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ABSTRACT

Trans-cleaving hammerheads with discontinuous or
extended stem I and with tertiary stabilizing motifs
(TSMs) have been tested previously against short
RNA substrates in vitro at low Mg2+ concentration.
However, the potential of these ribozymes for
targeting longer and structured RNAs in vitro and
in vivo has not been examined. Here, we report the
in vitro cleavage of short RNAs and of a 464-nt
highly structured RNA from potato spindle tuber
viroid (PSTVd) by hammerheads with discontinuous
and extended formats at submillimolar Mg2+. Under
these conditions, hammerheads derived from
eggplant latent viroid and peach latent mosaic
viroid (PLMVd) with discontinuous and extended
formats, respectively, where the most active.
Furthermore, a PLMVd-derived hammerhead with
natural TSMs showed activity in vivo against the
same long substrate and interfered with systemic
PSTVd infection, thus reinforcing the idea that this
class of ribozymes has potential to control
pathogenic RNA replicons.

INTRODUCTION

The hammerhead ribozyme is a catalytic RNA motif that
in viroids and viroid-like satellite RNAs, wherein it was
initially discovered, mediates cis-cleavage of the
multimeric strands resulting from a rolling-circle replica-
tion (1,2). Most of the natural hammerheads are formed
by a central conserved core flanked by three double-
stranded regions with relaxed sequence requirements
(helices I, II and III), two of which (I and II) are capped
by short loops (1 and 2, respectively) (3). Minimal

trans-cleaving hammerheads including the central
conserved core and two hybridizing arms have been
generated by removing the peripheral loop 1, which
initially was thought nonessential for catalytic activity,
and extending helix I to specifically target for cleavage
an RNA after a GUH sequence (where H is any nucleotide
except G) (4,5). These and other ribozymes have received
considerable attention because of their potential for the
specific inactivation of cellular or viral RNAs. However,
the target accessibility, the subcellular co-localization of
ribozyme and substrate, and the catalytic activity at the
low physiological concentration of Mg2+, are still barriers
that limit the use of hammerheads in vivo (6).

A re-examination of natural hammerheads—in which
the helix-loop motifs flanking the central conserved core
are preserved—has shown that these ribozymes display
significantly higher self-cleavage rates, suggesting the
existence of tertiary interactions between loops 1 and 2
critical for catalysis (7,8). The tertiary interactions
between loops indeed exist and stabilize the catalytically
active structure at the submillimolar concentrations of
Mg2+ present in vivo (9), thus explaining why minimal
trans-cleaving hammerheads require higher concentrations
of this cation for adopting the active folding (10–12).
Recent studies of these tertiary interactions in the ham-
merhead of tobacco ring spot virus satellite RNA
(sTRSV) (2) have revealed a Hoogsteen pair between an
A in stem–loop II and a U in a nonhelical region of stem
I that is apparently conserved in most natural hammer-
heads possibly due to its functional relevance (13).
Moreover, analysis of loops 1 and 2 of the hammerheads
of chrysanthemum chlorotic mottle viroid (CChMVd)
(14) by nuclear magnetic resonance (NMR) spectroscopy,
site-directed mutagenesis, self-cleavage kinetics and
infectivity bioassays has shown that loop 1 contains
an exposed 50-U and an extra-helical 30-U, and that loop
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2 has an opened 30-A (15). Contacts between loops 1 and 2
of most natural hammerheads may take place across
the major grove of the RNA, and as a consequence of
the resulting conformational changes, the 30-A of loop
2 can form a base-pair with the 50-U of loop 1 and the
extra-helical pyrimidine of loop 1 can interact with the
30 portion of loop 2 (15). The relevance of these residues
is evidenced by their conservation in most natural
hammerheads (15).

Tertiary stabilizing motifs (TSMs), specifically
interactions between peripheral loops, have been
incorporated into a new generation of more efficient
trans-cleaving hammerheads in two different manners: (i)
by extending stem I and including loop 1 as a bulge in the
hybridizing arm of this stem (extended format) (16,17) and
(ii) by embedding within stem I the 50 and 30 termini of the
ribozyme and substrate, respectively (discontinuous
format) (18). Some of these hammerheads are active
in vitro at low Mg2+ concentration against short RNA
substrates. In particular, discontinuous hammerheads
derived from sTRSV and extended hammerheads
derived from peach latent mosaic viroid (PLMVd) (19)
are the most efficient when compared to other trans-
cleaving hammerheads (16–18).

However, the recently characterized hammerheads of
eggplant latent viroid (ELVd) (20) have not been yet
adapted into a trans design, despite displaying higher
self-cleavage rates than other natural hammerheads at
very low Mg2+ concentrations (21). Moreover, these
hammerheads seem particularly appropriate for the
discontinuous format because their long stem I (of 7 bp)
should facilitate substrate binding and folding of loop 1.

Here, we report a comparative trans-cleavage analysis
in vitro of some discontinuous and extended hammer-
heads, derived from ELVd, PLMVd and sTRSV, against
RNAs of the pathogen potato spindle tuber viroid
(PSTVd) (22). We have examined the ability of the ham-
merheads to catalyze cleavage of short RNA substrates
and of a long and highly structured RNA containing the
complete sequence of PSTVd (23,24). Our results, particu-
larly at submillimolar Mg2+, show that the ELVd-derived
hammerheads are functional, with the discontinuous
variants being more efficient against the full-length
PSTVd-RNA than their sTRSV counterparts, and that
an extended PLMVd-derived hammerhead with natural
TSMs displays the highest cleavage rate. Further
analyses with transient expression bioassays in Nicotiana
benthamiana plants have revealed that this latter hammer-
head is also active in vivo and interferes with systemic
PSTVd infection.

MATERIALS AND METHODS

Synthesis, purification and labeling of short RNA
substrates

The oligonucleotides RF-979 (50-GCUCAGGAGGUCA
GGU-30), RF-992 (50-GCUCAGGAGGUCAGG-30),
RF-993 (50-GCUCAGGAGGUCAGGUGU-30) and
RF-994 (50-GCUCAGGAGGUCAGGUGUGAACCA
C-30), were chemically synthesized by Sigma-Aldrich,

purified by PAGE in 20% denaturing gels, eluted by
extracting the crushed gel pieces with buffer-saturated
phenol (Tris–HCl 10mM pH 7.5, EDTA 1mM and SDS
0.1%), and recovered by ethanol precipitation and resus-
pended in deionized sterile water. The integrity and
concentration of the purified RNA substrates were
confirmed by denaturing gel electrophoresis. The RNAs
were 50-labeled with [g-32P]ATP (3000Ci/mmol; Perkin
Elmer) and T4 polynucleotide kinase (25).

Preparation of cDNAs for expressing the trans-cleaving
hammerheads and the long PSTVd (–) RNAs

Ribozymes were designed to target the GUC trinucleotide
located at positions 322–324 in the PSTVd (–) RNA. This
site was previously shown to be a suitable target for
hammerhead-mediated cleavage in vitro and in vivo (26).
The hammerhead cDNA constructs were prepared by
extension and amplification of partially overlapping
sense and antisense primers (five cycles at 94�C for 30 s,
50�C for 30 s and 72�C for 10 s, with a final extension at
72�C for 2min), with sense primers including the
T7 promoter. PCR products were separated by PAGE in
5% non-denaturing gels and those with the expected
length were eluted and cloned into pUC18 digested with
SmaI. Monomeric and dimeric head-to-tail PSTVd
cDNAs (intermediate strain, M16826) were cloned into
pBluescript II KS (+) digested with EcoRI/HindIII.

Synthesis and purification of the ribozymes and the long
RNA substrate

Hammerheads were generated by in vitro transcription of
the corresponding recombinant plasmids digested with
BamHI. Transcription reactions (100ml) contained
40mM Tris–HCl pH 8, 6mM MgCl2, 2mM spermidine,
10mM dithiothreitol, 10mM NaCl, 0.4mM each of ATP,
CTP, GTP and UTP, 0.8U/ml of ribonuclease inhibitor
(rRNasin, Promega), 100 ng/ml of plasmid and 1.2U/ml
of T7 RNA polymerase (Roche). Radiolabeled full-length
monomeric PSTVd (–) RNA (464 nt) was obtained by
in vitro transcription as described above, but the UTP
concentration was 0.08mM and 0.25mCi/ml [a-32P]UTP
was added to the transcription mixture. After incubation
at 37�C for 1 h the transcription products were
fractionated by PAGE in 5% gels with 8M urea. The
primary transcripts were eluted as described above,
recovered by ethanol precipitation and resuspended in
deionized sterile water. The integrity and concentration
of the purified ribozyme and substrate were confirmed
by denaturing PAGE in 20% and 5% gels, respectively,
with appropriate size markers.

Kinetic analysis

Trans-cleaving rate constants were determined under
single-turnover conditions using an excess of the
ribozyme (200 nM) and traces of the 32P-labeled substrate
(2 nM). Ribozyme and substrate were first annealed in
Tris–HCl 50mM pH 7.5, by heating at 95�C for 1min
and slowly cooling to 25�C (ramping decrease 1�C/10 s),
and then incubated at this temperature for 5min. After
taking a zero-time aliquot, cleavage reactions were
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triggered by adding MgCl2 to the desired final concentra-
tion (10, 1 or 0.1mM). Aliquots were removed at different
time intervals and quenched at 0�C after adding a 10- or
5-fold excess of stop solution (8M urea, 50% formamide,
50mM EDTA, 0.1% xylene cyanol and bromophenol
blue) for short and long substrates, respectively.
Substrate and cleavage products were separated by
PAGE in 20% (short RNAs) or 5% (long RNA)
denaturing gels. The product fraction at different times,
Ft, was determined by quantitative scanning of the corres-
ponding gel bands and data adjustment to a
single-exponential equation Ft=F0+F1(1 – e-kt), where
F0 and F1 are the product fractions at zero time and at the
reaction end point, respectively, and k is the first-order
rate constant of cleavage (kcat). Those data sets that
could not be adequately fitted to a single exponential
were adjusted to a double-exponential using the
equation Ft=Fa(1 – e-kat)+Fb(1-e

-kbt), where Fa and ka
correspond to the product fraction and the rate constant
for a rapid process ‘a’, and Fb and kb to the product
fraction and the rate constant for a slow process ‘b’.

Agroinfiltration

The monomeric and dimeric PSTVd-cDNAs and the
hammerhead-cDNAs were subcloned into a modified
version of the pMOG180 vector between a double copy
of the 35S CaMV promoter and the Nos-terminator. The
expression cassettes were then subcloned into the plant
binary expression vector pBIN19sGFP by replacing the
sGFP cassette to obtain the recombinant plasmids
pBINmPSTVd(–), pBINdPSTVd(–), pBINHHePLMVd,
pBINHHePLMVdG5!U, pBINHHesTRSV�L1, and
pBINØ (the empty vector). Protocols for agroinfiltrating
N. benthamiana plants were described previously (27,28).
Bioassays were performed in a growth chamber at 23�C
for 16 h with fluorescent light and at 19�C for 8 h in
darkness. RNAs from the infiltrated and non-infiltrated
upper leaves were extracted with a phenol-based

protocol (29). The PSTVd (–) primary transcripts and
the monomeric (+) circular and linear RNAs resulting
from viroid replication were detected by denaturing
PAGE in 5% gels containing 8M urea, followed by
northern-blot hybridization at 70�C in 50% formamide
with strand-specific 32P-labeled riboprobes transcribed
in vitro (30).

RESULTS

In vitro trans-cleavage activity of discontinuous
hammerheads (HHd) against short RNA substrates

Trans-cleaving hammerheads with TSMs were designed
against RNA oligonucleotides corresponding to a
fragment of the minus (–) polarity strand of PSTVd that
includes a GUC target site (positions 322–324). Previous
studies on the self-cleavage kinetics of variants of the
ELVd (+) hammerhead have shown that those with a
GUC or AUC trinucleotide preceding the self-cleavage
site are the most active at very low Mg2+ concentration
(21). We therefore reasoned that the ELVd(+)-GUC
hammerhead (Figure 1) could serve for designing discon-
tinuous trans-cleaving hammerheads with preserved
TSMs, which were named according to the base-pair of
stem I adjacent to loop 1 and to the sequence of this loop
(Figure 2A). First, HHd-ELVd-UA/GUGU was designed
with its loop 1 closed by part of stem I (Ia, of three
base-pairs), and the U-G base-pair adjacent to loop
1 substituted by the stronger U-A base-pair present in
some ELVd variants (20) for increasing the stability of
stem Ia. The other part of stem I (Ib, of 4 bp) served for
hybridizing with the substrate. Therefore, stem I was
separated into two discrete segments in HHd-ELVd-UA/
GUGU.

This hammerhead was very active at 10 and 1mM
Mg2+, catalyzing specifically and efficiently cleavage of
the substrate RF-979 (92% and 90% at the end point of
the reaction, respectively), and still keeping a significant

Figure 1. Secondary structures of the ELVd(+)-GUC, PLMVd(–) and sTRSV(+) self-cleaving hammerheads represented according to crystallo-
graphic data obtained for the Schistosoma mansoni and the sTRSV(+) hammerheads (9,13). Motifs conserved in most natural hammerheads are
within boxes and self-cleavage sites are marked by arrows. Black and white backgrounds refer to (+) and (–) polarities, respectively. Dashes denote
Watson–Crick (and wobble) pairs and the open square-triangle a Hoogsteen/sugar edge interaction. Nomenclature of helices and loops follows the
standard criterion (43). Ovals represent the proposed tertiary interactions between loops 1 and 2.
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activity at 0.1mM Mg2+ (Table 1, Figure 2C and D).
We also designed other ELVd-derived artificial hammer-
heads with TSMs (Figure 2A), in which the sequence of
the loop 1 and/or the base-pair adjacent to this loop were
modified to evaluate the effect of these changes on the

hammerhead activity. In hammerheads HHd-ELVd-UA/
UACG, HHd-ELVd-CG/AAAA and HHd-ELVd-CG/
CCCC, the wild-type loop 1 (GUGU) was replaced by
UACG, AAAA or CCCC, respectively. Formation of
loop 1 should be facilitated by the high stability of the

Figure 2. Structure and properties of discontinuous hammerheads (HHd) against short RNA substrates. (A) Schematic representation of the
complex formed by the HHd-ELVd-UA/GUGU hammerhead and the substrate RF-979 (left), and schemes for complexes involving other discon-
tinuous ELVd-derived hammerheads (right). Hammerhead and substrate nucleotides are shown with black and grey fonts, respectively, and
unchanged ribozyme and substrate nucleotides are represented with continuous black and grey lines, respectively. Ia and Ib refer to the distal
and proximal halves of stem I, respectively, with the base-pair of stem Ia adjacent to loop 1 being boxed. (B) Predicted secondary structure for the
complex between HHd-sTRSV and the substrate RF-992. Other details as in (A). (C) Diagrams representing the product fraction (F) as a function of
time at 10 and 0.1mM Mg+2 (left and right, respectively) generated by five different hammerheads: HHd-ELVd-UA/GUGU, HHd-ELVd-UA/
UACG, HHd-ELVd-CG/AAAA, HHd-ELVd-CG/CCCC and HHd-sTRSV. F-values represent the mean of two independent experiments, and the
inset displays the first 10min of each reaction. (D) Analysis by denaturing PAGE (20%) and autoradiography of reactions catalyzed by three
discontinuous hammerheads at 0.1mM Mg+2. The positions and size of the 50-labeled substrates (RF-979 and RF-992) and of the resulting
50-cleavage products (P) are indicated.
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UACG tetraloop belonging to the UNCG family (31) in
HHd-ELVd-UA/UACG, and by the stronger C-G
base-pair of stem Ia in HHd-ELVd-CG/AAAA and
HHd-ELVd-CG/CCCC. These three hammerheads
catalyzed cleavage of a high fraction of the substrate at
10 and 1mM Mg2+, but only HHd-ELVd-CG/AAAA
remained active at 0.1mM Mg2+ (Table 1, Figure 2C
and D), suggesting that alternative tertiary interactions
between artificial loops 1 and the wild-type loop 2 might
promote cleavage at submillimolar Mg2+ (32). In support
of this notion, RNase T1 probing was consistent with for-
mation of the ribozyme–substrate complex by the
HHd-ELVd-UA/GUGU, HHd-ELVd-UA/UACG and
HHd-ELVd-CG/AAAA hammerheads (Supplementary
Figures S1 and S2). The other ELVd-derived hammer-
head, HHd-ELVd-CG/GUGU, in which the U-A
base-pair adjacent to loop 1 was replaced by a stronger
C-G pair that should facilitate formation of this loop, did
not show higher efficiency (Table 1, Figure 2C).
Because previous studies have shown that discontinuous

ribozymes derived from sTRSV (+) hammerhead
(Figure 1), with a stem Ib of only three base-pairs, can
catalyze cleavage of short RNA substrates at low Mg2+

concentration (18), a variant thereof (HHd-sTRSV) was
designed against a short RNA (RF-992) derived from the
PSTVd (–) strand that was identical to the previous one

(RF-979) but one nucleotide shorter at the 30 end
(Figure 2B). HHd-sTRSV promoted very efficient
cleavage of the substrate in vitro (Figure 2D), showing
the highest values of catalytic constant (kcat) (Table 1).
Therefore, the most efficient hammerheads, HHd-ELVd-
UA/GUGU and HHd-sTRSV, were derived from natural
hammerheads in which the sequence of the loops 1 and 2
remain unaltered. Both hammerheads with natural loops,
and one ELVd-derived ribozyme with an artificial loop 1
(HHd-ELVd-CG/AAAA), still remained active at low
Mg2+ (0.1mM) promoting cleavage of 47%, 62% and
43% of the substrate, respectively (Table 1). No experi-
ments were attempted with PLMVd-derived hammer-
heads, because a stem I of only 5 bp (Figure 1) lacks
sufficient stability to support the discontinuous
format (18).

In vitro trans-cleavage activity of extended hammerheads
(HHe) against short RNA substrates

TSMs have also been incorporated into extended hammer-
heads by including loop 1 as a bulge in the hybridizing
arm of stem I. Because these extended PLMVd-derived
ribozymes against short RNAs are more efficient than
those derived from other natural hammerheads (16,17),
we designed a variant (HHe-PLMVd) against a short
RNA (RF-994) corresponding to a segment of the (–)
strand of PSTVd (Figure 3A). HHe-PLMVd has unmodi-
fied wild-type loops 1 (UAA) and 2 (UAAAGU)
(Figure 1) (19) to preserve loop–loop interactions. This
hammerhead displayed high kcat at 10 and 1mM Mg2+,
catalyzing cleavage of 87% and 79% of the substrate, re-
spectively, and still keeping high activity at 0.1mM Mg2+

(Table 1, Figure 3B and C).
Two extended ELVd-derived hammerheads were also

generated against the same substrate: (i) HHe-ELVd,
wherein the wild-type loop 1 was included in the
hybridizing arm of stem I as a bulging loop 7 nt apart
from the catalytic core as in the natural ribozyme and
(ii) HHe-ELVd-�L1, a minimal hammerhead wherein
loop 1 was deleted (Figure 3A). At 10mM Mg2+, HHe-
ELVd displayed a significant higher catalytic constant
when compared with HHe-ELVd-�L1, although the
fraction of the substrate cleaved at the reaction end
point was approximately the same (Table 1, Figure 3B).
In contrast, HHe-ELVd-�L1 was essentially inactive at
0.1mM Mg2+, while HHe-ELVd was able to catalyze
cleavage of 18% of the substrate (Figure 3B and C).
Moreover, RNase T1 probing was consistent with the
formation of a ribozyme–substrate complex by the
HHe-ELVd hammerhead (Supplementary Figure S3).
These results indicate that extended ELVd-derived
hammerheads with TSMs retain activity at submillimolar
Mg+2, although they are less efficient than their discon-
tinuous counterparts.

In addition, a minimal sTRSV-derived hammerhead
lacking loop 1 (HHe-sTRSV-�L1), a modified version
of a ribozyme without TSMs (Figure 3A) but with
in vivo activity when stably expressed in transgenic
potato plants (26), was included for comparative
purposes. HHe-sTRSV-�L1 was designed with 50 and 30

Table 1. Trans-cleavage activity of discontinuous (HHd) and

extended (HHe) hammerheads against short RNA substrates

Hammerhead [MgCl2] kcat (min�1)a F1
b

HHd-ELVd-UA/GUGU 10 0.52±0.065 0.92
1 0.49±0.062 0.90
0.1 0.03±0.002 0.47

HHd-ELVd-UA/UACG 10 0.36±0.002 0.89
1 0.31±0.015 0.87
0.1 0.05±0.003 0.04

HHd-ELVd-CG/AAAA 10 0.52±0.058 0.88
1 0.42±0.024 0.85
0.1 0.02±0.003 0.43

HHd-ELVd-CG/CCCC 10 0.18±0.008 0.88
1 0.13±0.008 0.88
0.1 n.m.c 0.09

HHd-ELVd-CG/GUGU 10 0.45±0.069 0.88
1 0.25±0.059 0.89
0.1 n.m. 0.05

HHd-sTRSV 10 1.41±0.194 0.85
1 0.53±0.090 0.79
0.1 0.03±0.003 0.62

HHe-PLMVd 10 1.11±0.148 0.87
1 0.28±0.051 0.79
0.1 0.08±0.008 0.79

HHe-ELVd 10 0.41±0.043 0.85
1 0.07±0.003 0.86
0.1 0.02±0.003 0.18

HHe-ELVd�L1 10 0.14±0.010 0.88
1 0.04±0.003 0.61
0.1 n.m. 0.00

HHe-sTRSV�L1 10 0.63±0.028 0.97
1 0.45±0.031 0.98
0.1 0.02±0.002 0.48

aCleavage rate constant.
bFraction of product at the end point of the reaction.
cNon-measurable.
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Figure 3. Structure and properties of extended hammerheads (HHe) against short RNA substrates. (A) Schematic representation of the different
ribozyme–substrate complexes. HHe-PLMVd and HHe-ELVd hammerheads contain TSMs, while the minimal HHe-sTRSV-�L1 and
HHe-ELVd-�L1 hammerheads lack these motifs. (B) Diagrams representing the product fraction (F) as a function of time at 10 and 0.1mM
Mg+2 (left and right, respectively) generated by four different hammerheads: HHe-PLMVd, HHe-ELVd, HHe-ELVd-�L1 and HHe-sTRSV-�L1.
The inset displays the first 10min of each reaction. (C) Analysis by denaturing PAGE (20%) and autoradiography of reactions catalyzed by four
extended hammerheads at 0.1mM Mg+2. The positions and size of the 50-labeled substrates (RF-994 and RF-993) and of the resulting 50-cleavage
products (P) are indicated.
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hybridizing arms of 11 and 6 nt, respectively, instead of
the 11 and 10 nt of the original ribozyme (26), because
shorter hybridizing arms generally result in specific
substrate binding and faster product release, thus
maximizing turnover rate (33,34). The hammerhead was
active against the short RNA at 10 and 1mM Mg2+

(catalyzing cleavage of 97% and 98% of the substrate,
respectively) although the kcat values were lower than
those of the HHe-PLMVd (Table 1, Figure 3B). As
expected, the catalytic constant and the fraction of
cleaved substrate at the end point decreased when the
Mg2+ concentration was reduced to 0.1mM (Table 1,
Figure 3B and C), most likely as a result of the absence
of TSMs in this hammerhead.

In vitro trans-cleavage of a highly-structured RNA by
discontinuous hammerheads

We next examined the ability of these hammerheads to
catalyze cleavage of a long and highly structured RNA
in vitro. To this aim, we generated a 464-nt RNA by
in vitro run-off transcription of a monomeric
PSTVd-cDNA clone. The resulting transcript included a
GUC target site within the PSTVd (–) full-length strand
(359 nt) flanked by vector sequences at both 50 and 30

termini (17 and 88 nt, respectively) (Figure 4). Previous
analysis by temperature-gradient gel electrophoresis (35)
support the rod-like conformation of PSTVd (–) RNA
predicted by the Mfold program (36), and our own
results obtained by RNase T1 probing (data not shown)

indicate that the flanking plasmid sequences do not
disturb this conformation.

First, we analyzed the activity of the HHd-ELVd
hammerheads. In contrast with the results obtained with
the short substrate, the HHd-ELVd-UA/GUGU
hammerhead showed very low catalytic activity against
the PSTVd (–) RNA even at 10mM Mg2+ (Table 2,
Figure 5A). The most likely interpretation for this result
is that the compact rod-like conformation of PSTVd (–)
RNA disfavors hybridization with the ribozyme arms.
Indeed, RNase T1 probing revealed formation of the
hammerhead–substrate complex with the short RNA, but
neither with the PSTVd (–) RNA nor with short and long
non-substrate RNAs (Supplementary Figure S2A).

The HHd-ELVd-CG/GUGU variant (with the U-A
base-pair adjacent to loop 1 replaced by a stronger C-G
base-pair that should facilitate formation of this loop),
which was moderately efficient against the short RNA sub-
strate, was more efficient than the wild-type HHd-
ELVd-UA/GUGU hammerhead against the full-length
PSTVd (–) RNA (Table 2, Figure 5A and B). These
results support the idea that stem Ia stability may be
critical for loop 1 formation and, by extension, for active
discontinuous hammerheads as proposed previously (18).

HHd-ELVd-UA/UACG, HHd-ELVd-CG/AAAA and
HHd-ELVd-CG/CCCC, the three additional hammer-
heads designed with artificial sequences in loop 1, should
not form, according to Mfold, stable interactions with the
substrate alternative to the catalytically active folding.

Figure 4. Schematic representation of the Mfold-predicted secondary structure of the long RNA substrate. Major features of this compact structure
have been validated by temperature-gradient gel electrophoresis (35). PSTVd and flanking vector sequences are indicated in grey and black,
respectively. The Mfold program (36) and our results obtained with RNase T1 probing (data not shown), indicated that the vector sequences do
not disturb the rod-like conformation of the PSTVd(–) RNA. The hammerhead-binding sequence is denoted with capital fonts, with the trinucleotide
GUC preceding the cleavage site boxed and the cleavage site marked with an arrow.
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In consonance with these predictions, HHd-ELVd-UA/
UACG and HHd-ELVd-CG/AAAA displayed high
cleavage rates and, particularly, the latter hammerhead
catalyzed end-point cleavage of 74%, 76% and 29% of
the substrate at 10, 1 and 0.1mM Mg2+, respectively
(Table 2, Figure 5A and B). In vitro probing with RNase
T1 supports that HHd-ELVd-CG/AAAA forms the
expected complex with the substrate (Supplementary
Figure S2C). These data suggest again that alternative
tertiary interactions between artificial loop 1 sequences
and the wild-type loop 2 might promote hammerhead
stability and cleavage at submillimolar Mg2+.

On the other hand, HHd-sTRSV, which was the most
efficient discontinuous ribozyme against the short RNA
substrate, was less efficient than its ELVd counterparts
against the PSTVd full-length substrate (Table 2). The
reduction in the catalytic activity of HHd-sTRSV was
especially important at 0.1mM Mg2+, with only 9% of
the substrate cleaved (Table 2, Figure 5A and B),
probably as a consequence of poor substrate binding by
the 1-nt-shorter stem Ib.

In vitro trans-cleavage of a highly structured RNA by
extended hammerheads

The HHe-PLMVd hammerhead, which was the most
efficient against the short RNA substrate (Table 1), was

also very active against the highly structured full-length
PSTVd (–) RNA (Table 2). This hammerhead displayed
high catalytic constants at 10, 1 and 0.1mM Mg2+

cleaving also a significant fraction of the substrate at all
Mg2+ concentrations (Table 2, Figure 6A and B).
The extended hammerhead HHe-ELVd and the

minimal hammerhead HHe-ELVd-�L1 were also tested
against the same long RNA substrate. At 10mM Mg2+,
HHe-ELVd displayed a 2-fold increase of the catalytic
constant when compared with HHe-ELVd-�L1,
although the fraction of the substrate cleaved at the end
point of the reaction was approximately the same (64%
and 63%, respectively) (Table 2, Figure 6A). In contrast,
HHe-ELVd-�L1 was inactive at 0.1mM Mg2+, while
HHe-ELVd was able to catalyze cleavage of 17% of the
substrate (Figure 6A and B). These results indicate that
extended ELVd-derived hammerheads with TSMs are also
active against a long and structured substrate at
submillimolar Mg+2, although they are less efficient than
their discontinuous counterparts. A plausible explanation
for these results was provided by Mfold analysis, which
predicted for the ribozyme–substrate complex alternative
secondary structures more stable than the catalytically
active folding (Supplementary Figure S4). Particularly,
the four nucleotides of loop 1 and the adjacent 6 nt of
the distal part of stem I can base-pair with nucleotides

Table 2. Trans-cleavage activity of discontinuous (HHd) and extended (HHe) hammerheads against the full-length PSTVd (–) RNA

Hammerhead [MgCl2] ka (min�1)a kb (min�1)b F1
c Fa

d

HHd-ELVd-UA/GUGU 10 0.08±0.006 0.32
1 0.03±0.005 0.21
0.1 n.m.e 0.08

HHd-ELVd-CG/GUGU 10 0.21±0.032 0.005±0.001 0.62 0.45
1 0.25±0.038 0.009±<0.001 0.58 0.34
0.1 0.06±0.004 0.14

HHd-ELVd-UA/UACG 10 0.76±0.206 0.002±0.001 0.64 0.55
1 0.18±0.007 0.013±0.002 0.58 0.23
0.1 0.09±0.002 0.005±0.002 0.24 0.17

HHd-ELVd-CG/AAAA 10 0.33±0.048 0.006±0.001 0.74 0.52
1 0.26±0.026 0.007±<0.001 0.76 0.48
0.1 0.16±0.074 0.010±0.003 0.29 0.15

HHd-ELVd-CG/CCCC 10 0.18±0.038 0.52
1 0.11±0.024 0.005±0.001 0.50 0.35
0.1 0.06±0.005 0.13

HHd-sTRSV 10 0.08±0.013 0.54
1 0.06±0.007 0.43
0.1 n.m. 0.09

HHe-PLMVd 10 0.83±0.188 < 0.001±0.001 0.67 0.64
1 0.77±0.274 < 0.001±<0.001 0.6 0.58
0.1 0.09±0.012 0.004±0.001 0.73 0.57

HHe-ELVd 10 0.27±0.045 0.007±<0.001 0.64 0.45
1 0.08±0.007 0.56
0.1 0.05±0.004 0.17

HHe-ELVd�L1 10 0.17±0.011 0.010±<0.001 0.63 0.35
1 0.02±0.003 0.015±0.002 0.61 0.35
0.1 n.m. 0.00

HHe-sTRSV�L1 10 0.61±0.133 0.005±0.001 0.76 0.55
1 0.13±0.009 0.004±0.002 0.73 0.53
0.1 n.m. n.m. 0.00

aCleavage rate constant (in biphasic cleavage reactions refers to the rapid ‘a’ process).
bCleavage rate constant for the slow ‘b’ process in biphasic cleavage reactions
cFraction of product at the end point of the reaction
dFraction of product at the end point of the rapid ‘a’ process in biphasic cleavage reactions.
eNon-measurable.
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of the substrate, thus disrupting the TSMs and disfavoring
the efficiency of HHe-ELVd at low Mg2+ concentration.
The minimal sTRSV-derived hammerhead lacking loop

1, HHe-sTRSV-�L1, was also active against the same
long RNA substrate at 10 and 1mM Mg2+, although the
catalytic constants were moderate (Table 2, Figure 6A).
As expected, the catalytic constant and the fraction of
cleaved substrate dropped to essentially undetectable
levels when the Mg2+ concentration was reduced to
0.1mM (Table 2, Figure 6A), most likely as a result of
the absence of TSMs in this hammerhead.

In vivo cleavage of a viroid RNA by an extended
PLMVd-derived hammerhead with natural TSMs

Because of its high in vitro activity at low Mg2+ concen-
tration against short and long RNAs, the HHe-PLMVd
was selected for further in vivo testing. To this aim, we
used an in planta approach in which two cultures of
Agrobacterium tumefaciens transformed with constructs
expressing the ribozyme and the substrate were

co-infiltrated in N. benthamiana leaves (Figure 7A). Two
substrate constructs were used for the in planta assays:
mPSTVd(–), which results in a noninfectious monomeric
PSTVd RNA of minus (–) polarity, and dPSTVd (–),
which generates a head-to-tail dimeric PSTVd (–) RNA
that acts as template for synthesis of the complementary
(+) RNA; this RNA is subsequently cleaved and ligated to
produce the infectious monomeric (+) circular RNA that
initiates replication through a rolling-circle mechanism
(37,38). Controls for the experiment included the empty
vector and the constructs for HHe-sTRSV-�L1 and
HHe-PLMVd-G5!U, in which the CUGA box of the
central core was mutated into CUUA (Figure 7A, inset)
leading to a ribozyme catalytically inactive in vitro (data
not shown).

Each of the three ribozyme constructs was
co-agroinfiltrated with the construct expressing the
full-length monomeric PSTVd (–) RNA. Northern-blot
hybridization of RNAs extracted 5 days-post-inoculation
(dpi) from six independent plants revealed that the
monomeric PSTVd transcript was significantly reduced

Figure 5. Discontinuous hammerheads (HHd) against PSTVd (–) RNA. (A) Diagrams representing the product fraction (F) as a function of time at
10 and 0.1mM Mg+2 (left and right, respectively) generated by five different hammerheads: HHd-ELVd-UA/GUGU, HHd-ELVd-UA/UACG,
HHd-ELVd-CG/AAAA, HHd-ELVd-CG/CCCC and HHd-sTRSV. F-values represent the mean of two independent experiments. (B) Analysis by
denaturing PAGE (5%) and autoradiography of reactions catalyzed by three of the hammerheads at 0.1mM Mg+2. The positions and size of the
substrate (S) and of the resulting 30 and 50 cleavage products (P) are indicated.
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in leaves co-agroinfiltrated with the HHe-PLMVd
construct with respect to those co-agroinfiltrated with
the HHe-sTRSV-�L1 or HHe-PLMVd-G5!U variants
(Figure 7B). The differential effects of HHe-PLMVd
were also observed in RNAs extracted 6 and 7 dpi
(Figure 7B), thus confirming that only this hammerhead
with TSMs was able to cleave efficiently the highly
structured RNA substrate in vivo. However, the resulting
cleavage products could not be detected by Northern-blot
hybridization, most likely because of their rapid degrad-
ation by cellular RNases (39).

The observations were extended to RNA preparations
from the upper non-inoculated leaves. Northern-blot hy-
bridizations revealed that the construct expressing the
HHe-PLMVd ribozyme when co-agroinfiltrated with a
construct expressing an infectious dimeric PSTVd (–)
RNA affected negatively the accumulation of the mono-
meric circular PSTVd (+) RNAs (resulting from replica-
tion and systemic invasion) with respect to parallel
co-agroinfiltrations with the constructs expressing the
HHe-PLMVd-G5!U or the empty vector (Figure 7C).
The effects on PSTVd infection, which were reproduced
in two independent bioassays (Figure 7C), could result
from HHe-PLMVd mediating cleavage not only of the

PSTVd (–) primary transcript but also of the PSTVd (–)
oligomeric RNAs generated during viroid replication in
the infiltrated leaves.

DISCUSSION

Developing ribozymes for intracellular applications
requires their efficient action against long and usually
structured RNAs at the low Mg+2 concentrations
existing in vivo. Efforts aimed at designing minimal ham-
merheads against long substrates have met with limited
success, with in vitro trans-cleavage constants being
�100-fold lower than those observed with short RNA
substrates, most likely due to alternative interactions
with nucleotides of the ribozyme (40) or to higher-order
structures of the substrate that restrict proper base-pairing
with the ribozyme in the vicinity of the cleavage site (41).
More recently, the study of trans-acting hammerheads at
low Mg+2 concentration has received increasing attention
after discovery of the TSMs in natural hammerheads (7,8)
which, when incorporated into ribozymes with discontinu-
ous or extended formats, provide enhanced activity.
However, these studies have been performed only
in vitro and against short substrates that entirely

Figure 6. Extended hammerheads (HHe) against against PSTVd (–) RNA. (A) Diagrams representing the product fraction as a function of time at
10 and 0.1mM Mg+2 (left and right, respectively) generated by HHe-PLMVd and HHe-ELVd hammerheads, and the minimal HHe-ELVd-�L1 and
HHe-sTRSV-�L1 hammerheads. (B) Analysis by denaturing PAGE (5%) and autoradiography of reactions catalyzed by three of the hammerheads
at 0.1mM Mg+2. Other details as in Figure 5.
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Figure 7. In vivo effects on PSTVd RNAs of three extended hammerheads co-agroinfiltrated in N. benthamiana. (A) Schematic diagrams of the
constructs with the expression cassettes (boxed and with white background) between a double copy of the 35S promoter and the Nos-terminator:
empty vector (Ø), monomeric PSTVd (–) RNA [mPSTVd(–)], dimeric PSTVd (–) RNA [dPSTVd(–)], the minimal hammerhead HHe-sTRSV-�L1,
and the hammerheads HHe-PLMVd and HHe-PLMVd-G5!U (with the mutation affecting the catalytic center indicated within the inset).
(B) Analysis by denaturing PAGE (5%) and northern-blot hybridization with a riboprobe for detecting PSTVd (–) strands of RNAs extracted
from pools of co-infiltrated leaves from independent plants collected at 5, 6 and 7 days post-infiltration (dpi). Leaves were co-infiltrated with the
mPSTVd(–) construct and with either the constructs Ø, HHe-sTRSV-�L1, HHe-PLMVd or HHe-PLMVd-G5!U. The position of the PSTVd
primary transcript mPSTVd(–) is indicated at the right. High-molecular-weight RNAs (HMW RNAs) stained with ethidium bromide were used as
loading controls. (C) Analysis by denaturing PAGE and northern-blot hybridizations with a riboprobe for detecting PSTVd (+) strands of RNAs
extracted from the upper-non-infiltrated leaves of four individual plants collected at 20 and 15 dpi in bioassays 1 and 2, respectively. 5S RNA stained
with ethidium bromide was used as loading control.
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base-pair with the ribozyme or that leave few unpaired
nucleotides (16–18). Only an extended hammerhead
derived from PLMVd has been tested in vitro against a
long RNA (a 258-nt fragment of the human immunodefi-
ciency virus 1, HIV-1) (16). Here, we have examined the
in vitro cleavage of short RNA substrates and of a long
(464-nt) highly structured RNA by trans-acting hammer-
heads with discontinuous and extended formats, and
selected the most efficient hammerhead variant for
further analysis against PSTVd in vivo.

Some ELVd-derived hammerheads in discontinuous
format catalyzed cleavage of the short RNA substrate,
although they were less efficient than the sTRSV-derived
hammerhead, suggesting that a hybridizing stem of only
three nucleotides is enough to ensure proper substrate
binding. On the other hand, extended versions of ELVd
hammerhead were active against the short RNA substrate
but their catalytic constant was lower than that derived
from PLMVd. These results indicate that, as suggested
before (17), the simple transposition of loop 1 to adapt a
hammerhead to the trans format may not preserve a high
catalytic activity. In agreement with previous data (16,17),
HHe-PLMVd was the most efficient extended
hammerhead.

In contrast with the situation observed with short RNA
substrates, most of the ELVd-derived discontinuous
hammerheads catalyzed cleavage of the long substrate
in vitro more efficiently than their sTRSV-derived coun-
terpart, probably because the longer stem Ib improves
substrate binding and the TSMs are not disrupted with
alternative interactions with nucleotides of the long sub-
strate. Moreover, stem Ib stability appears critical for
preserving the TSMs, as revealed by the higher cleavage
rates of a variant in which the U-A base-pair closing loop
1 was substituted by a stronger C-G base-pair. In a
previous work, the lack of activity of a discontinuous
PLMVd-derived hammerhead at low Mg+2 concentrations
was explained by the insufficient stability of stem Ib (18).
Interestingly, two of the hammerheads with artificial loop
1 sequences (UACG and AAAA) were active at 0.1mM
Mg+2, thus suggesting that alternative TSMs between
artificial sequences of loop 1 and the wild-type loop
2 might promote cleavage at submillimolar Mg2+, as
reported for a discontinuous sTRSV-derived hammerhead
with an artificial UUCG tetraloop (18). Pertinent to this
context, non-natural hammerhead sequences forming part
of the TSMs (8,16) or the catalytic core (21) can even
enhance activity at low Mg+2 concentrations, probably
because the sequences of natural hammerheads have
been selected not only for high cleavage rates but also
for mediating other functions (discussed in refs. 21
and 42).

The extended hammerhead derived from PLMVd was
the most efficient in vitro against the long RNA substrate,
especially at submillimolar Mg+2, in line with previous
in vitro selection studies at low Mg2+ concentration in
which a PLMVd-derived hammerhead with only two
transitions in loop 2 with respect to the wild-type
(UAGGGU) was selected for the fastest self-cleavage
(16). The nucleotides of the asymmetric bulging loop of
the HHe-PLMVd most likely generate TSMs resembling

those existing in the natural hammerhead, because a
bulging loop of only 3 nt permits less alternative
interactions than in the HHe-ELVd (with a bulging loop
of 4 nt). Supporting this view, extended hammerheads
derived from sTRSV and CChMVd, with bulging
loops of seven nucleotides, also display low catalytic
efficiency (17).
Bioassays in which constructs expressing three hammer-

heads and a monomeric PSTVd (–) RNA substrate were
co-agroinfiltrated in N. benthamiana revealed that only the
HHe-PLMVd was active in vivo, whereas the minimal
HHe-sTRSV-�L1 and the catalytically deficient HHe-
PLMVd-G5!U were not. These results strongly suggest
that the lower accumulation of the PSTVd transcript in
plants expressing the HHe-PLMVd most likely results
from ribozyme-mediated cleavage, and that TSMs are
critical in this respect. Moreover, this hammerhead
interfered with viroid infection when co-expressed with
an infectious PSTVd (–) dimeric RNA, indicating that it
may be active against the primary dimeric transcript and
perhaps also against the oligomeric (–) replicative inter-
mediates. Because a minimal hammerhead similar to
HHe-sTRSV-�L1 only conferred resistance against
PSTVd in some potato transgenic lines but not in trans-
genic tomato (26), we believe that HHe-PLMVd constitu-
tively expressed in transgenic plants could serve to control
PSTVd more efficiently. We also propose that
agroinfiltration assays in N. benthamiana, which provide
an easy and rapid test of the catalytic performance in vivo
of trans-cleaving hammerheads, should be carried out
before attempting stable plant genetic transformation
that demands considerable more time.
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