0.00% 0.83% 4.58% 94.58%

5 × 5 2 0.00% 1.17% 15.17% 83.67%

6 × 6
2 0.00% 1.75% 23.02% 75.24%

3 0.00% 0.08% 4.52% 95.40%

7 × 7
2 0.00% 2.93% 29.97% 67.09%

3 0.00% 0.40% 20.87% 88.61%

8 × 8

2 0.00% 4.32% 30.53% 65.13%

3 0.00% 0.77% 14.26% 84.97%

4 0.00% 0.00% 5.03% 94.97%

Table 8.3: Percentage of pairs of end nodes with n disjoint paths when using 2 VLs

and a bounded number of SLs.

4 × 4 to 7 × 7 torus networks, some source-destination pairs were granted only two

disjoint paths. Although the percentage of these cases is low, it limits the fault tol-

erance degree of TFTR to one fault, no matter how low is this percentage. When

limiting the number of SLs to 4 for the 8× 8 torus, the methodology only tolerates 2

faults. Therefore, the methodology effectiveness is highly sensitive to the number of

SLs available.

Table 8.4 shows the percentage of paths that use each SL identifier (all the packets

using the path are labeled with the same SL). As can be seen, with two SLs (SL0 and

SL1) roughly 90% of paths can be routed without any mapping conflict. However, a

small fraction of the paths requires additional SLs in order to avoid mapping conflicts,

which increases with network size.

Torus
Max Percentage of end node pairs using each SL

SLs SL=0 SL=1 SL=2 SL=3

4 × 4 2 58.10% 41.90% - -

5 × 5 2 55.21% 44.79% - -

6 × 6
2 53.55% 46.45% - -

3 49.81% 43.40% 6.79% -

7 × 7
2 52.45% 47.55% - -

3 48.29% 44.60% 7.12% -

8 × 8

2 51.74% 48.26% - -

3 47.83% 45.37% 6.80% -

4 45.82% 43.75% 6.79% 3.6%

Table 8.4: Percentage of paths using a particular SL with a bounded number of SLs

and 2 VLs.

8.1.4 Quality of Routing Paths

Table 8.5 shows some metrics of the paths computed by TFTR and up∗/down∗ when

the number of SLs is unbounded. TFTR obtains, on average, longer paths than those

obtained by up∗/down∗. Note that to achieve disjoint paths, some non-minimal paths

126 CHAPTER 8. EVALUATION

are required, thus, increasing the average path length. However, when taking into ac-

count only the shortest path for every source-destination pair we notice that TFTR

obtains shorter paths than up∗/down∗. Remember that TFTR is able to perform

some down → up link transitions, which allows TFTR to provide minimal paths

not achieved by up∗/down∗. Indeed, the average path length when considering only

the shortest paths for every source-destination pair is close to the average topological

distance (almost every source-destination pair has at least one minimal path).

Routing
Torus VLs SLs

Percentage of paths Average Average Average

algorithm
with t transitions path path length of topological

t=0 t=1 length shortest paths distance

up∗/down∗
4 × 4

1 1 100.00% 0.00% 2.8495 2.1333
2.1333

TFTR 2 3 56.77% 43.23% 3.2145 2.1333

up∗/down∗
5 × 5

1 1 100.00% 0.00% 3.5278 2.6933
2.5000

TFTR 2 3 51.92% 48.08% 3.9666 2.5067

up∗/down∗
6 × 6

1 1 100.00% 0.00% 4.1773 3.3063
3.0857

TFTR 2 4 49.03% 50.97% 4.6885 3.0873

up∗/down∗
7 × 7

1 1 100.00% 0.00% 4.8673 3.9435
3.5000

TFTR 2 4 46.25% 53.75% 5.3958 3.5230

up∗/down∗
8 × 8

1 1 100.00% 0.00% 5.5248 4.5878
4.0000

TFTR 2 5 45.03% 54.97% 6.0781 4.0804

up∗/down∗
9 × 9

1 1 100.00% 0.00% 5.8371 5.1722
4.5000

TFTR 2 6 41.54% 58.46% 6.8347 4.5930

up∗/down∗
10 × 10

1 1 100.00% 0.00% 6.8459 5.8921
5.0000

TFTR 2 7 40.77% 59.23% 7.5212 5.1493

TFTR 4 × 4 × 4 2 3 46.28% 53.72% 4.5627 3.0480 3.0476

Table 8.5: Routing path metrics for TFTR and up∗/down∗.

8.1.5 TFTR with Additional Virtual Channels

If more resources are granted to the methodology, TFTR is able to obtain even better

sets of paths. Table 8.6 shows the metrics for paths computed with four VLs and an

unbounded number of SLs. In this case, maximum priority to minimizing the path

length is given in order to select the final set of paths. We can observe that for all

the topologies, the average path length is reduced, including the average shortest path

length, which becomes even closer to the average topological distance. However, it

is not worth using more VLs because they do not contribute to increase the fault tol-

erance degree. Moreover, using more VLs generates more mapping conflicts which

increases the required number of SLs.

8.1.6 Network Throughput

Figure 8.2 shows the performance degradation suffered by the network in the pres-

ence of faults when TFTR is used. Every source end node uses the shortest disjoint

8.1. TFTR METHODOLOGY 127

Torus VLs SLs
Average Average shortest Average

path length path length topological distance

4 × 4 4 5 3.0917 2.1333 2.1333

5 × 5 4 8 3.7363 2.5033 2.5000

6 × 6 4 12 4.4698 3.0889 3.0857

7 × 7 4 14 5.0112 3.5000 3.5000

Table 8.6: Routing path metrics for TFTR when using 4VLs and an unbounded num-

ber of SLs.

path that does not traverse any faulty link. For a particular number of faults, differ-

ent random combinations of faults are injected. For every combination of faults the

network is simulated (using the simulation tool and simulation parameters presented

in Chapter 7). Uniform traffic pattern is used and the packet size is fixed to 58 bytes

(this includes the IBA packet header, the packet payload of 32 bytes and the IBA

packet tail). Confidence intervals are shown for every number of failures, however,

they are so small that they are hardly visible.

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t

(b
y
te

s/
cy

cl
e/

sw
it

ch
)

Number of link failures

Torus 4x4
Torus 5x5
Torus 6x6
Torus 7x7
Torus 8x8

Figure 8.2: Network throughput degradation when using TFTR for different torus

networks.

As can be observed, throughput decreases as the number of faults increases. How-

ever, it can be noticed that performance degradation is relatively low in larger net-

works. This is because the same number of faulty links affects a lower percentage of

paths in larger networks. For instance with 6 faulty links, throughput decreases up to

28% for the 4 × 4 torus and only 18% for the 8 × 8 torus.

It has to be noted that the performance degradation is due to the change in the

topology rather than to the TFTR mechanism. Anyway, a different set of paths may

128 CHAPTER 8. EVALUATION

lead to better performance. However, the real goal of TFTR is to keep connectivity

rather than to keep performance to its maximum.

8.1.7 Computational Cost

Figure 8.3 shows the time required by TFTR to compute all the paths for different 2D

tori. As can be observed the computational time grows exponentially with the radix

of the network (bear in mind the logarithmic scale). For instance, to compute all the

disjoint paths in a 10 × 10 torus network, TFTR takes one hour on a Xeon 3.06 GHz

processor.

Although these are bad news for TFTR, it is fair to say that the computation

process is performed offline. Indeed, disjoint paths are already computed when the

failure is detected. Anyway, the computational time is excessive and claims for fur-

ther improvements.

 0.1

 1

 10

 100

 1000

 4 5 6 7 8 9 10

C
o

m
p

u
at

io
n

 t
im

e
fo

r
al

l
p

at
h

s
(s

)

Network radix

Figure 8.3: Computational cost of TFTR for computing the set of disjoint paths on

different 2D torus networks.

8.1.8 Summary

We can obtain some interesting conclusions from the analysis of the obtained results.

First, alternative disjoint paths are required to obtain a certain degree of fault toler-

ance. The up∗/down∗ is not able to tolerate even a single fault. TFTR requires some

resources. In particular, in IBA networks, an increasing number of SLs is needed as

network size increases. However, two virtual channels suffice regardless of networks

size. Second, neither the path quality nor the network throughput suffer much when

computing paths with TFTR. Indeed, average shortest path length is very close to

8.2. SPFTR AND A-SPFTR METHODOLOGIES 129

the average topological distance. Third, when using additional virtual channels no

benefits are provided in terms of fault tolerance.

However, the main drawback of TFTR is its computational cost. Although TFTR

is performed offline it has an exponential cost. This fact motivates the convenience

of using SPFTR which is evaluated next.

8.2 SPFTR and A-SPFTR Methodologies

In this section, we evaluate SPFTR and A-SPFTR. Notice that both models are scal-

able in size, but only SPFTR is scalable in the number of dimensions. For comparison

purposes, we also evaluate the up∗/down∗ routing scheme.

As in TFTR, different scenarios are considered when evaluating SPFTR and

A-SPFTR. Table 8.7 summarizes each scenario.

Routing algorithm
Faults Topologies

Traffic Injection

or mechanism pattern rate

UD, SPFTR and A-SPFTR 0 . . . 6 5 × 5 . . . 20 × 20 torus not required

SPFTR 0 . . . 8 6 × 6 × 6 . . . 8 × 8 × 8 torus not required

SPFTR and A-SPFTR 0 . . . 6 5 × 5 . . . 8 × 8 torus uniform low, medium, high

Table 8.7: Evaluated scenarios for SPFTR and A-SPFTR.

8.2.1 Singular Cases

Figure 8.4 shows the percentages of singular cases for link failures when using

up∗/down∗ and SPFTR (results for A-SPFTR are similar) for different number of

faults. As can be observed, SPFTR does not present any singular case until four

links have failed for 2D tori, and six links have failed for 3D tori. Therefore, the

methodology is (2n − 1)-fault tolerant with 2 VLs and 4 SLs for n-dimensional tori

(SPFTR) or with 2 VLs and 3 SLs for 2D tori (A-SPFTR). On the other hand, as

previously seen up∗/down∗ does not tolerate even a single link failure.

We can see that none of the routing methods is able to tolerate all the failure

combinations in 2D tori in presence of more than 3 faults. Indeed, for four failures

in the network, 30% of combinations are not tolerated in the worst case (the worst

case was the smallest evaluated torus, 5×5 torus network, decreasing this percentage

for larger torus, see Figure 8.4.b). When compared with TFTR (Figure 8.1) we can

observe that roughly the same fault tolerance levels are achieved.

Figure 8.5 shows that when considering switch failures, SPFTR does not have any

singular case until four switches fail for 2D tori. The percentage of singular cases, in

case of more than 3 switches fail, however, is higher than when considering the same

number of link faults.

130 CHAPTER 8. EVALUATION

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

P
er

ce
n
ta

g
e

o
f

S
in

g
u
la

r
C

as
es

Number of link failures

10x10
9x9
8x8
7x7
6x6
5x5

(a)
(b)

Figure 8.4: Singular cases for link failures for (a) up∗/down∗ and (b) SPFTR in 2D

and in 3D tori (100,000 combinations evaluated at each point when the number of

fault combinations is higher than 100,000).

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7

P
er

ce
n

ta
g

e
o

f
S

in
g

u
la

r
C

as
es

Number of switch failures

7x7
8x8
9x9

10x10

Figure 8.5: Singular cases for switch failures for SPFTR in 2D tori (100,000 combi-

nations evaluated at each point when the number of fault combinations is higher than

100,000).

8.2.2 Quality of Routing Paths

Figures 8.6.a and 8.6.b show the average path length of the shortest paths computed

by SPFTR, A-SPFTR (only for 2D tori), and the up∗/down∗ routing algorithm. Also,

the figures show the average topological distance. When considering only the short-

est path for every pair of end nodes (the common case in the fault-free scenario),

SPFTR and A-SPFTR achieve, on average, shorter paths than up∗/down∗. Addition-

ally, as network size increases, the difference between the average path length and the

average topological distance slightly increases. This is due to the fact that only one

forbidden transition is allowed to be crossed (2 VLs are used), causing some route

patterns to need longer paths to reach destination.

8.2. SPFTR AND A-SPFTR METHODOLOGIES 131

 0

 5

 10

 15

 20

 25

 6 8 10 12 14 16 18 20

A
v
er

ag
e

P
at

h
 L

en
g
th

Network radix

All paths in SPFTR
All paths in A-SPFTR

Shortest paths in Up/Down
Shortest paths in SPFTR

Shortest paths in A-SPFTR
Average Topological distance

(a)

 0

 5

 10

 15

 20

 5 6 7 8 9 10 11 12

A
v
er

ag
e

P
at

h
 L

en
g
th

Network radix

All paths in SPFTR
Shortest paths in Up/Down

Shortest paths in SPFTR
Average Topological distance

(b)

Figure 8.6: Average path length in (a) 2D torus and (b) in 3D torus.

8.2.3 Network Throughput

Figure 8.7 shows the performance degradation suffered as the number of faults in-

creases when applying the SPFTR methodology (similar results are obtained when

the A-SPFTR is evaluated).

In the presence of faults every source end node uses the shortest disjoint path that

does not traverse any faulty link. For a particular number of faults, different random

combinations of faults are injected. For every combination of faults the network is

simulated, its throughput is obtained and the average results are displayed.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t

(b
y
te

s/
cy

cl
es

/s
w

)

Number of link failures

5x5
6x6
7x7
8x8

Figure 8.7: Degradation of performance with faults for SPFTR and A-SPFTR.

As can be observed, results are similar to those obtained by TFTR. Indeed, per-

formance is mainly affected by the topology modification due to failures.

132 CHAPTER 8. EVALUATION

8.2.4 Computational Cost and Resources Needed

All the previous results show the same trend achieved by TFTR. Indeed, computed

paths are similar and thus they obtain similar performance and fault tolerance. How-

ever, two important differences arise. The first one is that SPFTR bounds the number

of SLs to four (SPFTR) or three (A-SPFTR). Figure 8.8 shows the comparison be-

tween TFTR and SPFTR of the required number of SLs in 2D tori.

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10

R
eq

u
ir

ed
 n

u
m

b
er

 o
f

S
L

s

Network radix

TFTR
SPFTR

A-SPFTR

Figure 8.8: Comparison between TFTR and SPFTR of the required number of SLs

in 2D tori.

The second one, is the computational cost. Figure 8.9.a shows the computational

cost of SPFTR (for A-SPFTR same results are obtained) for different 2D tori. As

can be observed, the computational time grows quadratically with the number of

end nodes in the network. Notice that only the computation of forwarding tables is

required. This is because SLtoVL tables and route patterns are already computed.

Indeed, when comparing TFTR and SPFTR in terms of computational cost (Figure

8.9.b) we can observe the large differences between both methods. As an example, all

the routing information for a 20×20 torus network when using SPFTR was computed

in less than 10 seconds using an Intel Xeon 3.06 GHz. For TFTR this would take

more than a week and would consume many resources (SLs) on the same processor.

8.2.5 Summary

Although TFTR and SPFTR provide an average path length close to the topologi-

cal distance and achieve similar results in terms of throughput, SPFTR provides the

complete set of disjoint paths with only 2VLs and 3SLs, whereas TFTR requires an

increasing number of SLs as network size increases. SPFTR also minimizes the time

needed to compute the required set of disjoint paths.

Therefore, SPFTR should be preferred to provide disjoint paths when using a

torus network. However, TFTR should be used when using other network topologies.

8.3. RFTR METHODOLOGY 133

 2

 4

 6

 8

 10

 5 10 15 20 25

C
o
m

p
u
ta

ti
o
n
 t

im
e

fo
r

al
l

p
at

h
s

(s
)

Network radix

SPFTR

(a)

 0.1

 1

 10

 100

 1000

 4 5 6 7 8 9 10

C
o
m

p
u
at

io
n
 t

im
e

fo
r

al
l

p
at

h
s

(s
)

Network radix

TFTR
SPFTR

(b)

Figure 8.9: Comparison of computational cost of TFTR and SPFTR in a Xeon 3.06

GHz (a) linear scale and (b) logarithmic scale.

Regardless of the computational cost and the number of resources needed, there

is another major limitation that may affect the choice of the fault tolerance method.

This is the number of link failures to be tolerated. Indeed, both methods evaluated so

far have the same fault tolerance degree. Both tolerate up to three link failures in 2D

tori and up to five link failures in 3D tori. The next methods will overcome this issue

and will tolerate much more faults. Indeed, they are dynamic methods that will adapt

to topology changes due to link failures.

8.3 RFTR Methodology

Now, we focus our attention on RFTR. As previously done, we analyze its fault toler-

ance degree, the required resources, computational time, and exhibited performance.

Also, we compare RFTR with the previous methods (TFTR and SPFTR), and with

respect to the alternative of applying a reconfiguration process, such as the Simple

Reconfiguration method. Contrary to TFTR and SPFTR, RFTR is able to dynami-

cally provide new paths as long as faults appear, thus, potentially achieving higher

fault tolerance levels. Simple reconfiguration is a dynamic network reconfiguration

method which has proved to be a fast mechanism that works for any topology and

between any pair of old and new routing functions.

Following the previous analysis, we consider torus network topologies. In par-

ticular, we analyze 2D tori with different sizes, ranging from 16 switches (4 × 4)

up to 196 switches (14 × 14). Also 3D tori with 64 switches (4 × 4 × 4) and 216

switches (6 × 6 × 6) are analyzed. In all these cases, two end nodes are attached to

each switch. Table 8.8 shows for each scenario the routing algorithms, topologies,

and fault combinations evaluated.

RFTR is evaluated using up∗/down∗ routing as the underlying routing algorithm.

134 CHAPTER 8. EVALUATION

Mechanisms
Failures Topologies

or routing algorithm

SPFTR 0 . . . 8 4 × 4 and 4 × 4 × 4 torus

TFTR 0 . . . 8 4 × 4 and 3 × 3 × 3 torus

RFTR 0 . . . 8 4 × 4 . . . 14 × 14 torus

RFTR 0 . . . 8 3 × 3 × 3 . . . 6 × 6 × 6 torus

up∗/down∗
0 5 × 5 . . . 14 × 14 torus

up∗/down∗
0 3 × 3 × 3 . . . 6 × 6 × 6 torus

up∗/down∗
0 . . . 8 5 × 5 torus

up∗/down∗
0 . . . 8 8 × 8 × 8 torus

Table 8.8: Evaluated scenarios for RFTR.

We have selected this routing scheme because, unlike DOR, it is able to provide some

alternative paths between every source-destination pair, thus providing greater flexi-

bility. In most cases, two VLs are used by RFTR, thus, at most, only one transition

is allowed to each path. In order to maximize the benefits from the two available

VLs, packets not requiring virtual channel transitions are randomly injected through

any of the two available virtual channels. For paths with a VL transition, packets are

injected through VL0.

8.3.1 Singular Cases

Table 8.9 shows the results obtained when considering up to eight link failures in

4 × 4 and 3 × 3 × 3 tori. For each number of faults, the number of combinations

analyzed can be observed. As can be seen, RFTR is able to tolerate all the link failure

combinations. RFTR is 8-fault tolerant in the 4 × 4 torus, and 4-fault tolerant in the

3×3×3 torus (100% of fault combinations analyzed), whereas from 5 faults upward

we only can state it in statistical terms in the 3 × 3 × 3 torus. This is a reasonable

fault tolerance degree taking into account the network sizes considered (it represents

more than 5% of failed links).

When comparing RFTR with respect to TFTR and SPFTR, we can observe that

RFTR is able to tolerate a larger number of faults, whereas TFTR and SPFTR only

can tolerate up to 3 faults in 2D tori and 5 failures in 3D tori.

8.3.2 Quality of Routing Paths

Figures 8.10.a and 8.10.b show for a 2D and a 3D tori the average path length pro-

vided by RFTR. Also, for comparison purposes, the average path length provided by

the reconfiguration process is plotted. As a reference, the average topological dis-

tance between switches is also shown. We can observe that the difference between

the average path length and the average topological distance slightly increases as the

8.3. RFTR METHODOLOGY 135

RFTR TFTR SPFTR

Number
Percentage Percentage Percentage

of
Evaluated of non Max Max of non Max Max of non Max Max

failures
cases tolerated VLs SLs tolerated VLs SLs tolerated VLs SLs

cases cases cases

Torus 3 × 3 × 3 Torus 3 × 3 × 3 Torus 4 × 4 × 4

1 81* 0.00% 2 3 0.00% 2 3 0.00% 2 4

2 3,240* 0.00% 2 3 0.00% 2 3 0.00% 2 4

3 85,320* 0.00% 2 3 0.00% 2 3 0.00% 2 4

4 1,663,740* 0.00% 2 5 0.00% 2 3 0.00% 2 4

5 25,621,596 0.00% 2 5 0.00% 2 3 0.00% 2 4

6 6,490,804 0.00% 2 5 0.27% 2 3 0.06% 2 4

7 17,386,083 0.00% 2 5 1.63% 2 3 0.40% 2 4

8 16,082,127 0.00% 2 5 5.34% 2 3 5.34% 2 4

Torus 4 × 4 Torus 4 × 4 Torus 4 × 4

1 54* 0.00% 2 3 0.00% 2 3 0.00% 2 4

2 1,431* 0.00% 2 5 0.00% 2 3 0.00% 2 4

3 24,804* 0.00% 2 6 0.00% 2 3 0.00% 2 4

4 316,251* 0.00% 2 6 27.01% 2 3 31.25% 2 4

5 3,162,510* 0.00% 3 7 58.92% 2 3 74.96% 2 4

6 25,827,165* 0.00% 3 7 83.76% 2 3 95.96% 2 4

7 177,100,560* 0.00% 3 8 94.72% 2 3 99.72% 2 4

8 1,040,465,790* 0.00% 3 8 99.87% 2 3 99.99% 2 4

*means that all the fault combinations have been analyzed.

Table 8.9: Fault tolerance achieved and resources required by RFTR, TFTR, and

SPFTR. For SPFTR the minimum network size for 3D torus topology is 4 × 4 × 4.

number of faults increases. Moreover, the average path length values obtained by

reconfiguration are slightly lower than the ones obtained by RFTR. This is due to the

fact that the methodology tries to minimize the number of VLs used (usually 2 VLs,

and in some cases up to 3 VLs). This leads to select, in some cases, intermediate

switches that are not in the minimal path from source to destination, thus increasing

the average path length.

 4

 5

 6

 0 1 2 3 4 5 6 7 8

A
v

er
ag

e
p

at
h

 l
en

g
th

Number of link failures

5x5 torus RFTR
SR

Topological

(a)

 3

 4

 5

 0 1 2 3 4 5 6 7 8

A
v

er
ag

e
p

at
h

 l
en

g
th

Number of link failures

8x8x8 torus RFTR
SR

Topological

(b)

Figure 8.10: Average path length when using RFTR and SR.

136 CHAPTER 8. EVALUATION

8.3.3 Resources Required

Table 8.9 also shows the number of resources required by RFTR, TFTR, and SPFTR.

As can be seen, only 2 VLs and up to 6 SLs are required by RFTR to deal with 4

faults in the 2D torus network. However, a third VL is required from 5 faults upward,

also increasing the number of SLs up to 8 (dealing with 8 faults). On the other

hand, only 2 VLs are required in the 3D torus network, regardless of the considered

number of link failures. Further, the maximum number of SLs required is 5. We have

corroborated by statistical analysis that resource requirements in larger 2D and 3D

tori are the same. From the comparison with other methodologies we can conclude

that RFTR is able to achieve a much higher fault-tolerance degree, at the expense

of requiring a number of resources slightly greater than the required by TFTR and

SPFTR.

We have also evaluated the memory resources required by the Subnet Manager

to support the IRT and DRT tables, as they are the most important data structures

used by RFTR. Memory requirements directly depend on the number of table en-

tries. As commented in Section 5.2.1, each table provides an entry for every visited

switch along each routing path. Therefore, the total amount of entries on each table

is defined by the average path length times the number of paths. Table size is, thus,

similar to the size required to store all the routing paths at switches. As shown in Fig-

ures 8.10.a and 8.10.b, average path length depends on the number of link failures.

However, its increment with the number of link failures is not significant. Hence, in

practical terms, it would reasonably allow us to define table size independently of the

number of link failures. Total amount of memory required by RFTR to support both

reachability tables is shown in Table 8.10.

Topology Radix
Total Memory for

Topology Radix
Total Memory for

DRT and IRT tables DRT and IRT tables

7 38 KB 3 6350 Bytes

2D 8 75 KB 3D 4 50 KB

Torus 10 232 KB Torus 6 890 KB

12 584 KB 7 2661 KB

Table 8.10: Memory requirements.

8.3.4 Computational Cost

Figures 8.11.a and 8.11.b show the computational cost of RFTR (based on an AMD

Opteron at 1.4 GHz) for different consecutive link failures, for 2D and 3D torus

networks with different sizes, respectively. Plotted values correspond to the aver-

age computational time obtained from evaluating 1,000 fault combinations for every

number of faults (when the number of combinations is greater than 1,000). Confi-

8.3. RFTR METHODOLOGY 137

dence intervals are plotted. As can be observed, the time required by RFTR is very

low (lower than one second), and linearly increases with the number of link fail-

ures. This is because as the number of faults increases, the number of affected paths

increases too. The low computational time exhibited by RFTR contrasts with the

one exhibited by the reconfiguration technique. In particular, assuming up∗/down∗

routing (as the algorithm used every time a fault is detected), the time required to

compute the new routing tables dramatically increases with network size, as can be

seen in Figures 8.11.c and 8.11.d for 2D and 3D tori, respectively. These figures show

the average computational time for all the fault combinations of one link.

0

0.5

1.0

1.5

2.0

 0 1 2 3 4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Number of link failures

2D tori 10x10
9x9
8x8
7x7

(a)

0

0.5

1.0

1.5

2.0

 0 1 2 3 4 5 6 7 8

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Number of link failures

3D tori 5x5x5
4x4x4

(b)

 0

 200

 400

 600

 800

 1000

 1200

 6 8 10 12 14

C
o
m

p
u
ta

ti
o
n
 t

im
e

(s
)

Network radix

2D tori

Up/Down
RFTR

(c)

 0

 100

 200

 300

 400

 500

 3 4 5 6

C
o
m

p
u
ta

ti
o
n
 t

im
e

(s
)

Network radix

3D tori

Up/Down
RFTR

(d)

Figure 8.11: Average computational time (a,b) for RFTR and for different number of

failures in 2D and 3D tori, (c,d) for up∗/down∗ and RFTR in 2D and 3D tori with one

failed link.

8.3.5 Network Throughput

In this section we analyze how RFTR influences network performance for different

number of link failures. In particular, we evaluate the performance degradation after

138 CHAPTER 8. EVALUATION

the occurrence of a certain sequence of faults. For comparison purposes, we also

evaluate the performance achieved by the SR reconfiguration process launched after

every fault. In order to maximize performance, we assume that the reconfiguration

process computes a new spanning tree (required by up∗/down∗ routing) by selecting

the switch with the lowest average distance to the rest of switches as root.

We have run 100 simulations for each number of faults and for each analyzed

strategy (RFTR and reconfiguration). In each of them, faulty links were selected ran-

domly. In order to carry out the evaluation of the fault tolerance process, we evaluate

the network during all the reconfiguration process: before any link failure occurs,

when the fault is injected and detected, during the computation and distribution of

the new routing paths, and until all the transient effects of the fault-tolerant method

disappear. Figure 8.12 shows the scheme of the different events evaluated into the

simulator.

COMPUTE NEW ROUTING TABLES
NEW ROUTING TABLES

F.I. D

TRANSIENT

Time

DISTRIBUTE

F.I.: Fault injection

D: Fault detection

Figure 8.12: Events of fault detection, computation and distribution of the new rout-

ing tables evaluated.

The simulation also considers the required control traffic. As previously de-

scribed in Section 5.4, a special routing mechanism (Directed-Route) is used to for-

ward control packets. In particular, we modeled the new routing information dis-

tributed with control packets, and with ACK packets (since control packets can be

discarded).

Average throughput and confidence intervals can be seen in Figure 8.13. As can

be observed, throughput decreases in both cases as the number of faults increases.

However, it is to note that the difference is negligible. This is a good result because,

applying our methodology (RFTR), we are achieving similar network performance to

the one provided when applying reconfiguration, but without needing to completely

compute all the routing tables (indeed, modifying the routing algorithm by updating

only some routing table entries).

Notice that the up∗/down∗ routing algorithm has been used to compute the initial

paths of RFTR. This algorithm exhibits a high computational time because it searches

for a set of paths that provides the best traffic balance in the network, thus achieving

high throughput. By using RFTR in combination with up∗/down∗ we can still guaran-

tee high network throughput in the presence of faults with a very low computational

time.

8.3. RFTR METHODOLOGY 139

0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

 0 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t(
fl

it
s/

cy
cl

e/
sw

it
ch

)

Number of link failures

7x7 torus

Reconfiguration
RFTR

(a)

Figure 8.13: Network throughput degradation.

Finally, we are interested in analyzing RFTR performance during the entire pro-

cess, starting when the fault is injected until routing tables are updated. In particular,

we analyze how the network traffic is temporarily affected by the process of detecting

the fault, computing new paths, updating forwarding and SLtoVL tables at switches,

and notifying the new LIDs to all the end nodes. For comparison purposes, we also

analyze the transient network behavior when applying SR.

Figure 8.14.a shows the accepted and lost traffic over time for an injection rate

near saturation when a fault is injected and RFTR is applied. On the other hand,

Figure 8.14.b shows the traffic evolution for the same injection rate when the same

fault is injected and the SR reconfiguration process is applied. Figure 8.14.c shows

the accumulated number of lost bytes along the process.

The meaning of the vertical lines is the following: the first one represents the

time when the fault is injected and the time when the SM receives the fault detec-

tion notification (only one line for both times, because notification happens 18.25 µs

after the injection of the fault, and the difference is too small to be represented with

two lines in the plot). The second line represents the time when the SM finishes the

computation of the new routing information and the time when all switches and end

nodes have received all the new routing information (only one line because the in-

formation is received 14.60 µs for RFTR, and 66.46 µs for Simple Reconfiguration,

after computation process finishes, and this is also a small difference to be repre-

sented with two lines in the plot). These computational times required by RFTR and

Simple Reconfiguration have been estimated from real experiments (computed on a

AMD Opteron at 1.4 GHz).

The times between injection and detection of the fault are the same in RFTR and

Simple Reconfiguration, because both simulations assume the same traffic rate, the

same frequency of sweeps for fault detection, and the fault is injected at the same

time in both simulations.

140 CHAPTER 8. EVALUATION

0

0.005

0.010

0.015

0.020

0.025

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

T
ra

ff
ic

 (
fl

it
s/

cy
cl

e/
sw

it
ch

)

Execution Time(s)

fault inj. and detection.

dist. routing info.

Delivered Traffic
Lost Traffic

(a)

0

0.005

0.010

0.015

0.020

0.025

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

T
ra

ff
ic

 (
fl

it
s/

cy
cl

e/
sw

it
ch

)

Execution Time(s)

fault inj. and detection.

distribution routing info.

Delivered Traffic
Lost Traffic

(b)

0.0⋅10
0

4.0⋅10
6

8.0⋅10
6

1.2⋅10
7

 0.02 0.04 0.06 0.08 0.1 0.12 0.14

A
cc

u
m

u
la

te
d
 l

o
st

 b
y
te

s

Execution time(s)

Reconfiguration
RFTR

(c)

Figure 8.14: (a,b) Accepted traffic when using RFTR and Simple Reconfiguration

algorithms, respectively. (c) Accumulated number of lost bytes using RFTR and

Simple Reconfiguration algorithms.

We have observed that the time between the end of the computation of the new

routing information and the end of the global process remains constant for RFTR,

independently of the traffic rate. However, for Simple Reconfiguration it increases

with the traffic rate because it requires to solve all dependencies with old traffic. For

the evaluation we have considered that control packets are sent in an independent

virtual channel (VL15) with the highest routing priority.

Also, it is to note that the useful traffic is not significantly affected by the process.

It has to be noted that the shown case corresponds to a worst case for RFTR, that is,

the failed link is near the root switch of the spanning tree used by up∗/down∗, thus

affecting a large percentage of paths.

Figure 8.15.b shows a 7 × 7 torus network with the routing restrictions defined

by up∗/down∗. Also, in this figure, a link is marked as failed. For such cases, us-

ing RFTR, the amount of routing information sent depends on the number of paths

affected by the fault. In this sense, Figure 8.15.a shows the percentage of routing

information sent to every switch after the occurrence of a link failure in a 7×7 torus.

As before, we are considering a worst case with regard to the link failure selection.

Also, Figure 8.15.a shows the percentage of updated entries in forwarding tables to

every switch for a total reconfiguration. We can observe that RFTR sends a very

small fraction of routing information compared to the routing information sent by a

8.3. RFTR METHODOLOGY 141

full reconfiguration. On average it represents the 19.83 % of the total size of the for-

warding tables. Figure 8.15.c shows the percentage of updated entries in forwarding

tables to each switch in the network depending on its coordinates in the torus.

0

20

40

60

80

100

 0 5 10 15 20 25 30 35 40 45

P
er

ce
n
ta

g
e

o
f

en
tr

ie
s

u
p
d
at

ed
 i

n
 F

o
rw

ar
d
in

g
 T

ab
le

Switch

Reconfiguration
RFTR

(a)

0

0 1 3 6542

6

7

5

4

3

2

1

Link failure

Columns
R

o
w

s

R

(b)

 0
 10
 20
 30
 40
 50
 60
 70

 0
 1

 2
 3

 4
 5

 6 0
 1

 2
 3

 4
 5

 6

 0
 20
 40
 60
 80

 100

Percentage of updated entries

Rows
Columns

R

(c)

Figure 8.15: Average routing information sent after the first failure.

142 CHAPTER 8. EVALUATION

8.3.6 Summary

TFTR and SPFTR provide a set of alternative disjoint paths for each pair of source-

destination pair. Both mechanisms are able to tolerate failures by migrating the af-

fected paths to an alternative disjoint path. All the sets of alternative paths are com-

puted at an initial stage before any fault happens, therefore the mechanisms need to

provide all the sets solving all the mapping conflicts and requiring a low number of

resources. This evolves to a complex problem when computing all the alternative

paths, although only a low percentage of them are used when a fault occurs.

Routing tables computed when applying the RFTR method are less complex,

because they only provide one path for each source-destination pair. RFTR only

computes the new paths to substitute the affected paths (after the fault occurs). Thus,

the strong point of TFTR and SPFTR is their short time for providing a solution. The

strong point of the RFTR is that it can tolerate a large number of faults.

Figure 8.16 shows the computation required time for the TFTR, up∗/down∗, RFTR,

and SPFTR for different tori. Figure also shows the correlated exponential function

for the computational cost of each mechanism. The correlation between exponen-

tial functions and the measured costs of the mechanisms is almost one. (0.9996,

0.994, 0.996, and 0.995 for TFTR, up∗/down∗, RFTR and SPFTR (for radix>9) re-

spectively).

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Network radix

TFTR
Up*/Down*

RFTR
SPFTR

Figure 8.16: Average computational time for TFTR,SPFTR, up∗/down∗ and RFTR on

2D tori. Figure also shows the correlated exponential function for the computational

cost of each mechanism.

8.4. EBR METHODOLOGY 143

8.4 EBR Methodology

To conclude this section, the final method presented in this thesis, EBR, is evaluated.

The EBR mechanism is evaluated in two ways. First, it is evaluated when sending

all the routing tables. Second, it is evaluated when sending only the differences

between the old and new routing tables. This version is referred to as EBRD (EBR

with differences).

We compare the EBR mechanism with the Simple Reconfiguration (SR) and the

Double Scheme (DS) mechanisms (for description of both mechanisms, please refer

to Section 7.4).

8.4.1 Traffic Patterns and Topologies

For each simulation run, we assume that the packet generation rate is constant and

the same for all the end nodes.

Reconfiguration mechanisms are evaluated on different torus networks ranging

from 6 × 6 up to 14 × 14. Two end nodes are attached to each switch. The different

reconfiguration mechanisms are evaluated upon the occurrence of a link failure, under

different kind of scenarios, synthetic traffic and real traces.

The different synthetic traffic patterns used are: uniform, bit-reversal, and hotspot.

For uniform traffic, each source sends packets to all the destinations with the same

probability. For bit-reversal, each source sends traffic only to one end node. The end

node is computed by reversing all the bits of the source ID. For hotspot, 10% of the

sources (selected randomly) inject traffic to the same destination (selected randomly).

The rest of end nodes inject traffic to random destinations.

The traces used are from shared-memory multiprocessors (SPLASH-2). In par-

ticular FFT and MP3D applications have been evaluated.

Table 8.11 shows for each scenario the routing algorithms, topologies, and traffic

patterns evaluated.

Reconfiguration
Topologies Traffic Injection rate

mechanisms

SR-PDA, SR-LA, EBR,
6 × 6 . . . 14 × 14 torus uniform low, medium, high

EBRD, and DS

SR-PDA, SR-LA, EBR,
10 × 10 torus

hot-spot and
low, medium, high

EBRD, and DS bit-reversal

SR-PDA, SR-LA, EBR,
8 × 8 torus FFT, MP3D

scaled to

EBRD, and DS low, medium, high

Table 8.11: Evaluated scenarios for EBR.

144 CHAPTER 8. EVALUATION

In all the scenarios evaluated the detection/notification of faults is accounted for

in the simulations. Moreover, routing table computational time is assumed to be zero,

which would be the case if tables were precomputed before the reconfiguration event

(i.e., for user-directed or planned reconfiguration). This is because we focus only on

the reconfiguration process.

As a first scenario, we evaluate all the reconfiguration mechanisms for a random

link failure in a 6× 6 torus network. In this case, the old and new routing algorithms

are the up∗/down∗. In both cases the root switch is located at the same switch (0,0).

Uniform traffic and three different injection rates are used (LOW, MEDIUM, and

HIGH). Figure 8.17 shows the performance achieved by the network for increasing

injection rates. The figure also shows the three traffic injection rates analyzed (LOW,

MEDIUM, and HIGH).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.002 0.003 0.004

A
v
er

ag
e

M
es

sa
g
e

L
at

en
cy

 (
n
s)

Traffic (flits/ns/switch)

Low Medium High

Figure 8.17: Performance and reference traffic injection rates for the 6 × 6 torus

network.

Figure 8.18 shows the reconfiguration time for the 6×6 torus for each reconfigu-

ration mechanism and for different injection rates. In the figure we can see that each

mechanism requires roughly the same reconfiguration time regardless of the traffic

rate. This is because in all the cases the distribution of routing tables is the process

that takes most of the time (tables are sent sequentially) and the amount of informa-

tion to distribute is the same regardless of the traffic injection rate. Also, it is to note

that control packets use the reserved control virtual channel and they have higher

priority than data packets.

As can be noticed EBR gets more time to reconfigure the network than DS and

SR-PDA. This is due to the sequence used to reconfigure the switches. To explain

this, Figure 8.19 shows the time required for distributing four routing tables for two

different cases. SM is sending sequentially the routing tables, each table requiring the

same injection time (assuming that all the tables have the same size), but each table

requires different amount of time to arrive to its destination. In the Figure, the total

8.4. EBR METHODOLOGY 145

 0

 0.01

 0.02

 0.03

 0.04

 0.05

LOW MEDIUM HIGH

R
ec

o
n

fi
g

u
ra

ti
o

n
 t

im
e

(m
s)

Simulation Point

EBRD
SR PDA

EBR
DS

SR LA

Figure 8.18: Reconfiguration time for 6×6 torus network and uniform traffic pattern.

required time in the first case is lower than the one in the second case shown. This

is because in the former case the distribution of tables is better overlapped when SM

sends the routing tables (sequentially). Each table requires the same injection time

(assuming that all the tables have the same size), but each table requires different

amount of time to arrive to its destination. Therefore, total required time can be re-

duced when overlapping the distribution of tables (sending first tables that take more

time to reach their destination). Thus, the order in which tables are distributed affects

total reconfiguration time. EBR sends the routing tables firstly to the switches sur-

rounding the fault, and then to the remaining switches ordered by increasing distance

to the failed component (see Figure 6.3). Thus, total required time for the reconfigu-

ration process might increase compared with the other reconfiguration mechanisms.

1

2

3

4

1

2

3

4

2

3

1

D
es

ti
n

at
io

n
 o

f
th

e
ta

b
le

s

to arrive to destination
Required time for the tables

In
je

ct
io

n
 o

rd
er

Reconfiguration Time

1

2

4

3

Required time for the tables

to arrive to destination

Reconfiguration Time D
es

ti
n

at
io

n
 o

f
th

e
ta

b
le

s

In
je

ct
io

n
 o

rd
er

3

1 2

3

4

1

3

2

1

4

2

4

Figure 8.19: Sequence in the distribution of routing tables (may affect the reconfigu-

ration time).

However, two important things must be considered. First, updating only routing

tables with the differences between the old and the new ones, may greatly reduce the

reconfiguration time. In particular EBRD achieves a reduction factor of 1.5 when

compared with DS and SR-PDA.

146 CHAPTER 8. EVALUATION

8.4.2 Dropped Packets

However, the second and most important observation is that in EBR and EBRD

switches reconfigure as soon as they get the new routing table. Instead, in the rest

of mechanisms all the switches must be updated before using the new routing paths.

This has a great impact on the number of dropped packets. As Figure 8.20 shows

EBR achieves a lower number of dropped packets when compared with SR-LA and

DS. Indeed, differences are much noticeable as traffic rate increases. Also, when

using differences (EBRD) results are much better, (similar to SR-PDA).

 0

 1000

 2000

 3000

 4000

 5000

 6000

LOW MEDIUM HIGH

T
ra

ff
ic

 l
o

st
 (

B
y

te
s)

Simulation point

EBRD
SR PDA

EBR
DS

SR LA

Figure 8.20: Dropped and discarded packets for 6 × 6 torus network and uniform

traffic pattern.

Therefore EBRD achieves the lowest reconfiguration time (a reduction factor of

1.5 with respect to DS and SR-LA) and the lowest number of dropped packets (a

reduction factor of 14 with respect to DS and SR-LA for MEDIUM traffic).

We also have evaluated the mechanism with other traffic patterns. Figure 8.21.a

shows the traffic lost for a 10 × 10 torus network for HIGH traffic rate and different

synthetic traffic patterns. This figure shows only results for HIGH traffic injection

rate, but similar ratio of traffic lost between the different routing mechanisms are

obtained when using different traffic injection rates (as shown in Figure 8.20 for

uniform traffic pattern). Figure 8.21.b shows the traffic lost for a 8× 8 torus network

when using traces from shared-memory multiprocessors. It has to be noted that no

packet is discarded as a consequence of the application of the deadlock recovery

mechanism at any of the evaluated scenarios EBR (and EBRD).

8.4.3 Average Packet Latency

Figure 8.22 shows the evolution of packet latency for HIGH traffic rate. In all plots

there is a close up which shows the latency during the reconfiguration, two vertical

8.4. EBR METHODOLOGY 147

 100

 1000

 10000

 100000

 1e+06

SRPDA EBRD EBR DS SRLA

T
ra

ff
ic

 l
o
st

 (
b
y
te

s)

Reconfiguration mechanism

UNIFORM
BIT REVERSAL

HOTSPOT

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

SRPDA EBRD EBR DS SRLA

T
ra

ff
ic

 l
o
st

 (
b
y
te

s)

Reconfiguration mechanism

 FFT
 MP3

(b)

Figure 8.21: Traffic lost when using (a) Synthetic traffic patterns and (b) and traces.

lines show when the fault is detected and when the reconfiguration is finished. As can

be noticed, latency exhibited by EBR (also by SR-LA) is not significantly affected

during the reconfiguration processes (notice that each plot has a different scale).

However, SR-PDA latency increases significantly (is designed to reduce packet drop-

ping and not packet blocking). The reason for this is that SR experiences higher

latency due to the blocking introduced by the tokens, and packets blocked by tokens

block the packets coming behind, thus introducing contention. This effect is rapidly

spreaded, and thus, packets in the network experience higher latencies (this increase

in network latency keeps even when the reconfiguration process ends).

It is to note that in all the evaluated scenarios some packets exhibit higher queue

latency values. The reason is that these packets are dropped (due to the component

failure) and thus, need to be retransmitted from their source. In particular, DS shows

high queue latency during the reconfiguration. This is due to the large number of

packets lost.

8.4.4 Network Throughput

Figure 8.23 shows the traffic delivered at destinations when using the different re-

configuration mechanisms. As can be noticed for EBR (also by SR-LA) delivered

traffic does not suffer any disturbance during the reconfiguration. Also, we can see

that during reconfiguration in DS, traffic is accumulated on a virtual channel, while

the other is being reconfigured. However, we can notice that in SR-PDA delivered

traffic drops to zero during most of the reconfiguration time. This is due to the fact

that tokens have many dependencies that block the advance of new packets through

the network. Also, we can see at the end of the reconfiguration that the delivered

traffic sharply increases, motivated by the fact that traffic has been accumulated at

the network and tokens have disappeared.

148 CHAPTER 8. EVALUATION

 0

 0.005

 0.01

 0.015

 5.8 6 6.2 6.4

A
v

er
ag

e
la

te
n

cy
 (

m
s)

Generation time (ms)

Queue Lat.
Network Lat.

 0

 0.02

 0.04

 0.06

 5.7 5.8

(a) EBR

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 5.8 5.85 5.9 5.95 6

A
v

er
ag

e
la

te
n

cy
 (

m
s)

Generation time (ms)

Queue Lat.
Network Lat.

Max. Token Lat.

 0

 0.02

 0.04

 0.06

 5.8 5.82 5.84

(b) SRLA

 0.001
 0.01
 0.1

 1
 10

 100
 1000

 10000
 100000

 5.8 6 6.2 6.4 6.6 6.8

A
v

er
ag

e
la

te
n

cy
 (

m
s)

Generation time (ms)

Network Lat. Queue Lat.

0.001

0.1

10

 5.7 5.8

(c) DS

 0

 1

 2

 3

 4

 5

 6

 7

 6 6.5 7 7.5 8 8.5

A
v
er

ag
e

la
te

n
cy

 (
m

s)

Generation time (ms)

Queue Lat.
Network Lat.

Max. Token Lat.

 0

 0.2

 0.4

 0.6

 5.7 5.8

(d) SRPDA

Figure 8.22: Average latency on 10x10 torus network during the reconfiguration and

the transient time after it, each plot has a close up which shows the latency during the

reconfiguration.

8.4.5 Scalability

Now, we evaluate the mechanisms for different network sizes. Uniform and HIGH

traffic rate are considered. Figure 8.24.a shows the reconfiguration time for each

mechanism. Notice that as network size increases all the mechanisms tend to exhibit

much higher reconfiguration times and even tend to be similar. However, the EBRD

mechanism keeps a much lower reconfiguration time, with a reduction factor of 10

for 18 × 18 networks (notice the logarithmic scale of the X axis). Notice also the

very low dropping rate at EBR (and EBRD) (see Figure 8.24.b) with respect to DS

and SR-LA. The EBRD mechanism achieves dropping numbers very similar to SR-

PDA. In any case the deadlock recovery mechanism has not discarded a single packet.

For network throughput and packet latency (not shown) we have obtained the same

conclusions as for the first scenario (6 × 6 torus network).

8.4. EBR METHODOLOGY 149

 0

 0.005

 0.01

 0.015

 5.7 5.8T
ra

ff
ic

 (
B

y
te

s/
n

s/
sw

it
ch

)

Time (ms)

Data VC 0
Data VC 1

CONTROL VC

(a) EBR

 0

 0.005

 0.01

 0.015

 5.65 5.7 5.75 5.8 5.85T
ra

ff
ic

 (
B

y
te

s/
n

s/
sw

it
ch

)

Time (ms)

Data VC 0
Data VC 1

CONTROL VC

(b) DS

 0

 0.005

 0.01

 0.015

 5.8 5.82 5.84T
ra

ff
ic

 (
B

y
te

s/
n

s/
sw

it
ch

)

Time (ms)

Data VC 0
Data VC 1

CONTROL VC

(c) SRLA

 0

 0.005

 0.01

 0.015

 5.65 5.7 5.75 5.8 5.85T
ra

ff
ic

 (
B

y
te

s/
n

s/
sw

it
ch

)

Time (ms)

Data VC 0
Data VC 1

CONTROL VC

(d) SRPDA

Figure 8.23: Delivered traffic for 10 × 10 torus network and uniform traffic pattern.

 0.01

 0.1

 1

6 8 10 12 14 18

R
ec

o
n
fi

g
u
ra

ti
o
n
 t

im
e

(m
s)

Radix of the torus

EBRD
EBR

DS
SR LA

SR PDA

(a)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

6 8 10 12 14

T
ra

ff
ic

 l
o
st

 (
b
y
te

s)

Radix of the torus

SR PDA
EBRD

EBR
DS

SR LA

(b)

Figure 8.24: Performance results for different tori and uniform traffic pattern, (a)

Reconfiguration time and (b) Dropped and discarded packets.

150 CHAPTER 8. EVALUATION

8.4.6 Summary

As an initial conclusion it can be seen that in terms of reconfiguration time and num-

ber of dropped packets, EBR (and EBRD) outperforms DS and SR-LA (SR-PDA is

beaten also in terms of reconfiguration time). Only SR-PDA drops a lower number of

bytes than EBR and EBRD. But this is because SR-PDA blocks the traffic in order to

avoid packets to be routed through the failed link. As we have seen, this has a great

impact on packet latency and delivered traffic.

As a summary, Table 8.12 shows the different conclusions we can extract from the

evaluations performed. As shown, EBRD mechanism achieves the best numbers in

terms of traffic and latency performance, reconfiguration time and number of packets

dropped. Also, required resources are very modest.

Reconfiguration Resources Reconfiguration Traffic Latency Packets

mechanism needed time perturbance perturbance dropped

DS 2 VCs MEDIUM NO NO HIGH

SR-PDA tokens HIGH YES YES LOW

SR-LA tokens MEDIUM NO NO HIGH

EBR
epoch bits and MEDIUM

NO NO LOW
recovery mechanism (LOW EBRD)

Table 8.12: Summary of the characteristics of the different dynamic reconfiguration

mechanisms.

Chapter 9

Conclusions

In this chapter we describe the conclusions of the work done, the publications and

the future work.

9.1 Conclusions

There exists a great interest in developing fault tolerance mechanisms, since the fail-

ure rate in PC clusters is high. In particular, the time required by fault tolerance

mechanisms for tolerating the faults is critical, because as long as it increases, the

traffic lost and the perturbance of the application running on the cluster also increases.

Additionally, the mechanisms should be transparent for the running applications and

require as small number of resources as possible. However, to the best of our knowl-

edge there are not solutions for fault tolerance in PC clusters that can be applied

regardless of the network topologies and/or the network technology used.

The aim of this dissertation has been the development of fault tolerance mecha-

nisms for interconnection networks used in PC cluster. Indeed, the main challenges

have been to propose novel fault tolerance mechanisms for PC clusters able to pro-

vide the maximum fault tolerance capabilities and reduce the traffic lost due to the

failures, while still maintaining low the required number of resources (e.g., virtual

channels or service levels) and the elapsed time required to handle the fault (e.g., the

computation time or the time for distributing new routing information through the

network).

In this thesis we aim at providing fault tolerance mechanisms which achieve the

previous requirements. Moreover, the proposed mechanisms accomplish two addi-

tional requirements. Firstly, the network traffic is never stopped by the mechanisms

under any circumstances, and secondly, the proposed strategies try to be transpar-

ent to the running applications from the point of view of network performance (e.g.,

151

152 CHAPTER 9. CONCLUSIONS

throughput, latency, and QoS requirements) as much as possible. That is, their appli-

cation should hardly affect network performance.

A part of this thesis is dedicated to describe the four fault tolerance mechanisms

proposed for PC cluster interconnection networks (i.e., TFTR, SPFTR, RFTR, and

EBR), and their application environments. Additionally, we have evaluated all of

them under simulation. In particular, without loss of generality, the proposed mech-

anisms are applied to InfiniBand networks (a part of this dissertation has been dedi-

cated to describe the environment where the mechanisms are evaluated). Therefore

we consider this thesis achieves the previously presented objectives.

9.2 Contributions

This dissertation has made the following contributions:

• Firstly, this thesis proposes two new fault tolerant routing strategies with selec-

tion of path in the source end node1. The mechanisms are referred to as TFTR

and SPFTR. Both mechanisms are based on providing a set of alternative dis-

joint paths for each pair of end nodes, in such a way that it is guaranteed that the

system is deadlock free. The sets of disjoint paths provide a fast solution when

a fault is detected, because they are ready to be used without needing to up-

date any routing table (they are already computed and the routing information

is already distributed). Despite the fact that TFTR minimizes the number of

required resources its number increases as network size increases, thus not be-

ing scalable. To overcome this drawback, we propose the SPFTR mechanism,

which is scalable because it uses the same number of resources regardless of

the network size. The fault tolerance degree of both mechanisms corresponds

to the number of provided alternative paths minus one.

• Secondly, this thesis proposes a new fault tolerance mechanism based on rout-

ing in stages that is referred to as RFTR. The main objective consists of obtain-

ing alternative paths for all the faulty ones in a time-efficient manner and using

a bounded number of network resources. The idea consists of computing, in

presence of faults, alternative paths joining fragments of existing paths, where

the first fragment starts at the source end node, and the last fragment ends at the

destination end node. This approach is able to provide, in probabilistic terms,

a fault tolerance degree higher than that provided by TFTR/SPFTR. Indeed,

the proposed approach can be considered as a network reconfiguration process

limited to those switches/routing paths affected by the fault. When compared

1End nodes are the source and the destination of messages.

9.2. CONTRIBUTIONS 153

to a full network reconfiguration process, RFTR reduces significantly the num-

ber of dropped packets and the time required to manage the fault occurrence

situation.

• Lastly, this thesis proposes a new reconfiguration mechanism that is referred to

as EBR. It can be applied for providing fault tolerance Reconfiguration. With

reconfiguration it can be tolerated any number of faults as the network can tol-

erate, i.e. as long as the network remains connected. It is achieved starting a

reconfiguration process once a fault is detected. Evaluation results show that

EBR works efficiently in different topologies and with different routing algo-

rithms. When compared with current reconfiguration proposals, EBR always

gets the best numbers in all the analyzed parameters (e.g., dropped packets,

latency, throughput, reconfiguration time, resources required), thus achieving

the good properties of all the reconfiguration mechanisms.

Each of these proposals has advantages and drawbacks. We can conclude when

comparing between them that when the number of faults is small, TFTR and SPFTR

can provide a fast solution as new paths are already computed an distributed once the

fault is detected. TFTR supports any topology. However, these methodologies have

limited the number of faults that can be tolerated, which depends on the number of

disjoint paths they can provide. Moreover, the TFTR requires an increasing number

of resources as the network size increases. However, SPFTR has not this drawback,

but, it is limited to be applied only to torus networks.

When the number of faults increases, TFTR and SPFTR can not guarantee to tol-

erate them, although TFTR could try to dynamically compute new partially disjoint

paths at expense of high computational cost2, which could affect the system perfor-

mance. However, RFTR can tolerate larger number of faults and its computational

cost is small compared with that of TFTR when the number of faults increases, and

also smaller than computing a new routing algorithm. Moreover, RFTR requires less

number of resources that TFTR when the number of faults increases. On the other

hand, the main drawback of RFTR is that the number of required resources increases

as the number of faults increases Therefore the maximum number of faults to be

tolerated is bounded by the maximum number of resources available.

Finally, when the number of faults requires a larger number of resources than

that available for RFTR, EBR appears as the last chance to tolerate them. In partic-

ular, EBR tolerates any number of failures without requiring any additional resource

except to those required by the deadlock recovery mechanism used.

Table 9.1 shows a summary of the advantages and drawbacks of each proposed

methodology.

2We have assumed that the set of disjoint routing paths is statically computed by TFTR at the start

of the system. This computational costs does not affect the system performance when faults occur.

154 CHAPTER 9. CONCLUSIONS

Fault tolerance mechanism

TFTR SPFTR RFTR EBR

Advantages

Fast solution. Supports any topology.

Fast solution. Constant and Large number of Tolerates any number

Supports small number of tolerated of faults.

any topology. required resources. faults. Not additional

resources*

Drawbacks

Limited to tolerate Increasing number

as many faults as disjoint paths. of faults requires

Resources required an increasing Requires to compute

increase with Only for number of resources. new routing function.

network size and torus networks. Requires to compute

number of faults. some new paths.

*Requires a deadlock recovery mechanism that require a certain support on switches.

Table 9.1: Summary of the advantages and drawbacks of the proposals.

We consider that the proposals can be used alternatively since they provide a dif-

ferent balance between fault tolerance capabilities and amount of time required for

handling the fault situation. In particular, the mechanism which tolerates a higher

amount of faults requires also a higher amount of time. In this sense, the Figure 9.1

shows an orientation about the time required by each methodology (from the detec-

tion of the fault until an fault-free alternative routing path is provided, taking into

account all the time required to have the new routing path available, such as the com-

putation time of the new routing paths and the routing information updating time).

The required time is important because the traffic lost due to the fault depends on it.

Therefore, when the number of faults is small it is recommended to use the faster

solution, that are the methodologies based on disjoint paths (i.e., TFTR/SPFTR).

The methodology based on reachability, RFTR, is recommended as the best option

when the number of faults is larger than the number of disjoint paths provided by

TFTR/SPFTR. Finally, EBR should be used when the number of faults or the num-

ber of resources required by the previous methodologies are too large for tolerating

them. Notice, that there is a trade off between the time required for handling the fault

and the number of tolerated faults.

The Figure 9.2 shows a different view about the selection process of the most suit-

able fault tolerant approach depending on the MTBF/MTTR ratio. When the MTBF

is equal or smaller than MTTR, that means the number of faults in the network at

any time should be, in probabilistic terms, smaller than the n disjoint paths provided

by the TFTR or SPFTR (depending on the topology and the available resources).

Therefore, such a case is the best scenario for the use of such methodologies. On

the other hand, the RFTR methodology is recommended to be used on scenarios

where the number of faults is larger than that of the previous scenario. That is, when

the number of faults is larger than the number of disjoint paths provided by TFTR or

SPFTR. Finally, the EBR can be applied to any scenario independently of the number

9.2. CONTRIBUTIONS 155

Required computation
and updating time.

TFTR
SPFTR RFTR EBR

0

0

N
u

m
b

er
 o

f
fa

u
lt

s

Figure 9.1: Schema for selecting the most suitable fault tolerance mechanism de-

pending on the number of faults and the time required for tolerating them.

of faults. It should be recommended to be used when the number of faults becomes

larger than that of the previous scenarios.

However, we also consider that the different proposals can be used complemen-

tarily, that is, first the faster mechanisms, which tolerate the smaller number of faults,

and later the mechanisms which may require larger amount of time but tolerate a

larger number of faults.

EBR

RFTR

TFTR

SPFTR

MTBF

M
T

T
R

failures

simultaneous
Low number of

Large number of
simultaneous

failures

+

+

Figure 9.2: Schema for selecting fault tolerance methodology, depending on MTBF

and MTTR.

Additionally, all these methodologies could be combined. For example, the

RFTR can provide better new routing paths if it starts working with a larger set of

paths, such as the set of paths provided by SPFTR. This could provide solutions

156 CHAPTER 9. CONCLUSIONS

which would have less mapping conflicts and require a smaller number of required

resources. All the methods can combined, the selection of one of them depends on

the total number of faults in the network. Notice, after applying a reconfiguration,

(may be using the EBR mechanism), TFTR and RFTR could be applied again, re-

quiring small number of resources, because the underlying routing algorithm should

be new.

9.3 Publications

Next, a series of articles published in relation to the work presented in this memory

appears:

The publication for the overview before starting the thesis is [115]:

• Líneas de investigación en Tolerancia a Fallos (Research Lines on Fault Tol-

erance). J. M. Montañana, M. E. Gómez, A. Robles, J. Flich, P López, and

J. Duato. In Proceedings of the Jornadas de Paralelismo XIV, pages: 425-

430 Leganés, Madrid, (Spain). September. 2003, Publisher: ARCOS de la

UCIIIM. ISBN:84-89315-34-5.

The publications for the mechanisms based on disjoint paths are [116, 111, 112]:

• Transition-Based Fault-Tolerant Routing Methodology For InfiniBand Networks.

J. M. Montañana, J. Flich, A. Robles, P. López, and J. Duato. Workshop

on Communication Architecture for Clusters (CAC 2004), In Proceedings of

the 18th International Parallel and Distributed Processing Symposium (IPDPS

2004), page 186, New México, USA. April 2004, Publisher: IEEE Computer

Society Press. ISBN 0-7695-2132-0.

• Providing Fault Tolerance To InfiniBand Networks. J. M. Montañana, A. Rob-

les, J. Flich, P. López, and J. Duato. In Proceedings of the Jornadas de Par-

alelismo XV., pages 265-270, Almería (Andalucía). September. 2004, Pub-

lisher: SP-Universidad de Almería. ISBN: 84-8240-714-7.

• A Scalable Methodology for Computing Fault-Free Paths in InfiniBand Torus

Networks.J. M. Montañana, J. Flich, A. Robles, and J. Duato. In Proceedings

of the International Symposium on High Performance Computing (ISHPC-VI

2005), pages 79-92, Nara (Japan). September. 2005, Publisher: Lecture Notes

in Computer Science, Springer- Verlag. ISBN: 978-3-540-77703-8.

The publications for the mechanisms based on reachability are [113, 114]:

9.4. FUTURE WORK 157

• Substitution-Path-Based Fault-Tolerant Routing Methodology. J. M. Montaña-

na, J. Flich, A. Robles, and J. Duato. In Proceedings of the CEDI 2005-I Con-

greso Español de Informática, XVI Jornadas de Paralelismo Actas de las XVI

Jornadas de Paralelismo, pages 173-180, Granada (Spain), 2005, Publisher:

Ed. Thomson. ISBN: 84-9732-430-7.

• Reachability-Based Fault-Tolerant Routing. J. M. Montañana, J. Flich, A. Rob-

les, and J. Duato. In Proceedings of the The Twelfth International Confer-

ence on Parallel and Distributed Systems (ICPADS. July 12-15, 2006), pages

515-524, Minneapolis (USA) 2006, Publisher: IEEE Computer Society Press.

ISBN: 0-7695-2612-8.

The publications for the mechanisms based on reconfiguration are [106, 109, 110,

105]:

Contributions to Conferences:

• Simple Deadlock-Free Dynamic Reconfiguration. O. Lysne, J. M. Montañana,

T. M. Pinkston, J. Duato, T. Skeie, and J. Flich. In Proceedings of the 11th In-

ternational Conference on High Performance Computing (HiPC), pages 504-

515, Bangalore (India). December 2004, Publisher: Lecture Notes in Com-

puter Science No 3296, Springer-Verlag 2004. ISBN: 3-540-24129-9.

• EBR: A Deadlock Recovery-Based Reconfiguration Mechanism. J. M. Mon-

tañana, J. Flich, and J. Duato. In Proceedings of the CEDI 2007-II Con-

greso Español de Informática. XVIII Jornadas de Paralelismo, pages 229-236,

Zaragoza (Spain), 2007. ISBN: 978-84-9732-593-6.

• EBR: A Deadlock Recovery-Based Reconfiguration Network Mechanism. J.

M. Montañana, J. Flich, and J. Duato. In Proceedings of the 22nd IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS. April 14-18,

2008), Miami, Florida (USA), 2008. Publisher: IEEE Computer Society Press.

ISBN 978-1-4244-1694-3.

Publication on international journals:

• An Efficient and Deadlock-Free Network Reconfiguration Protocol. O. Lysne,

J. M. Montañana, J. Flich, J. Duato, T. M. Pinkston, and T. Skeie, IEEE Trans-

actions on Computers, vol. 57:(6), pages 762-779, June, 2008

9.4 Future Work

Taking into account that TFTR and SPFTR can provide a fast fault tolerance, but

they are limited to provide n disjoint paths, which prevents their application when

158 CHAPTER 9. CONCLUSIONS

the number of faults is equal to or greater than n, we consider that these mechanisms

could be combined with RFTR. This mechanism can tolerate larger number of faults,

but its response at the occurrence of a fault is not so fast as TFTR/SPFTR because the

new alternative routing paths must be dynamically computed. While the alternative

paths are being computed, the packets being routed through the faulty link will be

dropped, affecting overall system performance. To mitigate this drawback, we sug-

gest, as future work, to try combining both mechanisms, TFTR and RFTR. The idea

would be to provide at any time at least two disjoint routing paths for every source-

destination pair (or as much disjoint as possible). When a fault occurs, we would

immediately switch to an alternative path, so providing a fast response. Meanwhile,

new alternative paths could be computed in background, without interfering with the

normal system’s behaviour. In this way, when the next fault occurs, alternative paths

will be already computed, proceeding to quickly replace the old routing paths by the

new ones. Therefore, we would combine the advantages of both mechanisms, that is,

fast response (TFTR) and high fault tolerance degree (RFTR).

Additionally, we plan to improve the RFTR mechanism by using a set of disjoint

paths (the same used by TFTR) instead of only one path for each source-destination

pair as the basis to compute additional alternative paths. This could help compose

shorter new paths by using a smaller number of resources when a fault is detected.

However, the time required by RFTR to handle much more paths as source may

increase the computation time of new paths, which should be evaluated. Therefore,

we consider we could propose an efficient fault tolerance mechanism which could

tolerate a larger number of faults with a small number of required resources. To

sum up, the combination of the RFTR and TFTR mechanisms could combine their

advantages and reduce their limitations at the same time.

Also, we are considering the development of a version of the EBR for networks

with wormhole switching, in order to provide a new reconfiguration mechanism for

NoC (Network on Chip), when considering the same goals as we consider for EBR.

Appendix A

Route Patterns for SPFTR

In this appendix we list the patterns obtained in SPFTR. Table A.1 shows the nomen-

clature used to define movements. For instance, U means movement in the up direc-

tion along Y axis, until the Y coordinate of the destination is reached. 1HU means

going one hop in the up direction. (DST-1)U means going up until the previous row

to the destination.

1HU: 1 hop UP (DST-1)U: UP until YDST−1 MAX U: UP until the maximum value of y

1HD: 1 hop DOWN (DST-1)D: DOWN until YDST−1 MAX D: DOWN until the maximum value of y

1HR: 1 hop RIGHT (DST-1)R: RIGHT until XDST−1 MAX R: RIGHT until the maximum value of x

1HL: 1 hop LEFT (DST-1)L: LEFT until XDST−1 MAX L: LEFT until the maximum value of x

U: UP until destination (DST-2)U: UP until YDST−1 ∅U: UP until y-coordinate equals to 0

D: DOWN until destination (DST-2)D: DOWN until YDST−1 ∅D: DOWN until y-coordinate equals to 0

R: RIGHT until destination (DST-2)R: RIGHT until XDST−1 ∅R: RIGHT until x-coordinate equals to 0

L: LEFT until destination (DST-2)L: LEFT until XDST−1 ∅L: LEFT until x-coordinate equals to 0

(DST-3)U: UP until YDST−1 1U: UP until y-coordinate equals to 1

(DST-3)D: DOWN until YDST−1 1D: DOWN until y-coordinate equals to 1

(DST-3)R: RIGHT until XDST−1 1R: RIGHT until x-coordinate equals to 1

(DST-3)L: LEFT until XDST−1 1L: LEFT until x-coordinate equals to 1

Table A.1: Nomenclature used to define the sequences of movements.

Figure A.1 shows an example of a route pattern (four disjoint paths are obtained),

and also the sequence of movements to compose each path.

Table A.2 list the sequences of movements. Each route pattern is composed by a

list four and six sequences of movements for 2D and 3D tori, respectively. Table A.3

shows the complete set of route patterns, where the each route pattern is enumerated.

At the end of this appendix, the route patterns used (identified with a number)

from each source to each possible destination for a 7 × 7 torus.

159

160 APPENDIX A. ROUTE PATTERNS FOR SPFTR

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Path n: 3 SL: 0 switches: 16 21 22 23 24X 19 14 9 8 . Forbidden transitions crossed: 1

Path n: 0 SL: 1 switches: 16 11 6 7 8 Forbidden transitions crossed: 0

Path n: 1 SL: 0 switches: 16 17 18X 13 8 Forbidden transitions crossed: 1

Path n: 2 SL: 1 switches: 16 15 10 5 0 1 2 3 8 . . Forbidden transitions crossed: 0

Pattern: U R

Pattern: R U

Pattern: 1HL (DST−1)U R D

Pattern: 1HD (DST+1)R U L

Figure A.1: Example of route pattern applied.

161

0 1HU R D 52 1HR D R 104 1HL D

1 R 53 1HU 1HU (DST-1)L U R 105 1HL (DST+1)U R U

2 1HD R U 54 1HR U R 106 1HD ∅L U L

3 L 55 ∅R D R 107 (DST-1)U L D

4 U 56 1HU (DST+1)U L U 108 ∅L U L

5 1HR D L 57 (DST+1)L D L 109 1HR 1HU 1HU (DST-1)L D R

6 D 58 1HR (DST+1)D R U 110 1HL (DST-2)U (DST+1)R D L

7 1HL D R 59 (DST+1)D L U 111 1HL ∅U L U

8 1HU R U 60 (DST+1)L U L 112 (DST-1)L U R

9 R D 61 1R D R 113 ∅L U R

10 D R 62 1HR U L 114 1HU ∅L U R

11 1HL D L 63 MAXD R D 115 1HL ∅U R U

12 (DST-1)R D R 64 1HL U L 116 1HR 1HU 1HU L D

13 D L 65 (DST-1)R U R 117 1HD 1HL 1HL (DST-1)U R D

14 L D 66 1HU 1HR 1HR (DST+1)D L U 118 1HR ∅U L U

15 U R 67 1HU (DST+1)R D L 119 1HR 1U R D

16 (DST+1)R D L 68 1HU (DST-1)R D R 120 1HD MAXR D R

17 1HD R D 69 (DST-2)R (DST+1)D R U 121 1HU (DST+1)L U L

18 1HL MAXD L U 70 (DST+1)U R U 122 1HD (DST+1)L U L

19 1HD (DST-1)R D R 71 MAXD L D 123 1HU (DST+1)L D L

20 1HU (DST+1)R U L 72 1HD (DST+1)R U L 124 (DST+1)R U L

21 (DST+1)D R U 73 1HL 1HU 1HU R D 125 1HD 1HR 1HR 1HR (DST-1)U L D

22 1HL (DST+1)D L U 74 1HL MAXD R D 126 MAXL MAXD L U

23 1HL U R 75 1HU MAXR D R 127 1HD MAXR (DST-1)U L D

24 R U 76 1HR MAXD L D 128 1HL 1U R D

25 U L 77 1HD (DST-1)L U R 129 1HD 1HL 1HL U L

26 (DST-1)R 1D R D 78 1HL 1HD 1HD R D 130 1HD (DST+1)L 1HU (DST-1)L U R

27 (DST-1)D (DST-1)R D R 79 1HU (DST-1)L D R 131 1HD 1HL (DST-1)D R D

28 L U 80 1HU ∅L D L 132 1HD ∅L (DST-1)D R D

29 1HU L D 81 1HL (DST-1)D R D 133 ∅L (DST-1)U R D

30 1HD L U 82 1HR MAXD (DST-1)L U R 134 1HD MAXR U L

31 1HL 1HD 1HD (DST+1)R U L 83 1HR 1HU ∅R D R 135 ∅L 1HU 1HU (DST+1)R D L

32 (DST+1)U L U 84 1HU 1HL 1HL (DST+1)D R U 136 1HR 1HU 1HU L U

33 MAXR D R 85 1HU (DST-2)L (DST+1)D R U 137 ∅L ∅U R U

34 1HL (DST+1)D R U 86 1HR MAXD R D 138 1HR MAXD (DST-1)R U R

35 (DST-1)D R D 87 1HL (DST+1)U L U 139 1HR 1HD (DST-1)R U R

36 1HU L U 88 1HU (DST-2)R (DST+1)D R U 140 1HD (DST-3)L U L

37 1HD L D 89 1HR D 141 1HD 1HL 1HL 1HU L U

38 MAXL D R 90 1HD 1HR 1HR (DST-1)U L D 142 1HL 1HU (DST+1)L U L

39 MAXR U R 91 1HD 1HR 1HR U L 143 1HD (DST-2)L (DST-1)U R D

40 (DST-1)D L D 92 1HL (DST-1)U L D 144 1HL 1HL U L

41 1HD (DST+1)R D L 93 (DST-1)U R D 145 (DST+3)D R D

42 1HL (DST+3)D R D 94 1HR (DST-1)U R D 146 MAXR U L

43 1HL (DST-1)D (DST-1)R D R 95 1HD (DST-1)R U R 147 1HD 1HR (DST-1)D L D

44 1HR 1HD 1HD (DST-1)L U R 96 ∅U R U 148 1HR (DST+1)U L U

45 1HU (DST-1)L U R 97 1HL MAXU R D 149 (DST-2)U (DST-1)L U R

46 1HR (DST+1)D L U 98 1HD MAXR U R 150 1HL 1D R D

47 (DST-1)L D R 99 1HR (DST-1)U L D 151 1HL 1HD 1HD (DST+1)R D L

48 1HR (DST-1)D R D 100 1HL (DST-1)U R D 152 (DST+1)U 1HL U L

49 1HR (DST-1)D L D 101 1HD 1HD MAXR U L 153 (DST+1)L 1HU L U

50 1HD (DST-1)L D R 102 1HL 1HU 1HU (DST+1)R D L 154 (DST+1)U 1HL (DST-1)U L D

51 MAXR 1HD 1HD (DST-1)L U R 103 ∅U L U

Figure A.2: Complete set of sequences of movements for obtaining all the patterns

for 2D direct networks.

162 APPENDIX A. ROUTE PATTERNS FOR SPFTR

0 0 1 2 3 48 25 65 17 28 96 29 12 59 57 144 123 9 10 22 192 25 54 37 28

1 4 5 6 7 49 29 1 2 3 97 79 58 13 14 145 103 9 10 11 193 15 24 100 106

2 8 9 10 11 50 66 5 6 7 98 88 5 6 7 146 103 52 13 14 194 15 24 132 108

3 8 12 13 14 51 67 9 10 22 99 29 61 59 57 147 70 124 125 23 195 15 24 37 64

4 15 16 17 18 52 0 52 21 11 100 79 69 13 14 148 67 9 10 126 196 25 138 37 28

5 8 9 19 11 53 0 12 21 11 101 8 89 10 11 149 96 9 10 11 197 25 139 37 28

6 20 12 21 14 54 68 69 13 14 102 36 9 19 11 150 96 12 13 14 198 15 24 140 92

7 15 16 17 22 55 68 58 13 14 103 36 61 13 14 151 25 99 98 28 199 107 54 141 142

8 4 5 6 23 56 70 9 10 11 104 15 24 64 17 152 4 62 127 23 200 25 65 37 28

9 15 24 17 11 57 25 39 71 28 105 4 62 90 23 153 93 65 2 64 201 25 65 132 28

10 25 26 27 28 58 15 24 72 73 106 15 24 91 92 154 6 5 4 7 202 4 62 143 23

11 29 1 30 3 59 15 24 72 74 107 93 54 2 60 155 103 33 13 14 203 103 12 13 14

12 0 1 2 31 60 46 75 13 14 108 15 24 72 92 156 67 9 10 115 204 4 62 6 7

13 32 33 13 14 61 67 9 10 34 109 93 54 2 64 157 0 12 13 115 205 70 9 10 60

14 20 9 10 34 62 67 34 10 9 110 25 94 95 28 158 36 62 71 112 206 32 65 13 14

15 8 16 17 7 63 0 52 21 57 111 96 16 17 23 159 8 124 17 23 207 70 9 10 144

16 8 16 35 7 64 66 5 40 38 112 15 24 72 97 160 107 65 2 64 208 93 65 41 28

17 36 5 37 38 65 66 5 37 38 113 25 98 99 28 161 29 3 30 109 209 15 24 145 64

18 25 39 40 28 66 15 76 30 64 114 15 24 72 100 162 68 58 13 128 210 15 24 35 64

19 15 24 41 42 67 25 76 77 28 115 15 24 101 100 163 25 77 76 28 211 25 65 35 28

20 25 24 17 43 68 15 24 72 78 116 0 1 2 102 164 8 124 117 23 212 93 54 41 28

21 29 44 30 3 69 25 65 2 78 117 0 12 21 102 165 107 39 30 60 213 32 39 13 14

22 45 46 14 13 70 29 33 59 11 118 103 52 13 104 166 15 24 106 100 214 20 9 10 105

23 36 5 37 47 71 79 46 13 14 119 67 9 10 105 167 103 5 37 47 215 70 9 10 64

24 45 46 13 14 72 66 5 40 47 120 0 12 13 105 168 8 9 19 57 216 70 146 17 23

25 8 48 10 11 73 80 9 10 34 121 8 9 106 23 169 107 54 30 60 217 25 39 147 28

26 36 33 13 14 74 75 46 13 14 122 25 99 77 28 170 15 24 129 100 218 15 24 41 100

27 36 5 40 47 75 66 5 37 47 123 107 65 2 108 171 25 86 130 87 219 45 148 13 14

28 25 39 37 28 76 36 39 13 14 124 29 109 30 3 172 15 24 35 60 220 8 9 10 64

29 25 49 50 28 77 15 24 41 81 125 0 1 2 110 173 25 54 35 28 221 36 62 37 112

30 29 51 30 3 78 29 82 30 3 126 75 5 37 111 174 67 9 10 111 222 8 146 17 23

31 36 52 13 14 79 29 33 59 57 127 103 5 37 112 175 8 124 35 23 223 25 99 50 28

32 53 46 13 14 80 36 14 13 52 128 8 16 17 113 176 70 124 17 23 224 149 148 13 14

33 32 52 13 14 81 15 24 41 78 129 114 24 41 78 177 93 65 2 110 225 17 24 15 64

34 36 12 13 14 82 15 24 17 64 130 67 9 19 115 178 15 24 131 64 226 25 99 120 28

35 25 54 40 28 83 29 83 30 3 131 25 39 28 71 179 103 39 13 14 227 8 124 17 7

36 25 55 37 28 84 29 52 59 11 132 107 39 30 64 180 32 62 37 112 228 15 24 41 150

37 56 9 10 57 85 84 5 6 7 133 25 116 77 28 181 93 54 2 110 229 0 1 2 151

38 25 58 37 47 86 85 5 6 7 134 4 62 117 23 182 8 124 17 113 230 123 1 2 150

39 45 9 59 57 87 14 46 13 79 135 79 118 13 14 183 8 124 23 17 231 32 62 40 112

40 36 9 10 57 88 85 5 37 47 136 107 54 30 64 184 32 62 132 112 232 32 54 13 14

41 15 24 40 60 89 36 54 13 14 137 117 62 4 23 185 15 24 72 133 233 152 9 10 153

42 25 52 37 28 90 15 24 71 64 138 15 24 106 92 186 15 24 134 100 234 154 24 10 60

43 25 12 37 28 91 25 54 71 28 139 29 109 59 11 187 93 65 2 108 235 15 24 40 64

44 25 12 40 28 92 25 86 77 28 140 103 119 120 11 188 0 1 2 135

45 25 61 37 28 93 25 86 77 87 141 121 86 77 28 189 29 118 10 11

46 4 62 6 23 94 0 1 30 3 142 15 24 122 92 190 79 136 13 14

47 15 24 63 64 95 29 52 59 57 143 25 94 77 28 191 67 9 10 137

Figure A.3: Complete set of route patterns for 2D direct networks. Each patter con-

tains 4 sequences of movement for composing 4 disjoint paths.

163

From source 0:

| ---| 0| 0| 0| 0| 0| 0|

| 1| 2| 2| 2| 2| 2| 3|

| 1| 4| 4| 4| 4| 5| 3|

| 1| 4| 4| 4| 4| 6| 3|

| 1| 4| 4| 4| 4| 6| 3|

| 1| 7| 7| 7| 7| 5| 3|

| 8| 9| 9| 9| 9| 9| 10|

From source 1:

| 11| ---| 12| 12| 12| 0| 0|

| 13| 1| 14| 14| 14| 14| 2|

| 13| 1| 15| 15| 15| 15| 5|

| 13| 1| 16| 16| 16| 16| 2|

| 13| 1| 16| 16| 16| 16| 2|

| 17| 1| 16| 16| 16| 16| 2|

| 18| 1| 19| 19| 19| 19| 20|

From source 2:

| 11| 21| ---| 12| 12| 0| 0|

| 13| 22| 1| 14| 14| 14| 2|

| 13| 23| 1| 15| 15| 15| 2|

| 13| 24| 1| 16| 16| 16| 25|

| 13| 24| 1| 16| 16| 16| 25|

| 26| 27| 1| 16| 16| 16| 2|

| 28| 29| 1| 19| 19| 19| 20|

From source 3:

| 11| 21| 30| ---| 12| 0| 0|

| 31| 22| 22| 1| 14| 14| 2|

| 13| 23| 23| 1| 15| 15| 2|

| 13| 23| 23| 1| 16| 16| 25|

| 13| 23| 23| 1| 16| 16| 25|

| 26| 23| 23| 1| 16| 16| 25|

| 28| 29| 29| 1| 19| 19| 20|

From source 4:

| 11| 21| 30| 30| ---| 0| 0|

| 31| 22| 32| 32| 1| 14| 2|

| 13| 23| 23| 23| 1| 15| 2|

| 13| 23| 23| 23| 1| 16| 25|

| 13| 23| 23| 23| 1| 16| 25|

| 26| 23| 23| 23| 1| 16| 25|

| 28| 29| 29| 29| 1| 19| 20|

From source 5:

| 11| 11| 21| 21| 21| ---| 0|

| 33| 34| 32| 24| 24| 1| 2|

| 33| 23| 23| 23| 23| 1| 2|

| 33| 23| 23| 24| 24| 1| 2|

| 33| 23| 23| 24| 24| 1| 2|

| 31| 23| 23| 23| 23| 1| 2|

| 35| 35| 36| 36| 36| 1| 9|

From source 6:

| 11| 11| 11| 11| 11| 11| ---|

| 37| 31| 34| 34| 34| 34| 1|

| 37| 31| 38| 34| 34| 34| 1|

| 37| 31| 39| 39| 39| 34| 1|

| 37| 31| 39| 39| 39| 34| 1|

| 40| 31| 31| 31| 31| 34| 1|

| 41| 42| 43| 44| 44| 45| 1|

From source 7:

| 46| 47| 47| 47| 47| 47| 48|

| ---| 0| 0| 0| 0| 0| 49|

| 50| 51| 52| 53| 53| 53| 54|

| 50| 51| 53| 53| 53| 53| 55|

| 50| 51| 53| 53| 53| 53| 55|

| 1| 56| 53| 53| 53| 53| 54|

| 8| 2| 9| 9| 9| 9| 34|

From source 8:

| 57| 46| 58| 59| 59| 58| 48|

| 11| ---| 12| 12| 12| 12| 0|

| 60| 50| 61| 62| 62| 63| 53|

| 64| 50| 61| 61| 61| 61| 53|

| 64| 50| 61| 61| 61| 61| 53|

| 65| 1| 61| 61| 61| 61| 53|

| 18| 1| 15| 15| 15| 15| 2|

From source 9:

| 66| 67| 46| 58| 68| 68| 69|

| 11| 21| ---| 12| 12| 12| 0|

| 70| 71| 50| 61| 61| 61| 52|

| 70| 72| 50| 61| 61| 61| 73|

| 70| 72| 50| 61| 61| 61| 73|

| 74| 75| 50| 61| 61| 61| 52|

| 76| 23| 1| 77| 77| 77| 2|

From source 10:

| 66| 67| 67| 46| 68| 68| 69|

| 11| 21| 78| ---| 12| 12| 0|

| 79| 71| 71| 50| 61| 61| 52|

| 70| 75| 75| 50| 61| 61| 53|

| 70| 75| 75| 50| 61| 61| 53|

| 74| 75| 75| 1| 61| 61| 53|

| 80| 23| 23| 1| 81| 81| 2|

From source 11:

| 66| 67| 67| 67| 46| 68| 69|

| 11| 21| 78| 21| ---| 12| 0|

| 79| 71| 71| 71| 50| 61| 52|

| 70| 75| 75| 75| 50| 61| 53|

| 70| 75| 75| 75| 50| 61| 53|

| 74| 75| 75| 75| 1| 61| 53|

| 80| 23| 23| 23| 1| 81| 2|

From source 12:

| 66| 67| 67| 67| 67| 46| 82|

| 11| 11| 78| 83| 83| ---| 0|

| 84| 71| 71| 71| 71| 85| 73|

| 84| 71| 71| 71| 71| 86| 73|

| 84| 71| 71| 71| 71| 86| 73|

| 84| 87| 87| 88| 88| 1| 56|

| 89| 23| 23| 23| 23| 1| 9|

From source 13:

| 90| 91| 92| 93| 93| 93| 46|

| 94| 11| 11| 11| 11| 11| ---|

| 51| 95| 96| 96| 96| 97| 98|

| 51| 95| 96| 99| 99| 97| 98|

| 51| 95| 96| 99| 99| 97| 98|

| 51| 95| 96| 96| 96| 100| 98|

| 101| 102| 31| 34| 34| 103| 1|

From source 14:

| 46| 104| 47| 47| 47| 47| 48|

| 105| 106| 107| 108| 108| 109| 110|

| ---| 0| 0| 0| 0| 0| 49|

| 50| 51| 52| 53| 53| 53| 55|

| 50| 51| 52| 53| 53| 53| 55|

| 50| 51| 52| 53| 53| 53| 54|

| 8| 111| 111| 111| 111| 9| 44|

From source 15:

| 57| 46| 112| 112| 112| 112| 82|

| 113| 105| 114| 115| 115| 114| 109|

| 11| ---| 116| 116| 116| 0| 0|

| 74| 50| 61| 117| 117| 117| 53|

| 65| 50| 61| 117| 117| 117| 53|

| 74| 50| 61| 117| 117| 117| 53|

| 118| 8| 119| 119| 119| 119| 120|

164 APPENDIX A. ROUTE PATTERNS FOR SPFTR

From source 16:

| 57| 67| 46| 59| 59| 82| 121|

| 113| 122| 105| 114| 114| 114| 123|

| 11| 124| ---| 125| 116| 116| 0|

| 70| 71| 50| 61| 61| 117| 53|

| 74| 75| 50| 61| 61| 117| 53|

| 74| 71| 50| 61| 61| 61| 53|

| 126| 127| 1| 128| 129| 130| 2|

From source 17:

| 131| 67| 67| 46| 68| 68| 82|

| 132| 133| 133| 134| 58| 58| 109|

| 11| 124| 78| ---| 12| 0| 0|

| 70| 71| 71| 50| 61| 61| 53|

| 70| 71| 75| 50| 61| 61| 53|

| 74| 71| 75| 50| 61| 61| 53|

| 126| 127| 135| 1| 16| 16| 2|

From source 18:

| 131| 67| 67| 67| 46| 68| 82|

| 132| 133| 133| 133| 134| 58| 109|

| 11| 124| 78| 124| ---| 0| 0|

| 70| 71| 71| 71| 50| 61| 53|

| 70| 71| 71| 71| 50| 61| 53|

| 74| 71| 71| 71| 50| 61| 53|

| 126| 127| 135| 135| 1| 16| 2|

From source 19:

| 91| 67| 67| 67| 67| 46| 82|

| 136| 136| 122| 122| 122| 137| 138|

| 11| 11| 11| 11| 11| ---| 0|

| 84| 71| 71| 71| 71| 85| 73|

| 95| 139| 71| 71| 71| 85| 73|

| 95| 71| 71| 71| 71| 85| 73|

| 140| 127| 135| 135| 135| 1| 2|

From source 20:

| 90| 91| 141| 93| 93| 93| 46|

| 142| 136| 136| 136| 136| 143| 134|

| 94| 11| 11| 11| 11| 11| ---|

| 144| 84| 97| 97| 97| 97| 85|

| 144| 84| 97| 97| 97| 97| 85|

| 144| 84| 97| 97| 97| 97| 85|

| 145| 146| 146| 146| 146| 146| 1|

From source 21:

| 46| 47| 47| 47| 47| 47| 48|

| 105| 147| 107| 108| 108| 109| 110|

| 105| 108| 107| 107| 107| 109| 110|

| ---| 107| 107| 107| 107| 109| 107|

| 50| 51| 51| 52| 52| 52| 55|

| 50| 148| 52| 53| 53| 53| 55|

| 8| 111| 111| 111| 111| 149| 150|

From source 22:

| 57| 46| 59| 59| 59| 59| 82|

| 151| 105| 115| 115| 115| 114| 109|

| 151| 152| 114| 114| 114| 114| 153|

| 11| ---| 116| 116| 116| 0| 0|

| 74| 50| 61| 117| 117| 117| 53|

| 74| 154| 61| 61| 61| 61| 53|

| 155| 1| 156| 130| 130| 130| 157|

From source 23:

| 57| 158| 46| 159| 159| 159| 82|

| 132| 122| 105| 114| 114| 114| 160|

| 132| 122| 134| 114| 114| 114| 153|

| 11| 161| ---| 116| 116| 116| 0|

| 70| 71| 50| 61| 61| 61| 162|

| 74| 71| 50| 61| 61| 61| 53|

| 31| 135| 1| 156| 130| 130| 3|

From source 24:

| 57| 158| 163| 46| 68| 68| 82|

| 132| 122| 122| 134| 114| 164| 138|

| 165| 122| 122| 134| 114| 114| 166|

| 11| 21| 78| ---| 12| 0| 0|

| 70| 71| 71| 50| 61| 61| 53|

| 74| 71| 71| 50| 61| 61| 53|

| 155| 167| 167| 1| 16| 168| 2|

From source 25:

| 57| 158| 67| 67| 46| 68| 82|

| 132| 122| 122| 122| 134| 164| 138|

| 165| 122| 122| 122| 134| 114| 166|

| 11| 21| 78| 124| ---| 0| 0|

| 70| 71| 71| 71| 50| 61| 53|

| 74| 71| 71| 71| 50| 61| 73|

| 155| 167| 167| 167| 1| 168| 2|

From source 26:

| 57| 158| 67| 67| 67| 46| 82|

| 132| 122| 122| 122| 122| 164| 138|

| 169| 122| 122| 122| 122| 134| 170|

| 11| 11| 124| 124| 124| ---| 0|

| 84| 71| 71| 71| 71| 85| 73|

| 84| 71| 71| 71| 71| 85| 73|

| 140| 167| 167| 135| 135| 1| 2|

From source 27:

| 90| 91| 171| 93| 93| 93| 46|

| 142| 136| 136| 136| 136| 143| 134|

| 142| 136| 136| 136| 136| 143| 134|

| 94| 11| 11| 11| 11| 11| ---|

| 144| 84| 97| 97| 97| 97| 85|

| 144| 84| 97| 97| 97| 97| 85|

| 145| 146| 146| 146| 146| 146| 1|

From source 28:

| 46| 47| 47| 47| 47| 47| 48|

| 105| 147| 107| 108| 108| 109| 110|

| 105| 108| 107| 107| 107| 109| 110|

| 105| 108| 107| 107| 107| 109| 110|

| ---| 107| 107| 107| 107| 109| 107|

| 50| 148| 52| 53| 53| 53| 55|

| 8| 111| 111| 111| 111| 149| 150|

From source 29:

| 57| 46| 59| 59| 59| 59| 82|

| 151| 105| 115| 115| 115| 114| 109|

| 151| 152| 114| 114| 114| 114| 153|

| 151| 152| 114| 114| 114| 114| 153|

| 11| ---| 116| 116| 116| 0| 0|

| 74| 154| 61| 61| 61| 61| 53|

| 155| 1| 156| 130| 130| 130| 157|

From source 30:

| 57| 158| 46| 159| 159| 159| 82|

| 132| 122| 105| 114| 114| 114| 160|

| 132| 122| 134| 115| 115| 114| 153|

| 132| 122| 134| 115| 115| 114| 153|

| 11| 161| ---| 116| 116| 116| 0|

| 74| 71| 50| 61| 61| 61| 53|

| 31| 135| 1| 156| 130| 130| 3|

From source 31:

| 57| 158| 163| 46| 68| 68| 82|

| 132| 122| 122| 134| 114| 164| 138|

| 132| 122| 122| 134| 114| 114| 138|

| 132| 122| 122| 134| 114| 114| 166|

| 11| 21| 78| ---| 12| 0| 0|

| 74| 71| 71| 50| 61| 61| 73|

| 155| 167| 167| 1| 16| 168| 2|

165

From source 32:

| 57| 158| 67| 67| 46| 68| 82|

| 132| 122| 122| 122| 134| 164| 138|

| 132| 122| 122| 122| 134| 114| 138|

| 132| 122| 122| 122| 134| 114| 166|

| 11| 21| 78| 124| ---| 0| 0|

| 74| 71| 71| 71| 50| 61| 53|

| 155| 167| 167| 167| 1| 168| 2|

From source 33:

| 57| 158| 67| 67| 67| 46| 82|

| 132| 122| 122| 122| 122| 164| 138|

| 169| 122| 122| 122| 122| 134| 166|

| 169| 122| 122| 122| 122| 134| 170|

| 11| 11| 124| 124| 124| ---| 0|

| 84| 71| 71| 71| 71| 85| 73|

| 140| 167| 167| 135| 135| 1| 2|

From source 34:

| 90| 91| 171| 93| 93| 93| 46|

| 142| 136| 136| 136| 136| 143| 134|

| 142| 136| 136| 136| 136| 143| 134|

| 142| 136| 136| 136| 136| 143| 134|

| 94| 11| 11| 11| 11| 11| ---|

| 144| 84| 97| 97| 97| 97| 85|

| 145| 146| 146| 146| 146| 146| 1|

From source 35:

| 46| 82| 82| 82| 82| 82| 48|

| 46| 108| 108| 108| 108| 109| 110|

| 46| 172| 107| 107| 107| 109| 110|

| 46| 172| 107| 107| 107| 109| 173|

| 46| 172| 107| 107| 107| 109| 173|

| ---| 0| 0| 0| 0| 0| 49|

| 1| 174| 174| 174| 174| 149| 150|

From source 36:

| 28| 46| 175| 176| 176| 176| 82|

| 28| 46| 114| 114| 114| 114| 109|

| 28| 105| 114| 177| 177| 114| 109|

| 28| 105| 114| 177| 177| 114| 178|

| 28| 105| 114| 177| 177| 114| 178|

| 11| ---| 116| 116| 116| 0| 0|

| 179| 1| 156| 156| 156| 156| 157|

From source 37:

| 28| 180| 46| 159| 159| 159| 82|

| 151| 122| 46| 114| 114| 114| 160|

| 132| 122| 134| 114| 181| 114| 153|

| 132| 122| 134| 114| 114| 177| 153|

| 132| 122| 134| 114| 181| 177| 153|

| 11| 124| ---| 116| 116| 116| 0|

| 179| 135| 1| 156| 156| 156| 157|

From source 38:

| 57| 180| 180| 46| 182| 183| 82|

| 132| 180| 122| 46| 164| 164| 123|

| 132| 184| 122| 134| 185| 185| 138|

| 132| 122| 122| 134| 186| 186| 187|

| 132| 122| 122| 134| 186| 186| 187|

| 11| 124| 124| ---| 188| 0| 0|

| 189| 135| 190| 1| 191| 191| 2|

From source 39:

| 57| 180| 180| 180| 46| 183| 82|

| 132| 180| 180| 122| 46| 164| 123|

| 132| 184| 122| 122| 134| 185| 138|

| 132| 122| 122| 122| 134| 186| 187|

| 132| 122| 122| 122| 134| 186| 187|

| 11| 124| 124| 124| ---| 0| 0|

| 189| 135| 190| 135| 1| 191| 2|

From source 40:

| 192| 180| 180| 180| 180| 46| 82|

| 192| 180| 180| 180| 180| 46| 193|

| 192| 122| 122| 122| 122| 134| 166|

| 192| 122| 122| 122| 122| 134| 194|

| 192| 122| 122| 122| 122| 134| 194|

| 11| 11| 124| 124| 124| ---| 0|

| 145| 135| 135| 135| 135| 1| 2|

From source 41:

| 195| 192| 196| 197| 197| 197| 46|

| 198| 199| 196| 200| 200| 192| 46|

| 198| 169| 143| 143| 143| 201| 202|

| 198| 136| 136| 169| 169| 201| 134|

| 198| 136| 136| 169| 169| 201| 134|

| 94| 11| 11| 11| 11| 11| ---|

| 145| 146| 146| 203| 203| 203| 1|

From source 42:

| 204| 205| 205| 205| 205| 56| 206|

| 204| 207| 82| 82| 82| 82| 192|

| 46| 82| 82| 82| 82| 208| 48|

| 46| 209| 210| 210| 210| 208| 211|

| 46| 209| 210| 210| 210| 208| 211|

| 46| 82| 212| 208| 208| 208| 211|

| ---| 0| 0| 0| 0| 0| 49|

From source 43:

| 213| 46| 214| 214| 214| 214| 215|

| 28| 46| 176| 159| 159| 176| 82|

| 18| 46| 216| 216| 216| 176| 82|

| 217| 46| 216| 216| 216| 176| 82|

| 217| 46| 216| 216| 216| 176| 82|

| 28| 46| 218| 218| 218| 218| 82|

| 11| ---| 116| 116| 116| 116| 0|

From source 44:

| 213| 219| 204| 214| 214| 220| 220|

| 28| 221| 204| 159| 159| 159| 82|

| 18| 221| 46| 222| 222| 159| 82|

| 217| 221| 46| 222| 222| 159| 82|

| 217| 221| 46| 222| 222| 159| 82|

| 217| 223| 46| 218| 218| 218| 82|

| 11| 124| ---| 116| 116| 116| 0|

From source 45:

| 213| 224| 219| 204| 14| 14| 220|

| 28| 219| 180| 204| 159| 159| 225|

| 226| 219| 223| 46| 222| 77| 225|

| 226| 221| 223| 46| 222| 227| 225|

| 226| 221| 223| 46| 222| 227| 225|

| 217| 223| 223| 46| 218| 228| 82|

| 11| 124| 124| ---| 229| 230| 0|

From source 46:

| 213| 224| 224| 224| 204| 14| 220|

| 28| 219| 180| 180| 204| 159| 225|

| 226| 219| 180| 231| 46| 77| 225|

| 226| 221| 223| 223| 46| 227| 225|

| 226| 221| 223| 223| 46| 227| 225|

| 217| 223| 223| 223| 46| 228| 82|

| 11| 124| 124| 124| ---| 230| 0|

From source 47:

| 232| 219| 219| 224| 224| 204| 220|

| 192| 89| 219| 219| 219| 204| 220|

| 35| 221| 223| 223| 223| 46| 82|

| 192| 223| 223| 223| 223| 46| 82|

| 192| 223| 223| 223| 223| 46| 82|

| 192| 223| 223| 223| 223| 46| 82|

| 11| 11| 11| 83| 83| ---| 0|

166 APPENDIX A. ROUTE PATTERNS FOR SPFTR

From source 48:

| 233| 232| 206| 206| 206| 206| 204|

| 234| 195| 192| 192| 192| 192| 204|

| 234| 235| 192| 192| 192| 35| 46|

| 234| 235| 35| 35| 35| 35| 46|

| 234| 235| 35| 35| 35| 35| 46|

| 195| 235| 35| 35| 35| 35| 46|

| 94| 11| 11| 11| 11| 11| ---|

Appendix B

Acronyms

APM Automatic Path Migration

ASI Advance Switching Interconnect

ATM Asynchronous Transfer Mode.

BFS Breadth First Search

BSC Barcelona Supercomputing Center

CA Channel Adapter

CDG Channel Dependency Graph

CMU Carnegie Mellon University

COTS Commercial-Off-The-Shelf

CPU Central Process Unit

CRC Cyclic redundancy check

CSMA/CD Carrier Sense, Multiple Ac-

cess / Collision Detect

DFS Depth-First-Spanning tree

DGID Destination port Global ID

DLID Destination Local Identifier

DOR Dimension Order Routing

DRT Direct Reachability Table

DS DoubleScheme

DSM Distributed Shared Memory

EBR Epoch-Based Reconfiguration

FDDI Fiber Distributed Data Interface

FLITS flow control units

GAP Grupo de Arquitecturas Paralelas

HCA Host Channel Adapter

HoL Head of Line

HPC High Performance Computing

ID Identifier

IBA InfiniBand

IBM Intl Business Machines

IBTA InfiniBand Trade Association

IPC Inter Processors Communication

IRT Indirect Reachability Table

ISV Independent Software Vendor

167

168 APPENDIX B. ACRONYMS

KSR Kendall Square Research

LAN Local Area Network

LANL Los Alamos National Laboratory

LID Local Identifier

LLNL Lawrence Livermore National

Laboratory

LMC LID Mask Control

MINs Multistage Interconnection Net-

works

MIPS Million instructions per second

MTBF Mean Time Between Failures

MTBI Mean Time Between Interrupts

MTTF Mean Time to failures

MTTR Mean Time to restore

MPI Message Passing Interface

MPP Massively Parallel Processing

NIC Network Interface Card

NoC Network on Chip

NOW Network of Workstations

NM Network Manager

NUMA Non Uniform Memory Access

NIC Network Interface Card

O.S. Operating System

PSC Pittsburg Supercomputing Center

QoS Quality of Service

RAID Redundant Arrays of Inexpensive

Disks

RFTR Reachability Based Fault Toler-

ant Routing

SAN System Area Network

SAF Store & Forward

SCSI Small Computers System Inter-

face

SGID Source port Global ID

SISD Single Instruction; Single Data

SIMD Single Instruction; Multiple Data

SL Service Level

SM Subnet Manager

SMA SubNet Manager Agent

SMP Symmetric Multi-Processing

SPFTR Scalable Pattern-based Fault

Tolerant Routing

SR Simple Reconfiguration

STP Spanning-Tree Protocol

TFTR Transition Fault Tolerant Routing

TMR Triple Modular Redundancy

UD up∗/down∗

UMA Uniform Memory Access

VCT Virtual Cut-Through

VL Virtual Lane

WAN Wide Area Network

WH Wormhole

Bibliography

[1] Ethernet: local area network and devices defined under the standard IEEE

802.3 and the protocol CSMA/CD, 1985.

[2] FDDI standards published by ANSI (American National Standards Insti-

tute), the specifications are ANSI X3.139 and X3.148 http://www.ansi.

org/.

[3] IEEE Standard, “802.3u Media Access Control (MAC) Parameters, Physical

Layer, Medium Attachment Units, and Repeater for 100Mb/s Operation, Type

100BASE-T”,1995.

[4] More information on BlueGene can be found at the webpage: http://www.

top500.org/wiki/index.php/Blue_Gene.

[5] Achieving Mainframe-Class Performance on Intel Servers Using InfiniBand

Building Blocks: http://www.oracle.com/technology/deploy/

availability/pdf/oracle_IB.pdf.

[6] Advanced Switching Specifications can be found at the webpage: . www.asi-

sig.org.

[7] Amazon webpage. http://www.amazon.com.

[8] Barcelona Supercomputing Center webpage. http://www.bsc.es/.

[9] Cray XD1 datasheet available at:

http://www.cray.com/downloads/Cray_XD1_Datasheet.pdf.

[10] Earth Simulator webpage. http://www.es.jamstec.go.jp/esc/eng/.

[11] Google webpage. http://www.google.com.

[12] Information on Himalaya server can be found at the webpage:.

http://www.compaq.com.

169

170 BIBLIOGRAPHY

[13] Message Passing Interface. Info and standard at: http://www.mcs.anl.

gov/mpi.

[14] More information can be found at: http:

//www.topspin.qassociates.co.uk/

solutions-high-performance-computing.htm.

[15] More information HP products for InfiniBand networks can be found

at: http://www.hp.com/products1/serverconnectivity/

adapters/infiniband/.

[16] More information on ABE Supercomputer can be found at:. http://www.

ncsa.uiuc.edu/.

[17] More information on Agilent company can be found at: http://www.

agilent.com/.

[18] More information on AOL company can be found at:. http://www.aol.

com.

[19] More information on DELL company can be found at: http://www.

dell.com/.

[20] More information on Gigabit Ethernet specifications at:. http://www.

ieee802.org/3/.

[21] More information on IBM products for InfiniBand networks can be found at:

http://www-03.ibm.com/systems/bladecenter/hardware/

openfabric/infiniband.html.

[22] More information on InfiniBand at SUN can be found at: http://blogs.

sun.com/aland/resource/ib-at-sun.22.02.07.odp.

[23] More information on Intel in InfiniBand Trade Association can be found at:

http://www.intel.com/technology/infiniband/.

[24] More information on iWarp can be found at: http://www.cs.cmu.edu/

~iwarp.

[25] More information on Mellanox company can be found at: http://www.

mellanox.com/.

[26] More information on Network Appliance Joins InfiniBand Trade Association

Steering Committee can be found at: http://www.netapp.com/us/

company/news/15304311.html.

BIBLIOGRAPHY 171

[27] More information on OpenSM can be found at: http://infiniband.

sourceforge.net/SM/OpenSM/index.html.

[28] More information on Silverstorm company can be found at: http://www.

silverstorm.com/.

[29] More information on Voltaire in InfiniBand Trade Association can be

found at: http://www.voltaire.com/NewsAndEvents/Press_

Releases/press2007/September_12_2007_01.

[30] Performance of MPICH-MX 1.2.6..0.9.2c over MX-2G Uniprocessor (UP)

case (one process node). http://www.myri.com/scs/performance/Myrinet-

2000/MPICH-MX/.

[31] POWER3: The next generation of PowerPC processors.

http://www.research.ibm.com/journal/rd/446/oconnell.html.

[32] Resuls HPC Challenge Benchmark are available at the webpage: http://

icl.cs.utk.edu/hpcc/hpcc_results.cgi.

[33] SGI Challenge webpage:. http://www.sgichallenge.com/.

[34] Simulation of Hafnium Gate Material http://www-03.ibm.com/

servers/deep\-computing/pdf/Simulation_of_Hafnium_

Gate_Material.pdf, february 2007.

[35] Stanford Parallel Applications for Shared Memory. http://www-

flash.stanford.edu/apps/SPLASH/.

[36] Sun Fire 15000, detailed info can be found at http://sunstuff.org/

hardware/systems/other/SunFire15000/.

[37] System availability statistics available at: http://www.nersc.gov/

nusers/status/AvailStats/FY08/.

[38] The Cray T3E. detailed info at http://www.cray-cyber.org/

systems/t3e.php.

[39] Top500 Supercomputer list can be found on the webpage:. http://www.

top500.org.

[40] web page. http://www.cray.com/products/xd1/index.html#RapidArrayInter-

connect.

[41] Yahoo webpage. http://www.yahoo.com.

172 BIBLIOGRAPHY

[42] Efficient Communications for Fine-Grain Distributed Computers. Ph.D. Dis-

sertation. Southampton University, 1991.

[43] Cluster Interconnects: The Whole Sheband. http://www.

clustermonkey.net//content/view/124/34/1/2/, April

2006.

[44] N. Adiga, M. Blumrich, D. Chen, et al. Blue Gene/L torus interconnection

network. IBM Journal of Research and Development, 49, March 2005.

[45] T. Anderson, D. Culler, and D. Patterson. A case for NOW (Networks of

Workstations). IEEE Micro, 15:54–64, February 1995.

[46] K. V. Anjan and T. M. Pinkston. An Efficient, Fully Adaptive Deadlock Re-

covery Scheme: DISHA. pages 201–210, 1995.

[47] K. V. Anjan and T. M. Pinkston. DISHA: a deadlock recovery scheme for

fully adaptive routing. In Proceedings of the 9th International Symposium on

Parallel Processing, pages 537–543, April 25-28 1995.

[48] A. Bermúdez, R. Casado, F. J. Quiles, and J. Duato. Handling Topology

Changes in InfiniBand. IEEE Transactions on Parallel and Distributed Sys-

tems, February 2007.

[49] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N.

Seizovic, and W.-K. Su. Myrinet: A Gigabit-per-Second Local Area Network.

IEEE Micro, 15(1):29–36, February 1995.

[50] R. V. Boppana and S. Chalasani. Fault-tolerant wormhole routing algorithms

for mesh networks. IEEE Transactions on Computers, 44:848–864, July 1995.

[51] R. Casado, A. Bermúdez, J. Duato, F. J. Quiles, and J. L. Sáchez. A protocol

for deadlock-free dynamic reconfiguration in high speed local area networks.

IEEE Transactions on Parallel and Distributed Systems, 12:115–132, 2001.

[52] R. Casado, A. Bermúdez, J. Duato, F. J. Quiles, and J. L. Sánchez. A protocol

for deadlock-free dynamic reconfiguration in high-speed local area networks.

IEEE Transactions on Parallel and Distributed Systems, 12:115–132, Febru-

ary 2001.

[53] R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánchez, and J. Duato. Per-

formance evaluation of dynamic reconfiguration in high-speed local area

networks. In Proceedings of the Sixth International Symposium on High-

Performance Computer Architecture, 2000.

BIBLIOGRAPHY 173

[54] S. Chalasani and R. V. Boppana. Fault-tolerant wormhole routing in tori. In

Proceedings of the 8th International Conference on Supercomputing, pages

146–155, July 1994.

[55] S. Chalasani and R. V. Boppana. Communication in multicomputers with non-

convex faults. In Proceedings of Euro-Par’95, pages 673–684, August 1995.

[56] C. L. Chen and G. M. Chiu. A fault-tolerant routing scheme for meshes with

nonconvex faults. IEEE Transactions on Parallel and Distributed Systems,

12:467–475, May 2001.

[57] L. Cherkasova, V. Kotov, and T. Rokicki. Fibre channel fabrics: Evaluation

and design. In Proceedings of 29th International Conference On System Sci-

ences, February 1995.

[58] A. A. Chien and J. H. Kim. Planar- adaptive routing: Low- cost adaptive

networks for multiprocessors. In Proceedings of the 19th International Sym-

posium on Computer Architecture, pages 268–277, May 1992.

[59] R. Cole, B. M. Maggs, and R. K. Sitaraman. On the Benefit of Supporting

Virtual Channels in Wormhole Routers. In Proceedings of the Symposium on

Parallel Algorithms and Architectures, pages 131–141. ACM, 1996.

[60] J. Costanzo, L. Crowl, L. Sanchis, and M. Srinivas. Subgraph Isomorphism on

the BBN Butterfly Multiprocessor. Butterfly Project Report 14, Department

of Computer Science, University of Rochester, Rochester, New York, 14627-

0226, October 1986.

[61] C. M. Cunningham and D. R. Avresky. Fault-Tolerant adaptive routing for

two-dimensional meshes. In Proceedings of the first Annual International

Symposium on High Performance Computing Architecture, 1995.

[62] R. Cypher, F. M. auf der Heide, C. Scheideler, and B. Vöcking. Universal al-

gorithms for store-and-forward and wormhole routing. pages 356–365, 1996.

[63] W. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer net-

works using virtual channels. IEEE Transactions on Parallel and Distributed

Systems, 4:466–475, April 1993.

[64] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on Computers, C-36:547–553,

1987.

[65] W. J. Dally and C. L. Seitz. Deadlock-free Message Routing in Multiproces-

sors Interconnection Networks. IEEE Transactions on Computers, C-36:547–

553, May 1987.

174 BIBLIOGRAPHY

[66] W. J. Dally and C. L. SEITZ. Deadlock-free Message Routing in Multiproces-

sors Interconnection Networks. IEEE Transactions on Computers, C-36:547–

553, May 1987.

[67] W. J. Dally and B. Towles. Principles and practices of interconnection net-

works. Morgan Kaufmann, 2004.

[68] B. V. Dao, J. Duato, and S. Yalamanchili. Configurable flow control mech-

anisms for fault tolerant routing. In Proceedings of the 22nd International

Symposium on Computer Architecture, pages 220–229, June 1995.

[69] B. V. Dao, J. Duato, and S. Yalamanchili. Dynamically configurable message

flow control for faulty-tolerant routing. IEEE Transactions on Parallel and

Distributed Systems, 10:7–22, January 1999.

[70] D.Reed. High-end computing: The challenge of scale. Director’s Colloquium.

May 2004.

[71] J. Duato. A New Theory of Deadlock-Free Adaptive Routing in Worm-

hole Networks. IEEE Transactions on Parallel and Distributed Systems,

4(12):1320–1331, 1993.

[72] J. Duato. A theory of fault-tolerant routing in wormhole networks. In Pro-

ceedings of the International Conference on Parallel and Distributed Systems,

pages 600–607, December 1994.

[73] J. Duato. A theory to increase the effective redundancy in wormhole networks.

In Proceedings of the Parallel Processing Letters, volume 4, pages 125–138,

June 1994.

[74] J. Duato. A necessary and sufficient condition for deadlock-free adaptive rout-

ing in wormhole networks. IEEE Transactions on Parallel and Distributed

Systems, 6:1055–1067, October 1995.

[75] J. Duato, B. Dao, P. Gaughan, and S. Yalamanchili. Scouting: fully adaptive,

deadlock-free routing in faulty pipelined networks. In Proceedings of the In-

ternational Conference on Parallel and Distributed Systems, pages 608–613,

1994.

[76] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston. Part I: A theory for deadlock-

free dynamic network reconfiguration. IEEE Transactions on Parallel Dis-

tributed Systems, 16(5):412–427, 2005.

[77] J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks. An Engineer-

ing Approach. Morgan Kaufmann Publishers, 2003.

BIBLIOGRAPHY 175

[78] T. H. Dunnigan. Early experiences and performance of the Intel Paragon.

Technical Report ORNL/TM-12194, Oak Ridge National Laboratory, October

1994. http://www.csm.ornl.gov/\simdunigan/paragon.

ps.

[79] M. R. Fahey, S. Alam, T. H. Dunnigan, J. Vetter, and P. Worley. Early Evalu-

ation of the Cray XD1. In Proceedings of the 47th Cray User Group Confer-

ence, Knoxville, TN, May 2005.

[80] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge Discovery in

Databases: An Overview. pages 213–228, Fall 1992.

[81] J. C. French, T. W. Pratt, and M. Das. Performance Measurement of a Parallel

Input/Output System for the Intel iPSC/2 Hypercube. 1991.

[82] P. T. Gaughana and S. Yalamanchili. A family of faulty-tolerant routing pro-

tocols for direct multiprocessor networks. IEEE Computer Transactions on

Parallel and Distributed Systems, 6:482–497, May 1995.

[83] C. J. Glass and L. M. Ni. The turn model for adaptive routing. In Proceedings

of the 19th International Symposium on Computer Architecture, pages 278–

287, May 1992.

[84] C. J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes. In Pro-

ceedings of the 23nd International Symposium on Fault-Tolerant Computing,

pages 240–249, June 1993.

[85] M. E. Gómez, J. Duato, J. Flich, P. López, A. Robles, N. A. Nordbotten,

O. Lysne, and T. Skeie. An efficient fault-tolerant routing methodology for

meshes and tori. 3(1):10–13, July 2004.

[86] M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. Robles, J. Du-

ato, T. Skeie, and O. Lysne. A Routing Methodology for Achieving Fault-

Tolerance in Direct Networks. IEEE Transactions on Computers, 55:400–415,

2006.

[87] R. L. Hadas and E. Brandt. Origin-based fault-tolerant routing in the mesh.

In Proceedings of the First International Symposium on High-Performance

Computer Architecture, pages 102–111, January 1995.

[88] C. T. Ho and L. Stockmeyer. A New Approach to Fault-Tolerant Wormhole

Routing for Mesh-Connected Parallel Computers. IEEE Transactions on Com-

puters, 53:427–439, April 2004.

176 BIBLIOGRAPHY

[89] InfiniBand Trade AssociationTM . InfiniBand Architecture specification release

1.2, October 2004. Available at http://www.InfiniBandta.com.

[90] W. H. Inmon. Building the Data Warehouse. Wiley, John & Sons, Incorpo-

rated.

[91] R. Jain. The art of computer systems performance analysis. John Wiley &

Sons, 1991.

[92] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: Dis-

tributed Shared Memory on Standard Workstations and Operating Systems. In

Proceedings of the 1994 Winter USENIX Conference, 1994.

[93] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Modeling the Performance of

Large-Scale Systems. IEE Proceedings: Software, Inst. Electrical Engineers,

150(4):214–221, July 2003.

[94] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer commu-

nication switching technique. Computer Networks, 3:267–286, 1979.

[95] J. Kim and A.Chien. An evaluation of planar adaptive routing. In Proceed-

ings of the 4th International Parallel and Distributed Processing Symposium

(IPDPS-92), 1992.

[96] M. Koibuchi, A.Funahashi, A.Jouraku, and H.Amano. Lturn routing: An

adaptive routing in irregular networks. In Proceedings of the 2001 Interna-

tional Conference on Parallel Processing (ICPP’01), pages 374–383, Septem-

ber 2001.

[97] M. Koibuchi, A. Jouraku, K. Watanabe, and H. Amano. Descending Layers

Routing: A Deadlock-Free Deterministic Routing using Virtual Channels in

System Area Networks with Irregular Topologies. In Proceedings of the Inter-

national Conference on Parallel Processing (ICPP’03), 2003.

[98] S. Konstantinidou. Adaptive, minimal routing in hypercubes. In Proceedings

of the sixth MIT Conference on Advanced Research in VLSI, pages 139–153,

April 1990.

[99] J. Laprie. Dependable Computing and Fault Tolerance: Concepts and termi-

nology. In Proceedings of the 15th IEEE International Symposium on Fault-

Tolerant Computing, 1985.

[100] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In The 24th Annual International Symposium on Computer Architec-

ture, pages 241–251. ACM, 1997.

BIBLIOGRAPHY 177

[101] T. Lee and J. P. Hayes. A fault tolerant communication scheme for hyper-

cube computers. IEEE Transactions on Computers, C-41:1242–1256, October

1992.

[102] M. Levine. Proceedings of the SF’s terascale computing system. In Proceed-

ings of the 7th Workshop on Distributed Supercomputing (SOS7), The Lodge

at Tamarron, Durango, Colorado, USA, March 2003. http://www.cs.

sandia.gov/SOS7/.

[103] D. H. Linder and J. C. Harden. An Adaptive and fault tolerant wormhole

routing strategy for k-ary n-cubes. IEEE Transactions on Computers, C-40:2–

12, January 1991.

[104] O. Lysne and J. Duato. Fast dynamic reconfiguration in irregular networks. In

IEEE Computer Society, editor, Proceedings of the 2000 International Con-

ference of Parallel Processing, pages 449–458, Toronto (Canada), 2000.

[105] O. Lysne, J. M. Montañana, J. Flich, J. Duato, T. M. Pinkston, and T. Skeie. An

Efficient and Deadlock-free Network Reconfiguration Protocol. IEEE Trans-

actions on Computers, 57(6):762–779, June 2008.

[106] O. Lysne, J. M. Montañana, T. M. Pinkston, J. Duato, T. Skeie, and J. Flich.

Simple Deadlock-Free Dynamic Network Reconfiguration. In Proceedings of

the 11th International Conference on High Performance Computing (HiPC),

Bangalore (India), 19-22 December 2004.

[107] O. Lysne and T. Skeie. Load balancing of irregular system area networks

through multiple roots. In Proceedings of 2nd International Conference on

Communications in Computing(CIC’01), 2001.

[108] D. E. McDysan and D. L. Spohn. ATM Theory and Application. McGraw-Hill,

New York, 1998.

[109] J. M. Montañana, J. Flich, and J. Duato. EBR: A Deadlock Recovery-Based

Reconfiguration Mechanism. In Proceedings of the CEDI 2007-II Congreso

Español de Informática. XVIII Jornadas de Paralelismo., pages 229–236,

Zaragoza, (Spain), April 2007.

[110] J. M. Montañana, J. Flich, and J. Duato. EBR: A Deadlock Recovery-Based

Reconfiguration Network Mechanism. In Proceedings of the 22nd Interna-

tional Parallel and Distributed Processing Symposium (IPDPS 2008),IEEE

Computer Society Press, Miami, Florida, (USA), April 2008.

[111] J. M. Montañana, J. Flich, A. Robles, and J. Duato. A Transition-Based Fault-

Tolerant Routing Methodology for InfiniBand Networks. In Proceedings of

178 BIBLIOGRAPHY

the 18th International Parallel and Distributed Processing Symposium (IPDPS

2004),IEEE Computer Society Press, New Mexico, USA, April 2004.

[112] J. M. Montañana, J. Flich, A. Robles, and J. Duato. A Scalable Methodol-

ogy for Computing Fault-Free Paths in InfiniBand Torus Networks. In Sixth

International Symposium on High Performance Computing (ISHPC VI), Nara

(Japan), September 2005.

[113] J. M. Montañana, J. Flich, A. Robles, and J. Duato. Substitution-Path-Based

Fault-Tolerant Routing Methodology. In Proceedings of the CEDI 2005-I

Congreso Español de Informática, Actas de las XVI Jornadas de Paralelismo,

pages 173–180, Granada, (Spain), 2005. Ed. Thomson.

[114] J. M. Montañana, J. Flich, A. Robles, and J. Duato. Reachability-Based Fault-

Tolerant Routing. In Proceedings of the twelfth International Conference on

Parallel and Distributed Systems, pages 515–524, Minneapolis (USA), July

2006. IEEE Computer Society Press.

[115] J. M. Montañana, M. E. Gómez, A. Robles, J. Flich, P. López, and J. Duato.

Líneas de investigación en Tolerancia a Fallos (Research Lines on Fault Tol-

erance). In Proceedings of the Jornadas de Paralelismo XIV, pages 425–430,

Leganés, Madrid, (Spain), September 2003. ARCOS de la UCIIIM.

[116] J. M. Montañana, A. Robles, J. Flich, P. López, and J. Duato. Providing Fault

Tolerance To InfiniBand Networks. In Proceedings of the Jornadas de Par-

alelismo XV, pages 265–270. SP-Universidad de Almería, September 2004.

[117] J. Morrison. The ASCI Q System at Los Alamos. In Proceedings of the 7th

Workshop on Distributed Supercomputing (SOS7), The Lodge at Tamarron,

Durango, Colorado, USA, March 2003. http://www.cs.sandia.gov/

SOS7/.

[118] T. Mudge, G. Buzzard, and T. Abdel-Rahman. A High Performance Oper-

ating System for the NCUBE. In Proceedings of the Second Conference on

Hypercube Multiprocessors, pages 90–99, 1987.

[119] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364

Network Architecture. IEEE MICRO, January-February 2002.

[120] N. Natchev, D. Avresky, and V. Shurbanov. Dynamic reconfiguration in high-

speed computer clusters. In Proceedings of the International Conference on

Cluster Computing, pages 380–387, Los Alamitos (USA), 2001. IEEE Com-

puter Society.

BIBLIOGRAPHY 179

[121] J. M. Nick, B. B. Moore, J. Y. Chung, and N. S. Bowen. S/390 Cluster Tech-

nology: Parallel Sysplex. IBM Systems Journal, 36(2):172–201, 1997.

[122] M. Noakes, D. Wallach, and W. Dally. The J-machine multicomputer: an

architectural evaluation. In Proceedings of the 20th International Symposium

Computer Architecture, pages 224–235, 1993.

[123] F. Petrini, W. Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics

Network (QsNet): High-Performance Clustering Technology. In Proceedings

of the 9th IEEE Hot Interconnects. (HotI’01), Palo Alto, California, August

2001. (original version) IEEE Micro January-February 2002 (extended ver-

sion).

[124] T. M. Pinkston, R. Pang, and J. Duato. Deadlock-free dynamic reconfiguration

schemes for increased network dependability. IEEE Transactions on Parallel

and Distributed Systems, 14(8):780–794, August 2003.

[125] T. M. Pinkston and S. Warnakulasuriya. On deadlocks in interconnection net-

works. In Proceedings of the 24th International Symposium on Computer

Architecture, June 1997.

[126] D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice Hall, Febru-

ary 1996.

[127] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and C. Izu.

Adaptive Bubble Router: A Design to Improve Performance in Torus Net-

works. In Proceedings of the International Conference on Parallel Processing,

pages 58–67, 1999.

[128] V. Puente, J. A. Gregorio, R. Beivide, and F. Vallejo. A Low Cost Fault Tol-

erant Packet Routing for Parallel Computers. In Proceedings of the 17th In-

ternational Symposium on Parallel and Distributed Processing (IPDPS), page

45.1, Washington, DC, USA, 2003. IEEE Computer Society.

[129] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide. Immunet: A Cheap and

Robust Fault-Tolerant Packet Routing Mechanism. In Proceedings of the 31th

Annual International Symposium on Computer Architecture, 2004.

[130] W. Qiao, L. M. Ni, and T. Rokicki. Adaptive-Trail Routing and performance

Evaluation in irregular Networks Using Cut-Through Switches. IEEE Trans-

actions on Parallel and Distributed Systems, 10:1138–1158, November 1999.

[131] U. Ramachandran, G. Shah, S. Ravikumar, and J. Muthukumarasamy. Scala-

bility Study of the KSR-1. Parallel Computing, pages 739–759, 1996.

180 BIBLIOGRAPHY

[132] J. C. Sancho and A. Robles. Improving the Up∗/Down∗ Routing Scheme for

Networks of Workstations. In Proceedings of the Euro-Par, August 2000.

[133] J. C. Sancho, A. Robles, and J. Duato. In Proceedings of Conference on High

Performance Computing (ISHPC’01), September 2000.

[134] J. C. Sancho, A. Robles, and J. Duato. An effective methodology to improve

the performance of the up∗/down∗ routing algorithm. IEEE Transactions on

Parallel and Distributed Systems, 15, August 2004.

[135] J. C. Sancho, A. Robles, J. Flich, P. López, and J. Duato. Effective Methodol-

ogy for Deadlock-Free Minimal Routing in InfiniBand Networks. 2002.

[136] J. C. Sancho, A. Robles, J. Flich, P. López, and J. Duato. Effective methodol-

ogy for deadlock-free minimal routing in InfiniBand networks. In Proceedings

of the 2002 International Conference on Parallel Processing, IEEE Computer

Society, 2002.

[137] J. C. Sancho, A. Robles, P. López, J. Flich, and J. Duato. Routing in

InfiniBandTM Torus Network Topologies. In IEEE Proceedings of the Inter-

national Conference on Parallel Processing, 2003.

[138] M. D. Schroeder et al. Autonet: A High-speed, Self-configuring Local Area

Network Using Point-to-point Links. Journal on Selected Areas in Comm,

9(8), October 1991.

[139] S. L. Scott and G. Thorson. Optimized routing in the Cray T3D. In Pro-

ceedings of the Workshop on Parallel Computer Routing and Communication,

pages 281–294, May 1994.

[140] S. L. Scott and G. Thorson. The Cray T3E Network: Adaptive Routing in

a High Performance 3D Torus. In Proceedings of the Symposium on High

Performance Interconnects, August 1996.

[141] M. Seager. Operational machines: ASCI White. In Proceedings of the 7th

Workshop on Distributed Supercomputing (SOS7), The Lodge at Tamarron,

Durango, Colorado, USA, March 2003. http://www.cs.sandia.gov/

SOS7/.

[142] T. Skeie, O. Lysne, and I. Theiss. Layered Shortest Path (LASH) Routing

in Irregular System Area Networks. In Proceedings of the Communication

Architecture for Clusters, 2002.

[143] Y. J. Suh, B. V. Dao, J. Duato, and S. Yalamanchili. Software-based re-routing

for fault tolerance pipelined communication. IEEE Transactions on Parallel

and Distributed Systems, 11:193–211, 2000.

BIBLIOGRAPHY 181

[144] I. T. T. Theiss and O. Lysne. FRoots, A Fault Tolerant and Topology Agnostic

Routing Technique. IEEE Transactions on Parallel and Distributed Systems,

October 2006.

[145] S. C. Woo et al. The Performance Advantages of Integrating Block Data Trans-

fer in Cache-Coherent Multiprocessors. Proceedings of the 6th International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems (ASPLOS-VI), October 1994.

[146] T. Woodall, R.L.Graham, R. Castain, D. Daniel, M. Sukalski, G. Fagg,

E.Gabriel, G.Bosilca, T.Angskun, J.J.Dongarra, J.M.Squyres, V.Sahay,

P. Kambadur, B.Barrett, and A.Lumsdaine. Open MPI’s TEG Point-to-Point

Communication Methodology: Comparison to Existing Implementations. In

Proceedings of the EuroPVM/MPI, pages 105–111. Springer Verlag, 2004.

[147] J. Wu. Unicasting in faulty hypercubes using safety levels. In Proceedings of

the 1995 International Conference on Parallel Processing, volume III, pages

133–136, August 1995.

This page intentionally left blank

Index

A

A-SPFTR, 81

Ack/nack flow control, 16

Adaptive routing, 22

APM, 48, 51

Arbiter, 16

Availability, 39

B

Backtracking routing, 22

Bandwidth, 9

C

Centralized routing, 21

Channel Dependency Graph, 23

Contention, 12

Credit-based flow control, 14

Crossbar, 18

D

Deadlock recovery mechanism, 101

Dependability, 39

Deterministic routing, 22

DFS, 56

Dimension order routing, 25

Direct networks, 17

Direct reachability, 86

Direct reachability table, 86

Disjoint paths, 52

Distributed routing, 21

Distributed Shared Memory, 2

DLID, 48

Double Scheme, 115

Dynamic fault model, 41

Dynamic reconfiguration, 28

E

EBR, 95

End node, 10, 31

Epoch, 101

F

Fault models, 40

Fault region, 43

Fault ring, 43

Fault tolerance degree, 39

Flits, 11

Flow control, 14

Fully adaptive routing, 22

H

Head-of-Line blocking, 60

Header, 11

Hypercube topology, 18

I

IBTA, 29

Indirect networks, 18

Indirect reachability, 86

Indirect reachability table, 87

InfiniBand, 29

Irregular network, 19

L

Lamb node, 44

Latency, 9

183

184 INDEX

M

Mapping conflicts, 34

Massive Parallel Systems, 4

Mesh topology, 18

Message, 11

Message-Passing Interface, 3

Metrics, 118

Minimal routing, 22

Misrouting, 22

Multicast routing, 20

Multicomputers, 3

Multiphase routing, 21

Multistage network, 19

N

Network on Chip, 158

Network reconfiguration, 27

NIC, 10

Non-shared memory multiprocessors, see

multicomputers

Non-Uniform Memory Access, 2

O

On/off flow control, 15

P

Packet, 11

Partial adaptive routing, 22

Partially disjoint paths, 52

Payload, 11

Phit, 11

Profitable routing, 22

Progressive routing, 22

R

Reliability, 37

RFTR, 83

Round-robin, 16

Round-trip time, 15

Routing restriction, 24

S

Shared medium networks, 17

Shared memory multiprocessor, 2

Simple Reconfiguration, 115

Simulator, 107

Singular case, 40

Smart-routing, 26

Solid fault model, 43

Source routing, 21

SPFTR, 67

SR Latency Aware, 115

SR Packet Dropping Aware, 115

Static fault model, 40

Static reconfiguration, 28

Stop/go flow control, 15

Store & forward, 12

Subnet Manager, 36, 47

Subnet Manager Agent, 47

Sweep, 47

Switching, 12

Symmetric Multiprocessor, 2

T

TFTR, 55

Topologies, 17

Traffic patterns, 111

U

Unicast routing, 20

Uniform Memory Access, 2

Up∗/down∗ routing algorithm, 26

V

Virtual channel, 13

Virtual cut-through, 12

W

Wormhole, 12, 13

Wraparound links, 18

X

XY routing algorithm, 25

